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Abstract

In this paper we give a general method to obtain a closed model structure, in the sense of
Quillen, on a category related to the category of simplicial groups by a suitable adjoint
situation. Applying this method, categories of algebraic models of connected types such as those
of crossed modules of groups (2-types), 2-crossed modules of groups (3-types) or, in general,
n-hypercrossed complexes of groups ((n + 1)-types), as well as that of n-simplicial groups (all
types), inherit such a closed model structure.

0. Introduction

The problem of giving algebraic models for the homotopy theory of spaces has been
studied in the last years by several authors [3, 5, 15, 19, 20]. Classical references about
it are the results by Eilenberg and Mac Lane [9] giving the well known equivalence
between the homotopy category of pointed connected CW-complexes, with only one
non-trivial homotopy group in dimension », and the “homotopy” category of groups
(abelian if n > 2), and the results given by Mac Lane and Whitehead [ 16, 24], proving
a similar equivalence between the pointed connected CW-complexes such that [T, = 0
for i > 3 (homotopy 2-types) and crossed modules.

The category of 2-crossed modules in the sense of Conduché [7] generalizes
Mac Lane and Whitehead’s results since it is an appropriate “algebraic category™ to
model arbitrary homotopy 3-types [3, 7] and in [5] Carrasco and Cegarra extended
these partial results by giving algebraic models for all connected n-types. For this, they
considered a category, n-HXC(Gp), consisting of certain complexes of non-abelian
groups, called by them “n-hypercrossed complexes of groups”, and showed that
a certain localization of it, in the sense of Gabriel and Zissman [10] is equivalent to
the homotopy category of connected CW-complexes (n + 1)-coconnected (i.e., IT; = 0,
forall i >n+ 2).
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The category n-HXC(Gp) is just, for n =1, the category XM(Gp) of crossed
modules of groups (2-types) and, for n = 2, the category 2-XM(Gp) of 2-crossed
modules of groups in the sense of Conduché (3-types) and, on the other hand, it is
equivalent to the full subcategory of the category of simplicial groups consisting of
those simplicial groups with trivial Moore complex in dimensions >n, ie., the
category of n-hypergroupoids of groups in the sense of Duskin—Glenn, so that this
category of n-hypergrupoids of groups, n-Hypdg(Gp), provides also algebraic models
for (n + 1)-types.

The theory developed by Carrasco and Cegarra was based on the classical theory
of Kan [14] showing that the category of simplicial groups, Simp(Gp), models
all connected types. This category is a main example of what is a closed model
category in the sense of Quillen [21], which means that in Simp(Gp) it is possible
to do homotopy theory as well as for categories of topological spaces, ie., to
have analogues of most of constructions and results which are inherent to the
homotopy theory of spaces as loops and suspensions of objects, (co)-fibration
sequences, etc.

The main object of this paper is to get a closed model structure for the category
n-Hypgd (Gp), and so for n-HXC(Gp), where the weak equivalences are precisely
those morphisms which are inverted to do the localization which determines that
category as a category of algebraic models of (n + 1)-types.

The technique used to define the structure and to check the axioms of closed model
category, lies strongly on the adjoint situation connecting the category n-Hypgd (Gp)
to Simp(Gp), and “lifting” then, to that category (which is in fact a reflexive full
subcategory of Simp(Gp)), the well-known closed model structure of Simp(Gp) [21]
following an analogous process, suggested by Kan and used by Thomason in [23], to
define in Cat a closed model structure.

The same method is then also used to get a closed model structure for the category
of n-simplicial groups, Simp"(Gp), a category which also provides algebraic models
for all types [4].

We want to note here that in 1983 Loday gave in [15] the foundation of a theory of
another category of algebraic models for (n + 1)-types of spaces, called firstly “n-cat-
groups” and renamed later more appropriately as “Cat"-groups” [2]. Proofs making
more clear the original one of Loday have been given by Porter [20] and Bullejos et
al. [4]. The possibility of giving a closed model structure to this other category of
n-types is also discussed and we conjecture that it can be achieved using the same
method as for n-Hypgd(Gp).

The plan of this paper is briefly as follows. In Section 1 we recall the set of axioms
most frequently used to define a closed model category and also some characteriza-
tions of (trivial) fibrations in the category of simplicial groups which will be useful
along the paper. In Section 2 we formulate the general problem of “lifting” the closed
model structure of simplicial groups to a category C related to it by a pair of
adjoint functors, showing conditions to assert that C inherits this kind of structure
(Theorem 2.5). As a direct application of these results we see in Section 3 that the
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category n-Hypgd(Gp), and so that of n-hypercrossed complexes of groups, n-
HXC(Gp), is a closed model category; in particular we describe the structure forn = 1
(crossed modules) and for n = 2 (2-crossed modules). In a similar way we also see that
Simp"(Gp) is a closed model category and finally, in Section 3.3., we analyse in some
detail the possibility of getting a closed model structure for the category Cat"(Gp)
using the same method as in Section 2.

1. Notation and preliminaries

We will denote through this paper by Simp(Gp) the category of simplicial groups.
i.c., the category of functors Gp™” where /A is the category whose objects are the
ordered sets [0] = {0}, [1] = {0,1},[2] = {0, 1,2},..., and whose morphisms are the
order-preserving functions between them.

Recall that the nth-simpiicial kernel of a (n — 1)-truncated simplicial group G.,,
A™(G., ), is the subgroup of (G,_;)"* ! whose elements are those (xq, ..., x,) such that
dix;=d;_x;, fori <j 1 d;: 4"(G.,) - G,_, denotes the restriction of the canonical
projection, there are unique homomorphisms s;:G,_; — 4%G. ),0 <j <n — 1, such
that

PN

4"(G.,) : Gy e gL L p— €1

is a n-truncated simplicial group. By iterating this simplicial kernel construction, one
has a functor cosk” ! from the category of (n — 1)-truncated simplicial groups to the
category Simp(Gp).

Given a simplicial group

O RN

G.: G,, . G,,fl "'——’Gl—;GO

we denote by N(G.) its Moore complex [21], 1e.,
[ 3y
N(G) = - NJG.)—> N,_1(G.)—> ---— N, (G.)—> Ny(G.)
where Nyo(G.) = G,

q—1
N,(G)= () Kerd,; = G,
i=0
and d, is the restriction of d,: G, = G,_, to N,(G.).
Recall also that the homotopy groups of the underlying simplicial set of a simplicial
group G. (pointed by the identity element) are given by the homology groups of the
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Moore complex of G.:

() Ker(d;:G,— G,—))
,(G)=—=2 , n>0.
dw1<(\KﬂMuGM1——+GJ>

i=0

A closed model category in the sense of Quillen [22] is a category C with three
distinguished classes of morphisms called fibrations, cofibrations and weak equiva-
lences, satisfying the following axioms:

CM1. The category C has finite limits and colimits.

CM2. For any composable pair f, g of morphisms in C, if any two of f,g,gf are
weak equivalences, so is the third.

CMa3. If fis a retract of g and ¢ is a fibration, cofibration or weak equivalence then
[ is also such.

Recall a morphism f: X — Y is a retract of g:W — Z if there are morphisms
X->W, rW-oX, j:Y>Z and s:Z— Y such that ri = Idy, sj = Idy and also
gi =jf. fr = sg.

CM4 (Lifting axiom). Given a solid arrow diagram

A— X

/7’
7

B— Y

where i is a cofibration, p is a fibration and either i or p is a weak equivalence, then
there exists the dotted arrow making the diagram commutative.

CMS5 (Factorization axiom). Any morphism fin C may be factored both as f= pi
and [ = gqj, where p and g are fibrations, i and j are cofibrations, and p and j are weak
equivalences.

Let us note that this set of axioms is equivalent to the original one given by Quillen
in [21].

We will say that a morphism in C i: A — B has the left lifting property (LLP)
with respect to another morphism p: X — Y and p is said to have the right lifting
property (RLP) with respect to i if the dotted arrow exists in any diagram of the
form (*),

Recall now that Simp(Gp) is a closed model category [21] where the firbrations
are the Kan fibrations, the weak equivalences are those morphisms which
induce isomorphisms on the homotopy groups and the cofibrations are defined
by the LLP with respect to the trivial fibrations. By using the simplicial sets
A[n,k], A[n] and A[n] [17] and the free group functor F:Simp(Sets) — Simp(Gp),
(trivial) fibrations are characterized as follows [21, Section 2, Propositions 1
and 2]:
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Proposition 1.1. Let f.: X. —> Y. be a morphism of simplicial groups.

(i) f. is a fibration iff f. has the RLP with respect to the family of morphisms
FA[n k] - FA[n]), 0 <k <n, n>0, induced by the inclusions A[n k] A[n].
0<k<nn>N0.

(1) f. is a trivial fibration iff f. has the RLP with respect to the family of morphisms
FA[n] - FA[n], for all n > 0, induced by the inclusions A[n] = A[n], for all n > 0.

2. Lifting closed model structures from Simp(Gp)

Let us consider Simp(Gp) with its Quillen’s closed model structure and suppose
through all this section that C is a category which has finite limits and colimits, related
to Simp(Gp) by an adjunction

£

C < Simp(Gp) (A)

R

with L the left adjoint functor to R, and for which
¢ Homc(LG., X) — Homg;p,p (G., RX)

will denote the corresponding natural bijective map.

The aim for this section is to prove that, under suitable conditions for this adjoint
situation, the category C acquires a closed model structure in the Quillen’s sense,
which is the “lifted” one from that of Simp(Gp) in the following sense (see [23]):

Definition 2.1. A morphism fin C is said to be fibration (weak equivalence) if Rf is
a fibration (weak equivalence) in Simp(Gp). A morphism fin C is a cofibration if it has
the LLP with respect to the trivial fibrations.

We will use now the characterizations of (trivial) fibrations in Simp(Gp) (see
Proposition 1.1) and the adjunction (A) to prove:

Proposition 2.2. (i) The functor L :Simp(Gp) — C preserves cofibrations.

(i1} A morphism fin C is a fibration iff it has the RLP with respect to the family of
morphisms LFA[n k] - LFA[n], 0<k<n, n>0, induced by the inclusions
Aln k] =— A[n],0 <k <n,n>0.

(iii) A morphism fin C is a trivial fibration iff it has the RLP with respect to the family
of morphisms LFA[n] - LFA[n], n >0, induced by the inclusions A[n] < 4 [n].
n>0.

(iv} If A —» Bis a cofibration in C and A — C is any morphism, the induced morphism
into the pushout

c— B]]C
A
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is a cofibration.
(v) IfCo > Cy = Cy > - isasequence of cofibrations in C, the canonical morphism

Co—> C, =lim C,
—
is a cofibration.
Proof. (i) is a consequence of the natural bijective correspondence, induced by ¢,
between diagrams in C
LG.— X
Lil S lp
//
LH—Y
and diagrams in Simp(Gp)
G.— RX
/7?
i.{ e lRp
7
H — RY

(i) and (iii) follow from Proposition 1.1. and the above correspondence between
diagrams in C and Simp(Gp).
As for (iv) and (v), note that the morphisms

C— B ]_[ C
A
and Cy — C,, are cofibrations since they have the LLP with respect to the trivial

fibrations, as can be easily deduced from the universal property of pushouts and
directed limits. [

An object A in a category C is said to be “small” if
Hom, (A, lir_’r} B,,,) ~ liin> Hom¢(A4, B,)

for any directed system {B,} in C. A family of objects {4,} in C is said to be
“sequentally small” if the objects A, are small.
We can then prove:

Proposition 2.3. If the functor R: C — Simp(Gp) preserves directed limits, then:
(i) The objects LFA[n, k] and LFA[n],0 < k < n, n > 0, are sequentially small.
(i) For any sequence of weak equivalencesin C,Cy > Cy - C, — ---, the canonical
morphism

Co—C, = ligl C,

is a weak equivalence.
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Proof. (i) It is well known that FA[n k] and FA[n] are small. Thus, using the
adjunction, one has

Hom€<LFA [n, k], lim B,,,) = HoMgimp (G <FA [n, k). R lim B,,,)

~ HOMgmp( (FA [n,k], lim RB,,,> > lim HoMgimp(op (FA[, K], RB,)
> li_n;l Hom (LFA[n,k], B,),

and similarly for LFA[n].

(i1} Since R preserves directed limits we have RC,, = lig RC;. Asevery C; - C; 4,
is a weak equivalence, using the fact that in Simp(Gp) the homotopy groups of
a directed limit are the directed limits of the homotopy groups, one sees that, as each
RC; - RC;. is a weak equivalence, so is RCy — ligl RC;=RC,.Thus Cy - C, is
a weak equivalence. [

Conditions for (A) to have a good behaviour with respect to taking pushoutsin C of
trivial cofibrations, are given in the following:

Proposition 2.4. Suppose that the functor L:Simp(Gp) — C preserves weak equiva-
lences and the counit of the adjunction (A), ec: LRC — C, is an isomorphism for all
C e C. Given a pushout diagram in C

LG. B

o )

LH.—Q

if f. is a trivial cofibration in Simp(Gp), then g is so in C.

Proof. It remains only to prove, according to Proposition 2.2, that g is a weak
equivalence. For this, taking the pushout diagram in Simp(Gp)

we have, since f. is a trivial cofibration, that RB — P. is a weak equivalence and, as
L preserves them, LRB — LP. is a weak equivalence in C.
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Now, considering the commutative diagram:

h
| 1
LG. 2" LRB—, B

4T

LH— LP. — @

where the square on the left is a pushout, we have LP. = Q since &g is an isomorphism,
and so g i1s a weak equivalence. [J

We can show now the main theorem of this section.

Theorem 2.5. For the general adjunction (A), suppose the functor L preserves weak
equivalences, R preserves directed limits and the counit of the adjunction, &c, is an
isomorphism for each object C € C. Then, the category C is a closed model category
under the structure proposed by Definition 2.1.

Proof. Axiom CM1 is true by hypothesis and CM2 is immediate.

Axiom CM3 for weak equivalences and fibrations holds in C clearly. Let us prove it
for cofibrations.

Let f: X —» Y be a retract of a cofibration g: W — Z with morphisms i, j and
s as in the formulation of CM3 (see Section 1), and take any commutative square
inC

X FE

fl [p ()

b

Y— B

where p is a trivial fibration. With this square we construct the following commutative
one

for which there exists a lifting D: Z — E because ¢ is a cofibration; thus, a lifting for
(=) 1s a given by Dj.

CMS5 (Factorization axiom). We start showing the factorization as a trivial cofibra-
tion followed by a fibration of any morphism f: X — Y in C. For this consider the
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induced morphisms LFA[n,k] — LFA[n] and all the commutative diagrams
LFA[nk]— X
l P lf' (*%)
LFA[n]— Y for 0 <k <n and n>0.
and let

] LFA[n,k]— [ ] LFA[n]

be the induced morphism in the coproducts of LFA[n, k] and LFA[n] indexed by the
set of all diagrams ( * ). The morphism

11 Falnk]— ] FA[n]

is a trivial cofibration as it is a coproduct of trivial cofibrations and then, considering
the pushout

[[ LFA[nk]— X

ST

U LFA[n] —;——»XO
i o

we have that the morphism i, is a trivial cofibration by Proposition 2.4. which has, in
addition, the LLP with respect to all fibrations, and induced by i, and «,, there exists
a morphism p,: X, — Y such that pyiy = f. Moreover, by construction any morphism
LFA[n] - Y in any diagram ( =) lifts through p, extending LFA{n, k] - X — X,.

Applying this entire construction to py: X, — Y, one produces a new factorization

Xo—5 X, 2y

and iterating it countably many times, one obtains a sequence of objects of C, {X,,}
and morphisms {p,: X,, > Y} such that the following diagram is commutative

io i iz im
X—s XO—" )(1 -, _";Xm—,

fl /’0 P Pm

Y

where each i, is a trivial cofibration.
Call

X, = lim X,
—
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and leti: X - X, be the canonical morphism. Then, by Propositions 2.2. and 2.3.,i is
a trivial cofibration which has, in addition, the LLP with respect to all fibrations since
each i,, has. On the other hand, the morphisms p,, induce another one p: X, — Y such
that pi = f and we will prove now that p is a fibration in C. To do this, we see,
according to Proposition 2.2., that it has the RLP with respect to the family of
morphisms LFA[n k] —» LFA[n], 0 <k <n, n>0. Take then any commutative
diagram

LFA[nk]— X,
l In (1)
LFA[n]—> Y

and note that, since the objects LFA[n, k] are small by Proposition 2.3, the morphism
t factors through some X,,, that is, there is a commutative diagram

LFA[nk]—— X,,
Xon

Thus, using the following commutative diagram obtained from the above ones:

LFA[n, k] ’Y > X

Urrain 1 — x,

| Vo |7

Urrapn) —s x,,., )
v / \4
LFA[n] > Y

s

it is straightforward to see that the composition

Am+ 1 Fm+1

LFA[n]— || LFA[n] X1 » X

is the required lifting for the diagram (1).

As for the factorization of f:X — Y into a cofibration followed by a trivial
fibration, we repeat the same process as above, starting now from all commutative
diagrams of the form

LFA[n]— X

| ]

LFA[n]— Y n=>0
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having then a factorization of f, X X, %Y, where j is a cofibration by
Proposition 2.2, and, again by this Proposition, g: X — Y is a trivial fibration since
the objects LFA[n] are small by Proposition 2.3. and so, a similar diagram to (2) gives
the required RLP for f.

CM4 (Lifting axiom). The only non-trivial part of this axiom consists of showing
the existence of lifting in commutative diagrams of the form

A—sX

.tl jq 3)

where f is a trivial cofibration and ¢ is a fibration. For this, factor the mor-
phism f:4 — B as in the first half of CM5, that is, f=pi with p:4, - B a
fibration and i: 4 —» A, a trivial cofibration which has the LLP with respect to
all fibrations; axiom CM2 gives then that p is also a weak equivalence and, in the
diagram

A— 4,
7
. ~//
,/l 4 ln
/
B

the dotted arrow exists since p is then a trivial fibration and fis a cofibration. On the
other hand, since i has the LLP with respect to the fibrations there exists a morphism
t: A, — X such that ti = a and gt = bp, and thus, finally, the lifting for the diagram (3)
is given by the composition ts: B - X. []

Cofibrations in C can be now characterized as follows:

Proposition 2.6. Let f:A - B be a morphism in C. Then, f is a cofibration iff
f is a strong retract of the morphism j:A — A, obtained from the factorization
f=gqj, given in the verification of CMS, into a cofibration followed by a trivial
fibration.

Proof. Suppose fis a cofibration in C and factor it by CMS as /= gj. Thus in the
diagram

A5 4,

||

B— B

Idp
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there exists a lifting s: B — A,, which shows, by the following diagram, that f is
a strong retract of j

A2, 4

1]

B— Ay
q
Conversely, if f is a strong retract of the morphism j: 4 - A, obtained from the
factorization of f, as in the second half of CMS5, fis a retract of a cofibration, and so, by
CM3, fis. [

Corollary 2.7. Given X € C, X is a cofibrant object (i.e., the unique morphism ¢ — X is
a cofibration) iff X is a retract of the objects ¢, obtained from the factorization of
¢ — X into a cofibration followed by a trivial fibration as in CM5.

3. Closed model structures for algebraic models of (n + 1)-types

We will use the general method of Section 2 to discuss closed model structures on
categories of algebraic models of connected types.

3.1. n-HXC(Gp} as a closed model category

The non-abelian version of the classical Dold—Kan’s theorem given in [ 5] provided,
by a canonical process of truncation, a new category of algebraic models for (n + 1)-
types. This category, n-HXC(Gp), consists of certain complexes of non-abelian
groups, called n-hypercrossed complexes of groups; n-HXC(Gp) is equivalent to the
full subcategory of Simp(Gp) formed by those simplicial groups with trivial Moore
complex in dimensions >n, which we will denote by n-Hypgd (Gp) since it is just the
category of n-hypergrupoids of groups in the sense of Duskin-Glenn [11].

n-Hypgd(Gp) is a reflexive subcategory of Simp(Gp), where the reflection functor
P: Simp(Gp) — n-Hypgd(Gp), left adjoint to the inclusion functor J, is explicitely

given by

” : — E— —
Hyor — &y (NaniG)—0 71— T = 0= G")
where H,,; is the normal subgroup of G,,, formed by those x € G, such that
dixed,; (N,+1G.),0 <i<n+1(compare with that given in [11]).

For this adjoint situation, it is clear that PJ = Id and P preserves weak equiva-
lences. Also, note that J preserves directed limits since the Moore functor is given by
means of finite limits and, for groups, these commute with directed limits.

P(G.) = cosk"*! (
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Recalling Definition 2.1., we say that a morphism f of n-Hypgd(Gp) is a fibration
(weak equivalence) if Jf is a fibration (weak equivalence) in Simp(Gp) and [ is
a cofibration if it has the LLP with respect to the trivial fibrations.

With these definitions we have then, as a direct consequence of Theorem 2.5., the
following;

Theorem 3.1.1. n-Hypgd(Gp) is a closed model category under the structure proposed
above.

Using now the equivalence of categories between n-Hypgd(Gp) and n-HXC(Gp)
[5] we have:

Theorem 3.1.2. The category of algebraic models of (n + 1)-types, n-HXC(Gp), is
a closed model category.

Particularly, let us note that 1-HXC(Gp) is just the category of crossed modules of
groups and 2-HXC(Gp) is that of 2-crossed modules of groups in the sense of
Conduché [7] so that we have:

Corollary 3.1.3. The category XM(Gp) of crossed modules of groups (2-types) is a
closed model category where the fibrations are those morphisms I’ = (i, fo):
(G—5H) - (G/—”¥»H') such that f, is surjective and the weak equivalences are those
morphisms I' inducing isomorphisms Ker p = Ker p’ and Coker p = Cokerp’.

Corollary 3.1.4. The category 2-XM(Gp) of 2-crossed modules of groups (3-types) is
a closed model category where the fibrations are those morphisms
I ={(fo f1, fo) (L—2>M—25N) — (L' M’'—£5 N') such that f, and f, are surjective
and the weak equivalences are those wmorphisms I inducing isomorphisms
Ker¢ = Ker ¢’, Kerp/Im ¢ = Kerp'/Im ¢’ and Coker p =~ Coker p'.

3.2. Simpl"(Gp) as a closed model category

Simp*(Gp) den’otes the category of n-simplicial groups, that is, the category of
functors Gp 4" "* 4", so that an n-simplical group has n independent simplicial
structures (one for each of the “coordinate” directions).

Simp™(Gp) is related to Simp(Gp) by an adjoint situation

Simp"(Gp) = Simp(Gp)
w

where tlﬁfunctor T is an extension [4] of Illusie’s Total Dec functor [13] and its right
adjoint W, is a generalization of the Artin-Mazur’s total complex [4, 17].
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Following Definition 2.1. we say that a morphism f in Simp”(Gp) is a fibration
(weak equivalence) if Wf is a fibration (weak equivalence) of simplicial groups,
and cofibrations in Simp”(Gp) are defined by the LLP with respect to the trivial
fibrations.

Note that in [18] Moerdijk defined, in a similar way, a closed model structure for
Simp?(Sets), the category of bisimplicial sets.

The unit of the above adjunction G. - WTG. is a weak equivalence of simplicial
groups [4] and so it is clear that the functor T preserves weak equivalences. More-
over, using the fact that in Simp(Gp), and hence in Simp"(Gp), directed limits
commute with finite limits and taking into account that the construction of W is given
by means of finite limits, this functor preserves directed limits. Although the counit of
this adjunction is not an isomorphism, the proof of the Theorem 2.5 works by
replacing the required Proposition 2.4 by the following:

Lemma 3.2.1. In any pushout diagram in Simp”"(Gp)
TFA[r,k]— X

|l

TFA[r]—P, 0<k<r,r>0

the morphism f is a trivial cofibration.

Proof. Since the morphisms TFA{n, k] — TFA[n] are trivial cofibrations it is clear
that fis a cofibration. To prove that fis a weak equivalence, i.e., that W/ is of
simplicial groups, we use the diagonal functor D : Simp”*(Gp) — Simp(Gp) which is
weak equivalent to W, that is, there exists a natural transformation v: D — W such
that vy: DX — WX is a weak equivalence of simplicial groups [4]. Now, applying
D to the given pushout diagram, we have a pushout in Simp(Gp)

DTFA[r,k]—> DX
j jw
DTFA[r]—> DP

where DTFA[r, k] — DTFA[r] is a weak equivalence and also a cofibration because,
in fact, it is clear that this morphism is a free map in the sense of Quillen [21]. Thus Df
is a weak equivalence and so fis. [

We can now assert the following:

Theorem 3.2.1. The category Simp"(Gp) with the above structure is a closed model
category.
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3.3. A closed model structure for Cat"(Gp)?

Let Cat"(Gp) be the category of cat"-groups [2, 15], that is the category of n-fold
internal categories in Gp, or equivalently, that of n-fold internal groupoids in Gp. By
using the n independent category structures of a cat”-group there is a multinerve
functor

N: Cat"(Gp) — Simp"(Gp)

which embeds Cat"(Gp) into Simp"(Gp) as a reflexive subcategory whose image
consists just (up to natural equivalence) of those n-simplicial groups which have trivial
Moore complex in dimensions > 2, for each of the » independent simplicial struc-
tures. Let us note that, for n = 1, Cat"(Gp) is the category of internal groupoids in Gp
and N is the usual nerve functor in the sense of Grothendieck, which gives an
equivalence of categories between Cat!(Gp) and 1-Hypgd(Gp). In this case the
reflector functor P:Simp(Gp) — Cat’(Gp) is given by the fundamental groupoid
construction

pG) =0 2%,

d,N-(G.)
where the source, target and identity morphisms are induced by d,, d; and
s respectively.

For n > 2, the reflection functor

P : Simp"(Gp) — Cat"(Gp)

is then obtained by taking fundamental groupoid in each of the n independent
directions.
Considering then the following adjoint situation

Cat"(Gp) — Simp"(Gp) —; Simp(Gp)
N W

we propose, as in Definition 2.1, that a morphism f in Cat"(Gp) is a fibration (weak

equivalence) if WN fis a fibration (weak equivalence) of simplicial groups and that f'is
a cofibration if it has the LLP with respect to the trivial fibrations.
For the above adjunction it is clear that the functor N:Cat"(Gp) — Simp"(Gp)

preserves directed limits so the composition WN does; also the functor
PT:Simp(Gp) — Cat"(Gp) preserves weak equivalences since the unit of the adjunc-
tion, 76 :G. - WNPTG., induces isomorphisms on the homotopy groups I1;,
0 <i < n, for each simplicial group G. [4].

As in the case of Simp"(Gp), the counit of this adjunction is not an isomorphism but
we conjecture that it is possible to use the constructions given at the proof of the
Theorem 2.5, to show that Cat"(Gp), n > 2, is a closed model category with the above
proposed structure.
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