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In this work, we investigate observational signatures of a primordial power spectrum with exponential
infrared suppression, motivated by the choice of a nonoscillatory vacuum in a bouncing and inflationary
geometry within loop quantum cosmology. We leave the parameter that defines the scale at which
suppression occurs free and perform a Bayesian analysis, comparing with cosmic microwave background
data. The data show a preference for some of the suppression to be within the observable window. Guided
by this analysis, we choose concrete illustrative values for this parameter. We show that the model affects
only slightly the parity anomaly, but it is capable of alleviating the lensing and power suppression

anomalies.
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I. INTRODUCTION

In the last decades, cosmology has reached a high degree
of maturity as a research field, thanks in part to the
increasingly more accurate measurements of the cosmic
microwave background (CMB). For the most part, the
observed CMB is well explained by the inflationary
paradigm [1], where quantum fluctuations in the very early
Universe seed the temperature fluctuations observed today.
However, some anomalies have been identified in the data
with respect to predictions from standard cosmology and
persist in recent observations [2]. It is thought that these
may be hints of nonstandard processes occurring in the very
early Universe. This has captured the attention of research-
ers in the field of quantum gravity, as it may open an
observational window to the quantum nature of spacetime.

Within the approaches to quantum cosmology, loop
quantum cosmology (LQC) is one of the most promising
ones in the literature [3—6]. It applies the nonperturbative
and background-independent quantization program of
loop quantum gravity (LQG) to cosmological models.
When applied to flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetimes minimally coupled to a scalar
field that sources inflation, it generates nontrivial preinfla-
tionary dynamics that resolve the big bang singularity in
terms of a quantum bounce [7-12]. This bounce occurs in a
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kinetically dominated epoch of the Universe and connects a
contracting branch with an expanding one. Soon after the
bounce, the Universe goes through a period of decelerated
expansion, before the potential of the scalar field begins to
dominate and standard slow-roll inflation begins. This
affects the evolution of primordial perturbations, as some
modes cross out of and back into the horizon before the
onset of inflation. It is no longer reasonable to assume that
they reach it in the Bunch-Davies vacuum of standard
cosmology. This may then have an effect in the primordial
power spectrum. In the standard A cold dark matter
(ACDM) model, this is a near-scale invariant power
spectrum, with a slight red tilt. In the case of LQC, where
several well-motivated choices of vacua have been
explored, the power spectrum is affected in the infrared,
and the particular deviations from near-scale invariance
depend on details of the quantization and on the vacuum
choice (see [13,14] for recent reviews and [15-21] for
particular approaches).1

Previous works within LQC [18-21] have shown that
such departures from near scale-invariance may alleviate
some anomalies in observations of large scales. In [18,19],
adopting the equations of motion of the so-called dressed
metric approach [22,23] and a particular vacuum state for
the cosmological perturbations [24], it was shown that both

'Note that within the approach of Refs. [15,16] there are
choices of initial conditions for perturbations that are ruled out
since they do not yield a near-scale-invariant scalar power
spectrum in the ultraviolet.
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the power suppression anomaly and the lensing anomaly
may be alleviated. The first is related to a lack of power in
the CMB for large multipoles, which is a consequence of
the fact that the temperature-temperature correlation func-
tion is consistent with zero for large angular scales [25-27].
This corresponds to a very unlikely realization of a
ACDM universe, which predicts a much larger value of
the corresponding estimator than what is observed. The
effects of the LQC model considered in Refs. [18,19] were
able to alleviate the anomaly in the concrete sense that the
expected value of this estimator is lower than in ACDM.
However, one could argue that this alone is not enough to
conclude an alleviation of the anomaly, and a computation
of the distribution of the estimator would be necessary so
that the p value of the observation may be found. The
second anomaly was found as a consequence of a con-
sistency test in ACDM. A phenomenological parameter is
introduced to quantify how the CMB is lensed from the
surface of last scattering until today. It is found to be
incompatible with the prediction from ACDM at ~2-¢
level. The LQC model of [18,19] is able to alleviate this
anomaly by affecting the statistics of other parameters. It
does not affect postinflationary physics that relate to
lensing, rather it shifts predictions enough that the incon-
sistencies no longer present as strongly as in the standard
model. References [20,21] consider primordial power
spectra with power enhancement of different slopes. These
may be motivated by different models, of which LQC is an
example. Here, non-Gaussianities become a key ingredient.
They provide a mechanism that correlates the largest
wavelength modes of the CMB and superhorizon (non-
observable) modes. The effect is to modify the variance of
the perturbations, even if the mean remains unaltered.
Then, certain features become more likely in this scenario
than in standard cosmology. This alleviates the aforemen-
tioned anomalies as well as the parity asymmetry anomaly,
which refers to the fact that more power is observed in
odd multipoles than in even ones, which is not predicted
by ACDM.

In this work, we consider LQC but we depart from
previous analyses in two ways, both related to the ambi-
guities present in the construction of the cosmological
model at hand. First, we adopt the equations of motion
derived from hybrid LQC [28-31], mainly motivated by
the fact that so far no Bayesian analysis comparing
predictions with observations has been conducted adopting
such prescription. One of its advantages is that the
equations of motion for the perturbations are hyperbolic
at the bounce, unlike those of the dressed metric approach
[30,32]. The other main distinction from previous Bayesian
analyses is the choice of initial conditions for perturbations,
which we choose to be the so-called nonoscillatory (NO)
vacuum. This state has been motivated in previous LQC
literature and shown to display interesting properties that
make it an appealing vacuum choice [33-37]. However, a

full understanding of its physical consequences requires
a proper statistical analysis. This is the main aim of our
present work, completing in this way those previous
analyses based on this vacuum choice. More specifically,
the NO vacuum minimizes oscillations in the primordial
power spectrum and leads to a power spectrum that is the
near-scale-invariant one of ACDM with exponential power
suppression in the infrared and some small oscillations in
intermediate scales. Furthermore, this state can be seen as a
particular state of low energy, which minimizes the energy
density when smeared along a given time window [38].
Vacua within the same family show also a strong suppres-
sion at infrared wave numbers and free of oscillations [36].
The scale at which these effects occur depends on initial
conditions of the background at the bounce and the free-
dom in the choice of initial vacua there. Here, we leave this
scale as a free parameter in a first instance. We perform a
Bayesian analysis of the model, from which we are able to
show that the data prefer some of the effects to be within the
observable range. Guided by this analysis, we are able to fix
some initial conditions and investigate their effect on the
aforementioned anomalies. The goal is to investigate the
observational consequences of this particular model with
this choice of vacuum. On the other hand, this is also
relevant for other vacua within LQC which lead to power
suppression of infrared modes in the primordial power
spectrum [18,20,33,37,39]. Thus, we contribute to the goal
of understanding whether there are some robust features
from LQC in predictions that transcend these ambiguities.
Throughout this paper, we will perform comparisons with
ACDM, by which we mean the standard inflationary
paradigm with the Bunch-Davies vacuum for cosmological
perturbations at the onset of inflation.

The structure of this paper is as follows. In Sec. II, we
briefly review the three aforementioned anomalies.
Section III is dedicated to results for the model we are
considering within LQC. We present the Bayesian analysis
of the model with all parameters free and then fix initial
conditions to investigate possible alleviation of anomalies
in concrete cases. Finally, Sec. IV is dedicated to conclud-
ing remarks. We have also included two appendixes with
some details of our calculations.

II. ANOMALIES IN THE CMB DATA

The temperature map of the CMB is remarkably uni-
form, with an average of 7 = 2.725 4 0.002 K [40] and
fluctuations between different directions 72 of the order of
1073 K. These fluctuations can be expanded in spherical
harmonics and described in terms of their coefficients a,,,,

ST(R) = arm¥ em(). (1)

‘m

Theoretical models, in particular ACDM, can only predict
statistical properties of the CMB map. Therefore, we are

103508-2



ALLEVIATION OF ANOMALIES FROM THE NONOSCILLATORY ...

PHYS. REV. D 108, 103508 (2023)

particularly interested in the moments of the coefficients,
rather than their actual values. Furthermore, the ACDM
model predicts these fluctuations to be statistically isotropic
and Gaussian, thus fully characterized by the mean and the
second moment,

C(0) = (5T(h), 5T(7')), (2)

where @ is the angle between two directions in the sky 7
and 7’. Homogeneity and isotropy imply that the second
moments of a,, are diagonal and depend only on the
multipole # and can thus be fully characterized by the
angular power spectrum C, f,z

<at’ma;’m’> = Cféff’émm" (3)

The angular power spectrum C, is related to the correla-
tions in physical space C(6) through

() = 41 > (26 + 1)CsP4(cos 0), (4)

T

where P(cos@) are the Legendre polynomials.

Early observations [1] indicated that the fluctuations were
consistent with an almost-scale-invariant power spectrum.
This is precisely the prediction of theoretical models within
the inflationary paradigm, as long as inflation lasts long
enough. Although the standard ACDM model’s predictions
are able to fit the data well, in general, some anomalies have
been identified and persist in more recent observations [2].
Let us briefly review three that are relevant in the context of
quantum cosmology and bouncing scenarios.

A. Power suppression anomaly

Observations show that there is a lack of correlations at
large angles (larger than 60°) with respect to the expected
behavior for ACDM. This translates to some lack of
power in the angular power spectrum for low £ and is thus
commonly called the power suppression anomaly. How-
ever, what is most relevant is that the two-point correlation
is remarkably consistent with zero for these scales, except
for some anticorrelations at 180°. Numerically, the anomaly
is best quantified via the estimator

aﬂzllﬁwwmwy (5)

1/2

To simplify calculations and avoid noise coming from
C(0), this quantity may be computed through C, by
inserting (4) as

*Note that the angular power spectrum can always be defined
as (|agm|?), but it is only in the case of random Gaussian
statistically isotropic temperature fluctuations that it fully de-
scribes the second moment.

fmax

Sip=>_ CelspCp. (6)
=2

where [, include the integrals of products of Legendre
polynomials and can be found in Appendix A of [25].* The
sum should, in principle, be over all (available) Z, £/, but it
is enough to consider up to £, ~ 100, as the Legendre
polynomials sufficiently suppress higher multipole terms.

From Planck’s cut-sky data (where the portion of the sky
contaminated by our galactic disk has been removed
through a mask), this quantity is found to be around
1200, the exact value depending on the choice of map
and mask [2], whereas for full-sky data (where the con-
taminated region has been reconstructed) it is around
6700 [26]. These correspond to very unlikely realizations
of the Universe according to the ACDM model, where this
quantity is expected to be around 35000, with the observed
values corresponding to p values of ~0.1% and ~5%,
respectively.

B. Lensing anomaly

As a consistency check, a phenomenological parameter
A; can be introduced to control how much or how little
the CMB is lensed from the surface of last scattering until
today, such that A; = 0 means it is not at all lensed, and
A; =1 corresponds to the prediction of the standard
model. The anomaly is manifest in a Bayesian analysis
of the ACDM + A; model, as it shows that the data prefer
A; > 1 at a 2-¢ level, and with large improvements of )(2.5
If one also leaves the curvature of the Universe as a free
parameter, then A; = 1 is within the 1-o region if we
allow the curvature to be negative, corresponding to a
closed universe. However, this leads to discrepancies with
other sets of data, which have been dubbed a “crisis” in
cosmology [41]. Concretely, the point of view adopted in
[41] is that fixing the curvature of the Universe to be flat
hides the inconsistencies in the data that are observed when
the curvature is left free. The parameter A; allows then
to quantify these inconsistencies even when they are
hidden behind the choice of flat universe. Our viewpoint
is that a resolution of this anomaly must address the overall

3Note the difference in notation: the authors of that work refer
to Zs(x), which can be related to our notation through

Iffi = %(,,MH)IM(X =1/2).

Here we define the p values as the probability of finding
values of S/, at least as low as that observed in a random
realization, given cosmic variance.

The significance of this anomaly depends on the set of data.
For the Planck 2018 data without lensing, this significance
reaches about 3-0, whereas for the data with lensing it is smaller
than 2-o. In this work, we will consider the data with lensing,
so that our results can be compared with those of other
investigations in LQC that rely on the same data, such as [18,19].
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inconsistencies between predictions and observations,
without affecting the lensing physics of the CMB.

C. Parity anomaly

The data also show an anomalous power excess of odd-Z
multipoles with respect to even ones for large angular
scales (£ < 30) in the angular correlation function C,.
Concretely, the parity asymmetry estimator is taken to be
Rﬂ(fmax) = D+(fmax)/D—(fmax)’ where

(¢ +1)

o o (7)

1 +
D:t('/ﬂmax) = f_i Z

tot f:zsfmax

quantify the mean power contained in even (+)/odd (-)
multipoles up t0 £y, and £, is the total number of
even/odd multipoles from 2 to Z,,,,. Although the ACDM
model predicts neutral parity (RTT = 1), it is found that
R™(£,.) < 1 for low multipoles, with a statistical sig-
nificance <20 [2]. Previous studies have indicated this
might be related to the power suppression anomaly [20,21].

III. LOOP QUANTUM COSMOLOGY

LQC is a nonperturbative and background-independent
approach based on the techniques of LQG, which are
applied to cosmological models. Its main result is that of
the resolution of the big bang singularity in terms of a
quantum bounce, which connects a contracting epoch of
the Universe with an expanding one. It then opens a
window for the study of preinflationary physics. In a flat
FLRW universe minimally coupled to a scalar field subject
to a potential, this bounce is likely to take place in a
kinetically dominated regime [12], during which the uni-
verse undergoes a short period of very rapid acceleration
immediately after the bounce, followed by a period of
decelerated expansion. Then, once the potential of the
scalar field starts to dominate, standard slow-roll inflation
begins. A brief review of the background dynamics in LQC
can be found in Appendix A.

As mentioned in the previous section, a nearly scale-
invariant primordial power spectrum of cosmological
perturbations, such as the one obtained in inflationary
models with enough inflation, reproduces remarkably well
most of the features of the observed CMB. This limits any
modification to this power spectrum, so as not to spoil the
agreement with observations that is already achieved.

The preinflationary dynamics of LQC may affect the
evolution of cosmological perturbations and therefore the
primordial power spectrum. In this setting, it is no longer
justified that perturbations reach the onset of inflation in
the standard Bunch-Davies vacuum typically assumed in
standard cosmology. Indeed, in LQC there is well-defined
dynamics before inflation, and one may instead choose to
fix the vacuum at the bounce or even in the prebounce
branch. Either way, the dynamics of the background will

affect the evolution of at least some modes of the
perturbations, which may then reach the onset of inflation
in an excited state with respect to the Bunch-Davies
vacuum. In turn, these modes will freeze out during
inflation in a different state than that of standard cosmology
and therefore lead to differences in the primordial power
spectrum. Additionally, the equation of motion of scalar
perturbations receives explicit quantum corrections, adding
to the effect due to different background dynamics [13,14].
These also depend on the choice of prescription to quantize
the system with perturbations [30]. In this work, we
consider the dynamics obtained through the hybrid LQC
prescription [28-31]. Details of the computations including
the equations of motion of the Fourier modes of the
perturbations k are provided in Appendix B 1.

The question then becomes whether these departures
from the near-scale-invariant power spectrum of standard
cosmology occur within the observable window. The
concrete predictions of the primordial power spectrum
depend on details of the procedure and, importantly, on
the choice of vacuum. However, departures from near
scale-invariance will occur always at infrared wave num-
bers of the characteristic scale of the bounce given by &y oc,
which is related to the Ricci scalar (or, equivalently, the
energy density) at the bounce. The value of ke also
depends on the value of the inflaton field at the bounce ¢p.
A larger ¢pp will generate more e-folds of inflation, washing
out the effects of the preinflationary dynamics on the power
spectrum to more infrared scales, leading to lower k.
Although some heuristic arguments may help fix this value,
we will leave it as a parameter of our model throughout this
work. In short, the preinflationary dynamics of LQC or any
bouncing model with a period of kinetic dominance prior
to inflation, leads to a primordial power spectrum that
agrees very well with the nearly scale-invariant one of
standard cosmology for k > ki ¢, and that departs from it
for k < ki gc. The value of k¢ and how much the power
spectrum differs from that of standard cosmology might
depend not only on the precise details that define the LQC
preinflationary dynamics of both the background and the
cosmological perturbations, but also on the choice of
vacuum state for the latter.

One of the choices of vacuum state that has received
quite some attention in the LQC literature is the family of
the so-called NO vacua [33-37]. These states minimize the
oscillations in the evolution of the power spectrum in a
given time interval (here from the bounce to the onset of
inflation). This indeed translates into a minimization of
the oscillations in the power spectrum at the end of inflation
as a function of the comoving wave numbers k. Their
motivation comes from the fact that a highly oscillatory
behavior of the power spectrum can be understood as some
vacuum excitations that could mask the information about
the traces of the fundamental state of the inhomogeneities.
In other words, this is a state for cosmological perturbations
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TABLE L

Values of the parameter k. used in this work cast into the corresponding values of ¢y and number of e-

folds of inflation for the quadratic and Starobinsky inflation potentials. We also include the corresponding values of
ki qc- More details on these calculations can be found in Appendix B, Secs. B2, B4, and B 5.

Quadratic Starobinsky
ke (Mpc™') s N kioc (Mpe™) op N kige (Mpc™)
kP — 4.44 % 10~ 0.940 64.6 0.635 —-1.460 61.4 1.12
knax = 7.70 x 107 0.925 64.1 2.03 —1.462 60.8 3.41

well adapted to the background dynamics from the bounce
to the future. One would thus claim that the NO vacua are
optimal to gain observational access to those regimes near
the bounce where LQC effects are non-negligible. This is
the point of view adopted in [33-37].

In this work, we will carry out a Bayesian analysis
comparing Planck cosmological data with the physical
predictions corresponding to choosing the NO vacuum
of [33,34] as the state of the perturbations in the context of
LQC. We will refer to this model as LQCNO. Such an
analysis, not done so far to the best of our knowledge, is
essential to quantify how well the primordial power
spectrum corresponding to the NO vacuum agrees with
observations. Its power spectrum is exponentially sup-
pressed for k below a certain scale k., with some minimal
oscillations for k = k., as shown in Fig. 1. Note that this
means that k; o¢ is somewhere ultraviolet of k., though the
main modifications to the power spectrum occur infrared of
it, via the power suppression. The two scales are propor-
tional through a factor that depends on the value at the
bounce of both the inflaton and the energy density (see the
examples in Table I). We will consider this scale to be fixed,
as it was shown in [35] that the primordial power spectrum

<
&
---- ACDM
— LQCNO
Ink,
Ink
FIG. 1. Typical primordial power spectrum of scalar perturba-

tions for the LQCNO model (solid red line), as parametrized
by (8), and the corresponding power spectrum for the ACDM
model (dashed black line).

arising from the NO vacuum is almost invariant under
changes in that energy density scale. To simplify compu-
tations, we have parametrized this power spectrum with
three free parameters, k., A, and ng,

Pr(k) = f(k.k)PR"M (k). (8)

where

PR =, (1) o)

is the near-scale-invariant power spectrum of the ACDM
model, and f(k, k.) parametrizes the departure from it for
LQCNO as described in Appendix B 3. Then, the param-
eter k. encodes the freedom particular to the LQCNO
model, which relates to the freedom in the choice of ¢y
or, equivalently, the number of e-folds of inflation. For
a more intuitive picture, throughout this work we will cast
k. values into the corresponding (approximate) number
of e-folds of inflation in models with quadratic and
Starobinsky inflaton potentials. Approximate numerical
expressions to relate these quantities can be found in
Appendix B, Secs. B4 and B 5.

A. Bayesian analysis

Our model comprises of seven free parameters: k., which
encodes the freedom particular to LQCNO, and the six
parameters of ACDM.® Of these, two refer to the para-
metrization of the primordial power spectrum, as men-
tioned in the previous section: A, and n,. The remaining
parameters are the baryonic and cold matter densities
Q,h* and Q h?, the angular scale of acoustic oscillations
1006y;c, and the optical depth at reionization 7,,. These
four are relevant to characterize the postinflationary
Universe and model the propagation of perturbations from
the surface of last scattering until today.

®0One could also consider the energy density scale of the
bounce as an extra parameter. However, as explained before, the
primordial power spectrum of the NO vacuum is insensitive
to this scale, so we will not consider it as a free parameter in
this case.

103508-5



MARTIN-BENITO, NEVES, and OLMEDO

PHYS. REV. D 108, 103508 (2023)

To compute predictions that can be compared with
CMB observations, we have used the publicly available
Boltzmann code crLAss [42], to which we have given
externally the primordial power spectrum parametrized
above. With this strategy, there is no need for modifications
of the code to accommodate LQC, as it is relevant only
inasmuch as the primordial power spectrum is affected. The
postinflationary processes will not be modeled any differ-
ently with respect to standard cosmology, and thus CLASS
can be used directly to simulate them. This will allow us to
obtain the angular power spectrum C, for a given point in
parameter space. Furthermore, we have resorted to MONTE
PYTHON [43,44], a sampler which is interfaced with CLASS
to apply the Markov chain Monte Carlo method that we
have used to explore the parameter space and perform
the Bayesian analysis of this work. The analysis has
been performed using the CMB Planck 2018 data with
lensing [45,46].

We will start by analyzing the freedom in k... To do so, let
us first clarify its physical meaning. As explained previ-
ously, this scale is closely related to k; g¢c. Concretely, they
are monotonously related and it is always true by con-
struction that k¢ > k.. Then, if k. is sufficiently smaller
than the minimum observable wave number, the signatures
from LQCNO will not be visible, as the observed portion of
the power spectrum will perfectly agree with the standard
one. Conversely, if k.. is larger than the minimum observed
value, the corresponding power spectrum will be such that
the power suppression with respect to near-scale invariance
is within the observable window.

The posterior probability resulting from the Bayesian
analysis is thus non-Gaussian in k., as it necessarily
plateaus for low values that correspond to a primordial
power spectrum that agrees with that of ACDM in the
observable range. The analysis of such a posterior needs to
be performed carefully, as the typical parameters of best fit
(the value of the parameters at the peak of the distribution)
and 1-0 region (the region that encapsulates 68% of the
total volume of the posterior) do not hold the usual physical
meaning in this case. Although we find that the best fit of k,.
is below the observable range, without the context of the
corresponding 1-¢ interval we have no physical interpre-
tation for this information. In other words, since the
probability distribution is not Gaussian, in our case the
best fit artificially singles out a particular realization of
the model that could be far from being a very likely one.

With this in mind, we focus our analysis on the
marginalized posterior probability for k. shown in Fig. 2,
obtained by analyzing the LQCNO model with all seven
parameters free and integrating the posterior over the other
six. This way, the marginalized posterior at each point in k.
is informed by the whole six-dimensional space of the
remaining parameters. The cutoff of the posterior for low k.
is not a reflection of a preference in the data, but rather of
the minimum allowed for the runs. Then, the portion of the

posterior

----- min for runs

= =+ min observable
peak

k(‘

—  Jymax
k(‘

-12 -1l  -10 -9 -8 7 -6
Ink,

FIG. 2. Marginalized posterior probability of the parameter &,
of LQCNO resulting from a Bayesian analysis of the model with
all its seven parameters free and integrating over the remaining
six. The gray region represents the portion of the explored
parameter space that leads to a power spectrum where the
modifications due to LQCNO are not observable.

posterior probability corresponding to k. lower than the
minimum observed is roughly a plateau, as expected. On
the other hand, for scales larger than the minimum observed
one, the posterior probability displays a maximum followed
by a very sharp cutoff. Let us now note that this cutoff is not
a reflection of the maximum allowed for the runs, which
was set at a much larger value. In this instance, it does
represent an actual preference in the data for k. to be below
a certain scale. Nevertheless, there is a clear preference for
some of the effects of LQCNO to be within the observable
window, as the maximum likelihood corresponds to a value

of k, that is observable. We will denote this as k*** in the
following sections.

This result agrees qualitatively with that of [47], where a
similar parametrization is used for the power spectrum and
that served as inspiration for the parametrization used here.
The difference lies essentially in the form of the suppres-
sion at infrared scales and in the amplitude of oscillations.
Additionally, the motivation for the two cases are different,
as in [47] the power spectrum arises from a classical model
with a period of kinetic dominance followed by a de Sitter
branch, with only two free parameters: n; and a scale
related to our k..

In summary, the data prefer a k, that is observable over
one that is not (which corresponds to an observable power
spectrum equivalent to that of ACDM), but it very strongly
constrains it. In other words, the marginalized posterior
probability of k.. indicates that some departure from ACDM
is preferred. This is further supported by the fact that both
the minimum and average of the y° statistic are slightly

lower for the LQCNO model with k. fixed at k*** than
that for ACDM (with A min y? ~ 1.7 and Ameany? =~ 0.5).
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This improvement is also discussed in Refs. [20,21].
However, Refs. [18,19] do not report this value.
In the rest of this analysis, we will consider two separate

models. The first is LQCNO when fixing k. to k**. The
second is LQCNO when k. is fixed to k'™, which we
consider as the limit of maximum k., considering agree-
ment with observations. The concrete values of these
scales, the corresponding values of ¢p, and the number
of e-folds of inflation N are given in Table I for quadratic
and Starobinsky inflation. For comparison, Table I also
displays the corresponding value of the characteristic scale
of LQC: k¢ = ag+/Rp/6, where R is the scalar curvature
and the subscript B denotes evaluation at the bounce.’
Let us now compare the posterior probabilities of the six
ACDM parameters in the ACDM and LQCNO models,
as shown in Fig. 3. For clarity, in these figures we do not

present the case of LQCNO with kP as it sits between
ACDM and k™. Most parameters seem to be mostly
unaffected, except for A, and 7;,, as is evident from the
one-dimensional marginalized posterior distributions. The
shifts in the contour plots of Fig. 3 are due to shifts in these
two parameters. These are known to be correlated. A more
opaque surface of last scattering corresponds to a lower
optical depth 7, by construction, and will result in pertur-
bations reaching us with less power and thus lower A;. It
seems natural then that the suppression of infrared modes
of the LQCNO power spectrum will be compensated by
higher power at the (already ultraviolet) pivot scale A;.
Consequently, 7, also increases. Although this is the least
constrained parameter of ACDM, this offers an opportunity
for a falsifiable picture of LQCNO in the future, as
independent measurements of 7., will help to constrain
it further and therefore will allow one to distinguish
between LQCNO and ACDM [48].

B. Alleviation of anomalies

To investigate the possible alleviation of the anomalies,
in this section we will fix &, to the values of Table I within
the range where agreement with data is still achievable:
k2 and kM. The goal is to show how much LQC may
contribute to the alleviation of anomalies depending on the
choice of this parameter. The remaining six parameters will
be left free and a Bayesian analysis is performed of the two
models.

1. Power suppression

For each value of k., fixing the remaining parameters to
the best-fit values obtained from the Bayesian analysis, we
compute the corresponding C, using CLASS. From these,
we are able to compute S/, through (6). This is the
expected value of §;/, for our model, shown in Table II,

"In Appendix B 2 we give details on how to translate wave
numbers k expressed in natural units to Mpc™'.

TABLEIL.  Expected values of S}, and corresponding p values
with respect to observations for cut-sky (S, ~ 1200) and full-
sky data (S, ~6700) for ACDM and LQCNO with different
choices for k.. Note that we define the p value as the probability
of obtaining a realization with §,/, at least as small as the
observed one, according to the model.

p value
Model Si2 Cut sky Full sky
ACDM 35430 ~0.1% ~5%
LQCNO k2 14557 ~2% ~26%
LQCNO kM 7799 ~5% ~55%

which decreases substantially the higher the k.. This is in
agreement with what has been found in other scenarios
within LQC [19,21].

However, this alone is not enough to infer that the
anomaly has been alleviated. Indeed, our model might be
capable of lowering the expected value of this quantity,
with respect to ACDM, but it might also affect the variance
of its distribution such that the observed value still
represents a very unlikely realization of a universe accord-
ing to the model. In other words, it is necessary to compute
the p value of the observed S /, in the context of our model.
To do so, we need to take into account that the previously
obtained C,’s are random variables with a Gaussian
distribution with a variance given by the cosmic variance.
Note that S, /, is a sum of products of C,’s, and therefore its
distribution is not Gaussian. It is more straightforward to
obtain it numerically, through a Monte Carlo method.

We have sampled the C, space randomly, computed
S/, for each point, and thus obtained the corresponding
distributions of S ,, shown in Fig. 4. The p value of the
observed S/, is simply the fraction of points that have
resulted in S/, at least as small as the observed one. As
shown in Table II, the p value improves substantially for
higher k., both for the cut- and full-sky observations. In this
manner, we are able to say that the LQCNO model is
capable of alleviating this anomaly, as the observed values
are more likely realizations of the LQCNO model than
of ACDM.

2. Lensing anomaly

For this analysis, we have included the extra parameter
A; in our model and performed a Bayesian analysis with
the ACDM parameters as well as A; free. As mentioned,
the best fit of almost all ACDM parameters is only sightly
affected, except for 7., and A,, which are correlated.
Looking at the A; vs 7 contour plot of the posterior
probability in Fig. 5, we can see that it shifts to higher
values of 7,.;, and lower values of A; as k. increases. For an
appreciable k. within the observational window, this shift
has pushed the 1-o region to include A; = 1. Evidently, the
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dynamics of LQC does not affect the lensing the CMB goes
through before it reaches our telescopes. Instead, what we
can conclude is that the model no longer presents the
inconsistencies that are quantified through A; at the same
level as the ACDM model.

Again, this analysis will benefit from future observations.
As they constrain further and independently 7., they will
help constrain &, and effectively constrain how much the
dynamics of LQC may affect predictions in the observable
window and contribute to the alleviation of anomalies.

1.0425

301 305 3.09 00955 0.970 0.04 006 0.08
lnlOloAS ng Treio

1- and 2-0 confidence limit (C.L.) 2D contours for the six ACDM parameters, plus 1D marginalized posteriors, for ACDM

3. Parity anomaly

It has been shown in [20,21] that LQC may be able to
alleviate the parity anomaly, when the power spectrum is
such that non-Gaussianities become important. In those
works, the considered power spectra show a power-law
suppression for infrared modes, as is the case in the LQCNO
model, as well as some power enhancement for intermediate
scales. Non-Gaussianities introduce a coupling between
(nonobservable) superhorizon modes and the largest observ-
able ones. This affects the two-point correlation function,
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FIG. 4. Distribution of S}, considering a Gaussian distribution
of cosmic variance for C,’s. Also represented are the observed
values for cut-sky (solid gray line) and full-sky data (dashed
gray line).
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such that the mean value of the perturbations may remain
unaltered, but the variance increases. In this sense, the
anomalies are alleviated, as observations are more likely
realizations in this scenario. Nevertheless, the concrete
power spectra considered in those works can also affect
the mean value of the parity asymmetry statistic.

In this work, we would like to understand the role of the
power suppression of infrared modes in the alleviation
of this anomaly. As such, we have computed the parity

asymmetry statistic for the LQCNO model with 2°* as
well as ACDM as outlined in Sec. I C, shown in the upper
plot of Fig. 6. For clarity, we do not represent this statistic
for LQCNO with k", as it sits close to these two. It is not
always below that of K2**, for some £, it is between that

of k*®* and ACDM. In other words, there does not seem to

1.4 1

1.2 1

1.0 A

0.8 1

RTT

---- LCDM
—— LQCNO kpeak
—e— data

10 20 30 40

fmax
FIG. 6. Upper: parity asymmetry statistic R™T as a function of
the maximum multipole ¢ ,,, for ACDM (dashed black line) and
LQCNO with k2°* (solid red line) and the corresponding Planck
data (black dots). Also represented are the 1- and 2-¢ regions
corresponding to ACDM (gray regions) and LQCNO with k7"

(red regions). Lower: p value of the observed data with respect to
the models.

be a clear monotonic behavior of this quantity with k.,
as we have seen with S5, A7, and 7,,. In any case, the
LQCNO model introduces a small power asymmetry.
However, as is the case of the power suppression anomaly,
this is not enough to conclude an alleviation of the anomaly.
Indeed, the p values (represented in the lower plot) indicate
that it is not the case for most #,,,. To compute them, we
consider again the C, to be Gaussian random variables with
cosmic variance and sample them through a Monte Carlo
method, obtaining the corresponding distributions of RTT
for each 7,,,,. In Fig. 7, we represent these distributions for

40000 Cmax =22
I ACDM
- ek

30000 1 ——

20000 -

10000 -

0.6 0.8 1.0 1.2 1.4 1.6 1.8
RTT

FIG. 7. Distribution of R™T for £,,,, =22 (lowest p value)
considering a Gaussian distribution of cosmic variance for C,’s.
Also represented is the corresponding observed value (solid
gray line).
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the case of £, = 22, which results in the lowest p value
for all three models. Remarkably, from this figure it is clear
that actually the distribution of RTT becomes thinner for
higher values of k. suppression. The slight shift in the mean
is not sufficient to increase the p value of the observation,
which is in the tail of the distribution; instead, it actually
decreases it for the particular case of ¢,,,, = 22 represented
in the figure. This is, of course, just one case, but it
illustrates how the p values may be lower even when the
expected value of the estimator is closer to the data.
Evidently, for some ¢, this is not the case and the p
value increases slightly in the case of LQCNO. Overall, the
anomaly is essentially as strong as in the standard model.

IV. CONCLUSIONS AND DISCUSSION

In this work, we have aimed to perform a rigorous
statistical analysis of the LQCNO model, via a comparison
with Planck CMB data. On the one hand, the goal was to
find possible signatures from this model in the data. One
may argue that such predictions may also be obtained
within the ACDM as long as one chooses the correspond-
ing vacuum at the onset of inflation. In this case, such a
choice would be ad hoc, whereas in the LQC model that we
have considered, they are well motivated. In this spirit, we
have first performed a Bayesian analysis with all seven
parameters of our model free (six of them coinciding with
those of ACDM plus an extra scale k. inherent to our
model). This allowed us to conclude that the data show a
preference for some of the effects particular to LQCNO to
be within the observable window. This is quantified in the
marginalized posterior probability of the parameter k.,
which shows a peak in the observable window and a sharp
cutoff shortly after. It seems that the LQCNO model may
adjust the data as well as ACDM, and even slightly better
when we fix the free parameter such that LQC effects are
observable. We have also found that the LQCNO model
with fixed k. affects appreciably the best fit of the optical
depth at reionization 7.;,. This opens the possibility of
constraining k. with future observations of 7.;,. A more
rigorous comparison between LQCNO and ACDM would
require the computation of the Bayesian evidence. Given
that this calls for computationally demanding methods to
thoroughly explore the parameter space, we believe it is a
tool that is most useful when we are able to constrain k.
further from the data so that we may compare ACDM with
a model of LQCNO with fixed initial conditions motivated
by observations.

Furthermore, we have investigated the effect on anoma-
lies of two illustrative models of LQCNO: one with
initial conditions corresponding to the peak of the mar-
ginalized posterior distribution of k. and one in the tail of
this distribution within the observational window, as a
limiting case. We find that, for both the power suppression
and the lensing anomalies, the more the effects are within
the observational window, the more the anomalies are

alleviated. We have obtained the distribution of the esti-
mator that quantifies the power suppression anomaly and
found that the p value of the observation improves in the
LQCNO models with respect to ACDM. In the case of the
lensing anomaly, we found that the 2D posterior probability
of the lensing amplitude A; and optical depth at reioniza-
tion is shifted, such that the 1-o region is pushed closer to
A; = 1. On the other hand, for the parity anomaly, we have
found that the power suppression that the LQCNO model
offers in the primordial power spectrum is not enough to
alleviate this tension, as it introduces only a slight asym-
metry in the expected value, and in some cases the p value
of the data actually decreases. Additionally, the effect on
this asymmetry does not seem to depend on the scale k. as
much as the estimators of the previous anomalies. In this
sense, given previous works in the literature [20,21], we
believe non-Gaussianities would be relevant in this context
and necessary for the alleviation of this anomaly.

On the other hand, this work is part of a larger effort to
find robust results that are the consequence of LQC, in
general, regardless of the ambiguities. We have shown that,
in the context of hybrid LQC, and with the particular choice
of the NO vacuum, there is a preference for the effects of
LQC to be observable and some alleviation of anomalies
is possible. However, a power suppression of infrared
modes is common in primordial power spectra of LQC
models [18,20,33,39]. Any model that leads to a power
spectrum with power suppression in the infrared will have
the potential of alleviating these anomalies in the same way.
More commonly, some power enhancement is also present
for intermediate scales. The natural continuation of this
work is to consider such power spectra and perform a
similar analysis.
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APPENDIX A: BACKGROUND DYNAMICS
OF LQC

In this appendix, we provide a brief summary of the
effective equations of motion of FLRW spacetimes in LQC.
For more details about the physics of these models, see,
e.g., [4,8]. In LQC, the scale factor and Hubble parameter
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are quantum operators well defined on the states of the
system, described by a wave function ¥ on a suitable
Hilbert space. The semiclassical sector of the theory is well
represented by quantum states ¥ that are sharply peaked on
a classical geometry at late times (i.e., low curvatures).
There, general relativity is an excellent approximation.
The expectation values of observables follow trajectories
given by the so-called effective dynamics. They follow
from an effective Hamiltonian that includes 7 corrections
[49,50]. The phase space is a collection of pairs of
canonical variables, the geometrical sector described by
the Ashtekar-Barbero variables, and the matter sector by
the scalar field and its momentum. The nonvanishing
Poisson brackets are®

82Gy
3V

{e.p} = (A1)

1
{¢’P¢} = V—o’

where G is the Newton constant and y is the Barbero-
Immirzi parameter. The variable p is related to the scale
factor a of the spacetime line element as |p| = a* and
¢ =ya/Ny, Ny being the lapse function.

The leading order effective Hamiltonian takes the form

=3|p|'2sin’(fc) Py
82Gy> @ 2|pf?

HLQC = NV, +[pPPv(e)].

(A2)

where i = \/A/|p| is the length of the edge of a (square)
plaquette that encloses a physical area equal to A =
4\/§7ryGh, the smallest nonzero eigenvalue of the area
operator in LQG. In the following, unless otherwise
specified, we will choose Ny = 1, which corresponds to
cosmological time.

Out of the Hamilton equations, it is possible to derive the
following modified Friedman equation:

87G
Hz:Lp(l_ﬁ),
3 Pe

Here H = a/a is the Hubble parameter and p. =
3/8nGy*A is the critical energy density. When p = p,,
the Hubble parameter vanishes. This corresponds to a
cosmic bounce. Hence, p,. determines the curvature scale
at the bounce. However, we should note that LQC effects

(A3)

¥Because the spatial slices are homogeneous, some integrals
involved in the definition of the Hamiltonian and the symplectic
form will diverge if the spatial slices are noncompact. This
divergence is actually spurious. In order to regularize it, we restrict
the integrals to a fiducial cell with large but finite coordinate
volume V. This volume can be taken to infinity at the end of the
calculation. Hence, it acts as an infrared regulator. In any case,
physical quantities will not depend on the value of V.

are entirely negligible away from the bounce. In other
words, significant departures from classical general rela-
tivity only happen for a very short time interval around the
bounce of the order of the time ~p§1/ * in Planck units.

Furthermore, in order to evolve the equations of motion
of the perturbations, we first need to specify the potential of
the scalar field as well as initial conditions for background
variables. We considered in this work the quadratic and
Starobinsky type potentials,

V@) =Vo(1-eVEP) (a4)

respectively. An agreement with observations requires m =
1.21 x 107% and V) = 1.77 x 107'3 [24,51]. For the initial
data, in this model we only need to specify ¢ = ¢(t = 1),
since H? equals zero at the bounce, namely, at t = tg.
The kinetic energy of the scalar field is obtained from the
condition p(r = tg) = p.. One should also specify the
value of the scale factor at the bounce. We will discuss
this below.

APPENDIX B: DETAILS OF NUMERICAL
COMPUTATIONS OF PERTURBATIONS

1. Equations of motion

In this work, we wish to obtain the primordial power
spectrum of the comoving curvature perturbation
Ry = uy/z, which is computed by

_ S |Mk|2
C2r 2

Pr (k) (B1)

N=Mend

at conformal time #.,y when inflation ends. Here,
7 = a¢p/H, where the dot represents derivative with respect
to cosmological time. Additionally, u; obey the equations
of motion

w(n) + (K + s(n))uz(n) =0, (B2)
where prime denotes derivative with respect to #, the so-
called conformal time, defined as dn = dt/a(t). The time-
dependent mass term s(#) depends on the particular model.

For standard FLRW cosmologies s(17) = —z”/z. In the case
of the hybrid LQC approach,

s(n) = - 4”TGa2(p —3P) +a? {VW + 487GV (¢h)
' 487G
+ 6234; V- Z v2(¢)} . (B3)

It is dependent on background variables a and H, p (energy
density of the inflaton), and P (inflaton pressure), as well as

103508-11



MARTIN-BENITO, NEVES, and OLMEDO

PHYS. REV. D 108, 103508 (2023)

on the inflaton potential V(¢) and derivatives of it with
respect to ¢.

In general, there is no analytical solution to (B2) with
time-dependent mass (B3). It can be computed numerically
given initial conditions u; (), u; (1), the choice of which
amounts to a choice of vacuum of the perturbations. As
mentioned in the main body of this work, we choose it to be
the NO vacuum of [33,34].

As we mentioned, the initial conditions for the back-
ground are determined by the value of the inflaton at the
bounce ¢, the value of the scale factor at the bounce, and
the critical value of the energy density (at which the bounce
occurs). We will elaborate on the first two choices shortly.
The third could, in principle, be left as a free parameter
(which is equivalent to leaving y free); however, the
primordial power spectrum of the NO vacuum has been
shown to be almost invariant under changes in the critical
energy density. Thus, we fix y = 0.2375, as is common in
the LQC literature.

2. Value of the scale factor at the bounce and relation
between scales

As usual in the context of LQC, we also fix the scale
factor to be 1 at the bounce, for convenience. However, in
standard cosmology, the scale factor is usually fixed to be
1 today. This choice is arbitrary, as the physical quantity
is not the scale factor, but ratios of it. Nevertheless, to
compare our predictions with observations we need to
relate the two approaches, specifically taking into account
that each one leads to different scales of the modes k.

The procedure is as follows. We compute the dynamics
of the background and of perturbations given our choice of
scale factors, which results in a power spectrum PR(I}) for
Fourier modes k. Given our choice of vacuum, this power
spectrum is the near-scale-invariant one of standard cos-
mology, with some oscillations and an exponential power
suppression for infrared modes. The scale at which these
departures from near-scale invariance occur depends on ¢p.
Then, to relate the scale k with the one of standard
cosmology, we resort to the pivot scale k, as a reference
scale. By definition, this is the scale at which the primordial
power spectrum is A,. For Planck data, k, = 0.05 Mpc~'.
Then, for a given A, we find the pivot scale in our units
k, as Pg(k,) = A,. Finally, we can rescale k to k =
k -k, /k,. The power spectrum in this scale may now be
compared with observations from the Planck Collaboration.

The effect is to displace Px (k) logarithmically in k.

3. Parametrization of NO vacuum scalar primordial
power spectrum

In summary, the departures from near-scale-invariant
power spectrum occur at a scale that depends on both ¢p
and A,. Thus, to simplify calculations, we parametrize it

with one free parameter that defines the scale at which
exponential suppression occurs, encapsulating all the free-
dom of the power spectrum in our model.

Inspired by [47], we have parametrized it as

{ Nfsup(k)fH(%) if k < %,
Nfoup(K)fu(k) if k2%,

where g, (k) = 1 —exp(—(k/kg)*) parametrizes the
exponential suppression, and
T

(ke (k) kagyo(k
2kgk| <kd) Sm( kd) 270 <kd

2
X 25003 Ci — sin Ck
ky ky ky

: (B3)
@)

where H,;’(x) is a specific Hankel function of the second
kind, and k; ~ k./1.7. Here, k, separates the regions of
oscillation and exponential suppression and is the param-
eter that encodes the ambiguities coming from LQC, N is
a normalization factor so that A; maintains its meaning
as in standard cosmology as the amplitude of the power
spectrum at the pivot scale k,, therefore fixed at
N = (fap(ki)fu(ky))™", 2. =295 is the slope of the
suppression, and C = 2/1.8 parametrizes the oscillations.

It is worth commenting that this parametrization is an
ad hoc choice that fits well our NO power spectrum, but
only for practical purposes, namely, for the simulations
we carry out in CLASS and the subsequent Bayesian
analysis. However, we must remember that this paramet-
rization has important limitations. For instance, it would
correspond to a state that is not of Hadamard type, unlike
the NO vacua.

fu(k)

4. Relation between ¢ and number of e-folds

As mentioned in the text, we leave the value of the
inflaton field at the bounce ¢ as a free parameter. This
value affects how much inflation occurs. Consequently, the
range of values explored is such that the resulting back-
ground dynamics produces enough e-folds for an agree-
ment with observations to be possible. This depends
heavily on the inflaton potential.

We find numerically that the number of e-folds of
inflation N is related to ¢y through

N =A¢p + B, (B6)
where for a quadratic potential A ~ 38 and B ~ 29, whereas
for a Starobinsky potential A ~259 and B ~440. The
number of e-folds from the bounce until inflation is
approximately constant with k., around 4.4 e-folds for
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the quadratic model and 4.9 e-folds for the Starobinsky
potential.

5. Relation between k., and ¢p
In order to relate k. of the parametrization back to ¢y,
we provide in this section approximate relations obtained
numerically considering A; to be fixed at the ACDM best-
fit value. We have found numerically,

¢y = Clnk.+ D, (B7)

where for the quadratic potential C = —0.027 and D =
0.735, whereas for the Starobinsky potential C = —0.004

and D = —1.490.
We consider this approximation to suffice, as the variation

of A, at 1-6 we have obtained from the Bayesian analysis
is of ~1.7%. Considering a spectral index n; ~0.96 this
impacts the shift in the scales k explained in Sec. B2 in
~49%, which would induce a variation of < 0.1%, according
to the relations found above.
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