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Abstract1

Branch size strongly depends on branch cash holdings. However, while any exhaustive study into branch cash holdings1

must include demographics around branches, there are major variations when defining demographics according to “local”

parameters, as opposed to “internationally accepted” ones. This wide fluctuation in definitions makes cross-border comparisons2

very difficult. The present paper intends to overcome these difficulties by developing a global spatial model that uses cash

holdings as a major determinant of branch size and where geographical concepts are replaced by “internationally accepted”

notions. Specifically, the contributions of this paper are twofold: firstly, it presents a theoretical model (based on Markov

and Gibbs random fields) to analyse the branch cash holdings from a global spatial standpoint. Secondly, it introduces a

universal branch geolocator based around a decision model that redesigns the bank branch network according to branch size.

Importantly, the model variables (including branch size as the main criterion) can be replaced/expanded as needed through

the use of a highly versatile decision-making tool that can be applied to a wide range of contexts, even non-banking ones as

long as they are influenced by demographics.
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1 Introduction15

Demographics are an important determinant in the research16

of several fields. However, there are major variations when17

it comes to defining demographics using “local” rather than18

“internationally accepted” parameters. Actually, the distinc-19

tion between urban and rural areas is growing fuzzy. While20

the main criteria used to define these areas commonly include21

population size/density and availability of certain support22

services such as secondary schools and hospitals, the com-23

bination of criteria applied can vary greatly: even different24

population thresholds can be used. This lack of a precise def-25

inition of demographics at a global level complicates both26
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research in academic and scientific fields and the possibility 27

of international comparisons. 28

The fuzziness of local demographics also adversely affects 29

studies into the banking sector. One example is the branch- 30

site selection problem. This issue consists of finding the best 31

location for branches. In the present scenario of a highly com- 32

petitive banking industry, demographic branch-site selection 33

is one of the key factors in maximising bank’ profitability and 34

increasing its market share. Unfortunately, local demograph- 35

ics fuzziness prevents—from a classical point of view—the 36

design of procedures that are intended to validate all possible 37

(international) scenarios. Actually, most bank branch anal- 38

yses that consider local demographics as key determinants 39

cannot be extrapolated to more general contexts. Neverthe- 40

less, this example lets us introduce the more general problem 41

of reordering the bank branch network according to some 42

fixed criteria. 43

This paper deals with bank branch network’ restructuring 44

based on branch size. Particularly, it formulates a method 45

that redesigns the bank branch network according to branch 46
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size. To this end, branch cash holdings were selected as the47

main determinant of branch size.48

Here (branch cash holdings), we encounter the difficulty49

of local demographics’ fuzziness because demographics play50

a central role in the analysis of branch cash holdings. As a51

matter of fact, any exhaustive study into branch cash holdings52

has to include the dependence on the demographics around53

each branch since their cash transactions will depend on their54

customers’ cash needs.1 However, as mentioned previously,55

demographic parameters have to be managed carefully due56

to the significant variations when defining them as either57

local or internationally accepted parameters. This means58

that cross-border comparisons are difficult (see André et al.59

2014), “Scientists from different disciplines diverge when60

defining these zones (rural/urban) or their limits; they even61

often mention the zones without any definition. This practice62

excludes comparison between studies”, [sic]). The present63

paper intends to overcome these difficulties by developing64

a global spatial model with regard to branch cash hold-65

ings where classical geographical concepts are replaced by66

“internationally accepted” notions. Once the aforementioned67

fuzziness of local parameters has been exceeded, apart from68

allowing cross-border comparisons, a global approach will69

also be beneficial to many cases: for instance, in order to70

decrease costs when replacing several local approaches with71

a universal one.72

Another positive point is the fact that the proposed spa-73

tial framework would still be valid if the selected variable2
74

“branch cash holdings” was replaced by another one (num-75

ber of users, brick-and-mortar branch dimensions, etc.). The76

cash holdings approach is just one instance of the spatial77

model’ functionality in the banking sector.78

Importantly, this new methodology can also be applied in79

other contexts outside a banking scenario. As a matter of fact,80

replacing classical standards with “internationally accepted”81

notions would also be fruitful in any contexts where demo-82

graphics play a role, thus enabling other disciplines to fully83

enjoy the benefits of the globalisation of demographic param-84

eters.85

Specifically, the contributions of this paper are twofold.86

The first is a theoretical setting (based on the notions of87

Markov and Gibbs random field) designed to analyse the88

branch cash holdings from a global spatial standpoint. Its89

main objective is to move towards a global unified vision90

of the classical geographical standards, thereby surpassing91

local demographics. The second is a universal branch geolo-92

cator in function of branch size, developed from the given93

theoretical setting. The geolocator is a decision model that94

could help managers select the best locations for branches95

1 A heavy retail area will require much more cash than a predominantly

industrial area where firms do not deal with much cash.

2 As major determinant of branch size.

depending on their size, working on the premise that cash 96

holdings are a major determinant of branch size. In fact, the 97

geolocator is designed as a decision-making tool to be used 98

as required when redesigning the bank branch network. As 99

far as the author knows, this is the first time that Markov ran- 100

dom fields, which are mainly employed for vision and image 101

processing (Wainwright and Jordan 2008), have been applied 102

to the banking sector. 103

With respect to work published in the literature, I could 104

not find any studies that deal with the problem of globalising 105

demographic parameters into a unified approach. Conversely, 106

there are several studies that address the selection of the best 107

locations for branches. Actually, branch-site selection is one 108

of the most important decision-making processes for banks 109

because, if done correctly, it can provide access to the best 110

customers and the greatest market potential. This issue is 111

approached from different perspectives in the current litera- 112

ture. 113

One perspective treats site selection according to cer- 114

tain pre-established criteria. In this case, in addition to 115

the large variety of factors presented in the literature, a 116

full range of mathematical techniques is used. In Abbasi 117

(2003), a decision support system was developed for locat- 118

ing bank branches using a database of local demographics. 119

In Boufounou (1995), a model was designed for planning 120

new branch locations using regression analysis. In Cinar 121

(2009) having previously identified five main criteria (local 122

demographics, socioeconomic factors, banking indicators, 123

recruitment in accordance and trade potential), a decision 124

support model for bank branch location selection was devised 125

using the fuzzy analytic hierarchy process (AHP). More 126

recently, in Zainab et al. (2014), the hybrid method of AHP 127

and Monte Carlo simulation was used in order to prioritise 128

locations and select the best. In Allahi et al. (2015), a more 129

sophisticated model for selecting optimal site location was 130

proposed by integrating available data sources and decision 131

models such as the AHP, a geographic information system 132

(GIS) and the maximal covering location problem (MCLP). 133

The problem of selecting the best site for a new branch 134

can also be viewed as part of the more general problem 135

of restructuring the bank branch network, (Cerutti et al. 136

2007). In Ioannou and Mavri (2007), authors presented a 137

decision support system for reconfiguring branch networks, 138

based specifically on information about the bank’ local 139

demographics. In Miliotis et al. (2002), mathematical pro- 140

gramming was used to present a method for reorganising 141

the bank service network by combining geographical infor- 142

mation systems (GIS) representing local geographical/social 143

attributes—with demand-covering models. Other authors, 144

see Ruiz-Hernandez et al. (2015), presented a branch restruc- 145

turing model by using integer 0–1 programming and aimed 146

specifically at restructuring the branch networks after merg- 147

ers and acquisitions, where banks frequently have to face the 148
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problem of redundant branches competing in the same mar-149

ket. Other approaches on geographically modelling financial150

organisations are based on fuzzy cognitive maps (FCMs),151

see Glykas and Xirogiannis (2005) where authors generate152

a hierarchical and dynamic network of interconnected finan-153

cial knowledge concepts by using FCMs.154

The remainder of the paper is organised as follows. Since155

the theoretical framework is based on two special kinds of156

graphical models (Markov and Gibbs random fields), Sect. 2157

of this paper sets out the background on graphs and graph-158

ical models, while Sect. 3 provides an overview of Markov159

and Gibbs random fields as well as laying down the rela-160

tionship between them. Section 4 focuses on developing the161

global spatial model for bank branches. In Sect. 5, the uni-162

versal geolocator (the decision model) is derived from the163

previous theoretical framework. Section 6 discusses the ver-164

satility of the proposed geolocator. Finally, Sect. 7 presents165

the conclusions of the paper.166

2 Background: graphs and graphical models167

2.1 A short glossary of terms: directed and168

undirected graphs169

Recall that a graph in discrete mathematics is a set of vertices170

(or nodes) and a collection of edges, each connecting a pair171

of vertices. They are represented by G = (V , E), where172

V represents the set of vertices and E the set of edges. An173

undirected graph (also called undirected network) is a graph174

where all the edges are bidirectional. In contrast, a graph175

where the edges point in a single direction is called a directed176

graph (see Fig. 1).177

When drawing an undirected graph, the edges are typi-178

cally drawn as lines between pairs of nodes instead of arrows,179

which are reserved for directed graphs, that is, in directed180

Fig. 1 Differences between directed and undirected graphs

graphs edges have a specific direction while in undirected 181

graphs they do not (edges are two ways). Hence, we can for- 182

mally define an undirected graph as G = (V , E) consisting 183

of the set V of vertices and the set E of edges such that an 184

edge is an unordered pair of elements of V. A path is a list of 185

a graph’ vertices where there is an edge between each ver- 186

tex and the next vertex. An undirected graph that has a path 187

between every pair of vertices is called a connected graph. 188

Two vertices u and v are adjacent, u ∼ v, if (u, v) ∈ E . By 189

convention, we assume that there are no edges from a vertex 190

to itself. If the cardinality of V is n, thus the cardinality of 191

E is at most (
n

2
). To end this short “glossary” of terms, a 192

subgraph S = (V ′, E ′) of a given graph G = (V , E) (i.e. S 193

is a graph whose vertices and edges are subsets of V and E) 194

is called a maximally connected subgraph if S is connected, 195

and if for all vertices u such that u ∈ V , u /∈ V ′, there is no 196

vertex v ∈ V ′ for which (u, v) ∈ E . That is, a maximally 197

connected subgraph is a connected subgraph of a graph to 198

which no vertex can be added and it still be connected. A 199

clique C in a graph G = (V , E) is a subset C of the set of 200

vertices V , C ⊂ V , such that 201

• C consists of a single node or 202

• for every par of vertices u, v ∈ C must be that u ∼ v. 203

That is, cliques in a graph are maximally connected sub- 204

graphs. 205

2.2 More than graphs: graphical models 206

Graphical models are a powerful approach that provides a 207

joint representation of knowledge about random variables 208

and their interrelationships. In other words, graphical models 209

bring together graph and probability theory: while graphs are 210

an intuitive way of representing and visualising relationships 211

amongst random variables, graphical models also allow us to 212

express the conditional dependence structure between them 213

(see Fig. 2). 214

Besides being a language for formulating models, graph- 215

ical models inherit the good computational properties of 216

graphs. For instance, while the running time of an algorithm 217

or the magnitude of an error bound can be characterised in 218

Fig. 2 Graphical models
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terms of structural properties of graphs, this also holds true219

for graphical models.220

Since graphical models represent knowledge about ran-221

dom variables and their interrelationships, they can be viewed222

as graphs where nodes correspond to random variables and223

edges represent statistical dependencies between the vari-224

ables. Thus, graphical models can also be considered as225

spatial stochastic processes understood as those collections226

of random variables {Xv, v ∈ V } which take a value Xv227

for each location v over the region of interest V . Such spa-228

tial stochastic processes are also called random fields on V .229

Commonly, the region V is a discrete lattice. For simplic-230

ity, the non-negative finite two-dimensional grid in the plane231

{1, 2, . . . , n} × {1, 2, . . . , n} will be taken as V .232

The two most common types of graphical models are233

Bayesian and Markov networks (also called Markov random234

fields). The main difference between them is the underly-235

ing graph, Bayesian networks are based on a directed graph,236

whereas Markov random fields use an undirected graph. For237

the purposes of modelling branch cash holdings based on238

demographics, we will focus on Markov random fields. In239

fact, a Markov random field (MRF) is an undirected graphical240

model that explicitly expresses the conditional independence241

relationships between nodes in such a way that two nodes242

are conditionally independent if all paths between them are243

blocked by given nodes. Both MRFs and their connections244

with branch cash holdings will be described in more detail245

in the following section.246

3 Gibbs random fields andMarkov random247

fields248

This section summarises the structures known as Gibbs ran-249

dom fields (Gibbs distributions) and Markov random fields250

as well as the connection between them. Roughly speak-251

ing, both Gibbs (GRF) and Markov random fields (MRF) are252

representations of a set of random variables and their rela-253

tionships that can be depicted as an undirected graph. More254

specifically, a set of random variables is said to be a Gibbs255

random field if and only if its configurations obey a Gibbs256

distribution while a Markov random field is characterised by257

the Markov property. This “Markovianity” is a local property,258

whereas the Gibbs distribution that characterises a GRF is a259

global property. However, the Hammersley–Clifford theorem260

(Hammersley and Clifford 1971) establishes the equivalence261

of these two types of properties.262

Let us examine this in greater detail. Consider a finite263

collection of random variables X = {Xv} taking values in264

a finite set V , X = {Xv, v ∈ V } (as mentioned, V is the265

finite two-dimensional grid in the plane V = {1, 2, . . . , n}×266

{1, 2, . . . , n}). We denote P[X ] to the joint distribution of267

this finite collection of variables. That is, P[X ] is the corre-268

sponding set of each variables’ distribution, as follows:269

P[X ] = P[{Xv = xv/v ∈ V }] = {P[Xv = xv]/v ∈ V }. 270

The set V can be viewed as the set of vertices of some 271

graph G = (V , E). 272

3.1 Gibbs random fields 273

For a collection of random variables X = {Xv, v ∈ V }, we 274

say that the joint distribution of X is a Gibbs distribution 275

relative to the graph G = (V , E) if it can be expressed as 276

a product of clique potentials in G. That is, if we denote 277

XC = {Xv, v ∈ C}, where C ∈ C ⊂ V is a clique in 278

G = (V , E), then functions φC are required so that the joint 279

distribution of X , P[X ], takes the form 280

P[X ] =
1

Z

∏

C∈C

φC (XC ), (1) 281

where φC (XC ) is the C th clique potential (function), a func- 282

tion that only considers the values of the clique members in 283

C . Each potential function φC must be positive, but unlike 284

probability distribution functions, they do not need to total a 285

value of 1. A normalisation constant Z is required to create 286

a valid probability distribution Z =
∑∏

C∈C φC (XC ). Usu- 287

ally, these potentials are only taken to be functions over the 288

maximal cliques, that is, cliques which are not proper subsets 289

of any other clique. 290

Moreover, clique potentials usually take the form 291

φC (XC ) = exp(− f (C)) where f (C) is an energy function 292

over values of C . The energy assigned by the function f (C) 293

is an indicator of the likelihood of the corresponding relation- 294

ships within the clique, with a higher-energy configuration 295

having a lower probability and vice versa. If this is the case, 296

Eq. (1) can be rewritten as 297

P[X ] =
1

Z
exp

[

−
∑

C∈C

f (C)

]

. (2) 298

If energy functions f (C), C ∈ C are quadratic functions, 299

the Gibbs field is known as a Gaussian Gibbs field. 300

3.2 Markov random fields 301

For a collection of random variables X = {Xv/v ∈ V }, we 302

say that X is a Markov random field relative to G = (V , E) 303

so long as the full conditional distribution of X depends only 304

on the neighbours, according to the previous definition of 305

“neighbourhood”. This local property is known as Markov 306

property (“Markovianity”), and it has a well-understood sig- 307

nificance for Markov chains. A Markov chain is a random 308

process Xn in which the full conditional distribution of Xn , 309

P[Xn = xn|Xk = xk,∀k �= n], depends only on the past 310

neighbours Xn−1. In other words, 311
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Fig. 3 Neighbourhood of site

(1, 1)

0 1 2 3
0

1

2

3

P[Xn = xn |Xk = xk,∀k �= n] = P[Xn = xn |Xn−1 = xn−1].312

In order to move from Markov chains to MRFs, let us313

say that, although both are stochastic processes, the main314

difference between them is the underlying domain: dis-315

crete Markov chains move across a one-dimensional surface316

({1, 2, . . . , n}), while MRFs go across a two-dimensional317

surface (for simplicity, the finite two-dimensional grid in318

the plane, V = {1, 2, . . . , n} × {1, 2, . . . , n}). In fact, the319

key feature that differentiates the two underlying domains is320

the universally accepted direction present in the real number321

line (particularly in the discrete subset {1, 2, . . . , n}) due to322

its linear nature,323

324

Xn−1 ← Xn → Xn+1

past location ← present location → future location
325

which means that “proximity” can be defined by the dis-326

tance and/or the degree of proximity employed. However,327

for moves in V the primary concept that must be defined328

is their direction move because if it is not specified then we329

would not know which direction to move? Once this has been330

done, the notion of distance/proximity should be defined.331

In summary, in order to transfer from Markov chains to332

MRFs, both concepts of direction and proximity need to be333

specified. In the literature, this is usually done through the334

neighbourhood of a site concept. Let V = {1, 2, . . . , n} ×335

{1, 2, . . . , n} be the set of nodes of a finite gride. Each v ∈ V336

may be also called site. The neighbourhood of a site (i, j),337

written N (i, j), is commonly defined as follows:338

N (i, j) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)},339

where one may take (0, j) = (n, j), (n + 1, j) =340

(1, j), (i, 0) = (i, n), (i, n + 1)(i, 1). For instance, the341

neighbourhood of (1, 1), N (1, 1), is shown in Fig. 3.342

Note that, in the above definition, both direction and prox-343

imity are implicitly and explicitly specified. Based on the344

neighbourhood of a site concept, the Markov property can345

now be extended from chains to MRFs as follows:346

P[Xv = xv |XV −{v} = xV −{v}] = P[Xv = xv |X N (v) = xN (v)].347

Also, the concept of neighbourhood of a site allows to con- 348

sider the notion of clique: A clique c is a set of sites such that 349

any pair of elements ci , c j ∈ c hold that ci ∈ N (c j ) and c j ∈ 350

N (ci ). In the current context of bank branches, the neighbour- 351

hood of a branch shall not be defined in terms of geographical 352

coordinates but rather in terms of the distinctive features of 353

each kind of branch (for instance, urban, rural or business 354

centres). Also the notion of clique will be translated into 355

banking practice terms. These points are developed in Sect. 4. 356

3.3 Relationship between the Gibbs andMarkov 357

random fields 358

Given a Markov random field and its associated conditional 359

dependence relationships, what is the form of the joint prob- 360

ability distribution P[X ]? Indeed, can we even show that 361

such a distribution exists? The Hammersley–Clifford the- 362

orem proves that a Markov random field and Gibbs field 363

are equivalent with regard to the same graph as long as 364

P[X ] ≥ 0. This requirement is known as the “positivity 365

condition”. 366

Theorem 1 (Hammersley–Clifford theorem) According to 367

the positivity condition, X is a Gibbs random field relative to 368

an undirected graph G is and only if X is a Markov random 369

field relative to G. 370

Summarising the above results, the following statements 371

are true: 372

1. Given any Markov random field, all joint probability dis- 373

tributions that satisfy the conditional independencies can 374

be written as clique potentials over the maximal cliques 375

of the corresponding Gibbs field. 376

2. Given any Gibbs field, all of its joint probability distribu- 377

tions satisfy the conditional independence relationships 378

specified by the corresponding Markov random field. 379

In particular, the first condition will be central to our pur- 380

poses of monitoring branch cash holdings in function of local 381

demographics. 382

4 Bank branch network’ cash holdings as a 383

Markov random field 384

This section demonstrates that the bank branch network is a 385

Markov random field for which branch cash holdings will be 386

the variable with dependence on “internationally accepted” 387

demographics. On one hand, as mentioned previously, branch 388

cash holdings have been selected since they are major deter- 389

minants of branch size. On the other hand, recall that Markov 390

random fields (all graphical models indeed) can be con- 391

sidered as graphs with nodes that correspond to random 392
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Fig. 4 The branch network as directed graph

variables and edges representing statistical dependencies393

between the variables or, equivalently, as spatial stochastic394

processes understood as those collections of random vari-395

ables {Xv, v ∈ V } which take a value Xv for each location396

v over the region of interest V . Thus, the task of presenting397

the bank branch network over the branch cash holdings as a398

Markov random field would produce a spatial model of the399

bank branch network in function of branch size.400

In order to present the branch cash holdings as a spa-401

tial process, let CH stand for the cash holdings, while BN402

denotes the bank branch network, which could resemble403

the non-negative finite two-dimensional grid in the plane404

V = {1, 2, . . . , n}×{1, 2, . . . , n}. So there are two stochastic405

processes associated with the random variable CH. Firstly,406

{CHn, n ∈ N} represents the temporal stochastic process407

of cash holdings’ movements through time, where n is the408

time unit.3 And secondly, {CHb, b ∈ BN} denotes the spatial409

stochastic process (or random field on BN) where b repre-410

sents a branch belonging to BN.411

In the literature, see Zhou (2016) for example, the bank412

branch network is usually represented as a directed graph,413

weighted or unweighted, where the nodes are the branches,414

the directed edges are the branch ties with arrows pointing415

from head offices to branch offices and the edges’ weights416

(when applicable) represent ownership as well as business417

relationships (see Fig. 4). In order to express the bank branch418

network as a Markov random field, we shall extend con-419

ventional knowledge by moving from graphs to graphical420

models. First, we shall replace branches with their corre-421

sponding cash holdings. To do this, we shall identify each422

branch b with the mean value of its corresponding cash hold-423

ings over some (fixed from now on) interval of time, CHb.424

Second, the set of random variables CH = {CHb, b ∈ BN}425

is considered as an undirected graph where the nodes are the426

corresponding cash holdings’ mean value over some interval427

3 A week could be as an instance of time unit.

of time, CHb for each branch b, and the (undirected) edges 428

indicate financial similarity between branches (to be speci- 429

fied later). 430

Note that there is a parallel between the temporal stochas- 431

tic process {CHn, n ∈ N} and the spatial one {CHb, b ∈ BN}, 432

such that the main difference between them is the dimen- 433

sion of the underlying domain. While the temporal process 434

has been analysed by the author in previous publications, see 435

García Cabello (2017) or García Cabello and Lobillo (2017), 436

here we focus on the spatial process {CHb, b ∈ BN}. 437

There is a notion which should be underlined whenever 438

describing the background for graphs and graphical models: 439

the clique. The importance of cliques in our context relies 440

on the fact that there is a complete connection within cliques 441

(remember that cliques in a graph are maximally connected 442

subgraphs) which simulates the banking practice of forming 443

highly connected networks through multi-location opera- 444

tions in order to diversify their business and hedge against 445

risks, see, for example, Zhou (2016). 446

Therefore, the following steps should be taken in order 447

to model branch networks as spatial processes. Firstly, the 448

set of nodes (sites) must be defined for a banking scenario: 449

we shall consider V = {1, 2, . . . , n} × {1, 2, . . . , n} as the 450

Bank Branch Network BN. Next, the neighbourhood of a 451

branch (a site) b, written N (b), needs to be defined. As 452

mentioned earlier, there may be major variations in the def- 453

initions of demographics according to “local” (as opposed 454

to “internationally accepted”) parameters, thus complicating 455

international comparisons, see García Cabello and Lobillo 456

(2017) for further details. Hence, the traditional standpoint 457

based on common geographical distance/directions should 458

be replaced by wider concepts. 459

For this purpose, let us recap on the notion of feature vec- 460

tor. In pattern recognition and machine learning, a feature 461

vector is an n-dimensional vector of numerical features rep- 462

resenting an object. We shall use n = 2, as shown by the 463

following definition: 464

Definition 1 Each branch b ∈ BN is represented by the fea- 465

ture vector (nb, vb), defined as follows: 466

nb stands for the number of branch transactions at branch b, 467

vb stands for the maximum volume of branch transactions 468

allowed at b, 469

where these definitions of nb, vb are considered as the corre- 470

sponding mean values over some interval of time since time 471

is not the representative variable.4 472

4 That means that the current study is not focused on the temporal

stochastic process of cash holdings’ movements through time but on

the spatial stochastic process, {CHb, b ∈ BN}.
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Amodel towards global demographics: an application—a universal bank branch geolocator…

Remark 1 Branch cash holdings have been selected since473

they are major determinants of branch size.5 Then, if the474

size is the criterion used, it is apparent that the previous two475

variables in Definition 1 (number of branch transactions and476

maximum volume of transactions allowed) have been chosen477

because they are key factors in both branch size and branch478

location. In fact, there is a close link between branch size and479

branch location: while branch size depends on branch cash480

transactions—number and amounts involved—branch cash481

transactions depend on customers’ needs for cash, which are482

strongly related to demographics around branches.483

However, many other branch features would have been484

taken into account either in addition to or instead of the ones485

considered: that is, former nb and vb could be replaced by486

other geographical determinants of branch location/size such487

as unemployment, population density, foreigner population488

percentage, per capita income. . .. Moreover, although feature489

vector is presented with n = 2, the number of vector coordi-490

nates can also be extended as required. In other words, both491

which variables and the number of variables can be freely492

selected.6493

Now, distance between branches may be defined as fol-494

lows:495

Definition 2 The distance between two branches bi =496

(nbi
, vbi

), b j = (nb j
, vb j

), i �= j , is the Euclidean distance497

between their corresponding feature vectors:498

d(bi , b j ) = +

√

(nbi
− nb j

)2 + (vbi
− vn j

)2.499

We shall simply denote this by bi j = d(bi , b j ).500

Any notion of distance can be used to define the neigh-501

bourhood of a branch b = (nb, vb), denoted by N (b). Our502

particular choice of distance based on feature vectors pro-503

duces a notion of branch neighbourhood which simulates the504

branch managers’ practice of grouping branches according505

to their common features in terms of their cash holdings. That506

is,507

Definition 3 The neighbourhood of a branch bi = (nbi
, vbi

),508

N (bi ), consists of all nearby branches b j in the sense that509

their features with regard to their cash holdings are very sim-510

ilar to that of bi ’s:511

N (bi ) = {b j ∈ BN such that bi j ≤ k},512

5 We must bear in mind that there are many criteria to quantify the size

of a branch amongst bank managers: maximum cash holdings allowed,

volume of deposits, volume of credits, number of business/private

clients, number of staff etc.

6 Size may be also replaced as the criterion used, as will be evidenced

throughout the paper. This will increase the versatility of the proposed

model so that it can be applied to a wider range of scenarios. Actually,

the generality of the current approach is one of its best features, since

it can be adjusted as required (see Sect. 6 for further details).

where the degree of similarity (i.e. the benchmark k) should 513

be specified by branch managers. If we accept that branch 514

size mainly depends on branch cash transactions-number and 515

amounts involved-then Definition 2 establishes that a branch 516

neighbourhood is formed by those branches with the same 517

or a very similar size. 518

Finally, the neighbourhood of a branch concept can be 519

used to consider the notion of cliques (which are maximally 520

connected subgraphs of the graph): a clique C is a set of 521

branches such that any pair of elements ci , c j ∈ C hold that 522

ci ∈ N (c j ) and c j ∈ N (ci ). 523

Remark 2 The choice of Definition 2 makes cliques appear 524

as different groups of branches, simulating different branch 525

managers’ practices. While merging branches according to 526

similar sizes is one practice, there are others such as config- 527

uring the branch network through multi-location operations 528

in order to diversify business and hedge against risks. Thus, 529

it is noticeable that each choice of Definition 2 leads to a 530

re-configuration of the branch network. 531

We shall now consider the branch cash holdings as a spatial 532

process {CHb, b ∈ BN}. The author proved in García Cabello 533

(2017) that the branch cash holdings constitute a discrete- 534

time Markov chain {CHn}n∈N, where n denotes the time unit 535

(a week in that case). Now, the main result of the current 536

work is as follows: 537

Theorem 2 With the above definition, branch network’ cash 538

holdings {CHb, b ∈ BN} are a Markov random field. 539

Proof In order to evidence that the branch network BN is 540

a Markov random field, then the Markov property must be 541

shown to hold true, that is, 542

P
[

CHb = cb|CHBN−{b} = cBN−{b}

]

543

= P
[

CHb = cb|CHN (B) = cN (b)

]

. 544

Remember that the features considered in Definition 1 as 545

determinant of the branch cash holdings are the number 546

of branch transactions and the maximum volume of branch 547

transactions allowed. Then, from Definition 3, the neighbour- 548

hood of a branch bi = (nbi
, vbi

), N (bi ), consists of all nearby 549

branches b j in the sense that their features concerning their 550

cash holdings are very similar to those of bi ’s. Then, the result 551

follows. ⊓⊔ 552

Remark 3 As mentioned before, the neighbourhood of a 553

branch bi = (nbi
, vbi

), N (bi ), consists of all branches b j 554

such that their cash holdings features (their cash holdings’ 555

key determinants) are very similar to that of bi ’s. In conse- 556

quence, the neighbourhood is comprised of those branches 557

that have similar mean values for their cash holdings over 558
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J. García Cabello

some interval of time (where the degree of similarity must be559

specified by managers). Equivalently, the neighbourhood of560

a branch is formed by those branches with the same/very sim-561

ilar sizes, provided that we assume that branch size mainly562

depends on branch cash transactions-number and amounts563

involved.564

It should be noticed that the concepts of neighbourhood565

and clique depend on the definition of distance and the degree566

of similarity. In this particular case, both concepts (neigh-567

bourhood and clique) are essentially the same due to the568

symmetry of the Euclidean distance.569

Once the main theorem has been proved, the application570

of the background work from the previous Sect. 3 leads us to571

state the following result:572

Theorem 3 The joint distribution of the branch network’573

cash holdings CH = {CHb, b ∈ BN} can be expressed as574

a product of clique potentials in BN, say φC . That is, if we575

denote CHC = {CH(c)/c ∈ C}, where C is a clique in BN,576

we require functions φC such that the joint distribution of577

CH, P[CH), takes the form578

P[CH] =
1

Z

∏

c∈C

φc(CHC ). (3)579

Usually, each φc(CHC ) takes the form φc(CHC ) =580

e

−1

T
Vc(CHC )

where T is called the temperature and often581

it is equal to 1 whereas Vc(CHC ) are usually referred as582

clique potentials. Thus, the joint distribution of CH, P[CH),583

has the alternate form584

P[CH) =
1

Z

∏

c∈C

φc(CHC )585

=
1

Z

∏

c∈C

e

−1

T
Vc(CHC )

586

=
1

Z
e

−1

T

∑

c∈C Vc(CHC )
.587

Hence,588

P[CH) =
1

Z
e

−1

T

∑

c∈C Vc(CHC )
, (4)589

or P[CH)= 1
Z

e

−1

T
U (CH)

, where U (CH)=
∑

c∈C Vc(CHC )590

is called the energy.591

Proof We can conclude from Theorem 2 that the branch net-592

work’ cash holdings {CHb, b ∈ BN} are a Markov random593

field. Since the Hammersley–Clifford theorem establishes 594

the equivalence between Gibbs distributions and Markov ran- 595

dom fields, all properties of Gibbs random fields hold true 596

for {CHb, b ∈ BN}. 597

Particularly, a set of random variables is said to be a Gibbs 598

random field if and only if its configurations obey a Gibbs 599

distribution. Hence, the results follows. ⊓⊔ 600

5 A universal geolocator of branches 601

depending on the size 602

The application of the previous findings provides a decision- 603

making tool that can help identify the best location(s) for 604

branches according to the criterion of branch size (see Fig. 5). 605

This is a decision model that will be used to redesign the bank 606

branch network when required. This section of the paper 607

describes this decision model. 608

Before proceeding, it should be noted that the joint 609

distribution of the branch network’ cash holdings CH = 610

{CHb, b ∈ BN} will be at the heart of the decision model. In 611

fact, it will act as a numerical score that can be assigned to 612

each scenario of a new branch joining the existing branches, 613

provided that the branch network has previously been divided 614

into subnets. Once the joint distribution has been used to 615

assign a numerical score to each possible juncture, then com- 616

parisons can be made between different possible alternatives, 617

thus helping identify the best location(s) for the new branch. 618

Specifically: 619

The objective is to find the best location(s) for a new 620

branch b∗ ∈ BN with specific cash holdings corresponding 621

to some specific entity’ needs.7 The following steps could be 622

considered in order to identify the best site for a new branch 623

in function of its cash holdings: 624

Step 1 The branch network BN is divided into subnets Si BN 625

in such a way that this partition offers different sce- 626

narios for locating a new branch b∗: 627

BN =
⋃

i=1

Si BN. 628

The criterion used to divide the network should be 629

specified by bank managers. For instance, a branch 630

network consisting of n branches is grouped into 631

two subnets, S1BN and S2BN, one containing the 632

branches with low/medium cash holdings and the 633

other comprised of branches with medium/high cash 634

holdings. The branch network can be subdivided 635

7 For example, the entity may need to reinforce their current set of

branches with a given volume of cash holdings.
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Amodel towards global demographics: an application—a universal bank branch geolocator…

Fig. 5 Spatial areas of highest interest in Spain

according to other criteria depending on the entity’s636

needs.637

Step 2 Each subnet considers the corresponding cash hold-638

ings’ spatial stochastic process, provided that the639

new branch b∗ subsequently belongs to each subnet:640

CHi = {CHb, b ∈ Si BN ∪ b∗}.641

Step 3 The joint distribution of the subnetwork’ cash hold-642

ings, {P
CHi}i, is computed:643

{

P
CHi

}

i
where PCHb1

,...,CHbn
(c1, . . . , cn)644

= P[CHb1 = c1, . . . , CHbn = cn).645

These numerical scores {P
CHi }i are compared and646

used to make decisions about the most suitable647

locations according to the banking entity’ needs.648

The comparison amongst numerical scores {P
CHi }i649

makes visible the bank branches with highest cash650

holdings as well as those with lowest ones. Such com-651

parison may be best revealed through a geostatistical652

mapping in which the spatial areas of highest interest653

are explicitly shown on solid colours making possi-654

ble to identify broader areas where there is a high655

probability of having high volumes of branch cash656

holdings, see Fig. 5:657

The general steps presented above can be comple-658

mented with further fine-tunings:659

Step 4 The computation of the joint probability distributions 660

can only be carried out through the clique potentials 661

(see Theorem 3), where the cliques of a branch are 662

all those branches with similar mean values for their 663

cash holdings over some interval of time. Remember 664

that in our case, the concepts of neighbourhood and 665

clique are essentially the same given the symmetry 666

of the Euclidean distance (see Remark 3). 667

Step 5 From all the outputs, select the most convenient one 668

according to pre-established criteria. Such criteria 669

may take many forms including minimising costs 670

(total set-up costs, fixed cost, total annual operat- 671

ing cost, etc.), minimising the distances between the 672

existing facilities (average time/distance travelled, 673

maximum time/distance travelled, etc.) and maximis- 674

ing service, amongst others. 675

It should be noticed that, when numerically valued exam- 676

ples are attempted, a huge quantity of output data has to be 677

managed. In such cases (when a huge quantity of factors 678

is managed), implementing the procedure into an algorithm 679

should provide an easy-to-handle system which are useful 680

for conducting the selection procedure. Such computational 681

version8 could still be carried out throughout the banking 682

institutions’ own computer services at a minimal cost, thus 683

providing a low-cost decision-making tool for financial enti- 684

ties. 685

8 This is a future research project within a foreseeable period of time.
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J. García Cabello

Decide the criterion under which the network’ redesign will be carried out: then, select its main
determinants which must also be key factors of location around branches. In our particular case:

size depends on branch cash holdings.

Decide what the feature vector should be: the main features used to characterise branches have to
be chosen according to the selected criterion. These may depend on the current socioeconomic
scenario and/or the internal banking entity’ circumstances. In our particular case: number and

maximum volume of cash transactions allowed.

Decide how the distance between two branches should be defined.

In our particular case: Euclidean distance between the corre-

sponding feature vectors.

The notion of distance can therefore be used to define the neigh-

bourhood of a branch.

The notion of neighbourhood can in turn be used to define the
clique of the branch network.

The spatial process “cash holdings” are shown to be a Markov random field
(Theorem 2) and, consequently they are a Gibbs random field (Theorem 1).

The cash holdings joint distribution is determined only as a function of clique
potentials (Theorem 3).

Each different choice of key branch features would lead to a specific cash holdings joint distribu-
tion, which could subsequently be used to evaluate the resulting branch network’ configurations.

Fig. 6 A guiding thread for this paper’ findings

6 The versatility of the geolocator686

As mentioned, the branch geolocator can be translated into687

a computational procedure to provide a low-cost decision-688

making tool for financial entities and companies. However,689

while the tool’s low cost is very attractive, its generality is690

actually one of its better features. In fact, it can be adjusted as691

required and custom-made to suit the specific requirements692

of each banking institution (or each kind of branch). This sec-693

tion aims to demonstrate the high versatility of the proposed694

approach by highlighting that many of its variables can be695

freely selected and expanded as required.696

On the one hand, let us suppose that the criterion used697

to identify the best location(s) for branches is their size. As698

pointed out in Remark 1, bank managers use many criteria to699

quantify branch size: maximum cash holdings allowed, vol-700

ume of deposits/credits, number of business/private clients or701

staff and the brick-and-mortar branch dimensions amongst702

others. Here we selected the branch cash holdings because703

it is a major determinant of branch size whereas the two704

variables considered in Definition 1 to configure the feature705

vector (i.e. number of branch transactions and their max-706

imum volume allowed) were chosen because they are key 707

factors in branch size and branch location. However, many 708

other branch features would have been taken into account 709

with regard to the selections made: actually, both the vari- 710

ables and their number are freely selectable. 711

On the other hand, another criterion can be used instead 712

of size. Then, in order to generalise the proposed framework, 713

we shall first select the criterion according to which the net- 714

work’ redesign will be carried out. We shall then choose 715

the main determinants for the criterion selected. Recall that 716

demographics around branches are a primary concern when 717

undertaking a branch network redesign. This is why these 718

determinants must also be key factors of location around 719

branches. The next step consists of configuring the fea- 720

ture vector by selecting the main features that characterise 721

branches according to the main determinants of the selected 722

criterion. These may depend on the current socioeconomic 723

scenario and/or the internal banking entity’ circumstances 724

and can be freely selected (both the type of variables and 725

their quantity). 726

There is one more choice to be made in this model: to 727

decide how to define the distance between two branches. In 728

123

Journal: 500 MS: 3362 TYPESET DISK LE CP Disp.:2018/6/30 Pages: 13 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Amodel towards global demographics: an application—a universal bank branch geolocator…

Cross-border comparisons are
NOT allowed

Branch Cash Holdings 

(or any topic of research which is
influenced by demographics)

• International comparisons are allowed
• Extrapolation of results are permited
• A universal branch geolocator is derived
• Possibility of application(s) to a wide range

of contexts, even the non-banking ones

Fig. 7 Contributions of the paper

our particular case, we have selected the Euclidean distance729

between the corresponding feature vectors, but there are other730

options that may be more relevant to the entity’ needs in each731

individual case.732

Once the notion of distance has been established, the733

branch neighbourhood and the branch clique can be defined.734

In our case, the neighbourhood N (bi ) of a branch bi is not735

defined in terms of geographical coordinates but rather in736

terms of the distinctive features of each kind of branch,9737

reflecting bank managers’ practices of categorising and738

grouping the branches according to their features. The notion739

of clique will also have a translation in terms of bank-740

ing practices. As a matter of fact, the choice of distance741

between branches makes cliques appear as different groups742

of branches, simulating different branch managers’ practices,743

of which merging branches according to similar sizes is just744

one.10 Anyhow, it is remarkable that each choice of distance745

between branches (which determines the concepts of both746

9 Recall that the neighbourhood of a branch is formed by those branches

with the same/a very similar size, where the degree of similarity is

defined by managers.

10 There are other ways of grouping branches such as configuring the

branch network through multi-location operations in order to diversify

business and hedge against risks.

neighbourhood and clique) leads to a re-configuration of the 747

branch network. 3748

Importantly, it should be noticed that, for the same branch 749

network, the choice of feature vector (i.e. each choice of 750

the key branch features) would also lead to a specific cash 751

holdings joint distribution. This will allow banking entities 752

to better evaluate the results of reconfiguring their branch 753

networks under the different possibilities available. Let us 754

briefly bring together these reflections as well as the previous 755

findings in the following guiding thread scheme (Fig. 6). 756

As evidenced, the proposed model is highly versatile and 757

could be applied to a wide range of scenarios. Actually, the 758

generality of the proposed approach is one of its best features, 759

as it can be adjusted as required. 760

7 Conclusions 761

This paper has designed and presented a theoretical model for 762

analysing branch cash holdings from a global spatial point 763

of view. This is a potential solution to the fuzziness that 764

exists when defining demographics according to “local”—as 765

opposed to “internationally accepted”—parameters. More- 766

over, a universal decision model (branch geolocator) aimed 767
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J. García Cabello

at redesigning the bank branch network based on the criterion768

of branch size is derived from the previous spatial model. As769

mentioned throughout the paper, the variables considered for770

the model—including size as the main criterion used—can771

be replaced/expanded as needed resulting in a highly versa-772

tile decision-making tool that can be applied to a wide range773

of contexts. As an instance of adding as many variables as774

desired,11 an extra-variable representing branch’ geograph-775

ical coordinates could be added. This possibility would take776

into consideration the fact that distance matters in banking777

and that companies’ geographical locations are still shaping778

corporate behaviour: so spatial proximity remains a factor779

in branch network formation despite ongoing advances in780

communication technology (Fig. 7).781

Both contributions rely on Markov random fields in order782

to obtain an explicit joint probability function, while most783

approaches in literature draw on Bayesian random fields.784

However, the main disadvantage of Bayesian methods is785

that they are data intensive, requiring sufficient input in786

order to derive the probabilistic relationships used in their787

predictions. This can make their application in data-poor788

environments challenging. Other approaches are based on789

neural networks and/or statistical tools, which strongly rely790

on the assumption of the underlying data distribution.791

These disadvantages are avoided by the proposed approach792

based on Markov random fields, where the likelihood of793

the entire network (the joint distribution of the collection of794

variables located at nodes) depends only on cliques, thereby795

reducing the required amount of data. They must therefore796

no longer be subject to any default distribution. This is highly797

favourable especially in those scenarios where data are ever798

changing, and requires frequent update (financial contexts799

for instance).800

The theoretical structure designed in this paper can be801

translated into computational terms by means of algorithms802

because, besides being a language for formulating models,803

graphical models inherit the excellent computational prop-804

erties of graphs. This could be a solution when numerically805

valued examples are attempted, since a huge quantity of out-806

put data has to be managed. In such cases (when a huge807

quantity of determinants is managed), implementing the pro-808

cedure into an algorithm should provide an easy-to-handle809

system which are useful for conducting the selection proce-810

dure. Such computational version of the proposed method is811

a future research project within a foreseeable period of time812

although it could still be carried out throughout the bank-813

ing institutions’ own computer services providing a low-cost814

decision-making tool that can be adjusted as required and815

custom-made to suit the specific requirements of each bank-816

ing institution or each kind of branch.817

11 Standing for all required branch features.

Additionally, this new methodology can also be applied 818

in other contexts besides the banking industry. In fact, the 819

generality of the proposed method would also allow it to be 820

applied—with minor changes according to the specific needs 821

in any given context—to supermarkets, petrol stations or 822

other businesses with networks. Taking into account the ver- 823

satility of the proposed methodology, such a global approach 824

is beneficial in several ways, for example, decreasing costs 825

by replacing several local approaches with a universal one. 826

Going beyond that, the insight of replacing classical geo- 827

graphical concepts with other “internationally accepted” 828

notions presented in this paper would also be fruitful in any 829

context where demographics play a role. 830

Once the proposed methodology has been decoupled from 831

geographical premises, it may also apply to non-physical net- 832

works such as social ones. Importantly, the case of groups 833

decision-making when viewed as non-physical networks 834

where nodes may be identified with opinions. In this type of 835

participatory processes, where multiple individuals act col- 836

lectively and/or analyse problems or situations, the proposed 837

methodology may be useful as long as it could evaluate the 838

impact of consider the entry of a new node (viewed as an 839

alternative course of action). For these scenarios, linguistic 840

fuzzy variables are required in order to detail the different 841

meanings of each person when he/she elicits linguistic infor- 842

mation (see Cabrerizo et al. 2017; Li et al. 2017). 843

These ideas will form part of a further research project to 844

be conducted in the near future. 845
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