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This paper deals with cash management for bank branches, under the assumption that branches have a
role to play in the improvement of global bank institution performance. In the current scenario of
unprecedented pressure amongst banks to keep costs under control, our contribution is the design of a
sound and low-cost algorithm to optimize branch cash holdings using software implementation in
SageMath. It is accompanied by data processing based on 60,000 real banking records. This is the first
academic paper to run such an extensive database at branch level.

We find that our algorithm by and large performs well when forecasting the cash amounts that the
branch might require from the central hub to satisfy all branch necessities, avoiding the generation of
either surplus or shortage of cash. It is also extremely easy to implement in daily branching practice,
leading to an overall reduction in operating costs. In addition, our algorithm may be easily adjusted as

required and be tailor-made to the special requirements of each banking institution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The banking industry has, throughout History, constantly
searched for accurate management tools to improve its perfor-
mance. Additionally, in the current scenario of economic crisis,
bank entities are under unprecedented pressure to keep costs
under control, while improving customer service. In this situation
of fierce competition, where improving efficiency seems to be a
primary objective for banks, there is a body of research that argues
that bank branches have a role to play through the assumption that
branching efficiency significantly helps improve the performance
of a global bank institution: see [8,13,30].

The importance of bank branches is increasingly recognized, in
particular due to their potential in developing customer relation-
ships as well as being one of the most effective sales channels for
bank institutions. Although self-service banking (ATMs) and
internet banking offer customers convenient real-time access,
bank branches provide a more convenient and people-friendly
service. This local customer service continues to fulfil a critical role
in new customer acquisition and cross-sales, in particular for more
complex financial products, while it is the preferred way of doing
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business of customers of different ages.' The increased competi-
tion amongst bank entities “has engaged in a proactive, differ-
entiated and customer-based strategy on the retail side where the
sales component of branch activity is emphasized” [11]. According
to this philosophy, Ioannou and Mavri [22] present a decision
support system in order to reconfigure and improve the bank
branch network. Other evidence of the current importance of bank
branches is the growing supply of proposals from financial/con-
sulting services that are focused on bank branches. For instance, in
[28], IBM addresses the introduction of banking software in new
markets (Chinese banking) by boosting Chinese banking devel-
opment through the improvement of the operational efficiency of
Chinese bank branches.

When attempting to improve banking performance, an efficient
cash management is crucial. Why? On one hand, since liquidity comes
at a cost, banks might decide how much liquidity is enough while
avoiding dormant liquid sources. In this sense, sound cash manage-
ment reduces financing costs and optimizes the return on the cash
position. On the other hand, the importance of designing methods of
improving cash management relies on the increased interest of
accurate liquidity management for banks in the actual context of

! In the U.S., commercial banking enhances its competitiveness against non-
bank financial institutions by selling financial advice products through bank
branches.
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uncertainty and instability ([1] or [14]). Actually, the recent financial
crisis has demonstrated the financial system's fragility if banks do not
have sufficient safety liquidity levels. Thus, an efficient cash manage-
ment is aimed at helping banks to provide a cushion of capital -
available to cover losses of any kind - in order to comply with those
regulatory reforms which set the safety liquidity levels that banks must
attain. Amongst this legislation, importantly, Basel III rules, with two
minimum ratios, “Liquidity Coverage Ratio” (LCR) which is a kind of
stress test, and “Net Stable Funding Ratio” (NSFR) which tries to ensure
that a bank's assets would be adequately supported by stable funding
sources. Authors who agree on the key role that a precise cash man-
agement plays in the general health of banking institutions are
[12,15,24], amongst others.

The present paper may be placed within the literature related to
the design of managerial measures for improving branch cash man-
agement. This paper attempts to provide a new tool to upgrade cash
management at daily branch level by improving their cash forecasting
processes. At present, a precise liquidity management forecasting plays
an essential role, since deciding which part of the liquid sources
should be kept as ready money, as opposed to being invested in other
products, is not trivial at all. On the one hand, banking institutions
might have some money stock in order to face short-term obligations
at the aggregate and branch level, which should prevent risking
bankruptcy in long-term projections. On the other hand, when
banking firms keep liquid assets in cash, they give up a part of their
profitability, i.e., the opportunity costs of not investing in other alter-
natives which generate health. Throughout the literature, models of
cash management (amongst other approaches) have attempted to
solve this problem.

The branch total amount of ready cash is known as cash
holdings. Such branch liquid assets are the sum of (a) the deposits
made by customers and (b) the cash which might be required from
the central hub in order to satisfy all of the cash needs by the
branch, such as customers withdrawals. However, while control-
ling branch cash holdings is pressing for the banking institutions’
performance, the key point in the day to day operations of a
branch is to guarantee an optimum level of cash inside the branch
(1) which satisfies all the needs a branch may have (2) without
generating either a shortage or a surplus of money. In addition,
note that avoiding generating a surplus of money allows branches
to considerably decrease the risk of theft.

This paper focuses on computing the (b)-summand of branch
cash holdings: the amount of cash which might be required from
the central hub in order to meet all the branch cash needs. In most
cases, branches do not have in practice well-functioning systems
of computing such quantities of cash, apart from some intuitive
routines based on branch history data. That means that branch
managers require similar quantities of cash corresponding to
weeks with similar features. However, during the decision-making
processes, the staff in charge usually reaches a decision with only
partial information. The absence of more precise and inexpensive
procedures generates inconsistencies intrinsic to the operational
rules, whilst non-consistent methods as well as human errors are
amongst these. This paper attempts to fill this gap by proposing a
method of branch-specific computation that should be valid for all
of them. A sound and low-cost method.

Actually, the main contribution of this paper is an algorithm
designed to be an accurate tool to improve the performance of
branches with respect to its cash management. This algorithm will
significantly reduce cash holdings at branches, thereby providing
efficient improvements in liquidity management. More specifi-
cally, it is a monitoring program to guide short-term corrective
cash management actions of the branch's staff. The theoretical
fundamentals of the proposed algorithm are some notional studies
on the cash requirements of branches from their central hubs
developed under “the demand for cash” scope (see [6] and [33] for

the deterministic model, [27] for the introduction to the stochastic
model). These fundamentals were reported by the first author of
this paper in [18].2

We find that our algorithm performs well across the forecasting
of cash amounts that the branch might require from the central
hub to satisfy all branch necessities, avoiding having to generate
either a surplus or a shortage of cash. In this regard, two algo-
rithms have been designed depending on the unit of time con-
sidered. The first one corresponds to a daily computation, suitable
for internal branch adjustments, whereas the second one performs
for weekly cash forecasts. Many other units of time could be
considered as part of the algorithm setting options. Besides, the
algorithm proposed is very easy to implement in daily branching
practices. Hence it involves an overall reduction in operating costs
since this may be implemented without extra cost either in per-
sonnel training or in the implementation of the program itself.
Thus, this algorithm is a sound and low-cost method that is also
appropriate for all kind of branches, not only for those that can be
considered candidates for increased supervision.

The algorithm is accompanied by a complete database pro-
cessing of real branch-level records (more than 60,000 excel
multicolumn cells have been processed), using software imple-
mentation in SageMath [32], to prove its accuracy as well as to
derive to other conclusions. The data processing corresponds to
two excel files which contain all daily branch operations from June
2012 to March 2013 of some representative Spanish branches
belonging to a well known Spanish banking company.> As men-
tioned in [13], branch literature is much less complete than
banking literature due to the lack of easy access to branch-level
data. As a matter of fact, there are only a few studies supported by
real banking records based on data transactions, due to the existing
difficulties when accessing real sufficiently detailed banking data.
To the authors' knowledge, the processing of such a (huge) real
banking database has not been carried out till now.

The system can also be expanded to incorporate a cost struc-
ture in such a way that the algorithm forecasted amounts which
should be required from the central hub in order to comply with
all branch cash needs, also minimize a given costs function. One of
the advantages of this complementary cost structure is that the
cost function could be modified as needed provided only that it
verifies some slight requirements. As the cost specification is an
important characteristic of inventory management problems, the
inclusion of the cost structure allows to locate the cash manage-
ment problem described in this paper within the broader context
of the optimal inventory literature (see [34] for an up-to-date and
complete review of such literature).

The remainder of the paper is organized as follows. While Section 2
presents a literature review, Section 3 gathers the main outcome of the
theoretical framework. Section 4 presents the software algorithm.
Section 5 contains the data description and data-processing of real
banking records, with numerical experiments devoted to back testing
the algorithm. In Section 6 a corrective coefficient is designed, aimed
at explicitly incorporating local demographics to the algorithm's
forecasting. Section 7 is devoted to the development of a cost struc-
ture. Section 8 concludes the paper. Finally, to facilitate the exposition,
the appendix contains the algorithm (daily and weekly) in flowchart
form. It should be noticed that the algorithm has been presented in
the main text (Section 4) in (pseudo)code with flowcharts in an

2 Since the theoretical method proposed in [18], pointed in the right direction,
has resulted in an effective forecasting system for bank branches, a patent has been
requested for the paper [18] by the University of Granada, “Method for managing
liquidity in bank branches” number ES201431094, United States.

3 Due to the existing difficulties imposed by the EU legislation, both the names
of the people and the banks must be kept confidential.
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appendix. With this, we aim at catching the attention of as many
researchers as possible, not only those who are familiar with coding.

2. Literature review

Models of cash management (or of demand for money) are
approaches to determine the optimal investments that organizations
should make in cash. These models can be categorized based on
several criteria. One of them categorizes these models into two types:
those with demand by households, pioneered by the Baumol-Tobin
model [6], and continued by Frenkel and Jovanovic [17], Bar-Illan [5]
and more recently Alvarez and Lippi [3,4], and those which concern
cash management by firms pioneered by the paper of Miller and Orr
[27]. Other authors categorize these models into deterministic versus
stochastic (see [20] for a review of deterministic cash flow models)
while other classifications have been established according to their
mathematical fundamentals. As a matter of fact, while the cash
management issue has often been treated as an inventory problem,
following [26], the models of cash management can be grouped into
Inventory Theory models (now both Baumol-Tobin and Miller-Orr
belong to the same category), those developed with Linear Program-
ming and those which are based on Dynamic Programming. The lit-
erature on cash management has been extended in so many directions
that it is almost impossible to mention all of them. Amongst those
papers that study cash supply chains, special mention should be given
to those under the Operations Management (OM) scope: Nair and
Anderson [29], who study the sweep programs, that is, procedures
which allow banks to move funds from demand deposits or other
checkable deposits into money market deposit accounts as part of
savings accounts in a process generally invisible to the bank custo-
mers. Geismar et al. [19], Mehrotra et al. [25], Rajamani et al. [31], and
more recently Zhu et al. [35], are papers that analyse the changes in
cash circulation due to new currency guidelines implemented by the
Federal Reserve System. Particularly, in [19] a model which describes
the flow of currency between the bank and the Fed is designed.

However, at the branch level, the literature on research devoted
to designing techniques to improve branch cash management
specifically for branches, is quite scarce” apart from those papers
which develop regulatory measures for the under-performing
branches. To the best of the authors' knowledge, for the specific
context of bank branches, this only comes to a total of three
references: the first one is [10], where authors presented a model
aimed at reducing cash management costs in a bank's branch
using data mining. Secondly, the work [18] written by the first
author of the present paper, where a theoretical model under “the
transaction demand for the cash” scope recreates the setting of
cash requirements at the branch level. The third reference is a
subsequent work, [9] (2014) ([ 18] was published on 2013), whose
authors apply GA (genetic algorithm) and particle swarm optimi-
zation (PSO) in cash balance management using multiple asset
investments. In a theoretical context very similar to the one
developed in [18], the authors minimize the total costs of cash
maintenance in order to obtain cash management policies on
three assets (cash management and two investments).

Finally, this section is concluded with a brief note on the dif-
ferent methods for estimating bank branch performance, as indi-
vidual bank success and profitability may depend on its evaluation
systems to measure bank branch financial performance ([sic], see
[16]). The performance measurement approaches which have been
developed to deal explicitly with branch performance evaluation

4 “Scarce” unless the strand of research focused on improving the performance
of automatic teller machines, ATMs, would be considered as part of the literature to
improve branch cash management.

(optimization techniques, simulations, stochastic tools, fuzzy
logics and decision support systems) may be mainly categorized
into traditional ratios, which are the most commonly used, para-
metric models, which require the existence of cost or production
functions, non-parametric techniques, with data envelopment
analysis (DEA) as focal point, and integrated systems for perfor-
mance evaluation with the balanced scorecard (BSC) as main
exponent. Others, as the evaluation index for bank branch finan-
cial performance developed in [16], are based on the integrated
use of cognitive mapping and MACBETH.

3. Theoretical framework: branch cash requirements
3.1. Dynamics of the funds of a branch

The functioning of the branches as far as their liquid funds are
concerned is detailed here. Every branch has certain daily available
funds. At heart, there are two ways cash enters the branch: the
branch requests for cash from the central hub and the deposits
made by individual users/companies. Periodically, the branch
adjusts its cash levels to its necessities — deposits and withdrawals
- avoiding generating dormant money. When necessary, the
branch requests a certain amount of cash. Let Cy stands for the
total amount of money that the branch requests from its cash
central. We use Cy' instead when the unit of time when computing
Co, i, needs to be emphasized: that is, C;' denotes the total amount
of money that the branch requests from its cash central at ith-
week. While G is usually computed weekly, this unit of time - one
week — may be changed without loss of generality.

Habitual bank branches cash management routines on the
computation of Cy basically consist of historical data handling: the
branch registers the amount of cash on some particular week
(work days, holidays, beginning/end-of month, etc.) and the result
obtained (exceed or short), and copies the successful amounts.
Despite there are other more precise procedures to help comput-
ing Co, such as computer technologies, presently the current
computation of Cp is mainly based on the branch managers’
expertise. However, in the decision-making process of identifying
Co, the staff in charge often reaches a decision with only partial
information.

On the other hand, as an internal banking control mechanism,
every branch must perform under a cash upper bound fixed by the
bank entity according to the volume of the branch's turnover,
denoted by Cy,ux. This cash upper bound acts as a benchmark for
each branch in such a way that it could be considered as a mea-
surement of the size of the branch.” Once the branch liquid funds
exceed this margin, the branch must request an armoured van
from the cash hub to evacuate the surplus. As far as the branch
cash needs are concerned, these are those that can be anticipated
and those of random nature. The same classification can be
established for deposits. As an example of anticipated branch cash
needs, there exists in some countries a fixed-by-law cash thresh-
old for big withdrawals. This means that branch users are required
by law to give advanced notice to the branch in case of with-
drawing quantities of cash that exceed this threshold. Actually,
Governments throughout the EU are tightening up the control
over branch big withdrawals as an effective fraud-prevention
measure. In general terms, there may be limits on random with-
drawals fixed by law or by the banks (Fig. 1).

5 As mentioned later, there are many criteria to quantify the size of a branch
amongst bank managers: the volume of credits, the number of business/private
clients, the number of staff or the volume of deposits, amongst others. Actually,
branch size is not a closed concept: on the contrary, it may be measured by means
of several parameters.
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Fig. 1. Branch cash entries.

3.2. Fundamentals

We briefly summarize now the main outcome related to the
computation of Co. In order to model intraday liquidity, the con-
sumer's withdrawals and deposits were described by means of
some compound Poisson processes, as if they were arrivals in a
counting process. For this, let X, represents the withdrawals pro-
cess while the deposit process was designed as Y, where t
represents time. This leads to the main result of our theoretical
setting related to the computation of Cy:

Theorem 1 ([18]). The total cash amount Cy which provides enough
service to cover the branch demand of cash, Cy, may be computed as
Co=Ex, —Ey,+K, where K is the expected branch cash needs/
deposits for a unit of time.

4. The algorithm

This section is devoted to the algorithm that forecasts the cash
amount that the branch might require from the central hub to
satisfy all the needs the branch might have. As mentioned in the
previous section, this is Co (or Co', when the computing unit of
time i needs to be emphasized). Two algorithms have been
designed depending on the unit of time considered. The first one
corresponds to a daily computation of Cy (i.e., Co' where i is a
counter of days) for internal adjustment purposes whereas the
second one is intended for routine weekly forecasts of cash (Cy',
where i is a counter of weeks).

For both algorithms, W; denotes the cash threshold for big
withdrawals. That means that users are required to give advanced
notice to the branch in case of withdrawals which exceed W;.
There is also a cash threshold for big deposits, denoted by D;. It is
considered as a branch size benchmark (i.e., a key sign of the
branches’ ability to manage their liquid resources).® Such thresh-
old does not mean that the branch would refuse a deposit that was
too large or force the depositor to schedule making the deposit. On

6 A low threshold for deposits should match those branches that are unable to
handle big deposits (small branches) while large sized branches, able to handle
high volumes of cash, correspond to high thresholds for deposits.

the contrary, any branch would accept any deposit. However, as
each branch must perform under a cash upper bound, deposits
above the threshold may distort any branch computations (for
instance, the computation of Cy) because branch cash holdings
would increase above the standard values. As such, deposits
exceeding the corresponding threshold shall not be considered by
the algorithm computations. Nevertheless, as part of the algorithm
setting options, both threshold values (for both withdrawals and
deposits) may be modified up or down depending on needs. For
further details, see the Conclusions section.

4.1. Daily algorithm

For the daily time unit, stated in Algorithm 1, we assume that
deposits are processed at the end of the day. Hence, they can be
considered as part of the expected deposits in the next day. Thus,
the inputs of Algorithm 1 consist of

® the current time T before new withdrawals and deposits;

e the mean A" of number of withdrawal operations per time unit
until time T;

e the mean E of allowed withdrawals per operation until time T;

e the list of requested withdrawals X =[(W1,t7), ..., (Wpw, tyw)] in
this day, arranged according to time;

o the list of deposits Y =[(D1,t1),...,(Dye, ty)] in this day, arran-
ged according to time;

e the total expected cash needs/deposits for the next day.

The outputs are

® the amount C; of cash to be requested the next day;
e new values of T,E", 1" achieved at the end of the current day.

A few words about Algorithm 1. Lines 1 and 2 register the total
number of withdrawal operations and cash needs before the
process of today's operations. Next lines, until the end of the for
loop beginning in line 5, are devoted to computing the total
amount of withdrawals as well as the withdrawal amounts. In
addition, if there is a withdrawal request which is bigger than the
withdrawal threshold, it is deleted from the withdrawals counter
and added to K. The reason for this is that, as mentioned before,
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there exists in Spain a fixed-by-law cash threshold for big with-
drawals which implies that branch users are required by law to
give advanced notice to the branch in case of withdrawing quan-
tities of cash that exceed this threshold. Hence, the above-
described banks' functioning is the Spanish usual one: any with-
drawal request which is over the threshold is satisfied the day after
in order to comply with legislation. This is the reason as to why
withdrawals exceeding the stated threshold can be considered as
expected ones: because branch managers already know of their
existence.

For the same reason (Spanish bank's rules of functioning)
deposits are considered expected ones in the daily algorithm.
Following the Spanish branches usual functioning, they are all
processed at the end of the day: as a matter of fact, all deposits are
stored to be jointly controlled at the end of the journey. Again, this
is the reason as to why they should be considered as expected
deposits (since branch managers already know of their existence)
and they may be consequently added to K and processed in the for
loop in line 16 after deleting them from K.

Algorithm 1. Branch money request. Daily input and output.

Input: T,E¥, 1"

Input: X =[(W1,t), ..., (Wpw, tyw)], list of withdrawals.

Input: Y =[(D1,t1), ..., (Dya, tya)], list of deposits.

Input: K, both branch expected cash needs/deposits.

Output: Cy, the total amount of money that the branch should
request from it cash central for a unit of time.

Output: T,E” 1"

1: NY AT
2: W —E“NY
> Processing of withdrawals
3: N{ «N"+NY
4: Wi Wy
5: fori—1 to N do
6: if W; > W, then
7: K<K+W;
8: Wi« 0
9: N «N{' -1
10: else
11: Wt “«— Wt -+ W,‘

12: Ex <~ W¢—Wy
13: EYe W, /N
14: T<T+1
150 Ve NY/T
> Processing of deposits
16: for i—1 to N¢ do
17: if D; <Dy then
18: K «K—D;
19: return Ex+K,T,E¥, 1"

4.2. Weekly algorithm

The second algorithm considers a week as the time unit. This
leaves the door open to other units of time. From a computational
point of view, these preferences (including time unit) may be
arranged as part of the settings options. Algorithm 2 is much more
clear if it is partitioned into three parts: the pre-processing of
withdrawals, that of deposits, and the main core (which gathers
what remains of the weekly algorithm after the pre-processing of
withdrawals and that of deposits were completed, see Fig. 2).

Let us explain how the pre-processing parts work. We begin
with deposits, although both procedures are interchangeable and
can actually be executed in parallel. We assume that deposits are
processed at the end of the day. Hence, from the standpoint of

" weekly algorithm’ 3 parts

*

pre-processing
of deposits

pre-processing
of whithdrawals

algorithm’
main core

Fig. 2. Weekly algorithm's parts.

branch managers, all deposits made in one day can be considered
as a unique deposit made the day after. In our pre-processing,
deposits on Monday are accumulated as one deposit on Tuesday.
The same works from Tuesday to Thursday. However, deposits
made from Friday to Sunday are accumulated in K since they will
be processed the week after. This is the Spanish banks' usual
functioning. With regard to the weekly case, branch managers
concentrate at the end of the day all deposits made throughout the
full day in order to consider them as just one deposit to be pro-
cessed the day after: hence from Monday to Thursday, daily
deposits must be replaced by just one deposit the day after. On the
contrary, deposits made from Friday to Sunday are accumulated in
K since they will be processed the week after (and they can be
considered as expected ones in consequence). Furthermore, if a
deposit exceeds the deposits threshold, it is not taken into con-
sideration, if a really big deposit takes place, since the branches
usually evacuate it directly to the main office. In summary, this
performance is intended to be coherent with the banks working
standards described above, but may be altered as needed.

Algorithm 2. Branch money request. Weekly input and output.
Pre-processing deposits.

Input: T,E", A", E4 2% ctr
Input: X =[(W1,t1), ..., (Wyw, tyw)], list of withdrawals.
Input: Y =[(D1,ty), ..., (Dya, tye)], list of deposits.
Input: K, both branch expected cash needs/deposits.
Output: Co, the total amount of money that the branch should
request from it cash central every day.
Output: T,E", 1", E4 14
procedure PreprocessING_DEposits (Y, K)
D) =D,=D;=D,«<0
Y' < [(D}. 7). (Dy.9). (D5.3). (D4, )]
for i—1 to N? do
if D; <Dy then
if t; <1 then

AN e

»Monday's deposits
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7: D, <D, +D;
8: else if t; <2 then -Tuesday's deposits, ie.,
% < t,‘ < %
9: D}« Dy+D;
10: else if t; <3 then »Wednesday's deposits, i.e.,
F<ti<3
11: D}« Dy+D
12: else if t; <4 -Thursday's deposits, i.e, 3<t; <4
13: D, <D, +D;
14: else -Friday to Sunday's deposits, i.e, 4 < t;
15: K <K—D;
16: Y<Y

17:  return Y,K
Algorithm 2. Branch money request. Weekly input and output.
Pre-processing withdrawals.

18: procedure PRrePROCESSING_WITHDRAWALS X, K
19: fori—1toN" do

20: if W; > W, then

21: if t; <2 then

22: tj«t; +%

23: else

24: K—K+W;

25: X< X—[(W;,t)] rElement added to the set

expected cash needs and deleted from the list of
withdrawals.
26: Sort_ON_TIME (X)
27: return X, K

»Sorting on time

Note that a meter ctr has been designed (see previous
Algorithm 2, pre-processing deposits). This automatic counter
is intended to be a control mechanism which should provide a
real-time warning for possible underperforming branches. It
should be noticed that a negative value of Cy is not a good deal
for a bank branch, especially if this situation is repeated in
time. If this contingency takes place, the bank should consider
if this particular branch is labelled as underperforming one in
order to study either if the branch remains open or not. In this
sense, the automatic counter ctr informs about the number of
weeks with negative cash holdings in order to give notice to
branch managers of possible underperforming cases once a
threshold-of-negative-cash holdings (fixed by branch man-
agers) is exceeded.

Algorithm 2. Branch money request. Weekly input and output.
Main algorithm.

28: N?{ <—/1WT

29:  EY—E"NY

300 N 2T

3L E4 — EON¢
32: TeT+1
33: PREPROCESSING_WITHDRAWALS (X, K)

34: N «N"+N{, ~Total number of withdrawals
35: EY <E{ »Total quantity of withdrawals

36: fori—1 to NV do

37: EY < E'+W;

38: Ex <—E¥v - E‘SA{

39:  EW—EY/NY

40: V< NY/Tq

41: PRePROCESSING_DEposiTs (Y, K)

42:  N¢—N!4N%  >Total number of deposits

43: ! g% -Total quantity of deposits

44: for i—1 to N? do

45: E! —E! 4D

46: Ey<E!—Ed

47: E¢ — E¢/N¢

48: A N¢/T,

49: Co=Ex—Ey+K

50: if Cy <0 then

51: ctrctr+1

52: return Co, T, Ew, Aw, Eq, Aq, CtT

The pre-processing program for withdrawals runs as follows: if a
requested withdrawal from Monday to Thursday is over the threshold,
then it is considered as a new withdrawal made the day after, since
this expense is going to be satisfied the day after. If one of these comes
in Friday, then it will be processed the week after and consequently, it
may be added to K as being considered expected one. Note that it is
easy to change the algorithm's thresholds by modifying line 20.

Once deposits and withdrawals have been pre-processed, the
main part of the algorithm can be performed. The former mean
values are used to estimate the total number of withdrawals,
deposits and amounts. They are included on the list of new data to
compute the new mean values.

4.3. Learning from past failings

It is important to remark here on one of the algorithm prop-
erties (common to both algorithms, daily and weekly). As part of
its sequential code, the algorithm attempts to minimize the
cumulative error while computing the forecasting cash amounts,
learning from past errors. Note first that the theoretical model
(see Theorem 1, [18]) sets up how to compute the expected cash
amount for the i-th week starting from data for general former
week i—r (it could be prior step i—1 or not), thus establishing a
dynamic process in which the precise previous stage is not spe-
cified. This feature left possibilities open depending on needs.

The fact is that this computation, when based only on prior step —
the week before — may cause misleading peaks-and-troughs. To avoid
this, as well as to induce the algorithm to minimize cumulative error,
the computation of the sequence of Cy has been done as follows: each
iteration uses as inputs the mean of cash withdrawn E,,, the mean of
number of withdrawals, 4,,, the mean of deposits E; and the mean of
number of deposits made to date, A4, together with K (both branch
expected cash needs/deposits for the unit of time). The corresponding
outputs of our forecasting algorithm, apart from G, are new data E,,,
Aw, Eqg and A, for next week which perform as inputs for next iteration.
That way, the mean values E,,, A, E; and 4; meet a temporal sequence,
with every step becoming broader. Hence, the algorithm minimizes
the cumulative error while computing the forecasting cash amounts as
well as stabilizing the method.

Note also that the data corresponding to the first week (the
data to start the computation) is unknown. We shall refer to these
as initial values. In the subsequent section of numerical experi-
ments, we will assess the sensitivity of the algorithm to changes in
the set of initial values, analyzing the results (a) with a set of initial
values equal to zero and (b) with a set of initial values equal to
final outputs from (a) - computation.

5. Data description and data-processing of real banking
records

In this section, some numerical experiments in order to back test
the weekly algorithm (as it is the most commonly used in actual
banking) are performed. Our experiments are based upon two excel
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files that contain all daily branch operations from June 2012 to March
2013 of some representative Spanish branches of a well known
Spanish bank. Our initial data set was originally written using the
entity's specific code (see attached files as supplementary material). As
part of the database processing, significant external operations (such
as withdrawals and deposits) have been extracted/separated from
those internal organizational orders (accounting entries).

There are additional problems with the real branch database. Apart
from difficulties in achieving the proper authorizations for accessing
branch material, the information that branches register is not complete in
most cases: to a great extent, bank branches have no thorough record
of all remaining amounts of cash from previous weeks. Nonetheless,
cash holdings remaining from previous weeks influence the branch
managers’ decision on cash request for the following week. The
information regarding cash amounts remaining from previous weeks
is, therefore, crucial when establishing “real cash needs for every
branch”, since they might be “deposits minus withdrawals plus cash
remaining from the prior period”. This lack of information forces us to
consider “real cash needs” as simply “deposits minus withdrawals”.”
This situation implies that, inevitably, the whole attempt to back test
the algorithm's accuracy when comparing the forecasted cash
amounts with real cash needs could however be affected by an error
margin caused by this lack of branch information.

The following diagrams outline the results over almost a year of
comparison between (1) weekly real cash needs by branch consumers
(defined as “deposits minus withdrawals” with the misgivings high-
lighted above) and (2) algorithm weekly forecasted amounts of cash
which should be required from the central hub in order to comply
with all branch cash needs. This context also defines some parameter
sensitivity tests. In Section 5.1, different assumptions relating to branch
size (different deposits threshold values) are used to determine their
incidence on the algorithm's accuracy. In Section 5.2, the algorithm's
sensitivity to variations in the set of initial values is tested. In this
regard, we consider a two stage data processing: the first one starts
from E,, = 0,4, =0,E; = 0,13 =0 while the second one starts from
the final values obtained from the first stage of data processing. The
latter is aimed at imitating the real branch routine, where the initial
values considered are likely to be the mean ones.

5.1. Algorithm effectiveness depending on the branch size

Here, the accuracy of the algorithm for branches of different
sizes is tested. At present, there are many criteria to quantify the
size of a branch amongst bank managers: the volume of credits,
the number of business/private clients, the number of staff or the
volume of deposits, amongst others. The most accepted is to
consider the size of a branch as an increasing function of the total
branch cash needs: the bigger branch sizes correspond to bigger
movements — entries and exits - of liquid resources.

Thus, in order to measure the algorithm's sensitivity to changes
in branch sizes, we consider different values for the threshold for
deposits since, as mentioned before, the threshold for deposits is a
key sign of the branches' ability to manage their liquid resources
and, in consequence, a measurement of the branch size. While we
vary the threshold for deposits, we keep constant the threshold for
withdrawals in all cases, since this should be fixed by banks or by
law. However, both threshold values may be modified up or down
according to needs (see Conclusions section).

In order to cover the whole range of branch sizes, we categorize
them into three general types: small, medium and large. The cut-
off points for classifying the branches into these three groups

7 What we mean here by withdrawals is cash withdrawals, an e-transfer
through the interbank system would not be taken into consideration (e.g., from one
bank to another or from one account to another).

depend on each specific context/country, and they may be mod-
ified as part of the settings options. We shall assume that Small
branch size equals to “deposits threshold”=10,000€, Medium size
equals to “deposits threshold”=100,000€ and Large size equals to
“deposits threshold”=1,000,000€.

For all branch sizes (small, medium and large) the following
graphs represent the difference between “real cash needs”(depo-
sits minus withdrawals) and algorithm forecasted cash amounts
with initial values E,, =0,4,, =0,E; =0,1; =0. Black bars repre-
sent real cash needs and white ones the forecasts. The x-axis
shows weeks of the year 2013/2014 starting the first week of June,
while cash amounts in Euros appear on the y-axis.

5.1.1. Small branch size: “deposits threshold”=10,000 €

It becomes apparent that the forecasted cash amounts are
above the real necessities in most cases. As mentioned before, this
deviation is caused by the definition of “real cash needs” (as
“deposits minus withdrawals” instead of “deposits minus with-
drawals plus remaining money from former week”). In con-
sequence, the “real cash needs” volumes are lower than what they
should be. Hence, with the corrective coefficient applied with
respect to the assumed definition of “real cash needs”, we may
conclude that the algorithm works well (Fig. 3).

5.1.2. Medium branch size: “deposits threshold”=100,000 €

All prior comments for small branch size apply here too. In as
far as the comparison between graphs of small and medium
branch size we note that, in general terms, there are no apparent
differences between them, with the exception of week 24 (4th
week of November). For this week, the algorithm's forecasted
amount is more suitable for smaller rather than for medium
branch size. In fact, in cases of medium size branches, the
algorithm forecasts an amount for week 24 (4th week of
November) that far exceeds the “real” demand of cash, while the
prediction in the case of the small branch size is more com-
mensurate with real needs. This is because, importantly, “real”
demand of cash is much lower for medium size branches than it is
for small ones in the particular case of week 24 (4th week of
November). In as far as this peculiarity (4th week), in light of the
branch managers' experience regarding consumers' habits, one
explanation could be that consumers at small branches (more so
than medium/large ones) tend to withdraw cash instead of using
other kinds of payment services such as credit transfers or card
payments for the scheduled supply of funds corresponding to
the beginning of the Christmas holidays - a period of high
demand of cash. Exactly the same applies to week 24 in case of
large size branches (medium=large as far as week 24 is con-
cerned, see next paragraph) (Fig. 4).

5.1.3. Large branch size: “deposits threshold”=1,000,000 €

All above general comments for small/medium size branches
apply here too. In light of the above outcomes, we may conclude
that the algorithm performs well for all kinds of branches
regardless of their size (Fig. 5). We take now a closer look at the
details of the features of the best and worst-fit weeks. The fol-
lowing can be found in Tables 1-4.

If we heed the branch managers' experience (ex post) in order to
explain these singularities, one might take into account economic,
social and cultural factors: periods where spending tends to increase,
corresponding to pre-holidays (beginning of July and December); the
so-called ‘hard January’ as a financial rupture from personal habits of
moderation and austerity; the different degrees of impact of the
financial crisis, a factor that distorts the branch managers' predictions
for cash in as far as the consumers' habits are concerned; work
schedules, with hot dates such as tax revenue deadlines (June);
forthcoming school enrolment dates (end of August/beginning of
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September), as a peak in expenditure. And many other factors that
vary depending on each country's habits and traditions, socio-
economic circumstances and particular banking conditions that
belong to the private sphere. That is to say, the main determinants that
should be taken into account in order to further fine-tune the algo-
rithm predictions are special conditions pertaining to the socio-
economic and cultural scope of each country/region/state or are of
confidential nature, except for banking branch managers. Hence, it
would not be possible to go any further in designing a general algo-
rithm which would be valid for all cases, but rather we should apply
our proposal to each particular context with its own peculiarities (see
Conclusions for more detailed explanations).

5.2. The sensitivity of the algorithm to changes in the set of initial
values

We will test here the sensitivity of the algorithm to changes in
various points in time. In particular, we will show that the algorithm is
robust in the sense that its forecasts do not depend on the point in
time in which they are made. To achieve this, let us recall the algo-
rithm's set of initial values: the mean of the cash withdrawn E,,, the
mean of the number of withdrawals, 4,,, the mean of the deposits E4
and the mean of number of deposits made to date, 4. Note that all
these parameters are time dependent. Actually, these settings corre-
spond to observations made at different times, one to one: each set of
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Table 1

Best-fit weeks.

Number Specific week

6 2nd July
13 1st September
20 4th October
28 4th December
29 1st January
34,35 2nd, 3rd February
37,39 1st, 3rd March
41 1st April
Table 2

Second bests.

Number  Specific week

4 4th June

10, 11 2nd, 3rd August

14, 16 2nd, 4th September

17,19
22,

30
33

1st, 3rd October

2nd, 3rd, 4th November
2nd January

1st February

23,24

Table 3
Worst-fit weeks: forecasts in
excess.

Number Specific week

5 1st July
26 2nd December
Table 4

Worst-fit weeks: forecasts
short-sighted.

Number Specific week

12 4th August
38 2nd March

initial values corresponds to a point in time while each point in time
corresponds to a set of initial values. Thus, we shall identify each set of
initial values with the temporal point in time where they were
considered.

The following graphs (Figs. 6-8) stand for data processing with a
set of initial values E,, =140.47, A, =1384.21, E; =4802.28, ;=
17.31 for the three cases of branch sizes (small, medium and large). As
these graphs show, data set produces identical results. Hence, the
algorithm does not depend on the set of initial values. Since they
represent temporal data, the conclusion is that the algorithm's fore-
casts do not depend on points in time. The method, then, is robust.

6. Local demographics

As mentioned before, branch size is not a closed concept: on
the contrary, it may be measured by means of several parameters.
Actually, there exists a relationship between branch size and local
demographics: branch size depends on branch cash transactions -
number and amounts — while branch cash transactions depend on
branch customer’'s needs for cash, which are strongly related to
local demographics (a heavy retail stores area will require much
more cash than a heavy industrial area where firms do not deal
with much cash). This section is devoted to explicitly incorporat-
ing branch's local demographics to the algorithm's code.

Let us first point out that local demographics has already been
implicitly considered when using the above categorization of
branches for model validation because grouping the branches into
city centre, rural or business centre by practitioners implicitly
include their demographic features inside. Evidence of this is the
fact that branch managers, in practice, categorize branches on city
centre, rural or business centre depending, not (only) on their
branch geographical location but on their number and amount of
transactions, on a not clearly defined basis: i.e., although a branch is
geographically located at a rural area, it could be considered by
practitioners as city centre if its number and amount of transac-
tions exceed the internal benchmarks for rural branches.

Demographic parameters have to be carefully managed due to
there being major variations on specifying demographics on
“local” - as opposite to “internationally accepted” — parameters. As
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a matter of fact, the above categorization of branches by branch
managers is quite unclear because the distinction between urban
and rural areas is growing fuzzy: while the main criteria to define
them commonly include population size/density and availability of
some support services such as secondary schools and hospitals,
the combination of criteria applied can vary greatly: even the
population thresholds used across countries can be different. As a
result of such existence of wide fluctuation in definitions, inter-
national comparisons are very difficult (see [2], where explicitly it
is explained that “Scientists from different disciplines diverge
when defining these zones - rural/urban - or their limits; they
even often mention the zones without any definition. This practice
excludes comparison between studies.”, [sic]) or [21], where the
authors, in order to develop a local indicator of financial

development, chose to carry out their study within a single
country rather than across countries - as they sought an unified
vision.

In order to overcome the aforementioned difficulties, a
weighting (demographic correction coefficient) d has been
designed to be added to the algorithm's code. This has been car-
ried out in a fuzzy way: i.e. a range of values d e [d,;;nCo, dmaxCol
has been considered instead of a single one. For this reason,
notations d or [d;inCo, dmaxCo] can be used interchangeably to refer
to the “demographic correction coefficient”. Moreover, in order to
cover the widest range of cases, d would depend on some binary
variables which take value equal to 1 if it applies, 0 if not. This way
these determinants could be processed only when applicable.
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Furthermore, both determinants and number of them can be freely
selected depending on the considered scenario.

Specifically, the viewpoint adopted here is that the demo-
graphic coefficient increases the uncertainty in the output Cy in
such a way that it can be resolved with more than one choice: this
is the reason as to why a range of values® d e [dninCo, dmaxCo] has
been considered instead of a single one.

As an illustrative example, we consider the following three
geographical variables as determinant of branch location: z; =
unemployment, z; = density of population and z3 = percentage of
foreign population. Our selection has been made according to the
following criteria: apart from the frequency with which they are
used in literature, “data availability” has been taken into account
since, for instance, the variable per capita income is quite common
in the literature as determinant of branch location but often this
information is not available. This is as to why we propose unem-
ployment instead, which is strongly correlated (negatively) with
per capita income. But, as mentioned before, both variables and
number of them can be freely selected.

Thus, the values of the coefficient d e [dyin, Aimax], Amin < 1 < dmax
are determined by the values of the chosen geographic variables z;,
according to Table 5.

This argument can be easily extended either when more variables
are needed or a wider range of variable's values is considered. Finally,
once the demographic corrector coefficient has been computed, it may
be added to Algorithm 2 in line 52 in such a way that this line would
finally be presented as

52 : return [dpin, dinax] % Co, T, Ew, Aw, E4, Aq, CtT

where the notation the interval

[dmin CO, dmax CO]-

[dmina dmax] X Co means

8 In the choice of d inside [dminCo,dmaxCol, the expertise eye of the office
director can help leading to the best option.

7. A cost structure

As mentioned in the Introduction, besides the literature related to
the design of managerial measures for improving branch cash man-
agement, this paper may be also discussed within the broader context
of the optimal inventory literature. In short, the problem of inventory
control is aimed at a successful management of stocks of goods in
order to meet the demand by seeking for an inventory policy that will
make profits as large as possible or costs as small as possible.

This section is thus devoted to developing a complementary
cost structure. The starting point is the cost function stated in [18],
designed by following the normal practice in inventory theory of
assuming that the bank seeks to minimize the long-run average
cost of managing the cash balance under some policy of simple
form. This cost function is as follows:

A
y(CO - Cmax)cmax
——

costs due to cash flow

Co+ Crnax
3 +

opportunity costs

+ U

&(Co, Cinax) = BCinax

insurance costs

where Cpq’ is the branch cash upper bound fixed by the bank
entity, y is the unitary cost per transfer, A is the variance of daily
changes in the cash balance,'° v is the daily rate of interest earned
on portfolio (e.g., other banks products which yield higher bene-
fits), and B is the constant of proportionality due to that the pay-
ment on the bank's company to a theft insurance policy, which
should be directly proportional to Cax. £(Co, Cmax) Was considered
in [18] as objective function in the following constrained optimi-
zation programme:

A
}/(CO - Cmax)cmax
Co= Ex1 —E}(1 +K
Co < Crnax-

Co+ Crnax
+v 3

Minimize :

9 The notation Ce replaces the former notation of C, of [18] for clarity
purposes.

10 Specifically, considering that the random behaviour of the cash balance can
be characterized as a sequence of independent Bernoulli trials, if ;¢ denotes the
amount of euros that the branch cash balance increases or decreases in some small
fraction of a working day 1, thus A= y?t.

+BCinax
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Table 5
Example of demographic coefficient.

Table 6
Seasonality coefficient.

21 22 Z3 dmin dinax T 1-4 5-13 14-16 17-26 27-31 32-40
0 0 0 1.0 1.0 sd(T) 1.0 11 12 1.0 13 1.0
0 0 1 1.0 11
0 1 0 1.0 11
0 1 1 0.9 11 6: output «z
1 0 0 1.0 11 7: if D(dmax(Ex, —Ey, +K)) < P(output) then
1 0 1 0.9 11 8:  output « dmex(Ex, —Ey, +K)
1 1 0 0.9 11 .
1 1 1 08 12 9: return output
zy = unemployment z, = density of population z3 = percentage of foreign
population.

in such a way that the algorithm's output Cy was intended to
satisfy the following requirements: Cy (by performing under Cpax)
is enough to cover both expected and unexpected branch cash
needs while minimizing the banking cost function. Here, we
return to this question as follows:

On one hand, we consider the corrective coefficient for local
demographics, denoted either d or [d;;;»Co, dmaxCol, as stated in the
previous section. If more than one corrective coefficient would be
added, thus the maximum of them should be considered instead.
We detailed this at the Conclusion section, where the possibility of
adding other corrective coefficients - such a seasonality — has been
discussed."" Thus, the first constraint Co = Ex, —Ey, +K is turning
into

Ce [dmin(EX] —Ey, +K), dmax(EX] —Ey, +K)],

where C is an unknown representing the new value of the cash
holding under cost minimization. On the other hand, as each
branch might observe its cash upper bound, Cp.x once this
numerical value is substituted in the minimization program, it
hence performs under a single variable, C, and a (new) single
constraint, as follows:

A C+ Cax
+U +BC,
V(€= Cona) Cona 3 max

sa. Ce [dmin(EX1 *EY] +K),dmax(EX1 *EYl +K)].

Minimize :

According to Weiertrass's Extreme Value Theorem, for a real-
valued continuous function (C # Cmax, Cmax # 0) on a non-empty
compact domain, there exists global minimum. The extremum
occurs either at critical points inside (in the interior) of the interval
or at the end points of the interval. Once the algorithm output
Ex,—Ey, +K and the corrective coefficient [din, dmax] are com-
puted, algorithm evaluates the cost function both at the critical
and at the end points of the interval in order to identify the
smallest value. This may be achieved by adding Algorithm 3 to the
algorithm code.

Algorithm 3. Cash holdings under cost estimation.

Input: y,v,A, B, Cnax as described in this section.

Input: Co = Ex, —Ey, +K the output of Algorithm 2.
Output: A new Co minimizing the cost function.

1: D(C) =y el + V5572 + BCnax

2: Z—{z € [dmin(Ex, — Ey, +K), dmax(Ex, —Ey, +K)]| &'(z) = 0}
3: output « dpin(Ex, —Ey, +K)

4: forzeZ do

5: if &(z) < P(output) then

1 Actually, in Section 8, a seasonality corrective coefficient has been designed.
This may also serve as an illustrative example of how many other corrective
coefficients - relative to special conditions pertaining to the socioeconomic and
cultural scope of each country/region/state - may be designed.

It should be noticed that one of the advantages of the developed
cost structure is that the cost function may be changed as needed
provided only that it verifies the conditions stated at Weiertrass's
Extreme Value Theorem (which are very mild indeed).

8. Conclusions and directions for future research

This paper provides a new tool - a forecasting algorithm under
uncertain demand - to improve cash management at branch level by
updating the branches' cash forecasting processes. We have shown
that the algorithm is robust in the sense that its predictions do not
depend on the point in time in which they were made. Also, we have
found that it performs well for all kinds of branches, regardless of their
size. Besides being sound, it is a low-cost method. Given these reasons,
this algorithm is appropriate for all types of branches, not only for
those which may be candidates for increased supervision.

The algorithm is designed to work well at the greatest possible
number of scenarios with minimum cost. While being a low-cost
tool is very attractive, the generality of the algorithm is one of its
better features, since it may be adjusted as required and can be
tailor-made to suit the specific requirements of each banking
institution (or each kind of branch), subject to minor fine-tunings.
In fact, since only minor adjustments would need to be made on
the algorithm's code, these may be carried out throughout the
banking institutions' own computer services.

This is the case, for instance, of the cash threshold for big
withdrawals, W,. This issue has been considered in this paper since
there may be limits on random withdrawals fixed by law or by the
banks own internal policies.'? Each banking institution may fix its
own, or a disproportionately large amount (aimed at approaching
W/ —c0) in the case that there is no threshold for big withdrawals.
In this specific case, adapting lines 6th and 17th for the daily
algorithm and/or the 5th and 20th for the weekly algorithm would
modify both thresholds for deposits and withdrawals as required.

As a second example of adjustments to comply with other
requirements, a seasonality coefficient may be designed as follows: in
the first place, it should be noticed that the seasonality coefficient is
time-dependent over the week number, which is stored in T. Table 6
shows thus how this corrector coefficient can be stored.

This table has been developed on the basis of data provided in this
paper, the first log corresponding to June. A seasonality coefficient over
1.0 is established in Summer, September, and December, when an
increment of cash is presumed. Finally, the seasonality coefficient can
be added to Algorithm 2 in line 52 in a similar way that the demo-
graphic corrector coefficient was added. Thus, including both coeffi-
cients, the line would finally be presented as

52 : return s¢(T) x Co, T, Ey, Aw, Eq, Ag, Ctr

12 In Spain, for instance, users are required by law to give advanced notice to
the branch in case of withdrawals which exceed the threshold W;.
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As it has been shown, the algorithm's generality is one of its better
features, since it may be adjusted as needed. Moreover, it guarantees
not only full effectiveness (since the algorithm would fit the best to
each branch's necessities) but also lower costs (since the adjustments
could be implemented by their own central computer). Both features,
low-cost and generality, would provide a competitive advantage.

The usefulness of our results depends to some extent on the reg-
ulatory requirements on cash holdings. Specifically, reserve require-
ments are binding in the U.S. while in Europe there are no such
requirements. In principle, this may suggest that our model and
findings are more relevant in the case of European banks as holding
cash in excess is not driven by a binding regulation. However, the
results could be also relevant for the US. in a number of dimensions.
First of all, even in the presence of binding reserve requirements,
banks may hold cash in excess and may be in need of improving their
cash management. Secondly, banks may hold excess reserves in the
light of market conditions and they may look in particular to the
evolution of inflation and interest rates [23]. Third, as noted, inter alia,
by Bennett and Peristiani, [7], there is evidence that reserve require-
ments constrain U.S. commercial banks and other depository institu-
tions to a much smaller degree than in the past. One of the reasons is
the spread of “sweep” arrangements — a banking innovation that
allows depository institutions to shift funds out of customer accounts
subject to reserve requirements. All in all, this evidence suggests that
US. banks now appear to be managing their cash flows more in
accordance with business needs than just with regulatory obligations.

Management insight and experience of branch financial officers are
not incorporated into the algorithm's code. As mentioned in the
Introduction, the proposed algorithm is a monitoring program to
guide short-term corrective cash management actions of the branch
staff. Thus, on one hand, the algorithm could work as an expert system
when complemented by the branch managers' expertise. On the other
hand, the expertise of each banking institution could also be incor-
porated into the algorithm's code. For instance, in the day to day
activities of certain banks' branches, the computation of Cj is usually
done using only the previous step with similar features.”® To this
regard, recall that the theoretical model (Theorem 1) sets up how to
compute the expected cash amount for the i-th week starting from
previous data i—r (it could be prior step i—1 or not), without speci-
fying the precise previous stage. While our algorithm performs well
across the mean of all previous data as previous stage, it might work
just as well (or even better, depending on bank entities/kind of branch
needs) with other possibilities. These other possibilities include using
the previous step with similar features (simulating the aforemen-
tioned branches' routine in the computation of Cy) or even, the mean
of those previous stages with similar features.

In this sense, the terms and conditions of a possible agreement
between the University of Granada and some Spanish banking insti-
tutions are currently in negotiation in order to carry out some
experiments to best-fit the algorithm to the needs of each banking
institution. This is a future research project within a foreseeable period
of time.
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Appendix A. The algorithms in flowchart form

See Figs. 9-12.
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Fig. 9. Daily forecasting algorithm for Co (Algorithm 1).
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Fig. 10. Weekly forecasting algorithm for Cy (Algorithm 2).
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Fig. 11. Pre-processing steps for withdrawals. Weekly algorithm.
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Fig. 12. Pre-processing steps for deposits. Weekly algorithm.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.omega.2016.09.005.
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