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A B S T R A C T   

The manifestation of the intensity in the judgment of one alternative versus another in the peer comparison 
processes is a central element in some decision support techniques, such as the Analytical Hierarchy Process 
(AHP). However, its contribution regarding quality (expected performance) with respect to the priority vector 
has not been evaluated so far. Using the Intentional Bounded Rationality Methodology (IBRM), this work ana-
lyzes the gains obtained from requiring the decision-maker to report an intensity judgment in pairs (AHP) with 
respect to a technique that only requires expressing a preference (Ordering). The results show that when 
decision-makers have low levels of expertise, it is possible that a less informative and computational cheap 
technique (Ordering) performs better than a more informative and computational expensive one (AHP). When 
decision-makers have medium and high levels of expertise, AHP technique obtains modest gains with respect to 
the Ordering technique. This study proposes a cost-benefit analysis of decision support techniques contrasting the 
gains of a technique that requires more resources (AHP) against other that require less resources (Ordering). Our 
results can change the managing approach of the information obtained from experts’ judgments.   

1. Introduction 

People’s judgments can provide useful information for forecasting 
and decision-making. In decision analysis, especially when quick de-
cisions are required, people are often the only available source of in-
formation regarding some important variables or relationships. 
Choosing between different alternatives may not be an easy task and 
people may not be always able to choose the best option. Since people 
make mistakes in their judgments, the probability of being right or 
wrong depends on a person’s knowledge (expertise) regarding their 
expressed judgments (Chinchanachokchai, Thontirawong, & Chincha-
nachokchai, 2021; Liu, Eckert, & Earl, 2020; Nemeshaev, Barykin, & 
Dadteev, 2021; Sáenz-Royo, Chiclana, & Herrera-Viedma, 2023b). De-
cision support techniques aim to establish procedures to improve the 
results of human decisions by providing scientific rigor to the treatment 
of expressed judgments (Keeney, 1992; Moreno-Jiménez, Aguarón- 
Joven, Escobar-Urmeneta, & Turón-Lanuza, 1999). In short, decision 
support techniques evaluate people’s judgments to detect and eliminate 
possible erroneous judgments and build a logical system of relationship 
between them to obtain a priorities vector (solution) that ranks the 

alternatives or indicates the alternative with best performance. 
Most of the comparisons between decision support techniques 

analyze in a descriptive way the differences in their used methodologies. 
(Opricovic & Tzeng, 2007) empirically illustrate when the application of 
different techniques leads to differences in conclusions, and they 
establish disagreement indices. Zanakis, Solomon, Wishart, and Dublish 
(1998) simulate scenarios with a different number of alternatives, 
criteria, and distributions to analyze the levels of similarity between the 
compared techniques. Wallenius et al. (2008) quantify the use of each 
technique in the literature, and they give a ranking of the most used as a 
proxy variable of their “quality”. Belton (1986) makes a theoretical and 
practical mathematical analysis of how different techniques manage 
experts’ judgments. Triantaphyllou (2000) performs a detailed com-
parison work between techniques to analyze the sensitivity of the results 
to changes of value of the parameters. It is noticed though that none of 
these studies specify whether one technique performs better than 
another. The Intentional Bounded Rationality Methodology (IBRM) of 
Sáenz-Royo, Chiclana, & Herrera-Viedma, (2023a) contributes to clos-
ing this gap since it allows quantifying the expected performance of each 
decision support technique with respect to two explanatory variables: 
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the difficulty of the problem (difference between the latent performance 
of the alternatives) and the decision-makers’ expertise. 

The specialized literature includes many developed complex calcu-
lation systems to improve the result of human decisions. As an example, 
we can cite the development of methodologies based on fuzzy sets to 
enhance the handling of information of the Analytical Hierarchy Process 
(AHP), which is computationally more expensive and that ultimately 
requires a defuzzification process to obtain the final decision result.1 

This study questions whether the gains from a decision support tech-
nique are enough to compensate the time and effort invested in experts 
and computation. This idea is inspired by techniques, such as Best-Worst 
Multi-Criteria (BWM) (Rezaei, 2015), that significantly reduce the 
number of paired judgments required. The balance between profits and 
costs must remain in the minds of managers. To illustrate the cost- 
benefit analysis of decision support techniques, this paper compares 
two techniques: Ordering and AHP. The fundamental difference be-
tween these two techniques resides in how pairs of alternatives are 
compared: while AHP requires experts to provide judgments in the form 
of degree of cardinal preference of one alternative over another, the 
Ordering technique only requires judgments regarding which alterna-
tive of the pair being compared is the preferred one. Although the AHP 
technique is more informative than the Ordering technique, it is obvious 
that AHP requires more resources, i.e., more effort and more computa-
tional expensive, than Ordering. In addition, while the requirement of 
cardinal consistency of judgments in decision support techniques affects 
the level of AHP performance, it is not known if this will be the case with 
Ordering, since in the latter case the rejection of judgments requires an 
ordinal inconsistency. Thus, addressing this question will allow to 
explain a consistency part of the performance of the priority vector and, 
ultimately, lead to a better understanding of the design of decision 
support techniques. 

The main contributions of the work reported herein are: 

1. It presents a new approach that questions decision support tech-
niques as a balance between cost and benefit;  

2. It details a simplification of the AHP to establish a decision support 
technique based on simple preference judgments without cardinal 
intensity; 

3. It evaluates whether it is possible that the information on the in-
tensity in the judgments provides negative performances with 
respect to simpler decision support techniques such as those based on 
Ordering (preference judgments); 

4. It analyzes how the incorporation of a consistency requirement af-
fects the performance difference between Ordering and AHP 
(intensity);  

5. It carries out a classification of Ordering errors and their 
probabilities;  

6. It shows that AHP with the consistency requirement has better- 
expected performance than Ordering on most occasions, although 
the gains are small. 

The fact that, in some cases, Ordering may outperforms AHP is a 

striking and counterintuitive result because, by definition, AHP is more 
informative than Ordering. The results show how incorporating the 
judgment of intensity increases the percentage of correct priority vectors 
but also significantly increases the probability of inconsistency and, 
using the illustrative example of Sáenz-Royo et al. (2023a) study, it is 
shown that AHP can have lower performance than Ordering. Finally, a 
robustness exercise is carried out with three different performances of 
alternative A2 in the mentioned illustrative example (scenarios) to study 
the critical values of expertise needed to choose one or the other decision 
support technique. 

The rest of this report is structured as follows: Section 2 describes the 
fundamentals of IBRM. Section 3 presents the Ordering and AHP deci-
sion support techniques, the concepts of ordinal and cardinal consis-
tency, and the application of the judgment probabilities of the IBRM to 
these techniques. This section also includes a brief review of the dif-
ferences between Inconsistency and Error. Section 4 studies the types of 
problems that can be solved with the proposed approach. Section 5 re-
ports on the results of the Ordering and the AHP techniques when 
applied to an illustrative case and highlights their differences. In section 
6, a robustness exercise is carried out to expand the results of the pre-
vious section for different levels of expertise of the decision-maker and 
for different scenarios (different performances for alternative A2 of the 
illustrative case). Finally, the last section presents the most relevant 
conclusions. 

2. Intentional bounded rationality methodology 

On some occasions, decision-makers are asked about issues with no 
clear measurement of the solution to the problem; this hides possible 
decision-maker’s errors. In these cases, decision support techniques are 
proposed to be applied with the aim to provide guarantees that this does 
not happen. Traditionally, the quality of decision support techniques 
and decision-makers have been evaluated a posteriori through individ-
ual aspects such as hesitation, interest, and consistency (Díaz, Fernán-
dez, Figueira, Navarro, & Solares, 2022; Herrera-Viedma, Herrera, 
Chiclana, & Luque, 2004; Sellak, Ouhbi, Frikh, & Ikken, 2019) or 
through group-level aspects such as consensus and collective consis-
tency (Moral, Chiclana, Tapia, & Herrera-Viedma, 2018; Xu, Liu, Wang, 
& Shang, 2022). Even without knowing the true values, the decision 
support techniques approximate the correct solution under the hy-
pothesis that the decision-maker may be wrong although, in the long 
run, they present a distribution of successes greater than of errors, that 
is, finally the correct option ends up being imposed. According to this 
premise, a higher level of consensus indicates a greater certainty about 
the goodness of the choice, given the greater probability of being right 
than wrong; and the level of coherence indicates the logical robustness 
of the choices made by the decision-maker or group of decision-makers. 

However, on the same premise of experts being more likely to be 
correct than to err in their judgments, IBRM allows an a priori evaluation 
of the different elements of decision support techniques. IBRM builds an 
automaton that represents the experts’ intentional bounded rationality 
(Sáenz-Royo, Chiclana, & Herrera-Viedma, 2022). The intentional 
bounded rationality links the mechanisms that govern human cognition 
and the expert’s decisions by collecting in a functional way the condi-
tioning factors of the human way of thinking and allowing decision- 
makers to make mistakes (Simon, 1947). This conceptual framework 
relates the complexity of the decision, understood as the difference in 
the latent performances of the alternatives, with the expertise of the 
decision-maker, obtaining the reliability of the person issuing the 
judgments, as an a priori variable of bounded but intentional rationality. 
This methodology is distinguished from the traditional ones that are 
limited to introducing random noises in the decisions of the decision- 
maker (Csaszar, 2013; Hogarth, 1975; O’Hagan et al., 2006; Ravinder, 
1992; Vargas, 1982; Wallsten & Budescu, 1983). 

The intentional bounded rationality proposes a logistic probability 
distribution, in which the probability that a decision-maker chooses 

1 Fuzzy AHP (FAHP) introduces fuzzy sets into AHP to resolve uncertainties 
of expert’s preferences (Song, Zhu, Jia, & He, 2014). Mosadeghi, Warnken, 
Tomlinson and Mirfenderesk (2015) has shown the superiority of FAHP over 
AHP. The Intuitive Fuzzy AHP (IFAHP) technique (Xu & Liao, 2014) allows for 
greater precision than FAHP by simultaneously expressing affirmation, denial, 
and hesitation caused, in many practical situations, by insufficient decision- 
maker domain knowledge (Garg, 2019). However, while a total order is 
possible with sharp numbers, this is not the case with intuitive fuzzy numbers 
where only partial rankings are possible. Since there is no existing isomorphic 
operations or relations between intuitive fuzzy sets and crisp numbers, when 
the attribute values are crisp numbers and the attribute weights are intuitive 
fuzzy numbers, the subsequent decision-making cannot proceed without 
defuzzification. 
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alternative Ai with value Vi depends on the decision-maker’s ability to 
process information and the complexity of decision (performance of the 
alternative studied with respect to the performance of the other alter-
natives). Thus, the probability pβi that the decision-maker chooses 
alternative Ai over all the other alternatives is the below function of the 
relative weight of its performance value with respect to the value of the 
other alternatives: 

pβi = p(Ai) =
e

β Vi∑n

k=1
Vk

∑n
j=1e

β
Vj∑n

k=1
Vk

=
1

1 +
∑n

j∕=ie
β(Vj − Vi)∑n

k=1
Vk

. (1)  

The parameter β measures the decision-maker’s ability to process in-
formation; its value is limited to the problem studied and, therefore, the 
same decision-maker can show different capacities for different prob-
lems. When the decision-maker does not know anything about the 
problem, then β = 0, and all the alternatives have the same probability 
of being chosen regardless of the relative value of each one of them. High 
values of β imply a high capacity to discern the best alternative. 

The intentional bounded rationality in IBRM defines the behavior of 
an automaton that represents a decision-maker. Starting from a situation 
in which the performances of the alternatives are known, the level of 
error of the automaton is determining by the probability of choice of 
each alternative according to the equation (1). The error of the autom-
aton depends on the difference in the performance of the alternatives 
and the level of expertise (β). The property that the automaton shows a 
greater probability to choose the alternative with the highest perfor-
mance guarantees that the decision support techniques add value to the 
search for the optimal option. 

The IBRM allows a priori evaluation of the contribution to the quality 
of the decision of each requirement established by a decision support 
technique. The systematic procedure of the judgments expressed by 
people established by decision techniques provides a level of quality of 
the decision obtained (Keeney, 1992; Moreno-Jiménez et al., 1999). 
However, some elements of the procedures required by decision support 
techniques have questionable contributions (Liu, Qiu, & Zhang, 2021; 
Rezaei, 2015). In this sense, Sáenz-Royo et al., (2023a) have shown that 
the contributions of the consistency requirements can be meager. This 
work analyzes the quality improvement obtained when decision-makers 
are required to show intensities in their judgments. 

3. Ordering vs intensity preference (AHP) 

The proposed decision support techniques are based on the com-
parison of alternatives by pairs, assigning a ranking or a value on a scale 
of intensity of preference for one alternative over the other. The pairwise 
comparison has its origin in the psychological works of Thurstone 
(1927) and is used in multiple decision support techniques (Figueira, 
Greco, Ehrgott, & Henggeler Antunes, 2005). 

3.1. Ordering 

The Ordering decision support technique applied to a set of n alter-
natives compared by pairs leads to the construction of a matrix of 
judgments R of dimensions n× n, 

R =

⎛

⎝
r̂11 ⋯ r̂1n
⋮ ⋱ ⋮

r̂n1 ⋯ r̂nn

⎞

⎠

with comparison judgment r̂ ij being only one of two values: r̂ ij = 1 
means that the decision-maker prefers alternative Ai to alternative Aj 

(therefore ̂rji = 0), while ̂rij = 0 in case the decision-maker prefers Aj to 
Ai (hence ̂rji = 1). Using performance values of alternatives, it is ̂rij = 1 
when Vi is higher than Vj.

From an expert’s matrix of judgments, the Ordering technique de-
rives a vector of priorities of alternatives by the application of a score 
function, r̂ i =

∑n
j=1 r̂ ij|i ∕= j, that assigns each alternative the number of 

alternatives it is preferred to or with lower performance values. Thus the 
Ordering technique priority vector of matrix R is as (r̂1, r̂2,⋯, r̂n), and 
selects the alternative with highest score value as the best one. Notice 
that the coherent reciprocity property of the ordinal preference judg-
ments, r̂ ij = 1 ⇔ r̂ ji = 0, implies 

∑n
i=1 r̂ i = n(n − 1)/2. 

The Ordering method makes it easy to reduce the problems of un-
certainty and ambiguity of language used that come with expressing 
intensity (see discussion of these problems in Cai, Lin, Han, Liu, & 
Zhang, 2017). This study does not address the problem of the subjec-
tivity of judgments, since our approach is epistemological (the solution 
is unique), but it is true that the intensities can be interpreted differently 
by different experts. 

3.2. IBRM in Ordering 

The IBRM utilizes an automaton that represents a rationally bounded 
but intentional decision-maker which provides a priori the probabilities 
of each paired judgment. For the automaton, as per (1), each pairwise 
comparison (Ai,Aj) will have associated the following probability pβij of 
choosing alternative Ai versus choosing alternative Aj :

pβij =
eβVi

Vj

eβVi
Vj + eβ

Vj
Vi

=
1

e
β

(
Vj
Vi
−

Vi
Vj

)

+ 1

(2)  

As elaborated above, the ordinal decision support technique allow to 
derive the priority vector (ranking) of the alternatives. Since the au-
tomaton probabilities verify the reciprocity property, pβji = 1 − pij, it is 
easy to see that each ordinal paired judgment of preference r̂ ij has the 
corresponding automaton probability pβij. Thus, the IBRM allows to 
compute the probability of a priority vector. Consequently, the proba-
bility that the Ordering decision support technique chooses alternative 
Ai as the best alternative, denoted by pβi, can be defined as the sum of 
probabilities of all those priority vectors (rankings) that propose such 
alternative as the best. 

The IBRM establishes that the automaton can manifest different 
judgments with different probabilities according to (2), which when 
applied into the Ordering technique leads to the building of a probability 
matrix to indicates the probability with which the automaton will 
choose each alternative in each pairwise comparison. When the alter-
natives are ranked by score/performance, this (n× n) matrix P shows the 
probability of missing below the main diagonal and that of hitting 
above. The main diagonal would represent the probability of choosing 
each alternative with respect to itself and therefore no value is assigned 
to it. 

Pβ =

⎛

⎜
⎜
⎝

− pβ12 ⋯ pβ1n
pβ21 − ⋯ pβ2n
⋯ ⋯ ⋯ ⋯

pβn1 pβn2 ⋯ −

⎞

⎟
⎟
⎠

The IBRM requires listing all the possible combinations of judgments 
that the automaton can manifest and their probabilities. For each 
ordinal judgment, the decision-maker must evaluate if Vi > Vj (r̂ ij = 1) 
or Vj > Vi (r̂ ij = 0). Since the number of ordinal reciprocal judgments a 
decision-maker must do is n(n − 1)/2, the possible combinations of 

preference judgments that the decision-maker can do are VR
n(n− 1)

2
2 = 2n2 − n

2 . 
Each of these combinations generates a priority vector and its proba-
bility of being chosen by the automaton. Priority vectors with the same 
ranking of alternatives are grouped. The probability of a ranking is ob-
tained as the sum of the probabilities of all the priority vectors in their 
corresponding group and the rankings are classified according to the 
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impact of the error they carry. 
The probability of choosing the correct ranking is analyzed and the 

(expected) performance of the decision support techniques can be 
calculated. This methodology allows evaluating the decision support 
technique a priori by incorporating the possibility that the automaton is 
wrong. The results obtained will depend on how the decision support 
technique handles the errors of the automaton. 

3.3. Ordinal consistency 

One way to improve the performance of a decision support technique 
is to establish a requirement for consistency in accepting the judgments 
of a decision-maker. A complete set of paired judgments can generate 
inconsistent information, mainly because it is inherent in human nature 
to be wrong sometimes. 

The ordinal consistency of the decision-maker is defined as the 
property that verifies: if Vi is greater than Vj and Vj is greater than Vk, 
then Vi is greater than Vk. Therefore, ordinal inconsistency happens with 
a set of circular preference judgments (Kendall & Smith, 1940) by the 
decision-maker that verifies: Vi > Vj; Vj > Vk; Vk > Vi. This ability of 
decision-makers to compare alternatives and to maintain three-level 
transitivity is the first assumption made by Luce and Raiffa (1957). 
Gass (1998) determines that when all the decisions of the decision- 
maker are transitive, it is true that n(n− 1)(n− 2)

6 = 1
2
∑n

i=1 r̂ i(r̂ i − 1), since 
the matrix R of ranked alternatives has ones above the main diagonal 
and zeros below it. From here, the number of judgments that break 
transitivity is c =

n(n− 1)(n− 2)
6 − 1

2
∑n

i=1 r̂ i(r̂ i − 1). 
To measure ordinal inconsistency as a relationship between the 

number of intransitive judgments over the total of possible transitive 
judgments, Kendall and Smith (1940) proposed a coefficient that they 
called the consistency coefficient (Ke): 

Ke =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
24c

n(n2 − 1
) when n is even

1 −
24c

n(n2 − 4
) when n is odd

.

When Ke = 1, it is c = 0 and therefore there is no intransitivity; while 
the higher the value of c, the closer Ke is to zero, the worst possible 
intransitivity situation. Harary and Moser (1966) showed that the 
maximum proportion of intransitivities over the total of possible re-
lationships of the judgments shown by a decision-maker is around ¼, 
even for large values of n. Thus, it seems reasonable to require the 
decision-maker not to present any intransitivity in their judgments. 

In relation to the IBRM, when the automaton has very high levels of 
expertise (β), it hardly makes mistakes in its judgments and the proba-
bility of an inconsistency appearing is very low. In the cases where the 
automaton does not show any inconsistency and the alternative Ai is 
preferred in all paired judgments, the score assigned by the automaton 
will be r̂ i = n − 1 > r̂ j∀j ∕= i, and pβi will be 

pβi =
∏n

j∕=i

pβij =
∏n

j∕=i

1

e
β

(
Vj
Vi
−

Vi
Vj

)

+ 1

(3)  

3.4. Intensity in AHP 

The judgment of intensity refers to the valuation by the decision- 
maker of how many times (the performance of) one alternative is 
greater than (the performance of) another alternative (Fichtner, 1986). 
The intensity judgment adds information to an ordinal preference or 
judgment and it is a central element of decision support techniques such 
as the AHP. From the intensity judgments manifested by the decision- 
maker, AHP builds a preference comparison matrix that is solved alge-
braically to derive the priority vector of alternatives (w1,w2,⋯,wn)

(Saaty, 1980). 
Let M = (âij) be the preference comparison matrix; with âij being the 

decision maker’s times the performance of alternative Ai, Vi, is higher 
than the performance of alternative Aj, Vj. 

M =

⎛

⎝
â11 ⋯ â1n
⋮ ⋱ ⋮

ân1 ⋯ ânn

⎞

⎠

As with ordinal judgments, the coherence reciprocity property is 
required from the decision-maker: âij = 1/âji. If âij > 1 then the 
decision-maker states that Vi > Vj and therefore Ai is preferred to Aj. 
From the reciprocal preference comparison matrix M =

(
âij

)

n×n, a pri-
ority vector ŵ, verifying âij = ŵi/ŵj and 

∑n
i ŵi = 1, is derived. The 

priority vector obtained by the AHP method represents the solution to 
the decision problem and takes the form Mŵ = nŵ. 

If there are no errors and the decision-maker is totally rational 
(β = ∞ in (2)), then âij = Vi

Vj
. In this case, M has rank 1, and equation 

(M − nI)ŵ = 0 has a solution if and only if n is an eigenvalue (λi) of M. 
Given that M has rank 1, all the eigenvalues are equal to zero (λi = 0) 
except one λmax =

∑n
i λi = tr(M) = n. Although any column of M is a 

solution to the system, the normalized solution is unique, specifically 
what has been called the priority vector ŵ where ŵi/ŵj = Vi/Vj. 

When intensity evaluates tangible quantifiable criteria, its value is 
obtained directly from measured information, for example, distances (in 
meters), or times (in minutes), etc. Many times, the judgment of a 
decision-maker is required but a measure is not available to evaluate the 
intensity because it is complex information or qualitative criteria not 
amenable to be quantified. In these cases, âij is provided using the nu-
merical Table 1 given by Saaty (1977) with 17 verbal preference judg-
ments, which has been widely used (Belton & Gear, 1983; Dyer, 1990; 
Ishizaka & Labib, 2011). The critical points between intervals represent 
the point from which the decision-maker changes from manifesting one 
verbal intensity to another. If a decision-maker were able to cardinally 
know the intensity of her preferences, then the critical points are the 
value from which the decision-maker changes section because the table 
has a discrete character. If the decision-maker considers that her/his 
preference Ai over Aj is 7.51, her/his preference is represented by an 8 
(verbally: Between absolute and demonstrated importance Ai over Aj) 
while if it is 7.49 it is represented by 7 (verbally: Demonstrated 
importance Ai over Aj). 

Table 1 
Saaty (1977) preference scales equivalences between verbal judgments and 
cardinal valuation.  

PREFERENCE SCALES 

The verbal expression judgments of the preference Numerical 
expression 

Absolute importance Ai over Aj 9 
Between absolute and demonstrated importance Ai over Aj 8 
Demonstrated importance Ai over Aj 7 
Between demonstrated and essential or strong importance 

Ai over Aj 

6 

Essential or strong importance Ai over Aj 5 
Between essential or strong and weak importance Ai over Aj 4 
Weak importance Ai over Aj 3 
Between weak and equal importance Ai over Aj 2 
Equal importance Ai over Aj and Aj over Ai 1 
Between weak and equal importance Aj over Ai 1/2 
Weak importance Aj over Ai 1/3 
Between essential or strong and weak importance Aj over Ai 1/4 
Essential or strong importance Aj over Ai 1/5 
Between demonstrated and essential or strong importance 

Aj over Ai 

1/6 

Demonstrated importance Aj over Ai 1/7 
Between absolute and demonstrated importance Aj over Ai 1/8 
Absolute importance Aj over Ai 1/9  
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Sáenz-Royo et al. (2023a) proposed a simplified Table 2 of it with 
four sections without the possibility of indifference, (Ai is highly 
preferred to Aj, Ai is preferred to Aj, Aj is preferred to Ai, Aj is highly 
preferred to Ai). 

In this simplification, there are three critical points (Z) which are: 
18/4 above this intensity the decision-maker states that Ai is “extremely 
preferred”; 1 from this intensity and down to 4/18, the decision-maker 
shows Ai “preferred” and below it shows Aj “preferred” until 4/18; and 
below 4/18 it manifests Aj “extremely preferred”. 

3.5. IBRM in AHP 

The AHP technique requires the decision-maker to establish the in-
tensity of preference for each paired judgment. The IBRM must not only 
provide the probability that the automaton manifests in favor of one or 
the other alternative, but it must also provide the probability that the 
automaton will manifest each of the established discrete intensity 
ranges. The simplified scale proposed by Sáenz-Royo et al. (2023a) 
provides 3 critical points (Z) that allow obtaining the probabilities with 
which an automaton with β expertise will manifest each of the in-
tensities. The calculation of these intensities requires an intermediate 
step, obtaining the probability that the automaton manifests an intensity 
greater than Z with respect to the true intensity Vi/Vj 

pβij(Z) =
1

e
β

((

Z− 1
Z

)

−

(
Vi
Vj
−

Vj
Vi

))

+ 1

(4)  

Equation (2) is a particular case of (4) when Z = 1, that is when what is 
interesting to know is the probability that the automaton judges that 
Vi > Vj. The probability function representing the automaton is a logistic 
function whose mean is at the true value of intensity (Vi/Vj) and whose 
standard deviation depends on β. 

The AHP also requires knowing which intensity range the decision- 
maker opts for. Let k be the intensity valuation of a discrete interval of 
preference in which the decision-maker judgments that Vi is k times Vj 

measured discretely (âij,k = k ∈ {1,⋯,K}). To quantify the probabilities 
of each intensity interval that determines the IBRM (pβij,k), it is necessary 
to make the difference between the probability that the automaton 
considers that the intensity is greater than the lower critical point of 
interval k (Zk,l) and the probability that it considers the intensity to be 
greater than the upper critical point of interval k (Zk,h), that is, 
pβij

(
âij,k

)
= pβij

(
Zk,l

)
− pβij(Zk,h). Using (4), we have: 

pij(k) =
1

e
β

((

Zk,l −
1

Zk,l

)

−

(
Vi
Vj
−

Vj
Vi

))

+ 1

−
1

e
β

((

Zk,h −
1

Zk,h

)

−

(
Vi
Vj
−

Vj
Vi

))

+ 1

(5)  

3.6. Consistency in AHP 

When the matrix M is cardinally consistent (transitive) then âik =

âij âjk 

(
Vi
Vk

= Vi
Vj

Vj
Vk

)
|∀i ∕= j ∕= k. A matrix M is totally consistent if and only 

if λmax = n; while if λmax > n, then M is not consistent. Saaty (1980) 
defines the consistency index of M as. 

CIM = λmax − n
n− 1 , where λmax =

∑n
i=1 âij

ŵ j

ŵi 
indicates the cardinal differ-

ence between the decision-maker’s judgment and the inverse of the 
priority estimate. This formulation indicates that the closer each paired 
judgment is to its estimate, the closer λmax will be to n and CIM to 0. Saaty 
(1980) introduces the consistency ratio (CR) as the quotient between 
CIM and the random consistency index (RI), i.e., the mean of the CI for a 
set of randomly generated matrices of dimension n, 

CRM =
CIM

RI  

Saaty (1980) established that for the judgments of a decision-maker to 
be acceptable CRM should be less than 0.1. 

3.7. Error and inconsistency 

Rationality of the decision-makers in both Ordering and AHP implies 
consistency, however, the fact that the decision support technique gives 
a consistent solution does not imply that it is free of error (Liang, Bru-
nelli, & Rezaei, 2020; Sáenz-Royo et al., 2023a; Sugden, 1985; Temesi, 
2011). Consistency measures the precision of the decision-maker’s 
judgment (coherence of the judgments) but does not measure the ac-
curacy (proximity to the optimal solution). Two types of consistency are 
differentiated: ordinal consistency that manifests transitivity in the 
ordinal paired judgments manifested by the decision-maker, and car-
dinal consistency that manifests cardinal coherence in the intensities 
manifested by the decision-maker. Both cardinal and ordinal consistency 
can occur at a high level and yet present a wrong ranking, “this happens 
when the starting hypotheses are false but the logical structures of the 
relationship between the judgments are correct” (Sáenz-Royo et al., 
2023a). 

Cardinal consistency is more demanding than ordinal consistency 
since it requires that the intensity relationships of the paired compari-
sons be related, regardless of whether the decision-maker chooses an 
appropriate ranking (Rezaei, 2015). The usual measures of inconsis-
tency try to measure a priori, from the judgments made, the level of 
rationality of the decision-maker (Grzybowski & Starczewski, 2020). 

Transitivity has been linked to consistency as a fundamental tool to 
avoid misleading solutions. Consistency of the judgments in the 
Ordering must satisfy the following transitivity property: if r̂ ij = 1 and 
r̂ jk = 1 then r̂ ik = 1. Consistency of the judgments in the AHP must 
satisfy the following transitivity property: âik = âij âjk. Consistency re-
quires that all the judgments show a unique ranking of the values of the 
alternatives, and proportionality of the direct and indirect judgments in 
the cardinality; this property has been central in the development of the 
literature of pairs comparison, becoming the main indicator of the 
goodness of the consensus and the coherence of each expert (Herrera- 
Viedma et al., 2004; Saaty, 1980; Triantaphyllou, 2000). When the 
number of experts is large, AHP becomes impractical as it can lead to a 
high degree of inconsistency. 

If the decision-maker is the only one who can know the values 
assigned to the alternatives, there could be invisible errors because it is 
not possible to contrast these values with reality, and the inconsistency 
only shows the existence of errors when the judgments show the inco-
herence of the decision-maker (lack of precision when comparing ele-
ments separately). However, the internal consistency of the decision- 
maker may be hiding systematic errors that cannot be detected by 
either cardinal or ordinal consistency. Therefore, the fact that a matrix R 
or/and a matrix M are consistent does not ensure that said matrix is 
errors free. The IBRM makes it possible to assess a priori the error per-
centages of the ordinal and cardinal inconsistency of the automaton’s 
judgments. 

Table 2 
Simplification preference scales proposed by Sáenz-Royo et al. (2023a) between 
verbal judgments and cardinal assessment.  

PREFERENCE SCALES 

The verbal expression judgments of the preference Numerical expression 

Ai is extremely preferable to Aj 25/4 
Ai is preferable to Aj 10/4 
Aj is preferable to Ai 4/10 
Aj is extremely preferable to Ai 4/25  
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4. The ∊-type and δ-type problems 

The IBRM studies all the possible paired judgments that an autom-
aton can manifest by assigning a probability to each one of them and 
obtaining the expected performance of the vector of priorities provided 
by a decision support technique. Sáenz-Royo et al. (2023a) raises two 
types of problems that we will call δ-type and ∊-type:  

• δ-type problems are those in which the whole ranking provided by 
the priority vector is relevant when the alternatives studied are not 
mutually exclusive, but at least one alternative is to be excluded; in 
this case, the expected performance of the complete priority vector 
must be evaluated;  

• ∊-type problems are those in which only the alternative considered 
the best is relevant because the alternatives are mutually exclusive 
and only one can be chosen; in these cases the errors in the ranking of 
the alternatives not chosen are irrelevant and the expected perfor-
mance of the best alternative must be evaluated. 

According to the IBRM, the following steps are carried out to eval-
uate a decision support technique:  

1) All the possible paired judgments that the automaton can manifest 
are listed (in our proposal in the Ordering and in the AHP) and the 
probability of each of these judgments occurring is calculated.  

2) All possible combinations of preference or intensity are obtained 
from comparisons between alternatives (set of judgments shown by 
one decision-maker).  

3) For each combination of preference or intensity, the priority vector 

of the decision support technique is obtained. Each of these priority 
vectors has an assigned probability obtained from the product of the 
probabilities of the paired (preference or intensity) judgments that 
constitute it.  

4) In δ-type problems, the priority vectors that propose the same 
ranking of alternatives are grouped by adding their probabilities; in 
∊-type problems all priority vectors that have the same first alter-
native are grouped by adding their probabilities. At the end of this 
process, a probability is available for each priority vector in the 
δ-problems and a probability for each alternative in the ∊-type 
problems. 

5) Multiplying the probabilities by the performance of the selected al-
ternatives and adding the products, the expected performance of the 
decision support technique is obtained. In δ-type problems, the 
probability of each vector will be multiplied by the sum of the per-
formances of the alternatives not discarded, while in ∊-type problems 
each probability is simply multiplied by the performance of the 
selected alternative. 

In the ∊-type problem with three alternatives, the expected perfor-
mance is defined as the probability of choosing alternative A1 (p1) 
multiplied by its latent performance V1, plus the probability of choosing 
alternative A2 (p2) multiplied by its latent performance V2, plus the 
probability that alternative A3 (p3) multiplied by its latent performance 
V3, plus the mean performance multiplied by the probability that 
indecision is shown between any of the three alternatives (p1=2=3). 

E(∊ − Ordering without consistency) = p1V1 + p2V2 + p3V3

+ p1=2=3

(
V1 + V2 + V3

3

)

Here p1 is the sum of all the probabilities of the rankings that have 
alternative A1 as the best alternative (p1 = p(O123) + p(O132)), and p2 
and p3 are calculated similarly. 

The probabilities pi will be different in the Ordering technique than 
in the AHP. 

In the δ-type problem with three alternatives, we are interested in the 
total ranking of alternatives provided by each technique. In this type of 
problem, it is only possible to discard the alternative ranked last. If the 
three alternatives were eligible, no analysis would be necessary and if 
two alternatives had to be ruled out, we would be faced with a choice of 
the best (∊-type problem). 

The expected performance in the δ-type problem with three alter-
natives is computed as the performance when alternative A3 is discarded 
(V1 + V2) multiplied by the sum of the probabilities of the rankings in 
which alternative A3 is in last position (p(O123) + p(O213)), plus the 
performance obtained when alternative A2 is discarded (V1 + V3) 
multiplied by the sum of the probabilities of the rankings in which 
alternative A2 is in last position (p(O132) + p(O312)), plus the perfor-
mance obtained when alternative A1 is discarded (V2 + V3) multiplied 
by the sum of the probabilities of the rankings in which alternative A1 is 
in last position (p(O231) + p(O321)), plus two times (it is chosen two 
alternatives) the mean performance multiplied by the probability of the 
technique showing indecision between any of the three alternatives 
(p1=2=3).  

The expected performance of the δ-type problem for the general case of n 
alternatives will depend on the number of alternatives that are not 
eligible. 

5. Ordering vs AHP. The value of intensity through an 
illustrative case 

IBRM is used to obtain the expected performances of the “total pri-
ority vector” (δ-type) and the “choice of the first alternative” (∊-type) by 
comparing the two decision support techniques: Ordering vs AHP. This 
comparison is made in both cases by establishing a requirement for 
consistency and without requiring it. The difference between these two 
techniques is that the AHP requires the decision-maker to manifest in-
tensities, and this has consequences both in the consistency restrictions 
and in obtaining the vector of priorities, therefore, the difference in 
performance will indicate the relative value of said information. To 
illustrate this, the case proposed by Sáenz-Royo et al. (2023a) is used: 
“An automaton with limited rationality and a reliability marked by (1) 
with β = 1 (by simplicity), and three alternatives whose latent perfor-
mances are V1 = 62.5, V2 = 25 and V3 = 10.”. 

5.1. Ordering 

According to the Ordering-based paired comparison decision support 
technique, a probability matrix P, with the alternatives ranked from 
highest to lowest performance, that indicates the probability with which 
the automaton (decision-maker with intentional bounded rationality) 

E(δ − Ordering without consistency) =

(p(O123) + p(O213) )(V1 + V2) + (p(O132) + p(O312) )(V1 + V3) + (p(O231) + p(O321) )(V2 + V3) + p1=2=3
2(V1 + V2 + V3)

3   
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will choose each alternative in each pairwise comparison is constructed. 
Thus, the probability of correctly preferring alternative A1 over A2 in the 
comparison of V1 and V2 will be p12 = 1

e

(
Vj
Vi

−
Vi
Vj

)

+1

= 0.8909, therefore, 

the probability of incorrectly choosing the alternative A2 over A1 will be 
p21 = 1 − p12 = 0.1091. Similarly, the rest of probability values are 
computed, resulting in 

P =

⎛

⎝
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎞

⎠ =

⎛

⎝
− 0.8909 0.9977

0.1091 − 0.8909
0.0023 0.1091 −

⎞

⎠

From this matrix it is possible to obtain the probabilities of the autom-
aton expresses a concrete preference judgment.  

• The only correct priority vector is the one that shows that 
r̂1 > r̂2 > r̂3, this vector is generated when the combination of 
judgments of the decision-maker is alternative A1 is preferred to 
alternative A2 (r̂12 = 1), alternative A1 is preferred to alternative A3 

(r̂13 = 1) and alternative A2 is preferred to alternative A3 (r̂23 = 1); 
this ranking is called Error Free and is denoted as the ranking (O123) 
(Sáenz-Royo et al., 2023a).  

• When the components of the priority vector satisfy that ̂r1 > r̂3 > r̂2, 
this technique provides an erroneous ranking that chooses the best 
alternative correctly (A1) and the combination of judgments of the 
decision-maker is r̂12 = 1; r̂13 = 1; r̂23 = 0; this ranking is called 
Right-Soft and is denoted as O132.  

• Priority vector in which r̂2 > r̂1 > r̂3 (Medium-Soft Error) O213: this 
technique chooses A2 as the best alternative, and the decision-maker 
is wrong only in a pairwise judgment, the combination is r̂12 = 0;
r̂13 = 1; r̂23 = 1.  

• Priority vector in which ̂r2 > r̂3 > r̂1 (Medium-Hard Error) O231: this 
technique chooses A2 as the best alternative and the decision-maker 
is wrong in two judgments; she/he is always wrong when she/he is 
involved in judgment A1 (he undervalues it), r̂12 = 0; r̂13 = 0;
r̂23 = 1.  

• Priority vector in which r̂3 > r̂1 > r̂2 (Extreme-Soft Error) O312: the 
technique opts for A3 as the best alternative. The decision-maker is 
wrong in all pairwise judgments involving A3 (she/he overvalues it), 
r̂12 = 1; r̂13 = 0; r̂23 = 0.  

• Priority vector in which r̂3 > r̂2 > r̂1 (Extreme-Hard Error) O321: the 
technique opts for A3 as the best alternative and the decision-maker 
shows error in all her/his judgments by pairs, r̂12 = 0; r̂13 = 0;
r̂23 = 0.  

• Priority vector in which r̂1 = r̂2 = r̂3 (Total error) O1=2=3: The 
technique shows the three alternatives as equivalent. The decision- 
maker shows two possible combinations of judgments: r̂12 = 1;
r̂13 = 0; r̂23 = 1 or r̂12 = 0; r̂13 = 1; r̂23 = 0, manifesting a circu-
lar preference system. 

A decision-maker can provide the below eight possible comparison 
matrices. Each matrix is marked with superscripts to indicate the type of 
error they generate. Each comparison matrix will have a probability of 
occurrence according to the level of reliability of the automaton. With 
the alternatives ranked by performance, the different possible matrices 
are: 

REF =

⎛

⎝
− 1 1
0 − 1
0 0 −

⎞

⎠ RRS =

⎛

⎝
− 1 1
0 − 0
0 1 −

⎞

⎠

RMSE =

⎛

⎝
− 0 1
1 − 1
0 0 −

⎞

⎠ RMHE =

⎛

⎝
− 0 0
1 − 1
1 0 −

⎞

⎠

RESE =

⎛

⎝
− 1 0
0 − 0
1 1 −

⎞

⎠ REHE =

⎛

⎝
− 0 0
1 − 0
1 1 −

⎞

⎠

RTE1 =

⎛

⎝
− 1 0
0 − 1
1 0 −

⎞

⎠ RTE2 =

⎛

⎝
− 0 1
1 − 0
0 1 −

⎞

⎠

Each matrix, and therefore each priority vector, is assigned a probabil-
ity, which is denoted by p(R) = pijpjkpik. The probabilities of each 
ranking obtained for the illustrated case are: 

p
(
REF)=p(O123)= p12p23p13=0.7919 p

(
RRS)=p(O132)=0.0970

p
(
RMSE)=p(O213)=0.0970 p

(
RMHE)=p(O231)=0.0002

p
(
RESE)=p(O312)=0.0002 p

(
REHE)=p(O321)=0.0000

p
(
RTE1)=0.0018 p

(
RTE2)=0.0119

p
(
RTE)=p(O1=2=3)=p

(
RTE1)+p

(
RTE2)=0.0137  

In the case of three alternatives, only two matrices have the same 
ranking Total Error, and therefore their probabilities must be added, 
p(O1=2=3) = 0.0137. 

In the δ-type problem, the entire priority vector is important, and the 
probability of each ranking is obtained by adding the probability of all 
the priority vectors that assume the same ranking. The expected per-
formance is 

E(δ − Ordering without consistency) = (p(O123) + p(O213) )(V1 + V2)

+ (p(O132) + p(O312) )(V1 + V3)

+ (p(O231) + p(O321) )(V2 + V3)

+ p(O1=2=3

)
2(V1 + V2 + V3)

3
= 85.7216  

In this case, the expected performance of a decision-maker who does not 
make mistakes is V1 +V2 = 62.5+25 = 87.5 and, therefore, the tech-
nique achieves 97.97% of the best possible performance. 

In the ∊-type problem, a second grouping must be performed once 
the probabilities of each ranking have been obtained, adding the prob-
abilities of all the rankings that choose the same alternative as the best 
option, pi =

∑n
j∕=i
∑n

k∕=i∕=jp
(
Oijk

)
. The number of rankings that select each 

alternative is n!/n, in the example they are: 

p1 = p(O123) + p(O132) = 0.8889; p2 = 0.0972; p3 = 0.0002; p1=2=3

= 0.0137  

For the ranking, the probability that the priority vector shows A1 as the 
best alternative is 0.8889, that it chooses A2 as the best alternative is 
0.0972 and that it chooses A3 as the best alternative is 0.0002, while the 
probability of the technique shows that the three alternatives are 
equivalent is 0.0137. Once the probabilities are obtained, the expected 
performance of the ∊-problem is calculated: 

E(∊ − Ordering without consistency) = p1V1 + p2V2 + p3V3

+ p1=2=3

(
V1 + V2 + V3

3

)

= 0.8889⋅62.5 + 0.0972⋅25

+ 0.0002⋅10

+ 0.0137⋅
(

65.5 + 25 + 10
3

)

= 58.4322  

The expected performance of a decision-maker who does not commit 
errors is V2 = 62.5, and, therefore, the technique obtains 93.49% of the 
best possible performance. 
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Ordering can add the requirement to show ordinal consistency in 
judgments combination to validate the priority vector. It is established 
as inconsistency when the judgments by pairs shown by the decision- 
maker are not coherent in the sense that they do not meet the 
required transitivity. For the case of three alternatives, the pairwise 
judgment combinations that give rise to inconsistency are r̂12 = 1;
r̂13 = 0; r̂23 = 1 and r̂12 = 0; r̂13 = 1; r̂23 = 0, that match matrices 
RTE1 and RTE2. The Ordering with consistency requirement rejects 2 of 
the 8 possible matrices due to inconsistency. Therefore, the priority 
vectors that show the three alternatives as equivalent are considered 
unacceptable since they come from a judgments combination that does 
not present the required levels of coherence. 

When the alternatives are performance ranked, in the judgment 
matrices acceptable by the decision support technique it is observed that 
as the error increases, the matrices show a greater number of ones in the 
lower part of the matrix. If the performance of each alternative is un-
known, any of the error matrices is indistinguishable from the Error-Free 
matrix since orderings with a manifestation of consistent preferences 
have traditionally been classified as correct. Only the IBRM allows 
evaluating the decision support technique a priori. 

The probability that the decision-maker shows a consistent judgment 
matrix is 0.9863(= 1 − 0.0137), and therefore, after removing in-
consistencies 80.29% of the supported priority vectors are Error-Free, 
without this probability the errors are undetectable. In δ-type prob-
lems when consistency is required in the decisions, and 1.37% of the 
judgments issued by the automaton are eliminated, the expected per-
formance is: 

E(δ − Ordering with consistency) = (p(O123) + p(O213) )(V1 + V2)

+ (p(O132) + p(O312) )(V1 + V3)

+ (p(O231) + p(O321) )(V2 + V3)

= 86.3002  

This supposes a gain over not requiring consistency of 0.67% and a 
percentage of 98.63% on the maximum possible performance. 

Once the inconsistencies have been eliminated, 90.12% of the time 
this technique accepts a ranking that puts alternative A1 first, 9.85% 
choose alternative A2 as the best, and 0.03% choose alternative A3. The 
expected performance of the ∊-type problems requiring consistency is 

E(∊ − Ordering with consistency) = p1V1 + p2V2 + p3V3 = 58.7916  

which represents a 0.62% gain over not requiring consistency, obtaining 
94.07% of the best possible performance. 

5.2. AHP 

According to the decision support technique based on the intensity of 
the pairwise comparison, the AHP, as many matrices can be constructed 
as there are combinations of intensities the decision-maker can manifest. 

In our case, three alternatives with four possible intensities, this 
makes a total of 64 (43) matrices, we call them M(1),⋯,M(64), while in 
Ordering there were 8 (23) (detailed in Section 5.1 depending on the 
type of error they represent: REF , RRS, ⋯). Each of these matrices is 
associated with a probability of occurrence provided by IBR. Thus, 
grouping all those combinations of intensities (matrices) when applying 
the AHP produce the same priority vector A1 ≻ A2 ≻ A3, that is, 
w1 > w2 > w3, it is p(O123) = 0.8019. Some examples of these matrices 
are: 

M(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
25
4

25
4

4
25

−
25
4

4
25

4
25

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; priority vector associated by AHP: 

ŵ(M(1) ) = (ŵ1, ŵ2, ŵ3) = (0.6880,0.2397,0.0723). Its consistency 
ratio is CR(M(1)) = 0.3539. The probability that the automaton with 
expertise β = 1 shows a preference matrix equal to M(1) according to 
IBR is p(M(1) ) = p12(25/4)*p13(25/4)*p23(25/4) = 0.0089. 

M(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
25
4

25
4

4
25

−
10
4

4
25

4
10

−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ŵ(M(2) ) = (0.7385, 0.1694, 0.0920)

CR(M(2) ) = 0.0829  

p(M(2) ) = p12(25/4)*p13(25/4)*p23(10/4) = 0.0690 

Notice that the preference matrix M(1) would be rejected with the 
consistency criterion while M(2) would not. 

… 
Grouping the probabilities of all those priority vectors that provide 

the same ranking, the following values are obtained: 

p(O123) = 0.8019; p(O132) = 0.0973;
p(O213) = 0.0973; p(O231) = 0.0002;

p(O312) = 0.0002; p(O321) = 0.0000;
p(O1=2=3) = 0.0030  

As can be seen, all the rankings but one (Total Error) increase their 
probability with respect to the Ordering technique. Although the prob-
ability of obtaining an Error-Free ranking is higher than that provided by 
the Ordering technique, so are the probabilities of making errors, except 
for Total Error. This does not ensure that the results of the AHP are al-
ways superior to those of the Ordering, despite being a more informative 
technique. 

In δ-type problems, the expected performance of AHP is 

E(δ − AHP without consistency) = (p(O123) + p(O213) )(V1 + V2)

+ (p(O132) + p(O312) )(V1 + V3)

+ (p(O231) + p(O321) )(V2 + V3)

+ p(O1=2=3

)
2(V1 + V2 + V3)

3
= 85.9540  

The technique achieves 98.23% of the maximum possible performance 
and, therefore, its contribution regarding the Ordering without consis-
tency is 0.27%. 

As with the Ordering, the expected performance of the ∊-type 
problem is obtained. All the rankings are grouped according to the 
alternative with the highest valuation (p1 = 0.8992; p2 = 0.0976; p3 =

0.0003; p1=2=3 = 0.0030) and subsequently, the expected performance 
of the AHP technique is obtained without consistency requirement: 

E(∊ − AHP without consistency) = p1V1 + p2V2 + p3V3

+ p1=2=3

(
V1 + V2 + V3

3

)

= 58.7366  

This expectation is higher (0.3044) than the obtained by the Ordering 
technique, that is, 0.52%. The technique presents 93.98% of the 
maximum possible performance. 

The AHP technique establishes a criterion for a priority vector to be 
admitted: CR < 0.1. This is due to the requirement of coherence in the 
intensity ratios, that is, if the decision-maker’s judgment states that V1 is 
2.5 times V2 and states that V2 is 2.5 times V3, then V1 must be 6.25 
times greater than V3. This criterion makes the intensity-based decision 
support technique (AHP) to reject more matrices with errors than those 
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rejected by the Ordering technique, but it also rejects Error-Free 
matrices. 

The probability and CR of each of the 64 possible priority vectors 
have been calculated. Grouping by ranking (with CR < 0.1) according to 
the type of error made by the automaton, the results are that the prob-
ability that the priority vector is rejected is 0.1949, much higher than 
the 0.0137 of the Ordering technique. Among the admitted priority 
vectors, the probability distribution is: 

p(O123) = 0.9433; p(O132) = 0.0281;
p(O213) = 0.0281; p(O231) = 0.0002;

p(O312) = 0.0002; p(O321) = 0.0000  

All priority vectors that show equality between the alternatives are 
rejected by the consistency ratio. The introduction of the consistency 
requirement restriction increases the probability of Error-Free ranking 
and reduces the probability of errors at the cost of rejecting close to 20% 
of the judgments issued by the automaton. 

In δ-type problems, the expected performance of the AHP requiring 
consistency is 

E(δ − AHP with consistency) = (p(O123) + p(O213) )(V1 + V2) + (p(O132)

+ p(O312) )(V1 + V3) + (p(O231)

+ p(O321) )(V2 + V3)

= 87.0605  

The technique achieves 99.50% of the maximum possible performance 
and, therefore, its contribution with respect to the Ordering with con-
sistency is 0.88%. 

To study the problem of ∊-type, the rankings are grouped to obtain 
the probability with which each alternative is chosen. Among the vec-
tors established as acceptable by AHP, the probability that this decision 
support technique chooses the alternative A1 is 0.9714, that it chooses 
A2 is 0.0284 and that it chooses A3 is 0.0003. These probabilities are 
better than those obtained by the Ordering technique, and they also 
suppose an increase in the probability of choosing alternative A1, with 
respect to the same technique without the requirement of consistency. 

The expected performance of AHP demanding consistency is 

E(∊ − AHP with consistency) = p1V1 + p2V2 + p3V3 = 61.4225  

which represents 4.57% gain over not requiring consistency, 98.28% of 
the maximum performance and a gain over the Ordering with consis-
tency of 4.48%. 

In summary, it can be seen that for the used case study, the differ-
ences between methods are meager, the most relevant is the difference 
in performance of 5.12% in the ∊-type problems between AHP with 
consistency and Ordering without consistency, for which it is was 
necessary to request intensity judgments from the experts and eliminate 
20% of the judgments due to cardinal inconsistency. 

6. Robustness analysis of the ∊-type problem 

Choo and Wedley (2004) and Lin (2007) linked the efficiency of the 
decision support technique to the characteristics of the paired compar-
ison matrix. However, the IBRM forces to study all possible paired 
comparison matrices, transferring the problem to the characteristics of 
the automaton (decision-maker expertise) and the difficulty of the 
problem (differences between performances) as was demanded by 
Tsoukiàs (2008). Studying different levels of expertise (characteristics of 
the decision-maker) in different scenarios (difficulties) is a solid way of 
evaluating decision support techniques. To complete the case analysis 
developed in the previous section, we proceed to obtain the expected 
performance of the ∊-type problem for different levels of expertise and 
for different performance distributions of the alternatives. IRBM makes 

relative comparisons, therefore it is perfectly valid for any reference 
system that is established, and its relative results do not change. In fact, 
the change of value of V2 modifies the probability of judgment favorable 
or unfavorable to alternative A2 in all its comparisons, which allows to 
analyze the corresponding variation in the distribution of error proba-
bility and the distributions of the expected performances. 

Three scenarios are recreated establishing that alternative A2 has a 
performance: close to alternative A3 (V2 = 15); central between alter-
native A1 and A3 (V2 = 25, as in the case study); and close to alternative 
A1 (V2 = 55). For each of these scenarios, levels of expertise of the 
automaton ranging from 0.05 to 1.65 were simulated. These levels were 
chosen since, based on them, the performances of the different decision 
support techniques compared converged. The techniques can hardly 
help in the decision when the decision-maker’s capacity to judge is very 
high (high expertise), she/he reaches the best solution with any tech-
nique and when her/his judgment capacity is very low and she/he 
values all the alternatives equally. 

In all scenarios, the technique that shows the worst results is 
Ordering without consistency. However, the technique that shows the 
best-expected performance at low levels of expertise of the automaton 
(less than 0.25) is Ordering with consistency, while for levels of exper-
tise of the automaton greater than or equal to 0.25 the best technique is 
AHP with consistency. This result is maintained in the three scenarios 
studied. This is due to the fact that when the automaton shows a low 
level of expertise (0.15), although the AHP technique rejects a higher 
proportion of judgments than Ordering (the values in the scenario with 
V2 = 25 are 70.28% in the AHP compared to 22.27% of the Ordering), 
the probability that the AHP achieves for judgments Error-Free (0.3154) 
plus Right-Soft Error (0.2138) is 0.5291, lower than that obtained by the 
Ordering (EF: 0.3069 and RS: 0.2240) 0.5308. In AHP, 70.28% of the 
total of possible priority vectors are rejected due to inconsistency, of 
which 17.63% are Error-Free judgments, 14.07% are Right-Soft Error, 
14.07% are Medium-Soft Error, 5.91% are Medium-Hard Error, 5.91% 
are Extreme-Soft Error, 4.67% are Extreme-Hard Error, and the rest of 
rejections (8.02%) are the priority vectors that presented equality in the 
evaluation of the alternatives. Therefore, in this case, the introduction of 
the consistency requirement in AHP provides lower gains than in 
Ordering due to the high percentage of Right-Soft Error rejected due to 
inconsistency. This result shows that in certain circumstances the 
requirement of the decision-maker to show intensity does not outper-
form a technique based on Ordering. 

The change in scenario (change in the performance of alternative A2) 
implies important changes in the range of expected performance of all 
the decision support techniques, despite the fact that the maximum 
achievable value remains unchanged at 62.5 being an ∊-type problem. 
The highest performance range occurs when V2 = 15 (see Table 3). In 
this scenario, the automaton has difficulties distinguishing between 
alternative A1 and alternative A2, but it is easier to recognize the best 
alternative than in the other scenarios (see Fig. 1). The fact of having 
more alternatives with low performances means that with low levels of 
expertise of the automaton the expected performance is lower than in 
the rest of the scenarios, while when the expertise of the automaton is 
high it is easier to recognize the best alternative than in the rest of the 
scenarios; so its expected performance is higher in all techniques. The 
lowest range occurs when V2 = 55 for two reasons: when the expertise of 
the automaton is low, the expected performance of the automaton is 
high because there are more alternatives with high performances; and 
when the expertise of the automaton is high, the expected performances 
of the techniques are relatively low because it is difficult to distinguish 
whether alternative A1 or A2 is the best (see Fig. 3). 

The greatest differences between the expected performances of the 
decision support techniques occur in scenario V2 = 25 where AHP with 
consistency presents higher expected performances than the rest of the 
techniques (see Fig. 2). The greatest difference between techniques 
(from the one that gives the highest performance to the one that gives 
the least) in this scenario ranges from 1.7% to 8.30%. The scenario 
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where the smallest differences occur is V2 = 55, these are between 
0.34% and 4.46%. In the three scenarios, the greatest differences in 
performance between techniques occur for expertise levels of the au-
tomaton of 0.25 − 0.35. In the V2 = 55 scenario, the differences are 
highly concentrated in low expertise of the automaton (differences 
greater than 2% are in the expertise interval [0.05 − 0.45]), that is, in this 
scenario, the cumulative performance of the Ordering with consistency 
is superior to AHP with consistency up to the expertise of the automaton 
of 0.75. While in the scenario V2 = 25 the interval of expertise of the 
automaton with differences greater than 2% is [0.05 − 1.55] and in the 
scenario with V2 = 15 this interval is [0.05 − 0.85]. Finally, it should be 
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Fig. 1. Expected performance of decision support techniques in the scenario 
where V1 = 62.5;V2 = 15;V3 = 10 for different values of β. 

Fig. 2. Expected performance of decision support techniques in the scenario 
where V1 = 62.5;V2 = 25;V3 = 10 for different values of β. 

Fig. 3. Expected performance of decision support techniques in the scenario 
where V1 = 62.5;V2 = 55;V3 = 10 for different values of β. 
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noted that the maximum difference occurs between the AHP technique 
with consistency and Ordering without consistency in the V2 = 15 sce-
nario with 0.25 expertise while their lowest difference occurs in the 
V2 = 15 scenario with 1.65 expertise of the automaton. 

The differences in the performance of the decision support tech-
niques depend on the difficulty of the problem as something exogenous 
and the expertise level of the decision-maker. To evaluate each problem, 
it must be considered that in order to obtain the maximum gains 
exposed, the decision support technique must consume resources in two 
ways: the first must require the decision-maker to show intensities, and 
the second refers to the rejection of a high number of combinations of 
judgments due to cardinal inconsistency. 

This section suggests the possibility of analyzing resilience when 
other reliability measures (consensus level, group and individual con-
sistency requirements, hesitation, etc.) are added, increasing the 
complexity of decision support techniques (see measures of resilience for 
algorithms Han, Liu and Zhang, 2016). IBRM can be used to develop a 
measure of resilience for decision support techniques, which seems to be 
a promising line of future research. 

7. Conclusions 

Human judgment is a valuable decision instrument in many fields. In 
this study, the problems have been classified according to the need to 
choose an alternative or obtain a complete ranking (∊- and δ-type 
problems). Decision support techniques try to analyze the logical re-
lationships that are deduced from the judgments shown by the decision- 
maker to detect possible errors and reject the judgments that do not meet 
certain properties. It has been analyzed whether a decision support 
technique that is based on intensities such as AHP (systems that collect a 
higher level of information from judgments) always presents better re-
sults than a technique based on preference Ordering. To analyze this 
problem, the IBRM is used as a rationality framework where it is possible 
to evaluate any decision support technique a priori. In this conceptual 
framework, the decision-maker can be wrong or right. Section 3 details 
the Ordering technique and how the IBRM is applied to it, detailing 
possible errors, and relating them to the consistency criterion. 

The results show how it is possible for a technique based on in-
tensities (with more information) to present worse results than a simpler 
one based solely on preferences. This is because one of the most used 
properties to detect erroneous judgments is inconsistency. Sáenz-Royo 
et al. (2023a) showed the drawbacks that this measure has in AHP, 
fundamentally that a set of Error-Free judgments implies consistency in 
the judgments, but consistency in the judgments does not imply that 
they are Error-Free. This study has illustrated this concept for Ordering 
and by means of the IRBM, the probabilities of committing different 
types of errors in Ordering have been detailed to compare them with 
those committed in intensities. Finally, the relationship between the 
errors with the difficulty of the problem (distribution of the performance 
of the alternatives) and the expertise of the decision-maker has been 
revealed, detailing how these aspects affect the performance of the 
different decision support techniques. 

The analysis shows that Ordering with consistency presents better 
results than the other techniques in the three scenarios when the levels 
of expertise of the descision-maker are low (less than 0.25). For expertise 
level greater than or equal to 0.25, AHP with consistency is better than 
the rest of the techniques. For very low and very high values of expertise, 
the performances of all the techniques converge and the simplicity of the 
technique to be used should be the determining factor. The AHP with 
consistency requires a higher level of resources than the rest of the 
techniques in two senses: on the one hand, it requires the provision of 
intensities in judgment preferences while, on the other hand, the 
requirement of cardinal consistency translates into a significant per-
centage of rejected judgments (may be higher than 70%, as shown 
section 6 for β = 0.15 in the scenario V2 = 25,) because small errors of 
appreciation in the judgments can lead to rejection due to cardinal 

consistency, whether it comes from a correct or incorrect ranking (in the 
example mentioned in this paragraph, out of every 70 rejected judg-
ments, 18 presented an Error-Free ranking and 14 had a Right-Soft 
Error). The Ordering technique without consistency is the one that 
shows the worst results in all scenarios and with all levels of expertise, 
but it is the one that consumes the least resources since it does not 
require the decision-maker to show intensities, nor does it eliminate any 
judgment and the performance differences with the AHP without con-
sistency are meager. 

The robustness Section shows how the introduction of consistency 
and intensity restriction presents a maximum gain of 9.08%. The 
maximum difference between Ordering with consistency and AHP with 
consistency is 5.16% in the V2 = 25 scenario; in the V2 = 15 scenario 
this difference is always less than 2.8%; while in the V2 = 55 scenario, it 
is always less than 0.5%. Ultimately, the results show how incorporating 
intensity shows meager performances in most situations and does not 
guarantee a better result. A preference-based comparison system is 
faster and less demanding for experts than one based on intensity. This 
statement should open the debate on what criteria to use for selecting 
decision support techniques. 
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