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SIMPLICIAL GROUPS AS MODELS FOR n-TYPES
by J. G. CABELLO 

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVIII-1 (1997)

RESUME. On sait que la catégorie des groupes simpliciauxRESUME. On sait que la cat6gorie des groupes simpliciaux
Simp(Gp) fournit des mod6les pour tous les types d’espaces
connexes. C’est aussi un exemple de catégorie-modèle pour la
th6orie de t’homotopie. Dans cet article, on definit une nouvelle
structure de catégorie-modèle sur Simp(Gp) pour chaque n &#x3E; 0 (n-
structure), redonnant la version classique lorsque n tend vers l’infini.
On d6montre que Simp(Gp) muni de cette structure est un mod6le
pour les (n+1)-types d’espaces connexes, non seulement au niveau
des categories d’homotopie mais aussi au niveau des theories

d’homotopie.

1 Introduction

As proved by Kan, [15], the category of all simplicial groups, Simp(Gp),
provides algebraic models for all connected homotopy types. Simp(Gp)
is also an outstanding example of what a closed model category is (in
the sense of Quillen), [18], that is, the weak equivalences -those mor-
phisms which are formally inverted to produce the homotopy category-
are accompanied in this case by other two types of relevant morphisms,
fibrations and cofibrations, subordinated all of them to a set of axioms.
The consequence is that one can reproduce in Simp(Gp) -in any closed
lllodel category in general- analogues to the classical contructiolls of ho-
motopy theory of spaces since the hoinotopy category is extended by
the notion of homotopy theory associated to a closed l11,odel category.
This includes the extra structure of loop and suspension functors and
fibrations and cofibration sequences.
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On the other hand, one has the notion of rt-type, first studied by
J.H.C. Whitehead, [20], (his "homotopy systems", now generalized by
crossed complexes, were a partial solution to the problem of finding
an algebraic model for this notion). Since then, several proposals have
been given in this direction. Olle of them is the category n - HXC(Gp)
of n-hypercrossed complexes of groups, a model of n-types of simplicial
groups and, consequently, of (n+1)-types of connected spaces, [5]. This
category consists of certain complexes of non-abelian groups and reduces
in the low dimensional level to the well-known cases of 2-types (crossed
modules) and 3-types (2-crossed modules). 

The results of this paper are part of the author’s Ph.D. thesis, [2],
where a standard procedure is introduced to supply any category, suit-
ably related to Simp(Gp), with a closed model structure. It is proved
that this procedure particularly gives a closed model structure for the
category n - HXC(Gp). It is possible, then, to regard Simp(Gp) as a
candidate for modelling (n + I)-types of connected spaces as well (or n-
types of simplicial groups). In this paper, this is proved by showing that
the Quillen’s closed model structure on Simp(Gp) can’be generalized
by notions of ti-weak equivalence, n-fibration and n-cofibration, produc-
ing several model structures (one for each 7t, called the n-structure).
First, one observes that when u runs to infinite, the original Quillen’s
structure on Simp(Gp) is recovered, satisfying our prime purpose. Note
that our definition of n-weak equivalences as a truncated version of clas-
sical weak equivalences (see :3.()) is the most natural when dealing with
rz-types. This fact, together with the expression of Kan fibrations in
terms of the RLP, suggested the possibility of truncating tlem as well
(level by level) in order to reach the 7t-fibratioils (compare 2.1 with 3.2).
This is also the spirit of [14], where something similar was proposed for
simplicial sets.

The comparison between both structures (the n-structure and the
classical one), is made by means of the pair of adjoint functors (rt +
1) - .skeleton and (71 +1)- coskeleton, denoted by Skn+1 and C oskn+1
This gives rise to an equivalence of categories

between the localization of Simp(Gp) with respect to the ti-weak equiv-
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alences (on the left) and the full subcategory of the homotopy cat-
egory Ho(Simp(Gp)) whose objects are those simplicial groups rt-

coconnected, that is, with vanishing homotopy groups in dimensions
greater than or equal to 71 +1, IIi = 0 for i &#x3E;n + 1 (on the right). This
shows Simp(Gp) as a category of n-types of simplicial groups.

As the category n - HXC(Gp) has been converted into a closed
model category ([2], [3]) it is also reasonable to think of an equivalence
between the corresponding homotopy theories. This is achieved by con-
sidering in Simp(Gp) this n-model structure.

Let us inention that many other categories which, in principle; sup-
ported a Quillen’s closed model structure (topological spaces, simplicial
sets, [18], crossed complexes, [1]) have also been equipped with such
an n-structure, generalizing the original one, [9], [10], [14]. In addition,
the category of sheaves has been endowed recently with a closed model
structure, [6], by a procedure similar to that proposed here.

The plan of this paper is as follows. Next section is devoted to the
revision of the set of axioms most frequently used to define a closed
model category, together with some other known results of interest for
this paper. Section 3 introduces rz-weak equivalences, n-fibrations and
n-cofibrations for simplicial groups and gives some characterizations of
these notions, relevant for the sequel. The detailed proof of the main
result, showing that the above definitions lead to the n-closed model
structure, is given in section 4. Finally, the last section is left to the
conclusions: the comparison of both model structures in Simp(Gp), the
classical and the n-structure, is made, obtaining the desired equivalence
of homotopy theories.

Acknowledgements: This work was partially supported by DGI-
CYT: PB94-0823.

2 Preliminaires

Through all this paper Simp(Gp) will denote the category of simplicial
groups, i.e., the category of functors GpAop where A is the category
whose objects are the ordered sets [0] = {0}, [1] = {0,1}, [2] = {0,1, 211
... , and whose morphisms are the order-preserving functions between
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them.

Recall that the n-th simplicial kernel of ail (n - 1 )-truncated siiii-
plicial group G.tr, written An(G.tr), is the subgroup of Gm+1 n-1 whose
elements are those (x0,x1,... , x,,) such that di xj = dj-1xi for i  j. If

di: An(G.tr) -&#x3E; Gn-1 denotes the restriction of the canonical projec-
tions, there are unique morphisms .Sy : Gn-1 -&#x3E; An(G.tr), for 0 J 
71 - 1 such that

is an 7t-truiicated simplicial group. By iterating the simplicial kernel
construction one has the functor Coskn-1 froiii the category of (rt -
I)-truncated simplicial groups to Simp(Gp). The resulting functor
Coskn-1 is right adjoint to the (n - 1)-truncatiy functor, trn-1, that
truncates any simplicial group at level n-1. By convention, Coskn-1 =
coskn-1 trn-1 and An(G.) = An(trn-1((G.)).

On the other hand, given any truncated simplicial group,

its n th-simplicial cokernel B7 ( Ci etr) is defined as the quotient of the
coproduct Un-1 i=0 Gn-1, i.e., free product in Gp, under the congruence gen-
erated by the elemelts (sisjx, sj-1six), x E Gn-2 for 0  i  j  71 - 2,
wherP aa : Gn-1 -&#x3E; B7( ri.tr) are the morphisms induced by the canonical
inclusiols. The (71 -1)-skeleton of the (71 -1 )-trulcated siniplicial group
Ci.tr’ denoted by skn-1 (G.tr) lllay be defined by iteration of successive
simplicial cokernels. Writing Skn-1 1 = skn-1 trn-1, one has the following
adjunction

The same adjunction is known to exist for simplicial sets, which
allows us to identify, for any simplicial set X., simplicial maps A[n] =
Skn-1 A[n] -&#x3E; X. with siiiiplicial maps A[n] -&#x3E; Coskn-1 (X.) and so
with elements of A"(X,) (see [7], prop. 1.5).
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Given any G. E Simp(Gp), Ani(G.) will stand for the universal

group having morphisms dj: Ani(G.) -&#x3E; Gn-1, for 0 :::; j :::; n, j # i

satisfying djdk = dk-1 dj, j  k, k # i, which is called the object of
open i-horns at dimension n. If A[n, k], 0  k  n &#x3E; 0, denotes the
simplicial subset of A[n] generated by di (in), 0  i  n, i # k, (where
in = (0, 1, ... , rt) E A[n]n, see [7]), note the equivalence between giving
an element of Ank(G.) and giving a simplicial map A[n, k] -&#x3E; G,. A
morphism in Simp(Gp), f.: E.-&#x3E; B., is said to be a Kan fibration iff
the canonical morphism

is surjective, for 0  k  s, s &#x3E; 0.

Let us recall as well that the Moore complex N(G,) associated to
any simplicial group, (i., [18], is the following

where N0(G.) = G0 and Nq(G.) = n q-1 i=0 Kerdi 9 Gq aild S Iq is the
restriction of dq : Gq -&#x3E; Gq- 1 to Nq(G.). For later use, let us recall that
the Moore complex of the simplicial group (Coskn-1 (G.) is the following:

The (Moore) homotopy groups of any sinlplicial group G. are defined
then as the corresponding homology groups of its Moore complex, that
is, for n &#x3E; 0

A closed iiiodel category in the sense of Quillen, [19], is a category
C with three distinguished classes of morphisms called fibration, cofi-
brations and weak equivalences, satisfying the usual axioms,
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CMI. The category C lias Unite liiiiitx and colimits.

CM2. For any composable pair of arrows f , gill C, if any two of f , g, fg
are weak equivalences so is the third.

CM3. If f is a retract of g ald g is a fibration, cofibration or weak
equivalence, then f is also such, where one says that a morphisms
f : X -&#x3E; Y is a retract of g: W -&#x3E; Z if there are morphisms
i:X-&#x3E; W,r : W -&#x3E; X,) : Y -&#x3E; Z and .s : Z - Y such that
ri = IdX, .s,j = I dy, gi =jf and fr = sg.

CM4. Lifting axiom. (liven a solid arrow diagram

where i is a cohbration, p is a fibrations and either i or p is also a
weak equivalence, then the dotted arrow exists.

CM5. Factorization axiom. Any morphism f in C call be factored
both as j = pi and f = qj, where p and q are fibrations, i, j are
cofibrations and p, , j are weak equivalences.

This set of axioms is, of course, equivalent to the original (see [18]). A
morphism in C, i : A -&#x3E; B, is said to have the left lifting property, LLP,
with respect to a morphism p : X - Y (and p is said to have the right
lifting property, RLP, with respect to i) if the dotted arrow exists in any
diagram of the form (0).

Finally, let us recall that the Quillen’s closed model structure over
Simp(Gp) described in [18], has the Kan fibrations as fibrations, those
morphisms which induce isomorphisms between the hoimotopy groups as
weak equivalence and the coftbrations are defined by the LLP with re-
spect to trivial fibrations (fibratioiis and weak equivalences). By means
of the free group functor F : Simp(Sets) - Simp(Gp) from the cat-
egory of all simplicial sets, (trivial) fibrations in Simp(Gp) cam be
characterized as follows:
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Proposition 2.1 ([18], Prop. 1.2). Let f. : X. -&#x3E;Y. be a morphism
of simplicial groups. Then,

1. f. is a fibration iff it has the RLP with respect to the 1norphisn1,s
FA [n, k] -&#x3E; FA [n], induced by the inclusions A [n, k] -&#x3E;A[n],
for 0  k  n,n &#x3E; 0.

2. f. is a trivial fibration iff it has the RLP with respect to the
family of morphisms FA [n] -&#x3E; FA[n], induced by the inclusions

3 Truncating the closed model structure
in Simp(Gp)

Definition 3.1. A n1orphisn1 p. : E. - B. in Simp(Gp) is said to be
a truncated Kan fibration at dimension n if it satisfies the Ifart condition
up to dimension n, that is, the canonical morphism

is surjectitive for 0  k  .’9 and 0  s  n. A 1norphisn1, p. : E. -&#x3E; B. in

Simp(Gp) is said to be an n-fibration, n&#x3E; 1, if p. is a truticated Ifatt

fibration at din1,ension rt + 2 and the induced n1,orphisn1, on the (n + 1 )-th
hon10topy groups, pn+1: IIn+1 (Eg) -&#x3E; IIn+1 (B.) is surjective.

Hence, one observes that an oo-fibration in Simp(Gp) is exactly a
Kan fibratioli, retrieving so the classical definition. This can also be
observed from the following characterization of n-fibrations in terllls of
the RLP:

Proposition 3.2. For any morphism p. : E.-&#x3E; B. in Simp(Gp) the.
following are equivalent:

1. p. is an rt-fibration.

2. p. has the RLP witlz respect to tlze following two fan1,ilies of nior-
phisn1s in Simp(Sets):
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a?td

or equivaletitly with respect to the induced families of morphisn1,s
of simplicial groups:

Proof. In order to show the existence of lifting D. in any given commu-
tative square

with 0  k  s, 0  s  n+ 2, first one applies the condition of Kan
fibration at diiiieiisioil s to the element (y, (xo, xk-1, xk+1 , ... , xs)) E
Bs X Ask(B.) Ask (E.), where (x0,... , xk-1, xk+1,... , xs)) E Ask(E.) is deter-
mined by the simplicial map a., and y E Bs is the s-simplex represented
by b.. The analogy in properties between simplicial maps coming from
A[.s] and s-simplices of the target -as remarked in section 2- is again
preselit since the element (y, (xo,... , Xk-1, xk+1,..., xs)) belongs to the
fiber product Bs xAsk(B.) A"(E.), because of the commutativity of (1).
As p. is a truncated Kan fibration at dimension n + 2 there exists x E Es
such that dix = xi, for 1 # k and p,(x) = y. The required lifting for
(1), D., is theil the representing map of x E Es. As for the RLP with
respect to * -&#x3E; Sn+1, consider any commutative square of type

and take y E Bn+1 represented by the simplicial map b. As it

happened above, diy = e, 0  i  n + 1 because of the commuta-

tivity of the diagram (2). For the surjectivity of pn+1 there is then
x E IIn+1(E.) such tliat pn+1 (x) = y. Let z E Bn+2 the homotopy
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between Pn+l(X) allrl y, i.e., z holds dn+2Z = y, dn+1 z = Pn+1 (x) and
diz = sndipn+1(x) = sn diy, for 1 = 1,... , 7t. Using then the con-
dition of p. being a Kan fibration at dimension n + 2 for the ele-
rnemt where

x.i - .57&#x26;djx) i = 0, ... , ra, xn+1 = x, and taking into consideration that
z verifies that diz = pn+ 1 (xi) for i #n + 2, there exists x’ E E,,+2 such
that di x’ = xi, i # zi + 2 and pn+2(x’) = z.

Note that dn+2x’ E En+1 verifies didn+2x’ = e, i = o, ... , n + 1 and
pn+1 (dn+2X’) = y; hence, the required lifting for (2), d., is defined as the
representing map of dn+2 x’. That proves the first half. 

As for the opposite direction, it should be noted that if p, has the
RLP with respect to A[s, k] -&#x3E; A [s] for 0  k  s, 0  s  n + 2,
then it is a truncated Kal fibrations at diiiieiisioii 71 + 2 just by reversing
the same argument given for the first implication. Then, it only remains
to show that pn+1: IIn+1 (E.) -&#x3E; IIn+1 (B.) is surj ective. To this end,
take y E Bn+1 with diy = e, i = 0, ... , rt + 1 a representative of any
y E IIn+1 (B.) and consider the following square:

where a, is the unique simplicial map from* and b, is the representing
map of y. This diagram commutes owing to cls y - e, i = 0, ... , rl + 1
and so there is a lifting D. : Sn+1 -+ E.. If d, is the composition

A[n + 1] -&#x3E; Sn+1D. -&#x3E; E., it represents a silllplex x E En+1 verifying
dix = e, i = 0,... n + 1 and pn+1(x) = y. Then, x E IIn+1(E.) is the
desired preilllage which shows rJ’i+I to be surjective. 0

The following lemma summarizes truncated versions of some results
due to Quillen ([18]):

Lemma 3.3. Let f.: G. -&#x3E; H, be a morphism in Simp(Gp). Then,

1. fq : Gq -&#x3E; Hq is surjrctivr (injective) for 0  q n iff Nq(f):
Ng(G.) -&#x3E; Nq(H.) is surjective (injective) f or 0  q  n .
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2. f. is a truncated Kan fibration at dimension 11, iff Nq(f): Nq(G.) -&#x3E;
Nq(H.) is surjection for 0  q  7t.

3. fq : Gq -&#x3E; Hq is aurjective for 0  q  71 iff f. is a truncated Kan
fibration at dimension 71 and the induced rnorphism on the 0-th
hornotopy group, 70 : IIu(G,) -&#x3E; IIo( H.) is surjective.

After the previous result, the n-fibrations can be also characterized
as follows:

Corollary 3.4. For any 1norphis111 p. : E. -&#x3E; B. in Simp(Gp) the
following are equivalent:

1. p. is an n-fibration.

2. Nq(p.) is surjective, 0  q  1t + 2 and pn+1: IIn+1 (E.)-&#x3E;
IIn+1(B.) is surjective.

As a direct consequence of this, the 7t-fibrant simplicial groups are
identified:

Corollary 3.5. Evrry objfct (I. in Simp(Gp) is n-fibrant, n &#x3E; 0, i. e.,
the rnorphis1n G. -&#x3E; * is an n-fibration.

Next, other kind of relevant morphisms for the future closed model
ra-structure.

Definition 3.6. A 1norphis1n f.: X.-&#x3E;Y.0 in Simp(Gp) is said to be
an n-weak e.quivalencr., n &#x3E; 0, if the inducp.d 111orphis111, on the honzotopy
groups, fq : IIq (X.) -+ IIq (Y.), 0  q  ri, is an isomorphism.

The. 1norphism f. will be called an 71-trivial fibration if it is an n-
fibration and an 1¿-wr.ak equivalence.

Formulation and proof of the corresponding characterization in terms
of the RLP can be given now for ti-trivial fibrations.

Proposition 3.7. For any 1norphis1n p. : E. -&#x3E; B. in Simp(Gp) the
following arf equivalent:

1. P. is an n-trivial fibration.
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2. p, has the RLP ’with respect to thr. following two fan1,ilies of maps
in Simp(Sets):

and

or equitialetitly with respect to the induced families of morphisn1,s
of siniplicial groups:

arid

Proof. Let us prove the first direction. Note that, by 3.2, p, has the
RLP with respect to A [n + 2, k] -&#x3E; A[n + 2] particularly. Hence, zit
remains to show the existence of lifting in commutative squares such as

For .s = 0, it can be observed that the existence of lifting in (3) is
equivalent to po being surjective. To this end, take any y E Bo and
consider its homotopy class into TIo(B.), y. As wo : IIo(E,) -4 IIo(B,)
is surjective (even more, it is an isomorphism), there exists 7 E IIo(E,)
such that po(x) = y. Let z be the corresponding homotopy between
tllelll, i.e., d0z = p0(x) and cllz = y and then, since p, is an 1-truncated
Kan fibration, there is x’ E Ei such that dox’ = x and p1 (x’) = z. The
element dlx’ is then the required preimage for y.

In order to prove that there exists a lifting in (3), 0  s  n + 1, let
y E Bs be the simplex with representing nlorphlsnl b, and (xo, ... , Xs-I, xs)
the element of An(E.) deterlllilled by a..

As usual, the commutativity of (3) establishes (y, (xo, ... , xs-1)) as
an element of Bs XAs s(B.) As s (E.) . Now, p, is a truncated Kan fibration
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at dimension n + 2 so there exists a E E s such that dia = xi, i # s
and ps(a) = y. It is not difficult to confirm that x, - d,a E Kerps-1,
which is particularly injective, so xs - ds a = e. Let us call a’ to the

homotopy between xs - dsa and e, i.e., dsa’ = xs- dsa and dia’ =
e, i = 0, ... , s-1, and consider the .s-simplex of E,, a" = a’ + a, which
verifies dia" = xi alld di(ps (a")- y ) = e, i = 0, ... , .s . That allows one
to consider ps (a")-y E IIs(B.) and, since ws is an epinlorphism for
0  s  n +1 (an isomorphism up to dimension n, indeed), there exists
3 E TIs(E.) such that ps(z) = p (all) - y.

Let w E Bs+1 be the homotopy between ps(a") - y and ps(z) and
apply again the condition of Kan fibration at dimension s + 1 to the
element ( w, (e, s)..., e, z)) E Bs X As+1 s+1 (B.) As+1 s+1 (E.) to find A c Es+1 which
holds di y = e, i = 0, ... , .s - 1, dsy = z and ps+1 (y) = w.

Finally, the required lifting for (:3) is defined as the representing
morphism of x = -ds+l À + a".

.The converse will be proved in two steps:
First, it will be showed that if p, has the RLP with respect to

A[s] -&#x3E; A[s], for 0  .s  n + 1 then Ps is surjective and ps-1 is in-

jective. That leads to Pn+l surjective and pi isomorphism for 0 i n
(particularly, p, will be an n-weak equivalence).

In order to prove that j5,, is surjective, take any y E TIs(B.) and
consider the following square

constructed by the representing map b, of any representative element y
of y, and the simplicial map a, defined by the element of the simplicial
kernel (e, s+1)..., e). It’ is clear that this square commutes so there exists
a lifting D. : A[s] -&#x3E; E, . The homotopy class of the .s-simplex of E.
represented by D. proves then that Ps is surjective, 0  s  n + 1.

To prove now that ps-1 is injective, take any x E Kerp’s-1 and let
w E B s be the homotopy between PS-1(X) and e (so dsw = P8-1(X) and
dzw = e for i = 0, ... , .s - 1). With the representing map of w, say b;,
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and that of the element of the simplicial kernel (e, .s)..., e, x), written a’.,
the following commutative square can be constructed for 0  s  n + 1,

where the lifting D;, that there exists by applying the hypothesis, deter-
mines the homotopy which shows that x = e. Hence - is injective,
0  s n + 1.

The second step consists of showing that to have the RPL with
respect to A[s] -&#x3E; A[s], for 0  s  n + 1 im p lies that p. is a

truncated Kan fibration at dimension n + 1. To this end, take any
element (y, (x0,..., xk-1, xk+1, ... , xs)) E Bs XAsk(B.) Ask(E.), 0k
s, 0  .s  n +1, and define the following collection of s (.s - 2)-simplices
ofE.: 

It appears clear that (z0,..., zk-1, zk+1,... , zs) E As-1(E.). Then,
considering the simplicial map c. : A[s- 1] - E. associated to this,
and the representing map of dky E Bs-1, d. : A[.s - 1] -&#x3E; B., one may
form the following commutative square 

for which there is a lifting H. : A[s- 1] -&#x3E; E.. Let xk be the (s- 1)-
simplex of E. with representing map H. and note that the element
(x0,..., xk-1, xk, xk+1,... , xs) E A’(E.). Since diy = ps-1(xi) for i =

0,... , A:,... , 1 .9, one may find a lifting G. on the square
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where c’ 0 is associated to (xu,... , xk-1, xk, xk+1, · · · xs) and d. is the

representing map of y E Bs. The s-simplex x’ of E, with representing
map G., verifies that dix’ = xi, i#k and p.(x’) = y. Consequently,
po is a truncated Kan fibration at dimension n + 1. This brings the
proof to an end since the condition of being a Kan fibration at dimen-
sion 11 + 2 is equivalent (see proof of B.2) to the RLP with respect to

Another c.llaractPrization of ti-trivial fibrations can be given as a
consequence of the following lelllllla, which is a truncated version of
that given by Quillen (see [18], chapter II, §3, Prop. 2).
Lemma 3.8. For any n10rphisrn p. : E. -&#x3E; B. in Simp(Gp) the fol-
lowing are equit1alent:

1. p. is a truncated Kan fibration at din1ension n, pq: IIq(E.) -&#x3E;

IIq(B.) is an isomorphism for 0  q  rt and pn+1 is surjective.

2. pq is surjective and IIq(Kerp.) = 0, for 0  q  n.

Then, the announced result is the following:

Corollary 3.9. For any morphism p. : E. -&#x3E; B. in Simp(Gp), p. is

an n-trivial fibration iff pq is surjective, 0  q  n + 2 and IIq(Kerp.) =
0 for 0  q  rt.

The third distinguished class of morphisms in a closed model cate-
gory is defined as follows:

Definition 3.10. A n10rphisn1 f. : X. -&#x3E; Y, in Simp(Gp) is said to
be an n-cofibration, n &#x3E; 0, if it has the LLP with respect to the n-trivial
fibrations.

At this point, it is interesting to remark the relationship between all
these truncated definitions. Note that one has the following sequence
of illclusions for 1t-trivial fibrations:

(oo - t1-iv.fib.) C ... g ((111 + 1) - tT-iv.fib.) 9 (1t - triv. fob.)C ...

Consequently, the definition of tt-cofibration sets the corresponding se-
quence for them:
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4 The n-structure in Simp (Gp)
The above definitions of n fibration, n-cofibration and n-weak equiv-
alence will 1)(! used now to determine the n-structure in Simp(Gp),
i.(!., a closed model structure in the sense of Quillen for each 7¿, that

generalizes the, classica.l one.
The following lelllllla will be needed in the proof of the main theorem

of this section.

Lemma 4.l. 1. If{fi.: Ai -&#x3E; Bi.}i E I is a family of n-cofibrations in
Simp(Gp), then the induced rnorphis111 on the coproducts, UIA’
UIBi. is art n-cofibration.

"I. If f. : A. -&#x3E; B. is an r¿-cofibration in Simp(Gp) and g. : A. -&#x3E;
C, is arbitrary, the 1:nducfd morphism irzto the pushout, C. -&#x3E;
B, UA. C. is an r1,-cofibration.

3. If A0 -&#x3E; A1 -&#x3E;... -&#x3E; A"z -&#x3E;... is a sequence of n-cofibrations
(resp. n-weak equivalences) in Simp(Gp), the canonical 111or-

phis111 Ao -&#x3E; Aoo = lim Am, is an n-cofibration (resp. n-weak

equivalence.). 

Proof. The first two properties, together with the half of the third one
concerning n-cofibrations, can be easily proved by the universal prop-
erty of coproducts, pushouts and direct linlits, in each case. As for
the rt-weak equivalences, just recall that in Simp(Gp), one has that
IIi (lim -&#x3E; Xm) = lim -&#x3E; IIi(Xm). 0

The main theorem can be enounceo and showed now:

Theorem 4.2. Witlz the given dirfittitiotis of n-fibration, n-cofibration
and rt-weak equivalence, r1, &#x3E; 0, the category Simp(Gp) is, in each case,
a closed 1110df.l category.

Proof. The first axioill is well-known and the second can be proved
without any difficulty. As for the third related to 7t-fibrations, let p. :
E. -&#x3E; B. be an n-fibration and f. : X. -&#x3E; Y, a retract of p. with
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r. : E. -&#x3E; X, as retraction. The required liftings in the commutative
diagrams

are given by the composition with 1’. of the corresponding liftings for
P.. The cases involving n-cofibrations and 1¿-weak equivalences are ana-
logues.

We prove now CM5, concerning the factorization of any morplism
f.: X.-&#x3E;Y. into n-cofibration followed by n-trivial fibration, by means
of the so-called"simall object argument" . Consider the following dia-
gram

where, having obtained X._ and considering all commutative dia-
grams of the form

0  .9  n+1 and 0  k  n+2, distinguished by indexes A and u, then
the morphism i.m+1: X.m -&#x3E; X,m+, ia defined by the pushout diagram
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Let us define now , to have a factorization

where q, is an rt-trivial fibration by 3.7. In order to show now that

i. is an rt-cofibration, note that FA[s] -&#x3E; FA[s], 0  .s  n + 1 and

FA[n + 2, k] -&#x3E; FA[n + 2], 0  k n + 2 are n-cofibrations and’so, by
4.1, the coproducts of them are also such, so every i,m is. Finally i, is
an n-cofibration, again by 4.1.

We shall be concerned now about the factorization of any morphism
f, into an rt-trivial cofibration followed by an rt-fibration. To this end,
let us repeat the same argument used in the factorization already proved,
taking in this case all diagrams of the form

for 0  k  .s, 0  .s n + 2. Let us define then j.m : X.m-&#x3E; X.m+1 by
the puahout diagram

Let X.co be lim -&#x3E;Xm, and p. = lim -&#x3E;pm one obtains, as above, a factoriza-
tion f.=p.j., where p. is an rt-fibration by 3.2 and j, is an n-cofibration
by 4.1, since F* -&#x3E; FSn+1 and FA[s, k] -&#x3E; FA[s], 0  k  s, 0  s 
rz + 2 are n-cofibrations.

It only remains to prove that j, is an n-weak equivalence, which will
be achieved by showing that every j,m is, applying 4.1 again. For this,
it should be noted that each j._ : X.m-1 -&#x3E; X.m is the composition
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of simplical maps a. and B., both obtained
from the following pushouts diagrams:

It is clear that a, is a weak equivalence -with the classical model struc-
ture in Simp(Gp)- so it is an n-weak equivalence, for all n &#x3E; 0. In
order to prove that 0. is an 7t-weak equivalence as well, note that the
free simplicial groups F* and FSn+1 are equal to Z up to dimension n
( F* is the constant simplicial group having Z at each dimension whereas
FSn+1 has Z up to dimension n and the free product Z U Z at level n +1,
indeed). Hence, B.: T. -&#x3E; X,m is am isomorphism up to dimension 11,
inducing then isomorphisms on the corresponding holnotopy groups up
(and including) dimension n - 1.

Let us analyze now the case of the nth-homotopy groups. First,
note the existence of a morphism v. : X.m-&#x3E; T, such that v.B. = I dT,
so fJ. is a section. This comes from the fact that * is the terminal

object in Simp(Sets) and hence, there is a morphism Sn+1 -&#x3E;* such

that, for the uniqueness of such maps, verifies that the composition
* -&#x3E; Sn+1 - * is equal to the identity on *. As for the rest, it comes from
the properties of the free group functor, F, coproducts and pushouts
diagrallls, respectively.

In order to compute the nth-holllotopy groups, let us consider them
as the nth-homology groups of the corresponding Moore complex. This
situatioll can be pictured in the following diagram,

which cleary shows that IIn (T.)= TTn (X.m). Then, j, is an n-trivial
cofibration. In addition, j. has by construction the LLP with respect
to any rt-fibration.
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It only remains to prove the lifting axiolll CM4. In fact, the only
half to be shown is that dealing with the existence of lifting in any
commutative square of the form

with y, 7¿-fibration and k. 7¿-trivial cofibration, because the other half
conies straightforward from 3.10. To this end, factor the morphisms k.
by CM5 into an 7¿-fibration p, followed by an rt-trivial cofibration I.
and note that, since both k. and i, are 7t-weak equivalences so it is p,,
by CM2. On the other hand, there exists a lifting h, in the following
commutative square

since i, has the LLP with respect to all n-fibrations. Finally, the
required lifting for (4) is given by composing It. with the lifting .s,

obtained from the diagram

which exists because is 1t-cofibration (i-trivial cofibration really)
and p, is all 1¿-trivial iibration, as remarked before. D

Throughout the above proof the key to characterize the rz-cofibrations
has also been given and so, the 1t-cofibrant simplicial groups are identi-
fied.

Proposition 4.3. A morphism f. : X. -Y. in Simp(Gp) is an 11,-

cofibration iff it is a retract of the morphism i. : X. - X°° obtained
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from the factorization of JO. info a n-cofibration followed by an rt- trivial
fibration.

Proof. Supposing f. is an n-cofibration, let us factor it by the first half
of CM5 into n-cofibration, i., and 7t-trivial fibratioil, q.. The following
diagram shows, then, that f. is a retract of i.:

where d. is the lifting found by CM4 in the commutative square

Conversely, if f ; is a retract of the n-cofibration i., f, is, by CM3,
an n-cofibration. 0

5 Comparing model structures in Simp(Gp)
In previous sections, the n-structure in Simp(Gp) has been showed to
be a generalization of the classical Quillen’s closed model structure. In
this one, it will be appear as the tool to present the category Simp(Gp)
as a model for connected (n + I)-types of spaces.

To this end, the machinery used will be the skeletal-coskeletal ad-
junction. Let us point out then that TTi(Cosk n+1G.) = 0 for i &#x3E; 7t and

so, the image of Coskn+1 could be identified with the full subcategory
of Simp(Gp) formed by the n-coconnected silllplicial groups, that is,
those simplicial groups H, such that TIi( H.) = 0 for i &#x3E; 7t.

Theorem 5.1. For the adjunction
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it holds:

1. If p. : E. -+ B. is arz n-fibration (resp. n-weak equivalence), then
Coskn+1p.: Coskn+1E. -+ Coskn+1B, is a Kan fibration (resp.
weak equivalence).

2. If i. : A. - C. is a cofibration (resp. weak equivalence) in

Simp(Gp), then Skn+1 i, is an n-cofibration (resp. 11,-weak equiv-
alr.ncr.) .

Proof. Suppose p. : E. -+ B. is a n-fibration. By:3.4, this implies that
Nq ( p.) : Nq (E.) - Nq(B.) is surjective for 0  q :5; 71 + 2. In order to

prove that Coskn+1p. is a Kan fibration, Nq(Coskn+1p.) to be surjective,
for q &#x3E; 0, will be proved: for the special feature of Nq (Coskn+1G.) for
any simplicial group G., the surjectivity is clear for 0  q  11, + 1. In

the next level, the situation is as pictured:

From this, Imdn+2 - Imd’n+2 is surjective and then, since pn+1
TTn+1(E.) - TTn+1(B.) is onto for being p. an n-fibration, the following
diagram of short exact sequences gives the surjectivity of Nn+2 (Coskn+1p.) :
Kerdn+1 - Kerd’n+1:
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The case involving rt-weak equivalences follows straightforward: for i &#x3E;

ra because TTi (Coskn+1E.) = 0 and for 0  i  n, because p, is an
n-weak equivalence. This ends the first part of the theorem.

As for the second half, let 1. : A.- C, be any cofibration in

Simp(Gp). Consequently, to prove that Skn+1i. is an n-cofibration
consists of finding lifting in any commutative square of the form

with p. any n-trivial fibration. This is equivalent, by the adjunction
(5), to doing it through the diagram

where the desired lifting exists for being Coskn+1p. a trivial fibration
(by the first half, already proved). Hence, Skn+1i. is an rt-cofibration.

As for the weak equivalences, let 1. : A. - C. be a weak equiva-
lence, note that, for any simplicial group G., one has TTi(Skn+1G.) =
Illi(G.), 0  i  7t. Then, 5k"+’I. is an rt-weak equivalence. D

If Hon(Simp(Gp)) stands for the homotopy category of Simp(Gp)
associated to the 71,-structure and Ho(Simp(Gp)ln 2013 coconnected) de-
notes the fiill subcategory of Ho(Simp(Gp)) consisting of n-coconnected
simplicial groups (i.e., with trivial homotopy groups for i &#x3E; n + 1), one
has

Corollary 5.2. Thr. functors Yk"+’ and Coskn+1 induce an equitia-
llence of catr.,qorif.s

Theorem 5.1 also produces a new approach to the rt-cofibraut sim-
plicial groups. To this end, a simplicial group G. will be said to be
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n - squeletal if SknG.= G.. Then, a large nUlllber of n-cofibrant sim-
plicial groups are determined by the followillg result.

Corollary 5.3. Any retract of a free and (rt + 1 )-squeletal simplicial
group is n-cofibrant.

Proof. Let G. be a retract of a free and (n+1)-squeletal simplicial group
Z., i.e., there are simplicial morphisms

such that j, i, = IdG.. Note then that the unique morphism g. : * - G.
is a retract of z. : * - Z.. In order to show that G. is n-cofibrant, let
us find lifting on any commutative square

with p. any rL-trivial Rbration. In fact, D, exists, defined as the com-
position d.l., where o, is the lifting corresponding to the diagram

whose existence is justified by 5.1, because Z. is a free simplicial
group and so z. is a cofibration. Particulary, Skn+1 z.= z, is an ?t-

cofibration and the result follows. D

At this point, let us recall that the non-abelian version of the classical
Dold-Kail’s theorem, given in P5], allowed to find, by a canonical process
of truncation, a category, n - HXC(Gp), of n-hypercrossed complexes
of groups, which provides algebraic models for n-simplicial groups and
so, for connected (ii + 1)-types of spaces. This category is equivalent to
the reflexive subcategory of Simp(Gp) whose objects are those simpli-
cial groups with vanishing Moore complex in dimensions greater than
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n. This last category is denoted n - Hypgd(Gp) because it is just the
category of n-hypergroupoids of groups in the sense of Duskin-Glenn,
[12].

Now, the category Il - Hypgd(Gp) inherits a closed model struc-
ture from the structure of Simp(Gp), via the pair of adjoint functors
J and P, the Inclusion functor and the reflector one,

by defining fibrations (weak equivalences) as those morphisms f. such
that J (f.) is a fibrations (weak equivalence) of simplicial groups, and
defiling cofibration by the LLP with respect to trivial fibrations (see
 [3], or [4]). The category n - HXC(Gp) supports then a closed model
structure as well.

Following Quillen, [18], for any closed model category C the notion
of homotopy category, Ho(C), will be considered as extended by the
notion of homotopy theory associated to C. The Quillen’s criterion to
determine an equivalence of homotopy theories (see [18], Cliap.I, §4,
Theoreni 3) will be used for the following theorem:

Theorem 5.4. The h()1notopy theory of Simp(Gp) (with the closed
1nodfl n-structure) and that of n - Hypgd(Gp) (with the closed model
structure given in [3] are fquivalfnt.

Proof. Let us recall that the reflector functor P is given by

where Hn+1 is the normal subgroup of Gn+1 formed by those x E Gn+1
such that dix E dn+1 (Nn+1G.), for 0 i  71 + 1 (conlpare with that
given in [12]).

Since P preserves both coiibrations and weak equivalences, so does J
with fibrations and weak equivalence. In addition, the unit of the ad-
junction is a weak equivalence (i.e., an rL-weak equivalence of simplicial
groups). Consequently, the adjoint situation
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provides am equivalence of categories.
Since both Simp(Gp) and n - Hypgd(Gp) are pointed, this equiv-

alence turns out to be an equivalence of homotopy theories. D

It is clear now that

Corollary 5.5. The closed model categories Simp(Gp) with the n-

structure, and n - HXC(Gp), with the structure. given in P3], have

equivalent honiotopy throries.
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