
Neurocomputing 559 (2023) 126785

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Improved deep neural network performance under dynamic programming
mode
Julia García Cabello ∗

Department of Applied Mathematics, Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, Spain

A R T I C L E I N F O

Communicated by F.G. Guimaraes

Keywords:
Separable function
Principle of optimality
Composition of parametric functions
Universal approximators of continuous
functions

A B S T R A C T

For Deep Neural Networks (DNN), the standard gradient-based algorithms may not be efficient because of
the raised computational expense resulting from the increase in the number of layers. This paper offers an
alternative to the classic training solutions: an in-depth study to find conditions under which the underlying
Artificial Neural Networks ANN minimisation problem can be addressed from a Dynamic Programming (DP)
perspective. Specifically, we prove that any ANN with monotonic activation is separable when regarded as
a parametric function. Particularly, when the ANN is viewed as a network representation of a dynamical
system (as a coupled cell network), we also prove that the transmission-of-signal law is separable provided the
activation function is a monotone non-decreasing function. This strategy may have a positive impact on the
performance of ANNs by improving their learning accuracy, particularly for DNNs. For our purposes, ANNs
are also viewed as universal approximators of continuous functions and as abstract compositions of an even
number of functions. This broader representation makes it easier to analyse them from many other perspectives
(universal approximation issues, inverse problem solving) leading to a general improvement in knowledge on
NNs and their performance.
1. Introduction

The appeal of Artificial Neural Networks (ANN) lies in their re-
markable success in performing various artificial intelligence tasks
(forecasting, classifying). On a more practical level, natural language
understanding, image classification, speech recognition and video pro-
cessing have developed greatly thanks to the superiority of ANNs in
different areas. Computational advances (resources such as GPUs) and
the profusion and availability of databanks used for training deep
learning methodologies are in part responsible for their success. Aca-
demically, however, the explanation for their success can be found in
the fact that they are universal approximators of continuous functions.
The need to give theoretical support to deep learning structures, which
were born with the reputation of being black boxes due to the apparent
opacity of their operation, is still valid today, [1,2]. Coupled with the
growing complexity of real problems, ANN architecture and structure
are becoming increasingly complex, giving way to Deep Neural Net-
works (DNNs) (ANNs with a large number of neurons and layers).
For them, although the traditional learning algorithms were initially
efficient, the rapid increase in computational requirements has demon-
strated that this should be replaced (or complemented) by learning
solutions which require considerably less computational effort.

∗ Correspondence to: Department of Applied Mathematics, University of Granada, FCEE, Campus Cartuja s/n, 18071, Granada, Spain.
E-mail address: cabello@ugr.es.

Dynamic Programming (DP, [3]) is a fundamental element of Op-
timisation Theory and Decision Making (DM) as long as a substantial
majority of the decision-making processes follow a dynamic pattern.
The advantages of employing DP methods are wide ranging. In general
terms, DP is suitable for linear or non-linear settings, for discrete or
continuous variables and it could be applied to either deterministic or
stochastic contexts. Moreover DP determines global rather than local
optima. More substantively, DP is an optimisation technique which de-
composes complex optimisation problems into simpler sequential ones,
each of which can be solved by using Bellman’s equation. For this, the
original optimisation problem must satisfy the Principle of Optimality
(PO), [4]. The successful implementation of DP principles in many
fields suggests that the application of the ANN optimisation problem
(i.e., minimising the error/cost) should lead to an improvement in their
overall performance thus correcting malfunctions in high complexity
cases (DNNs).

This paper offers an in-depth study to find conditions under which
the underlying ANN minimisation problem can be addressed from a
Dynamic Programming (DP) perspective. Specifically, we prove that
vailable online 19 September 2023
925-2312/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2023.126785
Received 10 March 2023; Received in revised form 21 June 2023; Accepted 11 Sep
tember 2023

https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
mailto:cabello@ugr.es
https://doi.org/10.1016/j.neucom.2023.126785
https://doi.org/10.1016/j.neucom.2023.126785
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126785&domain=pdf

Neurocomputing 559 (2023) 126785J. García Cabello

s

T
𝑔
s
b
S
(

n

𝑥

i
w
𝑢

⏞

t
R
s
f
‘
a
a
i

any ANN is separable when regarded as a parametric function. Par-
ticularly, when the ANN is viewed as a network representation of
a dynamical system (coupled cell network, CCN, see [5]), we also
prove that the transmission-of-signal law is separable. This strategy
may have a positive impact on the performance of ANNs particularly for
Deep Neural Networks (DNN), for which the standard gradient-based
algorithms may not be efficient because of the raised computational
expense resulting from the increase in the number of layers. For our
purposes, ANNs are also viewed as both universal approximators of
continuous functions and as an abstract composition of an even number
of parametric functions.

Only a few papers address the potential usefulness of implementing
the DP principles on the ANN learning algorithm. The lack of such
research is surprising given the widespread applicability of DP in a wide
range of fields. Actually, to this author’s knowledge, only two previous
works have been published, [6,7]. In the first one, [6], the author
provides formulas for explicitly computing a minimum error by running
the learning algorithm under a DP philosophy, i.e., by computing the
minimum at each stage. Similarly, in [7] the author describes a specific
procedure based on the differential dynamic programming method
(DDP), which requires computing first and second partial derivatives
of the function that interrelates the layers. The optimal training error
is found recursively from the DP equation. Importantly, the author
suggests that the competitiveness of the DP mode increases ‘‘when the
number of hidden layers becomes larger and larger’’ (sic).

Compared to previous surveys, we approach the problem from a
different viewpoint. Our major objective was to determine conditions
under which the Principle of Optimality could be applied to the ANN
context since neither [6] nor [7] explored such specifications. We
thus review the requirements under which such a principle can be
used in any context in order to select those that best fit our goal
of representing ANNs as a composition of an even number of para-
metric functions: for us the best option is a form of separability and
monotonicity. Given the disparity in the treatment of this concept, a
review of the ‘‘separable’’ notion is performed, from the original addi-
tive sense [3], the multiplicative one [8], the two-variable notion of
[9–11], by finally adopting the extension to the general multivariate
case given in [12,13]. From here, first we focus on determining the
conditions of the ANN functional components of the problem which
enable the use of the Principle of Optimality. Secondly, we prove results
that guarantee that the ANN optimisation algorithm can be run in a DP
mode.

As mentioned, our proposal also includes an abstract representation
of ANNs as composition of an even number of parametric functions.
This broader perspective of ANNs provides an additional theoretical
setting which makes it easier to analyse them from many other aspects
such as universal approximation issues or inverse problem solving. In
sum, our work will hopefully contribute to an improvement in the
knowledge on and the performance of ANNs.

The rest of the paper is structured as follows. Section 2 is devoted
to formulating the problem accompanied by a complete survey of
separable functions. In Section 3, the definition of ANNs as CNNs is
related to their representation as a composition of parametric functions.
Sections 4 and 5 are devoted to finding pre-conditions under which the
ANN learning algorithm can be run in a DP mode, focusing on ANNs as
a whole (Section 4) and on their functional components (Section 5). In
Section 6, the main result is finally stated and demonstrated. Section 7
concludes the paper.

2. Problem formulation

The aim of this paper is to develop a theoretical framework where
the minimisation problem that underlies any ANN is treated from a
DP perspective. There are disparities in how the foundations of DP
are notated and treated in the literature, so let us first set them up
according to our problem formulation.
2

𝑢

2.1. DP multi-stage single-objective optimisation problems

DP is a technique for solving constrained nonlinear optimisation
problems. It examines multivariate DM problems which may be decom-
posed into lower dimensional subproblems whose solution recursively
generates the total solution.

The formulation of a DP multi-stage single-objective maximisation
problem is

𝑀𝑎𝑥
(𝑢,𝑥)

𝑔(𝑥, 𝑢)

ubject to 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑡 = 0,… , 𝑇 − 1
𝑥(0) = 𝑥0 for 𝑥0 ∈ R𝑛 the initial condition
𝐱 = (𝑥(0),… , 𝑥(𝑇)) the state variables
𝐮 = (𝑢(0),… , 𝑢(𝑇 − 1)) the control variables.

(1)

he solution of problem Eq. (1) is usually written (𝐱∗,𝐮∗) ∈ 𝐚𝐫𝐠 𝐦𝐚𝐱𝐱,𝐮
(𝐱,𝐮) with a parallel formulation for the minimisation case. When the
tage dependency does not have to be emphasised, we shall used the
old type 𝐱 ∈ R𝑛,𝐮 ∈ R𝑚. Otherwise, 𝑥(𝑡), 𝑢(𝑡) shall be used instead.
pecifically, a general DP multi-stage maximisation problem is a tuple
𝑔, 𝑓 , {𝑋𝑡}

0≤𝑡≤𝑇
, 𝑈 , 𝑇) where

∙ 𝑔 ∶ R𝑛×(𝑇+1) × R𝑚×𝑇 → R
(𝐱,𝐮) ⟼ 𝑔(𝐱,𝐮),

is the objective function.

By the isomorphisms R𝑛×(𝑇+1) ≅ M𝑛×(𝑇+1)(R) and R𝑚×𝑇 ≅ M𝑚×𝑇
(R), we will use for 𝐱,𝐮 the vector and matrix notation inter-
changeably:

𝐱 =
⎛

⎜

⎜

⎝

𝑥1
⋮
𝑥𝑛

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥1(0) … 𝑥1(𝑇)
⋮ ⋮ ⋮

𝑥𝑛(0) … 𝑥𝑛(𝑇)

⎞

⎟

⎟

⎠

= (𝑥(0),… , 𝑥(𝑇)),

where each 𝑥(𝑡) ∈ 𝑋𝑡 ⊆ R𝑛, 𝑡 = 0,… , 𝑇 is 𝑥(𝑡) =
⎛

⎜

⎜

⎝

𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)

⎞

⎟

⎟

⎠

𝐮 =
⎛

⎜

⎜

⎝

𝑢1
⋮
𝑢𝑚

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑢1(0) … 𝑢1(𝑇 − 1)
⋮ ⋮ ⋮

𝑢𝑚(0) … 𝑢𝑚(𝑇 − 1)

⎞

⎟

⎟

⎠

= (𝑢(0),… , 𝑢(𝑇 − 1)),

where each 𝑢(𝑡) ∈ 𝑈 ⊆ R𝑚, 𝑡 = 0,… , 𝑇 − 1 is 𝑢(𝑡) =
⎛

⎜

⎜

⎝

𝑢1(𝑡)
⋮

𝑢𝑚(𝑡)

⎞

⎟

⎟

⎠

.

∙ 𝑓 ∶ R𝑛×R𝑚×N → R𝑛 is the transition function (also ‘‘dynamics’’).
∙ 𝑋𝑡+1 = {𝑥(𝑡+1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑡)|𝐱 ∈ 𝑋𝑡,𝐮 ∈ 𝑈, 𝑡 ∈ N} ⊆ R𝑛 contains

the feasible state variables (i.e., each 𝑥(𝑡) ∈ 𝑋𝑡).
∙ 𝑈 ⊆ R𝑚 contains the control variables, (i.e., each 𝑢(𝑡) ∈ 𝑈).
∙ 𝑇 ∈ N is the time horizon.

When explicit vector notation is needed for 𝑥(𝑡), 𝑢(𝑡), the array
otation 𝑥(𝑡) = (𝑥1(𝑡),… , 𝑥𝑛(𝑡)) shall be used instead of column notation

(𝑡) =
⎛

⎜

⎜

⎝

𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)

⎞

⎟

⎟

⎠

without distinction between the vector and its transpose

n order to avoid confusion between 𝑡 transpose and 𝑡 stage. Then,
e shall abuse notation when writing 𝑔(𝐱,𝐮) = 𝑔(𝑥(0),… , 𝑥(𝑇), 𝑢(0),… ,
(𝑇 −1)) for (𝐱,𝐮) = (𝑥(0),… , 𝑥(𝑇), 𝑢(0),… , 𝑢(𝑇 −1)) ∈ 𝑋0×⋯×𝑋𝑇 ×𝑈 ×
𝑇
⏞⏞
⋯ ×𝑈 . Formally, 𝐷(𝑡, 𝑥) = {𝑢(𝑡) ∈ 𝑈 |𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑡) ∈ 𝑋𝑡} ⊆ R𝑚 are

hose sets which contains the feasible control variables, 𝐷(𝑡, 𝑥) ⊆ 𝑈 ⊆
𝑚. Any function 𝐷 ∶ N×R𝑛 → D (where D ⊆ R𝑚 is called the decision

pace) that maps any pair stage-state (𝑡, 𝑥) ↦ 𝐷(𝑡, 𝑥) the set 𝐷(𝑡, 𝑥) of
easible control variables at stage 𝑡 and state 𝑥 is called a decision (or
‘strategy or policy’’). Thus, the set 𝐷(𝑡, 𝑥) of feasible control variables
t stage 𝑡 and state 𝑥 is also referred to as the set of feasible decisions
t stage 𝑡 and state 𝑥. 𝐷∗ is an optimal decision for the problem Eq. (1)
f 𝑢∗ = (𝐷∗(0, 𝑥0),… , 𝐷∗(𝑇 − 1, 𝑥(𝑇 − 1))) so is.

Although {𝐷(𝑡, 𝑥)}
0≤𝑡≤𝑇
𝑥∈𝑋𝑡

are supposed to be non-empty, we shall write
∈ 𝑈 for simplicity.

Neurocomputing 559 (2023) 126785J. García Cabello

t
c
f
P

T

𝑢

(
(

b
t
f

𝑔

U
t
d
t

𝐹

𝑇
a
t
c

I

f
i

𝐺

t

2.2. Principle of Optimality (PO)

In Bellman’s words [3] ‘‘in each process, the functional equation
governing the process was obtained by an application of the following
intuitive principle: an optimal policy has the property that whatever
he initial state and initial decision are, the remaining decisions must
onstitute an optimal policy with regard to the state resulting from the
irst decision’’. This is known as Principle of Optimality (hereinafter
O):

heorem 2.1 (Principle of Optimality, [9,10]). If

𝑥∗ = (𝑥(0),… , 𝑥(𝑇))
∗ = (𝑢(0),… , 𝑢(𝑇 − 1))

𝑎𝑟𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 Eq. (1) 𝑓𝑜𝑟 (0, 𝑥(0) = 𝑥0) ⇒

𝑥(𝑡),… , 𝑥(𝑇))
𝑢(𝑡),… , 𝑢(𝑇 − 1)) 𝑎𝑟𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 Eq. (1) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑡𝑎𝑔𝑒 𝑡,
0 ≤ 𝑡 < 𝑇 .

In standard DP theory, the objective function 𝑔(𝑥, 𝑢) is assumed to
e additively separable into subfunctions which depend on a single
ime-stage (𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)), 𝑡 = 0,… , 𝑇 − 1) which are referred as return
unctions:

(𝐱,𝐮) =
𝑇−1
∑

𝑡=0
𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)) + 𝑐𝑇 (𝑥(𝑇)).

nder this assumption (the additively separable case) Bellman’s equa-
ion provides a recursive solution to Eq. (1), as follows: a function
efined as the optimal of problem Eq. (1) 𝐹 (𝑥, 𝑡) = 𝑔𝑡(𝑥∗, 𝑢∗), satisfies
he following equation (the Bellman’s equation),

(𝑥, 𝑡) = 𝑠𝑢𝑝
𝐷(𝑡,𝑥)

{𝑐𝑡(𝑥, 𝑢) + 𝐹 (𝑓 (𝑥, 𝑢, 𝑡), 𝑡 + 1)},∀𝑥 ∈ 𝑋𝑡,

∀𝑡 ∈ {0, .., 𝑇 − 1},

𝐹 (𝑥, 𝑇) = 𝑐𝑇 (𝑥),∀𝑥 ∈ 𝑋𝑇 .

𝐹 (𝑥, 𝑡) may be reached backward recursively by maximising on 𝑢.
Additionally, given a solution 𝐹 (𝑥, 𝑡), a optimal policy for the problem
Eq. (1) can be derived as

𝐷∗(𝑡, 𝑥) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝐷(𝑡,𝑥)

{𝑐𝑡(𝑥, 𝑢) + 𝐹 (𝑓 (𝑥, 𝑢, 𝑡), 𝑡 + 1)}.

According to the line of reasoning, when PO is satisfied, a solution
𝐹 (𝑥, 𝑡) of the problem Eq. (1) may be reached recursively backwards in
time. Since it enables recursively to recover an optimal solution from
the solutions of the subproblems in earlier stages, PO is considered the
essence of DP.

Remark 2.2. The assumption ‘‘additively separable’’ for the objective
function is a sufficient condition for PO.

In order to determine conditions that allows us to enable PO for
the ANN learning algorithm, we thus review the conditions under which
such principle can be used in any context. It is worth mentioning that [8]
contains a list of authors and findings related to setting sufficient and
necessary-and-sufficient conditions for PO use in any context. For our
goal of representing (in Section 3) ANN as composition of parametric
functions, the best option is a particular form of separability.

2.3. Separable functions

In classic DP, the problem setup is conducted by converting the
original optimisation problem into a functional equation where the
objective function is assumed to be a sum/integral (discrete/continuous
3

w

case) of functions. Although the term ‘‘separable’’ is not yet present in
Bellman’s work [3], the objective function is assumed to be additively
separable in the usual sense: 𝑔 is said to be additively separable if it can
de decomposed as 𝑔(𝐱,𝐮) = ∑𝑇−1

𝑡=0 𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)) + 𝑐𝑇 (𝑥(𝑇)) for some single
time-state functions 𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)), 0 ≤ 𝑡 ≤ 𝑇 − 1. Later on, separability
is considered in the multiplicative sense: 𝑔(𝐱,𝐮) = 𝛱𝑇−1

𝑡=0 𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)) ⋅
𝑐𝑇 (𝑥(𝑇)) for some single time-state functions 𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)), 0 ≤ 𝑡 ≤
− 1, giving rise to the idea of factorable functions and, even more,
procedure for separating into single-variable components any ‘‘fac-

orable’’ function by introducing auxiliary variables and additional
onstraints, [8].

There are other kind of separable functions for which PO holds.
n [8], separability is equivalent to satisfy the following two properties:

1. the final 𝑡 stages of a process of 𝑇 stages relies only on state 𝑥𝑇−𝑡
and the final ones 𝑡 𝑢(𝑇 − 𝑡+1), 𝑢(𝑇 − 𝑡+2),… , 𝑢(𝑇) for all 𝑡, and

2. Markovian property1: in stage 𝑡 + 1, after decision 𝑢(𝑡 + 1), the
resulting state 𝑥(𝑡 + 1) depends only on 𝑥(𝑡) and 𝑢(𝑡 + 1) and in
no case depends upon previous ones 𝑥(0), 𝑥(1),… , 𝑥(𝑡 − 1).

Both 1. and 2. are considered in [8] as sufficient conditions to
PO ‘‘to be invoked and lead to recurrence relations and hence the
valid application of DP’’ (sic). It is a constant in the literature that
the separability (in any form) of the objective function is a sufficient
condition for the use of PO.

In [9], a notion of separability based on composition of functions
is considered. Let 𝑋 and 𝑌 be two nonempty sets and let 𝑌 (𝑥) be a
nonempty subset of 𝑌 which depends on 𝑥. Hence 𝑌 (𝑥) ∈ 𝑃 (𝑌) where
𝑃 (𝑌) denotes the power set of 𝑌 (i.e., the set of all nonempty subsets
of 𝑌). From the equivalence between 𝑃 (𝑌) and the set of characteristic
functions, the subset 𝑌 (𝑥) can be also viewed as a mapping 𝑌 (𝑥) →

{0, 1} defined as usual:

𝜒𝑌 (𝑥)(𝑦) = 1 if 𝑦 ∈ 𝑌 (𝑥) and 𝜒𝑌 (𝑥)(𝑦) = 0 if 𝑦 ∉ 𝑌 (𝑥),

rom which 𝐼𝑚 𝑌 (𝑥) denotes the image of the corresponding character-
stic function. Let

𝑟(𝑌) = {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 (𝑥)} = 𝑋 × 𝐼𝑚𝑌 (𝑥) ⊂ 𝑋 × 𝑌

be the graph of the mapping 𝑌 (𝑥). Note that this is the formal develop-
ment for introducing abstract constrains in the optimisation problem.

Next Theorem 2.3 states that separability and monotonicity are
sufficient conditions for PO to be satisfied, as in [10,11]:

Theorem 2.3 (Maximax Theorem [9]). Let ℎ ∶ 𝐺𝑟(𝑌) → R any function
and g ∶ 𝑋 × R → R be a function such that 𝑔(𝑥.⋅) ∶ R → R is
nondecreasing for each 𝑥 ∈ 𝑋. If Max𝑥∈𝑋 𝑔(𝑥,Max ℎ(𝑥, 𝑦)

𝑦∈𝑌 (𝑥)
) exists, then

Max(𝑥,𝑦)∈Gr(𝑌)𝑔(𝑥, ℎ(𝑥, 𝑦)) exists and both are equal:

Max
(𝑥,𝑦)∈Gr(𝑌)

𝑔(𝑥, ℎ(𝑥, 𝑦)) = Max
𝑥∈𝑋

𝑔(𝑥,Max ℎ(𝑥, 𝑦)
𝑦∈𝑌 (𝑥)

)

Assumptions of Theorem 2.3 are equivalent to considering an ob-
jective function that can be expressed as a composition of the form
𝑔(𝑥, ℎ(𝑥, 𝑦)) where 𝑔 ∶ 𝑋 × 𝐼𝑚 ℎ → R is nondecreasing in its third
argument and for each 𝑥 ∈ 𝑋, ℎ(𝑥, ⋅) is an element in the dual space
ℎ ∈ 𝑌 ∗, i.e., ℎ(𝑥, ⋅) ∶ 𝑌 → R.

Seen in this way, separability can be generalised to the 𝑛-multi
variate case (Definition 2.5). Before giving the general case, the fol-
lowing particular cases will help in understanding it:

1 This property is called Markovian (or ‘‘memoryless’’) since it stresses that
he only information available to use about past states is contained in 𝑥(𝑡)
hen we are about to make decision 𝑢(𝑡 + 1).

Neurocomputing 559 (2023) 126785J. García Cabello

i

m
t
I

m
w
t

o

P
A

𝐹

Remark 2.4 (Separability at Low Stage-Dimensions).

• Case 𝑇 = 1: 𝑔 ∶ 𝑋0 ×𝑋𝑇 × 𝑈 → R is said to be separable if there
exist functions
𝑔0 ∶ 𝑋0 × 𝑈 × 𝐼𝑚 𝑔𝑇 → R nondecreasing in its third argument
𝑔𝑇 ∶ 𝑋𝑇 → R such that 𝑔 can be expressed as

𝑔(𝐱,𝐮) = 𝑔(𝑥(0), 𝑥(𝑇), 𝑢(0)) =
= 𝑔0(𝑥(0), 𝑢(0), 𝑔𝑇 (𝑥(𝑇)))

• Case 𝑇 = 2: 𝑔 ∶ 𝑋0 ×𝑋1 ×𝑋𝑇 ×𝑈 ×𝑈 → R is said to be separable
if there exist functions
𝑔0 ∶ 𝑋0 × 𝑈 × 𝐼𝑚 𝑔1 → R
𝑔1 ∶ 𝑋1 × 𝑈 × 𝐼𝑚 𝑔𝑇 → R

}

nondecreasing in its third argument

𝑔𝑇 ∶ 𝑋𝑇 → R such that 𝑔 can be expressed as
𝑔(𝐱,𝐮) = 𝑔(𝑥(0), 𝑥(1), 𝑥(𝑇), 𝑢(0), 𝑢(1)) =

= 𝑔0(𝑥(0), 𝑢(0), 𝑔1(𝑥(1), 𝑢(1), 𝑔𝑇 (𝑥(𝑇))))

The following is the definition of separability that we adopt:

Definition 2.5 ([12,13]). Let 𝑔 ∶ 𝑋0 ×⋯×𝑋𝑇 ×𝑈 ×

𝑇
⏞⏞⏞
⋯ ×𝑈 → R be

the objective function of a multistage optimisation problem Eq. (1). 𝑔 is
said to be separable if there exists a sequence of real-valued functions
{𝑔𝑡 ∶ 𝑋𝑡 × 𝑈 × 𝐼𝑚 𝑔𝑡+1 → R}0≤𝑡≤𝑇−1 and 𝑔𝑇 ∶ 𝑋𝑇 → R such that

• 𝑔 can be expressed (ordered backwards or forwards in time) as the
composition of

{

𝑔𝑡
}𝑇
𝑡=0, 𝑔(𝐱,𝐮) = 𝑔0

(

𝑥(0), 𝑢(0), 𝑔1 (𝑥(1), 𝑢(1),… ,
𝑔𝑇 (𝑥(𝑇))…

))

.
• Each 𝑔𝑡 is non-decreasing in its third argument: for 𝑧,𝑤 ∈ 𝐼𝑚𝑔𝑡+1

are such that 𝑧 ≥ 𝑤 ⇒ 𝑔𝑡(𝑥, 𝑢, 𝑧) ≥ 𝑔𝑡(𝑥, 𝑢,𝑤).

3. Neural networks as composition of an even number of paramet-
ric functions

There are several portraits of ANNs. Here, we shall focus on their
architecture. A complete review of other aspects (stochastic gradient,
back propagation, examples) can be found in [1].

Due to their learning abilities, ANNs are often described as learning
systems. Then, a multi-layer neural network is a mathematical learning
system with a network-structure where the basic functioning units
(neurons) are organised into layers such that neurons in an 𝑖-layer
receive signal from neurons in a previous 𝑖 − 1-layer and send the
corresponding output to neurons in an 𝑖+ 1-layer. Inner layers (that is,
those that are neither the input nor the output layer) are called hidden
layers. Thus, a multilayered 𝑛−𝐿−𝑚 ANN consists of 𝑛 inputs, 𝑚 outputs
and 𝐿 hidden layers. Note that an 𝑛−𝐿−𝑚 ANN indeed has 𝐿+2 layers,
i.e., 𝐿 hidden layers denoted as 𝐿𝑖, 𝑖 = 2,… , 𝐿 + 1 plus the input and
output layers, written as 𝐿1 and 𝐿𝐿+2 respectively. Alternatively, an
𝐿𝑖-layer is hidden if 𝑖 ∉ 1, 𝐿 + 2.

The main purpose of this section is to configure a simple approach
for neural networks which makes it easier to analyse them from any
standpoint, particularly from a DP perspective. For this, we propose an
initial definition based on coupled cell networks (CCNs). This descrip-
tion will soon evolve to a definition based on composition of an even
number of parametric functions.

For this, recall that a CCN is an abstract arrangement of cells and
links. According to the theory formalised by Stewart et al. [14–16] a
CCN is a network representation of a dynamical system (either of dif-
ference or differential equations) such that the equations are coherent
with a network structure: nodes represent the dynamical system laws
and edges appear for interactions between nodes. The main advantage
of visualising a dynamical system by using a CCN is that it allows to
reach theoretical conclusions on joint dynamics based on the network
structure. Additionally, from this standpoint, the close relationship
between networks and (set of) functions is becoming evident. Hence,
neural networks are initially defined as follows:
4

Fig. 1. Multilayered 2 − 2 − 4 ANN.

Definition 3.1. A multilayered 𝑛−𝐿−𝑚 ANN is a coupled cell network
CCN consisting of 𝑛 inputs, 𝐿 hidden layers and 𝑚 outputs.

This definition will be further revised (Definition 3.6) in order to
complete it with the dynamic system which describes de transmission
of signals.

Particularly, a multilayered 2 − 2 − 4 ANN is a CCN consisting of 2
nputs, 2 hidden layers and 4 outputs according to Fig. 1:

For our objectives of representing ANNs as a composition of para-
etric functions, let us first examine affine functions. A mapping is said

o be affine if it is the composition of a linear map and a translation.
f we denote 𝑓 ∶ R𝑛 → R𝑚 a function whose domain is a subset of R𝑛

and whose range is a subset of R𝑚, 𝑓 is affine if it is 𝑓 (𝑥) = 𝑊 𝑥+ 𝑏 for
atrices 𝑊 ∈ M𝑚×𝑛(R) and 𝑏 ∈ M𝑚×1(R). As mentioned in Section 2,
e identify 𝑥 and 𝑥𝑡 with no distinction between the vector and its

ranspose.
Now, ANNs can be described as a composition of an even number

f parametric functions. Let us anticipate a particular case.

roposition 3.2 (Multilayered 2 − 2 − 4 ANN). A multilayered 2 − 2 − 4
NN is a parametric function 𝐹 ∶ R2 → R4 of the form

= 𝜑 ◦ 𝑓3 ◦𝜑 ◦ 𝑓2 ◦𝜑 ◦ 𝑓1

for 𝑓𝑖, 𝑖 = 1, 2, 3 affine maps 𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥+ 𝑏[𝑖+1], 𝑥 = (𝑥1, 𝑥2) and 𝜑 an
(univariate) non-linear activation function.

Proof. Note that a multilayered 2 − 2 − 4 ANN can be represented by
the composition of the following functions after identifying each layer
with a subset of the corresponding euclidean space, 𝐿1 ⊆ R2, 𝐿2 ⊆ R2,
𝐿3 ⊆ R3, 𝐿4 ⊆ R4:

R2 𝑓1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ R2 𝜑

←←←←←←←→ R2 𝑓2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ R3 𝜑

←←←←←←←→ R3 𝑓3
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ R4 𝜑

←←←←←←←→ R4

where each 𝑓𝑖 is an affine function, for 𝑖 a layer counter with the usual
notation of superscripts for both matrices of weights, and for biases
which refer to the corresponding layer:

𝑓1 ∶ R2 → R2, 𝑓1(𝑥) = 𝑊 [2]𝑥 + 𝑏[2], 𝑊 [2] ∈ R2,2, 𝑏[2] ∈ R2,1

𝑓2 ∶ R2 → R3, 𝑓2(𝑥) = 𝑊 [3]𝑥 + 𝑏[3], 𝑊 [3] ∈ R3,2, 𝑏[2] ∈ R3,1

𝑓3 ∶ R3 → R4, 𝑓3(𝑥) = 𝑊 [4]𝑥 + 𝑏[4], 𝑊 [4] ∈ R4,3, 𝑏[4] ∈ R4,1

That completes the proof.

Thus, a general multilayered 𝑛 − 𝐿 − 𝑚 ANN is a composition of
parametric functions as follows:

Proposition 3.3 (Multilayered 𝑛−𝐿−𝑚 ANN). A multilayered 𝑛−𝐿−𝑚
ANN (𝑛 inputs, 𝐿 hidden layers and 𝑚 outputs) is a parametric function
(with parameters 𝑊 [⋅], 𝑏[⋅]) 𝐹 ∶ R𝑛 → R𝑚 composition of an even number
of functions, of the form

𝐹 = 𝜑 ◦ 𝑓 ◦ 𝜑 ◦ 𝑓 ◦ … ◦𝜑 ◦ 𝑓
𝐿+1 𝐿 1

Neurocomputing 559 (2023) 126785J. García Cabello

𝑏
f

P
a
i
A
𝑥
𝑤
R

𝐹

t

t
w

C
A
(
o

𝐹

w
𝑏

R
D
a

R
o
m
t
f

e
b
a
c
o

D
a
𝑚

𝑥

Fig. 2. Perceptron 𝑛 − 1 − 1 ANN.
f
a

c
T
d

4

𝑛
i
t
a
a

4

o
t
o
f
i
i
m
t

T
c
t
𝛼

‖

k

c
l
o
c
a
(
t
A
a

L
a

P
o
𝑠

s
t
b

where 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑖 = 1,… , 𝐿 + 1 are affine maps 𝑓𝑖(𝑥𝑖) = 𝑊 [𝑖+1]𝑥 +
[𝑖+1], 𝑊 𝑖+1 ∈ M𝑟𝑖×𝑘𝑖 , 𝑥

𝑖 ∈ R𝑘𝑖 , 𝑏𝑖+1 ∈ M𝑟𝑖×1, and 𝜑 is a non-linear
unction.

roof. First note that, for simplicity, 𝜑 denotes both the multivariate
nd the univariate case. The result can be proven by mathematical
nduction on the number of hidden layers 𝐿. For the case of the 𝑛−1−1
NN (perceptron), the single affine component transmits the input
= (𝑥1,… , 𝑥𝑛) to the single neuron by using 𝑛 weights denoted by
𝑗 , 𝑗 = 1,… , 𝑛 (that are entries of a matrix 𝑊 = (𝑤1𝑗) = (𝑤11,… , 𝑤1𝑛) ∈
1,𝑛 denoted (𝑤1,… , 𝑤𝑛) for simplicity) as

(𝑥) = (𝑤1,… , 𝑤𝑛) ⋅
⎛

⎜

⎜

⎝

𝑥1
⋮
𝑥𝑛

⎞

⎟

⎟

⎠

+ 𝑏 =
∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 + 𝑏 = 𝑊 ⋅ 𝑥 + 𝑏 (2)

or alternatively, 𝐹 (𝑥) = (𝑏,𝑤1,… , 𝑤𝑛)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑊

⋅

⎛

⎜

⎜

⎜

⎜

⎝

1
𝑥1
⋮
𝑥𝑛

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏟⏟
𝑥

=
∑𝑛
𝑖=0𝑤𝑖𝑥𝑖 = 𝑊 ⋅ 𝑥,

through expanded matrices 𝑊 ,𝑥. Then, the perceptron is the composi-
ion of functions 𝐹 = 𝜑 ◦ 𝑓1 as shown in Fig. 2:

Let us suppose that the property is satisfied for 𝑛−𝐿−𝑚 ANN. Then,
he property holds for 𝑛− (𝐿+ 1) −𝑚 by composing the 𝑛−𝐿−𝑚 ANN
ith the perceptron.

orollary 3.4 (Multilayered 𝑛 − 𝐿 − 1 ANN). A multilayered 𝑛 − 𝐿 − 1
NN (𝑛 inputs, 𝐿 hidden layers and 1 output) is a parametric function
with parameters 𝑊 [⋅], 𝑏[⋅]) 𝐹 ∶ R𝑛 → R composition of a even number
f function, the form

= 𝜑 ◦ 𝑓𝐿+1 ◦𝜑 ◦ 𝑓𝐿 ◦ … ◦𝜑 ◦ 𝑓1

here 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑖 = 1,… , 𝐿 are affine maps 𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥 +
[𝑖+1], 𝑖 = 1,… , 𝐿, 𝑓𝐿+1 ∶ R𝑟𝐿+1 → R and 𝜑 is a non-linear function.

emark 3.5. From Proposition 3.3, the potential applicability of the
P principles to ANNs will depend on the properties of both affine and
ctivation functions.

Since multilayered 𝑛 − 𝐿 − 𝑚 ANN as parametric functions from
𝑛 to R𝑚, should be studied within the scope of DP multi-stage multi-
bjective optimisation problems [4], we shall restrict our attention to
ultilayered 𝑛 − 𝐿 − 1 ANN, deliberately procrastinating the poten-

ial generalisation for future research. Thus, hereinafter, ANN without
urther specification will mean 𝑛 − 𝐿 − 1 ANN.

We will end this section as we started it, by recalling that multilay-
red ANNs can be defined as CCNs due to the specific layer architecture
y which an 𝑖-layer receives signal from neurons in an 𝑖 − 1-layer
nd sends the output to neurons in next layer, 𝑖 + 1. Now, we can
omplete Definition 3.1 by explicitly describing the dynamical system
f differentiate equations which governs any ANN:

efinition 3.6 (Definition 3.1 revisited). A multilayered 𝑛−𝐿−𝑚 ANN is
coupled cell network CCN consisting of 𝑛 inputs, 𝐿 hidden layers and
outputs, under the dynamical system on the transmission of signals,
𝑖+1 𝑖 𝑖+1 𝑖 𝑖+1
5

= 𝜑 ◦ 𝑓𝑖(𝑥) = 𝜑(𝑊 𝑥 + 𝑏) w
rom layer 𝑖 (input 𝑥𝑖) to layer 𝑖+ 1 (output 𝑥𝑖+1), with 𝑓𝑖 affine and 𝜑
non-linear function, i = 1, . . . , L + 1.

Note that in this definition the layer counter coincides with the
ounter of transition of states of neurons from one layer to the next one.
his fact means that ANNs can be considered as multistage sequential
ecision processes.

. Study on 𝒏−𝑳− 𝟏 ANNs to use PO

Sections 4 and 5 are devoted to finding conditions under which the
− 𝐿 − 1 ANN learning algorithm can be run in a DP mode. Section 4

s focus on the ANN as a whole while in Section 5, attention is paid to
heir functional components. Here, we will derive conditions from the
nalysis of ANNs regarded as universal approximators (Section 4.1) and
s a composition of functions (Section 4.2).

.1. 𝑛 − 𝐿 − 1 ANNs as universal approximators

Recall here that ANNs are universal approximators of continu-
us functions. The mathematical origin of this idea is the Hilbert’s
hirteenth problem in which the question arises whether a continu-
us function of two variables could be decomposed into continuous
unctions of one variable. Thus, this insight and that of separabil-
ty –whether a multivariate function could be or not decomposed
nto univariate functions– are quite similar. This similarity provides
ore evidence that supports the idea of relating the properties of the

arget/objective function of both ANNs and DP.
The classical Universal Approximation Theorem is as follows:

heorem 4.1 (UAT, [17]). Let 𝛼 be a continuous function defined on a
ompact subset 𝐾 ⊂ R𝑛. Thus, for 𝜖 > 0, there is a neural network 𝐹 such
hat, under smooth assumptions on its activation function, can approximate
:

𝐹 − 𝛼‖∞ = 𝑠𝑢𝑝𝑥∈𝐾 |𝐹 (𝑥) − 𝛼(𝑥)| < 𝜖.

The continuous function 𝛼, to which the ANN approximates, is
nown as the target function.

Let us also recall briefly the fundamentals of the minimisation pro-
ess that underlies all ANN (see [1] for detailed information). The ANN
earning process, called ‘‘gradient descent minimum algorithm (GDM)’’
r ‘‘Taylor expansion approach’’, is a first-order iterative method which
omputes a local minimum for a differentiable objective function by
djusting the parameters weights 𝑊 [⋅] and biases 𝑏[⋅]. This function
also called cost or loss) is the committed error in approximating the
arget 𝛼: 𝐸 = ‖𝐹 − 𝛼‖∞ which represents the distance between the
NN prediction and the associated target. The following result takes
dvantage of the error structure:

emma 4.2. The cost function is a linear combination of the ANN (viewed
s in Proposition 3.3) with unitary coefficients.

roof. By Proposition 3.3 and considering that the cost function is
f the form 𝐸(𝑥) = |𝐹 (𝑥) − 𝛼(𝑥)|, 𝑥 ∈ 𝐾 ⊆ R𝑛 (⇒ 𝐸 = ‖𝐹 − 𝛼‖∞ =
𝑢𝑝𝑥∈𝐾⊆R𝑛 |𝐹 (𝑥) − 𝛼(𝑥)|), the property holds.

The target function 𝛼 should be continuous and defined in a compact
ubset of R𝑛. Note also that, unlike the ANN (𝐹 by Corollary 3.4),
he target function is independent of the parameters weights 𝑊 [⋅] and
iases 𝑏[⋅]. In any case, being 𝐹 , the error function is also dependent on

eights and biases.

Neurocomputing 559 (2023) 126785J. García Cabello

s
o

c
w

T
w

P
H
𝑋

𝜙
𝜙
𝜙

p

𝜙

f
T
i
w
a

a

a

i

C
l

P
c
h
c
B
ℎ
c

ℎ

4.2. 𝑛 − 𝐿 − 1 ANNs as composition of functions

Since ANNs can be regarded as composition of (an even number of)
functions (according to Corollary 3.4 from which a multilayered 𝑛−𝐿−1
ANN is of the form 𝐹 = 𝜑 ◦ 𝑓𝐿+1 ◦ … ◦ 𝜑 ◦ 𝑓1), the main goal for this
ubsection is to study properties which are preserved under composition
f functions, particularly separability.

Proving that separability is closed under composition will be ac-
omplished in Corollary 4.5. Meanwhile we shall prove a property with
eaker hypothesis.

heorem 4.3. The (left) composition of any non-decreasing function 𝜙
ith a separable function 𝑔, 𝜙 ◦ 𝑔, is separable.

roof. Let 𝑔 ∶ 𝑋0 × ⋯ × 𝑋𝑇 × 𝑈𝑇 → R be a separable function.
ence, by Definition 2.5, there exist a sequence of functions {𝑔𝑡 ∶
𝑡 × 𝑈 × 𝐼𝑚 𝑔𝑡+1 → R}0≤𝑡≤𝑇−1 and 𝑔𝑇 ∶ 𝑋𝑇 → R such that

• 𝑔 can be expressed as the composition of
{

𝑔𝑡
}𝑇
𝑡=0,

𝑔(𝐱,𝐮) = 𝑔0
(

𝑥(0), 𝑢(0), 𝑔1
(

𝑥(1), 𝑢(1),… , 𝑔𝑇 (𝑥(𝑇))…
))

, and

• each 𝑔𝑡 is non-decreasing in its third argument: for 𝑧,𝑤 ∈ 𝐼𝑚 𝑔𝑡+1
are such that 𝑧 ≥ 𝑤 ⇒ 𝑔𝑡(𝑥, 𝑢, 𝑧) ≥ 𝑔𝑡(𝑥, 𝑢,𝑤).

Thus, the following sequence of functions

0 = 𝜙 ◦ 𝑔0
𝑡 = 𝑔𝑡, 1 ≤ 𝑡 ≤ 𝑇 − 1
𝑇 = 𝑔𝑇

roves that 𝜙 ◦ 𝑔 is separable. Indeed,

◦ 𝑔(𝐱,𝐮) = 𝜙 ◦ 𝑔0
(

𝑥(0), 𝑢(0), 𝑔1
(

𝑥(1), 𝑢(1),… , 𝑔𝑇 (𝑥(𝑇))…
))

and

or 0 ≤ 𝑡 ≤ 𝑇 , the functions 𝜙𝑡 are non-decreasing in its third argument.
he property holds for 1 ≤ 𝑡 ≤ 𝑇 . As for 𝑡 = 0, we shall prove

t by equivalently proving that the corresponding partial derivative
ith respect to its third argument is non-negative. Let us denote the
rguments of both 𝑔𝑡 and 𝜙 ◦ 𝑔𝑡 as (𝑥(𝑡), 𝑢(𝑡), 𝑔𝑡+1(⋅)), 𝑥(𝑡) ∈ 𝑋𝑡, 𝑢(𝑡) ∈
𝑈, 𝑔𝑡+1(⋅) ∈ 𝐼𝑚 𝑔𝑡+1. Thus, by the chain rule, the partial derivative is
non-negative since both factors are:
𝜕(𝜙 ◦ 𝑔𝑡)
𝜕𝑔𝑡+1(⋅)

= 𝜙′(𝑔𝑡(𝑥(𝑡), 𝑢(𝑡), 𝑔𝑡+1(⋅)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

⋅
𝜕𝑔𝑡

𝜕𝑔𝑡+1(⋅)
(𝑥(𝑡), 𝑢(𝑡), 𝑔𝑡+1(⋅))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

≥ 0.

This concludes the proof.

Theorem 4.4. Any separable function is non-decreasing in its last
argument.

Proof. Let 𝑔 ∶ 𝑋0 × ⋯ × 𝑋𝑇 × 𝑈𝑇 → R be a separable func-
tion. Hence, by Definition 2.5, there exist a sequence of functions
{𝑔𝑡 ∶ 𝑋𝑡 × 𝑈 × 𝐼𝑚 𝑔𝑡+1 → R}0≤𝑡≤𝑇−1 and 𝑔𝑇 ∶ 𝑋𝑇 → R such that 𝑔 can
be expressed as the composition of

{

𝑔𝑡
}𝑇
𝑡=0,

𝑔(𝐱,𝐮) = 𝑔0
(

𝑥(0), 𝑢(0), 𝑔1
(

𝑥(1), 𝑢(1),… , 𝑔𝑇 (𝑥(𝑇))…
))

and each 𝑔𝑡 is non-decreasing in its third argument.
Remember that the projections 𝑝𝑡 are those functions which take

the 𝑡-coordinate from a tuple in a fold cartesian product of sets, 𝑝𝑡 ∶
𝑋1 ×⋯×𝑋𝑡 ×⋯×𝑋𝑇 → 𝑋𝑡, 𝑡 = 1,… , 𝑇 defined as 𝑝𝑡(𝑥1,… , 𝑥𝑇) = 𝑥𝑡.
In order to match the subscripts, we will consider 𝑝𝑡 ∶ 𝑋0×𝑋1×⋯×𝑋𝑡×
⋯ × 𝑋𝑇 × 𝑈𝑇 → 𝑋𝑡, 𝑝𝑡(𝑥0,… , 𝑥𝑇) = 𝑥𝑡, 𝑡 = 0, 1,… , 𝑇 . Its jacobian

matrix 𝐽 (𝑝𝑡) is the constant gradient 𝐽 (𝑝𝑡) =
→
∇𝑝𝑡 = (0,… , 0,

(𝑡)
1 , 0,… , 0).

Thus, any separable function 𝑔 can be written as the composition of
6

projections 𝑝𝑡 and {𝑔𝑡 ∶ 𝑋𝑡 × 𝑈 × 𝐼𝑚 𝑔𝑡+1 → R}0≤𝑡≤𝑇−1, 𝑔𝑇 ∶ 𝑋𝑇 → R, as
follows:
𝑔(𝐱,𝐮) = 𝑔0

(

𝑥(0), 𝑢(0), 𝑔1
(

𝑥(1), 𝑢(1),… , 𝑔𝑇 (𝑥(𝑇))…
))

= 𝑔0 ◦ (𝑝0 × 𝑝𝑇+1 × 𝑔1 ◦ (𝑝1 × 𝑝𝑇)…)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑔
× (𝑥(0),… , 𝑥(𝑇), 𝑢(0),… , 𝑢(𝑇 − 1))

Before computing the partial derivative of 𝑔 with respect to the last
argument, it should be noticed that the domain of 𝑝0 × 𝑝𝑇+1 × 𝑔1 is

(𝑋0×⋯×𝑋𝑇 ×𝑈𝑇)×(𝑋0×⋯×𝑋𝑇 ×𝑈𝑇)×(𝑋1×𝑈 ×𝐼𝑚 𝑔2) ⊆ R2((𝑇+1)+𝑇)+3

and its range is 𝑋0 × 𝑋𝑇+1 × R ⊆ R3. Hence, its jacobian matrix has
dimension 3 × (2((𝑇 + 1) + 𝑇) + 3). Now, the jacobian matrix of g is

𝐽 (𝑔) = (
𝜕𝑔0
𝜕𝑥(0)

,
𝜕𝑔0
𝜕𝑢(0)

,
𝜕𝑔0
𝜕𝑔1(⋅)

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑝0
𝜕𝑥(0)

…
𝜕𝑝0
𝜕𝑢(0)

…
𝜕𝑝0
𝜕𝑔2(⋅)

𝜕𝑝𝑇
𝜕𝑥(0)

…
𝜕𝑝𝑇
𝜕𝑢(0)

…
𝜕𝑝𝑇
𝜕𝑔2(⋅)

𝜕𝑔1
𝜕𝑥(0)

…
𝜕𝑔1
𝜕𝑢(0)

…
𝜕𝑔1
𝜕𝑔2(⋅)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Particularly, the partial derivative of 𝑔 with respect to the last
rgument is non-negative:

𝜕𝑔
𝜕𝑔2(⋅)

= (
𝜕𝑔0
𝜕𝑥(0)

,
𝜕𝑔0
𝜕𝑢(0)

,
𝜕𝑔0
𝜕𝑔1(⋅)

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑝0
𝜕𝑔2(⋅)
𝜕𝑝𝑇
𝜕𝑔2(⋅)
𝜕𝑔1
𝜕𝑔2(⋅)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≥ 0,

s we wanted to demonstrate.

Thus, previous theorems allow us finally to prove that separability
s closed under composition.

orollary 4.5. Composition of separable functions is also separable as
ong as the composition exists.

roof. First note that it is sufficient to prove the property for a
omposition of only two functions. Indeed, we assume that the property
olds for a composition of two functions and let us prove it for a
omposition of 𝐿 functions by using mathematical induction on 𝐿.
y hypothesis the property holds for a composition of 𝐿 functions
1 ◦ … ◦ℎ𝐿 and it have to be shown for 𝐿+1. For the associate law for
omposition of functions,

1 ◦ … ◦ℎ𝐿 ◦ℎ𝐿+1 = (ℎ1 ◦ … ◦ℎ𝐿) ◦ℎ𝐿+1

and (ℎ1 ◦ … ◦ℎ𝐿) to be separable by hypothesis, the property is satis-
fied for 𝐿 + 1.

Let us then prove the theorem for a composition of two functions:
let ℎ1, ℎ2 two separable functions such that ℎ1 ◦ℎ2 exists. Both are non-
decreasing in their last argument by Theorem 4.4, particularly ℎ1 is.
Thus, by applying Theorem 4.3, the result follows.

5. Study on ANN functional components to use PO

As mentioned, by Corollary 3.4, a multilayered 𝑛 − 𝐿 − 1 ANN is a
parametric function 𝐹 ∶ R𝑛 → R of the form 𝐹 = 𝜑 ◦ 𝑓𝐿+1 ◦𝜑 ◦ 𝑓𝐿 ◦ …
◦𝜑 ◦ 𝑓1. Hence, 𝐹 can be expressed in terms of two functional compo-
nents:

• affine maps 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥 + 𝑏[𝑖+1], 𝑖 = 1,… , 𝐿,
𝑓𝐿+1 ∶ R𝑟𝐿+1 → R and

• activation functions 𝜑 ∶ R → R, which is applied component-wise
when necessary.
Both types of functionals will be analysed independently.

Neurocomputing 559 (2023) 126785J. García Cabello

P

c

w
p

P

P
H
a
(

f

𝑓

w
𝑔

p
𝑘

5

o
a

f
m
s
d
p
i
c
a

w
A
i

5.1. Conditions on affine functions

In this subsection, the us analyse the properties of affine func-
tions regarding separability. Our first target is to show that any ad-
ditively separable function is separable. This result will then allow
us to finally prove that affine maps will become separable functions
(Proposition 5.2).

Proposition 5.1. Any additively separable function is separable.

roof. To be consistent with the objective function of Eq. (1), we

onsider additively separable functions 𝑔 ∶ R𝑛×(𝑇+1) × R𝑚×𝑇 → R.
(𝐱,𝐮) ⟼ 𝑔(𝐱,𝐮)

of the form

𝑔(𝐱,𝐮) =
𝑇−1
∑

𝑡=0
𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)) + 𝑐𝑇 (𝑥(𝑇)).

Define 𝑔𝑡 ∶ 𝑋𝑡 × 𝑈 × 𝐼𝑚 𝑔𝑡+1 → R, 𝑔𝑇 ∶ 𝑋𝑇 → R as in [12]:
𝑔𝑡(𝑥(𝑡), 𝑢(𝑡), 𝑧) = 𝑐𝑡(𝑥(𝑡), 𝑢(𝑡)) + 𝑧, 𝑔𝑇 = 𝑐𝑇 . Let us prove the property for
𝑇 = 1 in order to see how it works:

𝑔(𝑥(0), 𝑥(1), 𝑢(0)) = 𝑔(𝑥(0), 𝑥(𝑇), 𝑢(0)) =
= 𝑐0(𝑥(0), 𝑢(0)) + 𝑐𝑇 (𝑥(𝑇))
= 𝑔0(𝑥(0), 𝑢(0), 𝑔𝑇 (𝑥(𝑇))),

with 𝑔0 is nondecreasing in its third argument since the third partial
derivative is

𝜕𝑔0
𝜕𝑧

= 1 ≥ 0. In general,

𝑔(𝐱,𝐮) = 𝑔(𝑥(0),… , 𝑥(𝑇 − 1), 𝑥(𝑇), 𝑢(0),… , 𝑢(𝑇 − 1)) =

= 𝑐0(𝑥(0), 𝑢(0)) +⋯ + 𝑐𝑇−1(𝑥(𝑇 − 1), 𝑢(𝑇 − 1)) + 𝑐𝑇 (𝑥(𝑇))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑔𝑇−1((𝑥(𝑇−1),𝑢(𝑇−1)),𝑐𝑇 (𝑥(𝑇)))

=

= ⋯ =
= 𝑔0

(

𝑥(0), 𝑢(0), 𝑔1
(

𝑥(1), 𝑢(1),… , 𝑔𝑇 (𝑥(𝑇))…
))

Moreover, for each 𝑔𝑡 𝑡 = 1,… , 𝑇 is nondecreasing in its third
argument since the third partial derivative is

𝜕𝑔𝑡
𝜕𝑧

= 1 ≥ 0. For functions
ith range R𝑚, the proof is performed component-wise. This ends the
roof.

This proposition allows us to show finally the desired result:

roposition 5.2. Any affine function is separable.

roof. We shall show that any affine mapping is additively separable.
ence, it will be separable by Proposition 5.1. Let 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 be any
ffine map. By definition, it is of the form 𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥 + 𝑏[𝑖+1], 𝑥 =
𝑥1,… , 𝑥𝑘𝑖) for 𝑖 = 1,… , 𝑙.

Specifically, 𝑓 can be decomposed into sum of univariate (affine)
unctions, as follows:

𝑖

⎛

⎜

⎜

⎜

⎝

𝑥1
⋮

𝑥𝑘𝑖

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑤𝑖+111 … 𝑤𝑖+1𝑘𝑖1

⋮ ⋱ ⋮

𝑤𝑖+1𝑟𝑖1
… 𝑤𝑖+1𝑟𝑖𝑘𝑖

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑥1
⋮

𝑥𝑘𝑖

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝑏𝑖+11

⋮

𝑏𝑖+1𝑟𝑖

⎞

⎟

⎟

⎟

⎠

= (3)

=

⎛

⎜

⎜

⎜

⎝

𝑤𝑖+111 𝑥1 +⋯ +𝑤𝑖+1𝑘𝑖1
𝑥𝑘𝑖 + 𝑏

𝑖+1
1

⋮
𝑤𝑖+1𝑟𝑖1

𝑥1 +⋯ +𝑤𝑖+1𝑟𝑖𝑘𝑖
𝑥𝑘𝑖 + 𝑏

𝑖+1
𝑟𝑖

⎞

⎟

⎟

⎟

⎠

=

=

⎛

⎜

⎜

⎜

⎝

𝑤𝑖+111
⋮
𝑤𝑖+1𝑟𝑖1

⎞

⎟

⎟

⎟

⎠

𝑥1 +⋯ +

⎛

⎜

⎜

⎜

⎝

𝑤𝑖+1𝑘𝑖1
⋮
𝑤𝑖+1𝑟𝑖𝑘𝑖

⎞

⎟

⎟

⎟

⎠

𝑥𝑘𝑖 +
⎛

⎜

⎜

⎝

𝑏𝑖+11
⋮
𝑏𝑖+1𝑟𝑖

⎞

⎟

⎟

⎠

= 𝑔1(𝑥1) +⋯ + 𝑔𝑘𝑖 (𝑥𝑟𝑖),
here the independent column vector can be considered as part of any
7

𝑖. .
Note also that, as it has been proved that each 𝑔𝑘𝑖 (𝑥𝑟𝑖) is affine, the
roof could also have been performed by mathematical induction on
𝑖.

.2. Conditions on activation functions

In this subsection, attention is paid to activations functions. The
bjective is to study the properties which guarantee that the learning
lgorithm can be run in a DP mode.

Monotonicity is the universally required property for activation
unctions. For descendent-gradient models, the reason for this is that
onotonicity both mitigates the vanishing-gradient problem and en-

ures that the algorithm converges. Recently, there has been a growing
emand for monotonic DNN models in response to the large part of real
roblems which have dominance as one of their features2 (monotonicity
s a mathematical translation of dominance). This results into monotonic
lassification, in which a monotonicity relationship between the set of
ttributes and the class labels of the samples exists, [18,19].

Monotonic DNN models are a particular case of monotonic net-
orks [20] one of the most successful tools for monotonic classification.
network 𝐹 ∶ R𝑛 → R𝑚 is said to be monotonic with respect to the

nputs 𝑥𝑖, 𝑖 = 1,… , 𝑛 if 𝜕𝐹
𝜕𝑥𝑗

≥ 0.

Next results provide explicit formulas on the relationship between
the partial derivative of 𝐹 and that of 𝜑 and 𝑓𝑖. Since by Corollary 3.4,
a multilayered 𝑛 − 𝐿 − 1 ANN 𝐹 ∶ R𝑛 → R is of the form

𝐹 = 𝜑 ◦ 𝑓𝐿+1 ◦𝜑 ◦ 𝑓𝐿 ◦ … ◦𝜑 ◦ 𝑓1

𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑖 = 1,… , 𝐿 𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥 + 𝑏[𝑖+1], 𝑖 = 1,… , 𝐿,
𝑓𝐿+1 ∶ R𝑟𝐿+1 → R and 𝜑 non-linear, we will first examine the partial
derivatives of the functional pair 𝜑 ◦ 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 ,

R𝑘𝑖 R𝑟𝑖 R𝑟𝑖

𝜑◦𝑓𝑖

𝑓𝑖 𝜑

Proposition 5.3. For affine functions 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 and non-linear
activation 𝜑 ∶ R𝑟𝑖 → R𝑟𝑖 , the partial derivatives of the composite function
𝜑 ◦ 𝑓𝑖 are linear combination of 𝜑′ and weights 𝑤[𝑖+1].

Proof. In order to apply the chain rule to the composite function, recall
that 𝜑 ∶ R𝑟𝑖 → R𝑟𝑖 is a simplified notation for 𝜑× (𝑟𝑖)…×𝜑 ∶ R𝑟𝑖 → R𝑟𝑖 , the
𝑟𝑖th cartesian product of the univariate real valued activation function
𝜑 ∶ R → R:

(𝜑 × (𝑟𝑖)… × 𝜑)(𝑦1,… , 𝑦𝑟𝑖) = (𝜑(𝑦1),… , 𝜑(𝑦𝑟𝑖)).

The Jacobian matrix 𝐽𝜑 is thus 𝐽𝜑 = 𝐽 (𝜑 × (𝑟𝑖)… × 𝜑) = (𝜑′,… , 𝜑′).
We will denote 𝑓𝑖,𝑘 the 𝑘th functional component of the affine

function 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 ,

𝑓𝑖(𝑥1,… , 𝑥𝑘𝑖) = (𝑓𝑖,1(𝑥1,… , 𝑥𝑘𝑖),… , 𝑓𝑖,𝑟𝑖 (𝑥1,… , 𝑥𝑘𝑖)).

Since each 𝑓𝑖-component is

𝑓𝑖,1(𝑥1,… , 𝑥𝑘𝑖) =
∑𝑘𝑖
𝑗=1𝑤

[𝑖+1]
1𝑗 + 𝑏[𝑖+1]1

𝑓𝑖,2(𝑥1,… , 𝑥𝑘𝑖) =
∑𝑘𝑖
𝑗=1𝑤

[𝑖+1]
2𝑗 + 𝑏[𝑖+1]2

… …

𝑓𝑖,𝑟𝑖 (𝑥1,… , 𝑥𝑘𝑖) =
∑𝑘𝑖
𝑗=1𝑤

[𝑖+1]
𝑟𝑖𝑗

+ 𝑏[𝑖+1]𝑟𝑖 ,

the corresponding partial derivatives are
𝜕𝑓𝑖,1
𝜕𝑥1

= 𝑤[𝑖+1]
11 ,

𝜕𝑓𝑖,1
𝜕𝑥2

= 𝑤[𝑖+1]
12 …

𝜕𝑓𝑖,1
𝜕𝑥𝑘𝑖

= 𝑤[𝑖+1]
1𝑘𝑖

… … …
𝜕𝑓𝑖,𝑟𝑖
𝜕𝑥1

= 𝑤[𝑖+1]
𝑟𝑖1

,
𝜕𝑓𝑖,𝑟𝑖
𝜕𝑥2

= 𝑤[𝑖+1]
𝑟𝑖2

…
𝜕𝑓𝑖,𝑟𝑖
𝜕𝑥𝑘𝑖

= 𝑤[𝑖+1]
𝑟𝑖𝑘𝑖

2 Dominance of one financial institution over others, of a gene over others
..

Neurocomputing 559 (2023) 126785J. García Cabello

𝐽

f
n
j

𝐽

(

⋅

i
t
t

b
t
c

i
a

P
f

6

t
a
a

T
t

By applying the chain rule to the composite function 𝜑 ◦ 𝑓𝑖, the rela-
tionship between the corresponding jacobian matrices is the following
product of matrices for (𝑦1,… , 𝑦𝑟𝑖) = 𝑓𝑖(𝑥1,… , 𝑥𝑘𝑖):

𝐽 (𝜑 ◦ 𝑓𝑖)(𝑥1,… , 𝑥𝑘𝑖) = 𝐽 (𝜑 × (𝑟𝑖)… × 𝜑)(𝑦1,… , 𝑦𝑟𝑖) ⋅ 𝐽 (𝑓𝑖)(𝑥1,… , 𝑥𝑘𝑖) =

= (𝜑′,… , 𝜑′)(𝑦) ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑓𝑖,1
𝜕𝑥1

(𝑥) …
𝜕𝑓𝑖,1
𝜕𝑥𝑘𝑖

(𝑥)

⋮ ⋱ ⋮
𝜕𝑓𝑖,𝑟𝑖
𝜕𝑥1

(𝑥) …
𝜕𝑓𝑖,𝑟𝑖
𝜕𝑥𝑘𝑖

(𝑥)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= (𝜑′,… , 𝜑′)(𝑦) ⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑤[𝑖+1]
11 … 𝑤[𝑖+1]

1𝑘𝑖

⋮ ⋱ ⋮

𝑤[𝑖+1]
𝑟𝑖1

… 𝑤[𝑖+1]
𝑟𝑖𝑘𝑖

⎞

⎟

⎟

⎟

⎟

⎠

= (𝜑′(𝑦1)𝑤
[𝑖+1]
11 +⋯ + 𝜑′(𝑦𝑟𝑖)𝑤

[𝑖+1]
𝑟𝑖1

,… ,

𝜑′(𝑦1)𝑤
[𝑖+1]
1𝑘𝑖

+⋯ + 𝜑′(𝑦𝑟𝑖)𝑤
[𝑖+1]
𝑟𝑖𝑘𝑖

),

with 𝑥 = (𝑥1,… , 𝑥𝑘𝑖) and 𝑦 = (𝑦1,… , 𝑦𝑟𝑖) in order to shorten the
notation. Hence, the partial derivatives of the composition 𝜑 ◦ 𝑓𝑖 are:
𝜕𝜑 ◦ 𝑓𝑖
𝜕𝑥1

= 𝜑′(𝑦1) ⋅𝑤
[𝑖+1]
11 +⋯ + 𝜑′(𝑦𝑟𝑖) ⋅𝑤

[𝑖+1]
𝑟𝑖1

… …
𝜕𝜑 ◦ 𝑓𝑖
𝜕𝑥𝑘𝑖

= 𝜑′(𝑦1) ⋅𝑤
[𝑖+1]
1𝑘𝑖

+⋯ + 𝜑′(𝑦𝑟𝑖) ⋅𝑤
[𝑖+1]
𝑟𝑖𝑘𝑖

(4)

That concludes the proof.

Proposition 5.4. For a multilayered 𝑛 − 𝐿 − 1 ANN 𝐹 ∶ R𝑛 → R is of
the form 𝐹 = 𝜑 ◦ 𝑓𝐿+1 ◦𝜑 ◦ 𝑓𝐿 ◦ … ◦𝜑 ◦ 𝑓1, 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑖 = 1,… , 𝐿
𝑓𝑖(𝑥) = 𝑊 [𝑖+1]𝑥 + 𝑏[𝑖+1], 𝑖 = 1,… , 𝐿, 𝑓𝐿+1 ∶ R𝑟𝐿+1 → R and 𝜑 non-
linear, the partial derivatives of the composite function 𝜑 ◦ 𝑓𝑖 are linear
combination of 𝜑′ and weights 𝑤.

Proof. We assume that the conditions for the existence of the compo-
sitions are met, i.e., for 𝜑 ∶ R𝑟𝑖 → R𝑟𝑖 , 𝐼𝑚𝜑 ⊆ R𝑘𝑖+1 , 𝑖 = 1,… , 𝐿:

R𝑘𝑖 R𝑟𝑖 R𝑟𝑖 , 𝐼𝑚𝜑 ⊆ R𝑘𝑖+1 R𝑟𝑖+1 R𝑟𝑖+1 .

𝜑◦𝑓𝑖 𝜑◦𝑓𝑖+1
(𝜑◦𝑓𝑖+1)◦(𝜑◦𝑓𝑖)

𝑓𝑖 𝜑 𝑓𝑖+1 𝜑

The jacobian matrix of the composition (𝜑 ◦ 𝑓𝑖+1) ◦ (𝜑 ◦ 𝑓𝑖) is

((𝜑 ◦ 𝑓𝑖+1) ◦ (𝜑 ◦ 𝑓𝑖))(𝑥) = 𝐽 (𝜑 ◦ 𝑓𝑖+1)((𝜑 ◦ 𝑓𝑖)(𝑥)) ⋅ 𝐽 (𝜑 ◦ 𝑓𝑖)(𝑥) =
= 𝐽 (𝜑 ◦ 𝑓𝑖+1)(𝑧) ⋅ 𝐽 (𝜑 ◦ 𝑓𝑖)(𝑥)

or 𝑥 = (𝑥1,… , 𝑥𝑘𝑖), 𝑦 = 𝑓𝑖(𝑥) and 𝑧 = (𝜑 ◦ 𝑓𝑖)(𝑥) in order to shorten the
otation. By application of the formulae shown in Proposition 5.3, the
acobian is

((𝜑 ◦ 𝑓𝑖+1) ◦ (𝜑 ◦ 𝑓𝑖))(𝑥) = 𝐽 (𝜑 ◦ 𝑓𝑖+1)(𝑧) ⋅ 𝐽 (𝜑 ◦ 𝑓𝑖)(𝑥) =

𝜑′,… , 𝜑′)(𝑧) ⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑤[𝑖+2]
11 … 𝑤[𝑖+2]

1𝑘𝑖+1

⋮ ⋱ ⋮

𝑤[𝑖+2]
𝑟𝑖+11

… 𝑤[𝑖+2]
𝑟𝑖+1𝑘𝑖+1

⎞

⎟

⎟

⎟

⎟

⎠

(𝜑′,… , 𝜑′)(𝑦) ⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑤[𝑖+1]
11 … 𝑤[𝑖+1]

1𝑘𝑖

⋮ ⋱ ⋮

𝑤[𝑖+1]
𝑟𝑖1

… 𝑤[𝑖+1]
𝑟𝑖𝑘𝑖

⎞

⎟

⎟

⎟

⎟

⎠

This ends the proof.

The most straightforward conclusion from Propositions 5.3 and 5.4
s that a way to generate a monotonic network is to limit its weights
o be non-negative and to impose that activation function to be mono-
onic. The purpose of explicitly stating the relationship of dependence
8

etween the partials of 𝐹 and the derivative of the activation function
ogether with the sign of the weights, is to provide material for other
onditions to be demonstrated.

After the exposition in this subsection of the benefits of monotonic-
ty, a further conclusion is that monotonicity can be presumed for
ctivation functions:

roposition 5.5. Activation should be a monotonically nondecreasing
unction.

. Main result

As mentioned, our main target is to set conditions under which
he ANN minimising algorithm can be run sequentially. To do this, as
n application of all the results that have been shown above, we can
lready prove the following

heorem 6.1 (Any 𝑛 − 𝐿 − 1 multilayered ANN is separable). Under
he premise that the activation function is non-decreasing, any 𝑛 − 𝐿 − 1

multilayered ANN is a separable function as composition of parametric
functions.

Proof. Written as a composition of parametric functionals

𝐹 = 𝜑 ◦ 𝑓𝐿+1 ◦𝜑 ◦ 𝑓𝐿 ◦ … ◦𝜑 ◦ 𝑓1

with 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑖 = 1,… , 𝐿, 𝑓𝐿+1 ∶ R𝑟𝐿+1 → R affine maps and 𝜑
the (activation) function (according to Corollary 3.4) by the associative
law for composition of functions, any 𝑛 − 𝐿 − 1 ANN can be expressed
as a composition of functional pairs:

𝐹 = (𝜑 ◦ 𝑓𝐿+1) ◦ (𝜑 ◦ 𝑓𝐿) ◦ … ◦ (𝜑 ◦ 𝑓1).

Indeed, each pair (𝜑 ◦ 𝑓𝑖) is a left composition of a non-decreasing
function 𝜑 (𝜑 must be non-decreasing by Proposition 5.5) with a
separable one 𝑓𝑖 (according to Proposition 5.2 from which any affine
map is separable). In consequence, by Theorem 4.3, each functional
pair (𝜑 ◦ 𝑓𝑖) is a separable function. Finally, by applying Corollary 4.5,
𝐹 is separable.

As mentioned before, non-decreasing DNNs are most demanded.
Hence, a straightforward consequence of the above result is the fol-
lowing:

Corollary 6.2. As long as the activation function 𝜑 is non-decreasing, the
𝐹 is a monotonic network.

Let us return for a moment to the original definition of ANN in
terms of coupled cell networks (Definition 3.6) where the transition
law between one layer and the next one is the dynamical system

𝑥𝑖+1 = 𝜑 ◦ 𝑓𝑖(𝑥𝑖) = 𝜑(𝑊 𝑖+1𝑥𝑖 + 𝑏𝑖+1).

Thus, as a consequence of Theorem 6.1, one has the following

Corollary 6.3. In any 𝑛 − 𝐿 − 𝑚 multilayered ANN (viewed as CCN by
Definition 3.6) the transition function representing the dynamics between
layers, 𝜑 ◦ 𝑓𝑖, 𝑖 = 1,… , 𝐿, is separable as long as the 𝜑 is non-decreasing.

Proof. Throughout the proof Theorem 6.1 it has been proved that any
functional pair (𝜑 ◦ 𝑓𝑖) composed of activation function and affine map
is separable.

Table 1 allows us to visualise the potential applicability of DP mode
to the ANN underlying minimisation process through the comparison
between both general setups. For this, the differentiate equation 𝑥𝑖+1 =
ℎ(𝑥𝑖,𝑊 𝑖+1, 𝑖) is a simple way of highlighting the dependence of the
transition law, formerly referred to as 𝑥𝑖+1 = 𝜑 ◦ 𝑓𝑖(𝑥𝑖) = 𝜑(𝑊 𝑖+1𝑥𝑖 +
𝑏𝑖+1)(= ℎ(𝑥𝑖,𝑊 𝑖+1, 𝑖)) for affine maps 𝑓𝑖 ∶ R𝑘𝑖 → R𝑟𝑖 , 𝑓𝑖(𝑥𝑖) =

[𝑖+1] [𝑖+1]
𝑊 𝑥 + 𝑏 and 𝜑 a non-linear function. Note that the objective

Neurocomputing 559 (2023) 126785J. García Cabello
Table 1
ANN minimisation algorithm on DP mode.

DP multi-stage minimisation problem ANN underlying minimisation problem

𝑀𝑖𝑛
(𝑢,𝑥)

𝑔(𝑥, 𝑢)

subject to 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑡)

𝑡 = 0,… , 𝑇 − 1
𝑥(0) = 𝑥0
𝐱 = (𝑥(0),… , 𝑥(𝑇))
𝐮 = (𝑢(0),… , 𝑢(𝑇 − 1))

𝑀𝑖𝑛
𝑊 𝑡 ,𝑏𝑡

𝐸(𝑥) = 𝐹 (𝑥) − 𝛼(𝑥)

subject to 𝑥𝑖+1 = ℎ(𝑥𝑖 ,𝑊 𝑖+1 , 𝑖)
= 𝜑◦𝑓𝑖(𝑥𝑖) =
= 𝜑(𝑊 𝑖+1𝑥𝑖 + 𝑏𝑖+1)

𝑖 = 1,… , 𝐿
𝑓𝑖 affine, 𝜑 activation
𝑥𝑖 ∈ 𝐾 ⊆ R𝑘𝑖

𝑊 𝑖+1 ∈ M𝑟𝑖×𝑘𝑖

function has been expressed simply as 𝐸(𝑥) = 𝐹 (𝑥) − 𝛼(𝑥) (instead of
𝐸(𝑥) = |𝐹 (𝑥) − 𝛼(𝑥)|) for the relationship between the extrema of a
given function and its opposite (once the minimum 𝑚 of a function has
been found, −𝑚 is the minimum of the opposite function).

7. Conclusions

This manuscript presents an alternative to the classical training
solutions for Deep Neural Networks (DNN), for which the standard
gradient-based algorithms may not be efficient because of the raised
computational expense of the increase in the number of layers. Specif-
ically, an in-depth study to find conditions under which the under-
lying ANN minimisation problem can be addressed from a Dynamic
Programming (DP) perspective is provided.

In this line, we have shown that ANNs with monotonic activation
are separable when regarded as parametric functions. Additionally, for
ANNs viewed as network representations of a dynamical system (CCNs),
the transmission-of-signal law has also been proved to be separable as
long as the activation function is monotone non-decreasing. In order
to reach these results, the theoretical framework used has considered
ANNs as a composition of an even number of parametric functions.
Such an abstract representation makes it easier to analyse ANNs from
many other perspectives (universal approximation issues, inverse prob-
lem solving) which has led to a general improvement in the knowledge
in and performance of ANNs.

In this work, ANNs have also been regarded as universal approxi-
mators of continuous functions. In order to demonstrate the validity of
the approach proposed, the error function has been treated in its sim-
plest structure (see Lemma 4.2) for displaying the strong dependence
between error 𝐸 and target function 𝛼. This makes it extremely difficult
to establish generalistic conditions under which 𝐸 is separable that go
beyond those obtained in Theorem 6.1.

However, for future research, requirements on 𝛼 (which in the first
instance, must be continuous and defined in a compact set in order to
apply the UAT) should be explored in the sense that they enable the
error to be a separable function. For this, 𝛼 should intuitively verify
the same conditions as any objective function of a DP problem: to be
separable, i.e., to decompose –in some way– into certain univariate
functions. This is precisely what is established for 𝛼 in the represen-
tation theorems that are the basis of the UAT theorem (Theorem 4.1).
In the discrete case, Kolmogorov’s Theorem, Sprecher’s version, and
Irie–Miyake’s Theorem for continuous contexts and integrable functions
(𝐿2-integrable) are:

Theorem 7.1 (Kolmogorov’s Theorem). Any continuous function 𝑓 ∶
[0, 1] × (𝑛)

⋯ × [0, 1] → R, 𝑛 ≥ 2, 𝑓
(

𝑥1,… , 𝑥𝑛
)

, can be decomposed as

𝑓
(

𝑥1,… , 𝑥𝑛
)

=
2𝑛+1
∑

𝑗=1
𝜒𝑗

(𝑛
∑

𝑖=1
𝜑𝑖𝑗

(

𝑥𝑖
)

)

,

where both 𝜒𝑗 , 𝜑𝑖𝑗 are continuous univariate functions and 𝜑𝑖𝑗 are mono-
tone.
9

Theorem 7.2 (Sprecher’s Theorem). Any continuous function 𝑓 ∶ [0, 1] ×
(𝑛)…× [0, 1] → R, 𝑛 ≥ 2, 𝑓

(

𝑥1,… , 𝑥𝑛
)

, can be represented as

𝑓
(

𝑥1,… , 𝑥𝑛
)

=
2𝑛+1
∑

𝑗=1
𝜒

(𝑛
∑

𝑖=1
𝜆𝑖𝜑

(

𝑥𝑖 + 𝜖(𝑗 − 1)
)

+ 𝑗 − 1

)

,

for a real, monotonically increasing function 𝜑(𝑥) which has associated a
rational number 𝜖, 0 < 𝜖 < 𝛿, given such a 𝛿, and with the property that
𝜑[0, 1] = [0, 1].

Theorem 7.3 (Irie–Miyake’s Theorem). Let 𝑓
(

𝑥1,… , 𝑥𝑛
)

∈ 𝐿2 (R𝑛) and
𝜑(𝑥) ∈ 𝐿1(R). Let 𝛹 (𝜉), 𝐹

(

𝑤1,… , 𝑤𝑛
)

be the Fourier transforms of 𝜑(𝑥)
and 𝑓

(

𝑥1,… , 𝑥𝑛
)

, respectively. If 𝛹 (1) ≠ 0, then

𝑓
(

𝑥1,… , 𝑥𝑛
)

= ∫R𝑛+1
𝜓

(𝑛
∑

𝑖=1
𝑥𝑖𝑤𝑖 −𝑤0

)

1
(2𝜋)𝑛𝛹 (1)

× 𝐹
(

𝑤1,… , 𝑤𝑛
)

𝑒𝑖𝑤0𝑑𝐰

where 𝑑𝐰 = 𝑑𝑤0𝑑𝑤1 … 𝑑𝑤𝑛.

Note that these representation theorems state that any continuous
function defined on [0, 1] × (𝑛)… × [0, 1] (a compact set) can be ap-
proximated by ANNs, with 𝜑 as activation function. In the case of
Irie–Miyake’s Theorem, 𝑤0 is the bias and 𝑤𝑖 are the weights.

CRediT authorship contribution statement

Julia García Cabello: Solely responsible, Writing and preparation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Financial support from the Spanish Ministry of Universities. ‘‘Dis-
ruptive group decision making systems in fuzzy context: Applications
in smart energy and people analytics’’ (PID2019-103880RB-I00). Main
Investigator: Enrique Herrera Viedma, and Junta de Andalucía. ‘‘Excel-
lence Groups’’, Spain (P12.SEJ.2463) and Junta de Andalucía, Spain
(TIC186) are gratefully acknowledged. Research partially supported
by the ‘‘Maria de Maeztu’’ Excellence Unit IMAG, reference CEX2020-
001105-M, funded by MCIN/AEI/10.13039/501100011033/.

References

[1] C.F. Higham, D.J. Higham, Deep learning: An introduction for applied math-
ematicians, Siam Rev. 61 (4) (2019) 860–891, http://dx.doi.org/10.1137/
18M1165748.

[2] C. Ma, S. Wojtowytsch, L. Wu, et al., Towards a mathematical understanding of
neural network-based machine learning: what we know and what we don’t, 2020,
arXiv preprint arXiv:2009.10713, http://dx.doi.org/10.48550/arXiv.2009.10713.

[3] R. Bellman, Dynamic Programming, Press Princeton, New Jersey, 1957, http:
//dx.doi.org/10.1126/science.153.3731.34.

[4] M.L. Hussein, M.A. Abo-Sinna, Decomposition of multiobjective programming
problems by hybrid fuzzy-dynamic programming, Fuzzy Sets and Systems 60 (1)
(1993) 25–32, http://dx.doi.org/10.1016/0165-0114(93)90286-Q.

[5] E. Nijholt, B. Rink, J. Sanders, Center manifolds of coupled cell networks, SIAM
Rev. 61 (1) (2019) 121–155, http://dx.doi.org/10.1137/18M1219977.

[6] P. Saratchandran, Dynamic programming approach to optimal weight selection
in multilayer neural networks, IEEE Trans. Neural Netw. 2 (4) (1991) 465–467,
http://dx.doi.org/10.1109/72.88167.

[7] M. Sun, Training multilayer feedforward neural networks using dynamic pro-
gramming, in: Proceedings of 28th Southeastern Symposium on System Theory,
IEEE, 1996, pp. 163–167, http://dx.doi.org/10.1109/SSST.1996.493491.

http://dx.doi.org/10.1137/18M1165748
http://dx.doi.org/10.1137/18M1165748
http://dx.doi.org/10.1137/18M1165748
http://arxiv.org/abs/2009.10713
http://dx.doi.org/10.48550/arXiv.2009.10713
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1016/0165-0114(93)90286-Q
http://dx.doi.org/10.1137/18M1219977
http://dx.doi.org/10.1109/72.88167
http://dx.doi.org/10.1109/SSST.1996.493491

Neurocomputing 559 (2023) 126785J. García Cabello
[8] L. Cooper, M.W. Cooper, Introduction To Dynamic Programming: International
Series in Modern Applied Mathematics and Computer Science, Vol. 1, Elsevier,
2016.

[9] S. Iwamoto, Sequential minimaximization under dynamic programming structure,
J. Math. Anal. Appl. 108 (1) (1985) 267–282, http://dx.doi.org/10.1016/0022-
247X(85)90023-X.

[10] L. Mitten, Composition principles for synthesis of optimal multistage processes,
Oper. Res. 12 (4) (1964) 610–619, http://dx.doi.org/10.1287/opre.12.4.610.

[11] T.L. Morin, Monotonicity and the principle of optimality, J. Math. Anal. Appl.
88 (2) (1982) 665–674, doi:0022 247X/82/080665.

[12] D. Li, Multiple objectives and non-separability in stochastic dynamic program-
ming, Internat. J. Systems Sci. 21 (5) (1990) 933–950, http://dx.doi.org/10.
1080/00207729008910422.

[13] D. Li, Y.Y. Haimes, The envelope approach for multiobjeetive optimization
problems, IEEE Trans. Syst. Man Cybern. 17 (6) (1987) 1026–1038, http://dx.
doi.org/10.1109/TSMC.1987.6499313.

[14] M. Golubitsky, I. Stewart, Nonlinear dynamics of networks: the groupoid formal-
ism, Bull. Am. Math. Soc. 43 (3) (2006) 305–364, http://dx.doi.org/10.1090/
S0273-0979-06-01108-6.

[15] M. Golubitsky, I. Stewart, A. Török, Patterns of synchrony in coupled cell
networks with multiple arrows, SIAM J. Appl. Dyn. Syst. 4 (1) (2005) 78–100,
http://dx.doi.org/10.1137/040612634.

[16] I. Stewart, M. Golubitsky, M. Pivato, Symmetry groupoids and patterns of
synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst. 2 (4) (2003)
609–646, http://dx.doi.org/10.1137/S1111111103419896.

[17] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function, Neural
Netw. 6 (6) (1993) 861–867, http://dx.doi.org/10.1016/S0893-6080(05)80131-
5.

[18] J.-R. Cano, P.A. Gutiérrez, B. Krawczyk, M. Woźniak, S. García, Monotonic
classification: An overview on algorithms, performance measures and data sets,
Neurocomputing 341 (2019) 168–182, http://dx.doi.org/10.48550/arXiv.1811.
07155.

[19] W. Kotlowski, R. Slowinski, On nonparametric ordinal classification with mono-
tonicity constraints, IEEE Trans. Knowl. Data Eng. 25 (11) (2012) 2576–2589,
http://dx.doi.org/10.1109/TKDE.2012.204.
10
[20] J. Sill, Monotonic networks, in: Proceedings of the 1997 Conference on Advances
in Neural Information Processing Systems 10, NIPS ’97, MIT Press, Cambridge,
MA, USA, 1998, pp. 661–667.

Dr. Julia García Cabello Born in Andalusia (Spain). Dr.
Julia García Cabello held a Ph.D. in Pure and Applied
Mathematics from the University of Granada where she has
been teaching since 1990. Prior to arriving at the world of
Applied Mathematics, she developed a successful career in
Pure Algebra (known as JG Cabello), publishing in flagship
journals on Algebraic Homotopy Theory. Today, she is fully
tenured professor and full researcher at the Applied Math-
ematics Department of the University of Granada (Spain),
where she teaches undergraduate, MBA and Executive MBA
Dr. Julia García Cabello courses and conducts seminars on a
wide range of mathematical business-related topics. She has
been also Academic Secretary of the Department of Applied
Mathematics till 2023.

She is full researcher of Andalusian Research Institute
in Data Science and Computational Intelligence. Her current
research interests include the application of Applied Mathe-
matics to the Resolution of Real Problems, Decision Making,
Theoretical Computer Science and Operational Research.
To this regard, her mathematical baggage (from the Pure
Algebra to Applied Mathematics) makes Dr. Julia García
Cabello’s research characterised by using a wide range of
mathematical tools, from stochastic processes to dynamic
systems, with the purpose of solving the stated real problem.
Dr. Julia García Cabello is also regular reviewer in journals
of Applied Mathematics and Intelligent and Information
Systems.

http://refhub.elsevier.com/S0925-2312(23)00908-6/sb8
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb8
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb8
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb8
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb8
http://dx.doi.org/10.1016/0022-247X(85)90023-X
http://dx.doi.org/10.1016/0022-247X(85)90023-X
http://dx.doi.org/10.1016/0022-247X(85)90023-X
http://dx.doi.org/10.1287/opre.12.4.610
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb11
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb11
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb11
http://dx.doi.org/10.1080/00207729008910422
http://dx.doi.org/10.1080/00207729008910422
http://dx.doi.org/10.1080/00207729008910422
http://dx.doi.org/10.1109/TSMC.1987.6499313
http://dx.doi.org/10.1109/TSMC.1987.6499313
http://dx.doi.org/10.1109/TSMC.1987.6499313
http://dx.doi.org/10.1090/S0273-0979-06-01108-6
http://dx.doi.org/10.1090/S0273-0979-06-01108-6
http://dx.doi.org/10.1090/S0273-0979-06-01108-6
http://dx.doi.org/10.1137/040612634
http://dx.doi.org/10.1137/S1111111103419896
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.48550/arXiv.1811.07155
http://dx.doi.org/10.48550/arXiv.1811.07155
http://dx.doi.org/10.48550/arXiv.1811.07155
http://dx.doi.org/10.1109/TKDE.2012.204
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb20
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb20
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb20
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb20
http://refhub.elsevier.com/S0925-2312(23)00908-6/sb20

	Improved deep neural network performance under dynamic programming mode
	Introduction
	Problem Formulation
	DP multi-stage single-objective optimisation problems
	Principle of Optimality (PO)
	Separable functions

	Neural Networks as composition of an even number of parametric functions
	Study on n-L-1 ANNs to use PO
	n-L-1 ANNs as Universal Approximators
	n-L-1 ANNs as composition of functions

	Study on ANN functional components to use PO
	Conditions on affine functions
	Conditions on activation functions

	Main Result
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

