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A B S T R A C T

In the last years, the weakly supervised paradigm of multiple instance learning (MIL) has become very popular
in many different areas. A paradigmatic example is computational pathology, where the lack of patch-level
labels for whole-slide images prevents the application of supervised models. Probabilistic MIL methods based
on Gaussian Processes (GPs) have obtained promising results due to their excellent uncertainty estimation
capabilities. However, these are general-purpose MIL methods that do not take into account one important fact:
in (histopathological) images, the labels of neighboring patches are expected to be correlated. In this work,
we extend a state-of-the-art GP-based MIL method, which is called VGPMIL-PR, to exploit such correlation. To
do so, we develop a novel coupling term inspired by the statistical physics Ising model. We use variational
inference to estimate all the model parameters. Interestingly, the VGPMIL-PR formulation is recovered when
the weight that regulates the strength of the Ising term vanishes. The performance of the proposed method is
assessed in two real-world problems of prostate cancer detection. We show that our model achieves better
results than other state-of-the-art probabilistic MIL methods. We also provide different visualizations and
analysis to gain insights into the influence of the novel Ising term. These insights are expected to facilitate the
application of the proposed model to other research areas.
1. Introduction

Multiple instance learning (MIL) has caught great attention in fields
where there is a challenging lack of labeled data. Although it has
been applied in many different areas [1], we will focus on the case
of computational pathology. In the last years, thanks to the increasing
digitalization of whole-slide images (WSIs), the field of computational
pathology is developing computer-aided diagnosis systems based on
machine learning for cancer detection [2,3]. The goal of computational
pathology is to provide a fast and reliable diagnosis for the most pro-
totypical cases, letting the pathologists focus on the most challenging
ones. Ultimately, this will enable a much wider access to early cancer
diagnosis [4].

In order to make accurate predictions, machine learning classifica-
tion methods need to be trained using a labeled set of instances [5].
In the case of computational pathology, these instances are typically
patches from the WSIs (and not the complete images themselves) [6–
8]. The reason for this is twofold: (i) it is useful to have predictions at
patch level in order to know where exactly in the image the cancer
is located, and (ii) WSIs are extremely large and cannot be directly
fed to a classifier. As a consequence, notice that expert pathologists

∗ Corresponding author.
1 Work done during the Margarita Salas fellowship outgoing phase at Cambridge University, UK.

must label every single patch in the training data as cancerous or not
(we will consider the binary problem cancer/no-cancer throughout this
work). Given the large number of patches and the limited availability
of pathologists, this becomes a daunting task in real practice [9].

To address this problem, different weakly supervised learning
paradigms have been proposed in recent years. Here we focus on MIL,
which has become very popular in the medical domain [8,10]. The idea
in MIL is that instances are grouped in bags, and only bag labels are
needed for training. In the case of WSIs, all the patches coming from
the same image are considered a bag. Therefore, the labeling workload
on pathologists decreases enormously: from labeling every single patch,
to only labeling the complete WSI as cancerous or not.

Different machine learning algorithms have been developed to learn
under the MIL setting. Notice that dealing with uncertainty is essential
in MIL models, since instance-level labels are unknown. To deal with
uncertainties, different probabilistic methods have been developed,
such as Dirichlet Process Mixture Models [11], Markov chain [12],
Monte-Carlo chain [13,14] and Gaussian Processes (GPs) [15,16]. In
particular, GPs have attracted plenty of attention in the last years,
due to their expressive power and their capacity to handle uncertainty
vailable online 17 October 2023
031-3203/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.patcog.2023.110057
Received 22 May 2022; Received in revised form 7 April 2023; Accepted 13 Octob
er 2023

https://www.elsevier.com/locate/pr
http://www.elsevier.com/locate/pr
https://doi.org/10.1016/j.patcog.2023.110057
https://doi.org/10.1016/j.patcog.2023.110057
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.110057&domain=pdf


Pattern Recognition 146 (2024) 110057P. Morales-Álvarez et al.

v

p
r
t
i
d
f

2

P
t
V
S
l
s
i
a

E
(
h
v
i
i
a
p

w
i
{

i
c
l
a

A
l
i
u

2

c
c
w

2

c
f
l
g

l
W
c
t

I
l
w
G

u
𝐊

in a principled manner. Moreover, we are interested in this type of
probabilistic models, since they will allow for introducing correlations
in a theoretically sound way.

Among GP-based MIL methods, we will focus on the two most
successful ones: VGPMIL and VGPMIL-PR. VGPMIL [17] was proposed
in 2017 to overcome the limitations of two earlier formulations [15,
16] (namely, the use of the inefficient Laplace approximation and
the impossibility to obtain instance-level predictions, respectively). In
short, VGPMIL relies on variational inference and allows for closed-
form updates of its parameters. However, the use of the logistic function
implies that VGPMIL needs to resort to a theoretical approximation
during inference (namely, the Jaakola bound [17, Eq. (10)]). As shown
in [18], such approximation hurts predictive performance in practice.
As an alternative, the authors of [18] propose the utilization of the
probit function, which removes the need for the aforementioned ap-
proximation. This method, which will be referred to as VGPMIL-PR,
is considered the current state of the art among probabilistic MIL
approaches.

Methods such as VGPMIL and VGPMIL-PR are general-purpose MIL
models that can be used in any MIL problem (that is, whenever the label
is known only at bag level, see different use-cases in [17,19]). However,
the underlying MIL assumption that the labels of the instances in a bag
are independent of each other is unrealistic in many real problems. For
example, in the particular case of WSI images (and in many image-
related MIL problems), the labels of neighboring patches are expected
to be correlated [20]. We hypothesize that the predictive performance
of MIL methods can be enhanced by incorporating this type of prior
knowledge into the model.

In this work, we introduce a novel GP-based MIL algorithm that
takes into account the correlation between the labels of neighboring
patches, and we apply it to the real-world problem of prostate can-
cer detection on histopathological images. We model the correlation
through a coupling term inspired by the Ising model [5, Section 19.4.1],
an statistical physics method that has found several applications in
computer vision [20,21]. Our GP-MIL modeling builds on VGPMIL-PR,
so our method will be referred to as VGPMIL-PR-I (Ising). In VGPMIL-
PR-I, a hyperparameter 𝜆 regulates the influence of the Ising-inspired
terms. Variational inference is used to estimate the model parameters,
and the update formulas of VGPMIL-PR are recovered when 𝜆 → 0
(that is, when the influence of the coupling term vanishes). In the
experimental section, we show that VGPMIL-PR-I outperforms the state-
of-the-art GP-based MIL approaches VGPMIL and VGPMIL-PR when
predicting at both instance and bag levels, while keeping an analogous
computational cost. Moreover, to gain insights into the influence of
the new coupling term, we analyze the role of 𝜆, and provide several
isualizations for the predictions.

The rest of the paper is organized as follows. Section 2 presents the
robabilistic model and inference for the novel VGPMIL-PR-I. Closely
elated methods such as VGPMIL and VGPMIL-PR are also discussed in
his section. Section 3 focuses on the empirical evaluation of the model,
ncluding the data description, the experimental framework, and the
iscussion of results. Section 4 provides the main conclusions and some
uture outlook.

. Probabilistic model and inference

In this section we present the theoretical description for VGPMIL-
R-I. Specifically, Section 2.1 explains the problem formulation and
he main notation. Section 2.2 explains the closely-related methods
GPMIL and VGPMIL-PR, which are at the base of our formulation.
ection 2.3 introduces the novel coupling term that accounts for patch
abel correlation, which is used to define VGPMIL-PR-I. Section 2.4
hows how to perform variational inference to estimate the parameters
n VGPMIL-PR-I. Section 2.5 explains the procedure to make predictions
t both instance and bag levels.
2

2.1. Notation and problem formulation

Our notation follows the state-of-the-art work [22]. The training
data is given by a set of bags 𝐗 = {𝐗𝑏}𝑏∈ and their corresponding
labels 𝐲 = {𝑦𝑏}𝑏∈. We deal with a binary problem, i.e. 𝑦𝑏 ∈ {0, 1}.
ach bag 𝐗𝑏 = {𝐱𝑖}𝑖∈𝑏 contains |𝑏| instances, i.e. 𝑏 = {𝑖1,… , 𝑖

|𝑏|} ⊆ [𝑁]
𝑁 is the total amount of instances). Notice that different bags may
ave different amounts of instances. Each instance 𝐱𝑖 is given by a
ector in R𝐷. In the MIL setting, one assumes that each instance has
ts (unknown) label ℎ𝑖 ∈ {0, 1}. We write 𝐡𝑏 for the labels of all the
nstances belonging to bag 𝑏. The MIL labeling assumption dictates that
bag is considered positive (class 1) if at least one of its instances is

ositive. Mathematically, this is

p(𝑦𝑏|𝐡𝑏) = 1[𝑦𝑏 = max
𝑖∈𝑏

ℎ𝑖], (1)

here 1[⋅] is the indicator function (i.e. it equals one when its argument
s true and zero otherwise). Finally, we will collectively denote 𝐡 =
𝐡𝑏}𝑏∈.

In the case of WSIs, each 𝐗𝑏 is an image, which is composed of
ts patches {𝐱𝑖}𝑖∈𝑏. Each patch has an unknown label ℎ𝑖 (0 for non-
ancerous and 1 for cancerous), and we only have access to the bag
abel 𝑦𝑏 (whether the image is cancerous or not, i.e. whether it contains
t least one patch that is cancerous).

The goal in MIL is to train a model based only on bag labels {𝑦𝑏}𝑏∈.
nd such model must be able to predict at both instance and bag

evels. That is, given a previously unseen instance 𝐱⋆ ∈ R𝐷, we are
nterested in the probability p(ℎ⋆ = 1). Likewise, given a previously
nseen complete bag 𝐗⋆, we are interested in p(𝑦⋆ = 1).

.2. Background: VGPMIL and VGPMIL-PR

As mentioned in the introduction, our model is inspired by two
losely related methods: VGPMIL and VGPMIL-PR. To understand our
ontribution, it is essential to fully understand their formulations,
hich we explain next.

.2.1. VGPMIL formulation
VGPMIL was introduced in [17]. The idea is to consider a sparse GP

lassification model [23] to describe the relationship between instance
eatures 𝐗 and their (unknown) labels 𝐡. Then, an additional bag
ikelihood must be considered to model the (observed) bag labels 𝐲
iven the instance labels 𝐡. Both components are described next.
The sparse GP classification model. Instances 𝐱𝑖 are associated

atent variables 𝑓𝑖 ∈ R which are modeled through a GP, 𝑓 ∼ (0, 𝜅).
e write 𝜅 for the GP kernel, which encodes the properties of the

onsidered functions. Then, the instance labels ℎ𝑖 are defined from 𝑓𝑖
hrough a classification likelihood 𝜈:

p(ℎ𝑖|𝑓𝑖) = 𝜈(𝑓𝑖)ℎ𝑖 (1 − 𝜈(𝑓𝑖))1−ℎ𝑖 . (2)

Specifically, VGPMIL uses the logistic function 𝜈(𝑥) = (1 + 𝑒−𝑥)−1.
ntuitively, a large (resp. low) value of 𝑓𝑖 implies that the class is
ikely to be one (resp. zero). Moreover, since standard GPs scale poorly
ith the number of training instances 𝑁 , VGPMIL makes use of sparse
Ps [23], which summarize the training data through 𝑀 ≪ 𝑁 inducing

points. These inducing points 𝐮 = {𝑢1,… , 𝑢𝑀} represent the value of
the GP at some inducing points locations 𝐙 = {𝐳1,… , 𝐳𝑀} (just like
𝐟 = {𝑓1,… , 𝑓𝑁} are the GP values at 𝐗 = {𝐱1,… , 𝐱𝑁}). Therefore, the
distributions of 𝐮 and 𝐟 |𝐮 are:

p(𝐮) =  (𝐮|𝟎,𝐊𝐙𝐙), (3)

p(𝐟 |𝐮) =  (𝐟 |𝐊𝐗𝐙𝐊−1
𝐙𝐙𝐮,). (4)

The expression of  is given by the particular sparse GP approach
sed in VGPMIL, which is FITC [23], so we have  = diag(𝐊𝐗𝐗 −

𝐊−1𝐊 ). As is standard in GP literature, we are writing 𝐊 for
𝐗𝐙 𝐙𝐙 𝐙𝐗 𝐗𝐗
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Fig. 1. Probabilistic graphical model for VGPMIL-PR (a) and VGPMIL-PR-I (b). Gray nodes are observed variables, and white ones are latent variables to be estimated. The
main difference is that VGPMIL-PR-I introduces correlation between instances in the same bag. Therefore, the distribution of 𝐦𝑏 given 𝐟𝑏 does not factorize across instances. The
correlation is introduced through a novel term inspired by the Ising model, see Section 2.3 for details.
the 𝑁 × 𝑁 covariance matrix 𝐊𝐗𝐗 = (𝜅(𝐱𝑖, 𝐱𝑗 ))1≤𝑖,𝑗≤𝑁 . The definitions
for 𝐊𝐗𝐙 and 𝐊𝐙𝐙 are analogous.

The bag likelihood. VGPMIL introduces the following parameteri-
zation to model the bag labels from the instance labels:

p(𝑦𝑏|𝐡𝑏) =
𝐻𝐺𝑏

𝐻 + 1
, (5)

here 𝐺𝑏 ∶= 1[𝑦𝑏 = max𝑖∈𝑏 ℎ𝑖] and 𝐻 is a large and fixed value (in their
examples, they use 𝐻 = 100). Eq. (5) approximates the MIL assumption
introduced in Eq. (1): if some instance label ℎ𝑖 is one, then the bag label
𝑦𝑏 is one with very high probability (namely, with probability 𝐻

𝐻+1 ).
Otherwise (that is, if all instance labels ℎ𝑖 are zero), the bag label is
one with very low probability (namely, 1

𝐻+1 ).
In summary, VGPMIL is given by Eqs. (3), (4), (2) and (5). For

additional details, the interested reader is referred to the original
work [17].

2.2.2. VGPMIL-PR formulation
VGPMIL-PR was recently proposed in [18] as an improvement over

VGPMIL. Namely, the logistic function used by VGPMIL in Eq. (2)
is not conjugate with the Gaussian distribution coming from the GP,
recall Eqs. (3)–(4). This means that, in order to achieve mathemat-
ical tractability, VGPMIL needs to resort to the Jaakola bound [17,
Eq. (10)]. However, the use of this bound introduces an approxima-
tion in the training objective. As shown in [18], such approximation
damages the predictive performance in practice. Consequently, the
authors of [18] introduce an alternative formulation based on the
probit function, VGPMIL-PR. They show that, via a variable augmenta-
tion approach, VGPMIL-PR allows for directly optimizing the training
objective (without approximations).

More specifically, VGPMIL-PR uses the probit function 𝜈(𝑥) =
∫ 𝑥
−∞  (𝑡|0, 1)d𝑡 in Eq. (2). Also, the bag likelihood is given by Eq. (1)

(instead of Eq. (5)). Then, to circumvent the need for approximations,
VGPMIL-PR leverages a variable augmentation approach [24]. Namely,
for each instance we introduce a new variable 𝑚𝑖 ∈ R between 𝑓𝑖 and
ℎ𝑖, which is defined as 𝑚𝑖 ∼  (𝑓𝑖, 1). Since we are using a probit
likelihood, we have that ℎ𝑖 = 1[𝑚𝑖 > 0]. Analogously to the rest of
variables, we write 𝐦𝑏 = {𝑚𝑖}𝑖∈𝑏 for all the 𝑚𝑖’s inside bag 𝑏, and we
se 𝐦 = {𝐦𝑏}𝑏∈ to collectively denote all the 𝑚𝑖’s in the model. Then,
y marginalizing out 𝐡, we have:

p(𝐦|𝐟 ) =
∏

𝑏
p(𝐦𝑏|𝐟𝑏) =

∏

𝑏
 (𝐦𝑏|𝐟𝑏, 𝐼), (6)

p(𝐲|𝐦) =
∏

𝑏
p(𝑦𝑏|𝐦𝑏), (7)

where 𝐼 is the identity matrix (of size |𝑏|) and p(𝑦𝑏 = 0|𝐦𝑏) =
∏

𝑖∈𝑏 1[𝑚𝑖 < 0]. Importantly, these augmented variables 𝐦 will prove
extremely helpful to introduce the Ising correlation in the next section.

In summary, VGPMIL-PR is given by Eqs. (3), (4), (6) and (7).
3

Fig. 1(a) shows the probabilistic graphical model for VGPMIL-PR.
Fig. 2. A simplified illustration of an image composed by five patches: 𝑃 1,… , 𝑃5.

2.3. Correlating patch labels: VGPMIL-PR-I

As mentioned in the introduction, VGPMIL and VGPMIL-PR are
general MIL approaches that can be used in any MIL problem. Indeed,
there are plenty of applications where MIL methods can be used. For
instance, think of a recommendation system where a reviewer has not
evaluated every single item in the database, but has reviewed ‘‘groups’’
of them (e.g., he/she likes science-fiction movies, although he/she has
not rated individual movies). Consider also a task of anomaly detection
in which we do not have labels for individual transactions, but we only
know whether there was some anomalous behavior in a certain period
of time (which contains many different transactions).

Here we focus in the particular use-case of images, where bags are
images and their instances are their patches. In this case, there exists
very valuable information coming from the structure of the image itself,
which can be exploited in the model. For example, it is natural to think
that neighboring patches in the same image are likely to have similar
labels. The main goal of this work is to introduce such correlation into
the VGPMIL-PR formulation. To do so, we are inspired by the Ising
model.

The novel coupling term. The Ising model arose from statistical
physics to describe the behavior of magnets. In some magnets, called
ferro-magnets, neighboring spins tend to line up in the same direction,
whereas in other kinds of magnets, called anti-ferromagnets, the spins
are repelled from their neighbors [5]. This type of interactions based
on the Ising model have been used previously in machine learning and
computer vision to describe relationships between pixels of an image,
see e.g. [5,20,21]. However, to the best of our knowledge, they have
never been used in the context of MIL.

Our first idea was to consider an Ising model over the patch labels of
each image, {ℎ𝑖}𝑖∈𝑏. However, inference proved very challenging in this
case, due to the non-conjugacy of the Ising model and the GP-based MIL
formulation. As an alternative, we considered a continuous counterpart
of the Ising model over the variables 𝐦𝑏 = {𝑚𝑖}𝑖∈𝑏 introduced in
VGPMIL-PR, which are directly related to the patch labels (recall from
Section 2.2.2 that ℎ𝑖 = 1[𝑚𝑖 > 0]). Notice that such continuous

version of the Ising model corresponds to the well-known Conditional
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Autoregression (CAR) [25]. Importantly, as we will see in the rest of
this section, this alternative formulation yields a Gaussian distribution
on 𝐦𝑏, which can be treated analytically together with the GP-based
MIL model.

Specifically, we consider the following coupling term for each im-
age, which is defined over the augmented variables 𝐦𝑏, recall Sec-
tion 2.2.2:

(𝐦𝑏) = exp

⎛

⎜

⎜

⎜

⎝

−𝜆
2
⋅
∑

𝑖,𝑗∈𝑏
𝑖<𝑗

𝟏[𝑖, 𝑗 are contiguous] ⋅ (𝑚𝑖 − 𝑚𝑗 )2
⎞

⎟

⎟

⎟

⎠

=

=exp
(

−𝜆
2
𝐦⊺

𝑏𝐂𝑏𝐦𝑏

)

. (8)

Notice that (𝐦𝑏) is always in the range [0, 1], and it becomes close
to zero when the value of 𝑚 is very different for neighboring patches.
For the second equality in Eq. (8), notice that the sum only produces
quadratic terms in 𝑚, so it can be written as 𝐦⊺

𝑏𝐂𝑏𝐦𝑏 for some positive
semidefinite matrix 𝐂𝑏.

Since 𝑚 determines the label of each patch (recall from Section 2.2.2
that ℎ𝑖 = 1[𝑚𝑖 > 0]), the term (𝐦𝑏) can be used to favor ‘‘smoothness’’
in the labels associated to the different patches. Also, the hyperparame-
ter 𝜆, which can be set to any non-negative value, regulates the strength
of the coupling term: the larger 𝜆, the more importance is given to
differences in 𝑚. For example, when 𝜆 = 0, (𝐦𝑏) becomes constant
and it does not account for correlation between patch labels.

An example of (𝐦𝑏). To illustrate the proposed coupling term,
consider an image with five patches 𝑃1,… , 𝑃5 distributed as in Fig. 2.
In this case, the quadratic terms of 𝐦𝑏 are:

(𝑚1 − 𝑚2)2 + (𝑚1 − 𝑚3)2 + (𝑚2 − 𝑚4)2 + (𝑚3 − 𝑚4)2 + (𝑚4 − 𝑚5)2, (9)

and therefore we have:

𝐂𝑏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 −1 0 0
−1 2 0 −1 0
−1 0 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

In general, it is easy to compute the matrix 𝐂𝑏 for any given image.
Notice that it is always a positive semidefinite matrix, and thus it is
associated to a (singular) normal distribution.

The VGPMIL-PR-I formulation. To introduce the new coupling
erm (𝐦𝑏) in the MIL formulation, we modify Eq. (6) and define:

p(𝐦|𝐟 ) ∝
∏

𝑏
(𝐦𝑏) ⋅ (𝐦𝑏|𝐟𝑏, 𝐼). (11)

Notice that the probability of a configuration 𝐦𝑏 is proportional
to the coupling term (𝐦𝑏), which favors smoothness across labels of
neighboring patches. Decisively, since both (𝐦𝑏) and  (𝐦𝑏|𝐟𝑏, 𝐼) only
contain (the exponential of) quadratic terms in 𝐦𝑏, the new distribution
can be written as a Gaussian:

p(𝐦|𝐟 ) =
∏

𝑏
 (𝐦𝑏|𝜮𝑏𝐟𝑏,𝜮𝑏), (12)

with 𝜮𝑏 = (𝜆𝐂𝑏 + 𝐼)−1. Notice that this new formulation provides a
generalization of VGPMIL-PR. Namely, when 𝜆 → 0, we have that
𝜮𝑏 → 𝐼 and we recover Eq. (6).

In summary, the proposed model is given by Eqs. (3), (4), (12), and
(7). Notice also that, instead of FITC, in Eq. (4) we leverage the more
recent sparse GP approach introduced in [26]. Basically, this means
that  = 𝐊𝐗𝐗 −𝐊𝐗𝐙𝐊−1

𝐙𝐙𝐊𝐙𝐗 in Eq. (4). Our method will be referred to
as VGPMIL-PR-I (I denotes Ising). The probabilistic graphical model is
4

depicted in Fig. 1(b).
2.4. Variational inference

In order to make inference in the proposed model, we need to
compute the posterior distribution p(𝐮, 𝐟 ,𝐦|𝐲). However, this is not
analytically tractable due to the definition of the bag likelihood in
Eq. (7), which depends on the sign of the 𝑚𝑖’s. Following [17,18],
we leverage standard mean-field variational inference (VI) theory [27,
Section 10.1.1] to calculate an approximate posterior distribution that
factorizes as

q(𝐮, 𝐟 ,𝐦) = q(𝐮)p(𝐟 |𝐮)q(𝐦). (13)

Applying the well-known mean-field VI update equation [27, Eq. (10.9)]
we have that q(𝐮) and q(𝐦) can be iteratively computed as

q(𝐮) =  (𝐮|𝝁𝑢,𝜮𝑢), (14)

q(𝐦) ∝
∏

𝑏
p(𝑦𝑏|𝐦𝑏) (𝐦𝑏|𝝁𝐦𝑏 ,𝜮𝑏), (15)

where

𝜮𝑢 =
(

𝐊−1
𝐙𝐙 +𝐊−1

𝐙𝐙𝐊𝐙𝐗𝜮𝐊𝐗𝐙𝐊−1
𝐙𝐙

)−1 , (16)

𝝁𝑢 = 𝜮𝑢𝐊−1
𝐙𝐙𝐊𝐙𝐗Eq(𝐦)(𝐦), (17)

and
𝝁𝐦𝑏 = 𝜮𝑏𝐊𝑏𝐙𝐊−1

𝐙𝐙𝝁
𝑢. (18)

Here we are writing 𝜮 for the 𝑁 × 𝑁 block-diagonal matrix that
contains all the 𝜮𝑏’s, 𝑏 ∈ . Also, we are writing 𝐊𝑏𝐙 for the |𝑏| × 𝑀
matrix of covariances between 𝐗𝑏 and 𝐙. Very importantly, notice that
these update rules generalize those derived in [18] for VGPMIL-PR.
Namely, when 𝜆 → 0, we have that 𝜮𝑏,𝜮 → 𝐼 , and then Eqs. (14)–(18)
match eqs.(15)–(19) in [18].

All the computations involved in Eqs. (14)–(18) are straightforward,
except for Eq(𝐦)(𝐦). Indeed, each q(𝐦𝑏) is a multivariate Gaussian
truncated to (−∞, 0)|𝑏| (or R|𝑏| ⧵ (−∞, 0)|𝑏|, depending on whether 𝑦𝑏 =
0 or 𝑦𝑏 = 1, respectively). It is well-known that the expectation
of a truncated multivariate Gaussian cannot be obtained in closed-
form [28]. Notice that this is not an issue for VGPMIL-PR [18], where
the absence of Ising terms implies dealing with univariate Gaussians,
whose expectations can be analytically computed.

To overcome the problem, we first tried to leverage numerical
methods proposed in [29] to approximate the expectation for the
multivariate truncated case. However, these methods proved computa-
tionally too expensive to be integrated within our iterative calculation
of q(𝐮) and q(𝐦). Therefore, we decided to approximate the multivariate
Gaussian  (𝐦𝑏|𝝁𝐦𝑏 ,𝜮𝑏) by the factorized  (𝐦𝑏|𝝁𝐦𝑏 , diag(𝜮𝑏)) and uti-
lize the expression for one-dimensional truncated Gaussians. Although
such approximation reduces the influence of the Ising correlation at
this specific computation, notice that the coupling terms, which are
included in 𝜮𝑏, affect the update equations in more places across
Eqs. (16)–(18).

Specifically, the expression for each Eq(𝐦𝑏)(𝐦𝑏) is as follows. For
bags with 𝑦𝑏 = 0, we have that each q(𝑚𝑖), 𝑖 ∈ 𝑏, is a univariate
normal distribution  ((𝝁𝐦𝑏 )𝑖, (𝜮𝑏)𝑖𝑖) truncated to (−∞, 0). The expec-
tation of such a distribution is well-known and can be obtained in
closed-form [30]:

𝐸𝑖 = 𝜇𝑖 −
𝜙(𝜇𝑖∕𝜎𝑖)

1 −𝛷(𝜇𝑖∕𝜎𝑖)
𝜎𝑖, (19)

where 𝜙 and 𝛷 are, respectively, the density and cumulative distri-
bution functions of a standard Gaussian  (0, 1) (recall that both are
efficiently implemented in standard software packages such as Python’s
Scipy). We have also abbreviated 𝜇𝑖 = (𝝁𝐦𝑏 )𝑖 and 𝜎𝑖 =

√

(𝜮𝑏)𝑖𝑖.
or bags with 𝑦𝑏 = 1, we proceed analogously to [19] to obtain the
ormalization constant 𝑍 of the distribution of interest (that is, the
actorized Gaussian  (𝐦𝑏|𝝁𝐦𝑏 , diag(𝜮𝑏)) truncated to R|𝑏| − (−∞, 0)|𝑏|).
hen, the expectation of each q(𝑚𝑖), 𝑖 ∈ 𝑏, is given by:

E (𝑚 ) =
𝜇𝑖 − (1 −𝑍)𝐸𝑖 , (20)
q(𝑚𝑖) 𝑖 𝑍
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Fig. 3. Two examples of cancerous (left) and non-cancerous (right) patches in the SICAPv2 test set.
Algorithm 1 Training procedure for VGPMIL-PR-I.
Input : Bags 𝐗 = {𝐗𝑏}𝑏∈ and bag labels 𝐲 = {𝑦𝑏}𝑏∈.
Calculate the matrices 𝐂𝑏 that account for the instance correlation
inside each bag 𝑏 ∈ , recall Eq. (8) and the example at Eq. (10).

Initialize GP kernel parameters and inducing points locations, as well
as the posterior distributions q(𝐮) and q(𝐦). Details on initializations
in the text.
foreach iteration 𝑡 = 1,… , 𝑇 do

Update q(𝐮), using Eqs. (14), (16) and (17).
Update q(𝐦) and obtain Eq(𝐦)(𝐦), using Eqs. (15), (18), (19), and
(20).

Output: Posterior distributions q(𝐮) and q(𝐦).

where 𝑍 = 1 −
∏

𝑖∈𝑏(1 − 𝛷(𝜇𝑖∕𝜎𝑖)), 𝐸𝑖 is given by Eq. (19), and we are
again abbreviating 𝜇𝑖 = (𝝁𝐦𝑏 )𝑖 and 𝜎𝑖 =

√

(𝜮𝑏)𝑖𝑖.
The full training algorithm is summarized in Algorithm 1. It is an

iterative process that alternates the updates between q(𝐮) and q(𝐦).
Details on the GP kernel and initializations used in this work are
provided in Section 3.1. The code for the proposed method will be
publicly available upon acceptance of the paper.

2.5. Making predictions

Suppose we are given a new bag 𝐗⋆ = {𝐱⋆𝑖 }𝑖∈𝑏⋆ . As explained at
the end of Section 2.1, we are interested in both instance-level and
bag-level predictions. For this, we first need to compute the predictive
distributions over 𝐦⋆.

By using the learned posterior q(𝐮) along with p(𝐟 |𝐮), we can obtain
the joint distribution over 𝐟⋆:

p(𝐟⋆) = ∫ p(𝐟⋆|𝐮)p(𝐮)d𝐮 =  (𝐟⋆|𝝁⋆,𝐒⋆), (21)

with 𝝁⋆ and 𝐒⋆ given by the standard sparse GP predictions:

𝝁⋆ = 𝐊⋆𝐙𝐊−1
𝐙𝐙𝝁

𝑢, 𝐒⋆ = 𝐊⋆⋆ −𝐊⋆𝐙𝐊−1
𝐙𝐙(𝐊𝐙𝐙 −𝜮𝑢)𝐊−1

𝐙𝐙𝐊𝐙⋆. (22)

Here, 𝝁𝑢 and 𝜮𝑢 are the parameters learned during training, recall
Eq. (16) and (17). Naturally, the subscript ⋆ in the kernel matrices 𝐊
indicates that we are using the new bag 𝐗⋆. Then, since the distribution
p(𝐦|𝐟 ) is also Gaussian, recall Eq. (12), we can compute the joint
distribution over 𝐦⋆ in closed-form:

p(𝐦⋆) = ∫ p(𝐦⋆
|𝐟⋆)p(𝐟⋆)d𝐟⋆ =  (𝐦⋆

|𝝁⋆
𝑚,𝐒

⋆
𝑚), (23)

with 𝝁⋆
𝑚 and 𝐒⋆𝑚 given by

𝝁⋆
𝑚 = 𝜮⋆ ⋅ 𝝁⋆, 𝐒⋆𝑚 = 𝜮⋆ +𝜮⋆ ⋅ 𝐒⋆ ⋅𝜮⊺

⋆. (24)

Here, 𝝁⋆ and 𝐒⋆ are given by Eq. (22), and 𝜮⋆ is the matrix that
accounts for correlation among instances in the test bag 𝐗⋆, which is
defined analogously to the training case, recall matrix 𝜮𝑏 in Eq. (12).

Once we have the joint distribution over 𝐦⋆, the instance-level and
bag-level predictions are given as:

p(ℎ⋆𝑖 = 1) = p(𝑚⋆
𝑖 > 0) = 𝛷

(

(𝝁⋆
𝑚)𝑖∕

√

(𝐒⋆𝑚)𝑖𝑖
)

, (25)
5

p(𝑦⋆ = 1) = 1 − ∫𝐦⋆∈(−∞,0)|𝑏⋆ |

p(𝐦⋆)d𝐦⋆. (26)

Notice that the integral in Eq. (26) can be computed efficiently with
the cumulative distribution function of a multivariate Gaussian, which
is also available in most standard statistical packages, such as Python’s
Scipy.

Interestingly, these predictions generalize those obtained in VGPMIL-
PR [18]. Indeed, if we do not consider correlation among instances in
the test bag, i.e. 𝜮⋆ = 𝐈, then Eqs. (25) and (26) match those in [18]
(last two equations before Section 3.5). Finally, although here we have
detailed how to make predictions for a complete previously unseen bag
𝐗⋆, the same process can be applied to make predictions on previously
unseen individual instances 𝐱⋆ (patches).

3. Experiments

In this section we thoroughly evaluate VGPMIL-PR-I in a real-world
problem of prostate cancer detection. The experimental framework,
including data, metrics and baselines, is explained in Section 3.1. The
results are discussed in Section 3.2. Finally, in Section 3.3 we evaluate
our method in a much larger prostate cancer detection dataset: the
well-known PANDA challenge.

3.1. Experimental framework

Data description. In this paper we focus on the problem of prostate
cancer detection. However, notice that the algorithm can be applied
for any other type of cancer (and more generally, for any other type of
image). Prostate cancer is the most commonly occurring cancer in men,
and the second most commonly occurring cancer overall, according to
the latest 2020 statistics on age-standardized incidence rate from the
World Health Organization (WHO) Global Cancer Observatory [31].
We will use the prostate cancer database presented in [32], which
is called SICAPv2 and is publicly available. Although this database
includes information on the Gleason score, which is used to evaluate
the severity of the disease, in this work we will focus on the binary
task of presence/absence of cancer.

We use the original partition of the dataset, which contains 95
training and 31 test WSIs, respectively. These very large images are
split in 512 × 512 patches, resulting in a total amount of 15132 patches
for training and 5246 for testing. Following the MIL paradigm, for the
training set we only use binary labels benign/malign at the level of
images (bags), but we do not have information at the level of patches
(instances). In order to evaluate the predictive performance at instance-
level, we do have labels for the patches in the test set. The amount of
cancerous (resp. non-cancerous) images for the train set is 70 (resp. 25).
For the test set, it is 25 (resp. 6). For illustration purposes, a couple of
cancerous and non-cancerous patches are shown in Fig. 3. In order to
train our model, each patch is represented through a 128-dimensional
feature vector extracted in previous work [7].

Baselines and metrics. Since our model is framed in the field
of probabilistic GP-based MIL methods, we compare with the two
most popular approaches VGPMIL [17] and VGPMIL-PR [18], which
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Table 1
Predictive performance at the level of patches (instances). In bold, we highlight the values of 𝜆 for which VGPMIL-PR-I gets better (or equal)
performance than both baselines in all the metrics. The results are the mean and standard deviation over five independent runs.

𝜆 Accuracy Precision Recall F1-score

VGPMIL – 92.22 ± 0.00 96.40 ± 0.00 92.29 ± 0.00 94.30 ± 0.00
VGPMIL-PR – 92.38 ± 0.03 96.44 ± 0.06 92.48 ± 0.06 94.42 ± 0.02

VGPMIL-PR-I

0.1 92.94 ± 0.05 96.24 ± 0.15 93.52 ± 0.12 94.86 ± 0.04
0.5 93.85 ± 0.04 97.17 ± 0.19 93.90 ± 0.14 95.51 ± 0.02
1.0 94.58 ± 0.03 97.32 ± 0.06 94.83 ± 0.04 96.06 ± 0.02
5.0 95.11 ± 0.06 97.74 ± 0.14 95.18 ± 0.09 96.44 ± 0.04
10.0 95.03 ± 0.14 97.72 ± 0.16 95.09 ± 0.06 96.39 ± 0.10
Table 2
Predictive performance at the level of images (bags). In bold, we highlight the values of 𝜆 for which VGPMIL-PR-I gets better (or equal)
performance than both baselines in all the metrics. The results are the mean and standard deviation over five independent runs.

𝜆 Accuracy Precision Recall F1-score

VGPMIL – 83.87 ± 0.00 83.33 ± 0.00 100.00 ± 0.00 90.91 ± 0.00
VGPMIL-PR – 90.32 ± 0.00 89.29 ± 0.00 100.00 ± 0.00 94.34 ± 0.00

VGPMIL-PR-I

0.1 93.55 ± 0.00 92.59 ± 0.00 100.00 ± 0.00 96.15 ± 0.00
0.5 93.55 ± 0.00 92.59 ± 0.00 100.00 ± 0.00 96.15 ± 0.00
1.0 90.32 ± 0.00 92.31 ± 0.00 96.00 ± 0.00 94.12 ± 0.00
5.0 87.10 ± 0.00 95.65 ± 0.00 88.00 ± 0.00 91.67 ± 0.00
10.0 83.87 ± 0.00 95.45 ± 0.00 84.00 ± 0.00 89.36 ± 0.00
Table 3
Confusion matrices obtained at the level of images for the compared methods.

VGPMIL VGPMIL-PR

Neg. Pos. Neg. Pos.

Actual Neg. 1 5 3 3
Pos. 0 25 0 25

VGPMIL-PR-I

𝜆 = 0.1 𝜆 = 0.5 𝜆 = 1 𝜆 = 5 𝜆 = 10

Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos.

Actual Neg. 4 2 4 2 4 2 5 1 5 1
Pos. 0 25 0 25 1 24 3 22 4 21
o
r

were reviewed in Section 2.2. For a fair comparison, the parameters
used for the baselines are the same as those used for our method
(described in next paragraph). For those parameters that do not have
an analogous in our method (e.g. the initialization of q(𝐲) in VGPMIL),
we use the default values proposed in the original papers. To evalu-
ate the performance of the compared methods we use four metrics:
accuracy, precision, recall and F1-score (which provides a trade-off
between precision and recall). For all the metrics, we use the standard
implementations in the popular Python scikit-learn library [33].

Experimental details. For the underlying GPs, in this work we
use the well-known squared exponential kernel [34], i.e. 𝜅(𝐱, 𝐲) =
𝛾 ⋅exp

(

−‖𝐱 − 𝐲‖2∕(2𝓁2)
)

. Following [17,18], we use standard values for
the kernel hyperparameters, i.e. 𝛾 = 1 and 𝓁 equals the square root of
the number of features of 𝐱, 𝐲 (in this work we set 𝓁 = 11 ≈

√

128).
he number of inducing points is set to 𝑀 = 200, and their locations
re initialized through K-means clustering as in previous work [17,18]
namely, 100 of them are obtained by doing clustering on the patches
hat belong to the positive images, and the other 100 on the patches that
elong to the negative ones). The number of iterations is set to 𝑇 = 200,
hich was enough to achieve convergence in practice. The expectation
f the posterior distribution Eq(𝐦)(𝐦) is initialized with a standard
aussian for each instance independently. Notice that the initialization
f q(𝐮) is irrelevant since it gets updated first in Algorithm 1. As for
he value of 𝜆, which regulates the strength of the Ising correlation
recall Eq. (8)), we will analyze five different values in the experiments,
∈ {0.1, 0.5, 1.0, 5.0, 10.0}. This will allow us to empirically illustrate the

ffect of 𝜆.
6

d

Table 4
Computational cost for training and testing the compared methods (in seconds).
We are using 200 iterations in all cases, recall the experimental details in Sec-
tion 3.1. The results are the mean and standard deviation over five independent
runs.

𝜆 Training time Testing time

VGPMIL – 15.45 ± 0.53 3.14 ± 0.16
VGPMIL-PR – 11.78 ± 0.75 2.63 ± 0.12

VGPMIL-PR-I

0.1 12.21 ± 0.26 2.23 ± 0.09
0.5 12.18 ± 0.57 2.21 ± 0.07
1.0 11.79 ± 0.44 2.24 ± 0.15
5.0 11.80 ± 0.74 2.22 ± 0.08
10.0 11.64 ± 0.91 2.26 ± 0.09

3.2. Experimental results

In this section we evaluate the performance of the compared meth-
ods on the aforementioned prostate cancer problem. We analyze eight
different research questions, which are discussed in the following para-
graphs.
Predictions at the level of instances (patches). Although they only
use bag labels for training, the compared methods can make predic-
tions at the level of instances, recall Section 2.5. This is important to
determine more precisely in which region (patch) the cancer is present.

Table 1 shows the results when making predictions at patch level.
We observe that VGPMIL-PR-I outperforms both baselines in all the
metrics for four out of five values of 𝜆 (and for 𝜆 = 0.1, the baselines are
nly better in terms of precision). We also appreciate that VGPMIL-PR-I
esults are robust across different runs, obtaining low values of stan-

ard deviation. This stability is important for real-world applications,
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Fig. 4. Patch-level predictions inside each one of the six negative (non-cancerous) WSIs in the test set. Each column is an image (the header is the image identifier in the SICAPv2
dataset). The rows refers to the three compared methods. Each subplot has red/green axis depending on whether the image is correctly classified or not by that method. The
blue bars inside the subplots represent the probability of cancer for the different patches inside the image (for ease of visualization, they are sorted in increasing order). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where one wants to avoid high sensitivity to random initializations.
Finally, notice that, as argued in [19], we also observe that VGPMIL-PR
(slightly) outperforms VGPMIL.
Predictions at the level of bags (images). Table 2 shows the results
when making predictions at the level of images. We observe that
VGPMIL-PR-I outperforms both baselines in all the metrics when 𝜆 ∈
{0.1, 0.5}. However, when 𝜆 becomes larger, the results of VGPMIL-PR-I
get worse. This fact can be explained theoretically because, whereas
having low-to-moderate correlation among patches can be helpful,
having strong ones tends to make the predictions too homogeneous,
damaging the bag-level prediction (which takes into account the corre-
lation among patches). Indeed, in the next research question we analyze
with greater detail how 𝜆 is affecting the predictions on cancerous
and non-cancerous images separately, which will provide additional
insights. Finally, similar to the patch-level results, we observe that
VGPMIL-PR obtains better results than VGPMIL, as expected. Also, the
predictions at the level of images are very stable across runs (notice the
zero standard deviation).
Analyzing the confusion matrices at bag level. Here we analyze
more in detail the results presented in the previous paragraph (i.e. at
the level of images). Table 3 shows the confusion matrices for the
compared methods. Notice that both baselines classify all the 25 posi-
tive (cancerous) images correctly. However, the difficulties arise at the
non-cancerous images. This happens because of the nature of the MIL
problem: as soon as a few patches obtain a non-negligible probability
of cancer, the image will be likely predicted as cancerous (recall that
the MIL formulation establishes that a bag has positive class as soon as
one instance inside the bag has positive class).

Interestingly, the Ising model can help to avoid isolated false pos-
itive predictions on the patch-level (which lead to false positive bag
predictions) by using the patch-level correlation. This is reflected in
Table 3, where we observe that increasingly more negative images are
predicted correctly as 𝜆 gets higher. In contrast, notice that strong
orrelation damage the performance in the positive class, as they
enalize the appearance of positive patches (which would break the
omogeneity of the bag, where most patches do not contain cancer).
herefore, we conclude that instance correlation is beneficial when
7
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used with a low-to-medium intensity. For instance, in this application
𝜆 = 0.5 is the best performing value, and it will be the one used by
default in the sequel.
Analyzing the instance-level predictions for negative bags. In the
previous paragraph, we have explained that negative images are in-
correctly classified because a few patches inside them get classified
as positive. Here we provide a visualization to support this. Fig. 4
shows how the patch-level predictions are distributed inside the six
negative images available in the test set. We observe that the amount
of patches with a non-negligible probability of cancer gets reduced
as we move from VGPMIL to VGPMIL-PR, and then to VGPMIL-PR-I.
This translates into better performance at bag-level (observe that the
amount of green-axis subplots increases in the same sequence VGPMIL
→ VGPMIL-PR → VGPMIL-PR-I). Notice that the improvement from
VGPMIL to VGPMIL-PR is larger than from VGPMIL-PR to VGPMIL-
PR-I. This may be due to the simplification that was introduced when
computing the expectation of the truncated multivariate Gaussian in
VGPMIL-PR-I, recall the third-to-last paragraph in Section 2.4.
Visualizing the predictions. In the last paragraph, we have analyzed
how the patch-level predictions are distributed inside non-cancerous
images quantitatively. Indeed, Fig. 4 represents each patch through a
bar. However, this hampers the qualitative visualization from a medical
viewpoint. Here we focus on such qualitative assessment by visualizing
the predictions obtained for image 16B0028138, see Fig. 5. We have
chosen this image because it illustrates best the effect of the coupling
term. Notice that, thanks to these terms, the proposed VGPMIL-PR-
I manages to keep all patches with a probability closer to zero than
VGPMIL and VGPMIL-PR. As a consequence, VGPMIL-PR-I is the only
method that correctly classifies this image as non-cancerous, recall
Fig. 4. For the other two methods, there are some patches that trigger
the image prediction to be cancerous.
An explicit analysis on the role of 𝜆. The hyperparameter 𝜆 is at the
ore of the novel VGPMIL-PR-I. It was introduced in the probabilistic
odel to regulate the strength of the coupling term, recall Eq. (8). This

ole has been confirmed indirectly in Table 3: when 𝜆 gets higher, the
redictive performance improves for negative bags and degrades for
ositive ones. This can be explained because a higher 𝜆 homogenizes
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Fig. 5. Patch level predictions obtained by the compared methods for image
16B0028138, which is non-cancerous. The original image is shown in (a). For
predictions (b)–(d), the brightness of the patch is proportional to the probability of
cancer (the brighter, the more probability).

Fig. 6. Variability in the patch-level predictions inside images. In VGPMIL-PR-I, the
variability decreases as the strength of the Ising terms, given by 𝜆, increases. VGPMIL-
PR, which does not include Ising terms (i.e. 𝜆 = 0), gets larger variability. As explained
in the text, the variability inside an image is measured as the standard deviation of
the probability of cancer for all the patches inside that image.

the patch-level predictions and difficulties the appearance of positive
patches. Here we perform a more direct measure to gain insights into
the role of 𝜆. Specifically, we define the ‘‘variability inside a bag’’ as the
standard deviation of the probability of cancer for all the patches inside
that bag. Therefore, this metric measures the dispersion in the patch-
level predictions obtained inside a bag. Fig. 6 shows the evolution of
this metric for VPGMIL-PR-I as 𝜆 increases. As theoretically expected,
the metric decreases as 𝜆 gets higher. Also, notice that the metric
8

value for VGPMIL-PR is higher. This is explained because VGPMIL-
PR does not incorporate Ising correlation, i.e. 𝜆 = 0. The value for
VPGMIL is even higher, 0.30, and it is not included in Fig. 6 for ease of
visualization. This greater value is probably due to the additional ap-
proximations that VGPMIL involves, which deepens the independence
among patches.
Computational cost. Finally, we report the computational training and
testing time for the compared methods, see Table 4. The results are in
the same order of magnitude in all cases, which justifies the practical
utility of the novel VGPMIL-PR-I, which obtained better predictive
performance, recall Tables 1 and 2. In fact, VGPMIL-PR-I is slightly
faster than VGPMIL, since the Jaakola bound approximation leveraged
in the latter introduces additional parameters 𝜉 to be estimated. As
theoretically expected, the computational cost of VGPMIL-PR-I and
VGPMIL-PR is analogous, since the update equations for the former are
just a generalization of those for the latter, recall Sections 2.4 and 2.5.
Finally, notice that the value of 𝜆 does not affect the computational cost
of VGPMIL-PR-I, as 𝜆 only regulates the intensity of the Ising terms (but
it does not introduce any additional computation).

Comparison to other related MIL approaches. So far we have
focused on the comparison of VGPMIL-PR-I with VGPMIL and VGPMIL-
PR. Since VGPMIL-PR-I builds on the same type of GP-based modeling,
this is the most meaningful comparison in order to evaluate our main
contribution (the Ising term to account for correlations among patches).
However, to provide a wider perspective, it is interesting to compare
the novel VGPMIL-PR-I to other state-of-the-art and popular families
of MIL methods. We consider three families: attention-based methods,
where the two algorithms proposed in [35] are the most popular
approaches; MIL methods based on pseudo-labels such as the recent [7];
and classical pooling/aggregation methods such us the mean aggrega-
tion [36]. These will be referred to as Att-MIL, Gated-Att-MIL, PS-MIL
and Mean-Agg, respectively.

Let us discuss the results both at instance (patch) and bag (image)
levels. For the former, notice that the formulation of attention-based
methods (Att-MIL and Gated-Att-MIL) and classical aggregation meth-
ods (Mean-Agg) do not allow for making predictions at instance level
in a natural way. Namely, the instance-level labels are not modeled
explicitly in this type of methods, and this is precisely one of their
main limitations [37]. Compared to PS-MIL, which does model instance
labels explicitly, the novel VGPMIL-PR-I achieves higher predictive per-
formance (95.11 vs 85.01 in accuracy and 96.44 vs 88.05 in F1-Score).
Regarding bag-level performance, the results are shown in Table 5. We
observe that the best results are obtained by attention-based methods
Att-MIL and Gated-Att-MIL, followed by the novel VGPMIL-PR-I.

In conclusion, we observe that the results are quite different depend-
ing on the nature of the model and the user requirements. If one is
interested in predictions at patch level, then the novel VGPMIL-PR-I
is the best choice. However, if one is only interested in image level
performance, then attention-based approaches are the best option for
this data. Indeed, we hypothesize that the performance of attention-
based approaches could be even enhanced by leveraging correlation
among patches in a similar way to VGPMIL-PR-I. This is a interesting
line of future research, see Section 4.

3.3. Evaluation on a larger dataset: PANDA

The SICAPv2 dataset used so far is of medium-size (total amount
of 126 WSIs, leading to 20,378 patches; recall Section 3.1). This has
allowed us to carry out a very detailed analysis of the results. In this sec-
tion we show that the novel VGPMIL-PR-I also performs well on larger
datasets, such us the well-known PANDA set. Although scalability is
not an issue from a theoretical perspective, since the model is based on
sparse GPs, it is important to verify it in practice.

PANDA also tackles the problem of prostate cancer detection, and
was presented at the MICCAI 2020 conference as a challenge.2 Since the

2 https://panda.grand-challenge.org/

https://panda.grand-challenge.org/
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Table 5
Comparison with other related MIL methods which are not based on the GP modeling. The predictive performance at the
level of images (bags) is shown. The results are the mean and standard deviation over five independent runs. The algorithm
PS-MIL was run only once because of its high computational training cost.

Accuracy Precision Recall F1-score

VGPMIL-PR-I 93.55 ± 0.00 92.59 ± 0.00 100.00 ± 0.00 96.15 ± 0.00

Att-MIL 96.80 ± 0.00 96.20 ± 0.00 100.00 ± 0.00 98.00 ± 0.00
Gated-Att-MIL 96.80 ± 0.00 96.20 ± 0.00 100.00 ± 0.00 98.00 ± 0.00
Mean-Agg 87.10 ± 0.00 95.70 ± 0.00 88.00 ± 0.00 91.70 ± 0.00
PS-MIL 90.32 ± NA 89.28 ± NA 100.00 ± NA 94.33 ± NA
Table 6
Predictive performance at the level of images (bags) in the PANDA dataset. The results are the mean and standard deviation
over five independent runs. The algorithm PS-MIL was run only once because of its high computational training cost.

Accuracy Precision Recall F1-score

VGPMIL 74.87 ± 0.08 74.25 ± 0.06 99.77 ± 0.00 85.13 ± 0.04
VGPMIL-PR 90.64 ± 0.06 90.97 ± 0.05 96.60 ± 0.04 93.70 ± 0.04
VGPMIL-PR-I 92.57 ± 0.14 95.42 ± 0.24 94.22 ± 0.11 94.82 ± 0.09

Att-MIL 90.92 ± 0.01 94.17 ± 0.01 93.43 ± 0.01 93.79 ± 0.01
Gated-Att-MIL 91.70 ± 0.01 94.31 ± 0.01 94.40 ± 0.01 94.34 ± 0.01
Mean-Agg 88.09 ± 0.00 91.57 ± 0.01 92.27 ± 0.01 91.91 ± 0.00
PS-MIL 88.36 ± NA 87.99 ± NA 97.11 ± NA 92.33 ± NA
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test set of PANDA is not publicly available, we use the train/test split
proposed in [38], where each split follows the overall class proportions.
Namely, the dataset used here features a total amount of 10,503 WSIs,
which leads to 1,107,931 patches. Notice that this is much larger than
SICAPv2 (83 times larger in terms of WSIs).

Table 6 shows the predictive performance at image level, an aspect
where attention-based methods stood out in the previous dataset. In this
case, we observe that VGPMIL-PR-I obtains consistently better results.
Additionally, as outlined in the last research question in Section 3.2,
VGPMIL-PR-I is able to provide instance-level predictions, which is not
the case for attention-based models. We conclude that, for the PANDA
dataset, the proposed method is the best choice in comparison to the
other tested approaches.

4. Conclusions, limitations and future work

In this work we have introduced VGPMIL-PR-I, a novel MIL method-
ology that incorporates instance label correlation through a coupling
term inspired by the Ising model. VGPMIL-PR-I is a generalization of
another probabilistic MIL method, whose formulation is theoretically
recovered when the influence of the Ising term converges to zero. In the
experimental section, we have shown that VGPMIL-PR-I outperforms
other related state-of-the-art probabilistic MIL approaches in two real-
world problems of prostate cancer detection, effectively reducing false
positive bag predictions and providing instance-level predictions. We
have also provided different visualizations to better understand the
behavior of the proposed model, specially the influence of the new
coupling term.

As discussed along the paper, our model presents several limita-
tions which we summarize next. Firstly, we needed to introduce a
diagonal approximation to compute the expectation of the truncated
multivariate Gaussian in VGPMIL-PR-I, recall Section 2.4. This is prob-
ably reflected in the empirical performance, as the improvement when
moving from VGPMIL to VGPMIL-PR is generally larger than when
moving from VGPMIL-PR to VGPMIL-PR-I. Secondly, we have observed
that the behavior of VGPMIL-PR-I depends on the value of 𝜆, which
egulates the strength of the coupling term. Although we have discussed
he role of 𝜆 and tested different values, it remains a hyperparam-
ter that has to be found empirically using the validation set. We
elieve that its value (or even distribution over it) could be estimated
rom the data by introducing 𝜆 in the probabilistic modeling. Even
ore, 𝜆 could be estimated per image, since the level of correlation

ould be image-dependent. Thirdly, we have observed that the image-
9

evel performance of VGPMIL-PR-I is not generally better than that of o
ttention-based methods. This is probably due to the different nature of
he models. Indeed, the explicit modeling of instance label in GP-based
odels, which allows them to provide instance-level predictions, may

ome at the cost of less accurate bag-level predictions.
In addition to the aforementioned ideas, this work opens other

uture research lines. First, seeing the performance boost obtained
n GP-based methods through the novel coupling term, and taking
nto account the good results of attention-based methods in bag-level
rediction, it is very interesting to explore the modeling of instance
abel correlations in the context of attention-based methods. Second,
otice that we are using mean-field variational inference to estimate
he model parameters in VGPMIL-PR-I. A promising alternative is to
stimate them by directly optimizing the evidence lower bound (ELBO).
inally, although we have focused on modeling correlation between
eighboring patches in histopathogical images, we expect that the ideas
ehind our proposal can boost further research in MIL, by exploiting the
articular structure of the data used in different applications.
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