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Highlights

• This paper provides a new methodology: Markov Chains by blocks.

• This would achieve knowledge on the branch cash holdings.

• We study conditions for optimal cash holdings and their steady-states using Ergodicy.

• These findings will also let bank managers know the time validity of the cash holdings

• This incipient mathematical framework may also apply to other contexts.
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The future of Branch Cash Holdings Management is here: New Markov chains

Julia García Cabelloa,∗

aDpto. de Matemática Aplicada, Facultad Ciencias Económicas y Empresariales. Universidad de Granada. Spain.

Abstract

Liquidity management is one of the main concerns of the banking sector since it provides control in
key areas such as treasury management, working capital financing and business valuation. Under
the assumption that branch efficiency makes a fundamental contribution towards the effective per-
formance of the global banking institution, this paper provides a new methodology (Markov Chains
by blocks) in order to achieve knowledge on the branch cash holdings: conditions which ensure
optimal cash holdings, recurring properties which help to better predict cash holdings shifts and the
study of the branch cash holdings steady-states using Ergodic Theory. These findings will let bank
managers know the time validity of the current cash holdings. This is a crucial advantage to ensure
efficient cash management: while helping keep banking institutions on sound financial footing by
guaranteeing the compulsory-by-law safety cushion, it also allows bank managers to make sound
decisions upon fund investments.

This incipient mathematical framework, based on the re-definition of classical theory on Markov
chains, provides an alternative standpoint which may also apply to those dynamical systems which
can be categorized into groups of similar features.

Keywords: (D) Economics; Markov chains by blocks; Optimal cash balance; Time validity of the
cash holdings; Ergodic Theory

JEL classification: C44; C58; G10; G21

1. Introduction and Literature Review

Corporate/bank cash holdings have always played a crucial role in the development of firms and
financial institutions: without cash, they could both become insolvent and at risk of bankruptcy.
Thus, efficient cash administration has traditionally focused the attention of managers and share-
holders, especially during periods of uncertain market and credit conditions. In this regard, an
accurate cash balance forecast is critical for successful management while also serving other strate-
gic purposes such as controlling subsidiary groups.

The banking industry has been in search of managerial measures to improve the control of
its liquid resources in order to increase efficiency. While efficiency on all fronts (including cash
management) has become a primary objective for banking industry over the last decade, there is
a body of research which argues that branches have a role to play in helping to improve global
bank institution performance. This was firstly suggested in Berger (1997), whose authors stressed
the importance of the efficiency of branches as making a fundamental contribution towards the
effective performance of the global banking institution. Moreover, the authors of Berger (1997)
called attention to the fact that branch efficiency literature is much less complete than banking
efficiency literature. As a matter of fact, specific literature to design techniques to improve branching
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performance as far as cash management is concerned is quite short1 apart from those papers which
focus on regulatory measures to control under-performing branches. The present paper attempts to
help to fill this gap by proposing specific conditions to improve cash (forecasting) management at
branch level.

In the area of management of corporate cash holdings, there have been a long series of attempts
to determine the optimal investments that organizations should make in cash. Models of cash
management or money demand can be categorized into two types: those with demand by households,
pioneered by the Baumol-Tobin model, Baumol (1952) and continued by Frenkel and Jovanovic,
(1980), Bar-Illan, (1990) and Chang, (1999) and those which concern cash management by firms,
pioneered by the paper of Miller and Orr, (1966). Firms differ from households in that firms have
daily cash inflow as well as daily expenditures. Also the size of financial transactions differentiates
firms from households, as large and instantaneous transactions are more likely. In terms of their
mathematical structures, the first describes the money stock between controls by means of Brownian
motion with drift whereas Miller and Orr formulated a model under which an organization’s cash
flow evolves in terms of a stationary random walk. Later proposals feature unified analysis of
cash management by combining Brownian motion and compound Poisson processes, as in Bar-
Illan (2004). Other authors classify cash management models according to their mathematical
fundamentals. Following Melo (2011), these models can be grouped into Inventory Theory models
(now both Baumol-Tobin and Miller-Orr belong to the same category), those developed with Linear
Programming and those which are based upon Dynamic Programming.

Further papers incorporate stochastic techniques in their patterns of cash management: Baccarin
(2009) considers the optimal control of a multidimensional cash management system where the cash
balances fluctuate as a homogeneous diffusion process in Rn. Cyert (1962) pioneered research using
Markov chains for estimating the allowance of doubtful accounts while Hinderer (2001) analyzed a
cash management system in which the distribution of the cash flow depends on a randomly varying
environment. Ferstl and Weissensteiner (2008) considers a cash management problem by using a
multi-stage stochastic linear program (SLP). In Higson (2010), the authors model the evolution
of cash in terms of a square root process modified with a Brownian motion in such a way that
the statistical properties of the cash flow process depend on the cash holdings. This functional
relationship between cash holdings and cash flow process by means of Hamilton-Jacobi-Bellman
equations and other elements of optimal control theory is the core qualitative finding of Anderson
(2012). In Bensoussan (2009) the author uses a stochastic maximum principle to obtain an optimal
transaction policy. In Sato (2011), a cash management model is built around Brownian motions
and Poissson processes while Song (2013) discuss a cash management model for firms based on
a stochastic volatility (SV) model. And more recently, Tangsucheeva (2014), where a cash flow
forecasting model is developed in terms of Markov chains and bayesian models.

However, there is little current literature about this subject for the banking industry, whose
specific characteristics differ from firms and other economic organizations. While credit lines are
freely available for the banking industry, the private sector must apply for external financing within
the framework of those credit channels that are accessible to it. Actually, the relationship between
cash holdings and credit risk is present in most former models of cash management: see Acharya
(2012), where a dynamic continuous-time model allows for a description of the correlation between
credit spreads and cash reserves. Or Anderson (2012), where the authors develop a model of optimal
policy toward holding the liquid assets of a firm which faces external financing. Banks differ from
firms also in the peculiar dynamics of their cash flow processes. Assorted entries of cash are specific
to banks: at the branch level, as daily expected and unexpected deposits and withdrawals, similar
to ATM dynamics, while at the aggregate level, large/huge transactions take place as a consequence

1“Short” unless the strand of research focused on improving the performance of automatic teller machines, ATMs,
would be considered as part of the literature to improve branch cash management.
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of movements of money amongst bank entities. Distinct regulation packages are also applied in
order to control banking industry versus private sector.

The ultimate aim as far as liquidity management is concerned is to find the optimal level of cash
since it would help banking institutions facing short-term obligations at the aggregate and branch
level, while minimizing the risk of bankruptcy in long-term projections. This “optimal” level of cash
may be also read as “enough” cash. However, finance literature has given very little precise guidance
on this question: how much money is enough for a banking institution?

Common knowledge suggests that banks that have larger liquid assets should be safer. However,
when banking firms keep liquid resources in cash, they renounce a part of their profitability, incurring
the opportunity costs of not investing in other alternatives which do generate profits. Thus, the
intuition recommends that a balance between minimizing costs and maximizing profits should be
kept in order to ensure high levels of efficiency. But, how do the banks identify the right proportion
to be held?

This paper attempts to fill this gap by providing answers to the above questions in the context of
bank branches. Stated briefly, the contributions of this paper are twofold: a deep study of the branch
cash holdings from a dynamic point of view (first contribution) through an approach based on new
stochastic financial analytics that we have developed in this paper (second contribution). Actually,
this paper provides a new methodology (Markov Chains by blocks) in order to achieve knowledge on
the branch cash holdings with proposals to be approached from a variety of perspectives: i)conditions
which ensure optimal cash holdings, ii)recurring properties of the branch cash holdings derived from
the natural cyclicity exhibited in the branch cash management practice which help to better predict
their shifts and iii)the study of the branch cash holdings steady-states using Ergodic Theory, Braido
(2013), which let bank managers know the time validity of the current cash holdings. In general,
we find policies on holding optimal levels of liquid assets aimed at being useful for both bank and
branch managers. These conditions are crucial to ensure efficient cash management: while helping
keep banking institutions on sound financial footing by guaranteeing the compulsory-by-law safety
cushion, it also allows bank managers to make sound decisions upon fund investments. As far as
the author knows, this is the first time in the literature that such an analysis on cash holdings at
the branch level has been carried out from a dynamic point of view.

This incipient mathematical framework, based on the re-definition of classical theory on Markov
chains, provides an alternative standpoint which may also apply to those dynamical systems which
can be categorized into groups of similar features.

The remainder of the paper is organized as follows. In Section 2, an overview of clustering
methods (identification of similarities) is presented since the cyclicity that exists in the branch
cash management practices (which is at the heart of our study) relies on the idea of grouping the
weeks into blocks of weeks with similar features. Section 3 presents the general framework of the
liquids funds of a branch. Section 4 is aimed at setting conditions to ensure optimal cash holdings.
Recurring properties on branch cash holdings are presented in section 5, while time validity on cash
holdings is analyzed in depth in section 6. Section 7 contains a numerical example, based on real
data for a branched-bank. Finally, Section 8 concludes the paper.

2. Clustering: related approaches

As mentioned before, one of the key insights of the paper is the natural cyclicity exhibited in
the branch cash management practice: in detail, that refers to the usual branch managers’ partition
of the year into blocks of weeks with similar features in order to require the same amount of case for
all weeks inside the same block2. Around this idea, a new methodology -called Markov Chains by
blocks- is developed in this paper: specifically, the whole temporal sequence of branch cash holdings,

2For instance, a block of weeks is “first weeks of each month”.
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which is previously shown to be a Markov chain, is partitioned into blocks such that this partition
is well correlated with the partition of the year by branch managers3. This new methodology is
aimed at providing knowledge on branch cash holdings.

The practice of grouping weeks is close to clustering. As a matter of fact, following Manning
and Schütze (2000), clustering is the process of partitioning a set of objects into groups or clusters.
In the financial sector, where data are generated on large scale, the clustering can be improved by
pattern recognition and data mining techniques. Although this paper’ approach is heading in a
different direction (Markov Chains by blocks and the application of Ergodic Theory), a review on
distance based methods for clustering might be of interest.

Since clustering is the grouping of similar objects, some kind of measure which may conclude
whether two objects are similar or not, is required. In global terms, two kinds of measures may
be used to estimate this relationship: distance measures (which result in distance-based methods)
and similarity measures (giving rise to similarity functions like the well-known Pearson correlation
measure). Distance-based methods run on the basis of the shorter the distance between objects,
the more similar to one another they are. These methods may be categorized according to the
distance taken, which would vary depending on the type of attributes of data: numeric attributes
(the similarity between two data instances may be calculated using the Minkowski metric, with the
well-known Euclidean distance as a particular case), binary attributes (the distance between objects
may be calculated through contingency tables), or other types as nominal, ordinal or mixed-type
attributes for which specific definitions of distance are required.

Together with a vast literature on clustering methods, there are also many criteria upon which
they could be categorized. Mainly, they may be divided into hierarchical and partitional clustering,
based on the way they produce the results, see Fraley and Raftery (1998): specifically, hierarchical
methods construct the clusters by recursively partitioning the instances while partitional ones relo-
cate instances by moving them from one cluster to another, starting from an initial partitioning. A
more comprehensive classification, see Han and Kamber (2011), categorizes them into hierarchical’,
partitional’, density-based methods (which assume that the points that belong to each cluster are
drawn from a specific probability distribution, see Banfield and Raftery (1993)), model-based meth-
ods (which attempt to optimize the fit between the given data and some mathematical models),
grid-based methods (which partition the space into a finite number of cells that form a grid structure
on which all of the operations for clustering are performed, see Han and Kamber, (2011)) and finally
soft-computing methods (with fuzzy clustering as main exponent). One example of model-based
methods are Markov Mixture Models (MMM), which was firstly analyzed by Chib (1996) as models
of a class of mixture distributions in which the component populations, from one observation to the
next, were selected according to an unobserved Markov process. In the context of clustering, this
is an approach that uses a Markov model to represent the data in each of the clusters: e.g, if there
are two clusters, they should be represented by two different Markov models.

The approach suggested in this paper is different from its conception to its implementation, as
proved in next sections: firstly, the whole sequence of branch cash holdings, denoted as {CHn}n∈N,
is shown to constitute a discrete-time Markov chain (Theorem 4.4). While it is shown not to be
irreducible (hence, Ergodic Theory does not apply), a suitable definition of a new equivalent relation
over the set of states of the Markov chain {CHn}n∈N is proposed (equivalent Definitions 5.1 and
5.2) aimed at achieving irreducible chains. Subsequently, Theorem 5.6 establishes the correlation
between the partition on the whole sequence of branch cash holdings originated by the definitions
cited above, and the partition of the year as a result of the branch managers’ practices. Now, Ergodic
Theory applies to these equivalent classes of cash holdings (called blocks) providing knowledge on
them.

3This new methodology also applies to any dynamical system {Xn}n∈N which holds the Markov property, see
Conclusion section for further details.
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3. Dynamics of the liquids funds of a branch

This section is devoted to stating the dynamics of the liquids funds of any branch. To this
regard, we start with a few words on the functioning of the branches. Every day, branches perform
numerous transactions which cause cash inflows and outflows. Each branch should keep its total
liquid assets (known as cash holdings) at an optimal level, without generating either a surplus or
a shortage of money. It should not be too low, in order to refrain from insolvency and to adhere to
minimum capital regulations. But it should not either be too high so the branch would not have
security problems due to heavy cash load or the bank would not suffer from opportunity cost (i.e.,
the opportunity loss of not investing in other alternatives which do generate profit).

Hence, periodically, the branch adjusts
its cash levels to its necessities -deposits
and withdrawals- avoiding generating dormant
money. To accomplish this task, the branch re-
quires help from its cash central. Thus, an ar-
moured van either evacuates the surplus or pro-
vides the deficit of cash up to reach a confident
level of case. As for this “confident level of cash”,
it should be mentioned that every branch has a
cash upper bound fixed by the bank company as
an internal control mechanism. This cash upper
bound is assigned according to the branch size
and it will be denoted by Cmax (i.e., maximum
cash allowed to be held by the branch).

The cash entries are the following: the
own branch requests of cash to the cash
central and the deposits made by individual
users/companies. As far as the branch cash ex-
penses are concerned, these include withdrawals
and other costs which mainly consist of logistic
costs for transport and handling as well as op-
portunity costs4. The branch movements of cash
are reflected in Figure 1.

’ ←
←

Weekly
request of
cash to the
cash central

Remaining
money from
previous

week

Deposits made
by bank
branch

users

↓ ↓
Weekly
Cash

Holdings

Expected
Expenses

Unexpected
Expenses

↓ ↓

Figure 1 The dynamic of the
branch cash holdings

Let C stands for the total amount of money that the branch requests from its cash central.
This quantity C is adjusted weekly5 to the cash necessities. One of the aims as far as liquidity
management at the branch level is concerned is to find the optimal amount C which covers all
branch expenses without generating either surplus or shortage of money. Habitual bank branches
cash management routines as far as this computation is concerned consist of historical data handling.
That means that the branch registers the cash quantity on some particular day (workable, weekend,
holidays, etc) and the result obtained at the end of the journey (exceed or shortage of case) and
copies the successful amounts. In the process of the decision-making, often the staff in charge
reaches a decision with only partial information. The author of the present paper developed in
García Cabello (2013)6 a mathematical procedure in order to compute C such that C covers the

4Some of these costs can be anticipated and others are of a random nature. The same classification can be
established for deposits.

5This unit of time -one week- may be changed without loss of generality.
6A patent has been requested for the paper García Cabello (2013) by the University of Granada, “Method for

managing liquidity in bank branches”, number ES201431094, United States
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branch demand of cash as accurate as possible -i.e., without generating either a surplus or a shortage
of money. This procedure is summarized below. Let N be the number of branch costumers during
the considered period of time. Such arrival processes are described by a Poisson process N(t) or
Nt. The counter tells the number of arrivals in the interval (0, t). The withdrawals and deposits
movements are described as Nt = Nw

t +Nd
t +Ot, where Nw

t stands for the number of withdrawals
in the interval (0, t), Nd

t is the number of deposits made in the interval (0, t) and Ot gathers
the rest of operations. Let Wi represent the withdrawn amount made by i-branch user. The
withdrawal process, parameterized by certain rate λ, is defined as the compound Poisson process
Xt :=

∑Nw
t

i=1Wi, as independent and identically distributed (i.i.d.) random variables. Thus, the
total amount of money which has been withdrawn for t = 1 is X1 =

∑Nw

i=1 Wi. Then, in García
Cabello (2013), some formula to compute the branch total expected withdrawals for a unit of time,
EX1 , and the branch total expected deposits for a unit of time, EY1 , were given. Moreover, the key
result of García Cabello (2013) is the following:

Theorem 3.1 (García Cabello (2013)). Let K7 be both branch expected expenses/deposits for a
unit of time. The total amount of cash C which will cover the branch demand of cash, C, may be
computed as C = EX1 − EY1 +K

C ≤ Cmax,
(1)

since no amount of cash should exceed the branch cash upper bound Cmax.

Let CH stands for the branch cash holdings at some moment, that is, the total liquid assets
to be held by the branch at some moment. Hence CH includes C. The main objective of this paper
is to study CH with proposals to be approached from a variety of perspectives. To carry out this
analysis, we shall use superscripts to point out a certain period of time (discrete-time). Hence, CHn

are the branch cash holdings at week n; similary, Cn stands for the total amount of money that
the branch requests from its cash central at week n. To start this study, let us first formalize the
concept of size of a branch. The notion of branch size8 is intuitively identified with the volume of
its turnover. However, there are many criteria which quantify the size of a branch amongst bank
managers. The most accepted is to consider size of a branch as increasing in function with the total
branch cash needs: the bigger branch sizes correspond to the bigger branch cash needs, related to
mayor larger moves -entries and exits- of liquid resources. Thus, we will identify branch size with
the maximum value of branch cash holdings during some period of time:

Definition 3.2. BS = branch size = max{CHn/n ∈ N}.

Note that the foregoing Cmax always performs under the size of the branch: Cmax ≤ BS.

4. Optimal branch cash holdings

This section is devoted to determining conditions which ensure optimal cash holdings for each
branch. This involves a suitable definition of optimal cash holdings in terms of technical efficiency.
Firstly, we specifically define branch weekly cash holdings following former Figure 1.

Definition 4.1. For any bank branch, we define its cash holdings at the n-th week as

CHn = Cn +Rn−1 (2)

where Rn−1 stands for the remaining money from previous week. We shall write CH = C+R when
the week no longer needs to be emphasized.

7K may be considered as part of the security cash level (settlement accounts) that the banking institutions holds
for precautionary reasons.

8Bank managers apply this term as benchmark to position the branches with respect to each other for several
different purposes.
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Remark 4.2. Since C is computed taking into account all branch cash entries and expenditures (see
García Cabello (2013) for further details), if the computation of Cn would be completely accurate,
the remaining money from previous week Rn−1 would be 0. That is, R is the error committed
in the computation of the cash requested to the branch cash central C. In consequence, Rn =
se[Cn] :=

√
V arCn could be considered as function of C. Hence, equation (2) CHn = Cn + Rn−1

could perform like a dynamical system provided initial and/or boundary conditions are given.

Furthermore, according to the notion of technical efficiency (the maximum output produced
from the minimum quantity of inputs), the optimal cash holdings should be those which cover all
branch expenses without (or producing the minimum of) remaining money, as follows:

Definition 4.3. For any bank branch, we define its optimal cash holdings CH∗ as that which holds
CH = C + R with almost no committed error (negligible) in the calculation of C. That is to say,
CH∗ ≈ C.

4.1. Main features of the cash holdings CH

Before studying the main features of the branch cash holdings {CHn}n∈N, let us point out a
few properties of the branch cash requests {Cn}n∈N. Firstly, {Cn}n∈N constitute a random walk.
Moreover, as the set of states of Cn represents the set of cash amounts which may be required by
branch managers, while Cn would in principle be allowed to take values in R, in practice the set
of states of Cn may be considered finite, for every n. Indeed, branch managers envision only a
few quantities to be required to central hubs when weekly adjusting branch cash needs, which vary
depending on the characteristics of each week. This is the result of branch managers’ practice of
categorizing the weeks according to their specific features in order to simplify the cash requirements.
Let {Cnk, k = 1, 2 . . . ,m}n∈N be the set of all quantities of cash which could be required to the
central hub at the nth-week. These are illustrated in Figure 2.

We proceed now with the study of {CHn}n∈N. The main result is the following:

Theorem 4.4. The branch cash holdings constitute a discrete-time Markov chain {CHn}n∈N.

Proof. CHn = Cn + Rn−1, where Cn is computed by Theorem 3.1 and the committed error in
the computation is given by Rn = se[Cn] :=

√
V arCn . Substituting Rn−1 = se[Cn−1] into equation

CHn = Cn+Rn−1 would give CHn = Cn+se[Cn−1] which shows that every outcome CHn depends
on the outcome of previous step. In consequence, the Markov property holds.

As for the state space, the Markov chain {CHn}n∈N takes values in R. Nevertheless, while the
set of states of {Cn}n∈N could be considered finite for the branch managers’s practice, the set of
states of the Markov chain {CHn}n∈N is not finite. Let {CHnk, k ∈ N} be the set of feasible states
of the Markov chain {CHn}n∈N at week n. This is shown in Figure 3:.

BS

Cmax

C1m C2m C3m . . . Cnm . . .
...

...
...

...
C12 C22 C32 . . . Cn2 . . .
C11 C21 C31 . . . Cn1 . . .

‖ ‖ ‖ ‖
C1 C2 C3 . . . Cn . . .

Figure 2 The sequential structure of
requests of cash C

BS
...

...
...

CH1m CH2m . . . CHnm

...
...

...
CH12 CH22 . . . CHn2

CH11 CH21 . . . CHn1

‖ ‖ ‖
CH1 CH2 . . . CHn

Figure 3 The sequential structure of
branch cash holdings CH
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4.2. Conditions for the cash holdings CH to be optimal
We focus here on analyzing the properties of the sequence of states of “remaining money” Rn in

order to study when Rn becomes minimal. As a result, conditions for the sequence of cash holdings
to be optimal are proved in the following theorem:

Theorem 4.5. If E[Cn1, . . . , Cnm] stands for the mean of variables Cn1, . . . , Cnm, we denote E[Cn]
to the set E[Cn] = {E[Cn1, . . . , Cnm], k = 1, . . . ,m}. Thus

(CHn)→ (CHn)∗ if and only if Cn → E[Cn].

Proof. Recall that, from CHn = Cn +
√
V arCn−1 where to minimize

√
V arCn is equivalent to

minimize V arCn . Since the set of states of Cn is finite, variance becomes sample variance V
with variables Cn1, . . . , Cnm, V (Cn1, . . . , Cnm). From the definition of sample variance, it follows

that V (Cn1, . . . , Cnm) =
1

m

∑m
k=1(C

nk − E[Cn1, . . . , Cnm])2. From the first-order conditions, the
stationary points of function V might be a solution to the system of partial derivatives

∂V

∂Cnk
=

2

m
(Cnk −E[Cn1, . . . , Cnm]) = 0⇒ Cnk = E[Cn1, . . . , Cnm], for k = 1, . . . ,m.

As for the second-order conditions for minimum of function V , the Hessian of the function,
HessV , is a diagonal matrix of order n with the only (strictly positive) eigenvalue equal to 2/m
(V is a strictly convex function in consequence). Hence, the conditions for {Cn1, . . . , Cnm} to be a
global minimum are Cnk = E[Cn1, . . . , Cnm], for k = 1, . . . ,m.

Finally, following theorem establishes conditions for cash holdings to be optimal:

Theorem 4.6. The branch cash holdings amount (CHn) = Cn + Rn−1 is the optimum (CHn)∗

whenever the quantities Cn (cash requirements to its central hub) are computed as outlined in The-
orem 3.1.

Proof. According to Theorem 3.1, all quantities {Cnm}m are equal to Cn = En
X1
− En

Y1
+Kn for

each m. The properties of means bring to the desired result:

Cn = En
X1
−En

Y1
+Kn = E[Xn

1 ]−E[Y n
1 ]+Kn = E[Xn

1 −Y n
1 +Kn]⇒ E[Cn] = E[E[Xn

1 −Y n
1 +Kn]].

5. Recurring properties of the branch cash holdings: Markov Chains by blocks

We develop here the general properties of the Markov chains as far as recurrence is concerned,
thereby formalizing current branch managers’ practices with regard to branch forecasting proce-
dures. An important contribution has been the re-definition of communication amongst Markov
chain states versus the classical definition, which will provide an alternative point of view for Markov
chains.

Before proceeding, let it be observed that this theoretical framework on recurrence is considered
to be due to the natural cyclicity properties which are exhibited by the branch cash requirements
in the practice of branch cash management. Actually, in the practical context, the staff imitate
the successful amounts to be required according the branch’s historical records, where the already
required cash quantities on some particular week are registered depending on that week’s particular
features -workable/holidays, beginning/end of month...- (see subsection 3.1 for further details).
That means that the problem of computing the optimal quantity of case to be required is solved
in practice by partitioning the year into blocks of weeks with similar features in order to require
the same amount of case for all weeks inside the same block: for instance, all beginning-of-month
weeks are considered to belong to the beginning-of-month block whereas all ending-of-month weeks

9
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belong to the ending-of-month block. Thus, the required quantities of case might be the same for
all weeks inside the same block. This partition into blocks is done in each branch depending on its
features (size or geographical location). The result of this intuitive method is a set of classes, in a
similar way that defining an equivalence relation within the set of all weeks of the year partitions
this set into cells.

We proceed by exposing some general concepts and properties on recurrency. Let {Sn} a Markov
chain with set of states {1, 2 . . . , i, . . . , j, . . .}. A state j is accessible from state i , i→ j, if there is a
possibility of reaching j from i in some number of steps, that is, if the nth-step transition probability
from state i to state j, denoted by p

(t)
ij = Pi[S

n = j for somen] is strictly positive, p(t)ij > 0. We

simply denote p
(1)
ij as pij . If j is not accessible from i (pij = 0), thus the chain started form i never

visits the state j. We say that i communicates with j if i→ j and j → i. This equivalent relation
divides states into classes. Within each class, all states communicate to each other, but no pair
of states in different classes communicates. The chain is irreducible if there is only one class. A
state i is recurrent if Pi[S

n = i for infinitely many stepsn] = 1,, that is to say, if the probability of
returning to i in a finite set of steps is equal to 1. It all applies to the Markov chain {CHn}n∈N
with set of states all cash amounts: {CH lk, l, k ∈ N} where the first superscript l is the counter of
weeks. With the (classical) equivalence relation, in despite of the transition probabilities are almost
zero for states corresponding to weeks with no similar features, all states CH lk communicate, hence
the chain is irreducible. Nevertheless, the set of states might prove to be uncontrollable.

We define a new equivalent relation over the set of states of the Markov chain {CHn}n∈N in order
to continue advance in applying the branch cash managers’ intuitive practices. This new equivalent
relation shall partition the set of states of the branch cash holdings {CHn}n∈N into blocks, as we
will shortly be proposing. Besides, this new equivalence relation has advantage comparing to the
classical one in reducing the number of cash holdings (states) to control them better. Actually, the
marginal benefit of using the blocks approach should make the problem more granular and therefore
closer to desired optimality. For this, state i, j, . . . ... shall be written as CHni , CHnj , . . . or CHniki

when it becomes necessary to point out a concrete cash holding amount corresponding to state
CHni.

Definition 5.1. Consider two states CHni (shorter state i) and CHnj (state j), corresponding to
weeks ni and nj. We say that i communicates with j, i ↔ j, if both weeks ni and nj exhibit the
same set of features as defined by the branch staff.

Following the branch cash managers intuitive practice, this is equivalent to the following:

Definition 5.2. We say that states CHni and CHnj communicate if the required amount of cash
to the central hub is the same for both weeks ni and nj: CHni = Cni+Rni−1, CHnj = Cnj +Rnj−1,
with Cni = Cnj .

Remark 5.3. From Definitions 5.1 and 5.2, not every state of the Markov chain {CHn}nN com-
municates each other, only those which correspond to weeks with similar characteristics. We call
block the set of weeks with similar features. Now, irreducible subchains in {CHn}n∈N are those
formed by cash holdings corresponding to weeks inside the same block.

Let us go on by formalizing the branch cash managers intuitive practice. For this, recall that
the period of a state i, d(i) defined as d(i) = gcd{n ∈ N, pii(t) > 0} (gcd denotes “greatest common
divisor”), is a class property. Besides, recall that two integers n,m are congruent modulo d if
n−m = αd for some α ∈ Z. Let [ ]d stand for the equivalence class modulo d. In order to require
the same amount of cash from the central hub, branch managers usually group the weeks whose
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main characteristics coincide with peaks and low cash-demand periods. The following example is
intended for illustrative purposes, according to this branch cash managers intuitive routine:

Example 5.4 (First weeks of each month). “First weeks of each month” is amongst the cus-
tomary criteria applied by branch managers to group the weeks. Next Figure displays the first weeks
of each month, for whom the same quantity of cash is required (Cfm, fm=first month) making visible
the period of this block: 2 weeks1 week

October 2015 November 2015 December 2015 . . .

1st w, Cfm 1st w, Cfm 1st w, Cfm 1st w, Cfm

2nd w 2nd w 2nd w 2nd w
3rd w 3rd w 3rd w 3rd w
4th w 4th w 4th w 4th w

12+ 2 weeks12+ 1 week

October 2016 November 2016 December 2016 . . .

1st w, Cfm 1st w, Cfm 1st w, Cfm 1st w, Cfm

2nd w 2nd w 2nd w 2nd w
3rd w 3rd w 3rd w 3rd w
4th w 4th w 4th w 4th w

...
Figure 4 “First weeks of each month” criterion

According to the “first weeks of each month” criterion, Figure 4 lets visible the period: this is
d(i) = 4 and the quotient set is Z4 = {[0], [1], [2], [3]}, where each block [i] is as follows:

[0] = {0, 4, 8 . . .} = last weeks of month
[1] = {1, 5, 9 . . .} = first weeks of month
[2] = {2, 6, 10 . . .}
[3] = {3, 7, 11 . . .}

Let us now reinterpret the parameter µ which measures the cash flows fluctuations. The defini-
tion of µ is somehow present already at the classical issue of the Transaction Demand for the Cash,
Baumol (1952), Miller (1966), Tobin (1956) when defining the variance of daily changes in the cash

balance, A, as A = µ2t, where
1

t
represents some small fraction of a working day. Recently, it has

been considered in García Cabello (2013).

Definition 5.5 (Cash flow fluctuations index).
For each branch, µ denotes the amount of euros
that the branch cash balance increases or de-
creases in some small fraction of a working day.
We refer to µ as branch cash flow fluctuations
index (see Figure 5).

. ↓
↑
−µ

↓
↑
µ

Figure 5 Cash flow fluctuations index
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In our context, µ may be reinterpreted as the measure of similarity between two cash holdings
whose corresponding weeks are in the same block: the smaller µ, the more similar the quantities.

As defined, the parameter µ depends mainly on the geographic location of the branch. To
simplify the wide variety on branch locations, with different objectives and/or consumers financial
habits, branches are here categorized into two main classes: city center branches, with rural site
branches as a particular case, and business center branches. Since µ reflects the fluctuations of the
branch cash holdings, it should be lower for branches located at city centers or rural locations while
major fluctuations indexes should correspond to branches located near cash business centers.

Next Theorem summarizes the above underlying ideas:

Theorem 5.6. For a branch with cash flow fluctuations index µ, the following statement are equiv-
alent:

1. CHni ↔ CHnj (shorter, i↔ j).
2. Cni = Cnj .
3. ni, nj are into the same block.
4. ni, nj are congruent modulo d(i).

5. [ni]d(i) = [nj]d(i) or [ni] = [nj].

6. CHni , CHnj ∈
[
Cniki − µ,Cniki + µ

]
.

7. |CHni − CHnj | ≤ µ.

Proof. Consider two states which communicate, CHni ↔ CHnj (shorter, i ↔ j). Hence the
corresponding C-amounts are equal, Cni = Cnj . Moreover, the former statement is equivalent
to weeks ni, nj to be inside the same block. On the other hand, simple algebraic calculations
show that weeks inside the same block follow a pattern of congruence modulo the period of the
corresponding state. If [ni]d(i) = [nj]d(i) stands for the congruence equivalence class modulo d(i)
(when no misunderstanding would arise, we will simply denote [ ]d(i) as [ ]) this statement allows
us to identify [ni] with the block of weeks with similar features to that of ni.

For weeks inside the same block, say ni, nj , the corresponding cash holdings CHni , CHnj might
be similar cash amounts, since the bulk of the cash holdings (that is, Cni and Cnj) are equal. That
is to say, for weeks ni, nj inside the same block, it holds that CHni , CHnj ∈ [Cni − µ,Cni + µ] or,
equivalently, |CHni − CHnj | ≤ µ.

As a consequence, the set of spaces of cash holdings can be considered as shown in next figure,
upper bounded by the branch size BS:

BS

[
C1m − µ,C1m + µ

] [
C2m − µ,C2m + µ

]
. . . [Cnm − µ,Cnm + µ]

...
...

...[
C12 − µ,C12 + µ

] [
C22 − µ,C22 + µ

]
. . .

[
Cn2 − µ,Cn2 + µ

]
[
C11 − µ,C11 + µ

] [
C21 − µ,C21 + µ

]
. . .

[
Cn1 − µ,Cn1 + µ

]

‖ ‖ ‖
CH1 CH2 . . . CHn

Figure 6 The sequential structure of the branch cash holdings by blocks

In global terms, Definitions 5.1 and 5.2 give a new angle on the Markov chains fundamentals.
In particular, let it be noticed that they enable central equation CHn = Cn + Rn−1 (2) to only
perform within each block of weeks:
Corollary 5.7. Theorem 5.6 enables equation CHn = Cn + Rn−1 to only perform within each
block of weeks: CH [n] = C [n] + R[n−1]. It is also equivalent to regarding the former equation as a
dynamical system which considers the previous step with similar features instead of the prior step.

Then, those dynamical systems for whom Markov property holds and which may be categorized
into groups of similar features are a potential application of the defined blocks approach.
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6. Time validity of the current cash holdings

This section aims to outline conditions under which the branch cash holdings remain constant,
that is, conditions which let bank managers know the time validity of the current cash holdings.
Conditions of this type are the key to guaranteeing efficient branch management for several reasons.
They help keep branches on sound financial footing while providing the compulsory-by-law financial
safety cushion. They guarantee an optimal level of cash inside the branch without generating either
surplus or shortage of money. They allow banking entity management to make sound decisions upon
fund investments. And in general, they help bank managers avoid not-desirable fluctuations of the
branch cash flow. Such conditions will be studied separately as long-term projections, useful for
the managers responsible for bank entities, and as short-term rules, suitable for branch managers.
Previously, we derived some results as functional branch rules in order to further fine-tune the
internal branch decision processes with regard to daily branch cash management.

Let us start with a few words about the hitting time. Let τi be the hitting time of the first
visit to state i, τi = min{n ∈ N / Sn = i}. Therefore, mi is defined as the expectation of τi:
mi = E[τi] =

∑∞
i=n nfi(t) where fi(t) denotes de probability of a first visit to i after n steps.

Hence, in our particular context, mi represents the expected number of steps in return process to a
concrete cash holdings, CHni. The following result holds:

Theorem 6.1. Consider the Markov chain {CHn}n∈N with n as counter of weeks, Thus, the dis-
crete random variable τi which measures the hitting time to first visit to state i is a multiple of the
period of the state,

τi = τ · d(i). (3)

Proof. This follows from the definition of hitting time as minimum of steps in returning to each
state together with the new angle provided by Definitions 5.1 and 5.2 since “visiting a state” now
means to reach any of the states belonging to the same equivalence class.

Let us continue examining the period d(i) of each state i. In branch reality, each period d(i)
comes from a branch managers’ choice of a criterion which groups the weeks in order to require
from the central hub the same cash amount for all of them. Once the criterion is picked up, the
year becomes partitioned into blocks of weeks, as shown in Figure 7:

→ ↔
Branch managers
choose a criterion
(set of features)
to group the weeks

d(i)

Quotient set Zd(i) =

the year is partioned
into block of weeks
of similar features
(according to the criterion)

Figure 7 The year partitioned into block of weeks

The number of suitable criteria which would apply to a branch depends on branch features as
size or geographic location. We refer to these criteria as feasible. The following corollary details the
dependence of mi upon feasible criteria:

Corollary 6.2. Let d(i1), . . . , d(ir) be the feasible criteria for a branch. Thus, for each state i, mi

depends on the number of its feasible periods. Actually, mi is a linear combination of feasible periods
d(i1), . . . , d(ir):

mi = τ [(f(d(i1))d(i1) + . . . + f(d(ir)d(ir)] . (4)
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Proof. Note that the number of feasible periods d(i) is finite, {d(i1), . . . , d(ir)}, since the set of
states of {Cn}n∈N could be considered finite for the branch managers’s practice. Hence,

mi = E[τi] =
= E[τ · d(i)] =
= τE[d(i)] =
= τ [f(d(i1))d(i1) + . . . + f(d(ir)d(ir)]

where f(d(ik)) denotes the probability of occurrence of period d(ik).

Thus, we claim that

Proposition 6.3. For each state i, mi increasingly depends on the fluctuations on the branch cash

holdings, µ. That is, mi = mi(µ),with
∂mi

∂µ
> 0.

Proof. This is consequence of the assumption from the empirical evidence that the number of
criteria to be applied at each branch increasingly depends on the kind of branch as classified before:
this shall be higher for branches with high fluctuations on cash holdings while lower for those
branches with low fluctuations on cash holdings.

Next Theorem computes the expected number of steps in return process to state i, mi, inside a
block {CH i}, i ≡ 0 mod d(i)).

Theorem 6.4 (Number of weeks in return process). Let {CH i}, i ≡ 0 mod d(i)) be a Markov
chain of cash holdings corresponding to weeks inside a block. Thus, the expected number of steps in
return process to some state CH i (shortly i), mi, is

mi =
d(i)

gcd{i, d(i)} . (5)

Proof. Recall that the hitting time of the first visit to state i, τi, is τi = min{n ∈ N / Sn = i}
whereas mi is defined as the expectation of τi, mi = E[τi]. From Theorem 6.1, τi is a multiple of
d(i), τi = τ · d(i). The same property holds for i since i ≡ imod d(i).
Let lcm/gcd be least common multiple and greatest common divisor, respectively. As a consequence
of the product property for quotient sets modulo (a ≡ bmodm, c ≡ dmodm ⇒ ac ≡ bdmodm)
τi · i is multiple of d(i) as well as multiple of i. For the definition of τi, thus τi · i = lcm {i, d(i)}.
Hence

i · d(i) = lcm {i, d(i)} · gcd{i, d(i)},
from Number Theory. Then,

i · d(i) = lcm {i, d(i)}︸ ︷︷ ︸
τi·i

·gcd{i, d(i)} ⇒ τi =
d(i)

gcd{i, d(i)} ,

which proves the desired result.

Once mi has been computed, we may apply Ergodic Theory. This is the study of long-term
behavior in dynamical systems from a statistical point of view, intimately connected with the time
evolution of systems modeled by measure-preserving actions, where the action representing the
passage of time. Particularly, the Ergodic theorem establishes conditions to determine the steady
state behavior of a Markov chain as an application of the Strong Law of Large Numbers, provided
that the Markov chain is irreducible. Ergodic Theorem will enable us to state conditions under
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which the branch cash holdings remain constant. It should be applied to chains of cash holdings
corresponding to weeks into the same block (irreducible).

We adopt here the notation Vi(n) to represent the number of visits to state i before step n. This
theorem states that the long-run value of the ratio Vi(n)/n, which is the proportion of time spent
in state i before step n, equals to the inverse of the expected return time to state i.

Theorem 6.5 (Ergodic Theorem). For any irreducible Markov chain {Sn}, then

limn→∞
Vi(n)

n
=

1

mi
. (6)

The dominant interpretation of the Ergodic Theorem is that 1/mi is the average time of per-
manence at state i. In our context, Ergodic Theorem provides thus conditions under which the
cash holdings remain constant although this should be applied to each block since the Markov chain
CHn

n∈N is not irreducible under the classical definitions. Thereby, the average amount of time that
the Markov chain stays on state i equals to the inverse of the expected number of steps in return
process to state i. That is to say,

Theorem 6.6 (Ergodic Theorem for branches). For those weeks into the same block, the av-
erage time validity of the current cash holdings CH i is equal to

gcd{i, d(i)}
d(i)

. (7)

Proof. It is sufficies to apply previous Ergodic Theorem, 6.5, toghether with the result achieved
at Theorem 6.4.

Next result can also be demonstrated:

Theorem 6.7 (The average time validity). The average time validity of the current cash hold-
ings is a class property.

Proof. Let i be a week and consider any other j such that [i] = [j], i.e., j = i+α·d(i), for some α ∈
Z. Besides, the period of a state i, d(i), is a class property: this implies in turn that d(i) = d(j).
From basic Number Theory, gcd{b+ α · a, a} = gcd{b, a}. Hence,

gcd{j, d(i)} = gcd{i+ α · d(i), d(i)} = gcd{i, d(i)} ⇒ gcd{j, d(i)}
d(i)

=
gcd{i, d(i)}

d(i)
.

7. A numerical example

This section is aimed at developing a case in point -intended for illustrative purposes- which
should show how the previous theorems may be run. This numerical example, supported by real
banking records based on data transactions, should highlight the real gain for entities who adopt
the proposed method as a complement for IT technologies9 since it may be easily (and at no cost)
converted into an algorithm10.

9The main features of this proposal -it is precise and very simple to be implemented at daily branch practices, as-
suring costs reductions- would allow it to co-exist with IT technologies, providing extra-support for branch managers’
decisions.

10This result shall be addressed in a forthcoming paper.
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In order to carry out this task, real banking information has been processed. The dataset is
based upon excel files that contain all daily branch operations from June to December 2012 of
some representative Spanish branch of a well known Spanish bank11. Despite our initial database
was originally written using the entity’s specific code, significant external operations have been
extracted/separated from those internal organizational orders (accounting entries) as part of the
database processing.

The general procedure is based on the following steps:

1. Branch managers select a criteria for grouping the weeks. Once again (see former example
5.4), we select “first weeks of each month”, since it is amongst the customary criteria applied
by branch managers.

2. Once the criterion is picked up, the year becomes partitioned into blocks of weeks. According
to the “first weeks of each month” criterion, the period of a state i is d(i) = 4 and the quotient
set is Z4 = {[0], [1], [2], [3]}, where each block [i] is as follows (see former Figure 4):

[0] = {0, 4, 8 . . .} = last weeks of month
[1] = {1, 5, 9 . . .} = first weeks of month
[2] = {2, 6, 10 . . .}
[3] = {3, 7, 11 . . .}

3. For those weeks inside the block of “first weeks of each month”, we will compute the average
time validity of the current cash holdings CH i, according to Theorem 6.6. Next table shows
how time only moves along the block of “first weeks of each month”, with a week as time unit:

2012 Jan Feb March April May June July Aug Sep Oct Nov Dec
First weeks 3 3 3 3 3 3 3

Second weeks
Third weeks
Last weeks

Table 1: Average time validity of the cash holdings.

As the time validity should be the same for those weeks inside the same block, according to
Theorem 6.7, we only compute this for June. This is as follows:

June 2012, i=1:
gcd{1, d(1)}

d(1)
=

gcd{1, 4}
4

=
1

4
week (1,75 days).

It also applies for the average time validity of the cash holdings at states 5, 9, . . ., (first week
of July is state 5 = 1 + 1 · 4, first week of August is state 9 = 1 + 2 · 4 . . . )

4. The Theorem 6.6 should be applied now. Recall that this result provides conditions under
which the cash holdings CH i remain constant. This sentence may be interpreted as CH i do
not deviate from the expected value stated for i (standard). These standards for each state i are
an inherent feature for each branch. They may be easily computed by bank entities through
their own huge amounts of data. Furthermore, for each specific branch, the expertise’ eye of
the office director is certainly familiar with them.

11In order to comply with legislation, the name of the bank must be kept private.
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Thus, from previous point, cash holdings remain constant
1

4
week for those weeks inside the

block [1] = {1, 5, 9 . . .} (=first weeks of month). This can be seen from following figures, which
display the comparison between current cash holdings and the corresponding standard for the
first week of months from June to December 2012. Grey bars represent real cash holdings
and black ones the standards. The x axis shows days of the corresponding first week (blanks
represent weekends or holidays) while cash amounts in Euros appear on the y axis.

Figure 8 First week of June

Figure 9 First week of July

Figure 10 First week of August
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Figure 11 First week of September Figure 12 First week of October

Figure 13 First week of November Figure 14 First week of December

8. Conclusions and direction for future research

This paper attempts to provide a new methodology by re-defining the classical fundamentals of
Markov chains, thereby providing an alternative point of view to the classical. This new theoretical
setting is applied for analyzing bank branching cash holdings: conditions which ensure optimality,
recurring properties to better predict cash holdings shifts and knowledge about their steady-states
in order to envision the time validity of the current cash holdings.

The marginal benefit of using the blocks approach -instead of the classical approach- is based
on the fact that having blocks makes the problem more granular and therefore closer to the desired
optimality. Once the real scenario has been mathematically modeled, this new framework offers
many chances to continue exploring other possibilities, apart from those employed in the present
paper. This incipient perspective may be as fruitful as the classical theory in applying a wide variety
of properties to the cause of modeling banking branch cash holdings.

The results that we achieved in this paper enjoyed such broad support since they attempt to
be suitable for all kind of branches, regardless their size or geographic location. Moreover, this set
of theorems may be easily (and at no cost) converted into an algorithm which would co-exist with
IT technologies, providing extra-support for branch managers’ decisions: this is a future research
project within a foreseeable period of time.

These suitability criteria also allowed for its application for different contexts apart from the
banking scenario. This is the case for currency exchange offices as well as other settings where
liquid provisions have to be made by adjusting monetary exits and entries. The breadth of our
mathematical groundwork is an advantage: this new methodology may also apply to contexts where
cash is not the star product. Actually, any dynamical system with the Markov property which may
be categorized into groups of similar features is a potential application of the defined framework.

Specifically, let {Xn} be a dynamical system where the Markov property holds with time variable
n to be incremented discretely corresponding to the integers {0, 1, 2, 3, 4, ...} (discrete dynamical
system holding the Markov property). Besides by hypothesis, any of the states Xn and/or the
corresponding time unit n may be categorized into groups of similar features. Thus, we let definition

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.1 remain the same: two states Xni (shorter state i) and Xnj (state j), corresponding to time units
ni and nj communicate, i↔ j, if both time units ni and nj exhibit the same set of features. Next,
we set definition 5.2 to be adequate to the required context: we say that

Xni and Xnj communicate if we put here the desired definition.

As a result, not every state Xn communicates each other, only those which correspond to
time units with similar characteristics. Therefore, the set of these constitues a block. Moreover,
irreducible subchains in {Xn}n∈N are those formed by states corresponding to time units inside the
same block. Next step is to apply Ergodic Theory to the blocks in order to determine the dynamical
system steady-states as well as exploring other possibilities in the desired context.
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