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A B S T R A C T   

The interest in the study of electromagnetic propagation through planetary atmospheres is briefly discussed. 
Special attention is devoted to extremely-low-frequency fields in the Earth’s atmosphere for its global nature and 
possible applications to climate monitoring studies among others. In the Earth’s case, the system can be 
considered as a spherical electromagnetic shell resonator in which two concentric and large conducting spheres 
with a radius around 6300 km are separated by a very small distance of around 100 km, the atmosphere height. A 
numerical solution using the Transmission Line Method is proposed. The classical spherical-coordinate 
description is easy to use, however, the important difference in the dimensions along the three coordinate di
rections causes high numerical dispersion in the results. A Cartesian scheme with equal node size for all di
rections is used to reduce this undesired dispersion. A pre-processing stage is the key point introduced to lessen 
the resulting high demand of memory and time calculation and make the solution feasible. A parallelized Fortran 
code together with pre- and post-processing Python programs to ease the user interface are provided with this 
work. Details on the Fortran code and the Python modules are included both in the paper and the source codes to 
allow the use and modifications by other researchers interested in electromagnetic propagation through plan
etary atmospheres. The program allows calculation of the time evolution of the electromagnetic field at any point 
in the atmosphere. It includes the possibility of considering multiple time-dependent sources and different ho
mogeneous and inhomogeneous conductivity profiles to model different situations. Profiles to study day-night 
asymmetries or locally perturbed profiles which have been attributed to earthquakes in the literature are 
implemented, for instance.   

1. Introduction 

Lightning strokes and Transient Luminous Events (TLEs) generated 
in the upper atmosphere are the main natural sources of the electro
magnetic field propagating through the atmosphere and can be 
considered as the battery of the Global Electric Circuit, the more 
outstanding part of the Atmospheric Electrodynamics (Rycroft et al., 
2008). Lightning strokes and TLEs produce electromagnetic pulses with 
a short duration, between microseconds and milliseconds, with fre
quency content in the Extremely Low Frequency (ELF) and the Low 
Frequency (LF) bands, i.e., with frequencies ranging from a few hertz to 

several megahertz (Cooray, 2003). 
In the ELF band, the Earth’s atmosphere at low altitudes can be 

considered as a good dielectric, with a conductivity of 10− 14 S/m, but 
this conductivity increases with altitude due to the ionizing effect of the 
cosmic rays. At the D region, at altitudes of about 75–90 km, the con
ductivity may reach values between 10− 4 and 10− 2 S/m, which are 
comparable with the conductivity at the Earth’s crust. The electro
magnetic model for the Earth at the ELF band approximates the atmo
sphere as a spherical shell resonator. The inner and outer limits are 
considered as perfectly conducting surfaces, while the medium between 
both plates is filled with an inhomogeneous conducting material. This 

* Corresponding author. 
E-mail address: asalinas@ugr.es (A. Salinas).  

Contents lists available at ScienceDirect 

Computers and Geosciences 

journal homepage: www.elsevier.com/locate/cageo 

https://doi.org/10.1016/j.cageo.2023.105499 
Received 21 September 2023; Received in revised form 28 November 2023; Accepted 29 November 2023   

mailto:asalinas@ugr.es
www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2023.105499
https://doi.org/10.1016/j.cageo.2023.105499
https://doi.org/10.1016/j.cageo.2023.105499
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Geosciences 183 (2024) 105499

2

model in the Earth’s case is a challenging one due to the important 
difference between its perimeter, around 40,000 km, and the ionosphere 
height, around 60–100 km. This makes the system an electromagnetic 
resonant cavity in which the ELF components of the lightning strokes 
and TLEs may travel several turns around the Earth to form a stationary 
wave, resonating at certain specific frequencies in this range. These 
frequencies are known as Schumann Resonances (SRs) after Schumann 
who first predicted them in 1952 (Schumann, 1952). SRs at the Earth 
occur at approximated values of 8, 14, and 21 Hz for the first three 
resonant modes and can be observed at any point on Earth, although the 
associated electromagnetic field is very weak and is easily masked by the 
anthropogenic noise (Fornieles-Callejón et al., 2015; Nickolaenko and 
Hayakawa, 2002). This low amplitude explains why SRs were not 
experimentally detected until 1960 (Balser and Wagner, 1962). A 
thorough historical revision on SRs can be found in (Besser, 2007), while 
theoretical and experimental aspects are presented in (Nickolaenko and 
Hayakawa, 2002, 2014). Interesting subsequent reviews can also be 
found in (Price, 2016; Sátori et al., 2013; Simões et al., 2012). 

The interest in SRs relies in the fact that they have applications in the 
monitoring of climate changes. In this sense, the relation between SR 
variations and the average temperature of the surface near tropical 
latitudes is described in (Williams, 1992) and strengthened by (Füll
ekrug and Fraser-Smith, 1997). The climate change of the Earth has the 
lightning activity as a climate variable. Recent contributions to the 
reconstruction of global lightning activity based on SRs can be found in 
(Prácser et al., 2019; Williams et al., 2014). Another important topic is 
the solar effects on SRs, which are discussed in (Bozóki et al., 2021; 
Nickolaenko et al., 2015; Rodríguez-Camacho et al., 2022; Salinas et al., 
2016; Sátori et al., 2016). A recent publication by Williams et al., (2021) 
proposes the monitoring of variations in the SR intensity to predict 
extreme climate events such as the Super El Niño. Others examples 
concerning climate phenomena are applied to the study of year scale 
fluctuations at the ionosphere (Koloskov et al., 2020) and references 
therein. These and other works suggest the use of SRs to monitor climate 
changes. The study and the characterization of modifications in SRs due 
to natural phenomena or anthropogenic activities provide information 
not only on the external agent producing a variation in the observed SRs, 
but also inform about the magnitude of these agents. This interest is not 
only of fundamental scientific nature to understand the Physics behind 
atmospheric electrodynamics, but it is also of practical interest in the 
design of experimental equipment or in optimizing a measuring 
campaign, for instance. In this sense, the numerical calculation of SRs at 
Titan carried out by (Morente et al., 2003b) was a collaboration with 
members of the Space Research Institute of Austrian Academy of Sci
ences to obtain information which could help in the design of the probe 
to measure these resonances at Titan during the NASA-ESA Cassini-
Huygens mission, first launched at 1997. The study of resonances at 
Mars under different dust scenarios presented in (Toledo-Redondo et al., 
2017) was intended to provide valuable input information to help in the 
measurement of SRs at Mars during the ESA ExoMars mission, which 
was first launched at 2016. As a final example of the applicability of SR 
studies, let us mention that an important part of any engineering project 
is the use of appropriated tools to objectively determine the effectivity of 
the proposed activities (Koley, 2023). In this sense, analytical or nu
merical tools to study RSs at the Earth may be incorporated in broader 
engineering projects devoted to environmental or sustainability im
provements, for instance, as numerical or analytical assessment tools to 
determine the effectivity of the activities proposed in the project. 

The study of the SRs in the Earth can be carried out by means of semi- 
analytical methods, such as the zonal harmonic series representation, 
(Nickolaenko and Hayakawa, 2002), which can be considered in both 
the time and the frequency domain. Regarding the attempts to numer
ically model this problem, the main numerical difficulty arises from the 
important difference between one dimension and the other two. In such 
a situation, the three-dimensional (3D) problem can be modeled through 
a two-dimensional (2D) scheme. This causes that Maxwell’s equations 

are approximated by Kirchhoff equations in the form of the 2D Teleg
rapher’s Equations (2DTE) relating voltages and intensities propagating 
through a 2D transmission line mesh with spherical geometry (Madden 
and Thompson, 1965), i.e., disregarding changes with altitude. These 
approximated equations are analytically solved in the papers by (Bozóki 
et al., 2019; Galuk et al., 2019, 2020; Kirillov, 1996; Prácser et al., 
2019), while a numerical solution using the Finite Elements method is 
presented in (Kulak et al., 2003). 

The 2DTE approaches mentioned above allow solving simplified 
situations in which variations with height are negligible or averaged, but 
other numerical schemes are required if the variations of conductivity 
with height are to be modeled. Finite Differences in the Time Domain 
(FDTD) or the Transmission Line Matrix (TLM) methods have been used 
to solve these situations. In order to reduce the high numerical re
quirements, the initial works using FDTD considered excitation of the 
Earth cavity at the poles to allow using azimuthal symmetry. This is the 
case of the works by (Cummer, 2000; Holland, 1983; Hayakawa and 
Otsuyama, 2002; Otsuyama et al., 2003; Simpson and Taflove, 2002; 
Soriano et al., 2005). Analogous works for other planets and moons are 
presented in (Navarro et al., 2007; Soriano et al., 2007; Yang et al., 
2006). 

The works by (Simpson and Taflove, 2004; Yang and Pasko, 2005; 
Yang et al., 2006) report the first full-3D-FDTD models of the cavity in 
which no symmetry considerations are imposed. A detailed review of the 
FDTD application to SR calculations can be found in (Simpson and 
Taflove, 2007). Subsequent works on other topics related with SRs are 
presented in (Marchenko et al., 2022; Navarro et al., 2008; Yu et al., 
2012). 

TLM method is another numerical method successfully applied to 
solve electromagnetic problems. TLM is not a purely mathematical nu
merical method, since it is not intended to solve analytical equations 
governing the phenomenon under study. The TLM method substitutes 
the original medium by an analogous transmission line mesh, instead. 
The electromagnetic field in the actual system is studied by means of 
voltage and current pulses propagation in this analogous mesh (Chris
topoulos, 1995). The transmission line knowledge required in TLM has 
caused that most of its applications are concentrated on electromagnetic 
problems of different types, such as waveguides or electromagnetic 
compatibility problems (Christopoulos, 1995), but other applications 
have been reported in Acoustics and Diffusion (Portí and Morente, 2001; 
de Cogan, 1998). The versatility of the TLM method to deal with ma
terials with general properties was presented in an elegant and general 
formulation by (Paul et al., 1999a, 1999b, 2002). This interest in the 
improvement of the TLM method and its application to more challenging 
situations is still in the basis of more recent publications (Ijjeh et al., 
2021; Portí et al., 2021; Tronchoni et al., 2019). 

Despite the difficulty introduced by the use of analogies when 
compared to a purely mathematical method such as FDTD, the TLM 
conceptual approach presents some specific advantages in challenging 
situations. An example is the modelling of thin wire antennas. While 
FDTD requires the use of a node with a size comparable to the antenna 
radius, TLM allows using a coarse mesh by defining an equivalent circuit 
for the antenna which is added to the TLM node describing the medium 
in which the antenna is located (Portí et al., 1992). A second example is 
the numerical modelling of a metamaterial with negative values of both 
the electric permittivity and the magnetic permeability. The TLM solu
tion resembles the way in which metamaterials are experimentally 
implemented, changing capacitive by inductive elements and vice versa 
(Smith et al., 2000). Therefore, TLM introduces most of the physical 
consequences of this change for all frequencies (Blanchard et al., 2008), 
while the direct FDTD solution may introduce causality problems since 
the dispersion properties are not easily included (Ziolkowski and Kipple, 
2003). Some details on the TLM method will be presented in Section II. 

As with the FDTD method, TLM was initially applied to solve 3D 
problems under azimuthal symmetric excitation conditions, which 
reduced the problem to a 2D one but including height-dependent 
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conductivities (Morente et al., 2003a). Subsequent works considered the 
study of SRs for other celestial objects (Molina-Cuberos et al., 2006; 
Morente et al., 2003b). 

The FDTD and TLM models mentioned above were formulated in a 
spherical coordinate system. It seems the natural way, since it perfectly 
fits the geometry of the problem and it is suitable for spherical cavities in 
which all dimensions are comparable. But our situation is that azimuthal 
and zenithal lengths are two orders of magnitude greater than the radial 
length. The FDTD or TLM unit cell is extremely thin in the radial di
rection compared with the other two dimensions, causing an important 
numerical dispersion to appear. The solution seems evident: Cartesian 
coordinates should be used, with equal length for the three directions, 
thus producing a reduction of numerical dispersion. The staircase 
approximation is not relevant due to the high values of the wavelengths 
under interest, the ELF region. However, a direct Cartesian algorithm 
modeling a cubic region would be extremely inefficient, since most cells 
would lie outside the region of interest, located between two large 
spherical plates separated by a very small distance. The first study 
presenting a full 3D formulation in Cartesian coordinates was presented 
in (Toledo-Redondo et al., 2013). The work included a pre-processing 
stage in which all the nodes in a 3D region were classified to identify 
the points located inside the cavity and the nodes with which they were 
connected. This stage avoided dedicating storage and time-computing 
resources to nodes outside the atmosphere. This initial study was later 
applied to carry out specific studies of SRs at the Earth (Toledo-Redondo 
et al., 2016) and Mars (Toledo-Redondo et al., 2017). 

In this work, the authors present and make available to the scientific 
community a full 3D Cartesian code for the modelling of ELF propaga
tion through planetary atmospheres with a radial dimension which is 
much lower than the other two dimensions. The program provided al
lows calculating the electromagnetic field at any point in the atmo
sphere under different situations. The program has applications in the 
study of the atmosphere electrodynamics in general and, more specif
ically, in the numerical study of the RS regular behavior and their var
iations when external perturbations occur, such as those due to solar 
activity, day-night asymmetry or earthquake activity, for instance. It 
allows characterization of the effect of different agents and the extent of 
this effect on the SRs, to help determining the magnitude of the agent 
altering the SRs, which may help in designing equipment, planning 
measurement campaigns or assess the effectiveness of particular activ
ities included in environmental projects, for instance. In this sense, the 
aim of presenting and sharing this code is mainly twofold. In one hand, it 
may help to experimental researchers in SRs, for instance, to obtain 
independent numerical results to be compared to their experimental 
findings. On the other hand, as the source Fortran and Python codes are 
provided with this paper, numerical researchers in atmospheric elec
trodynamics may adapt them to their own numerical calculations or 
experimental facilities and introduce additional particular improve
ments. The code is based on the work previously reported by the authors 
in (Toledo-Redondo et al., 2016), together with improvementes pre
sented subsequently in (Salinas et al., 2015) and in (Portí et al., 2021). 
The code is written in Parallelized Fortran using OpenMP directives, 
with some parts developed in Python to ease the interface between the 
computer and the user. 

The paper is organized as follows. The electromagnetic problem and 
the fundamentals of the TLM numerical methodology are described in 
Section 2. The main parts of the Fortran code are presented in Section 3. 
Some conductivity models of the Earth’s atmosphere are presented in 
Section 4, while results concerning these models are shown in Section 5. 
Finally, Section 6 summarizes the main conclusions of this work. 

2. The electromagnetic problem and its solution using the TLM 
method 

The system considered is a spherical shell defined by the Earth’s 
surface and the lower ionosphere, both limits considered as perfect 

conductors, and filled with the atmosphere, an isotropic and inhomo
geneous dielectric with low conductivity values. The system is driven by 
current sources which model lightning strokes. The sources present a 
Gaussian-shape time evolution, with important content at low fre
quencies, below 100 Hz in the Earth’s case. As mentioned previously, 
despite the spherical geometry of the system, Cartesian coordinates will 
be used to reduce numerical dispersion. 

The task is solving Maxwell’s equations in the time domain with the 
perfectly conducting boundary conditions at the shell limits, in order to 
obtain the time evolution of the electromagnetic field at any point in the 
atmosphere. The SRs, for instance, can be obtained from these EM fields 
using Fourier transform. The program code is designed to allow 
obtaining the SRs in particular cases of interest, which include different 
atmospheric conductivity profiles, local perturbations of the conduc
tivity, day-night asymmetry or multiple sources, among others. 

Concerning the numerical method used, TLM is a low frequency 
method which models an electromagnetic problem from a conceptual 
point of view more than from a purely mathematical one. The method 
discretizes time and space. The full medium is substituted by an analo
gous transmission line mesh formed by the connection of elementary 
transmission line circuits, the TLM nodes, each node substituting a small 
volume of the original medium. Voltage and current pulses propagate in 
this mesh in a manner analogous to that of the field in the original 
medium. In its basic 3D scheme, the nodes consist of 12 transmission 
lines which model the propagation for all polarizations along the three 
Cartesian directions, in both the positive and the negative directions. 
These lines are termed the link lines and connect to link lines of adjacent 
nodes to model propagation. Extra lines can be added to adjust 
permittivity, permeability, or conductivity, through capacitive, induc
tive or resistive stubs, respectively. The topology of the node depends on 
the particular problem to solve, but the TLM algorithm is conceptually 
simple: at each time calculation, a set of voltage or current pulses reach 
the node centers, they are scattered according to Maxwell’s equations 
and produces a set of reflected pulses. These reflected pulses spend one 
timestep, Δt, in propagating through the node lines to reach the center of 
adjacent nodes in the case of link lines or the same node in the case of 
capacitive or inducive stubs. The pulses reflecting to resistive lines are 
lost, thus modelling the electric losses by Joule effect. 

The program presented with this work uses the basic 3D formulation 
shown in Fig. 1 and described in (Salinas et al., 2015), with only 12 link 
lines, including lossy effects but neither inductive nor capacitive stubs. 
The node has a cubic chape with a size of Δl. A remarkable property is 
that the node is symmetrical and all the field components are defined at 
the node center at the same instant, and this is the reason why the node 
is known as the Symmetrical Condensed Node (SCN) (Christopoulos, 
1995; Johns, 1987). The link lines are defined through a set of 3 indexes, 
(j, s, k), where j = {x, y, z} describes the direction of propagation, k = {x, 
y, z} indicates the polarization, and s = {p, n}indicates if the line is in the 
positive or negative side, respectively. The characteristic impedance of 
the link lines, Z0, relates the incident voltage and current pulses at any 
line (j, s, k) through Ii

jsk = Vi
jsk/Z0. In this node, Z0 equals the vacuum 

impedance and the timestep is related to the node size according to Δt =
Δl/(2c), c being the vacuum speed of light. The orange cubic box at the 
center indicates that connections are to be understood in a formal sense 
to describe the coupling between Maxwell’s equations. 

Vector Maxwell’s equations are a set of six coupled scalar differential 
equations. Similarly, the 3D SCN of Fig. 1 may be split into six 2D sub- 
circuits: three series and three parallel circuits. Each series circuit de
fines a common current and is related to a component of the magnetic 
field through that specific component of Ampère’s law. Each parallel 
circuit defines a common voltage and is related to a component of the 
electric field through the corresponding component of Faraday’s law. 
Fig. 2 shows the series circuit for Hx and the parallel circuit for Ex 
(Salinas et al., 2015). Each component of Ampère’s law is coupled to two 
components of Faraday’s law. Similarly, each series circuit is coupled to 
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a pair of parallel circuits. Conversely, each parallel circuit is coupled to a 
pair of series nodes. These formal couplings are shown in Fig. 2 with 
orange boxes. 

As regards the series circuit, its total impedance is ZT = 4Z0. The 
incident voltage pulses define the circuit current, Ix, and the corre
sponding magnetic field, as 

Ix =
Hx

Δl
=

2
ZT

(
Vi

zpy − Vi
zny − Vi

ypz +Vi
ynz

)
. (1) 

Concerning the parallel circuit, it has a total admittance of YT =

4Y0+Gx, where Y0 = 1/Z0 and Gx models the electric losses related to Ex 
through the infinitely-long line with voltage Vσx . In this case, the current 
pulses are the natural quantities and the global circuit voltage and its 
associated electric field are 

Vx =
Ex

Δl
=

2
YT

(
Ii

ypx + Ii
ynx + Ii

zpx + Ii
znx

)
+

ISx

YT
=

=
2

YT Z0

(
Vi

ypx +Vi
ynx +Vi

zpx +Vi
znx

)
+

ISx

YT
,

(2)  

where ISx stands for the source electric current along the x-direction. 
Once the circuit quantities in (1) and (2) are obtained for the three 

Cartesian directions, the reflected voltage pulses may be easily calcu
lated. For the y-polarized lines along the z-direction, it results (Salinas 
et al., 2015) 

Vr
zpy =Vy − Z0Ix − Vi

zny,V
r
zny = Vy + Z0Ix + Vi

zpy. (3) 

Analogous expressions can be derived for the rest of link lines. 

3. The algorithm details 

As mentioned before, the system consists of two very large and 
concentric perfectly-conducting spheres with radius R1 and R2––R1+h, 
respectively, h≪R1 being the ionosphere height. Both spheres are 
included inside a cubic TLM mesh with a side of 2R2. This Cartesian 
scheme is easy to program through a 3D array, allows a direct knowl
edge of the adjacent nodes and reduces numerical dispersion. However, 
the very low value of h compared with that of R1 causes that most of the 
TLM nodes in this cubic region lie outside the atmosphere and, there
fore, they should be neither stored nor modeled. The inclusion of a pre- 
processing stage to eliminate these unnecessary nodes and transform the 
original 3D array of the cubic Cartesian scheme to a 1D array of rein
dexed nodes is the key point which makes it possible to numerically 
model such a challenging problem in an efficient way. 

The algorithm is developed in three main blocks:  

1. Transformation of the coordinates. 

The input data are provided at this stage, among them, the location 
of sources and output field points. These points are referred to the 
Earth’s surface. The program ‘Input_Earth_box.py’ translates them to 
Cartesian coordinates referred to the cubic TLM mesh.  

2. Pre-processing stage: reindexing and node characterization stage. 

The code ‘Earth_TLM_main.f95’ identifies the points inside the at
mosphere and their electromagnetic properties, assigns new appro
priated indexes to them and identifies the indexes of the adjacent nodes 
as well as nodes at the conducting limits of the problem. This identifi
cation will ease the conversion of reflected to incident pulses at the next 

Fig. 1. Geometry of the 3D TLM Symmetrical Condensed Node. Each line de
fines a component of the electric and the magnetic field propagating along a 
particular direction. The orange box at the center indicates that connections are 
to be understood as formal ones to describe the coupling existing between the 
different components of the vector Maxwell’s equations. 

Fig. 2. a) Series circuit for Hx. Orange boxes describe a formal coupling with the parallel circuits which define Ey and Ez. b) Parallel circuit to define Ex. The circuit is 
formally coupled (orange boxes) to the series circuits for Hy and Hz. Global circuit quantities, Ix and Vx, define the corresponding field quantities, Hx and Ex, 
respectively. 
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timestep. As a result of this stage, the 3D scheme has been converted to a 
1D scheme.  

3. The marching-on in time TLM process ‘Earth_TLM_MoiT.f95’. 

For each timestep and indexed node, the set of reflected voltage 
pulses are obtained from the corresponding set of incident pulses using 
equations (1)–(3). The output fields at the desired points are calculated 
and stored at this stage. The corresponding Fortran 95 code has been 
parallelized using a shared memory architecture with OpenMP 
directives. 

Let us describe the fundamental details of each block in the following 
subsections. 

3.1. Transformation of the coordinates (code ‘Input_Earth_box.py’) 

At the first block, the input parameters for the problem are provided 
through the file input_Earth.txt. Namely, the following data are included:  

1. Number of total timestep calculations  
2. Side length of the cubic TLM node.  
3. Earth’s radius (inner cavity radius)  
4. Inner ionosphere radius (outer cavity radius).  
5. A code number to select the atmosphere conductivity profile 

(described later).  
6. Number of source points.  
7. Source coordinates referred to the Earth’s surface: altitude, 

zenithal and azimuthal angles in degrees.  
8. Orientation of the current density at each source point, expressed 

in spherical components.  
9. Number of output points.  

10. Coordinates of the output points referred to the Earth’s surface: 
altitude, zenithal and azimuthal angles in degrees. 

The Python code ‘Input_Earth_box.py’ reads the data from the file 
‘input_Earth.txt’, it converts them to Cartesian coordinates referred to 
the Cubic Cartesian TLM mesh and, finally, stores them in a new file 
named ‘input_box.txt’ used in stage 2. 

3.2. Pre-processing stage (code ‘Earth_TLM_main.f95’) 

The aim of this second block is twofold:  

1. A 1D array is defined containing the indexes corresponding to the 
nodes at the boundary of the system, i.e., the nodes adjacent to the 
Earth’s surface and the ionosphere.  

2. The identification of the pair of indexes corresponding to adjacent 
lines, whose reflected voltage pulses will be exchanged to produce 
the incident pulses at the next timestep. 

This part is developed according to the following scheme: 

Step 1: Characterization of the nodes: indexation, boundary and 
neighbor nodes. 

The first task is the indexing of the nodes in the total cubic region 
which are located inside the much smaller atmospheric region. For the 
Earth’s case, with an inner radius of 6370 km and an ionosphere height 
of 100 km, a node size of Δl = 10 km requires using a total of 
12743≈2.17⋅109 nodes in the global cubic region. However, due to the 
fact that the height is two orders of magnitude lower than the Earth’s 
radius, only around 5.18⋅107 nodes are located in the region of interest, 
the atmosphere. This reduction to approximately 2.4 % of the original 
nodes causes an important reduction in both the time calculation and the 
memory storage requirements which turns the unaffordable original 
numerical model into a feasible one. 

Since the code considers inhomogeneous conductivities, a new array 
with the conductivity value at each newly indexed node is defined at this 
moment. The different conductivity profiles implemented are discussed 
in section 4. The last process in this step is identifying the new indexes 
corresponding to source and output points. 

It is worth noting that this is the part which requires a more 
demanding use of time calculation and memory resources. But this 
expensive task is only carried out once. As a result, it generates output 
arrays of reduced memory, with reindexed location and properties of 
nodes. Most of the auxiliary memory used in this process is not needed in 
subsequent stages and is released by means of proper DEALLOCATE 
Fortran sentences at the end of this procedure. 

Step 2. Identification of adjacent lines. 

At this point, we are aware of the nodes we are interested in, but each 
node contains 12 lines connecting adjacent nodes. The next step iden
tifies which lines in one node are connected to lines in other nodes to 
ease the conversion of reflected pulses to incident pulses for the next 
time iteration. To do so, two new arrays are defined. The first one 
contains the indexes of those lines connected to the inner and outer 
conducting boundaries. The second array stores the pairs of lines con
nected, a total of 6.21⋅108 lines if Δl = 10 km. It is worth noting that a 
minimum node size of 6.6 km is required in the provided Fortran code 
for the Earth’s atmosphere, which is limited by the fact that the number 
of lines must be lower than 231, which is the maximum value for the 
standard 4-byte integer variables used in the code. For better resolu
tions, the integer variables in the code should be adapted to 8-byte 
integer type. 

Step 3: Source implementation and numerical limit on frequency 

The time-dependence of the source function is defined at this point. 
Since TLM is a time domain numerical method, it is appropriated to use a 
time-dependent function containing a wide frequency spectrum. For its 
similarity with electromagnetic pulses generated by lightning strokes 
and TLEs, the Gaussian excitation is often used. It may be expressed as 

g(t)= e− g2(t− tm)2
, (4)  

where tm is used to avoid excitation at t < 0 and g is chosen to control the 
time width. The Fourier Transform of (4) is given by: 

G(f )= e− i 2πf tm

̅̅̅
π

√

g
e− π2 f 2/g2

, (5)  

where f stands for frequency. If the spectral content is defined by the 
frequency, fmaxg, at which the amplitude of G(f) is one tenth of the 
maximum value, it results that fmaxg ≈ 0.5g. 

It is important to bear in mind that the maximum frequency excited 
should be properly modeled by the numerical method. It is a well-known 
fact that spatial discretization produces numerical dispersion, which 
limits the frequency for the valid numerical results. A usually accepted 
criterium for valid frequency results is that the minimum corresponding 
wavelength is sampled at least ten times (Morente et al., 1995; Ijjeh 
et al., 2021). Therefore, a specific node size, Δl, ensures acceptable re
sults for frequencies below a frequency fmaxΔl, given by: 

fmaxΔl =
c

10Δl
. (6) 

The values of g and Δl should be chosen so that fmaxg ≤ fmaxΔl. 

Step 4: Program outputs 

Two output files are generated: ‘geometry1’ and ‘geometry2’ and used 
in step 3. The former is a text file which summarizes the input data, 
whereas the later contains auxiliary arrays resulting from step 2 in 
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binary format. 

3.3. The marching-on in time TLM process ‘Earth_TLM_MoiT.f95’ 

The third block of the presented code calculates the electric and 
magnetic field at each node and time iteration. It is split into the two 
distinct parts mentioned before: i) reflection of incident pulses and, ii) 
transmission of reflected pulses and conversion to incident ones at 
adjacent nodes at the next timestep. 

Regarding the first process, the incident pulses applied to equations 
(1) and (2) provide the voltage at the parallel nodes and the currents at 
the series nodes, respectively. Then, the set of reflected voltage pulses at 
each line will be obtained using (3). The excitation at source points is 
implemented at this moment. 

Output information is provided in two files:  

1. Voltages_box. A binary file contains the voltage and current at the 
parallel and series nodes of each 3D TLM output node, respectively. 
These magnitudes correspond to the electric and magnetic fields in 
arbitrary units.  

2. Time box. A formatted file with the total CPU time spent in the 
calculation. 

This block is parallelized using OpenMP directives, which basically 
consists of using OMP DO sentences for the node index loops, since the 
time sequence cannot be parallelized. 

4. Conductivity profiles implemented in the code 

The conductivity, σ, at each node can be defined through the input 
conductivity code number at the fifth line of the input file ‘input_Earth. 
txt’ described in section 3.1. Five conductivity profiles are modeled. The 
zero and one values correspond to a homogeneous atmosphere with σ =
0 and σ = 10− 10 S/m, respectively. 

Other three values of the conductivity codes, 10, 11 and 12, are also 
possible. They implement the following two-exponential conductivity 
profile (Toledo-Redondo et al., 2016): 

σ(z)=
{

σkne(z− hkn)/ξa if z < hkn,

σkne(z− hkn)/ξb if z ≥ hkn,
(7)  

where z stands for the height, σkn = 2πfknε0 and fkn = 10 Hz, and ε0 is the 
vacuum permittivity. The rest of magnitudes in (7) are specified in 
Table 1 to describe three usual profiles:  

- The global two-exponential profile (conductivity code number = 10). 
The conductivity is only height-dependent.  

- The day-night two-exponential profile (conductivity code number =
11). The conductivity profile distinguishes a day and a night region. 
One half of the atmosphere uses day-side parameters (0◦ ≤ φ < 90◦

and 270◦ ≤ φ < 360◦), while the other side has the night-side pa
rameters (90◦ ≤ φ < 270◦).  

- Finally, the earthquake perturbed profile (conductivity code number 
= 12) proposed in (Galuk et al., 2020). The conductivity profile is 
that of profile 10 except for a limited region, with zenithal angles 
lower than 27◦, with data perturbated by an earthquake occurring at 
the North Pole. 

5. Results 

This section illustrates some of the examples which can be modeled 
with the code supplied with this work. All the cases presented use a node 
size of 10 km and a total of Nt = 215 time calculations, except where 
otherwise noted. The timestep is 1.6678⋅10− 5 s and the frequency 
increment is around Δf = 1/(Nt Δt) = 1.8 Hz. This node size ensures 
valid results for frequencies below 3 kHz, approximately. A Gaussian 

vertical current source is applied at ground level at an equatorial point 
(θ = 90◦, φ = 0◦) with g = 2⋅103 s− 1, which excites frequencies of up to 1 
kHz. With the time calculations chosen, the signal completes four full 
perimeters around the Earth, which is enough for the lossy atmospheres 
considered. A longer calculation is required for a better modelling of the 
ideal case with zero conductivity in which no attenuation is present. 

The first example considers a homogeneous atmosphere in two cases: 
σ = 0 and σ = 10− 10 S/m. Fig. 3 is a plot of the vertical electric field 
versus time at ground level, θ = 45◦, φ = 0◦. Results are in good 
agreement with those reported in (Toledo-Redondo et al., 2016). It be
comes clear the attenuation effect caused by the conductivity (red line) 
which is not present in the ideal case (black line). The frequency domain 
fields are plotted in Fig. 4 in which the usual values for the SRs are 
clearly observed. Results for different number of time calculations are 
considered to illustrate their effect on the frequency resolution. It must 
be noted that the case with for σ = 10− 10 S/m does not actually require 
all those calculations to be carried out. It is enough to directly adding 

Table 1 
Two-exponential profiles.  

Parameter Global two- 
exponential profile 
(Conductivity code 
number = 10) 

Day-night two- 
exponential profile 
(Conductivity code 
number = 11) 

Earthquake 
perturbed profile 
(Conductivity 
code = 12) 

σkn (S/m) 5.56⋅10− 10 5.56⋅10− 10 5.56⋅10− 10 

hkn (km) 55  55 
hkn day (km)  54  
hkn night 

(km)  
60  

ξa (km) 8.3  8.3 
ξa day (km) 

(0◦≤φ <
90◦ and 
270◦≤φ < 
360◦)  

7.5  

ξa night (km) 
(90◦≤φ <
270◦)  

9.1  

ξa quake 
(km)   

13 

ξb (km) 2.9  2.9 
ξb day (km)  2.7  
ξb night (km)  3.8  
ξb quake (km) 

(θ ≤ 27◦)   
2.0  

Fig. 3. Vertical electric field versus time at a point located at ground level, θ =
45◦ and φ = 0◦ for an ideal atmosphere (black line) and a homogeneous con
ductivity of σ = 10− 10 S/m (red line) when a Gaussian vertical current is excited 
at ground level, θ = 90◦ and φ = 0◦. 
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zeroes once the time-domain signal has been sufficiently attenuated. 
The next case considers the global two-exponential profile. Fig. 5 

shows the NS component of the magnetic field versus time at ground 
level for different output points specified by θ = 45◦, and several values 
of φ, from 0◦ to 180◦. The delay and attenuation between the different 
output signals are clearly observed, together with a certain widening of 
the signal caused by dispersion. The solid lines in Fig. 6 show the fre
quency domain results. The dash-dotted lines show the slight variation 
caused by the earthquake perturbated profile. 

Next, the effect of considering day-night asymmetry in the atmo
sphere conductivity (profile code number = 11) is shown in Fig. 7 for the 
frequency-domain EW magnetic-field component. The source is located 
at ground level, at the Equatorial line in the middle of the day side (φ =
0◦). Day side points correspond to φ < 90◦ and night-side points corre
spond to φ ≥ 90◦. The dash-dotted lines show the field for the day-night 
two-exponential profile, while the global two-exponential profile case is 
plotted with solid line for comparison. 

Finally, Fig. 8 shows the time evolution of the NS magnetic field 
generated at ground level by two simultaneous sources, one at ground 
level and other at an altitude of 60 km, typical locations for a lightning 
stroke and a TLE, respectively. Fig. 9 is the corresponding frequency- 
domain plot. It is worth noting the deviation from the case shown in 

Figs. 5 and 6 with one source. For more details on this and previous 
figures, please see the notebooks provided with this work. 

To briefly summarize this section, the examples considered above are 
intended to illustrate the versatility of the provided code to numerically 
solve different situations of interest in the Earth’s atmospheric electro
dynamics field. The homogeneous and the global two-exponential fields 
provide information about the resonant cavity itself. The day-night 
asymmetric profile may contribute to the study of the solar activity in
fluence on SR variations. Finally, the locally perturbed profiles may 
model the effect of local events, such as earthquakes or others, on the 
RSs. As pointed out in (Sátori et al., 2016): “Future analysis of major 
perturbations of the SR will benefit from the use of a cavity model with 
both day-night and polar asymmetry, and a common processing of all 
receiver data sets for the same modal frequencies”. The expected 
changes in RS when considering different situations, solar activity or 
differences in conductivity profiles, for instance, can also be studied, 
which may help in linking the observed changes and the agents causing 
these changes. In this sense, the use of the numerical code provided with 
this work may contribute to a better knowledge of the atmospheric 
electrodynamics and to monitoring some aspects of climate changes, 

Fig. 4. Vertical electric field versus frequency at ground level, θ = 45◦, φ =
0◦ for an ideal atmosphere (left axis) and a homogeneous conductivity of σ =
10− 10 S/m (right axis) when a Gaussian vertical current is excited at ground 
level, θ = 90◦ and φ = 0◦. Different total time calculations are plotted to show 
their effect on the Fourier Transform. 

Fig. 5. Time evolution of the NS component of the magnetic field for the global 
two-exponential conductivity profile of Table 1. A vertical Gaussian current 
source is excited at ground level, θ = 90◦ and φ = 0◦, while output points are 
defined at ground level, θ = 45◦ and several values of φ, from 0◦ to 180◦. 

Fig. 6. Frequency-domain NS component of the magnetic field in response to a 
Gaussian vertical current source excited at ground level, θ = 90◦ and φ = 0◦. 
Output points are defined at ground level, θ = 45◦ and several values of φ, from 
0◦ to 180◦. Solid lines show the case of the global two-exponential conductivity 
profile of Table 1 (profile code number = 10), while dash-dotted lines describe 
the same profile perturbed by an earthquake (profile code number = 12). 

Fig. 7. Frequency-domain EW component of the magnetic field for the two- 
exponential conductivity profile (solid lines) and the day-night two-exponen
tial conductivity profile (dash-doted lines). The source is located at the Equa
torial line, ground level, in the middle of the day side (φ = 0◦). Outputs at the 
day side correspond to 0◦≤ φ < 90◦. The night side points have 90◦ ≤ φ ≤ 180◦. 
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among other applications. Besides the purely scientific knowledge, 
technical applications are possible. Equipment optimization, appro
priate measurement campaign planning or design of assessment nu
merical tools to objectively calibrate the effect of environmental or 
sustainability engineering projects can be derived basing on the results 
provided with the presented code. 

6. Conclusions 

This work begins with a brief discussion on the interest in the study 
of the electromagnetic propagation in the Earth’s atmosphere at the ELF 
band and some of its applications. The model presented considers the 
system as a spherical shell formed by two conducting boundaries to 
implement the Earth’s crust and the lower ionosphere, filled with a lossy 
dielectric, the atmosphere. The challenging point in the numerical 
model relies in the fact that the radial dimension is two orders of 
magnitude lower than the other two dimensions. A numerical solution 
using the TLM method is proposed and its main aspects are presented in 
section 3. The algorithm is implemented through a parallelized Fortran 
code using OpenMP directives, with some pre-processing and post- 
processing parts written in Python. The code is provided and could be 
of interest to the scientific community working in electrodynamic as
pects concerning planetary atmospheres. 

The code is organized in three parts: i) input stage, ii) pre-processing 
stage, and iii) the TLM algorithm itself. The main aspects of each part are 
shortly explained to allow the use or even the modification of the pro
vided code by other researchers. Different profiles usually considered in 
the specialized literature are implemented. Numerical results for 
Gaussian excitations and different conductivity profiles are presented in 
Section 5 to illustrate the code performances. 

It is worth noting that the fundamental point in the presented code is 
the second stage. This part reindexes the original nodes in a large cubic 
box, converting a 3D scheme to a 1D model which only stores the 
interesting nodes, those between the large but close concentric shells. 
This procedure is key to considerably reduce the storage and CPU re
quirements of such a demanding numerical problem and allow spatial 
resolutions of around 10 km in the Earth’s case, which is an appro
priated size for most SR results. 

Summarizing, the algorithm described here, together with the codes 
provided, make it possible a variety of studies. Arbitrary resolution can 
be achieved, limited only by computational capabilities. Any type of 
atmospheric conductivity profile accounting for different situations such 
as level of humidity, temperature, etc., can be included. In addition, 
local atmospheric disturbances caused, for instance, by volcano erup
tions, solar activity, nuclear disasters, pollution, etc., can be modeled 
using the algorithm. In addition, the codes presented make it possible to 
study electromagnetic propagation in other planetary environments, 
including solar system and exoplanet atmospheres. 

Code availability section 

Name of the code/library: Earth TLM. 
Contact: asalinas@ugr.es; +34 958242312. 
Hardware requirements: Earth_TLM package has been developed on 

a Mac with an Apple M2 Pro processor with 16 GB RAM and 10 CPU 
cores. For the examples presented in this paper, the program “Earth_
TLM_main.f95″ uses about 8 GB and “Earth_TLM_MoiT".f95 about 5 GB. 
The CPU time for 100 temporal steeps is 107 s when 1 core is used and 
27 s when 10 cores are used. 

Program language: Python and Fortran 95. 
Software required: Python, Jupyter notebooks, gfortran (OpenMP) 
Program size: The source codes and a Jupyter notebook with a 

shortened example have a size of 0.2 MB approximately. The zip file 
with the source codes and the Jupyter notebooks with all the cases 
considered in this paper has a size of 68 MB approximately. Intermediate 
files have a size around 2.8 GB. 

The source codes and a shortened case are available for downloading 
at the link: https://github.com/asalinas62/Earth_TLM.git. The source 
codes and Jupyter notebooks with the cases studied in this paper can be 
downloaded, in a zip file, from the following link, located at University 
of Granada (Spain): https://hdl.handle.net/10481/84341. 
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Fig. 8. NS magnetic field versus time for two simultaneous sources, one at 
ground level and the other at an altitude of 60 km with θ = 90◦ and φ = 0◦. 
Output points are defined at ground level, θ = 45◦ and several values of φ, from 
0◦ to 180◦. 

Fig. 9. NS magnetic field versus frequency for two simultaneous sources, one at 
ground level and the other at an altitude of 60 km with θ = 90◦ and φ = 0◦. 
Output points are defined at ground level, θ = 45◦ and several values of φ, from 
0◦ to 180◦. 
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An overview of thunderstorm-related research on the atmospheric electric field, 
Schumann resonances, sprites, and the ionosphere at sopron, Hungary. Surv. 
Geophys. 34 (3), 255–292. https://doi.org/10.1007/s10712-013-9222-6. 

Sátori, G., Williams, E., Price, C., Boldi, R., Koloskov, A., Yampolski, Y., et al., 2016. 
Effects of energetic solar emissions on the earth–ionosphere cavity of Schumann 

A. Salinas et al.                                                                                                                                                                                                                                 

https://doi.org/10.1029/JZ067i010p04081
https://doi.org/10.1029/JZ067i010p04081
https://doi.org/10.1029/2006RS003495
https://doi.org/10.1364/OE.16.009344
https://doi.org/10.1364/OE.16.009344
https://doi.org/10.1016/j.jastp.2019.105144
https://doi.org/10.1016/j.jastp.2019.105144
https://doi.org/10.3389/feart.2021.689127
https://doi.org/10.3389/feart.2021.689127
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref6
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref6
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref7
https://doi.org/10.1109/8.898776
https://doi.org/10.1109/8.898776
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref9
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref9
https://doi.org/10.1002/2014RS005567
https://doi.org/10.1029/97GL02358
https://doi.org/10.1029/97GL02358
https://doi.org/10.1016/j.jastp.2019.105093
https://doi.org/10.1016/j.jastp.2020.105392
https://doi.org/10.1016/j.jastp.2020.105392
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref14
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref14
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref14
https://doi.org/10.1109/TNS.1983.4333177
https://doi.org/10.1109/TNS.1983.4333177
https://doi.org/10.1109/TMTT.2021.3093417
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref17
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref17
https://doi.org/10.1007/BF02120854
https://doi.org/10.1680/jensu.21.00066
https://doi.org/10.1680/jensu.21.00066
https://doi.org/10.1016/j.jastp.2020.105231
https://doi.org/10.1029/2002JA009304
https://doi.org/10.1029/RG003i002p00211
https://doi.org/10.1029/RG003i002p00211
https://doi.org/10.5194/angeo-40-395-2022
https://doi.org/10.5194/angeo-40-395-2022
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref24
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref24
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref24
https://doi.org/10.1109/22.348108
https://doi.org/10.1029/2002JA009779
https://doi.org/10.1029/2002JA009779
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref27
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref27
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref27
https://doi.org/10.1029/2006RS003490
https://doi.org/10.1029/2008JA013143
https://doi.org/10.1029/2008JA013143
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref30
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref30
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref31
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref31
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref32
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref32
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref32
https://doi.org/10.1029/2002RS002752
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref34
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref34
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref34
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref35
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref35
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref35
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref36
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref36
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref36
https://doi.org/10.1006/jsvi.2000.3292
https://doi.org/10.1006/jsvi.2000.3292
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref38
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref38
https://doi.org/10.3390/electronics10172071
https://doi.org/10.3390/electronics10172071
https://doi.org/10.1029/2018RS006772
https://doi.org/10.1029/2018RS006772
https://doi.org/10.3390/atmos7090116
https://doi.org/10.1029/2021JD036051
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref43
http://refhub.elsevier.com/S0098-3004(23)00203-0/sref43
https://doi.org/10.1109/TMTT.2015.2446972
https://doi.org/10.1002/2016JA023253
https://doi.org/10.1007/s10712-013-9222-6


Computers and Geosciences 183 (2024) 105499

10

resonances. Surv. Geophys. 37 (4), 757–789. https://doi.org/10.1007/s10712-016- 
9369-z. 

Schumann, W.O., 1952. Über die stralungslosen Eigenschwingungen einer leitenden 
Kugel die von einer Luftschicht und einer Ionospärenhle umgeben ist. Z. Naturforsch. 
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