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a b s t r a c t

We study the convergence towards a unique equilibrium distribution of the
solutions to a time-discrete model with non-overlapping generations arising in
quantitative genetics. The model describes the dynamics of a phenotypic distri-
bution with respect to a multi-dimensional trait, which is shaped by selection and
Fisher’s infinitesimal model of sexual reproduction. We extend some previous works
devoted to the time-continuous analogs, that followed a perturbative approach in
the regime of weak selection, by exploiting the contractivity of the infinitesimal
model operator in the Wasserstein metric. Here, we tackle the case of quadratic
selection by a global approach. We establish uniqueness of the equilibrium
distribution and exponential convergence of the renormalized profile. Our technique
relies on an accurate control of the propagation of information across the large
binary trees of ancestors (the pedigree chart), and reveals an ergodicity property,
meaning that the shape of the initial datum is quickly forgotten across generations.
We combine this information with appropriate estimates for the emergence of
Gaussian tails and propagation of quadratic and exponential moments to derive
quantitative convergence rates. Our result can be interpreted as a generalization of
the Krein–Rutman theorem in a genuinely non-linear, and non-monotone setting.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Fisher’s infinitesimal model (also known as the polygenic model) is a widely used statistical model in
uantitative genetics initially proposed by R. Fisher [1]. It assumes that the genetic component of a
uantitative phenotypical trait is affected by an infinite number of loci with infinitesimal and additive allelic
ffects and claims that the genetic component of descendants’ traits is normally distributed around the mean
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value of parents’ traits, with a constant (genetic) variance across generations. This model allowed reconciling
Mendelian inheritance and the continuous trait variations documented by F. Galton via a Central Limit

heorem. More specifically, by taking limits when the number of underlying loci tends to infinity on a model
ith Mendelian inheritance, N. Barton, A. Etheridge and A. Véber [2] recently proved rigorously the

validity of Fisher’s infinitesimal model under various evolutionary processes (e.g., natural selection).
In this paper we study a time-discrete evolution problem for the distribution of a phenotypical trait x ∈ Rd

in a population undergoing sexual reproduction and the effect of natural selection. Specifically, starting at
any initial configuration F0 ∈ M+(Rd) of trait distribution, we analyze the long term dynamics of trait
distributions {Fn}n∈N across successive generations n ∈ N, which solves the following recursion

Fn = T [Fn−1], (1.1)

for any n ∈ N. The operator T encodes the balanced effect of sexual reproduction in the population (under
the infinitesimal model) and natural selection. Specifically, T is defined by

T [F ] := e−mB[F ], (1.2)

for any trait distribution F ∈ M+(Rd). On the one hand, m = m(x) ≥ 0 is called the selection function
and represents the mortality effect of a trait-dependent natural selection on the population, so that e−m

stands for the survival probability in the next generation. On the other hand, the operator B is chosen to
be Fisher’s infinitesimal operator and it takes the form

B[F ](x) :=
∫
R2d

G

(
x− x1 + x2

2

)
F (x1)F (x2)∫
Rd F (x′) dx′ dx1 dx2, x ∈ Rd, (1.3)

or any trait distribution F ∈ M+(Rd). Here G = G(x) is a probability density (the mixing kernel) and
he factor G(x − x1+x2

2 ) represents the transition probability that two given individuals with trait values
1, x2 ∈ Rd will mate and yield a descendant with trait value x ∈ Rd. In other words the resulting trait
istributes around the mean value x1+x2

2 of parents’ trait with law G. By definition, B[F ] quantifies the
number of births after all possible matches of any couple of individuals according to the trait distribution
F . Altogether, T [F ] quantifies the amount of offspring of a population distributed according to F having
esisted the effect of selection.

The above sexual reproduction operator B has recently pulled the attention of both the applied and more
heoretical communities, cf. [2–7]. In this paper we shall restrict to Gaussian mixing kernel and quadratic
election function, i.e.,

G(x) := 1
(2π)d/2 e

− |x|2
2 , x ∈ Rd, (1.4)

m(x) := α

2 |x|2, x ∈ Rd, (1.5)

here α ∈ R+ is a fixed parameter. Thereby, the trait of offsprings is normally distributed around the
mean value of the trait of parents by assumption (1.4), thus reducing to the standard infinitesimal model
when the assumptions of the Central Limit Theorem are met [2]. For simplicity, we set a Gaussian G with

nit variance, but any value of the genetic variance could also be considered (see nondimensionalization in
ppendix).
Before introducing our results, we shall relate the previous time-discrete problem (1.1) to analogous time-

ontinuous quantitative genetics models of evolutionary dynamics that have been studied in the literature.
eanwhile, we will anticipate the major difficulties that can be faced when analyzing the long-time dynamics

f (1.1). To this end, we consider, the following type of integro-differential equations for the evolutionary
ynamics of a trait distribution f(t, x):{

∂tf = −m(x)f + R[f ], t ≥ 0, x ∈ Rd,
d (1.6)
f(0, x) = f0(x), x ∈ R ,

2
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where, m = m(x) is again the mortality rate and R = R[f ] is the reproduction operator. Hence, R[f ](x)
etermines the amount of births with trait value x ∈ Rd per unit of time. As for (1.1), the resulting dynamics

of the population becomes a consequence of a balance between selection encoded by the trait-dependent
mortality and the diversity generated by the growth term R across generations.

Many studies consider a linear reproduction operator R, associated with a probability density K = K(x)
characterizing the mutational effects at birth, of the form

R[f ](x) :=
∫
Rd
K(x− y)f(t, y) dy, x ∈ Rd. (1.7)

The factor K(x − y) determines the probability that an individual with trait value y ∈ Rd produces a
descendant with trait value x ∈ Rd (possibly deviating from y). This class of linear reproduction operators
is well-suited for an asexual mode of reproduction. This includes parabolic equations in the limit of small
variance of K. In particular, we refer to a series of works about the long-time asymptotics in the regime of
small variance, initiated in [8–10], including an additional density-dependent competition term that makes
the analysis non standard (see e.g. [11] and references therein for the well-posedness of the constrained
Hamilton–Jacobi equation derived in the limit).

Recently, inspired by the infinitesimal model, the case of sexual reproduction has been addressed by
invoking the preceding nonlinear version B in (1.3) as reproduction operator R = B. Several asymptotic
regimes have been addressed: large reproduction rate [4,6,7], small variance asymptotics [3,5]. In the latter
case, the limiting problem keeps the non-local nature of the problem, being of a finite-difference type, rather
than a Hamilton–Jacobi PDE. Before we continue the discussion about the state-of-the-art, let us emphasize
that there is no restriction on the parameter α in the present work.

Since both f ↦→ mf and f ↦→ B[f ] are 1-homogeneous operators, we can seek for special steady solutions
of (1.3) through the following ansatz:

f(t, x) = eλtF (x), (t, x) ∈ R+ × Rd, (1.8)

The parameter λ ∈ R represents the rate at which the number of individuals grows (if λ ≥ 0) or decreases
(if λ ≤ 0), and F = F (x) ≥ 0 is an unknown probability density. By imposing such an ansatz on (1.6)–(1.3),
the following generalized spectral problem arises for the couple (λ, F ):{

λF (x) +m(x)F (x) = B[F ](x), x ∈ Rd,∫
Rd F (x′) dx′ = 1. (1.9)

ote that the operator B is genuinely non-linear so that methods based on the Krein–Rutman theory or
aximum principles cannot be applied straightforwardly, see [12,13] and the references therein for the linear

ase. Further, usual extensions of the Krein–Rutman theory to 1-homogeneous operators [14] cannot be
pplied neither because B is not monotone. To date, the main strategy behind the existence of solutions of
1.9) relies on a suitable application of Schauder fixed-point theorem to the operator F ↦→ (λ + m)−1B[F ]
ver an appropriate cone of L1(Rd) that is conserved by the nonlinear operator, see [15]. However, uniqueness
annot be achieved by this method. Moreover, it has been proven in [3, Corollary 1.5] that several equilibrium
tates (λ, F ) can co-exist in the presence of multiple local minima of m (provided the variance of G is small
nough). That is, the generalized eigenproblem (1.9) does not admit a unique positive eigenfunction, in
ontrast with general conclusions of the Krein–Rutman theory.

Recently, G. Raoul addressed the long-time dynamics of (1.6) in 1D, with R = B and a trait dependent
ecundity rate [7]. He obtained local uniqueness and exponential relaxation under the assumption of weak and
ocalized (compactly supported) selection effects. To this end, he controlled locally in space the Wasserstein
istance between the solution and the stationary state, using the uniform contraction property of B in the

pace of probability measures sharing the same center of mass. Unfortunately, the Wasserstein metric is

3
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not fully compatible with multiplicative operators, such as trait-dependent fecundity (see the discussion
in [7, Section 3.4] and Section 2 below). This can be circumvented under the additional assumption that
the trait density is locally uniformly bounded below, following [16]. Obviously, this cannot hold globally
for integrable densities, hence G. Raoul developed estimates of the distribution’s tail to complete the
contraction estimates. Also, a lot of attention has to be paid to the dynamics of the center of the distribution
which is essentially driven by selection. Indeed, in the case of flat selection (m ≡ 0), the problem is invariant
by translation, so that local uniqueness cannot hold. To conclude this discussion, let us emphasize that
global uniqueness and the asymptotic behavior of generic solutions to the evolution problem (1.6)–(1.3) is
still open. Below, we provide a first result in this direction, for the time-discrete problem (1.1), though.

We remark that the time-discrete version (1.1) that we propose in this paper can be partially regarded as
a discretization in time of the above time-continuous problem (1.6)–(1.3), with non-overlapping generations
(see Appendix for further details). As for the time-continuous problem, we could seek special solutions to
the time-discrete problem (1.1) in the following form

Fn(x) = λnF (x), (n, x) ∈ N × Rd. (1.10)

gain, λ ∈ R∗
+ is the rate of growth (if λ ≥ 1) or decrease (if λ ≤ 1) of individuals, and F = F (x) is an

nknown probability density. This yields the following generalized eigenproblem for the couple (λ, F ):{
λF (x) = T [F ](x), x ∈ Rd,∫
Rd F (x′) dx′ = 1. (1.11)

n this paper we aim to address the following questions:

(Q1) Does the eigenproblem (1.11) have a unique solution (λα,F α), with λα ∈ R and F α being a
probability measure, for each α ∈ R∗

+?
(Q2) Consider any generic initial datum F0 ∈ M+(Rd) and its associated solution {Fn}n∈N of the time-

discrete problem (1.1). Do the renormalized profiles Fn/∥Fn∥L1(Rd) converge to the unique steady
profile F α solving (1.11) when n → ∞?

We shall prove that the answer to both questions is affirmative. It stands to reason that similar existence
nd local uniqueness results like in [3,15] could be extended to the new eigenproblem (1.11) by applying
chauder and Banach fixed point theorems. Nevertheless, in this paper we introduce a novel method that
nravels an ergodicity property of the operator T , leading to quantitative estimates for the relaxation of
rofiles {Fn}n∈N towards F α. First, we prove that an explicit (Gaussian) solution to the eigenproblem (1.11)
xists. Second, by computing n iterations of the operator T , that is Fn = T n[F0], we notice that information
f Fn at the trait value x is propagated from the initial datum F0 across 2n ancestors over a binary tree
ith height n and rooted at x (the pedigree chart). Interestingly, an appropriate reformulation of T n in

he case of Gaussian mixing (1.4) and quadratic selection (1.5) shows that the dependence of the solution
Fn}n∈N on the initial datum F0 is rapidly lost across the different levels of the tree. More specifically, a

strong convergence of generic solutions {Fn} of the time-discrete problem (1.1) towards the steady Gaussian
profile F α solving (1.11) is achieved locally with respect to x. Third, we prove an appropriate propagation
of quadratic and exponential moments, leading to uniform tightness of the family {Fn}n∈N. Finally, we glue
all the information together and conclude the final global convergence result in question (Q2) in relative
entropy. We refer to Section 2 for a more detailed sketch of our strategy of proof. Specifically, we obtain
our main result:

Theorem 1.1. Assume that α ∈ R∗
+ and set any initial non-negative measure F0 ∈ M+(Rd). The solution
Fn}n∈N to the time-discrete problem (1.1) verifies that the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) relax
4
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towards λα and the normalized profiles Fn/∥Fn∥L1(Rd) relax towards F α with

λα :=
(

1 + α

(
1 + σ2

α

2

))− d
2
, F α := G0,σ2

α
, (1.12)

nd the variance σ2
α ∈ R∗

+ is the unique positive root of the equation

1
σ2

α

= α+ 1
1 + σ2

α
2

, i.e., σ2
α =

√
(1 + 2α)2 + 8α− (1 + 2α)

2α . (1.13)

pecifically, for any ε ∈ R∗
+ there exists a sufficiently large Cε ∈ R∗

+ such that

DKL

(
Fn

∥Fn∥L1(Rd)

F α

)
≤ Cε((2kα)2 + ε)n,⏐⏐⏐⏐⏐ ∥Fn∥L1(Rd)

∥Fn−1∥L1(Rd)
− λα

⏐⏐⏐⏐⏐ ≤ Cε(2kα + ε)n,

or any n ∈ N, where DKL is the Kullback–Leibler divergence (or relative entropy), i.e.,

DKL(P ∥ Q) :=
∫
Rd
P (x) log

(
P (x)
Q(x)

)
dx, (1.14)

or any P,Q ∈ L1
+(Rd) ∩ P(Rd), and the coefficient kα ∈ (0, 1

2 ) reads

kα = σ2
α

2 + σ2
α

, i.e.,
(3 + 2α) −

√
(1 + 2α)2 + 8α
4 . (1.15)

Note that any solution (λ, F ) to the eigenproblem (1.11) yields a solution to the time-discrete problem
1.1) through the ansatz (1.10). Then, question (Q1) will readily follow from question (Q2) and, in
articular, the unique solution (λα,F α) to (1.11) is Gaussian.

orollary 1.2. Assume that α ∈ R∗
+, then there exists a unique solution (λα,F α) to the eigenproblem

(1.11), with F α being a probability measure, namely given by (1.12).

Remark 1.3 (About the Assumption of Quadratic Selection). By the assumption of a quadratic selection
function, we can henceforth push extensively explicit computations of the iterated operator. The latter
consists in recursive multiplication and convolution by Gaussian functions. This enables capturing the
essence of the relaxation phenomenon, and having a precise description of the behavior at infinity, which
crucially helps to localize the convergence argument. As a by-product, we are able to consider very general
initial condition F0. Two of the authors, together with F. Santambrogio, have obtained similar results when
the selection function m is more generally assumed to be strongly convex [17]. However, they imposed
stringent conditions on the initial datum F0, that is, it should behave at infinity as the equilibrium profile
Fα in a very strong sense. It would be of interest to merge the two works, having a general (strongly convex)
selection function, and a general initial datum. This is left for future work.

Remark 1.4 (About the Choice of Metric). The convergence of the profiles has been quantified in Kullback–
Leibler divergence (1.14) in Theorem 1.1, in contrast with the results in [6,7], where the quadratic
Wasserstein distance was used for perturbative regimes of the case without selection. We anticipate that
there are several compelling reasons for such a change of metric in our non-perturbative setting:
5
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(i) (Quadratic Wasserstein distance) When α = 0, the operator T reduces to B, which is non-
expansive with respect to the quadratic Wasserstein distance, and indeed contractive over distributions
with common center of mass, cf. Section 2.1. However, when α > 0, the multiplicative operator leads
to an operator T which is not even Lipschitz continuous with respect to the quadratic Wasserstein
distance, cf Section 2.2. Therefore, the quadratic Wasserstein distance seems to be unadapted to
scenarios where reproduction and selection operate together.

(ii) (Log-Lipschitz norm) As we show in Section 2.3, the operator T is non-expansive in the log-Lipschits
norm ∥∇ log F

F α
∥L∞(Rd) for all α ≥ 0, and indeed it is contractive if α > 0. However, this contraction

only gives actual information when the initial datum F0 has identical tails to the Gaussian density F α

so that initially the log-Lipschitz norm is finite.
(iii) (Relative entropy distance) Note that the above log-Lipschit norm amounts to the natural L∞

version of the relative Fisher information ∥∇ log F
F α

∥L2(Rd,F ). By the log-Soboled inequality, contraction
of the log-Lipschits norm readily implies decay of the Kullback–Leibler divergence, which is a more
standard metric in relative entropy arguments. However, we emphasize that our use of the Kullback–
Leibler divergence is not only aesthetic, but we actually need it in order to go beyond the above
structural constraint on the tails of the initial data. Specifically, for generic initial data we need to
prove an appropriate shaping of tails over time, which cannot be expressed using uniform norms, but
only in an averaged sense (compatible with the relative entropy).

Altogether justifies that the whilst the quadratic Wasserstein distance is useful in perturbative regimes,
he use of alternative norms is necessary to quantify contraction in purely non-perturbative settings.

emark 1.5 (About the Positivity of α). Our form of ergodicity, as measured in Theorem 1.1, it breaks
own when α = 0, simply because the operator is invariant by translation in that case, and it admits a
ne-parameter family F α=0(· − µ) with µ ∈ Rd of fixed Gaussian probability densities. Nevertheless, as
entioned in item (i) above, when α = 0 and we restrict to centered initial data, there is convergence to

he right centered Gaussian probability density F α=0 with respect to the Wasserstein distance. It is an
pen problem to make both approaches meet for α = 0, and prove contraction in norms stronger than the
asserstein distance, but comparable to the log-Lipschitz norm, in this subclass of initial data.

The rest of the paper is organized as follows. In Section 2 we discuss about the generic incompatibility
f the Wasserstein distance with a multiplicative operator and we provide a brief outlook of the strategy of
ur proof. In Section 3 we provide some necessary notation and we introduce the special class of Gaussian
olutions of both problems (1.1) and (1.11), which will inspire some parts of the paper. Section 4 is devoted
o introduce some main properties of T regarding the emergence of Gaussian behavior (in the large) from
eneric initial data, and a suitable propagation of quadratic and exponential moments across generations. In
ection 5 we reformulate (1.1) via a high-dimensional integral operator propagating ancestors’ information
cross the different levels of the pedigree chart, which will be the cornerstone to study the long-term
ynamics. In Section 6 we prove our main results, namely, Theorem 1.1 and Corollary 1.2. Section 7 contains
ome numerical experiments that illustrate the results in this paper. In Section 8 we provide some conclusions
nd perspectives. Finally, Appendix contains the adimensionalization of the problem, and the relationship
etween (1.1) and the previous time-continuous analogs in the literature is discussed. A full list of the main
otations in the paper is presented in Table 1.

. Motivation and strategy of the proof of Theorem 1.1

In this section, we discuss the incompatibility of the quadratic Wasserstein distance to quantify directly

ontractivity under the joint effect of the reproduction operator B in (1.3) and a generic multiplicative

6
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Table 1
List of notations.

Notation Meaning Reference

M(Rd), M+(Rd) Signed and non-negative finite Radon measures Theorem 1.1
P(Rd), P2(Rd) Probability measures (with finite 2nd order moment) Lemma 2.1
P ⊗ Q ∈ M(R2d) Tensor product of the finite measures P, Q ∈ M(Rd) Eq. (6.39)
DKL(P |Q) Kullback–Leibler divergence between P, Q ∈ P(Rd) Eq. (1.14)
W2(P, Q) Quadratic Wasserstein distance between P, Q ∈ P2(Rd) Eq. (2.2)
Gµ, σ2 Gaussian with mean µ ∈ Rd and covariance σ2Id ∈ Rd×d Section 3.2
Gµ, Σ Gaussian with mean µ ∈ Rd and covariance Σ ∈ Rd×d Definition 5.8
N (µ, Σ) Normal with mean µ ∈ Rd and covariance Σ ∈ Rd×d Definition 5.8
E[X] Expectation of a random variable X Eq. (5.20)
G(x) Gaussian mixing kernel G0, Id

Eq. (1.4)
m(x) Quadratic selection function α

2 |x|2 Eq. (1.5)
B[F ] Fisher’s infinitesimal operator Eq. (1.3)
T [F ] Selection-reproduction operator Eq. (1.2)
M[F ] Normalized multiplicative operator by e−m Definition 2.3
S[F ] Scaled selection-reproduction operator Definition 4.4
En[F ] High-dimensional integral operators Definition 6.1
{Fn}n∈N Solution to the time-evolution equation (1.1) Eq. (1.1)
(λα, F α) Gaussian solution to the non-linear eigenproblem (1.11) Eq. (1.12)
σ2

α Variance of Gaussian eigenfunction F α Eq. (1.13)
F̄ = emF

F α=0
Normalized profile associated to F ∈ M+(Rd) Definition 5.1

Tn, Tn
∗ , T̂n Perfect binary tree, rootless tree and leafless tree Section 3.1

Ln
m, Ln Level m and leaves (level n) of the tree Section 3.1

i1, i2 Parents of a node i ∈ T̂n of the tree Section 3.1
xn = (xi)i∈Tn

∗

yn = (yi)i∈Tn
∗

Variables indexed by the rootless tree Remark 3.1

zn = (zj )j∈Ln Variables indexed by leafs Remark 3.1

∥x∥ =
(∑n

i=1
|xi|2
)1/2

ℓ2 sum of Euclidean norms of x = (x1, . . . , xn) ∈ Rdn Eq. (6.8)

Φj
n(x; yn) Lineage map from leaf j ∈ Ln to root value x ∈ Rd Definition 5.6

u ⊗ v ∈ Rd×d Kronecker product (uivj )1≤i, j≤N of vectors u, v ∈ Rd Remark 5.10
kn, κn Sequences of coefficients in the change of variables Definition 5.2
(2kα)2 Convergence rate of DKL Eq. (1.15)
2kα Convergence rate of the log-Lipschitz norm Lemma 2.5
rα Relaxation rates of variances recursion Lemma 3.8

selection e−m. Although a small perturbation of the case of flat selection (m ≡ 0) could still be considered
via a perturbative argument (see discussion above, [7] and also [6]), our novel approach is able to tackle a
purely non-perturbative setting. We end the section by briefly discussing the strategy of our proof.

2.1. Some properties of the sexual reproduction operator

We start by recalling some of the main properties of the sexual reproduction operator B. Since the
ecundity rate has been normalized to 1 (see Appendix), then B preserves the mass and center of mass,
amely,

∥B[F ]∥L1(Rd) = ∥F∥M(Rd),

∫
Rd
xB[F ](x) dx =

∫
Rd
xF (dx), (2.1)

or any F ∈ M+(Rd). Furthermore, it is contractive in the space of probability measures with a common
enter of mass, endowed with the quadratic Wasserstein metric. As discussed above, this property has been
sed fruitfully by G. Raoul (cf. [7]) to analyze the long term behavior of the time-continuous problem in
he regime of weak (and compactly supported) selection acting on fecundity. For the sake of clarity, we recall
his fact and its proof below:
7
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Lemma 2.1. Assume that F1, F2 ∈ P2(Rd) and they have the same center of mass. Then,

W2
2 (B[F1],B[F2]) ≤ 1

2 W2
2 (F1, F2).

roof. Recall the following dual characterizations of the quadratic Wasserstein distance (cf. [18,19]):

W2
2 (F1, F2) = inf

{∫
R2d

|x− y|2 γ(dx, dy) : γ ∈ P(Rd × Rd), π1#γ = F1, π2#γ = F2

}
= sup

{∫
Rd
ϕ1 dF1 +

∫
Rd
ϕ2 dF2 : |ϕ1(x) + ϕ2(y)| ≤ |x− y|2 ∀x, y ∈ Rd

}
,

(2.2)

where πi : Rd × Rd → Rd is the projection onto the ith component for i = 1, 2. Taking any couple (ϕ1, ϕ2)
as above and using the specific form of the operator B we obtain:∫

Rd
B[F1](x)ϕ1(x) dx+

∫
Rd

B[F2](y)ϕ2(y) dy

=
∫
R3d

G

(
x− x1 + x2

2

)
ϕ1(x)F1(dx1)F1(dx2) dx+

∫
R3d

G

(
y − y1 + y2

2

)
ϕ2(y)F2(dy1)F2(dy2) dy

=
∫
R3d

G(z)ϕ1

(
z + x1 + x2

2

)
F1(dx1)F1(dx2) dz +

∫
R3d

G(z)ϕ2

(
z + y1 + y2

2

)
F2(dy1)F2(dy2) dz.

onsider any transference plan γ ∈ P(Rd × Rd) between (F1, F2) as above. Specifically, we have that
1#γ = F1 and π2#γ = F2. Then, we can gather both integrals as follows:∫

Rd
B[F1](x)ϕ1(x) dx+

∫
Rd

B[F2](y)ϕ2(y) dy

=
∫
R5d

G(z)
(
ϕ1

(
z + x1 + x2

2

)
+ ϕ2

(
z + y1 + y2

2

))
γ(dx1, dy1) γ(dx2, dy2) dz.

ince the condition |ϕ1(x) + ϕ2(y)| ≤ |x− y|2 is verified for all x, y ∈ Rd, then we find∫
Rd

B[F1](x)ϕ1(x) dx+
∫
Rd

B[F2](y)ϕ2(y) dy

≤ 1
4

∫
R5d

G(z) |(x1 + x2) − (y1 + y2)|2 γ(dx1, dy1) γ(dx2, dy2) dz

= 1
4

∫
R4d

|(x1 + x2) − (y1 + y2)|2 γ(dx1, dy1) γ(dx2, dy2)

= 1
4

∫
R2d

|x1 − y1|2 γ(dx1, dy1) + 1
4

∫
R2d

|x2 − y2|2 γ(dx2, dy2),

where in the third line we have used that G is a probability density and in the last line we have used the
crucial fact that F1 and F2 share the same center of mass in order to cancel the cross-terms (otherwise the
estimate would boil down to a non-expansiveness estimate). Taking supremum over (ϕ1, ϕ2) and infimum
over γ and using the dual characterizations (2.2) yields the result. □

Note that the fact that both F1 and F2 have the same center of mass has been crucially used to cancel
the crossed term. Otherwise, by the Cauchy–Schwarz inequality we would merely obtain non-expansiveness:

W2(B[F1],B[F2]) ≤ W2(F1, F2). (2.3)

Using the contractivity property of Lemma 2.1 along with the conservation of mass and center of mass in

(2.1) yields the long term dynamics of (1.1) in the special case α = 0.

8
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Corollary 2.2. Set any initial datum F0 ∈ M+(Rd) such that
∫
Rd |x|2F0(dx) < ∞ and consider the solution

Fn}n∈N to the time-discrete problem (1.1) with α = 0, i.e., Fn = B[Fn−1] for all n ∈ N. Then,

∥Fn∥L1(Rd)

∥Fn−1∥L1(Rd)
= 1, W2

(
Fn

∥Fn∥L1(Rd)
, Gµ0,2

)
≲

1
2n/2 ,

or every n ∈ N, where µ0 :=
∫
Rd xF0(dx). In particular, the set of stationary distributions under B is

F α=0(· − µ) : µ ∈ Rd}, where F α=0 = G0,2 will denote here on the Gaussian centered at the origin with
ariance equals 2 in agreement with the notation (1.12) in Theorem 1.1.

The preceding result might be regarded as the counterpart of Theorem 1.1 for α = 0. Indeed, by Talagrand
transportation inequality for a Gaussian measure [20] we obtain the relation

W2
2

(
Fn

∥Fn∥L1(Rd)
, Gµ0,2

)
≤ 4 DKL

(
Fn

∥Fn∥L1(Rd)

Gµ0,2

)
.

owever, Theorem 1.1 does not hold when α = 0, as mentioned in Remark 1.5, due to two fundamental
easons. First, when α = 0 there is translation invariance and therefore, for generic F0 ∈ M+(Rd) one cannot
xpect that the normalized profiles Fn/∥Fn∥L1(Rd) always converge to the Gaussian F α=0 centered at the
rigin (contrarily to what happens when α > 0). Otherwise, the centers of mass must get shifted towards
he origin, thus breaking the translation invariance. Indeed, as mentioned in Corollary 2.2, the equilibria are
ot unique when α = 0 (contrarily to the case α > 0), and the center of mass of the resulting equilibria must
tay equal to the initial one. Second, even if we set the initial center of mass at the origin so that we kill the
ranslation invariance, our method of proof of Theorem 1.1 leads to estimates that blow up as α → 0 since
e have 2kα=0 = 1.

.2. Incompatibility of Wasserstein metric with multiplicative operators

Note that by definition (1.2), our operator T is the composition of the sexual reproduction operator B with
he multiplicative operator by the survival probability e−m. Then, it might be natural to study perturbations
f the previous Lemma 2.1 including the following conservative multiplicative operator.

efinition 2.3 (Normalization of Multiplicative Operator).

M[F ] := e−mF

∥e−mF∥M(Rd)
, F ∈ M+(Rd) \ {0} .

However, the latter is not Lipschitz continuous with respect to the quadratic Wasserstein metric. Hence
he composition of B and M is not expected to be contractive, even in the case of weak selection, without
ny additional restriction. We illustrate such a Lipschitz discontinuity of M in the following example.

xample 2.4. Suppose that the m ∈ C1
+(R) is radially symmetric around the origin and set F1, F2 ∈ P2(R)

s the sum of two Dirac masses, F1 being symmetric, and F2 nearly symmetric. More precisely,

F1 = 1
2δ−h + 1

2δh, F2 = 1
2δ−h+ε + 1

2δh+ε,

here h > 0 is fixed so that m′(h) ̸= 0 and ε > 0 is small. Note that

M[F ] = F , M[F ] = (1 − p )δ + p δ ,
1 1 2 ε −h+ε ε h+ε

9
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where pε ∈ (0, 1) is given by

pε = e−m(h+ε)

e−m(−h+ε) + e−m(h+ε) .

On the one hand, we have W2(F1, F2) = ε because F2 is simply deduced from F1 by a translation of size ε.
On the other hand, assuming m′(h) > 0 for simplicity (a similar argument holds if m′(h) < 0) and taking
> 0 sufficiently small we obtain pε <

1
2 and

W2(M[F1],M[F2]) =

√
ε2 + 4h(h− ε)

(
1
2 − pε

)
∼ ε+ hm′(h)1/2ε1/2,

as ε → 0 by symmetry and the mean value theorem. In a sense, the leading order term corresponds to the
cost of moving a piece of mass 1

2 − pε from −h + ε to h in order to equilibrate the Dirac masses in the
transport plan. Since m′(h) ̸= 0 this leads to the Lipschitz-discontinuity of the operator M.

In [7], this case is ruled out by assuming that the densities are uniformly bounded below on compact
intervals. In our case, we will avoid relying on the above quantification in Lemma 2.1 for the contractivity
of B and will propose a different strategy that we discuss in the sequel.

2.3. Log-Lipschitz contraction estimate

In this paper, we explore an alternative approach to derive some suitable contraction of the operator T
in appropriate norms in the regime of strong, but quadratic, selection. As anticipated in Remark 1.4, our
computations suggest using a log-Lipschitz norm, which measures the uniform deviation of tails of any profile
F relative to the Gaussian tails of F α. More specifically, we obtain the following result for any α ≥ 0 (but
only useful when α > 0).

Lemma 2.5 (Log-Lipschitz Estimate). Let m be the quadratic selection function in (1.5) and consider any
alue α ≥ 0. Then, the following estimate holds true∇ log T [F ]

F α


L∞(Rd)

≤ 2kα

∇ log F

F α


L∞(Rd)

,

or any F ∈ L1
+(Rd) ∩ C1(Rd) such that ∥∇ log F

F α
∥L∞(Rd) < ∞. The coefficient kα above is given by the

umerical value (1.15) in Theorem 1.1.

When applied to F = Fn for any solution {Fn}n∈N of the time-evolution problem (1.1), the above
nequality in Lemma 2.5 allows propagating a control of growth/decrease of the log-Lipschitz norm under
he flow of the equation. In particular, when α > 0, we have 2kα < 1 (cf. Fig. 1), and therefore we obtain
n actual contractivity estimate. There is one main drawback though: typically ∇ log Fn

F α
are genuinely

nbounded unless F0 and F α have the same Gaussian decay for large x (which is much too restrictive).
major point of our work will precisely be to circumvent this unbounded factors.
However, when α = 0 we have 2kα = 1, and we simply obtain non-expansiveness. We emphasize that in

he derivation of such a rough estimate, we do not use carefully the preservation of the center of mass. This
esults in a non-expansiveness estimate, which is conceptually no better than the previous non-expansiveness
roperty (2.3) in the quadratic Wasserstein metric, obtained as in Lemma 2.1 without assuming that the
enters of mass are the same. For this reason, our method of proof will finally not yield satisfying results in
he case α = 0, but we find this idea illuminating to address the case of a non-trivial effect of selection when
> 0. A refinement of Lemma 2.5 leading to real contractivity would require tackling more carefully the

enter of mass. However, as mentioned in Remark 1.5, we will not address this in the current paper, and we

efer to Section 8 for some perspectives and future works in this line.

10
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Fig. 1. Parameter kα against parameter α.

Proof of Lemma 2.5. Our starting point resides in the following normalization of the operator T :

T [F ](x)
F α(x) = λα∫

Rd
F (x′)

F α(x′) F α(x′) dx′

∫∫
R2d

P(x;x1, x2) F (x1)
F α(x1)

F (x2)
F α(x2) dx1 dx2, (2.4)

for all x ∈ Rd, where we have

P(x;x1, x2) = e
1
2 ( 1

σ2
α

−α)|x|2

λα(2πσα)d
exp

[
−1

2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2 − 1
2σ2

α

(|x1|2 + |x2|2)
]
. (2.5)

bove we have exploited the explicit Gaussian shape of F α to find P explicitly. Note that P consists
n a one-step Markov transition kernel representing the probability that parental traits (x1, x2) lead to

descendant trait x. Indeed,
∫∫

R2d P(x;x1, x2) dx1 dx2 = 1 for all x ∈ Rd because (λα,F α) solves the
non-linear eigenproblem (1.11). We remark that the quadratic form in the exponential in (2.5) reaches its
maximum value at (x1, x2) = (kx, kx) for k = σ2

α/(2 + σ2
α) and by definition (1.15) of kα, we infer k = kα.

This motivates using the change of variables

x1 = kαx+ y1, x2 = kαx+ y2, (2.6)

which appropriately centers the quadratic form at the minimum. Specifically, we obtain

1
2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2 − 1
2σ2

α

(|x1|2 + |x2|2)

= −1
2

⏐⏐⏐⏐y1 + y2

2

⏐⏐⏐⏐2 − 1
2σ2

α

(|y1|2 + |y2|2) − 1
2

(
(1 − kα)2 + 2k2

α

σ2
α

)
|x|2 + 1

2

(
(1 − kα) − 2kα

σ2
α

)
x · (y1 + y2),

= −1
2

⏐⏐⏐⏐y1 + y2

2

⏐⏐⏐⏐2 − 1
2σ2

α

(|y1|2 + |y2|2) − 1
2

(
1

σ2
α

− α

)
|x|2,

here in the second line we have noticed that the coefficient of the crossed term x · (y1 + y2) vanishes due
o the relation kα = σ2

α
2+σ2

α
, and the coefficient of the |x|2 factor can be reformulated as

(1 − kα)2 + 2k2
α

σ2 = 2
2 + σ2 = 1

σ2
α

= 1
σ2 − α,
α α 1 + 2 α

11
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thanks to the implicit Eq. (1.13) satisfied by σ2
α. Therefore, (2.4)–(2.5) transform into

T [F ](x)
F α(x) = λα∫

Rd
F (x′)

F α(x′) F α(x′) dx′

∫∫
R2d

P̃(y1, y2) F (kαx+ y1)
F α(kαx+ y1)

F (kαx+ y2)
F α(kαx+ y2) dy1 dy2, (2.7)

P̃(y1, y2) = 1
λα(2πσα)d

exp
[

−1
2

⏐⏐⏐⏐y1 + y2

2

⏐⏐⏐⏐2 − 1
2σ2

α

(|y1|2 + |y2|2)
]
. (2.8)

We remark that the new Markov transition kernel P̃ = P̃(y1, y2) does not depend on x thanks to the explicit
cancellation of the |x|2 dependent factors. At this level, we start to observe the ergodicity phenomenon since
the dependence of x on the right hand side of (2.7) has shrunk by a factor kα. A possible strategy to see
if there is a quantitative degradation of the dependence on x is to take logarithmic derivatives and try to
relate the log-Lipschitz norms of T [F ] and F . Specifically, we have

∇ log T [F ](x)
F α(x) = kα

∫
R2d

(
∇ log F (kαx+ y1)

F α(kαx+ y1) + ∇ log F (kαx+ y2)
F α(kαx+ y2)

)
ν(x; dy1, dy2), (2.9)

here the x-dependent measures ν(x; dy1, dy2) on the variables (y1, y2) have the following density with
espect to the Lebesgue measure:

ν(x; dy1, dy2)
dy1 dy2

=
P̃(y1, y2) F (kαx+ y1)

F α(kαx+ y1)
F (kαx+ y2)

F α(kαx+ y2)∫∫
R2d

P̃(y′
1, y

′
2) F (kαx+ y′

1)
F α(kαx+ y′

1)
F (kαx+ y′

2)
F α(kαx+ y′

2) dy
′
1 dy

′
2

.

ince the integrands of (2.9) are uniformly bounded by our assumptions, we end the proof by taking L∞

ounds and using that ν are probability measures on the variables (y1, y2). □

2.4. Brief description of our strategy

As advanced before, our strategy is based on a finer understanding of the iterations of T across
generations. Specifically, it relies on a suitable reformulation of the solutions {Fn}n∈N solving the recursion
(1.1) for the special quadratic selection function m in (1.5). At this stage we intentionally keep notation
simple and intuitive, since our goal is to briefly present the main strategy. However, a rigorous approach
with more descriptive notation for the trees of ancestors, which arise from the recursion, is developed in
detail in Section 5.

The first step consists in choosing the appropriate normalization extending the previous normalization
Fn/F α in the proof of Lemma 2.5. In this paper, we have opted for

F̄n = emFn

F α=0
,

(cf. Definition 5.1) but there is some freedom here. In particular, the term em is not mandatory, but it
s convenient as such for an easier sorting of the various terms. Indeed, we may typically consider any
ormalization Fn/G0,σ2 with σ2 larger but arbitrarily close to σ2

α (being σ2
α the variance (1.13) of the

expected equilibrium F α). In other words, we could take any “close-to-optimal” normalization as compared
to the “optimal” normalization used in the strategy in Section 2.3. However, for general selection functions
m we do not know the expected equilibrium. To account for a more robust viewpoint, we follow a more
robust approach so that we do not “optimize” the normalization.

In a nutshell: we iterate the operator T in the recursion for Fn up to the initial datum and we obtain
(modulo a multiplicative constant) a formula of the following type

Fn(x) ∝
∫
R(2n+1−2)d

Pn(x; {xi})
∏

F̄0(xj) d{xi},

j

12
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for an explicit n-step transition kernel Pn with Gaussian shape:

Pn(x; {xi}) := exp(−Qn(x; {xi})).

Here, the index i spans the 2n+1 − 2 members of the genealogical tree with n generations of ancestors
rom the root (excluded) to the leaves, whilst j only spans the 2n members at the leaves. In addition,

n = Qn(x; {xi}) is a quadratic form taking as arguments all traits x and {xi} (i.e., all the 2n+1 − 1
ncestors in the family chart including the root x). As compared to Section 2.3, we have iterated n times,
hich raises the dimension of the quadratic form to 2n+1 − 1. In addition, the change of normalization leads

o additional quadratic contributions γ
2 |xi|2 (with γ = σ2

α
2+σ2

α
). Therefore, the minimizers of Qn get shifted

cf. Section 5). As a result of successive backwards changes of variables from leaves to the root very much
n the spirit of (2.6), the following alternative expression is obtained:

Fn(x) ∝ F̃ n(x)
∫
R(2n+1−2)d

P̃ n({yi})
∏

j

F̄0(Φj
n(x; {yi})) d{yi} . (2.10)

Above, for every leaf j the maps Φj
n defined by

Φj
n(x; {yi}) := κnx+ Λj({yi}),

here Λj
n are affine transformations with respect to the variables {yi}. We shall call them the lineage maps

cf. Definition 5.6), since they contain precise information of the effect of the leaf j of the genealogical tree
on the resulting trait x. In addition, P n are n-step transition kernel with Gaussian shape:

P̃ n({yi}) = exp(−Q̃n({yi})),

for a x-independent quadratic form Q̃n taking as arguments all traits {yi} (root excluded). In this case,
he |x|2 remainders coming from the changes of variables on Pn do not simplify due to our different
ormalization, and they contribute with an explicit Gaussian factor F̃ n(x). Then, the dependency upon
is split into two parts: the explicit term F̃ n(x) outside the integral (which is proven to converge towards
α by construction) and the contribution κnx of the lineage maps Φj

n(x; {yi}) inside F̄0 for an appropriate
equence {κn}n∈N ⊆ R+. The major observation here is that κn ≪ 2−n when α > 0 because of the strong
hift towards the origin under selection. Otherwise, for α = 0 we only have κn = 2−n.

Formula (2.10) for α > 0 then suggests a strong form of ergodicity, reminiscent of the contraction of
he log-Lipschitz norm in Lemma 2.5, where the dependency on x fades as n → ∞. Indeed, there are still
n terms in the product indexed by j, but the contraction parameter κn appears to decay fast enough to
ompensate them. To make this argument quantitative, let us differentiate (2.10) again to obtain

∇ logFn(x) = ∇ log F̃ n(x) + κn

∑
j

∫
R(2n+1−2)d

∇ log F̄0(Φj
n(x; {yi})) νn(x; d{yi}) , (2.11)

here the x-dependent probability measures νn(x; d{yi}) on the variables {yi} have the following density
ith respect to the Lebesgue measure:

νn(x; d{yi})
d{yi}

=
P̃ n({yi})

∏
j F̄0(Φj

n(x; {yi}))∫
R(2n+1−2)d P̃ n({y′

i})
∏

j F̄0(Φj
n(x; {y′

i})) d{y′
i}
.

We remark that a naive repetition of the strategy in Lemma 2.5 under the additional assumption that
log F̄0 ∈ L∞(Rd) would immediately retrieve an exponential decay of the second factor in (2.11) when α >
(or only a uniform bound if α = 0) since the large sum over j would be bounded by 2nκn∥∇ log F̄0∥L∞(Rd).
owever, as mentioned before, there is a strong drawback: the factors ∇ log F̄ are not bounded, not even
0

13
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Fig. 2. Overall map of the proof of Theorem 1.1.

fter long enough times. In the current formal argument, we have not discussed about the precise shape of
he linear components Λj

n of the lineage maps Φj
n, since it was not relevant thus far. However, we anticipate

that to overcome the aforementioned complication, we shall require more precise estimates for large values
of {yi} in the high-dimensional integral, which are guaranteed by the strong enough decay of κn, and which
will be essential in the rigorous proof in Section 6.

More specifically, and this explains why our approach moves from one-step contraction estimates (in the
spirit of Section 2.3) to ergodicity results, note that the same reformulation of the iteration as above could be
done exactly n− k times up to an advanced enough time step k. By doing so, we can grasp on some natural
Gaussian shaping under selection, which we expect to lead to unbounded ∇ log F̄k, but growing sublinearly
at infinity. Hence, we require precise compensations in the high-dimensional integral (2.11) which we find
by deriving a suitable control of moments of νn. By doing so, one has to irremediably move from uniform
estimates to averaged estimates, and being able to propagate them for large times. This requires a thorough
and highly technical analysis, which becomes the main objective of this paper.

For an easier readability, and to guide the reader along the various steps of the proof, we provide an
overall map of it in Fig. 2, which allows interconnecting the main fundamental results.

3. Preliminaries

In this part, we collect some necessary preliminary tools and results that will be used later on.

3.1. Perfect binary trees

In this paper, we shall systematically use indices i that do not range on discrete intervals {1, . . . , n} but
rather on the vertices of a specific type of trees, which are called perfect binary trees, see [21,22]. First, we

introduce the notion of binary trees, which we present using their universal address system, see [21, Section

14



V. Calvez, T. Lepoutre and D. Poyato Nonlinear Analysis 238 (2024) 113392

t

T
G
A

t
c
o
o
t
o

Fig. 3. Perfect binary tree T3.

11.3.3]. Namely, a binary tree T consists in a finite subset of words T ⊆ W2 := ∪∞
k=0{1, 2}k with letters in

he alphabet {1, 2} that verifies:

(i) ∅ ∈ T.
(ii) If i1 ∈ T or i2 ∈ T for some word i ∈ W2, then i ∈ T.

his implies that the root is the empty word , and T is stable under chopping letters on the right of its words.
iven a word i ∈ T, we denote its length (number of letters) or height in the tree by |i|. In particular, |∅| = 0.
binary tree T is said to be perfect if, in addition, the following properties hold:

(iii) Given a word i ∈ W2, then i1 ∈ T if, and only if, i2 ∈ T.
(iv) There exists n ∈ N such that |i| ≤ n for every i ∈ T and

#{i ∈ T : |i| = n} = 2n.

This implies that, except for the root, words in T appear in couples {i1, i2} and paths in the tree arising from
he root achieve the same maximal height n. The above four conditions determine a unique tree, which we
all the perfect binary tree with height n ∈ N and we denote by Tn. See Fig. 3 for a graphical representation
f the perfect binary tree T3 of height 3. Binary trees are often used to describe the different generations
f offsprings after a given individual. In our case, we shall make a reverse use of trees. Namely, a binary
ree will represent the family tree or pedigree chart of an individual, consisting of the different generations
f ancestors of such an individual. For this purpose, we shall establish the following terminology:

(i) (Leaves) We say that a vertex i ∈ Tn is a leaf of the tree if |i| = n. The set of all leaves of Tn will be
denoted by

Ln := {i ∈ Tn : |i| = n}.

(ii) (Levels) We say that a vertex i ∈ Tn is on the mth level of the tree if |i| = m for some 1 ≤ m ≤ n.
The set of all vertices on the mth level will be denoted

Ln
m := {i ∈ Tn : |i| = m}.

In particular, note that Ln
0 = {∅} is the root and Ln

n = Ln are the leaves. For simplicity of notation, we
denote the set of vertices of the root-free and leaves-free tree respectively by

Tn
∗ := Tn \ {∅}, T̂n := Tn \ Ln.

(iii) (Child) Given a vertex i ∈ Tn
∗ , then there exists a unique word j ∈ W2 such that i = j1 or i = j2.

Such a vertex j is called the child of i and will be denoted by c(i) = j.
(iv) (Parents) Given a vertex ∈ T̂n, we define the parents of i as the subset of all vertices that have the

same common child i, that is,

P(i) := {i1, i2}.

15
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(v) (Mate) Given a vertex i ∈ Tn
∗ , we define the mate of i and we denote it m(i) as the only other vertex

in Tn that has the same child as i, i.e.,

{i,m(i)} = {c(i)1, c(i)2}.

(vi) (Tree order) Given two vertices i, j ∈ Tn, we say that i ≤ j if the associated words are so ordered
according to the lexicographical order of the set of words W2 with two letters {1, 2}.

vii) (Highest common descendant) Given two vertices i, j ∈ T̂n, we define the highest common
descendant of i and j, and we denote it by i ∧ j, as

i ∧ j := max{l ∈ Tn : l ≤ i, l ≤ j},

where the maximum is considered with respect to above tree (lexicographic) order.

emark 3.1 (Tree-indexed Variables). Given n ∈ N, we shall identify R2(2n−1)d ≡ (Rd)Tn
∗ and R2nd ≡

Rd)Ln . Specifically, vectors xn,yn ∈ R2(2n−1)d and zn ∈ R2nd will be regarded as indexed families

xn = (xi)i∈Tn
∗ , yn = (yi)i∈Tn

∗ , zn = (zj)j∈Ln , (3.1)

here xi, yi ∈ Rd and zj ∈ Rd for each i ∈ Tn
∗ and j ∈ Ln.

.2. Gaussian solutions

In this part, we compute particular solutions of the time-discrete problem (1.1) and the associated
igenproblem (1.11). As we advanced before, we shall exploit the explicit algebraic structure imposed by G
given by the Gaussian mixing kernel (1.4)) and m (given by the quadratic selection function (1.5)). Namely,
xplicit Gaussian solution will be obtained. We recall first the following stability property of Gaussians under
onvolutions.

emma 3.2 (Stability of Gaussians). The following relation holds true

Gµ1,σ2
1

∗Gµ2,σ2
2

= Gµ1+µ2,σ2
1+σ2

2
, (3.2)

or any couple of means µ1, µ2 ∈ Rd and variances σ2
1 , σ

2
2 > 0.

Using the above result, we can obtain the following explicit evaluation of the operator T in (1.2) over the
lass of Gaussian functions.

emma 3.3 (Evaluation on Gaussians). Consider any µ ∈ Rd and σ2 ∈ R∗
+, then

T [Gµ,σ2 ] = m∗ Gµ∗,σ2
∗
,

here the parameters m∗, µ∗ and σ2
∗ are given by:

m∗ = e
− 1

2
α|µ|2

1+α(1+ σ2
2 )

(1 + α(1 + σ2
2 ))d/2

, µ∗ = µ

1 + α(1 + σ2
2 )
, σ2

∗ =
1 + σ2

2

1 + α(1 + σ2
2 )
. (3.3)

Proof. On the one hand, note that by Lemma 3.2

B[Gµ,σ2 ](x) =
(
G
( · ) ∗Gµ,σ2 ∗Gµ,σ2

)
(2x) = G σ2 (x),
2 µ,1+ 2

16
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for each x ∈ Rd. Therefore, by definition of T in (1.2) we obtain

T [Gµ,σ2 ](x) = e− α
2 |x|2G

µ,1+ σ2
2

(x) = 1
(2π(1 + σ2

2 ))d/2
exp

(
−α

2 |x|2 − 1
2

1
1 + σ2

2

|x− µ|2
)
,

or each x ∈ Rd. By completing the square inside the exponential, we conclude our result. □

Consequently, the following explicit Gaussian solution of the eigenproblem (1.11) is found.

roposition 3.4 (Gaussian Solution of the Eigenproblem). Assume that α ∈ R∗
+, then the eigenproblem

1.11) has a unique Gaussian solution (λα,F α), determined by the relation (1.12) in Theorem 1.1.

roof. We look for λ ∈ R∗
+, µ ∈ Rd and σ2 ∈ R∗

+ such that λGµ,σ2 = T [Gµ,σ2 ]. By Lemma 3.3 and bearing
n mind parameters m∗, µ∗ and σ2

∗ in (3.3) we obtain that (λ, µ, σ2) must solve the equations:

λ = e
− 1

2
α|µ|2

1+α(1+ σ2
2 )

(1 + α(1 + σ2
2 ))d/2

, µ = µ

1 + α(1 + σ2
2 )
, σ2 =

1 + σ2

2

1 + α(1 + σ2
2 )
.

Hence, the only solution is given by µ = 0 and λ and σ2 are determined by (1.12) and (1.13). □

Remark 3.5 (Dependency on Selection). The eigenvalue λα ∈ R∗
+ and the variance σ2

α ∈ R∗
+ determined

by the relations (1.12) and (1.13) for the unique Gaussian solution (λα,F α) to the eigenproblem (1.11)
are monotonically decreasing with the selection coefficient α. Namely, the larger α, the smaller σ2

α and λα.
Indeed, we obtain (see also Fig. 4)

α ↗ ∞ =⇒ σ2
α ↘ 0, λα ↘ 0

α ↘ 0 =⇒ σ2
α ↗ 2, λα ↗ 1.

Therefore, if selection is strong, then F α is very concentrated around the origin and, if selection ceases, then
F α is twice as spread as the mixing kernel G in (1.4), a famous result in quantitative genetics, see e.g. [23].
Note that λα < 1 for any α ∈ R∗

+ and, consequently, the special steady solutions Fn = λn
αF α coming from

ansatz (1.10) always get extinct for large n. This is an artificial consequence of our parameter reduction
in Appendix. In particular, if we maintain parameter β in (A.4) coming from the ratio between birth and
mortality rates, then the above special steady solution only extincts if β < (1 + α(1 + σ2

α
2 )).

emark 3.6 (Eigenproblem with α = 0). The same ideas as in Proposition 3.4 yield the Gaussian solutions
to the eigenproblem (1.11) in the absence of selection (i.e., α = 0). However, there is no longer uniqueness

ue to the translation invariance of B. Indeed, we obtain the Gaussian solutions:

λ = λα=0 = 1, F = F α=0(· − µ) = Gµ,2,

or any µ ∈ Rd. Indeed, it is a consequence of the contraction property stated in Section 2.1 that these are
ll possible generic solutions (not only Gaussian). Specifically, by the conservation of mass (2.1) we obtain
hat the only possible eigenvalue is λ = 1. Then, the eigenproblem (1.11) reduces to a fixed point equation
or B. We can then conclude by Corollary 2.2.

We emphasize that the above presents a crucial difference of behavior between the nonlinear problem
1.11) with sexual reproduction and the analogous linear version with asexual reproduction operator (1.7).

amely, whilst in the former case there exists nontrivial solutions in the absence of selection, in the latter

17



V. Calvez, T. Lepoutre and D. Poyato Nonlinear Analysis 238 (2024) 113392

t

f

L

f
w

t

Fig. 4. Plot of eigenvalue λα and variance at equilibrium σ2
α against α for d = 1. The case α = 0 corresponds to absence of selection,

which is conservative (λα=0 = 1), and the variance at equilibrium σ2
α=0 is twice the variance of the mixing kernel in B.

case it can be seen that such a nontrivial solution does not exists (e.g., through Fourier arguments). This
suggests that whilst in the linear problem both reproduction and selection stay balanced, in the nonlinear
problem reproduction appears to dominates selection structurally.

Finally, we note that by iteration of the operator T and Lemma 3.3 we can compute the explicit form of
solutions of the time-discrete problem (1.1) issued at Gaussian initial data. In fact, the Gaussian structure
is preserved along generations, although mass, mean and variance are modified.

Proposition 3.7 (Gaussian Solutions of the Time-discrete Problem). Consider any m0 ∈ R∗
+, µ0 ∈ Rd

and σ2
0 ∈ R+, and set the Gaussian initial datum F0 = m0 Gµ0,σ2

0
. Hence, the solution {Fn}n∈N to the

ime-discrete problem (1.1) takes the form

Fn = mn Gµn,σ2
n
, (3.4)

or n ∈ N, where the parameters mn ∈ R∗
+, µn ∈ Rd and σ2

n ∈ R∗
+ are governed by the recursions:

mn = mn−1
e

− 1
2

α|µn−1|2

1+α

(
1+

σ2
n−1
2

)
(1 + α(1 +

σ2
n−1
2 ))d/2

, µn = µn−1

1 + α(1 +
σ2

n−1
2 )

,
1
σ2

n

= α+ 1

1 +
σ2

n−1
2

. (3.5)

emma 3.8 (Relaxation of Variance). Assume that α ∈ R∗
+, consider any σ2

0 ∈ R∗
+ and define the sequence

{σ2
n}n∈N by recursion according to the third recursion in (3.5), i.e.

1
σ2

n

= α+ 1

1 +
σ2

n−1
2

, (3.6)

or every n ∈ N. Hence, if σ2
0 > σ2

α then σn ↘ σ2
α as n → ∞ and, if σ2

0 < σ2
α then σn ↗ σ2

α as n → ∞,
here σ2

α is given by (1.13). In addition, we obtain the convergence rates

|σ2
n − σ2

α| ≤ Cvrn
α, (3.7)

for every n ∈ N, where the constant Cv ∈ R+ depends on σ2
0 and α (we obtain that Cv = 0 if σ2

0 = σ2
α), and

he ratio rα ∈ (0, 1
2 ) (see Fig. 5) satisfies rα = 2k2

α and is given explicitly by

rα := 8(
(2α+ 3) +

√
(2α+ 1)2 + 8α

)2 . (3.8)
18
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Proof. • Step 1: Monotone convergence of {σ2
n}n∈N.

Consider the function f : R+ −→ R given by

f(x) = α+ 1
1 + 1

2x

, x ∈ R+,

and, for simplicity of notation, define

x∗ := (σ2
α)−1, xn := (σ2

n)−1, n ∈ N. (3.9)

Notice that x∗ is the unique fixed point of f in R+ and {xn}n∈N determines the fixed-point iteration of the
map f issued at x0 = (σ2

0)−1, that is, xn = f(xn−1), n ∈ N. Our goal is to show that {xn}n∈N converges
owards x∗ and find convergence rates. By direct computation we obtain f ′(x) = 2/(1 + 2x)2, which is
bove 1 near x = 0, and therefore f is not contractive. Hence, we cannot apply the usual Banach contraction
rinciple and a different argument is provided. First, note that x ∈ R+ ↦→ f(x) is strictly increasing and
∈ R∗

+ ↦→ f(x)
x is strictly decreasing. Then, we obtain that

x < f(x) < x∗, if 0 ≤ x < x∗,

f(x) = x∗, if x = x∗,

x∗ < f(x) < x, if x > x∗,

hich implies the aforementioned monotonicity properties of {xn}n∈N and, in addition,

min{x∗, x0} ≤ xn ≤ max{x∗, x0}, (3.10)

or any n ∈ N. In particular, this yields the monotonic convergence of {xn}n∈N towards x∗, or equivalently,
he claimed monotonic convergence of {σ2

n}n∈N towards σ2
α as n → ∞.

• Step 2: Convergence rates.
Second, to compute the convergence rates we shall use the special algebraic structure of function f , which

s the restriction to R+ of the Möbius function M : R \ {− 1
2 } −→ R given by

M(x) := 2(α+ 1)x+ α

2x+ 1 , x ∈ R \
{

−1
2

}
.

ote that M has two fixed points:

x± :=
2α+ 1 ±

√
(2α+ 1)2 + 8α
4 ,

here we note that x+ = x∗ ∈ R∗
+ and x− ∈ R−. Then, by definition of {xn}n∈N in (3.9) we obtain

xn − x+ = 2(α+ 1)xn−1 + α

2xn−1 + 1 − 2(α+ 1)x+ + α

2x+ + 1 = 2
(2xn−1 + 1)(2x+ + 1)(xn−1 − x+). (3.11)

Since x0 (thus xn−1 for initial time steps n) can be chosen arbitrary close to 0, then, the best a priori control
that we can have on the prefactor in the right hand side of (3.11) is

0 ≤ 2
(2xn−1 + 1)(2x+ + 1) ≤ 2σ2

α

2 + σ2
α

= 2kα,

hich gives true contraction in (3.11) when α > 0, since 2kα < 1. Nevertheless, such a rate is non-optimal,
nd we show an alternative approach to achieve a sharper one. Specifically, note that

xn − x− = 2(α+ 1)xn−1 + α − 2(α+ 1)x− + α = 2 (xn−1 − x−). (3.12)
2xn−1 + 1 2x− + 1 (2xn−1 + 1)(2x− + 1)
19
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Fig. 5. The ratio rα against parameter α.

y dividing (3.11) by (3.12) and iterating the identity we obtain

xn − x+

xn − x−
=
(

2x− + 1
2x+ + 1

)n
x0 − x+

x0 − x−
, (3.13)

for every n ∈ N. In fact, the basis can be restated as follows

2x− + 1
2x+ + 1 =

(2α+ 3) −
√

(2α+ 1)2 + 8α
(2α+ 3) +

√
(2α+ 1)2 + 8α

= 8(
(2α+ 3) +

√
(2α+ 1)2 + 8α

)2 = rα <
1
2 .

Therefore, using the uniform control (3.10) and (3.13), we conclude that

|xn − x∗| = |xn − x−|
|x0 − x−|

|x0 − x∗|rn
α ≤ max{x∗, x0} − x−

min{x∗, x0} − x−
|x0 − x∗| rn

α, (3.14)

or every n ∈ N, thus leading to an improved rate since rα = 2k2
α < 2kα. Finally, notice that

|σ2
n − σ2

α| = σ2
nσ2

α |xn − x∗| ≤ max{σ2
α, σ

2
0}2 |xn − x∗| , (3.15)

or every n ∈ N. Hence, joining (3.14), (3.15) along with (3.10) ends the proof. □

In particular, for Gaussian initial data we recover an explicit particular case of the general relaxation
esult in Theorem 1.1.

orollary 3.9 (Relaxation of Gaussian Solutions). Assume that α ∈ R∗
+, consider any m0 ∈ R+, µ0 ∈ Rd

and σ2
0 ∈ R+, and set the Gaussian initial datum F0 = m0 Gµ0,σ0 . Hence, the Gaussian solution {Fn}n∈N

o the time-discrete problem (1.1) verifies that the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) relax towards λα

nd the normalized profiles Fn/∥Fn∥L1(Rd) relax towards F α, where (λα,F α) is the unique Gaussian solution
(1.12) to the eigenproblem (1.11) as proved in Proposition 3.4. Specifically, for any ε ∈ R∗

+

DKL

(
Fn

∥Fn∥L1(Rd)

F α

)
≤ Cµ,ε(λ4/d

α + ε)n + Cvrn
α,⏐⏐⏐⏐⏐ ∥Fn∥L1(Rd)

∥F ∥
− λα

⏐⏐⏐⏐⏐ ≤ Cµ,ε(λ4/d
α + ε)n + Cvrn

α,

n−1 L1(Rd)

20
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where DKL is the Kullback–Leibler divergence (or relative entropy), rα is given by (3.8) in Lemma 3.8,
Cµ,ε ∈ R+ depends on α, µ0, σ2

0 and ε, and Cv ∈ R+ depends only α and σ2
0. In fact, Cµ,ε = 0 if µ0 = 0 and

v = 0 if σ2
0 = σ2

α.

Again, in this case the computations of the Kullback–Leibler divergence becomes explicit, and it is based
on the general formula below for the divergence between two Gaussian density functions:

DKL(Gµ1,Σ1 ∥ Gµ2,Σ2) = 1
2(µ2 − µ1)⊤Σ−1

2 (µ2 − µ1) + 1
2trace(Σ1Σ

−1
2 ) − d

2 + 1
2 log det(Σ2Σ

−1
1 ), (3.16)

for every µ1, µ2 ∈ Rd and any positive non-singular matrices Σ1,Σ2 ∈ Rd×d.

Proof of Corollary 3.9. First, note that when α ∈ R∗
+, then the parameters mn, µn and σ2

n in (3.5) verify

lim
n→∞

mn

mn−1
= λα, lim

n→∞
µn = 0, lim

n→∞
σ2

n = σ2
α.

n the sequel, we quantify the rates of convergence. Since σ2
n has already been studied in Lemma 3.8 we shall

ocus only on µn and mn. Let us fix any arbitrarily small ε ∈ R∗
+. On the one hand note that

|µn|
|µn−1|

− λ2/d
α = 1

1 + α
(
1 +

σ2
n−1
2
) − 1

1 + α
(
1 + σ2

α
2
) ,

or every n ∈ N. By the mean value theorem and Lemma 3.8 we obtain⏐⏐⏐⏐ |µn|
|µn−1|

− λ2/d
α

⏐⏐⏐⏐ ≤ Cvrn
α,

for an appropriate Cv ∈ R∗
+ depending on α and σ2

0 . Since λα ∈ (0, 1) then d’Alembert’s ratio test readily
shows that µn relaxes to zero as a geometric sequence. Indeed, note that

|µn| =
(

|µn|
|µn−1|

− λ2/d
α

)
|µn−1| + λ2/d

α |µn−1| ≤ (λ2/d
α + Cvrn

α)|µn−1|,

for any n ∈ N. By an inductive argument, this yields

|µn| ≤
n∏

k=1
(λ2/d

α + Cvrn
α)|µ0| ≲ Cε(λ2/d

α + ε)n, (3.17)

for sufficiently large Cµ,ε ∈ Rd, where we have used that rα ∈ (0, 1) to absorb Cvrn
α in an ε-small term. On

the other hand, note that

mn

mn−1
− λα = e

− 1
2

α|µn−1|2

1+α

(
1+

σ2
n−1
2

)
(1 + α(1 +

σ2
n−1
2 ))d/2

− 1
(1 + α(1 + σ2

α
2 ))d/2

= e

− 1
2

α|µn−1|2

1+α

(
1+

σ2
n−1
2

)
− 1

(1 + α(1 +
σ2

n−1
2 ))d/2

+

⎛⎝ 1

(1 + α(1 +
σ2

n−1
2 ))d/2

− 1
(1 + α(1 + σ2

α
2 ))d/2

⎞⎠ .

y the mean value theorem, ⏐⏐⏐⏐ mn

m
− λα

⏐⏐⏐⏐ ≤ α|µn−1|2
d +1

+ dα

4
|σ2

n−1 − σ2
α|

d +1
.

n−1 2(1 + α) 2 (1 + α) 2

21



V. Calvez, T. Lepoutre and D. Poyato Nonlinear Analysis 238 (2024) 113392

T
o
t

H

p

R

b
o
c

4

Fig. 6. Comparison of convergence rates in Theorem 1.1 and Corollary 3.9.

herefore, using contraction of mean (3.17) and contraction of variance (3.7) in Lemma 3.8 entail the rate
f convergence for the mn/mn−1. Finally, given that both Fn/∥Fn∥L1(Rd) and F α are Gaussian functions,
he relative entropy can be computed explicitly through (3.16). Specifically,

DKL

(
Fn

∥Fn∥L1(Rd)

F α

)
= |µn|2

2σ2
α

+ d

2

(
σ2

n

σ2
α

− 1
)

− d

2 log
(
σ2

n

σ2
α

)
.

ence, using again (3.17) and (3.7) concludes our result. □

The proof of Theorem 1.1 for generic non-Gaussian initial data F0 ∈ M+(Rd) will be the core of this
aper and we postpone it to Section 6.

emark 3.10 (Optimality of Convergence Rates). As illustrated in Fig. 6, the convergence rate of the
normalized profiles obtained in our main Theorem 1.1 (blue line) is sharp, compared to the explicit one
found in Corollary 3.9 (red line) for the special class of Gaussian solutions. In fact, one can easily check
that the identity λ4/d

α = (2kα)2 holds. However, there is a mismatch between the convergence rate of the
rate of growth of mass in Theorem 1.1 (orange line) and the sharp rate for Gaussian solutions found in
Corollary 3.9 (again red line). On the one hand, it stands to reason that the relative entropy has a certain
quadratic structure, whilst the rate of growth of mass is related to L1 norms, and then it is not quadratic.
We will see that more clearly in the proof of Theorem 1.1 in Section 6, where we use explicitly the following
relation ⏐⏐⏐⏐⏐ ∥Fn∥L1(Rd)

∥Fn−1∥L1(Rd)
− λα

⏐⏐⏐⏐⏐ ≲
√DKL

(
Fn

∥Fn∥L1(Rd)

F α

)
,

ased on Pinsker’s inequality. However, a certain quadratic structure is still present in the rate of convergence
f mn/mn−1 in Corollary 3.9, which may become explicit for generic solutions to (1.1) if one finds the hidden
ancellations. However, for simplicity we do not address this technical detail here.

. Some properties of the operator T

First, note that for any F ∈ M+(Rd) we obtain that T [F ] ∈ W k,1(Rd) ∩ W k,∞(Rd) for each k ∈ N
thanks to the fact that F has finite mass and the Gaussian mixing kernel G in (1.4) is smooth and has
22
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bounded and integrable derivatives of any order. In particular, solutions {Fn}n∈N to the time-discrete
roblem (1.1) become instantaneously smooth after the first generation for any generic initial datum
0 ∈ M+(Rd). In the sequel, we will derive a quantitative control on the emergence of Gaussian tails for
[F ]. In addition, we will quantify the propagation of quadratic and exponential moments for the normalized
rofile T [F ]/∥T [F ]∥L1(Rd). Both a priori estimates will be required later in Section 6.

4.1. Emergence of Gaussian tails

Lemma 4.1 (Emergence of Tails). Assume that α ∈ R∗
+, consider F ∈ M+(Rd) and set σ2, σ2 ∈ R∗

+ by

σ2 := 1
α
, σ2 ∈

(
0, 1

1 + α

)
.

hen, the following properties are fulfilled:

(i) (Upper control of tails) There exists C = C(α, F ) > 0 such that

T [F ](x) ≤ C G0,σ2(x), (4.1)

for every x ∈ Rd.
(ii) (Lower control of tails) There exists c = c(α, σ2, F ) > 0 such that

T [F ](x) ≥ cG0,σ2(x), (4.2)

for every x ∈ Rd.
(iii) (Control of log-derivative) Assume that F is absolutely continuous with respect to the Lebesgue

measure and it has Gaussian tail, i.e., there exists σ2 ∈ R∗
+ and C ′ ∈ R∗

+ such that F (x) ≤ C ′G0,σ2 for
every x ∈ Rd. Then, there exists C ′′ = C ′′(α, σ2, σ2, C ′, F ) > 0 such that

|∇ log T [F ](x)| ≤ C ′′(1 + |x|), (4.3)

for every x ∈ Rd.

roof. First, notice that F ∈ M+(Rd) is any generic distribution but G ∈ L∞(Rd). Then, B[F ] ∈ L∞(Rd)
nd, by definition of T in (1.2), we obtain

T [F ](x) ≤ ∥B[F ]∥L∞(Rd)e
− α

2 |x|2 = ∥B[F ]∥L∞(Rd)
(
2πα−1)d/2

G0,σ2(x),

or every x ∈ Rd. Hence, (4.1) holds for appropriate C > 0. Second, note that

T [F ](x) = e− α
2 |x|2

(2π)d/2∥F∥M+(Rd)

∫
R2d

exp
(

−1
2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2
)
F (dx1)F (dx2)

= e− α
2 |x|2

(2π)d/2∥F∥M+(Rd)

∫
R2d

exp
(

−1
2 |x|2 − 1

8 |x1 + x2|2 + 1
2x · (x1 + x2)

)
F (dx1)F (dx2)

≥ e− α
2 |x|2

(2π)d/2∥F∥M+(Rd)

∫
R2d

exp
(

−2 + ε

4 |x|2 − 2 + ε

8ε |x1 + x2|2
)
F (dx1)F (dx2)

≥ e− α
2 |x|2

(2π)d/2∥F∥M+(Rd)

∫
R2d

exp
(

−2 + ε

4 |x|2 − 2 + ε

4ε |x1|2 − 2 + ε

4ε |x2|2
)
F (dx1)F (dx2),
23
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for every ε > 0, where in the third and last lines we have used Cauchy–Schwarz’s and Young’s inequalities.
Consequently, we obtain that

T [F ](x) ≥ (2π)d/2
(

2ε
2 + ε

)d ∥G0, 2ε
2+ε

F∥2
M+(Rd)

∥F∥M+(Rd)
e− α

2 |x|2e− 2+ε
4 |x|2 ,

or every x ∈ Rd. Taking ε > 0 small enough and an appropriate constant c > 0 yields (4.2). Finally, taking
erivatives on (1.2) we obtain

∇T [F ](x) = −αx T [F ](x) − e− α
2 |x|2

∥F∥L1(Rd)

∫
R2d

(
x− x1 + x2

2

)
G

(
x− x1 + x2

2

)
F (dx1)F (dx2)

= −(1 + α)x T [F ](x) − e− α
2 |x|2

∥F∥L1(Rd)

∫
R2d

(
x1 + x2

2

)
G

(
x− x1 + x2

2

)
F (dx1)F (dx2).

herefore, dividing by T [F ](x) and taking norms yield the following estimate

|∇ log T [F ](x)| ≤ (1 + α)|x| + 1√
2∥F∥L1(Rd)

e− α
2 |x|2

T [F ](x)

∫
R2d

|(x1, x2)|G
(
x− x1 + x2

2

)
F (dx1)F (dx2), (4.4)

or every x ∈ Rd. Consider any R > 0 and split the integral in the right hand side of (4.4) into the subsets
(x1, x2) ∈ R2d : |(x1, x2)| ≤

√
2R|x|} and {(x1, x2) ∈ R2d : |(x1, x2)| >

√
2R|x|}. For the first subset, we

se the definition (1.2) of the operator T . For the second subset, we use the uniform bound of G along with
he assumptions on F and the preceding lower bound (4.2) of T [F ]. Then, we obtain

|∇ log T [F ](x)| ≤ (1 + α+R)|x| + C2σde− α
2 |x|2e

1
2σ2 |x|2

√
2c∥F∥L1(Rd)

∫
|(x1,x2)|>

√
2R|x|

|(x1, x2)|e− 1
2σ2 |(x1,x2)|2

dx1 dx2

= (1 + α+R)|x| + C2σde− α
2 |x|2e

1
2σ2 |x|2

√
2c∥F∥L1(Rd)

∫ +∞

√
2R|x|

r2de
− 1

2σ2 r2
dr

≤ (1 + α+R)|x| + C2σde− α
2 |x|2e

1
2σ2 |x|2

√
2c∥F∥L1(Rd)

(
8d− 4
e

)d− 1
2
σ2d−1

∫ +∞

√
2R|x|

re
− 1

4σ2 r2
dr

= (1 + α+R)|x| +
√

2C2σdσ2d+1

c∥F∥L1(Rd)

(
8d− 4
e

)d− 1
2
e

− 1
2

(
α+ R2

σ2 − 1
σ2

)
|x|2

,

or every x ∈ Rd, where in the third line we have used the inequality

r2d−1 ≤
(

2d− 1
e

)d− 1
2 (σ

ε

)2d−1
exp

( ε

2σ2 r
2
)
,

or every r > 0 and ε > 0 in the particular case of ε = 1/2. Taking R > 0 large enough ends the proof. □

The previous result can be iterated to obtain similar properties for solutions {Fn}n∈N to the time-discrete
roblem (1.1) issued at a generic initial datum F0 ∈ M+(Rd). In particular, we note that Gaussian tails
merge instantaneously after the first generation n = 1 and linear growth of the log-derivative is guaranteed
fter the second generation n = 2.

orollary 4.2 (Propagation of Tails). Assume that α ∈ R∗
+, consider the solution {Fn}n∈N of (1.1) issued

t a generic initial datum F0 ∈ M+(Rd) and set σ2
1, σ

2
1 ∈ R∗

+ by

σ2
1 := 1

, σ2
1 ∈

(
0, 1

)
.

α 1 + α
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Define the associated sequences of variances {σ2
n}n∈N and {σ2

n}n∈N by the following recursive relations
1

σ2
n+1

:= α+ 1
1 + σ2

n
2

,
1

σ2
n+1

:= α+ 1
1 + σ2

n
2

, (4.5)

for every n ∈ N. Then, the following properties are fulfilled:

(i) (Upper control of tails of Fn) There exist Cn = Cn(α, F0) > 0 such that

Fn(x) ≤ Cn G0,σ2
n

(x), (4.6)

for each x ∈ Rd and every n ∈ N.
(ii) (Lower control of tails of Fn) There exist cn = cn(α, σ2

1, F0) > 0 such that

Fn(x) ≥ cn G0,σ2
n

(x), (4.7)

for each x ∈ Rd and every n ∈ N.
(iii) (Control of log-derivative of Fn) There exists Dn = Dn(α, σ2

1, F0) such that

|∇ logFn(x)| ≤ Dn(1 + |x|), (4.8)

for each x ∈ Rd and every n ≥ 2.

roof. Note that once (4.6) and (4.7) are proved, we can readily apply (4.3) in Lemma 4.1 to F = Fn−1
ith n ≥ 2 (which satisfies the required upper control by a Gaussian function) and we recover the estimate

4.8) for the log-derivative of Fn = T [Fn−1]. Then, we just focus on proving estimates (4.6) and (4.7) through
an inductive argument. First, note that Lemma 4.1 applied to F = F0 yields (4.6) and (4.7) with n = 1.

et us assume that (4.6) and (4.7) hold for some n ∈ N and let us prove it for n+ 1. Specifically, using the
nduction hypothesis we obtain that

Fn+1(x) = e− α
2 |x|2B[Fn](x)

≤ C2
n

∥Fn∥L1(Rd)
e− α

2 |x|2
(
G
( ·

2

)
∗G0,σ2

n
∗G0,σ2

n

)
(2x)

= C2
n

∥Fn∥L1(Rd)
e− α

2 |x|2G
0,1+ σ2

n
2

(x) ≤ Cn+1G0,σ2
n+1

(x),

or every x ∈ Rd and appropriate Cn+1, where we have used Lemma 3.2 for the stability of Gaussian under
onvolutions and the definition (4.5) of σ2

n+1. This proves (4.6) for n+ 1 and a similar argument yields the
ower estimate (4.7). □

By Lemma 3.8 we note that the sequence of variances {σ2
n}n∈N and {σ2

n}n∈N relax towards the asymptotic
alue σ2

α with a geometric convergence rate. This is consistent with our main result in Theorem 1.1 and
orollary 1.2. In fact, this suggests that any solution {Fn}n∈N to the time-discrete problem (1.1) must relax

owards the asymptotic profile F α. In addition, recall that for any solution (λ, F ) of the eigenproblem (1.11)
e recover a particular solution of the time-discrete problem (1.1) via the ansatz (1.10), i.e., Fn = λnF .
ence, we expect that (λα,F α) must indeed be the unique solution to the eigenvalue problem (1.11).
owever, we are still far from characterizing the full long-term dynamics for the solution {Fn}n∈N in
heorem 1.1 and the uniqueness result in Corollary 1.2. Namely, the above coefficients Cn and cn contains

rucial information about the balance of mass and their values in Corollary 4.2 are not necessarily optimal.
ndeed, note that they are given by explicit recursive formulas

Cn+1 = (1 − ασ2
n)d/2 C2

n

∥Fn∥L1(Rd)
, cn+1 = (1 − ασ2

n)d/2 c2
n

∥Fn∥L1(Rd)
,

ut they require further knowledge about the behavior of ∥Fn∥L1(Rd). In the next paragraph, we overcome
his important issue of scaling factor by focusing on renormalized profiles, for which we prove uniform
ropagation of moments.
25
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4.2. Propagation of quadratic and exponential moments

In this section we analyze the propagation of quadratic and exponential moments along the normalized
profiles Fn/∥Fn∥L1(Rd), where {Fn}n∈N is a solution to (1.1). As we anticipated in Section 2.4, we need
o move from uniform estimates of the high-dimensional integral (2.11) to estimates in an average sense.
his will be precisely the point in proof of the main Theorem 1.1 in Section 6.2 where a suitable control
f moments will be crucial, as sketched in the overall map in Fig. 2. Before addressing the case of generic
nitial data F0 ∈ M+(Rd), we illustrate the particular explicit case of Gaussian initial data F0 = m0 Gµ0,σ2

0
.

emark 4.3 (Gaussian Case). Consider any m0 ∈ R+, µ0 ∈ Rd and σ2
0 ∈ R+, set θ ∈ R∗

+ with
θ < 1

2 max{σ2
0 ,σ2

α} and consider the solution {Fn}n∈N to the time-discrete problem (1.1) with initial datum
0 = m0Gµ0,σ2

0
. Then, by direct calculation we obtain∫

Rd
|x|2 Fn(x)

∥Fn∥L1(Rd)
dx = |µn|2 + σ2

n,

∫
Rd
eθ|x|2 Fn(x)

∥Fn∥L1(Rd)
dx = e

θ
1−2θσ2

n
|µn|2

(1 − 2θσ2
n)d/2 ,

Here, {µn}n∈N and {σ2
n}n∈N are the mean and variance of {Fn}n∈N according to formula (3.5) in Proposi-

tion 3.7. As studied in the proof of Corollary 3.9 we have the uniform bounds

|µn| ≤ |µ0| and min{σ2
0 ,σ

2
α} ≤ σ2

n ≤ max{σ2
0 ,σ

2
α},

or every n ∈ N. Then, we obtain that both the quadratic and exponential moments are uniformly bounded.

In the sequel, we explore the case of generic initial data F0 ∈ M+(R). For simplicity of notation, we
efine the following conservative operator associated with T .

efinition 4.4 (Normalization of T ).

S[F ] := T [F ]
∥T [F ]∥L1(Rd)

, F ∈ M+(Rd) \ {0}.

Therefore, we obtain the following control of quadratic moments under S.

emma 4.5 (Control of Quadratic Moments). Assume that α ∈ R∗
+ and set any parameter η ∈

( 1
2(1+α)2 , 1

)
.

hen, there exists a constant M = M(α, η) ∈ R∗
+ such that∫

Rd
|x|2S[F ](x) dx ≤ M + η

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

,

or any measure F ∈ M+(Rd).

Before we proceed with the proof, let us comment on some apparent difficulties. For this discussion, we
ssume normalized F ∈ P(Rd) without loss of generality, as we are only concerned with the shape of profiles
ere. Note that the conservative operator S in Definition 4.4 associated with T is actually the composition
f the conservative operator B, and the conservative multiplicative operator M in Definition 2.3, namely,
= M◦B. The former is invariant by translation, whereas the latter is not. However, we have the following

nequality for the operator M: ∫
|x|2M[F ](x) dx ≤

∫
|x|2F (dx) . (4.9)
Rd Rd
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This inequality is intuitively clear: by applying the selection operator M, the quadratic moment (that is,
he Wasserstein distance to the Dirac distribution at the origin) is non-increasing. In fact, the proof is a
traightforward consequence of the following identity:∫

Rd
|x|2M[F ](x) dx−

∫
Rd

|x|2F (dx) = 1
2

∫
R2d

(
|x|2 − |y|2

)(
e−m(x) − e−m(y)

) F (dx)F (dy)∫
Rd e−m(z)F (dz)

.

Note that the right-hand-side of this equality is indeed non-positive, provided that m is radially non-
decreasing as it is the case for our quadratic choice (1.5). A similar estimate can also be tested on the
operator B. Specifically, by a simple change of variable the following identity holds true:∫

Rd
|x|2B[F ](x) dx = VarG+ 1

2

∫
Rd

|x|2 F (dx) + 1
2

⏐⏐⏐⏐∫
Rd
xF (dx)

⏐⏐⏐⏐2 . (4.10)

Then, it might seem natural to combine these two relationships in order to control the quadratic moments of
the composition S = M ◦ B. Suppose, for instance, that the center of mass in the last term of (4.10) can be
bounded a priori uniformly on F . Then, the combination of (4.9) and (4.10) yields the contraction property
in Lemma 4.5 due to the reduction by half in the size of the quadratic moment of F . Of course, without such
a uniform control on the center of mass, the last two terms in (4.10) would contribute together (by Jensen’s
inequality) with a merely non-expansive factor

∫
Rd |x|2 F (dx) that is not enough for our purpose (we will

terate Lemma 4.5 on the Fn later). This a priori estimate of the center of mass should then be derived
ainly from the selection component M, as the reproduction component B is invariant by translation.
owever, it cannot be derived solely from M, because the latter can have a dramatic effect on nearly

ymmetric distributions. This can be seen on the same configuration as in Example 2.4 above: for a sum
f nearly symmetrical Dirac masses, the center of mass is close to zero before selection, and close to one of
he endpoints after selection (when h is large). Nevertheless, such a configuration is destroyed by B, so that
he combination of M and B is crucial to guarantee the uniform boundedness of the quadratic moments as
hown in the argument below.

roof of Lemma 4.5. Set any F ∈ M+(Rd). First, note that

∫
Rd

|x|2S[F ](x) dx =

∫
R3d

|x|2e−m(x)G

(
x− x1 + x2

2

)
F (dx1)

∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

dx∫
R3d

e−m(x)G

(
x− x1 + x2

2

)
F (dx1)

∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

dx

.

ince G is a Gaussian function given by (1.4) and m is a quadratic function given by (1.5), then we can
ompute explicitly the integrals with respect to x in the numerator and denominator. Specifically, for fixed
1, x2 ∈ Rd we define x̄ := x1+x2

2 and we obtain∫
Rd

|x|2e−m(x)G(x− x̄) dx = 1
(1 + α)d/2 exp

(
−1

2
α

1 + α
|x̄|2
)(

1
1 + α

+ |x̄|2

(1 + α)2

)
, (4.11)∫

Rd
e−m(x)G(x− x̄) dx = 1

(1 + α)d/2 exp
(

−1
2

α

1 + α
|x̄|2
)
. (4.12)

herefore, we can write alternatively

∫
Rd

|x|2S[F ](x) dx = 1
1 + α

+ 1
(1 + α)2

∫
R2d

|x̄|2 exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)∫

exp
(

−1 α |x̄|2
)

F (dx1) F (dx2) . (4.13)
R2d 2 1 + α ∥F∥M(Rd) ∥F∥M(Rd)
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Our ultimate goal is to bound the second term in (4.13). To this end, we provide a lower bound for the
denominator and an upper bound for the numerator in two separate steps.

• Step 1: Consider an arbitrary R1 ∈ R∗
+ to be determined later. Then, we obtain∫

R2d
exp

(
−1

2
α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

≥
∫

|x̄|≤R1

exp
(

−1
2

α

1 + α
|x̄|2
)

F (x1)
∥F∥L1(Rd)

F (x2)
∥F∥L1(Rd)

dx1 dx2

≥ exp
(

−1
2

α

1 + α
R2

1

)(
1 −

∫
|x̄|>R1

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

)

≥ exp
(

−1
2

α

1 + α
R2

1

)(
1 − 1

2R2
1

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

)
,

(4.14)

where in last line we have used Young’s and Chebyshev’s inequalities.
• Step 2: Consider an arbitrary R2 ∈ R∗

+ to be determined later. Then, we obtain∫
R2d

|x̄|2 exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

= I1 + I2,

here each term reads

I1 :=
∫

|x̄|≤R2

|x̄|2 exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

,

I2 :=
∫

|x̄|>R2

|x̄|2 exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

.

n the one hand, the first term can be readily estimated by

I1 ≤ R2
2

∫
R2d

exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

. (4.15)

n the other hand, the second term can be estimated by

I2 ≤ 2
eγ

1 + α

α

∫
|x̄|>R2

exp
(

−1 − γ

2
α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

≤ 2
eγ

1 + α

α
exp

(
−1 − γ

2
α

1 + α
R2

2

)
,

(4.16)

or any γ ∈ (0, 1), where in the first line we have used that eθs ≥ θes with s = |x̄|2 and θ = γ
2

α
1+α , and in

he second line we have exploited that F/∥F∥M(Rd) are probability measures, thus normalized.
• Step 3: Putting (4.14), (4.15) and (4.16) into (4.13) yields∫

Rd
|x|2S[F ](x) dx ≤ 1

1 + α
+ R2

2
(1 + α)2 + 2

eγ

1
α(1 + α)

exp
(

1
2

α
1+αR

2
1

)
exp

(
− 1−γ

2
α

1+αR
2
2

)
1 − 1

2R2
1

∫
Rd |x|2 F (dx)

∥F ∥M(Rd)

,

or any R1, R2 ∈ R∗
+ and γ ∈ (0, 1). We set the values

R2
1 = 1

2(1 − δ)

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

, R2
2 = R2

1
1 − γ

,

with γ, δ ∈ (0, 1). Then, we obtain∫
Rd

|x|2S[F ](x) dx ≤ 1
1 + α

+ 2
eγδ

1
α(1 + α) + 1

2(1 − δ)(1 − γ)(1 + α)2

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

,

thus ending the proof by the arbitrariness of γ, δ ∈ (0, 1). □
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By iteration, we then obtain the following contractivity of the variance of generic solutions of (1.1).

Corollary 4.6 (Propagation of Quadratic Moments). Assume that α ∈ R∗
+, set any parameter η ∈( 1

2(1+α)2 , 1
)

and consider the solution {Fn}n∈N of (1.1) issued at a generic initial datum F0 ∈ M+(Rd)
with

∫
Rd |x|2F0(dx) < ∞. Then, there exists M = M(α, η) such that∫

Rd
|x|2 Fn(x)

∥Fn∥L1(Rd)
dx ≤ M

1 − η
+ ηn

∫
Rd

|x|2 F0(dx)
∥F0∥M(Rd)

,

or any n ∈ N.

Let us note that, on the one hand the factor ηn makes the dependence on the variance of the initial datum
0 negligible as the amount of generations increases. On the other hand, the constant M does not depend
n the chosen initial profile F0. This is compatible with our ergodicity property in Theorem 1.1.

emma 4.7 (Control of Exponential Moments). Assume that α ∈ R∗
+, set θ ∈ R∗

+ so that θ < α
2 and any

arameter χ > α
1+α

θ
2(1+α−2θ)(α−2θ) . Then, there exists a constant C = C(α, θ, χ) such that∫

Rd
eθ|x|2S[F ](x) dx ≤ C

{
1 + exp

(
χ

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

)}
,

for any measure F ∈ M+(Rd).

Proof. Since G is a Gaussian function given by (1.4) and m is a quadratic function given by (1.5), then
we can compute explicitly the integrals with respect to x in the numerator and denominator like formulas
(4.11)–(4.12) in the proof of Lemma 4.5 and we obtain

∫
Rd
eθ|x|2S[F ](x) dx =

(
1 + α

1 + α− 2θ

)d/2

∫
R2d

exp
(

−1
2

α− 2θ
1 + α− 2θ |x̄|2

)
F (dx1)

∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)∫

R2d
exp

(
−1

2
α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

, (4.17)

where x̄ = x1+x2
2 . Again, we provide bounds for the numerator and denominator in (4.17). Regarding the

enominator, we recover estimate (4.14) for any R1 ∈ R∗
+. Thus, we focus on the bound of the numerator∫

R2d
exp

(
−1

2
α− 2θ

1 + α− 2θ |x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

= I1 + I2,

where each term reads

I1 :=
∫

|x̄|≤R2

exp
(

−1
2

α− 2θ
1 + α− 2θ |x̄|2

)
F (dx1)

∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

,

I2 :=
∫

|x̄|>R2

exp
(

−1
2

α− 2θ
1 + α− 2θ |x̄|2

)
F (dx1)

∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

.

n the one hand, note that

I1 ≤ exp
(

θR2
2

(1 + α− 2θ)2

)∫
R2d

exp
(

−1
2

α

1 + α
|x̄|2
)

F (dx1)
∥F∥M(Rd)

F (dx2)
∥F∥M(Rd)

, (4.18)

here we have used the mean value theorem applied to the function r ∈ R∗
+ ↦→ r

1+r to derive the relation

α − α− 2θ ≤ 2θ
2 .
1 + α 1 + α− 2θ (1 + α− 2θ)
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On the other hand,
I2 ≤ exp

(
−1

2
α− 2θ

1 + α− 2θR
2
2

)
. (4.19)

utting (4.14), (4.18) and (4.19) into (4.17) we obtain

∫
Rd
eθ|x|2S[F ](x) dx ≤

(
1 + α

1 + α− 2θ

)d/2
⎧⎨⎩exp

(
θR2

2
(1 + α− 2θ)2

)
+

exp
(

− 1
2

α−2θ
1+α−2θR

2
2

)
exp

(
1
2

α
1+αR

2
1

)
1 − 1

2R2
1

∫
Rd |x|2 F (dx)

∥F ∥M(Rd)

⎫⎬⎭ ,

or any R1, R2 ∈ R∗
+. As in the proof of Lemma 4.5 we choose them as follows

R2
1 = 1

2(1 − δ)

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

, R2
2 = α

1 + α

1 + α− 2θ
α− 2θ R2

1,

here δ ∈ (0, 1). Then, we obtain∫
Rd
eθ|x|2S[F ](x) dx

≤
(

1 + α

1 + α− 2θ

)d/2
{

1
δ

+ exp
(

α

1 + α

θ

(1 + α− 2θ)(α− 2θ)
1

2(1 − δ)

∫
Rd

|x|2 F (dx)
∥F∥M(Rd)

)}
,

nd we end the proof by arbitrariness of δ ∈ (0, 1). □

Therefore, small exponential moments can be controlled by quadratic moments. We can then couple
Lemma 4.7 and Corollary 4.6 to obtain the propagation of exponential moments in the time-discrete problem
(1.1).

Corollary 4.8 (Propagation of Exponential Moments). Assume that α ∈ R∗
+, set θ ∈ R∗

+ with θ < α
2 and

ny parameter η ∈
( 1

2(1+α)2 , 1
)
. Consider the solution {Fn}n∈N of (1.1) issued at a generic initial datum

0 ∈ M+(Rd) with
∫
Rd |x|2F0(dx) < ∞. Then, there exist C = C(α, θ, η) and C ′ = C ′(α, θ, η) such that∫

Rd
eθ|x|2 Fn(x)

∥Fn∥L1(Rd)
dx ≤ C

{
1 + exp

(
C ′

(
1 + ηn−1

∫
Rd

|x|2 F0(dx)
∥F0∥M(Rd)

))}
,

for any n ∈ N.

5. Reformulating the recursion

In this section we find an appropriate reformulation of the recursion for the solutions {Fn}n∈N of the time-
discrete problem (1.1), as already discussed in Section 2.4. Note that by iterating T n-times we find that

n depends on the initial datum F0 ∈ M+(Rd) via a high-dimensional integral parametrized by variables
indexed on the binary tree Tn

∗ (representing the traits of the ancestors in the pedigree chart). Specifically,
for any initial datum F0 ∈ M+(Rd) we obtain:

⋄ Iteration 1 :
By the explicit definition of T in (1.2) we readily obtain

F1(x) = 1
∥F0∥M(Rd)

∫
R2d

e−m(x)G

(
x− x1 + x2

2

)
F0(x1)F0(x2) dx1, (5.1)

here we denote x1 = (x1, x2) ∈ R2d.
⋄ Iteration 2 :
30
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By (5.1) with F0 replaced by F1 and using F1 = T [F0] in the right hand side we get

F2(x) = 1
∥F1∥L1(Rd)∥F0∥2

M(Rd)

∫
R6d

e−(m(x)+m(x1)+m(x2))G

(
x− x1 + x2

2

)
×G

(
x1 − x11 + x12

2

)
G

(
x2 − x21 + x22

2

)
F0(x11)F0(x12)F0(x21)F0(x22) dx2, (5.2)

here we denote x2 = (x1, x2, x11, x12, x21, x22) ∈ R6d.
⋄ Iteration n ∈ N:
By a clear inductive process, we can iterate the operator T as many times n ∈ N as needed to recover

n explicit dependence of Fn on the initial datum F0. Of course, this generates a high-dimensional integral
involving 2(2n − 1) variables that we can label along the vertices of the perfect binary tree Tn according to
he universal address system notation in Section 3.1. Namely, we obtain

Fn(x) = 1∏n−1
m=0 ∥Fm∥2n−1−m

L1(Rd)

×
∫
R2(2n−1)d

exp

⎛⎝−
∑

i∈T̂n

m(xi)

⎞⎠ ∏
i∈T̂n

G

(
xi − xi1 + xi2

2

) ∏
i∈Ln

F0(xi) dxn, (5.3)

here we have used the tree-indexed notation xn = (xi)i∈Tn
∗ ∈ R2(2n−1)d in Remark 3.1 and x∅ := x.

The ultimate goal of this section is to find a suitable change of variables as discussed in Section 2.4. We
hall see that the effect of such a change of variable on the above high-dimensional integral in (5.3) will
eveal that actual dependence of {Fn}n∈N on the shape of F0. We will see that such a dependence is indeed
eak and the initial datum is rapidly “forgotten” across the different levels of the tree Tn. This ergodicity
roperty will be crucial in our analysis and will be exploited later in Section 6 to derive our main result in
heorem 1.1.

.1. A change of variables across the binary tree

The goal of this section is to appropriately reformulate the high-dimensional integral (5.3) by exploiting
he special form of the Gaussian mixing kernel G in (1.4) and the quadratic selection function m in (1.5).
amely, we shall derive a suitable change of variables according to a n-step backwards process starting at

the leaf variables xj with j ∈ Ln and ending at the root variable x∅ = x. More specifically, at each level m
in the tree we shall change the reference frame of the variables xi indexed with i ∈ Ln

m so that the quadratic
form involving those variables in the exponential of (5.3) gets appropriately centered at its minimum. By
doing so we find that the minimum is located at a contracted value of the variable xc(i) ∈ Ln

m−1 at the
level m − 1 below, which is indexed by its children c(i) in the binary tree (recall notation in Section 3.1).
By appropriately propagating the backwards process across the tree, and by tracking the accumulated
contraction of variables, we shall see that the eventual dependence on the root variable x is weakly gradually
forgotten as n → ∞. This suggests an apparent form of ergodicity, which we will be crucial later in Section 6.

First, for the sake of clarity, we illustrate our method in the simpler case n = 2. Later, we address the
general case with n > 2 driven by the same strategy. As proposed in Section 2.4, we define the following
choice for the rescaled profiles that will be used along the change of variables.

Definition 5.1 (Rescaled Distributions). Consider any F ∈ M+(Rd). Then, we define

F̄ (dx) := em(x) F (dx)
, x ∈ Rd.
F α=0(x)
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Here, we remind that F α=0 = G0,2 is the Gaussian eigenfunction corresponding to (1.12) with α = 0. We
lso recall that there is some freedom in the normalization, and in particular the term em is not mandatory
ut it is convenient for an easier sorting of the various terms, as we anticipated in Section 2.4. By substituting
1.4) and (1.5) into (5.1) and writting the integral in the right hand side in terms of the rescaled function
0̄ in Definition 5.1, we obtain that

(emF2)(x) = 1
(2π)3d/2

1
(4π)2d

1
∥F1∥L1(Rd)∥F0∥2

M(Rd)

×
∫
R6d

exp
(

−α

2
(
|x1|2 + |x2|2

)
− 1

2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2
)

× exp
(

−α0

2
(
|x11|2 + |x12|2 + |x21|2 + |x22|2

)
− 1

2

⏐⏐⏐⏐x1 − x11 + x12

2

⏐⏐⏐⏐2 − 1
2

⏐⏐⏐⏐x2 − x21 + x22

2

⏐⏐⏐⏐2
)

× F̄0(x11)F̄0(x12)F̄0(x21)F̄0(x22) dx2.

(5.4)

Here, the parameter α0 ∈ R∗
+ has been defined by

α0 := 1
2 + α,

o that the quadratic terms in the fist term of the third line of (5.4) correct the rescaling F̄0 of F0. The new
ormulation will be obtained by an appropriate change of variables, so that the quadratic forms inside the
bove exponential get appropriately centered. To do so, notice that this formula involves as many variables
i as indices i in the perfect binary tree T2. Indeed, we have sorted the different terms in (5.4) in such a
ay that the second line only involves variables x1 and x2 in the first level L2

1 of the tree, whilst the third
ine contains the terms involving the variables x11, x12, x21 and x22 in the second level of the tree L2

2 (i.e.,
he leaves L2). We will divide the method into two steps. First, we will address the change of the variables
ndexed by the leaves L2. Second, we will perform the change of variables indexed by the first level of the
ree L2

1.
• Step 1: Change of variables for x11, x12, x21 and x22.
Consider some coefficient k1 > 0 to be determined later and define the change of variables x11 → y11,

12 → y12, x21 → y21 and x22 → y22 given by

x11 = k1x1 + y11, x12 = k1x1 + y12,

x21 = k1x2 + y21, x22 = k1x2 + y12.

n the one hand, using the change of variables in the terms inside the exponential of (5.4) which involve
11 and x12, we obtain

α0

2 |x11|2 + α0

2 |x12|2 + 1
2

⏐⏐⏐⏐x1 − x11 + x12

2

⏐⏐⏐⏐2
= α0

2 |k1x1 + y11|2 + α0

2 |k1x1 + y12|2 + 1
2

⏐⏐⏐⏐(1 − k1)x1 − y11 + y12

2

⏐⏐⏐⏐2
= 1

2
(
2α0k

2
1 + (1 − k1)2) |x1|2 + α0

2 |y11|2 + α0

2 |y12|2 + 1
8 |y11 + y12|2

+
(
α0k1 − 1 − k1

2

)
x1 · y11 +

(
α0k1 − 1 − k1

2

)
x1 · y12.
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N

I

On the other hand, using the change of variables in the terms which involve x21 and x22, we get

α0

2 |x21|2 + α0

2 |x22|2 + 1
2

⏐⏐⏐⏐x2 − x21 + x22

2

⏐⏐⏐⏐2
= α0

2 |k1x2 + y21|2 + α0

2 |k1x2 + y22|2 + 1
2

⏐⏐⏐⏐(1 − k1)x2 − y21 + y22

2

⏐⏐⏐⏐2
= 1

2
(
2α0k

2
1 + (1 − k1)2) |x2|2 + α0

2 |y21|2 + α0

2 |y22|2 + 1
8 |y21 + y22|2

+
(
α0k1 − 1 − k1

2

)
x2 · y21 +

(
α0k1 − 1 − k1

2

)
x2 · y22.

otice that one can eliminate the crossed terms in both expressions by choosing

k1 := 1
1 + 2α0

= 1
2(1 + α) .

n that case, adding both terms we obtain that

α0

2 |x11|2 + α0

2 |x12|2 + 1
2

⏐⏐⏐⏐x1 − x11 + x12

2

⏐⏐⏐⏐2 + α0

2 |x21|2 + α0

2 |x22|2 + 1
2

⏐⏐⏐⏐x2 − x21 + x22

2

⏐⏐⏐⏐2
= 1

2(1 − k1)|x1|2 + 1
4k1

|y11|2 + 1
4k1

|y12|2 − 1
8 |y11 − y12|2

+ 1
2(1 − k1)|x2|2 + 1

4k1
|y21|2 + 1

4k1
|y22|2 − 1

8 |y21 − y22|2.

Putting everything together into (5.4) yields

(emF2)(x) = 1
(2π)3d/2

1
(4π)2d

1
∥F1∥L1(Rd)∥F0∥2

M(Rd)

×
∫
R6d

exp
(

−α1

2
(
|x1|2 + |x2|2

)
− 1

2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2
)

× exp
(

− 1
4k1

(
|y11|2 + |y12|2 + |y21|2 + |y22|2

)
+ 1

8
(
|y11 − y12|2 + |y21 − y22|2

))
× F̄0(k1x1 + y11)F̄0(k1x1 + y12)F̄0(k1x2 + y21)F̄0(k1x2 + y22) dx1 dx2 dy11 dy12 dy21 dy22,

(5.5)

where the parameter α1 ∈ R∗
+ has been defined by

α1 := 1 − k1 + α,

in order to recombine the initial terms in the second line of (5.4) involving variables indexed by the first
level L2

1 with the new remainders that have appeared from the previous step.
• Step 2: Change of variables for x1 and x2.
Consider some coefficient k2 > 0 to be determined later and define the change of variables x1 → y1 and

x2 → y2 given by
x1 = k2x+ y1, x2 = k2x+ y2.

This time, using the change of variables in the terms of the exponential in the second line of (5.5) yields

α1

2 |x1|2 + α1

2 |x2|2 + 1
2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2
= α1 |k2x+ y1|2 + α1 |k2x+ y2|2 + 1

⏐⏐⏐⏐(1 − k2)x− y1 + y2
⏐⏐⏐⏐2
2 2 2 2
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A
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c
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D

= 1
2
(
2α1k

2
2 + (1 − k2)2) |x|2 + α1

2 |y1|2 + α1

2 |y2|2 + 1
8 |y1 + y2|2

+
(
α1k2 − 1 − k2

2

)
x · y1 +

(
α1k2 − 1 − k2

2

)
x · y2.

gain, we can cancel the crossed term by choosing

k2 := 1
1 + 2α1

= 1
3 + 2α− 2k1

.

Namely, we obtain that

α1

2 |x1|2 + α1

2 |x2|2 + 1
2

⏐⏐⏐⏐x− x1 + x2

2

⏐⏐⏐⏐2
= 1

2(1 − k2)|x|2 + 1
4k2

|y1|2 + 1
4k2

|y2|2 − 1
8 |y1 − y2|2.

Then, putting everything together into (5.5) yields

F2(x) = 1
(2π)3d/2

1
(4π)2d

1
∥F1∥L1(Rd)∥F0∥2

M(Rd)
e− 1+α−k2

2 |x|2

×
∫
R6d

exp
(

− 1
4k2

(
|y1|2 + |y2|2

)
+ 1

8 |y1 − y2|2
)

× exp
(

− 1
4k1

(
|y11|2 + |y12|2 + |y21|2 + |y22|2

)
+ 1

8
(
|y11 − y12|2 + |y21 − y22|2

))
× F̄0(k1k2x+ k1y1 + y11)F̄0(k1k2x+ k1y1 + y12)
× F̄0(k1k2x+ k1y2 + y21)F̄0(k1k2x+ k1y2 + y22) dy2,

(5.6)

where we denote again y2 = (y1, y2, y11, y12, y21, y22) ∈ R6d.
Before stating the main result for general n ∈ N, we collect some natural notation according to the

preceding computations, that will be useful here on. First, we define the following sequences of coefficients.

Definition 5.2 (Coefficients). Consider any α ∈ R+.

(1) The coefficients {kn}n∈N are defined by the recursive formula

k1 := 1
2(1 + α) ,

kn := 1
3 + 2α− 2kn−1

, for n ≥ 2.
(5.7)

(2) The coefficients {κn}n∈N are defined by the recursive formula

κ0 := 1,
κn := k1 · · · kn, for n ≥ 1.

(5.8)

We note that for n = 2 the above coefficients k1, k2 reduce to those appearing in the previous reformulation
5.6) of the recursion. Since it will be used later, we study the asymptotic behavior of such sequences of
oefficients as n → ∞.

emma 5.3 (Asymptotic Behavior of the Coefficients). Consider the sequences {kn}n∈N and {κn}n∈N in
efinition 5.2. Then, the following properties hold true:
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(i) (Coefficients kn) The coefficients {kn}n∈N are positive numbers and kn ↘ kα as n → ∞, where
kα ∈ R∗

+ is the smallest root of the equation

1
3 + 2α− 2kα

= kα. (5.9)

Specifically, kα is given explicitly by formula (1.15) and it is related to the coefficient rα in formula (3.8)
of Lemma 3.8 by rα = 2k2

α. In addition,

kn − kα ≤ Crn−1
α , (5.10)

for every n ∈ N, where rα is and C ∈ R∗
+ depends only on α.

(ii) (Coefficients κn) The coefficients {κn}n∈N are positive numbers and decay geometrically with maximal
rate kα. Specifically, for every ε ∈ R∗

+ there exists Cε ∈ R∗
+ such that

κn ≤ Cε(kα + ε)n, (5.11)

for every n ∈ N.

Proof. On the one hand, the properties of {κn}n∈N readily follow from those of {kn}n∈N and the relation
(5.8) in Definition 5.2. Specifically, for any given q ∈ N and any n ≥ q we get the decomposition

κn =
(

q∏
m=0

km

)(
n∏

m=q+1
km

)
≤ kq

1k
n−q
q+1 = kq

1
kq

q+1
kn

q+1 ≤ kq
1

kq
q+1

(Crq+1
α + kα)n.

Therefore, taking q sufficiently large so that Crq+1
α ≤ ε we conclude (5.11). We then focus on the properties

of {kn}n∈N and we use a similar strategy like in Lemma 3.8.
• Step 1: Monotone convergence of {kn}n∈N.
Define the following function

f(x) := 1
3 + 2α− 2x, x ∈

(
−∞,

3
2 + α

)
.

hen, by (5.7) {kn}n∈N obeys the following recursive relation

kn = f(kn−1), n > 1.

et us consider the fixed points x− < x+ of f , i.e,

x± =
(3 + 2α) ±

√
(1 + 2α)2 + 8α
4 .

y inspection, it is clear that 0 < kα = x− < x+ < 3
2 + α and

x− < f(x) < x, if x ∈ (x−, x+),

here kα is given in (1.15). Since k1 ∈ (x−, x+), then we conclude that {kn}n∈N is a well defined, positive and
onotonically decreasing sequence contained in the compact interval [x−, x+]. Therefore, it must converge

owards some limit ℓ, which is a solution of f(x) = x i.e., ℓ ∈ {x−, x+}. Since the full sequence {kn}n∈N is
elow x+ and decreasing, we then conclude that ℓ = x− = kα. In particular, we obtain

kα < kn ≤ k1, (5.12)
or any n ∈ N.
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• Step 2: Convergence rates.
As for Lemma 3.8, we shall use the special algebraic structure of the function f , which is the restriction

to
(
−∞, 3

2 + α
)

of the Möbius function M : R \ { 3
2 + α} −→ R given by

M(x) := 1
3 + 2α− 2x, x ∈ R \

{
3
2 + α

}
.

By definition of {kn}n∈N in (5.7) we obtain

kn − x+ = 1
3 + 2α− 2kn−1

− 1
3 + 2α− 2x+

= 2
(3 + 2α− 2kn−1)(3 + 2α− 2x+) (kn−1 − x+).

imilarly, we obtain

kn − x− = 1
3 + 2α− 2kn−1

− 1
3 + 2α− 2x−

= 2
(3 + 2α− 2kn−1)(3 + 2α− 2x−) (kn−1 − x−).

y dividing both expressions and iterating such an identity we get

kn − x−

kn − x+
=
(

3 + 2α− 2x+

3 + 2α− 2x−

)n−1
k1 − x−

k1 − x+
, (5.13)

for every n ∈ N. In fact, the basis can be restated as follows

3 + 2α− 2x+

3 + 2α− 2x−
=

3 + 2α−
√

(1 + 2α)2 + 8α
3 + 2α+

√
(1 + 2α)2 + 8α

= 8(
3 + 2α+

√
(1 + 2α)2 + 8α

)2 ≡ rα < 1,

here rα is determined by (3.8) in Lemma 3.8. Therefore, using (5.12) and (5.13) we conclude that

kn − kα = k1 − x−

x+ − k1
(x+ − kn)rn−1

α ≤ k1 − x−

x+ − k1
(x+ − x−)rn−1

α ,

or any n ∈ N, thus ending the proof. □

efinition 5.4 (Quadratic Forms). Consider the sequence {kn}n∈N in Definition 5.2. Then, we define the
uadratic form Qn = Qn(yn) by

Qn(yn) :=
n−1∑
m=0

∑
i∈Ln

m

(
1

4kn−m
(|yi1|2 + |yi2|2) − 1

8 |yi1 − yi2|2
)
, yn ∈ R2(2n−1)d, (5.14)

here we are using the tree-indexed notation yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d in Remark 3.1.

Again, note that when n = 2 the above quadratic form Q2(y2) reduces to the one inside the exponential
f (5.6). We now show the following uniform control of the quadratic forms Qn as n → ∞.

emma 5.5 (Uniform Positive Definite Quadratic Forms). Consider the quadratic form Qn = Qn(yn) in
efinition 5.4 and define the couple of coefficients βmin, βmax ∈ R∗

+ by

βmin := 1 + 2α
4 , βmax := 1

4kα
,

here kα is given by formula (1.15). Then, we obtain that

βmin∥yn∥2 ≤ Qn(yn) ≤ βmax∥yn∥2,

here we are using the tree-indexed notation y = (y ) n ∈ R2(2n−1)d in Remark 3.1.
n i i∈T∗
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Fig. 7. Unique path joining the leaf j = 121 to the root in the perfect binary tree T3. The corresponding lineage map takes the form
Φ121

n (x; y3) = κ3x + κ2y1 + κ1y12 + y121.

Proof. By virtue of Young’s inequality, we obtain the following lower and upper bound for Qn

n−1∑
m=0

∑
i∈Ln

m

1
4

(
1

kn−m
− 1
)

(|yi1|2 + |yi2|2) ≤ Qn(yn) ≤
n−1∑
m=0

∑
i∈Ln

m

1
4

1
kn−m

(|yi1|2 + |yi2|2),

for every yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d. Then, the result follows from Lemma 5.3, which guarantees the uniform

control kα < km−n ≤ k1 for every m = 0, . . . , n− 1. □

Definition 5.6 (Lineage Maps). We define the lineage maps Φj
n = Φj

n(x; yn) associated to the leave j ∈ Ln

(see Fig. 7) as follows

Φj
n(x; yn) := κnx+

n−1∑
m=0

κmycm(j), yn ∈ R2(2n−1)d, (5.15)

where x ∈ Rd represents the root value, yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d is represented according to the tree-

indexed notation in Remark 3.1, {κn}n∈N is given in Definition 5.2, and cm = c ◦ · · · ◦ c is the m times
iterated map c : Tn

∗ → T̂n which, to any vertex i ∈ Tn
∗ , it associates its child c(i) ∈ T̂n (cf. Section 3.1).

We are now ready to state the main result of this section extending formula (5.6) to any n ∈ N. The
starting point is again formula (5.3). In the particular case of Gaussian mixing kernel (1.4) and quadratic
selection function (1.5), it takes the explicit form

(emFn)(x) = 1
(2π)(2n−1)d/2

1
(4π)2n−1d

1∏n−1
m=0 ∥Fm∥2n−1−m

L1(Rd)

×
∫
R2(2n−1)d

exp

⎛⎝−
n−2∑
m=0

∑
i∈Ln

m

[
α

2 (|xi1|2 + |xi2|2) + 1
2

⏐⏐⏐⏐xi − xi1 + xi2

2

⏐⏐⏐⏐2
]⎞⎠

× exp

⎛⎝−
∑

i∈Ln
n−1

[
1
2(α+ 1

2)(|xi1|2 + |xi2|2) + 1
2

⏐⏐⏐⏐xi − xi1 + xi2

2

⏐⏐⏐⏐2
]⎞⎠

×
∏

j∈Ln

F̄0(xj) dxn,

(5.16)

for any x ∈ Rd and n ∈ N. Above, we have used the tree-indexed notation xn = (xi)i∈Tn
∗ ∈ R2(2n−1)d

in Remark 3.1, we have set x∅ := x and we have considered the rescaled distribution F̄0 according to
Definition 5.1. Again, notice that the exponential terms in the fist term of the third line of (5.16) have
been introduced to appropriately correct the rescaled distribution F̄0 of F0. As a consequence, the factor
(4π)−2n−1d arises from the normalization by F α=0(xj) whilst the factor (2π)−(2n−1)d/2 comes from the
repeated products of the Gaussian mixing kernel G. The main result then reads as follows
37
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Proposition 5.7 (Reformulation of the Iterations I). Assume that α ∈ R+ and set any initial datum
F0 ∈ M+(Rd). Hence, the solution {Fn}n∈N to the time-discrete problem (1.1) admits the following form

Fn(x) = e− 1+α−kn
2 |x|2

(4π)2n−1d(2π)(2n−1)d/2
1∏n−1

m=0 ∥Fm∥2n−1−m

L1(Rd)

∫
R2(2n−1)d

e−Qn(yn)
∏

j∈Ln

F̄0(Φj
n(x; yn)) dyn, (5.17)

or every x ∈ Rd and n ∈ N, where we are using the tree-indexed notation yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d in

emark 3.1 along with further notation from Definitions 5.1, 5.2, 5.4 and 5.6.

As we anticipated for the particular case n = 2 at the beginning of this section, the proof of Proposition 5.7
will be based on the following change of variables

xi1 = kn−mxi + yi1, xi2 = kn−mxi + yi2,

for every i ∈ Ln
m, which we will apply in a backwards way starting at indices i ∈ Ln

n−1 and ending at i = ∅.
gain, the objective of such a change of variables is to appropriately move the reference frame so that the
bove quadratic forms 1

2
⏐⏐xi − xi1+xi2

2
⏐⏐2 inside the exponential of (5.16) get appropriately centered and no

rossed terms remain when the selection parts α
2 (|xi1|2 + |xi2|2) are taken into account. For simplicity, along

he proof we shall restrict to tracking how the various terms inside the exponentials in (5.16) get modified
fter the change of variables.

roof of Proposition 5.7.
• Step 1: Change of variables xi1 → yi1 and xi2 → yi2 for i ∈ Ln

n−1.
We consider the change of variables given by

xi1 = k1xi + yi1, xi2 = k1xi + yi2,

where k1 is given by Definition 5.2. The collection of all the terms for i ∈ Ln
n−1 in (5.16) then read

α0

2 |xi1|2 + α0

2 |xi2|2 + 1
2

⏐⏐⏐⏐xi − xi1 + xi2

2

⏐⏐⏐⏐2
= α0

2 |k1xi + yi1|2 + α0

2 |k1xi + yi2|2 + 1
2

⏐⏐⏐⏐(1 − k1)xi − yi1 + yi2

2

⏐⏐⏐⏐2
= 1

2
(
2α0k

2
1 + (1 − k1)2) |xi|2 + α0

2 |yi1|2 + α0

2 |yi2|2 + 1
8 |yi1 + yi2|2

+
(
α0k1 − 1 − k1

2

)
xi · yi1 +

(
α0k1 − 1 − k1

2

)
xi · yi2

= 1
2
(
2α0k

2
1 + (1 − k1)2) |xi|2 + α0

2 |yi1|2 + α0

2 |yi2|2 + 1
8 |yi1 + yi2|2

= 1
2(1 − k1)|xi|2 + 1

4k1
|yi1|2 + 1

4k1
|yi2|2 − 1

8 |yi1 − yi2|2,

where we have defined the coefficient α0 ∈ R∗
+ by

α0 := α+ 1
2 ,

o recombine terms in the second and third lines of (5.16), and we have used the following relation between
1 and α0 in order to cancel the crossed terms, i.e.,

k1 = 1
.
1 + 2α0
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• Step 2: Change of variables xi1 → yi1 and xi2 → yi2 for i ∈ Ln
n−2.

Again, we consider the change of variables given by

xi1 = k2xi + yi1, xi2 = k2xi + yi2,

where k2 is given by Definition 5.2. Putting together the terms for i ∈ Ln
n−2 in (5.16) and the above xi-

dependent remainder in the above expression in Step 1 yields the following term under the above change
of variables

α1

2 |xi1|2 + α1

2 |xi2|2 + 1
2

⏐⏐⏐⏐xi − xi1 + xi2

2

⏐⏐⏐⏐2
= α1

2 |k2xi + yi1|2 + α1

2 |k2xi + yi2|2 + 1
2

⏐⏐⏐⏐(1 − k2)xi − yi1 + yi2

2

⏐⏐⏐⏐2
= 1

2
(
2α1k

2
2 + (1 − k2)2) |xi|2 + α1

2 |yi1|2 + α1

2 |yi2|2 + 1
8 |yi1 + yi2|2

+
(
α1k2 − 1 − k2

2

)
xi · yi1 +

(
α1k2 − 1 − k2

2

)
xi · yi2

= 1
2
(
2α1k

2
2 + (1 − k2)2) |xi|2 + α1

2 |yi1|2 + α1

2 |yi2|2 + 1
8 |yi1 + yi2|2

= 1
2(1 − k2)|xi|2 + 1

4k2
|yi1|2 + 1

4k2
|yi2|2 − 1

8 |yi1 − yi2|2,

where we have defined again coefficient the α1 ∈ R∗
+ by

α1 := 1 + α− k1,

n order to absorb the above-mentioned xi-dependent remainder. In addition, note that we have used again
he following relation between k2 and α1 to cancel the crossed term, i.e.,

k2 = 1
1 + 2α1

.

• Step 3: Change of variables xi1 → yi1 and xi2 → yi2 for i ∈ Ln
n−3.

We consider the change of variables given by

xi1 = k3xi + yi1,

xi2 = k3xi + yi2,

where k3 is given by Definition 5.2. Putting together the terms for i ∈ Ln
n−3 in (5.16) and the above xi-

ependent remainder in the above expression in Step 2 yields the following term under the above change
f variables

α2

2 |xi1|2 + α2

2 |xi2|2 + 1
2

⏐⏐⏐⏐xi − xi1 + xi2

2

⏐⏐⏐⏐2
= α2

2 |k3xi + yi1|2 + α2

2 |k3xi + yi2|2 + 1
2

⏐⏐⏐⏐(1 − k3)xi − yi1 + yi2

2

⏐⏐⏐⏐2
= 1

2
(
2α2k

2
3 + (1 − k3)2) |xi|2 + α2

2 |yi1|2 + α2

2 |yi2|2 + 1
8 |yi1 + yi2|2

+
(
α2k3 − 1 − k3

2

)
xi · yi1 +

(
α2k3 − 1 − k3

2

)
xi · yi2

= 1
2
(
2α2k

2
3 + (1 − k3)2) |xi|2 + α2

2 |yi1|2 + α2

2 |yi2|2 + 1
8 |yi1 + yi2|2

= 1(1 − k3)|xi|2 + 1 |yi1|2 + 1 |yi2|2 − 1 |yi1 − yi2|2,
2 4k3 4k3 8
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where we have defined again coefficient the α2 ∈ R∗
+

α2 := 1 + α− k2,

n order to absorb the above-mentioned xi-dependent remainder. In addition, note that we have used again
he following relation between k3 and α2 to cancel the crossed term, i.e.,

k3 = 1
1 + 2α2

.

ollowing a similar recursive process, we readily identify the quadratic form Qn in Definition 5.4 in the
exponential of the integrand in the final expression (5.17).

• Step 4: Identifying the lineage maps Φj
n and the exponential factor.

On the one hand, the hierarchy of changes of variables immediately leads to

xj = Φj
n(x; yn),

for any leaf j ∈ Ln, thanks to Definition 5.2 for the coefficients {κn}n∈N and Definition 5.6 for the lineage
aps Φj

n. On the other hand, since the Jacobian determinant of each change of variables is 1, no further
actors appear during the iterative process except for the exponential x-dependent remainder e− 1+α−kn

2 |x|2

of the last step of the recurrence, which is not absorbed in the quadratic form Qn. □

5.2. Probabilistic reinterpretation

For general purposes, in this part we reformulate the result in Proposition 5.7 in appropriate probabilistic
terms. More precisely, this reformulation will not only provide shorter formulas, but it will also allow
identifying a problematic key point when studying the asymptotics of the high-dimensional integral (5.17)
in Section 6, namely, the presence of non-negligible correlations between the various factors indexed with
indexes over leaves j ∈ Ln of the tree, which do not dissipate even for long time n → ∞. We shall use the
following notation.

Definition 5.8 (High-dimensional Normal Distributions). Consider any integer n ∈ N and

Σm
n :=

⎛⎜⎜⎝
(2 − kn−m)kn−m

1 − kn−m
Id −

k2
n−m

1 − kn−m
Id

−
k2

n−m

1 − kn−m
Id

(2 − kn−m)kn−m

1 − kn−m
Id

⎞⎟⎟⎠ , (5.18)

for every m = 0, . . . , n− 1. Then, we will define the random vector Yn = (Yi)i∈Tn
∗ distributed according to

the following multivariate normal distribution

Gn(yn) :=
n−1∏
m=0

∏
i∈Ln

m

1
(2π)d

√
det(Σm

n )
exp

(
−1

2(yT
i1, y

T
i2)(Σm

n )−1
(
yi1

yi2

))
, yn ∈ R2(2n−1)d, (5.19)

here again we are using the tree-indexed notation yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d in Remark 3.1.

Notice that for every index i ∈ Ln
m with m = 0, . . . , n − 1 the pair (Yi1, Yi2) is normally distributed

ccording to N (0,Σm
n ) and Yi1 and Yi2 are certainly correlated. Nevertheless, the vector (Yi1, Yi2) is

independent on any other random vector Yj for indices j ̸= i1 and j ̸= i2. We are now ready to introduce

the following probabilistic reformulation of Proposition 5.7.
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Proposition 5.9 (Reformulation of the Iterations II). Assume that α ∈ R∗
+ and set any initial datum

F0 ∈ M+(Rd). Hence, the solution {Fn}n∈N to the time-discrete problem (1.1) admits the following form

Fn(x) = e− 1+α−kn
2 |x|2

(2π)d/222n−1d

⎛⎜⎜⎜⎜⎝
n−1∏
m=0

(
4k2

n−m
1−kn−m

)2m−1d

∥Fm∥2n−1−m

L1(Rd)

⎞⎟⎟⎟⎟⎠E

⎡⎣∏
j∈Ln

F̄0(Φj
n(x; Yn))

⎤⎦ , (5.20)

for every x ∈ Rd and n ∈ N, where we are using the high-dimensional random vector Yn = (Yi)i∈Tn
∗ in

efinition 5.8 along with further notation from Definitions 5.1, 5.2, 5.4 and 5.6.

Proof. By Proposition 5.7 we obtain

Fn(x) = e− 1+α−kn
2 |x|2

(4π)2n−1d(2π)(2n−1)d/2
1∏n−1

m=0 ∥Fm∥2n−1−m

L1(Rd)

∫
R2(2n−1)d

e−Qn(yn)
∏

j∈Ln

F̄0(Φj
n(x; yn)) dyn

= (2π)(2n−1)d/2

(4π)2n−1d
e− 1+α−kn

2 |x|2

⎛⎜⎜⎜⎜⎝
n−1∏
m=0

(
4k2

n−m
1−kn−m

)2m−1d

∥Fm∥2n−1−m

L1(Rd)

⎞⎟⎟⎟⎟⎠
∫
R2(2n−1)d

Gn(yn)
∏

j∈Ln

F̄0(Φj
n(x; yn)) dyn,

for every x ∈ Rd and each n ∈ N, where in the last line we have used that the inverse and determinant of
the covariance matrices Σm

n in (5.18) take the form

(Σm
n )−1 :=

⎛⎜⎝
2 − kn−m

4kn−m
Id

1
4Id

1
4Id

2 − kn−m

4kn−m
Id

⎞⎟⎠ , det(Σm
n ) =

(
4k2

n−m

1 − kn−m

)d

.

Then, the result follows by applying the law of the unconscious statistician (LOTUS) to relate the preceding
integral to the expectation of the random variable

∏
j∈Ln F̄0(Φj

n(x; Yn)). □

As illustrated in the overall map in Fig. 2, the reformulation of the iterations in Propositions 5.7 and
5.9 will be fundamental in order to characterize the long-time behavior of the solution {Fn}n∈N to the time-
discrete problem (1.1). More specifically, we need to unravel the asymptotic behavior of the high-dimensional
integral encoded in the expectation term (5.20). As discussed in Sections 2.3 and 2.4, one is able to control
it in the log-Lipschitz norm under stringent constraints on the initial data, which are not fully satisfactory.
In view of the structure of the expectation term, alternatively one may expect to be able to interchange
expectations with products and control each factor separately. However, as we show below, this naive idea
is bound to fail since the involved random variables are correlated, and they do not uncorrelate even in the
limit n → ∞. This complicated structure imposes severe problems when handling formula (5.20), and one
needs more powerful ideas, which we introduce later in Lemma 6.3.

Remark 5.10 (Non-negligible Correlations). Since Yn in Definition 5.8 is normally distributed and the
lineage map Φj

n(x; yn) in Definition 5.6 are affine transformations of yn, then all (Φj
n(x; Yn))j∈Ln are also

normally distributed. Unfortunately, the components of (Φj
n(x; Yn))j∈Ln are correlated since, in particular,

all the components (i1, i2) are correlated in view of the structure (5.18) of their covariance matrices.
Specifically, a straightforward computation shows that the covariance matrix[

i i j j
]

Kij = E (Φn(x; Yn) − EΦn(x; Yn)) ⊗ (Φn(x; Yn) − EΦn(x; Yn)) ,
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between any couple (i, j) ∈ Ln ×Ln of components (see Table 1 for the notation ⊗ of the Kronecker product)
akes the following explicit form

Kij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n−1∑
q=0

κ2
q

(2 − kq+1)kq+1

1 − kq+1

)
Id, if |i ∧ j| = n,⎛⎝−κ2

n−|i∧j|−1
k2

n−|i∧j|

1 − kn−|i∧j|
+

n−1∑
q=n−|i∧j|

κ2
q

(2 − kq+1)kq+1

1 − kq+1

⎞⎠ Id, if 0 < |i ∧ j| < n,(
−κ2

n−1
k2

n

1 − kn

)
Id, if |i ∧ j| = 0.

ere, |i ∧ j| represents the level of the highest common descendant i ∧ j of i and j (cf. Section 3.1). Note
hat correlations only disappears for leaves (i, j) such that n− |i ∧ j| → ∞, that is, when the length of the
ath from i (or j) to the highest common descendant i ∧ j diverges as the height n of the tree increases.
nfortunately, correlations are non-negligible in all other cases even for n → ∞.

. Uniqueness of equilibria and quantitative ergodicity property

In this part we shall prove our main results, namely, Theorem 1.1 and Corollary 1.2. First, we will
erive a local convergence result as n → ∞ of the profiles {Fn}n∈N solving (1.1) with generic initial datum
0 ∈ M+(Rd) towards the Gaussian profile F α in (1.12). This weaker local analog of Theorem 1.1 will be
nough to derive the uniqueness of the solution (λα,F α) of the eigenproblem (1.11) in Corollary 1.2. Second,
e will extend our local result into our main global result in Theorem 1.1 by quantifying the relaxation of

he growth rate ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) and the normalized profiles Fn/∥Fn∥L1(Rd) towards the unique
olution (λα,F α) of the eigenproblem (1.11). Our strategy will exploit the high-dimensional iterative formula
5.20) in Proposition 5.9.

.1. Local convergence result

In this part we shall prove our local convergence result. To this end, we will show that the dependency
f the expectation term in (5.20) on the variable x decays to zero as n → ∞ uniformly over compact sets.
o simplify notation, we shall define the following operator.

efinition 6.1 (Expectation Operators). Under the notation in Definitions 5.6 and 5.8, we define

En[F ](x) := E

⎡⎣∏
j∈Ln

F (Φj
n(x; Yn))

⎤⎦ , x ∈ Rd, (6.1)

or any n ∈ N and any non-negative measurable function F : Rd → R.

Note that En[F ](x) possibly takes extended values in (−∞,+∞] if the expectation does not exist.
owever, if F is a bounded function (and it will be often the case), we obtain that En[F ](x) always exists
nd is finite. The following technical lemma for the tail of the incomplete Gamma function will be required
ater to determine the asymptotic behavior of the above operator En.

emma 6.2. Consider the (upper) incomplete Gamma function with parameter a ∈ R∗
+, i.e.,

Γ (a, x) :=
∫ +∞

sa−1e−s ds, x ∈ R∗
+. (6.2)
x
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Then, the following estimate holds true

Γ (a+ 1, x) ≤ 2e−x/2, (6.3)

or every x, a ∈ R∗
+ verifying the constraints

x > e, 2a < x

log(x) . (6.4)

roof. Let us restate the incomplete Gamma function as follows

Γ (a+ 1, x) =
∫ +∞

x

exp(−ψa(s)s) ds,

here ψa(s) is the function

ψa(s) := 1 − a
log(s)
s

, s > 0.

otice that ψa is monotonically increasing for s ∈ [e,∞). Hence, we obtain that

ψa(s) ≥ ψa(x) ≥ 1
2 ,

or every s ≥ x, where we have used (6.4) on each of the above inequalities. Consequently, we get

Γ (a+ 1, x) ≤
∫ +∞

x

e− s
2 ds,

nd this ends the proof. □

Therefore, we obtain the following weak dependency of En[F ] on the variable x as n → ∞.

emma 6.3 (Asymptotics of En). Assume that α ∈ R∗
+ and consider any F ∈ C1(Rd) such that

0 < F (x) ≤ C,

|∇ logF (x)| ≤ D(1 + |x|),
(6.5)

for every x ∈ Rd and appropriate C,D ∈ R∗
+. Then, for every ε ∈ R∗

+, there exists a large enough constant
Cε ∈ R∗

+ such that the following property holds true

|∇ log En[F ](x)| ≤ Cε

(
(2kα + ε)n + (rα + ε)n|x| + e− (2+ε)n

ε eCε(2rα+ε)n|x|2
)
, (6.6)

for every x ∈ Rd and any n ∈ N, where En is the operator in Definition 6.1.

Proof. Before proving the main result, note that the hypothesis (6.5) guarantee that F is bounded below
by a Gaussian profile. Indeed, by the fundamental theorem of calculus we obtain the following relation

logF (x) = logF (0) +
∫ 1

0
∇(logF )(θx) · x dθ,

for any x ∈ Rd. Using the linear growth assumption in (6.5) for the log-derivative ∇ logF we obtain that

logF (x) ≥ logF (0) −D|x|
∫ 1

(1 + θ|x|) dθ ≥ logF (0) − D −D|x|2,

0 2
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for any x ∈ Rd, where in the last inequality we have integrated with respect to θ and we have used Young’s
nequality to interpolate |x| by |x|2. Therefore, we obtain the following Gaussian lower bound

F (x) ≥ ce−β|x|2 , (6.7)

or each x ∈ Rd and some c, β ∈ R∗
+ depending only on F (0) and D.

For simplicity of notation we define
En := En[F ],

for any n ∈ N. In the sequel, we shall study the behavior of ∇ logEn as n → ∞.
• Step 1: Control of

∑
j∈Ln |Φj

n(x; yn)|.
By definition (5.15) of the lineage map Φj

n, we obtain that

∑
j∈Ln

|Φj
n(x; yn)| =

∑
j∈Ln

⏐⏐⏐⏐⏐κnx+
n−1∑
m=0

κmycm(j)

⏐⏐⏐⏐⏐ ≤ 2nκn|x| +
n−1∑
m=0

2mκm

∑
i∈Ln

n−m

|yi|,

where we are using the tree-indexed notation yn = (yi)i∈Tn
∗ ∈ R2(2n−1)d in Remark 3.1 and c : Tn

∗ −→ T̂n

is defined in Section 3.1. Note that in the last inequality we have used that each index of the level Ln
n−m in

he tree contributes to the amount of 2m leaves. Then, we obtain

∑
j∈Ln

⏐⏐Φj
n(x; yn)

⏐⏐ ≤ 2nκn|x| +

⎛⎝n−1∑
m=0

∑
i∈Ln

n−m

(2mκm)2

⎞⎠1/2⎛⎝n−1∑
m=0

∑
i∈Ln

n−m

|yi|2
⎞⎠1/2

= 2nκn|x| +
(

n−1∑
m=0

2n−m(2mκm)2

)1/2

∥yn∥

≤ 2nκn|x| +
√

2 2n/2∥yn∥,

(6.8)

for any yn ∈ R2(2n−1)d, where in the first line we have used the Cauchy–Schwarz inequality on the joint
um over indices m and i, in the second line we have used the definition ∥yn∥ = (

∑
i∈Tn

∗
|yi|2)1/2 of the ℓ2

orm (cf. Table 1), and in the last line we have used that

n−1∑
m=0

2n−m(2mκm)2 ≤ 2n
n−1∑
m=0

2mk2m
1 ≤ 2n

∞∑
m=0

2mk2m
1 = 2n

1 − 2k2
1

≤ 2n+1.

bove, we have used that kn ≤ k1 for all n ∈ N by virtue of Lemma 5.3(i) and also that

1
1 − 2k2

1
= 1 + 4α+ 2α2

2(1 + α)2 = 2(1 + α2)
(1 + α)2 + 2α+ α2 < 2.

• Step 2: Derivative of logEn.
Taking derivatives on (6.1), using the second property in (6.5) along with (6.8) entails

|∇ logEn(x)| ≤ κn

E
[(∑

j∈Ln |∇ logF (Φj
n(x; Yn))|

)∏
j∈Ln F (Φj

n(x; Yn))
]

E
[∏

j∈Ln F (Φj
n(x; Yn))

]
≲ κn

E
[(∑

j∈Ln(1 + |Φj
n(x; Yn)|)

)∏
j∈Ln F (Φj

n(x; Yn))
]

E
[∏

j∈Ln F (Φj
n(x; Yn))

]
n n 2 n/2

(6.9)
≲ 2 κn + 2 κn|x| + 2 κnRn(x),
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for every x ∈ Rd, where the remainder Rn reads

Rn(x) :=
E
[
∥Yn∥

∏
j∈Ln F (Φj

n(x; Yn))
]

E
[∏

j∈Ln F (Φj
n(x; Yn))

] , x ∈ Rd.

This estimation provides a first insight about the ergodicity property. Indeed the correlations, as measured
by κn, decreases faster than 2−n (cf. Lemma 5.3), meaning that the contribution 2nκn decays fast to
zero. It is also the case of the other contributions, locally in x, but the last one, namely 2n/2κnRn(x),
equires more work. Consider any

√
2 < q < 1√

2kα
, which exists because 2kα < 1 for α ∈ R∗

+, and split
Rn(x) = R1

n(x) +R2
n(x) in terms of the functions

R1
n(x) := 1

Zn(x)

∫
∥yn∥≤qn

∥yn∥
∏

j∈Ln

F (Φj
n(x; yn))e−Qn(yn) dyn, (6.10)

R2
n(x) := 1

Zn(x)

∫
∥yn∥>qn

∥yn∥
∏

j∈Ln

F (Φj
n(x; yn))e−Qn(yn) dyn, (6.11)

and the normalization factor

Zn(x) :=
∫
R2(2n−1)d

∏
j∈Ln

F (Φj
n(x; yn))e−Qn(yn) dyn. (6.12)

• Step 3: Lower bound for Zn.
Using the above lower bound by a Gaussian in (6.7) along with the upper bound for Qn in Lemma 5.5

implies the following estimate of Zn in (6.12):

Zn(x) ≥ c2n
∫
R2(2n−1)d

exp

⎛⎝−β
∑
j∈Ln

|Φj
n(x; yn)|2

⎞⎠ exp(−βmax∥yn∥2) dyn

≥ c2n
e−22n+1κ2

nβ∥x∥2
∫
R2(2n−1)d

exp
(
−(2n+2β + βmax)∥yn∥2) dyn

= c2n
e−22n+1κ2

nβ|x|2
⏐⏐⏐S2(2n−1)d−1

⏐⏐⏐ ∫ +∞

0
r2(2n−1)d−1 exp

(
−(2n+2β + βmax)r2) dr

= c2n
e−22n+1κ2

nβ|x|2

2(2n+2β + βmax)(2n−1)d

⏐⏐⏐S2(2n−1)d−1
⏐⏐⏐ ∫ +∞

0
s(2n−1)d−1e−s ds

= c2n
e−22n+1κ2

nβ|x|2

2(2n+2β + βmax)(2n−1)d

⏐⏐⏐S2(2n−1)d−1
⏐⏐⏐Γ ((2n − 1)d),

here in the last step we have used the Gamma function, that is defined by

Γ (a) :=
∫ +∞

0
sa−1e−s ds, a > 0.

ecall that area of the hypersphere is |Sd−1| = 2πd/2

Γ( d
2 ) . Then, we obtain

Zn(x) ≥ c2n
π(2n−1)d

(2n+2β + βmax)(2n−1)d
e−22n+1κ2

nβ|x|2 , (6.13)

for every x ∈ Rd.
• Step 4: Upper bound for R1

n and R2
n.

On the one hand, notice that
R1 (x) ≤ qn, (6.14)
n
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for all x ∈ Rd by definition of R1
n in (6.10). On the other hand, using the lower bound of Qn in Lemma 5.5

we can estimate R2
n in (6.11) by

R2
n(x) ≤ C2n

qnZn(x)

∫
∥yn∥≥qn

∥yn∥2e−βmin∥yn∥2
dyn

= C2n

qnZn(x)

⏐⏐⏐S2(2n−1)d−1
⏐⏐⏐ ∫ +∞

qn
r2(2n−1)d+1e−βminr2

dr

= C2n

qnZn(x)

⏐⏐⏐S2(2n−1)d−1
⏐⏐⏐ 1

2β(2n−1)d+1
min

∫ +∞

βminq2n
s(2n−1)de−s ds

= C2n
π(2n−1)d

qnβ
(2n−1)d+1
min Zn(x)

Γ
(
(2n − 1)d+ 1, βminq

2n
)

Γ ((2n − 1)d) , (6.15)

for all x ∈ Rd, where we have used again the incomplete Gamma function (6.2) in Lemma 6.2. Putting the
lower estimate (6.13) for Zn into (6.15) yields

R2
n(x) ≲ e22n+1κ2

nβ|x|2 C
2n(2n+2β + βmax)(2n−1)d

qnc2nβ
(2n−1)d
min

Γ
(
(2n − 1)d+ 1, βminq

2n
)

Γ ((2n − 1)d) , (6.16)

or all x ∈ Rd. Now, take a = (2n − 1)d and x = βminq
2n and notice that the constraints (6.4) in Lemma 6.2

old true for large enough n ∈ N as long as we choose q >
√

2. Hence, we obtain the estimate

Γ
(
(2n − 1)d+ 1, βminq

2n
)

≤ 2e− βmin
2 q2n

,

or all n ≥ n∗ = n∗(βmin, d, q). Using Stirling’s formula for the remaining Gamma function in (6.16), we
conclude the estimate

R2
n(x) ≲ e22n+1κ2

nβ|x|2 C
2n(2n+2β + βmax)(2n−1)d

qnc2nβ
(2n−1)d
min

e− βmin
2 q2n

(2n − 1)1/2
(

(2n−1)d
e

)(2n−1)d
, (6.17)

for every x ∈ Rd and each n ≥ n∗.
• Step 5: Final conclusion.
Let us put the preceding estimates (6.14) and (6.17) into (6.9) to achieve

|∇ logEn(x)| ≲ 2nκn + 2n/2qnκn + 2nκ2
n|x| + M2n

e
βmin

2 q2n
e22n+1κ2

nβ|x|2 , (6.18)

for every x ∈ Rd and each n ≥ n∗, where M = M(C, c, β, βmin, βmax, d, q) is a universal constant that we
have introduced to absorb all the double exponential factors of the form a2n with a > 0 in the fourth term
along with any further lower order factor. On the one hand, choosing q >

√
2 sufficiently close to

√
2 and

sing (5.11) in Lemma 5.3 we obtain the following asymptotics for the factors in the first three terms of
6.18):

2nκn ≤ Cε(2kα + ε)n,

2n/2qnκn ≤ Cε(2kα + ε)n,

2nκ2
n ≤ Cε(2(kα + ε)2)n ≤ Cε(rα + ε)n,

or arbitrarily small ε ∈ R∗
+ and sufficiently large Cε ∈ R∗

+. Note that in the last identity we have used the
elation r = 2k2 . On the other hand, since q has been taken larger than

√
2 and arbitrarily close to

√
2,
α α
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then the double exponential in the denominator of the last term in (6.18) kills the double exponential on
the numerator independently on the explicit value of M . Therefore, we obtain

M2n

e
βmin

2 q2n
≤ Cε e

− (2+ε)n

ε ,

y appropriately increasing Cε if necessary. Similarly, we infer the following control for the remaining
-dependent exponential factor in the fourth term of (6.18)

e22n+1κ2
nβ|x|2 ≤ eCε(4(kα+ε)2)n|x|2 ≤ eCε(2rα+ε)n|x|2 ,

which yields the announced estimate (6.6). □

Remark 6.4. Under the assumptions in Lemma 6.3, notice that the above result implies in particular that
for every ε ∈ R∗

+ and R ∈ R∗
+, there exists a large enough constant Cε,R ∈ R∗

+ such that

sup
|x|≤R

|∇ log En[F ](x)| ≤ Cε,R (2kα)n,

for any n ∈ N. In particular, ∇ log En[F ] converge to zero as n → ∞ uniformly on compact sets.

The above observation is the cornerstone to prove the following local version of our main Theorem 1.1.

Corollary 6.5 (Local Convergence Result). Assume that α ∈ R∗
+, set any initial datum F0 ∈ M+(Rd) and

consider the solution {Fn}n∈N to the time-discrete problem (1.1). Then, for every ε ∈ R∗
+ and R ∈ R∗

+, there
exists a large enough constant Cε,R ∈ R∗

+ such that

sup
|x|≤R

⏐⏐⏐⏐⏐ Fn(x)
∥Fn∥L1(Rd)

− F α(x)

⏐⏐⏐⏐⏐ ≤ Cε,R (2kα)n, (6.19)

or any n ∈ N, where F α is the Gaussian profile (1.12). In particular, Fn/∥Fn∥L1(Rd) converge to F α as
→ ∞ uniformly on compact sets.

In the proof of Corollary 6.5 we will require a careful control of the asymptotic behavior of the ratios
n(0)/∥Fn∥L1(Rd) as n → ∞, which we provide below. First, note that if {Fn}n∈N is the solution (3.4) of

the time-discrete problem (1.1) issued at a Gaussian initial datum F0 like in Proposition 3.7, we have

Fn(0)
∥Fn∥L1(Rd)

= Gµn,σ2
n

(0) → F α(0) = 1
(2πσ2

α)d/2 ,

as n → ∞ explicitly, where µn and σ2
n are determined by the recursive relations (3.5) and we have used that

µn → 0 and σ2
n → σ2

α according to Lemma 3.8. In the following lemma, we provide a similar quantitative
result with convergence rates for generic initial data F0 ∈ M+(Rd).

Lemma 6.6. Assume that α ∈ R∗
+, set any initial datum F0 ∈ M+(Rd) and consider the solution {Fn}n∈N

to the time-discrete problem (1.1). For any ε ∈ R∗
+ there exists Cε ∈ R∗

+ sufficiently large with⏐⏐⏐⏐⏐ Fn(0)
∥Fn∥L1(Rd)

− F α(0)

⏐⏐⏐⏐⏐ ≤ Cε(2kα + ε)n, (6.20)

for any n ∈ N.
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Proof. Let us fix any ε ∈ R∗
+ arbitrarily small so that 2kα + ε < 1. Again, this is possible because 2kα < 1

for α ∈ R∗
+. For simplicity of notation, we shall define the following sequence of coefficients:

cn := Fn(0)
∥Fn∥L1(Rd)

, n ∈ N.

Our goal then reduces to studying the asymptotic behavior of {cn}n∈N and obtaining quantitative conver-
ence rates. Note that by formula (5.20) in Proposition 5.9 for the recursion, we obtain

1
cn

=
∫
Rd e

− 1+α−kn
2 |x|2En[F̄0](x) dx
En[F̄0](0)

=
∫

|x|≤Rn

e− 1+α−kn
2 |x|2 En[F̄0](x)

En[F̄0](0)
dx+ 1

cn

∫
|x|>Rn

Fn(x)
∥Fn∥L1(Rd)

dx,

here we set the sequence of radii {Rn}n∈N as follows

Rn := 1
(2kα)

n
2m+1

, n ∈ N, (6.21)

or a fixed value m ∈ N, which we take large enough so that

(2kα)
2m

2m+1 ≤ 2kα + ε

2 . (6.22)

Whilst our choice of Rn is not justified at first glance, we claim that it has been taken as to minimize the
ecay rate on the error terms Ẽn and En below. By solving the implicit equation on cn we infer

cn = 1 − Ẽn

(2πσ2
α)d/2 + En

, (6.23)

for every n ∈ N, where the error terms Ẽn and En take the form

Ẽn :=
∫

|x|>Rn

Fn(x)
∥Fn∥L1(Rd)

dx,

En :=
∫

|x|≤Rn

e− 1+α−kn
2 |x|2 En[F̄0](x)

En[F̄0](0)
dx− (2πσ2

α)d/2,

(6.24)

dditionally, we can split the second error term as En = En,1 − En,2 + En,3 with

En,1 :=
(

2π
1 + α− kn

)d/2
−
(

2π
1 + α− kα

)d/2
,

En,2 :=
∫

|x|>Rn

e− 1+α−kn
2 |x|2 dx,

En,3 :=
∫

|x|≤Rn

e− 1+α−kn
2 |x|2

(
En[F̄0](x)
En[F̄0](0)

− 1
)
dx,

(6.25)

where we have used the relationship σ2
α(1 +α−kα) = 1, which results from (1.13) and (1.15), and therefore

the decomposition of En becomes clear since En,1 can be reformulated as

En,1 =
∫
Rd
e− 1+α−kn

2 |x|2 dx− (2πσ2
α)d/2.

On the one hand, given any fixed value θ ∈ R+ with θ < α
2 (for instance θ = α

4 ) the propagation of
xponential moments in Corollary 4.8 implies that

Eθ := sup
∫

eθ|x|2 Fn(x)
dx < ∞.
n∈N Rd ∥Fn∥L1(Rd)
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By expanding the exponential in power series, one obtains in particular uniformly bounded moments of any
order, and in particular, of order 2m, namely

Mm := sup
n∈N

∫
Rd

|x|2m Fn(x)
∥Fn∥L1(Rd)

dx ≤ Eθ m!
θm

< ∞.

ence, we infer the following control on the first error term in (6.24)

Ẽn ≤ 1
R2m

n

∫
Rd

|x|2m Fn(x)
∥Fn∥L1(Rd)

dx ≲
1

R2m
n

, (6.26)

or any n ∈ N. On the other hand, by Lemma 5.3 we have that En,1 in (6.25) can be bounded by

|En,1| ≲ kn − kα ≲ rn
α. (6.27)

By direct calculation we also obtain

En,2 = |Sd−1|
∫ +∞

Rn

rd−1e− 1+α−kn
2 r2

dr ≲ Γ

(
d

2 ,
1 + α− kn

2 R2
n

)
≲ exp

(
− 1 + α− kn

4(2kα)
2n

2m+1

)
, (6.28)

here Γ (a, x) is the incomplete Gamma function (6.2) and we have used estimate (6.3) in Lemma 6.2. Note
hat the constraint (6.4) is trivially satisfied since Rn → ∞ by our choice (6.21). Finally, we control the
rror term En,3 in (6.25) under the addition assumption that F̄0 satisfies the hypothesis (6.5) in Lemma 6.3.

hilst this is not always true, we show at the end of the proof that we can always assume so without loss
f generality by replacing the argument on F̄0 by an advance enough time step F̄m so that selection has
roperly shaped the Gaussian tails. Under this condition, Lemma 6.3 implies that given any ε′ ∈ R∗

+ there
s Cε′ ∈ R∗

+ so that, for |x| ≤ Rn, we have⏐⏐⏐⏐∫ 1

0
(∇ log En)[F̄0](θx) · x dθ

⏐⏐⏐⏐
≲ (2kα + ε′)nRn + (rα + ε′)nR2

n + e− (2+ε′)n

ε′ eCε′ (2rα+ε′)nR2
nRn

≲

(
2kα

(2kα)
1

2m+1
+ ε

2

)n

+
(

rα

(2kα)
2

2m+1
+ ε

2

)n

+ e− (2+ε′)n

ε′ exp
[
Cε′

(
2rα

(2kα)
2

2m+1
+ ε

2

)n]
1

(2kα)
n

2m+1

≲
(

(2kα)
2m

2m+1 + ε

2

)n

≲ (2kα + ε)n
.

In the second inequality above we have taken ε′ small enough compared with ε. In the third inequality we
ave used the relation rα = 2k2

α, which guarantees that all the contributions in the third line are dominated
y the first term ((2kα)

2m
2m+1 + ε

2 )n. Finally, in the last inequality we have used our choice of m ∈ N large
nough so that (6.22) holds. Therefore, the mean value theorem implies⏐⏐⏐⏐En[F̄0](x)

En[F̄0](0)
− 1
⏐⏐⏐⏐ =

⏐⏐⏐⏐exp
(∫ 1

0
(∇ log En[F̄0])(θx) · x dθ

)
− 1
⏐⏐⏐⏐ ≲ (2kα + ε)n.

ence, En,3 in (6.25) can be controlled by

|En,3| ≤
∫

|x|≤Rn

e− 1+α−kn
2 |x|2

⏐⏐⏐⏐En[F̄0](x)
En[F̄0](0)

− 1
⏐⏐⏐⏐ dx ≲ (2kα + ε)n. (6.29)

utting (6.27), (6.28) and (6.29) together yields

|E | ≲ (2k + ε)n. (6.30)
n α
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Thereby, using the mean value theorem on (6.23) along with the bounds (6.26) and (6.30) concludes that⏐⏐⏐⏐cn − 1
(2πσ2

α)d/2

⏐⏐⏐⏐ ≲ Ẽn + |En| ≲ (2kα + ε)n.

To end the proof, we show that we can always assume that the hypothesis (6.5) in Lemma 6.3 is
atisfied without loss of generality. Indeed, note that after two iterations F̄2 already satisfies (6.5)2 thanks to

Corollary 4.2, but only two iterations are not enough to guarantee (6.5)1, in general. Nevertheless, applying
Corollary 4.2 leads to the following upper bound on the normalized profiles:

F̄m(x) ≤ Cm e
1
2

(
α+ 1

2 − 1
σ2

m

)
|x|2

,

or appropriate Cm ∈ R∗
+, with variances {σ2

m}m∈N defined by the recurrence (4.5), i.e.,

1
σ2

m+1
= α+ 1

1 + σ2
m
2

, m ∈ N,

nd with initial datum σ2
1 = 1/α. The boundedness condition (6.5)2 is then satisfied by F̄m if we can show

that the prefactor α + 1
2 − 1

σ2
m

in the above exponential bound becomes non-positive for large enough m.
his is where the precise choice of normalization in Definition 5.1 plays a role. Specifically, recall that so
efined σ2

m → σ2
α and we have precise relaxation rates by Lemma 3.8. Hence,

α+ 1
2 − 1

σ2
m

=
(
α+ 1

2 − 1
σ2

α

)
+
(

1
σ2

α

− 1
σ2

m

)
≤
(
α+ 1

2 − 1
σ2

α

)
+ Cvrm

α ,

or any m ∈ N. Since we chose a normalization F̄n of the profiles by a Gaussian G0,σ2 with variance σ2

strictly larger that the variance σ2
α of the equilibrium F α (more specifically 1

σ2 = 1
σ2 = α + 1

2 ), we can
uarantee that the right hand side above is non-positive if m ≥ nα for a sufficiently large nα ≥ 2 (depending

only on α). This justifies that F̄nα satisfies both conditions in (6.5). □

We are now in position to prove the above local convergence result in Corollary 6.5

Proof of Corollary 6.5. By formula (5.20) in Proposition 5.9 and Definition 6.1 we obtain

∇ logFn(x) = −(1 + α− kn)x+ ∇ log En[F̄0](x),

for any x ∈ Rd and every n ∈ N. Using the mean value theorem we then achieve

log Fn(x)
Fn(0) − log F α(x)

F α(0) =
∫ 1

0
(∇ logFn)(θx) · x dθ + 1

2σ2
α

|x|2

= −1 + α− kn

2 |x| +
∫ 1

0
∇ log En[F̄0](θx) · x dθ + 1

2σ2
α

|x|2

= kn − kα

2 |x|2 +
∫ 1

0
∇ log En[F̄0](θx) · x dθ,

(6.31)

where we have used the relation 1/σ2
α = 1 + α− kα. On the one hand, the first term in the right hand side

of (6.31) converges to zero thanks to Lemma 5.3. On the other hand, for the second term we shall apply
Lemma 6.3. To do so we need to guarantee again that F̄0 verifies the hypothesis (6.5) of such a lemma.
Recall that we can always assume the condition (6.5) without loss of generality (cf. last step in the proof
of Lemma 6.6). Therefore, we can apply Remark 6.4 with F = F̄ and obtain that ∇ log E [F̄ ] converges
0 n 0
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to zero uniformly over compact sets with explicit convergence rates. Putting it into (6.31) we obtain more
explicitly

sup
|x|≤R

⏐⏐⏐⏐log Fn(x)
Fn(0) − log F α(x)

F α(0)

⏐⏐⏐⏐ ≤ Cε,R (2kα)n,

or any R ∈ R∗
+, any n ∈ N and a large enough Cε,R ∈ R∗

+. This, together with the above control on the
symptotics of ∥Fn∥L1(Rd)/Fn(0) in Lemma 6.6, allow proving (6.19). □

In particular, note that the above Corollary 6.5 is enough to prove the uniqueness of solutions to the
igenproblem (1.11), as stated in Corollary 1.2.

roof of Corollary 1.2. Let (λ, F ) be any solution of the eigenproblem (1.11). Then, the ansatz (1.10)
efines a solution Fn = λnF of the time-discrete problem (1.1). By Corollary 6.5 we obtain that

lim
n→∞

sup
|x|≤R

⏐⏐⏐⏐λnF (x)
λn

− F α(x)
⏐⏐⏐⏐ = 0,

or any R ∈ R∗
+. Hence, F ≡ F α, and thus λ = λα. □

Whilst the above local convergence result is enough to identify asymptotically the profile F α, a global
esult with quantitative convergence rates is still missing. In particular, note that the constants Cε,R above
low up when R → ∞ as we see explicitly in Lemma 6.3. A second drawback of this we are unable to
haracterize the long-time behavior of the mass ∥Fn∥L1(Rn) in terms of the eigenvalue λα via this method.
n the following section, we give an answer to both questions by better exploiting the previous fundamental
emma 6.3 and using the propagation of quadratic and exponential moments in Section 4.2.

.2. Global convergence result

We are now ready to prove our main result. Let us emphasize that our final convergence result in
heorem 1.1 is presented using the Kullback–Leibler divergence, which is a very different metric from the

og-Lipschitz type metrics used in the previous Section 6.1 for the local convergence results. As anticipated
n Remark 1.4, this decision does not obey aesthetic reasons only, but we actually need to move from
niform norms (like the log-Lipschitz norm) to averaged norms (like the Kullback–Leibler divergence)

n order to address the deficiency encountered in Lemma 6.3. Specifically, recall that for generic initial
ata F0 ∈ M+(Rd), the log-Lipschitz norms of the high-dimensional integral En[F̄0] cannot be controlled
niformly due to additional exponentially growing terms.

roof of Theorem 1.1.
• Step 1: Convergence of the profiles Fn/∥Fn∥L1(Rd).
Since F α is Gaussian (thus strongly log-concave), then the logarithmic-Sobolev inequality holds true and

herefore we obtain the following control of the relative entropy by the relative Fisher information

DKL

(
Fn

∥Fn∥

F α

)
≤ σ2

α

2

∫
Rd

⏐⏐⏐⏐∇ log
(
Fn(x)
F α(x)

)⏐⏐⏐⏐2 Fn(x)
∥Fn∥L1(Rd)

dx,

ee Corollary 5.7.2 and Section 9.3.1 in [24] for details. By the reformulation of Fn in formula (5.20) of
roposition 5.9 and using the notation in Definition 6.1 we have that

∇ log
(
Fn(x)

)
= (kn − kα)x+ ∇ log En[F̄0](x).
F α(x)
51



V. Calvez, T. Lepoutre and D. Poyato Nonlinear Analysis 238 (2024) 113392

w

w

O
a
C

f
o

T
b

g

B

Therefore, we obtain the following upper bound

DKL

(
Fn

∥Fn∥

F α

)
≲ Dn,1 +Dn,2, (6.32)

here each factor takes the form

Dn,1 := |kn − kα|2
∫
Rd

|x|2 Fn(x)
∥Fn∥L1(Rd)

dx,

Dn,2 :=
∫
Rd

⏐⏐∇ log En[F̄0](x)
⏐⏐2 Fn(x)

∥Fn∥L1(Rd)
dx.

On the one hand, for Dn,1 we can use the propagation of quadratic moments in Corollary 4.6 together
ith the explicit relaxation rates of {kn}n∈N to kα in Lemma 5.3 to show that

Dn,1 ≲ r2n
α . (6.33)

n the other hand, for Dn,2 we shall refine the argument in the proof of Corollary 6.5. Specifically, recall
gain that we can assume that F̄0 satisfies the hypothesis (6.5) without loss of generality (cf. proof of
orollary 6.5). Then, applying Lemma 6.3 in order to control ∇ log En[F̄0] with fixed ε ∈ R∗

+ yields

Dn,2 ≲
(
(2kα)2 + ε

)n
∫
Rd

(
1 + |x|2 + e2 Cε(2rα+ε)n|x|2

) Fn(x)
∥Fn∥L1(Rd)

dx,

or some sufficiently large Cε ∈ R∗
+. Above we have used that (2kα)n is the decay rate that controls all the

thers in formula (6.6). Take n ≥ nε sufficiently large such that

θε := sup
n≥nε

2Cε(2rα + ε)n <
α

2 .

hen, Corollaries 4.6 and 4.8 imply that the above quadratic and exponential moments are uniformly
ounded with respect to n for n ≥ nε. Therefore, we have

Dn,2 ≲ ((2kα)2 + ε)n. (6.34)

Finally, putting the estimates (6.33) and (6.34) into the split (6.32), and noticing that r2
α < (2kα)2 thanks

to the relation rα = 2k2
α, ends this part of the proof.

• Step 2: Convergence of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd).
For simplicity of notation we shall define the following sequence of coefficients:

λn :=
∥Fn∥L1(Rd)

∥Fn−1∥L1(Rd)
, n ∈ N.

Our goal then reduces to studying the asymptotic behavior of {λn}n∈N and obtaining quantitative conver-
ence rates. By definition of operator T in (1.2) we obtain that

λn =
∫
Rd
e−m(x)

∫
R2d

G

(
x− x1 + x2

2

)
Fn−1(x1)

∥Fn−1∥L1(Rd)

Fn−1(x2)
∥Fn−1∥L1(Rd)

dx1 dx2 dx.

y direct computation of the integral with respect to x as it was done in (4.11) we find that

λn =
∫
R2d

H(x1, x2) Fn−1(x1)
∥Fn−1∥L1(Rd)

Fn−1(x2)
∥Fn−1∥L1(Rd)

dx1 dx2, (6.35)

where the function H(x1, x2) takes the form

H(x1, x2) := 1
(1 + α)d/2 exp

(
− α

(1 + α)

⏐⏐⏐⏐x1 + x2

2

⏐⏐⏐⏐2
)
, (x1, x2) ∈ Rd. (6.36)
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In addition, recalling the explicit form of the eigen-pair (λα,F α) in (1.12) implies

λα =
∫
R2d

H(x1, x2)F α(x1)F α(x2) dx1 dx2. (6.37)

herefore, taking the difference of (6.35) and (6.37) and noticing that H in (6.36) is bounded yields

|λn − λα| ≲

 Fn

∥Fn∥L1(Rd)
⊗ Fn

∥Fn∥L1(Rd)
− F α ⊗ F α


L1(R2d)

, (6.38)

for any n ∈ N, where P ⊗Q denotes the Kronecker product of two measures P,Q ∈ M(Rd), namely∫
R2d

φ(x, y) (P ⊗Q)(dx, dy) =
∫
Rd

(∫
Rd
φ(x, y)P (dx)

)
Q(dy), (6.39)

for all φ ∈ Cc(Rd) (cf. Table 1). We do not have a direct convergence result of Fn/∥Fn∥L1(Rd) in L1 norms,
but we do have convergence of the Kullback–Leibler divergence thanks to Step 1. By Pinsker’s inequality,
the latter metric controls the former, namely Fn

∥Fn∥L1(Rd)
⊗ Fn

∥Fn∥L1(Rd)
− F α ⊗ F α


L1(R2d)

≤ 1√
2

√DKL

(
Fn

∥Fn∥L1(Rd)
⊗ Fn

∥Fn∥L1(Rd)

F α ⊗ F α

)

= 1√
2

√2 DKL

(
Fn

∥Fn∥L1(Rd)
⊗
F α

)
,

(6.40)

where in last step we have used the tensorization property of the Kullback–Leibler divergence. The
result then follows from (6.38)–(6.40) and the above explicit convergence rates of the normalized profiles
Fn/∥Fn∥L1(Rd) in Step 1. □

7. Numerical experiments

For our numerical simulation, we have restricted to one-dimensional traits (i.e., d = 1) and we have
onsidered a step function of the following form as initial datum:

F0 = 1
Z

(301[−7,−3] + 201[7.5,12.5] + 501[30,40] + 301[52,5,57,5]), (7.1)

here Z ∈ R∗
+ is a normalizing factor so that F0 ∈ P(R). Let {Fn}n∈N be the solution to the time-discrete

roblem (1.1) starting at F0. Our numerical simulation is performed with Python on the finite computation
omain [−15, 60] for the trait variable x, which contains the support of the previous initial datum F0 and all
he mass of each Fn (except for a negligible Gaussian tail). In our simulation, we set ∆x = 0.001 as the step
or the discretization of our computational domain. In particular, with such a step we compute numerical
ntegrals with respect to x according to the left rectangle rule.

In the following, we explore numerically two different scenarios: weak selection and strong selection.
pecifically, we obtain numerical approximations for the profiles Fn in both regimes and we illustrate
umerically the convergence of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) towards the eigenvalue λα, and
he relaxation of the normalized profiles Fn/∥Fn∥L1(Rd) towards the eigenfunction F α. As a consequence,
e derive numerical approximations of the convergence rates to be compared with the theoretical results

n this paper. More specifically, we note that the theoretical convergence rates in Theorem 1.1 are sharp,
xcept a mismatch for the rates of growth of mass, which was discussed previously in Remark 3.10 (see also
ig. 6). Indeed, we actually attain numerically the same convergence rates as in Corollary 3.9, which were

harp for Gaussian initial data.
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7.1. Weak selection

In this part, we consider a small value α = 0.015. This leads to the following numerical values of the
features of the equilibrium:

λα ≈ 0.9857, σ2
α ≈ 1.8897.

haracterizing the eigenpair (λα,F α), according to (1.12) and (1.13). Note that since the selection parameter
as been taken very small, then the eigenvalue and the variance of the eigenfunction are close to those at

inkage equilibrium, namely, λα=0 = 1 and σ2
α=0 = 2 (see Remark 3.5 and Fig. 4).

In Fig. 8 we observe the relaxation of the normalized profiles Fn/∥Fn∥L1(Rd) towards the eigenfunction F α

long the time iterations n = 0, 1, 2, 3, 4, 7, 150. We remark on the strong contraction of the variance during
he first few iterations leading to a well-identified Gaussian-shaped profile at time n = 3. At time n = 7
he variance of the profile is already close to that of the equilibrium F α, but its mean is still substantially
hifted to the right. Thereafter, we observe the gradual motion of the profiles towards the left at a much lower
peed. After 150 iterations, the approximate mean and variance of Fn/∥Fn∥L1(Rd) are given by ≈ 0.0474 and

1.8897 respectively, where the latter agrees with the above exact value σ2
α up to 5 digits.

In Fig. 9 we represent the convergence of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) towards the
igenvalue λα. After 150 iterations we obtain that the growth rate takes the approximate value ≈ 0.9857,
hich again agrees with the exact value λα above up to 5 digits.
In Fig. 10 we have represented the errors

εprof
n := DKL

(
Fn

∥Fn∥L1(Rd)

F α

)
, εmass

n :=

⏐⏐⏐⏐⏐ ∥Fn∥L1(Rd)

∥Fn−1∥L1(Rd)
− λα

⏐⏐⏐⏐⏐ ,
n semi-log plots so that the horizontal axis appears in the natural scale and represents each time iteration,
nd the vertical axis contains the logarithm of the errors. As observed, both plots reduce to essentially
traight lines, suggesting exponential relaxation. Interestingly, the numerical rate of convergence in the
ullback–Leibler divergence measured in Fig. 10(a) is approximately 0.9441. It coincides numerically with

he rate of relaxation among the subclass of Gaussian solutions (see Corollary 3.9), namely, λ4
α ≈ 0.9441,

hich in turns is identical to the theoretical rate (2kα)2 obtained in Theorem 1.1. These results are in perfect
agreement with the other convergence results in Fig. 10(b): the numerical rate of convergence in the rate
of growth of mass is approximately 0.9442, which is close to the one among the class of Gaussian solutions
λ4

α ≈ 0.9441, in contrast with the theoretical upper bound obtained in Theorem 1.1, namely 2kα ≈ 0.9717.
oreover, the numerical rate of convergence of the variance of the normalized profiles Fn/∥Fn∥L1(Rd) is much

faster: it is approximately ≈ 0.4721 < 0.5, again close to the expected value for Gaussian solutions, namely,
rα ≈ 0.472. These numerical results illustrate the two-step process arising in the relaxation dynamics:
convergence towards a Gaussian profile occurs much faster than relaxation of the mean towards the origin
due to (weak) selection. Alternatively speaking, the equilibrium variance builds up much faster than the
center of the distribution gets to the origin.

7.2. Strong selection

In this part, we consider a larger value of α. We opted for α = 0.4. Indeed, if α is taken too large then
there is no visual difference between the solution and the equilibrium configuration after one single iteration.
This time, the numerical values of the features of the equilibrium are:

λα ≈ 0.7944, σ2
α ≈ 0.9221.

The latter substantially differs from the value at linkage equilibrium (i.e., σ2
α=0 = 2). In Fig. 11(a) we note

that the solution resembles a Gaussian distribution after a couple of iterations. After 15 iterations we obtain
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Fig. 8. Relaxation of the normalized profiles Fn/∥Fn∥L1(Rd) towards the eigenfunction F α along the time iterations n = 0, 1, 2, 3, 4, 7
and 150 for a step function (7.1) as initial datum and weak selection parameter α = 0.015. The vertical dotted line represents the
location of the mean of the equilibrium profile F α.

that the normalized profile Fn/∥Fn∥L1(Rd) has approximate mean and variance respectively given by ≈
0.0017 and ≈ 0.9221. In Fig. 11(b) we observe the convergence of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd)
towards the eigenvalue λα. After 15 iterations the growth rate becomes ≈ 0.7944, which again agrees with
the exact value λα above up to 5 digits.

Similar computations as in the previous Fig. 10 allow finding numerical approximations for the rate of
convergence of the normalized profiles and the growth rates. Specifically, we obtain an approximation 0.3966
for the rate of convergence of the Kullback–Leibler divergence. Once again, such a value is close to the rate
of relaxation among the subclass of Gaussian solutions, namely, λ4

α ≈ 0.3983, which in turns agrees with the
theoretical rate (2k )2 obtained in Theorem 1.1. Similarly, the numerical rate of convergence of the growth
α
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Fig. 9. Relaxation of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd) towards the eigenvalue λα along time iterations 0 ≤ n ≤ 150 for a
tep function (7.1) as initial datum and weak selection parameter α = 0.015.

Fig. 10. Numerical computation of the rates of convergence of the normalized profiles and the growth rates: (a) semi-log plot of the

rrors εprof
n := DKL

(
Fn/∥Fn∥L1

F α

)
, and (b) semi-log plot of the errors εmass

n := |∥Fn∥L1 /∥Fn−1∥L1 − λα|.

Fig. 11. (a) Zoom near the origin of the relaxation of the normalized profiles Fn/∥Fn∥L1(Rd) towards the eigenfunction F α along the
ime iterations n = 0, 1, 2 and 15 for the step function (7.1) as initial datum and strong selection parameter α = 0.4. The vertical dotted
ine represents the location of the mean of the equilibrium profile F α. (b) Relaxation of the growth rates ∥Fn∥L1(Rd)/∥Fn−1∥L1(Rd)
owards the eigenvalue λα.

ates is approximately 0.3901, which is close to the one among the class of Gaussian solutions λ4
α ≈ 0.3983,
n contrast with the upper bound 2kα ≈ 0.6311 in Theorem 1.1.
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8. Conclusions and perspectives

In this paper, we have proven asynchronous exponential growth in a quantitative genetics model for the
evolution of the distribution of traits in a population governed by sexual reproduction and multiplicative
effect of selection. Our model assumes time-discrete non-overlapping generations, which rule out an eventual
mixing with previous generations of ancestors. In addition, our non-linear sexual reproduction operator is
set in agreement with Fisher’s infinitesimal model, and we have chosen selection to act on the survival
probability of individuals. Our main result provides quantitative convergence rates of the renormalized
distributions towards a unique stationary profile. Indeed, rates are exponential, which can be interpreted
loosely as a spectral gap in this non-linear context.

It is noticeable that the sexual reproduction operator is contractive under the Wasserstein distance
(see Lemma 2.1). However, the generic incompatibility of multiplicative selection with transport distances
becomes an apparent obstruction to the use of a direct perturbative approach in the regime of weak selection
(see Example 2.4). This obstacle was circumvented by G. Raoul [7], assuming that selection is restricted
o a compact support. We follow a different route in a purely non-perturbative setting. To this end, we
estrict to the specific choice of a quadratic selection function of the trait, for the sake of simplicity. Our
lternative approach relies on an appropriate study of the propagation of information along large binary trees
f ancestors, by a suitable reformulation of high-dimensional integrals, inspired by the changes of variables
erformed in [3] in the regime of small variance. This reveals an ergodicity property where the exact shape
f the initial distribution is quickly forgotten across generations.

We remark that the above heuristic arguments indicate that the quadratic Wasserstein metric is not fully
ppropriate for dealing with the problem at hand. However, we could not identify yet a proper metric that
xtends the contraction property of the neutral case to the quadratic selection case.

Several perspectives are envisaged. First, there is an apparent price to pay with our method, in which
e fully exploit the Gaussian structure induced by quadratic selection in order to perform tractable
omputations within the high-dimensional integrals. We believe though that the restriction to quadratic
election might be overcome in future works to allow for more general selection functions. Second, as studied
n [3], the case of multiple minima on the selection function leads to non-uniqueness of stable equilibria. Then,
ncovering the hidden metastability and quantifying the relaxation towards a specific equilibrium is of great

nterest for its applications in quantitative genetics. Finally, a major problem is to transcend non-overlapping
enerations and tackle the full time-continuous model as presented in previous literature.
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ppendix. Nondimensionalization and derivation of the time-discrete version

In this section, we shall nondimensionalize the time-continuous model (1.6)–(1.3) with Gaussian mixing
ernel G and quadratic selection function m. By time discretization on the Duhamel formulation, we will
erive the time-discrete version (1.1) which has been central in this paper. Indeed, we shall show that we
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can reduce parameters into only one, namely, parameter α ∈ R+ in the quadratic selection function (1.5).
Bearing in mind all the biological parameters and dimensions, our evolution problem reads:{

∂tf = −rm m(x)f + rb Bσ2 [f ], t ≥ 0, x ∈ Rd

f(0, x) = f0(x), x ∈ Rd.
(A.1)

Here, rm, rb ∈ R+ represent the mortality and birth rates and have frequency units, whilst the dimensionless
corrections of m and B take the form

m(x) = |x|2

σ2
m

, Bσ2 [f ](t, x) =
∫
R2d

G0,σ2

(
x− x1 + x2

2

)
f(t, x1)f(t, x2)∫
Rd f(t, x′) dx′ dx1 dx2,

or each x ∈ Rd. Here, G0,σ2 represents the Gaussian centered at 0 with variance σ2, and σm and σ have the
ame units as the quantitative trait. On the one hand, σm can be regarded as a characteristic unit quantifying
he effective range of selection. Namely, if |x| ≥ σm then m(x) ≥ 1. On the other hand, σ2 is the genetic
ariance and 2σ2 represents the variance at linkage equilibrium often denoted by σ2

LE := 2σ2 (cf. [23]). We
ondimensionalize our system by appropriately scaling our variables as follows

t̂ = t

T
, x̂ = x

L
, f̂(t̂, x̂) = Ldf(t, x).

Here, T and L are characteristic units for time and trait. For simplicity, we set them as follows in terms of
the parameters of the system:

T := 1
rm

, L := σ.

n other words, we scale time according to the mortality rate rm and the trait variable according to the
enetic variance σ2. Dropping hats for simplicity yields the following dimensionless form of the equation{

∂tf = − α
2 |x|2f + βB[f ], t ≥ 0, x ∈ Rd,

f(0, x) = f0(x), x ∈ Rd,
(A.2)

where B = B1 involves again unit genetic variance thanks to our scaling assumption. This reduces the amount
of free parameters to only two of them α, β ∈ R+ defined as follows:

α := σ2
LE

σ2
m

, β := rb

rm
.

In the sequel, we justify our time-discrete version (1.11). Specifically, let us integrate equation (A.2)1 for
∈ [tn, tn+1] where {tn}n∈N ⊆ R+ is any increasing sequence. Then, we recover Duhamel’s formula

f(tn, x) = e− α
2 |x|2(tn−tn−1)f(tn−1, x) + β

∫ tn

tn−1

e− α
2 |x|2(tn−s)B[f(s, ·)](x) ds,

or any n ∈ N and each x ∈ Rd. Using the rectangle rule for the integral in the right hand side leads to the
pproximations Fn(x) ≃ f(tn, x) of the above time-continuous problem for f = f(t, x):

Fn(x) = e− α
2 |x|2Fn−1(x) + βe− α

2 |x|2B[Fn−1](x), (A.3)

or any n ∈ N and each x ∈ Rd. Here, we have set unitary time steps tn − tn−1 = 1 for simplicity and t0 = 0.
e emphasize that the right hand side of (A.3) consists of two different terms. On the one hand, the first

erm describes the amount of old individuals from the previously generation n− 1 having resisted the effect
f selection in generation n. On the other hand, the second term computes the amount of offspring conceived
y individuals in the previous generation n−1, where an eventual decline due to selection has also been taken
nto account. Let us emphasize that in (A.3) individuals from generation n − 1 can merge (after breeding)
ith their offspring to form next generation n. This is typical in most biological populations, which have
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overlapping generations (e.g., some multivoltine flies like Drosophila melanogaster). However, some other
ystems have non-overlapping generations so that the full generation n − 1 gets extinct after breeding and
nly their offspring survive at generation n (e.g., some univoltine insects like the Dawson’s burrowing bee).
e refer to [25] for a discussion on the various types of voltinism and the role of diapause. In that case, by

anceling the first term (A.3) reduces to

Fn(x) = βe− α
2 |x|2B[Fn−1](x), (A.4)

for any n ∈ N and each x ∈ R. We remark that two different parameters α and β are still present in (A.4).
However, given that F ↦→ e− α

2 |x|2B[F ] is a 1-homogeneous operator we can kill the parameter β by rescaling
he trait distributions Fn. Specifically, define F̂n = β−nFn and note that (A.4) reduces to our time-discrete

problem (1.1) with only one parameter α.
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