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Abstract

Effective field theories offer a rationale to classify new physics models based on the size
of their contribution to the effective Lagrangian, and therefore to experimental observ-
ables. A complete classification can be obtained, at a fixed order in perturbation theory,
in the form of IR/UV dictionaries. We report on the first step towards the calculation of
the one loop, dimension 6 IR/UV dictionary in the SMEFT. We consider dimension-six op-
erators in the SMEFT that cannot be generated at tree level in weakly coupled extensions
of the Standard Model. This includes operators with three gauge field strength tensors,
operators with two field strength tensors and two scalar fields and dipole operators. We
provide a complete classification of renormalizable extensions of the Standard Model
with new scalar and fermion fields that contribute to these operators at one loop or-
der, together with their explicit contribution. Our results are encoded in a Mathematica
package called SOLD (SMEFT One Loop Dictionary), which includes further functional-
ities to facilitate the calculation of the complete tree level and one loop matching of
any relevant model via an automated interface to matchmakereft. All operators in our
list are indeed generated at the one loop order in the extensions considered with the
exception of CP-violating ones with three field-strength tensors.
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1 A new guiding principle in the search of physics beyond the
Standard Model

During a glorious first decade of the century, the naturalness principle guided theorists into
a model-building frenzy. An ever growing list of interesting new physics models was readily
waiting for the Large Hadron Collider (LHC) to find them. An extra decade of intensive ex-
perimental scrutiny, by the LHC and other experiments, has shown that new physics is not
likely to be as close around the corner as we expected. Indeed, there seems to be a mass gap
between the scales we are experimentally probing and the scale of new physics. When this is
the case effective field theory (EFT) becomes the best tool to analyse the phenomenological
implications of experimental data on models of new physics.

The way EFT facilitates this analysis is by splitting the relevant calculations in two indepen-
dent steps. In the bottom-up approach experimental data is parametrised in a very convenient,
mostly model-independent way by means of global fits to a fixed EFT. In the second step, the
top-down approach, specific new physics ultraviolet (UV) models are matched onto the EFT,
thus connecting, via the global fits, theoretical models to experimental data. The matching
calculation, which has to be repeated for each new physics model, can be easily performed
thanks to available automated matching tools like matchmakereft [1] or Matchete [2] (see
also [3]).

While naturalness arguments can still play a relevant role in the discovery and interpre-
tation of new physics beyond the Standard Model (SM), it is clear that it cannot be our only
guiding principle. The pressure from more and more stringent direct limits on the scale of new
physics together with the vast number of models to test indicates that we should find alter-
native guiding principles in our quest to discover physics beyond the SM. It is in this respect
that EFT shows its real power. Perturbation theory and power counting arguments provide
an ordering principle that allows us to estimate the size of the different contributions of an
EFT. Arguments based on symmetry and the topology of the different diagrams then allow
us to completely classify new physics models that contribute up to a certain observable order
in the EFT expansion. This classification leads to the idea of infrared (IR)/UV dictionaries,
which comprise a complete classification of new physics models that contribute to the EFT at a
certain loop and mass dimension order, together with the corresponding matching calculation
at that particular order. The leading, tree level and mass dimension 6, IR/UV dictionary for
the Standard Model effective field theory (SMEFT) was published in [4], building on previous
partial calculations [5–8] (see [9] for an alternative way of constructing the dictionary).
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IR/UV dictionaries have the potential to become a major guiding principle in the search of
physics beyond the SM. They provide a complete list of all models (and only those) that can be
experimentally accessible, including all possible correlations between different experimental
observables and, even more strikingly, including even models that have never been thought
of by theorists. Of course, this requires that the dictionaries be computed up to the relevant
order in perturbation theory to match the experimental precision. The tree level dictionary,
while extremely useful for sizeable effects, runs short when more precise experimental mea-
surements are considered and must be extended to the one loop order. In this article we will
report on the first steps towards the calculation of the complete one loop and mass dimension
6 IR/UV dictionary for the SMEFT.

Given the significant challenges inherent to extending the dictionary to the one loop level,
we will restrict ourselves in this work to a subset of dimension 6 operators, namely those that
cannot be generated at tree level in any weakly coupled extension of the SM [10,11].1 We will
also consider extensions of the SM with an arbitrary number of new scalar and fermion fields
and renormalisable interactions. Completing the dictionary will require adding new heavy
vectors, non-renormalisable interactions and extending the classification to all operators in a
physical basis of the SMEFT at dimension 6. We plan to do this in future works.

The rest of the article is organised as follows. We describe the operators considered in this
work and their UV origin in Section 2. The matching procedure used to complete the classifi-
cation and to obtain the corresponding result for the Wilson coefficients (WC) is discussed in
Section 3. The partial result of the dictionary computed in this work is presented in Section 4
in the form of the Mathematica package SOLD, followed by an example of the usage of the
dictionary for phenomenological studies in Section 5. We conclude in Section 6 and leave
some technical particular results for Appendices A, B and C.

2 One loop generated operators in the SMEFT: Classification and
UV origin

Given an EFT, the SMEFT at mass dimension 6 in our case, one can match any new physics
model in several different ways. Our approach is to perform a diagrammatic off-shell matching
which requires the definition of a physical basis and a Green’s basis. The former, for which
we adopt the Warsaw basis [18], is all we need to compute physical observables. The latter,
for which we follow matchmakereft’s convention [1], is needed to perform the off-shell
matching, which amounts to equating the tree level off-shell amplitudes in the EFT to the hard
region contribution of the one-light-particle-irreducible (1lPI) amplitudes in the UV model to
the required order in perturbation theory. Redundant and evanescent2 operators in the Green’s
basis are then reduced to the ones in the physical basis. Thus, considering the UV origin of a
specific operator in the Warsaw basis requires including the contribution to all redundant and
evanescent operators that contribute to it.

Any operator in an EFT can be generated at different orders in perturbation theory, de-
pending on the UV model considered. Certain operators, however, can never be generated at
tree level in any weakly coupled extension of the SM. This was shown, using simple topological
arguments, in [10] for the SMEFT at dimension 6 in a basis along the lines of what many years

1See [12] for a related analysis and [13, 14] for recent efforts towards the calculation of the dictionary for
four-fermion interactions. See also [15–17] for results on generic UV extensions for a set of operators in the low
energy EFT (LEFT).

2We follow in this work the slightly unconventional nomenclature of matchmakereft by defining evanescent
operators as those that are equivalent to operators in the physical basis in d = 4 space-time dimensions rather than
the more traditional one in which they are defined to be vanishing in d = 4.
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Table 1: one loop generated operators in the Warsaw basis. Shaded operators are
generated at two or higher order loops in SM extensions with fermions and scalars.

X3 X2H2 ψ2XH + h.c.

O3G = f ABC GAν
µ GBρ

ν GCµ
ρ OHG = GA

µνGAµνH†H OuG = (qTAσµνu) eHGA
µν

O
Ý3G
= f ABC
eGAν
µ GBρ

ν GCµ
ρ O

H eG
= eGA

µνGAµνH†H OuW = (qσ
µνu)σI
eHW I

µν

O3W = ε
I JKW Iν

µ W Jρ
ν W Kµ

ρ OHW =W I
µνW

I µνH†H OuB = (qσ
µνu) eHBµν

O
g3W
= εI JK
fW Iν
µ W Jρ

ν W Kµ
ρ O

HfW
=fW I

µνW
I µνH†H OdG = (qTAσµνd)HGA

µν

OHB = BµνBµνH†H OdW = (qσ
µνd)σI HW I

µν

O
HeB
= eBµνBµνH†H OdB = (qσ

µνd)HBµν
OHW B =W I

µνBµνH†σI H OeW = (ℓσ
µνe)σI HW I

µν

O
HfW B

=fW I
µνBµνH†σI H OeB = (ℓσ

µνe)HBµν

later would become the Warsaw basis, including the redundant operators that contribute to
the ones in the physical basis. The complete list of operators in the Warsaw basis that cannot
be generated at tree level are grouped in three classes. These are operators with three field
strength tensors, class X 3, operators with two field strength tensors and two Higgs bosons,
class X 2H2 and finally dipole operators in class ψ2X H. They are all collected in Table 1.

Let us discuss one loop contributions to each operator class in turn. In particular, we
are interested in the UV origin of such contributions, namely, which heavy scalar or fermion
fields can give rise to these operators at one loop order. The fact that light and heavy fields
are in complete, independent representations of the SM gauge group means that any gauge
boson insertion does not change the type of field in the amplitude. Thus, we do not need to
worry about gauge boson insertions in the following discussion (of course all required gauge
boson insertions will be properly taken into account when computing the actual amplitudes).
Operators in classes X 3 and X 2H2 do not receive contributions from redundant or evanescent
operators so we only need to focus on the generation of the physical operators. Operators in the
former class, X 3, can be computed from three gauge boson off-shell amplitudes. Neglecting the
gauge boson insertions these amplitudes are simply vacuum bubbles of a single heavy scalar
or fermion that is charged under the corresponding gauge group. Thus, any non-singlet scalar
or fermion multiplet will, in principle, contribute to the corresponding operator. Operators
in the X 2H2 class can be computed from H†H plus two gauge boson off-shell amplitudes.
Taking into account again that gauge boson vertices do not change the matter content, these
can be computed simply from H†H two-point functions (dressed with insertions of two gauge
bosons). Dipole operators, on the other hand, receive contributions also from redundant and
evanescent operators. All the relevant operators, including redundant and evanescent ones
(see Appendix C for a complete list) can be computed from amplitudes of the form ψ̄ψ(V ) and
ψ̄LψRH(†)(V ), where V stands for the corresponding gauge boson, ψL = {lL , qL} stand for the
left-handed fermions of the SM,ψR = {uR, dR, eR} for the right-handed ones andψ= {ψL ,ψR}
includes both. Neglecting again the gauge boson insertions we just need to consider ψ̄ψ and
ψ̄LψRH(†) amplitudes.

Once we know which amplitudes we need to compute we can use topological considera-
tions to fix the actual Feynman diagrams contributing to them. Any one loop Feynman diagram
satisfies the following relation between the number of external particles, E, and the number
of vertices,

E =
E+2
∑

n=3

(n− 2)Vn , (1)
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where n denotes the order (number of fields) of the vertices and Vn the number of vertices of
order n in the diagram and the sum ends at n = E + 2 because higher order vertices would
result in more than E external legs at one loop. In particular we are interested in the cases
E = 2,3, for which we have

E = 2= V3 + 2V4 , (2)

E = 3= V3 + 2V4 + 3V5 . (3)

Using these expressions and the form of possible renormalisable vertices (which further lim-
its n ≤ 4) between light and heavy scalars or fermions one can draw all generic Feynman
diagrams contributing to the hard region of the corresponding 1lPI amplitudes.3 From these
diagrams one can immediately determine the quantum numbers of possible UV completions of
the operators we are interested in.4 In practice, we can also determine the quantum numbers
of possible UV completions a posteriori, by using the explicit result of the matching to a generic
UV model as we describe in detail in the next section. We have cross-checked both ways of
classifying UV models finding full agreement in all cases.

All the operators in Table 1 are indeed generated at one loop order in extensions of the SM
with heavy scalars and/or fermions with the notable exception of the CP-violating operators in
the X 3 class, namely O

g3W and O
Ý3G , that can only be generated at the two loop order in these

models. This feature was already pointed out, within some simplifying assumptions, in [20].

3 Computing the implications of new physics models

3.1 Matching procedure

Once we have fixed the list of possible new physics models that contribute at one loop order
to a certain operator (in the Green’s or physical basis) we have to compute their explicit con-
tribution to the corresponding WC. Before explaining how we have performed this calculation
in general, let us emphasize that the operators we are interested in are first generated at the
one loop order. This means that we do not need to keep track of “universal” contributions
in the form of wave-function renormalization or one loop contributions to the renormalizable
couplings, that would give additional contributions to the one loop dictionary only via tree
level generated operators. Thus, tree level generated operators and one loop contribution to
the renormalizable couplings (including kinetic terms) will be disregarded in the following.
The only exception to this is the possible tree level generation of evanescent operators that,
via Fierzing, can give rise to one loop rational contribution to the dipole operators we are
interested in (see Refs. [21, 22] for a recent detailed discussion). Given the small number of
extensions in which this effect is relevant we provide the complete list in Appendix B.

We use matchmakereft to perform the matching, which, as mentioned above, follows a
diagrammatic off-shell approach. Since we do not know a priori the quantum numbers of the
heavy particles we have proceeded in two steps. First we have defined a generic model consist-
ing of an extension of the SM with heavy (Dirac or Majorana) fermions and (real or complex)
scalars with the most general couplings, among themselves and with the SM particles, as al-
lowed by Lorentz invariance but leaving their gauge quantum numbers, and therefore hthe

3In particular this means that diagrams with light bridges or loops involving only light particles are not to be
considered.

4See [19,20] for a similar approach to classifying UV completions of the SMEFT with some simplifying assump-
tions.
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corresponding Clebsch-Gordan (CG) coefficients, arbitrary. The only assumptions made on
this generic model are the following:

• It respects the SM gauge group symmetry, under which the new heavy particles transform
in some arbitrary representation.

• The interaction basis coincides with the mass-eigenstates basis, i.e., mass terms are di-
agonal at tree level.

• Heavy fermions are vector-like, i.e., both chiralities transform under the same represen-
tation of the gauge group, so the UV theory has no chiral anomaly.

Denoting all fermions (light and heavy) by a single field Ψa and all scalars (light and heavy) by
another one Φb, where the indices, a, b, run over all relevant multiplets under the SM gauge
symmetry, we can write the generic form of the Lagrangian as follows

LUV = δΨa
Ψ̄a

�

i /D−MΨa

�

Ψa +δΦa

�

|DµΦa|2 −M2
Φa
|Φa|2
�

+
∑

χ=L,R

�

Y χabcΨaPχΨbΦc + eY
χ

abcΨaPχΨbΦ
†
c + XχabcΨ

c
aPχΨbΦc + eX

χ

abcΨ
c
aPχΨbΦ

†
c + h.c.
�

+
�

κabcΦaΦbΦc +κ
′
abcΦaΦbΦ

†
c +λabcdΦaΦbΦcΦd

+λ′abcdΦaΦbΦcΦ
†
d +λ

′′
abcdΦaΦbΦ

†
cΦ

†
d + h.c.
�

, (4)

where PL,R = (1∓ γ5)/2 are the usual chirality projectors, Ψ c ≡ CΨT
with C the charge con-

jugation matrix, δΨa
is 1 (1/2) times the identity matrix for complex (Majorana, satisfying

Ψ c
a = Ψa) fermions and δΦa

is 1 (1/2) times the identity matrix for complex (real, satisfying
Φ†

a = Φa) scalars and the masses are zero for all the light fields except for the SM Higgs dou-
blet. The remaining couplings represent, for each fixed value of the indices, coupling constants
times CG tensors. Our convention for the covariant derivative is the following:

DµΨ = (∂µ − ig1BµYΨ − ig2W a
µ T a

W − ig3Ga
µT a

G)Ψ , (5)

where TW (TG) are the generators of SU(2) (SU(3)) in the representation of Ψ, and YΨ is its
hypercharge. Also note that, despite the explicit sign for the interactions in Eq.( 4), we follow
the standard convention for the SM interactions so that

eY R
qiu jφ

=− iσ2(Yu)i j , (6)

Y R
qi d jφ

=− (Yd)i j , (7)

Y R
l i e jφ

=− (Ye)i j , (8)

λ′′
φ4 =−λ/2 , (9)

with σ2 the second Pauli matrix. Once the generic UV model has been defined we have used
matchmakereft to perform the calculation of the amplitudes, their expansion in the hard
region and the projection over kinematic configurations and we have solved for the WCs of the
different operators. The gauge information is however still left generic at this point. This result
is stored internally, as it will be unchanged for any extension of the SM and the final user does
not need to repeat this calculation. In a second step, once the specific gauge representations for
the heavy fields are fixed, we use GroupMath [23] to perform the remaining group-theoretic
calculation. In order to obtain the results in the Warsaw basis we have computed all the
relevant coefficients in the Green’s basis and the result has then been translated to the physical
basis using the redundancies provided in [1]. We follow the naive dimensional regularization
prescription for γ5, as implemented in matchmakereft, which is compatible with the scheme
introduced in [22] to compute the evanescent contributions reported in Appendix B.
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3.2 Model classification

The bottom-up use of the dictionary consists of the classification of all possible renormalisable
SM extensions (including heavy fermion and scalar fields) whose one loop contribution to a
certain WC, either in the SMEFT Warsaw or Green’s basis, is allowed by gauge symmetry. This
classification can be given in a closed form, even if the number of possible models is infinite.
The reason is that, contrary to what happens in the tree level case, quadratic couplings in
heavy fields can contribute for the first time at one loop order. This allows for loop topologies
in which the gauge representations for the fields running in the loop are not fixed, but only
their product is. As a consequence, one can only impose restrictions for the fields to contribute
through a certain diagram, but those can be fulfilled by an infinite number of representations.
Thus, the classification of possible new physics models can be given at two different levels:
on the first level we provide a complete, finite list of the restrictions to be fulfilled by the new
fields; on a second level we give a list of the allowed specific representations that satisfy any
of these conditions, up to certain dimension of such representations (the list being infinite
otherwise). As we will see below, the Mathematica package SOLD, that encodes the one loop
dictionary, includes routines to perform both tasks.

The list of restrictions (first level) can be easily computed in a comprehensive way using
the intermediate results of the matching as discussed in the previous section. Once we have
performed the matching for a specific WC in terms of a combination of CG tensors, we can sim-
ply check the restrictions on the quantum numbers of the heavy fields so that each diagram
is allowed by the gauge symmetry. Note however that we are just imposing that the result is
non-zero a priori; the particular value of the gauge structure depends on specific choices for
the representations, so it could happen that it vanishes for some of them, or even that some
cancellation happens between different diagrams. The list of restrictions for each diagram
defines implicitly a possible new extension and it is added to the complete list. These restric-
tions are then reduced so that they contain the minimum number of different fields needed
to satisfy them. Finally, we eliminate from the complete list those models that are related by
conjugation of one of the fields, since they are physically equivalent. In the case of coefficients
in the Warsaw basis, we compute this list for every coefficient that can contribute to it through
redundancies.

The complete list of models, even at the first level, is too long to report here and is given
in electronic form via the SOLD package. The only exception is the operators in the X 3 class,
for which both the classification and the result can be given in closed form. We report on
the results for this class on Appendix A. An interesting result of our calculation is that the
two CP-violating operators with three field strength tensors, namely, O

g3W and O
Ý3G , are not

generated at the one loop order in any renormalizable extension of the SM with heavy scalars
or fermions.

4 SOLD usage

We provide in this section a detailed description of the Mathematica package SOLD, that
encodes the calculation of the part of the SMEFT one loop dictionary as described in this
article.

4.1 Installation

SOLD is publicly available in the following Gitlab repository: https://gitlab.com/jsantiago_
ugr/sold. Before installing SOLD, the user should make sure that both GroupMath and
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Figure 1: Loading SOLD.

matchmakereft are already installed.5 There are two ways of installing the package:

1. Automatic installation. SOLD can be installed in a fully automated way by typing the
following command on a Mathematica notebook:

In[1]:= Import["https://gitlab.com/jsantiago_ugr/sold/-/raw/main
/install.m"]

This will download the package and place it in the Applications folder of
Mathematica’s base directory. The same command will (re)install the latest version
available in the repository.

2. Manual installation. The alternative way is to manually download the package from
the SOLD repository and place it in the Applications folder of Mathematica’s base
directory, or a different directory as long as it is included in the variable $Path.

Once installed, SOLD can be loaded in any Mathematica notebook in the usual way

In[2]:= << SOLD`

with an output shown in Fig. 1.

4.2 List of functions

The following functions are available in the SOLD package. The usual help command in
Mathematica can be used to obtain more information on them.6 An updated version of
the manual can be found in SOLD’s installation directory.

• OneLoopOperatorsGrid. Displays a grid with the SMEFT operators in the Warsaw
basis whose leading contribution is at one loop. When the mouse is on top of each entry
the expression of the operator is displayed, and when clicked, the different contributions
from coefficients of the Green’s basis are shown.

5Technically matchmakereft is not necessary if the user is only interested in the operators described in this
article. It is necessary if the full one loop matching (including operators not in the three classes studied here) is
required.

6We provide detailed examples of the output for the most relevant functions in the next section.
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• ListModelsWarsaw[coefficient]. Returns a list with all possible SM extensions
(sometimes implicitly defined by restrictions in the product of some representations)
whose contribution to coefficient in the SMEFT Warsaw basis is allowed by gauge
symmetry (the conventions for the coefficients follow matchmakereft and the list of
coefficients is stored in the variable AllCoefficientsWarsaw). Each entry of the re-
sult represents a different SM extension. For each entry of the list, the first item indicates
the field content of the model (number and spin of heavy fields, with φi andψi indicat-
ing scalars and fermions, respectively, with i a number), the second item contains the
restrictions that the SU(3)× SU(2) representations of the new fields should fulfill, and
the last item indicates the hypercharge restrictions.

• ListModelsGreen[coefficient]. Identical to the previous function but for opera-
tors in the Green’s basis.

• ListValidQNs[listrestrictions,<MaxDimSU3>,<MaxDimSU2>]. Computes the
valid representations under SU(3)× SU(2) representations, up to dimensions MaxDimSU3
and MaxDimSU2, respectively, allowed by listrestrictions, for the fields contained
in it. listrestrictions can be either the direct output of ListModelsWarsaw or
ListModelsGreen, a sublist of its entries or just an entry’s second item. MaxDimSU3
and MaxDimSU2 are optional arguments and their default values are 15 and 5, respec-
tively.

• Match2Warsaw[coefficient, extension]. Computes the contribution to a particu-
lar WC coefficient in the Warsaw basis generated by a model defined by extension,
where extension is a list of replacement rules with a tag to identify the heavy particle
(that must begin with an S or F, depending on whether the heavy particle is a scalar or a
fermion respectively and be followed by an identifying letter) and a list of its quantum
numbers under SU(3)×SU(2)×U(1). As an explicit example, if the user is interested in
calculating the matching conditions of (OeW )i, j from a full theory with an SU(2) triplet
vector-like lepton of hypercharge -1, a triplet scalar leptoquark of hypercharge -1/3 and
a triplet vector-like quark of hypercharge -4/3 [24], they would need to write:

In[3]:= Match2Warsaw[alphaOeW[i,j],
{Sa->{3,3,-1/3},Fa->{1,3,-1},Fb->{3,3,-4/3}}]

Note that the definitions of coefficient follow matchmakereft convention, in par-
ticular iCPV fixes the Levi-Civita convention via iCPV= ε0123. Explicit numerical values
for the flavour indices are also allowed.

In order to allow for different, non-equivalent SU(3) representations of the same dimen-
sion, as well as conjugated ones, Dynkin indices can be used as a valid input for SU(3).
Note that this is not necessary for SU(2). An explicit example of this format is provided
in the next section. Symbolic hypercharges for the heavy fields are also supported, as
long as they are called Yi, where i is an integer character. However, only vertices that
formally conserve hypercharge will be taken as non-zero. This means, for instance, that
fields with symbolic hypercharge will never couple linearly with SM.

Finally, we consider fermions to be Majorana if they transform in a real representation
and Dirac otherwise. In order to obtain the results for a Dirac field in a real representa-
tion, the user should use two degenerate Majorana fields to reproduce this case.

• Match2Green[coefficient,extension]. Computes the contribution to
coefficient in the Green’s basis, defined in [1]. The conventions for coefficient
and extension are the same as for the function Match2Warsaw.
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• NiceOutput[result,<ListSubstitutions>]. Returns a more readable expression
of result. ListSubstitutions is optional and set to False by default; if set to
True, prints a list of the substitutions performed.

• SOLDInputForm[fieldreps]. Translates the gauge representation of a field (includ-
ing its hypercharge) from the output form given by ListValidQNs to a valid input
form usable by Match2Warsaw, Match2Green, CreateLag, GenerateMMEModel or
CompleteOneLoopMatching. An explicit example of this function is given in the next
section.

• CreateLag[extension]. Returns the full (BSM) Lagrangian internally used to com-
pute results produced by extension, including the numerical values of each of the CG
tensors, which are presented as TSi or TCi for the SU(2) and SU(3) contraction respec-
tively, where i corresponds to an identifying number.

• GenerateMMEModel[extension, modelname, <outputdirectory>]. Generates, in
the outputdirectory, the matchmakereft model needed for the full one loop com-
putation (the files included are useful to use with other tools such as FeynRules). The
modelname.fr file contains the full Lagrangian of extension, the heavy particle defi-
nitions and parameter definitions, all in FeynRules format. The file SM_SOLD.fr con-
tains the SM definition in FeynRules format and in case the heavy particles have exotic
representations under the SM gauge groups, it adds these representations to the defini-
tion of the gauge groups. The file modelname.gauge contains the numerical definitions
of the CG tensors considered in the definition of the Lagrangian. outputdirectory is
optional and set to Mathematica’s current working directory by default.

• CompleteOneLoopMatching[extension, modelname, <EFTname>,
<outputdirectory>]. Runs matchmakereft to obtain the complete one loop match-
ing conditions between a UV extension and an effective theory EFTname. If there is no
modelname_MM in outputdirectory, GenerateMMEModel is called in the first place.
EFTname is an optional argument and takes the default value of the matchmakereft’s
model for the SMEFT, SMEFT_Green_BPreserving_MM. outputdirectory is also op-
tional and set to Mathematica’s current working directory by default.7

Note that matchmakereft must be installed to run these last two functions,
GenerateMMEModel and CompleteOneLoopMatching.

4.3 Example of usage

In this subsection we will show an example of the usage of the package functions in sequential
order. As a matter of example, and in preparation for the phenomenological study in the next
section, let us consider that the user is interested in exploring UV completions which could
generate the SMEFT operator OdG .

After loading SOLD we can start by listing the conditions on models that generate this
operator in the Warsaw basis. The corresponding command is

In[4]:= ListModelsWarsaw[alphaOdG[i,j]]

whose output is partially shown in Fig. 2. Note that, for the SU(3)× SU(2) quantum numbers
a rule means that the representation for the corresponding particle is fixed whereas when the

7When run from a Mathematica notebook matchmakereft prints the output only at the end of the full
run. For a more informative output we recommend the user to create the model within SOLD using the
GenerateMMEModel function but then run the matching from matchmakereft in the terminal directly.
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Figure 2: Partial output of the command ListModelsWarsaw[alphaOdG[i,j]].

Figure 3: Output of the command ListValidQNs for one restriction, that is, one
entry from the output of ListModelsWarsaw[alphaOdG[i,j]].

symbol ⊃ appears only the product is constrained. For the case of U(1) an unconstrained
hypercharge is explicitly written only when it does not appear in other conditions. We also
include redundant restrictions such as φ2 ⊗ φ2 ⊃ 1 ⊗ 1 because while φ2 in this case can
have any quantum numbers, the information that it exists in the extension must be encoded
so that the field appears when we want to find the valid quantum numbers which respect the
restrictions.

After calculating the restrictions, the next step is to find the actual combinations of quan-
tum numbers which respect them. As such the next step is to use the command

In[5]:= ListValidQNs[conditions]

where conditions stands for the output of the ListModelsWarsaw[...] command or a
sublist of it. A fraction of the resulting list of models, using as condition the second one from
the bottom appearing in Fig. 2, is shown in Fig. 3; the output is given in the format of a list
where each entry corresponds to a restriction given by the previous command.

From the list of possible extensions, let us suppose the user is particularly interested in
studying the first one appearing in Fig. 3, which consists of one heavy scalar and two heavy
fermions with the following quantum numbers: φa ∼ (1,1, Y 1); ψa ∼ (3̄, 2, Y 1 − 1/6) and
ψb ∼ (3,1,−Y 1− 1/3). The complete one loop result for the WC of the (OdG)i j operator in
this model is simply obtained using the following command (note the Dynkin index notation
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Figure 4: Result for the WC of the (OdG)i j operator in the Warsaw basis for a partic-
ular extension in the limit of degenerate masses and neglecting terms proportional
to the down-type Yukawa couplings. See the text for the precise definition of the
model.

for the SU(3) representations)

In[6]:= Match2Warsaw[alphaOdG[i,j],
{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},Fb->{{1,0},1,-(1/3)-Y1}}]

Incidentally, the model in the correct format such that it can be used in Match2Warsaw (as
a list of replacement rules between the heavy particles and their quantum numbers) can be
obtained directly from the output of ListValidQNs[...] as follows

In[7]:= ourModel = SOLDInputForm /@ modelQNs[[1]]

Out[7]= {Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},Fb->{{1,0},1,-(1/3)-Y1}}

where modelQNs is defined in Fig. 3. The result from Match2Warsaw is given in Fig. 4, in the
limit of equal masses and vanishing down Yukawa couplings.

In this output the couplings of the BSM model are defined as Li with i an identifying inte-
ger. A bar is added to this definition when the coupling corresponds to the hermitian conjugate
of the respective operator. These couplings are followed by two possible sets of arguments:
the first one corresponds to the fields which compose the corresponding renormalizable oper-
ator (and an R or L in the case of operators with two heavy fermions corresponding to a right-
or left-handed projector respectively); the second set corresponds to flavour indices in case
the operator contains light fermions. The number i identifies couplings of operators with the
same field content but with different gauge contractions. The masses of the heavy fields are
defined as MX where X is the tag of the BSM state. While this raw result might not be easy to
read, it is the default output as to allow the user to easily make any simplifications they desire,
such as the one shown in Fig. 4, where we took the down Yukawa coupling to zero.

To see a more readable expression one can make use of the NiceOutput function, whose
output is shown in Fig. 5. In NiceOutput couplings are represented by λ (or other greek
letters in case there is more than one relevant operator with the same field content), except
for the Yukawa couplings which are hard-coded to be written as y . The subscript of these
couplings is given by the fields composing the corresponding operator, whereas the superscript
can either be R or L, depending on whether the operator has a right- or left-handed projector
(for operators with two heavy fermions) or the flavour indices for operators with light fermions.
Notice that, when set to true, the optional argument in NiceOutput makes it print a list of
the correspondence between the couplings in both the default and the NiceOutput formats.

The precise definition of one coupling can be seen by calling the function CreateLag
which outputs the full BSM Lagrangian of the UV extension. Not only are the interaction
terms defined but also the numerical values used for the CG coefficients for each coupling.
The Lagrangian is presented in FeynRules [25] notation, where the arguments of the fields
correspond to their indices, and the CG tensors are named as TCi and TSi for the SU(3) and

12

https://scipost.org
https://scipost.org/SciPostPhys.15.4.143


SciPost Phys. 15, 143 (2023)

Figure 5: Result for the WC of the (OdG)i j operator in the Warsaw basis for a partic-
ular extension in the limit of degenerate masses and neglecting terms proportional
to the down-type Yukawa couplings. The NiceOutput function has been used to
obtain a more readable result. The last argument, set to True in this example, prints
a list of the replacements performed to arrive at the output. See text for the precise
definition of the model.

Figure 6: Output of the CreateLag function.

SU(2) contractions, respectively, with i an identifying integer. Kinetic terms are omitted and
follow the convention in Eq. (4). The explicit values for the group generators can be obtained
using the routine RepMatrices in GroupMath. An example of the output of CreateLag is
shown in Fig. 6.

Finally, one can be interested in studying the implications of this model in other op-
erators or observables. Using GenerateMMEModel, the user can generate automatically a
matchmakereft model only specifying the representations of the new heavy fields:

In[8]:= GenerateMMEModel[{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},
Fb->{{1,0},1,-(1/3)-Y1}},"model"]

In order to perform the complete one loop matching to the SMEFT using matchmakereft
one simply has to run the command CompleteOneLoopMatching:

In[9]:= CompleteOneLoopMatching[{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},
Fb->{{1,0},1,-(1/3)-Y1}},"model"]

5 Phenomenological applications: How to use the dictionary

Our final goal when computing the one loop IR/UV dictionary is of course to use it in phe-
nomenological applications. Even in its current partial form it can still be used to classify in a
comprehensive way the origin, and the corresponding phenomenological implications in other
experimental measurements, of experimental anomalies eventually reported. Since there are
currently no significant confirmed anomalies we will consider, for the sake of the exposition,
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a recently reported tension in different non-leptonic decays of B mesons [26]. We refer to the
original article for all the relevant details and simply take at face value one of the possible
explanations of this tension in terms of the following effective Lagrangian

L=
GF

2
gs

4π2
mb

∑

q=d,s

C8gq(VubV ∗uq + VcbV ∗cq)q̄Lσ
µνTAbRGA

µν + . . . , (10)

where the dots denote the hermitian conjugate and other operators not relevant for our dis-
cussion here. In the Lagrangian above, GF is the Fermi constant, mb the bottom mass, Vi j the
corresponding entries of the CKM matrix, σµν = i/2[γµ,γν] and TA are the SU(3) generators
in the fundamental representation (the Gell-Mann matrices divided by 2). The reported ten-
sion among the different B-meson decays can be alleviated provided C8gd and C8gs are in the
following ranges (with some correlation on the upper range for the latter)

0.13≲ C8gd(mb)≲ 0.33 , −0.45≲ C8gs(mb)≲ 0.03 , (11)

where the value in parenthesis is to remind us that these correspond to renormalized WC at
the scale µ= mb.

Our goal is to completely classify all possible extensions of the SM (with new scalars or
fermions) that can generate these non-vanishing values up to one loop order. This can be done
by first expressing the WC C8gq in terms of the corresponding WC in the LEFT, then using the
LEFT one loop RGEs, computed in [27] to express them in terms of the relevant LEFT WC at
the matching scale with the SMEFT. Using the one loop matching between the SMEFT and the
LEFT, computed in [28], we can express them in terms of the SMEFT WC at the electroweak
scale. Finally, using the SMEFT RGEs, computed in [29–31], we can express them in terms of
the SMEFT WC at the cut-off scale whose values we can read off from our dictionary (all these
steps can be simplified by automated tools like DSixTools [32, 33]). In this process we can
take into account that certain WC in the SMEFT can only be generated at one loop order at
the cut-off scale and therefore their effect via running or one loop matching is formally a two
loop effect that can be disregarded.

Denoting generically the anomalous dimension of a WC αi

α̇i ≡ 16π2µ
dαi

dµ
, (12)

and working to the leading log approximation (fixed order one loop effects), we have

αi(µ) = αi(µ0) +
α̇i(αtree

j )

32π2
log

�

µ2

µ2
0

�

, (13)

where α̇i can be evaluated at any scale and, as we have explicitly written, only the contribution
from tree level generated WC needs to be included. Note that we follow the matchmakereft
convention for the covariant derivative Dµ = ∂µ − ig..., which is the opposite to the one used
in the references above. Thus, we have changed the signs of the gauge couplings whenever
necessary.

The corresponding effective Lagrangian in the LEFT reads

LLEFT = (LdG)i j d̄L iσ
µνTAdR jG

A
µν + . . . , (14)

resulting in

C8gq =
Fq

gs
(LdG)qb , (15)
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where

Fq ≡
�

GF

8π2
mb(VubV ∗uq + VcbV ∗cq)

�−1

≈
�

1.8× 105 e0.9iπ TeV , [q = d] ,
3.8× 104 TeV , [q = s] . (16)

The relevant part of the LEFT RGEs, in the up basis, reads

(L̇dG)i j = −gs

∑

qu=u,c

mqu

�

(LS1,RR
uddu )qu jiqu

−
1
6
(LS8,RR

uddu )qu jiqu

�

+ . . .

= gs

∑

qu=u,c

mqu

�

(C (1)quqd)iququ j −
1
6
(C (8)quqd)iququ j

�

+ . . . , (17)

where the dots stand for contributions that are one loop generated or receive no contribution
from the SMEFT and we have used the following tree level matching between the SMEFT and
the LEFT

(LS1,RR
uddu )i jkl = −(C

(1)
quqd)kli j , (LS8,RR

uddu )i jkl = −(C
(8)
quqd)kli j . (18)

We can therefore write

C8gq
gs

Fq

�

�

�

µ=mb

= (LdG)qb

�

�

�

µ=mb

= (LdG)qb

�

�

�

µ=mt

+
gs

32π2

∑

qu=u,c

mqu

�

(C (1)quqd)qququ b −
1
6
(C (8)quqd)qququ b

�

log

�

m2
b

m2
t

�

�

�

�

µ=Λ
,

(19)

where the SMEFT WC on the last term can be evaluated already at the cut-off scale (other
effects being formally of two loop order) and for later convenience we have chosen the top
quark mass for the matching scale between the SMEFT and LEFT.

Using the matching of the SMEFT onto the LEFT up to one loop we have

(LdG)qb =
v
p

2
V †

qk(CdG)kb +
gs

64π2
F1(xW )

V †
qt Vt bmb

v2
T

+
gs

36π2

�

1−
m2

W

m2
Z

�

mq(CHd)qb +
gs

64π2
F2(xW )mt V

†
qt(CHud)t b

−
gs

72π2

�

1+
2m2

W

m2
Z

�

mbV †
qk(C

(1)
Hq )kl Vl b

−
gs

576π2
mb

§

8

�

7+ 2
m2

W

m2
Z

�

V †
qk(C

(3)
Hq )kl Vl b − 9F1(xW )[V

†
qt(C

(3)
Hq )tkVkb + V †

qk(C
(3)
Hq )kt Vt b]
ª

+ . . . , (20)

where the dots stand for two loop effects and, at the order given, v ≈ 246 GeV. This equality
should be understood at a scale µ = mt but, again, all terms but the first one can be already
evaluated at the cut-off scale as any running effect will be of two loop order. We have defined

xW ≡
m2

W

m2
t

, (21)

F1(x) =
1− 6x + 3x2 + 2x3 − 6x2 log(x)

(1− x)4
, (22)

F2(x) =
1− 3x2 + 4x3 − 6x2 log(x)

(1− x)3
. (23)
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The last term in the first line of Eq. (20) corresponds to the SM contribution which, using the
relation between the measured Fermi constant in muon decay and the Higgs vacuum expecta-
tion value (vev), vT , [31]

1

v2
T

=
p

2GF +
1
2
[(Cl l)2112 + (Cl l)1221]− [(C

(3)
Hl )11 − (C

(3)
Hl )22]≡

p
2GF +∆GF , (24)

gives the following new physics contribution

gs

64π2
F1(xW )

V †
qt Vt bmb

v2
T

= SM−
gs

64π2
(VubV ∗uq + VcbV ∗cq)F1(xW )mb∆GF . (25)

The last piece that we need is the RGE of CdG in the SMEFT, which reads,

(ĊdG)qb = gs

�

C (1)quqd −
1
6

C (8)quqd

�

qkl b
(Y †

u )kl + . . . , (26)

where the dots denote, as always, terms that correspond to two loop effects. We therefore
have

(CdG)qb

�

�

µ=mt
=
�

(CdG)qb +
gs

32π2

�

C (1)quqd −
1
6

C (8)quqd

�

qkl b
(Y †

u )kl log

�

m2
t

Λ2

�

�

µ=Λ
+ . . . , (27)

where, as explicitly stated, the right-hand side of this equation is evaluated at the cut-off scale,
and we have followed matchmakereft’s convention for the Yukawa couplings.

Putting everything together we obtain the new physics contribution to be

C8gq
gs

Fq

�

�

�

µ=mb

=
gs

32π2

∑

qu=u,c

mqu

�

(C (1)quqd)qququ b −
1
6
(C (8)quqd)qququ b

�

log

�

m2
b

m2
t

�

+
v
p

2
V †

qk(CdG)kb +
gs

64π2
F1(xW )V

†
qt Vt bmb∆GF

+
gs

36π2

�

1−
m2

W

m2
Z

�

mq(CHd)qb +
gs

64π2
F2(xW )mt V

†
qt(CHud)t b

−
gs

72π2

�

1+
2m2

W

m2
Z

�

mbV †
qk(C

(1)
Hq )kl Vl b

−
gs

576π2
mb

§

8

�

7+ 2
m2

W

m2
Z

�

V †
qk(C

(3)
Hq )kl Vl b − 9F1(xW )[V

†
qt(C

(3)
Hq )tkVkb + V †

qk(C
(3)
Hq )kt Vt b]
ª

+ V †
qk

�

gs

32π2

�

C (1)quqd −
1
6

C (8)quqd

�

qkkb
(mu)k log

�

m2
t

Λ2

�

�

+ . . . , (28)

where in the last line we neglected higher-loop and mass dimension effects to write the mass
of the up-type quarks in terms of their Yukawa couplings and the Higgs vev. In the equation
above the first line corresponds to the running in the LEFT between µ = mb and µ = mt , the
second to fifth to the matching between the SMEFT and the LEFT at µ = mt and the last to
the running between µ = mt and the cut-off scale µ = Λ. All the SMEFT WC on the RHS of
this equation are to be evaluated at the cut-off scale and only their tree level contributions are
relevant except for CdG .

Equation (28) allows us to directly write the low-energy measurements of C8gq in terms of
the SMEFT WC at the cut-off scale. This is where the dictionary can be directly used to fully
classify all SM extensions (with scalars and fermions for the one loop case) that contribute
to this observable. It receives contribution from tree level generated operators, that can be
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directly read off from the tree level dictionary [4], and one contribution from the one loop
generated WC CdG , that we classify in this work. In order to simplify the discussion here we
will check first which WCs can give a sizeable contribution to our observable. In order to do
that we will take a benchmark point with

Cbenchm.
8gd = 0.25 , Cbenchm.

8gs = −0.1 , (29)

allowed from the study of [26]. We will now rescale the WC with an explicit power of the
cut-off

C =
c
Λ2

, (30)

with c now a dimensionless coefficient and drop all contributions that require the relevant c
to be larger than 10 (to be on the conservative side) to reproduce the benchmark points. With
these restrictions we find, for Λ= 2 TeV,

C8gd ≈ [−6.9+ 2.9i]× 103 (cdG)1,3 + [1.6− 0.66i]× 103 (cdG)2,3 − 65.5 (cdG)3,3

+ [3.22− 1.34i]× 10−2 (c(1)Hq)1,2 + [0.80− 0.33i] (c(1)Hq)1,3 − [0.18− 0.08i] (c(1)Hq)2,3

+ [0.11− 0.04i] (c(3)Hq)1,2 + [2.38− 0.99i] (c(3)Hq)1,3 − [2.5− 1.0i]× 10−2 (c(3)Hq)2,2

− [0.55− 0.23i] (c(3)Hq)2,3 − 0.39 (cHud)3,3 + [1.23− 0.51i] (c(1)quqd)1,2,2,3

+ 1.18 (c(1)quqd)1,3,3,3 − [0.21− 0.09i] (c(8)quqd)1,2,2,3 − 0.20 (c(8)quqd)1,3,3,3 , (31)

C8gs ≈ [373+ 7i] (cdG)1,3 + [1600+ 30i] (cdG)2,3 − 65.5 (cdG)3,3

− 0.043 (c(1)Hq)1,3 − 0.18 (c(1)Hq)2,3 − 0.13 (c(3)Hq)1,3 − 0.025 (c(3)Hq)2,2

− [0.55+ 0.01i] (c(3)Hq)2,3 + 0.02 (c(3)Hq)3,3 − 0.39 (cHud)3,3 − [0.58+ 0.01i] (c(1)quqd)2,2,2,3

+ 1.2 (c(1)quqd)2,3,3,3 + [0.096+ 0.002i] (c(8)quqd)2,2,2,3 − 0.20(c(8)quqd)2,3,3,3 . (32)

As mentioned above we can use the tree level dictionary to completely classify the models that
induce a sizeable value for C8gq from running of tree level generated operators but we prefer
to focus here on the direct one loop contribution to CdG taking full advantage of the part of
the one loop dictionary computed in this work. We will therefore stick to models that do not
give any tree level contribution to the SMEFT operators and consider the simpler case of

C8gd ≈ [−6.9+ 2.9i]× 103 (cdG)1,3 + [1.6− 0.66i]× 103 (cdG)2,3 − 65.5 (cdG)3,3

= [−27.6+ 11.6i]× 103 (CdG)1,3 + [6.4− 2.64i]× 103 (CdG)2,3 − 262. (CdG)3,3 , (33)

C8gs ≈ [373+ 7i] (cdG)1,3 + [1600+ 30i] (cdG)2,3 − 65.5 (cdG)3,3

= [1492+ 28i] (CdG)1,3 + [6400+ 120i] (CdG)2,3 − 262. (CdG)3,3 , (34)

where in the second line of each equation we have gone back to dimensionful WC (arbitrary
Λ) and all dimensionful quantities are measured in TeV. There is a continuum of solutions for
these observables to match the benchmark values. An example of such solution is

(CdG)1,3 ≈ −(1.1+ 0.3i)× 10−5, (CdG)2,3 ≈ −1× 10−5, (CdG)3,3 ≈ 10−4, (35)

all in units of TeV−2 and the complex value for the 1,3 entry is just to accommodate the
assumption of real WC made in [26].

It is easy to generate these values in phenomenologically viable models. We have described
in the previous section how to use SOLD to list all the models that generate the CdG WC in the
Warsaw basis. From the (long) list we eliminate the cases in which at least one heavy field has
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all its quantum numbers fixed as they correspond to linear couplings to the SM and therefore
they have tree level contributions to other operators.

All the remaining models have three heavy fields. We choose one of the simplest ones that
has contributions not suppressed by the down-type quark Yukawa couplings (for simplicity we
use the conjugated field of the first fermion with respect to the one given by SOLD):

Φ∼ (1,1)YΦ , Ψ1 ∼ (3, 2) 1
6−YΦ

, Ψ2 ∼ (3, 1)− 1
3−YΦ

, (36)

where the hypercharge of the heavy scalar YΦ is arbitrary up to the limitation of no tree level
contributions that restricts YΦ ̸= 0,−1. The complete expression is provided by the command

In[10]:= Match2Warsaw[alphaOdG[i,j],{Sa ->{1,1,Y1},Fa->{3,2,1/6-Y1},
Fb->{3,1,-1/3-Y1}}]

For simplicity we reproduce it in the large scalar mass limit and neglecting terms suppressed
by the down-type quark masses, that reads

(CdG)i j =−
g3

64π2

1

M2
Φ(M2

a −M2
b )

�

2MaMb log

�

M2
a

M2
b

�

λR
ab

+
�

2M2
b log

�

M2
a

M2
b

�

+ (M2
a −M2

b )

�

3+ 2 log

�

M2
a

M2
Φ

���

λL
ab

�

(λqa)i(λbd) j +O
�

M2
a,b

M4
Φ

�

,

(37)

where the masses and couplings are defined by the following Lagrangian

L=−M2
ΦΦ

†Φ−MaΨ̄aΨa −MbΨ̄bΨb

− Ψ̄a[λ
L
abPL +λ

R
abPR]Ψb − (λqa)i q̄i PRΨaΦ− (λbd)iΨ̄bPRdiΦ

† + . . . , (38)

with PL,R = (1∓ γ5)/2 the chirality projectors.
Using the full expression given by SOLD we obtain that the following values of the param-

eters give the values for the WC in Eq.(35),

Ma = 1.5 TeV , Mb = 2.0 TeV , Ma = 4.0 TeV ,

λL
ab = 0 , (λqa)i =

(0.084+ 0.023i, 0.077,−0.776)
λR

ab(λbc)3
. (39)

We have then proceeded to perform the full one loop matching with matchmakereft via
the function CompleteOneLoopMatching of this model. The result has been exported to
WCxf format [34] and smelli [35–37] has been used to check the viability of the model.
Indeed the following values of the remaining parameters

λR
ab = −0.7 , (λbc)3 = 0.9 , (40)

relax the corresponding tension for the considered operators without conflicting with other
experimental observables (the global pull with respect to the SM is of 3.4 σ when considering
all other relevant observables encoded in smelli).

Note that, given the choice of quantum numbers, there is no linear coupling of the new
fields to SM particles. This means that the lightest one, Ψa in our case, is stable. We can
make a choice of YΦ that ensures that Ψa can still decay via higher dimensional operators,
with a non-standard decay pattern, making it evade current experimental limits. See [38] for
a detailed discussion.
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6 Conclusions and Outlook

Effective field theories offer a new guiding principle in the quest of searching for new physics.
The bottom-up approach provides an essentially model-independent parametrisation of exper-
imental data and the top-down approach gives us the opportunity, via IR/UV dictionaries, to
completely classify models of new physics with observable consequences. These dictionaries
consist of a complete classification of new physics models that contribute to the effective La-
grangian at a certain order in the loop and operator dimension expansion, together with the
explicit calculation of the WCs that each of these models generate. In this way, assuming that
the dictionaries are computed up to the relevant order in the double (loop and operator di-
mension) perturbative expansion, we can use them to obtain in a systematic way the complete
phenomenological implications of any observable model of new physics.

In this work we have reported the first step towards the calculation of the IR/UV dictionary
for the SMEFT at mass dimension 6 and one loop order. In particular we have completely clas-
sified the most general renormalisable extension of the SM with new scalar or fermion fields
that contribute to operators in the Warsaw basis containing at least one gauge field-strength
tensor. These operators are the only ones in the Warsaw basis that cannot be generated at
tree level in weakly coupled extensions of the SM and therefore the one loop contribution we
have computed is the leading one for them. The complete list of models is of infinite length
but it can be given in a closed form as a finite number of conditions on the quantum num-
bers of the new fields. Together with this classification we have also computed the WCs of
the operators we are interested in for any of the allowed extensions. All these results have
been encoded in the Mathematica package SOLD (SMEFT One Loop Dictionary), which re-
lies heavily on GroupMath [23] for the group theoretic calculations. Since, for a particular SM
extension, the user can be also interested in the WCs of the remaining operators in the Warsaw
basis, SOLD has functions to call matchmakereft so that the complete tree level and one loop
matching can be performed in a fully automated way for any model of interest (in practice for
any model that is an extension of the SM with an arbitrary number of heavy scalar or fermion
fields in any gauge representation). Incidentally, we have found that all the operators in our
list can indeed be generated at the one loop order with the exception of the CP-violating oper-
ators with three field-strength tensors, which can only be generated, at least in the extensions
considered, at the two loop order.

We have shown how to use the dictionary contained in SOLD which, despite the fact that
is only a first step towards the complete dictionary, is already very useful for phenomeno-
logical studies. Nevertheless we plan to extend it in the near future to obtain the complete
one loop dictionary at dimension 6 for the SMEFT. The next steps are the inclusion of heavy
vectors and non-renormalisable interactions and the consideration of the remaining operators
in the Warsaw basis, operators that can be potentially generated at tree level in weakly cou-
pled extensions of the SM. All these results will be incorporated in SOLD. Future versions of
matchmakereft will include a Mathematica interface to the MatchingDB format [39] that
will allow for a flexible use of these highly non-trivial dictionaries.
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A Complete results for the X3 class

The contributions for the X 3 class are simple enough that the complete classification and even
the full result can be given in closed form. We can define the following operator:

O3V = α3V f ABC V Aν
µ V Bρ

ν V Cµ
ρ , (A.1)

for a general (non-abelian) gauge symmetry, with f ABC the structure constants of the group.
This allows us to give the results for both α3W and α3G in the SMEFT. The only restriction
on the heavy fields is that they are charged under the gauge symmetry, irrespectively on their
hypercharge. The matching condition is the following [40]:

α3V = −
1

(4π)2
∑

R

cR g3

90M2
R

µ(R) , cR =















1 , Dirac fermions,
1
2 , Majorana fermions,
−1

2 , complex scalars,
−1

4 , real scalars,

(A.2)

with Tr(TA
R T B

R ) = µ(R)δ
AB where R runs over all the heavy fields in the model, TR are the

generators of the group in R’s representation, g is the gauge group’s coupling constant.

B Evanescent contribution to the dipole operators

We discuss in this section the one loop effects induced by the tree level generation of evanescent
operators. This has been studied in detail in [22] with the result that, among the three classes
of operators considered in this work, only the dipole operators receive a contribution from
evanescent ones. The shifts in the dipole operators, as computed in [22], using the conventions
in [1], read:

(αeB)i j → (αeB)i j +
g1

(4π)2

�

3
8
(γle)i jst(Ye)ts −

5
8
(1− ξrp)(Yu)

∗
ts(γ

c
uelq)s ji t

+
5
8
(1− ξrp)(γluqe)i ts j(Yu)

∗
st

�

, (B.1)

(αeW )i j → (αeW )i j +
g2

(4π)2

�

−
1
8
(Ye)ts(γle)i jst +

3
8
(1− ξrp)(Yu)

∗
ts(γ

c
uelq)s ji t

−
3
8
(1− ξrp)(Yu)

∗
st(γluqe)i ts j

�

, (B.2)

(αuB)i j → (αuB)i j −
g1

(4π)2
5
8
(Yu)ts(γqu)i jst , (B.3)

(αuW )i j → (αuW )i j −
g2

(4π)2
3
8
(Yu)ts(γqu)i jst , (B.4)

(αuG)i j → (αuG)i j −
g3

(4π)2
1
4
(Yu)ts(γ

(8)
qu )i jst , (B.5)
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(αdB)i j → (αdB)i j +
g1

(4π)2
1
8
(Yd)ts(γqd)i jst , (B.6)

(αdW )i j → (αdW )i j −
g2

(4π)2
3
8
(Yd)ts(γqd)i jst , (B.7)

(αdG)i j → (αdG)i j −
g3

(4π)2
1
4
(Yd)ts(γ

(8)
qd )i jst . (B.8)

In the equations above Yu,d,e stand for the up-type, down-type and charged electron Yukawa
couplings, respectively, and ξrp represents a reading point parameter and has xRP as output
format in SOLD. More information on this parameter can be found in [22]. The remaining
coefficients correspond to tree level contributions to evanescent structures. Using the notation
in the tree level dictionary [4] they correspond to the following expressions

(γle)i jkl =
(y e
ϕ)
∗
ji(y

e
ϕ)kl

M2
ϕ

, (B.9)

(γc
uelq)i jkl = −

(y eu
ω1
) ji(y

ql
ω1
)∗lk

M2
ω1

, (B.10)

(γluqe)i jkl =
(y lu
Π7
)i j(y

eq
Π7
)∗lk

M2
Π7

, (B.11)

(γqu)i jkl =
(yu
ϕ)i j(yu

ϕ)
∗
lk

M2
ϕ

, (B.12)

(γqd)i jkl =
(yd
ϕ)
∗
ji(y

d
ϕ)kl

M2
ϕ

, (B.13)

(γ(8)qu )i jkl =
(yu
Φ)i j(yu

Φ)
∗
lk

M2
Φ

, (B.14)

(γ(8)qd )i jkl =
(yd
Φ)
∗
ji(y

d
Φ)kl

M2
Φ

. (B.15)
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C Redundant and evanescent operators

In this appendix we list the redundant (Table 2) and evanescent (Table 3) operators that are
relevant for the calculation of the physical operators considered in this work.

Table 2: One loop generated redundant operators. Operators in gray do not con-
tribute to one loop generated operators in the Warsaw basis. Shaded operators are
generated at two or higher order loops in SM extensions with fermions and scalars.

ψ2D3 ψ2XD

RqD
i
2q
�

DµDµ, /D
	

q RGq (qTAγµq)DνGA
µν RBd (dγµd)∂ νBµν

RuD
i
2u
�

DµDµ, /D
	

u R′Gq
1
2(qTAγµi

←→
D νq)GA

µν R′Bd
1
2(dγ

µi
←→
D νd)Bµν

RdD
i
2 d
�

DµDµ, /D
	

d R′
eGq

1
2(qTAγµi

←→
D νq)eGA

µν R′
eBd

1
2(dγ

µi
←→
D νd)eBµν

R
ℓD

i
2ℓ
�

DµDµ, /D
	

ℓ RWq (qσIγµq)DνW I
µν RWℓ (ℓσIγµℓ)DνW I

µν

ReD
i
2 e
�

DµDµ, /D
	

e R′Wq
1
2(qσ

Iγµi
←→
D νq)W I

µν R′Wℓ
1
2(ℓσ

Iγµi
←→
D νℓ)W I

µν

ψ2HD2 + h.c. R′
fWq

1
2(qσ

Iγµi
←→
D νq)fW I

µν R′
fWℓ

1
2(ℓσ

Iγµi
←→
D νℓ)fW I

µν

RuHD1 (qu)DµDµ eH RBq (qγµq)∂ νBµν RBℓ (ℓγµℓ)∂ νBµν
RuHD2 (q iσµνDµu)Dν eH R′Bq

1
2(qγ

µi
←→
D νq)Bµν R′Bℓ

1
2(ℓγ

µi
←→
D νℓ)Bµν

RuHD3 (qDµDµu) eH R′
eBq

1
2(qγ

µi
←→
D νq)eBµν R′

eBℓ
1
2(ℓγ

µi
←→
D νℓ)eBµν

RuHD4 (qDµu)Dµ eH RGu (uTAγµu)DνGA
µν RBe (eγµe)∂ νBµν

RdHD1 (qd)DµDµH R′Gu
1
2(uTAγµi

←→
D νu)GA

µν R′Be
1
2(eγ

µi
←→
D νe)Bµν

RdHD2 (q iσµνDµd)DνH R′
eGu

1
2(uTAγµi

←→
D νu)eGA

µν R′
eBe

1
2(eγ

µi
←→
D νe)eBµν

RdHD3 (qDµDµd)H RBu (uγµu)∂ νBµν
RdHD4 (qDµd)DµH R′Bu

1
2(uγ

µi
←→
D νu)Bµν

ReHD1 (ℓe)DµDµH R′
eBu

1
2(uγ

µi
←→
D νu)eBµν

ReHD2 (ℓ iσµνDµe)DνH RGd (dTAγµd)DνGA
µν

ReHD3 (ℓDµDµe)H R′Gd
1
2(dTAγµi

←→
D νd)GA

µν

ReHD4 (ℓDµe)DµH R′
eGd

1
2(dTAγµi

←→
D νd)eGA

µν
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Table 3: One loop generated evanescent operators. Operators in gray do not con-
tribute to one loop generated operators in the Warsaw basis. Shaded operators are
generated at two or higher order loops in SM extensions with fermions and scalars.

Ψ2XH + h.c. Ψ2XD

EuG q̄TAσµνu eH eGA
µν EGq q̄TA(σµνγρ + γρσµν)qDρ eG

A
µν EGd d̄ TA(σµνγρ + γρσµν)dDρ eG

A
µν

EuW q̄σIσµνu eHfW I
µν E ′Gq iq̄(TAσµν /D−

←
/DσµνTA)qGA

µν E ′Gd id̄(TAσµν /D−
←
/DσµνTA)dGA

µν

EuB q̄σµνu eHeBµν E ′
eGq

iq̄(TAσµν /D−
←
/DσµνTA)qeGA

µν E ′
eGd

id̄(TAσµν /D−
←
/DσµνTA)d eGA

µν

EdG q̄TAσµνdH eGA
µν EWq q̄σI(σµνγρ + γρσµν)qDρfW

I
µν EBd d̄(σµνγρ + γρσµν)d∂ρeBµν

EdW q̄σIσµνdHfW I
µν E ′Wq iq̄(σIσµν /D−

←
/DσµνσI)qW I

µν E ′Bd id̄(σµν /D−
←
/Dσµν)dBA

µν

EdB q̄σµνdHeBµν E ′
fWq

iq̄(σIσµν /D−
←
/DσµνσI)qfW I

µν E ′
eBd

id̄(σµν /D−
←
/Dσµν)deBµν

EeW ℓ̄σIσµνeHfW I
µν EBq q̄(σµνγρ + γρσµν)q∂ρeBµν EWℓ ℓ̄σI(σµνγρ + γρσµν)ℓDρfW I

µν

EeB ℓ̄σµνeHeBµν E ′Bq iq̄(σµν /D−
←
/Dσµν)qBµν E ′Wℓ iℓ̄(σIσµν /D−

←
/DσµνσI)ℓW I

µν

ψ2HD2 + h.c. E ′
eBq

iq̄(σµν /D−
←
/Dσµν)qeBµν E ′

fWℓ
iℓ̄(σIσµν /D−

←
/DσµνσI)ℓfW I

µν

EuH q̄σµνDρuDσ eHεµνρσ EGu ūTA(σµνγρ + γρσµν)uDρ eG
A
µν EBℓ ℓ̄(σµνγρ + γρσµν)ℓ∂ρeBµν

EdH q̄σµνDρdDσHεµνρσ E ′Gu iū(TAσµν /D−
←
/DσµνTA)uGA

µν E ′Bℓ iℓ̄(σµν /D−
←
/Dσµν)ℓBµν

EeH ℓ̄σµνDρeDσHεµνρσ E ′
eGu

iū(TAσµν /D−
←
/DσµνTA)ueGA

µν E ′
eBℓ

iℓ̄(σµν /D−
←
/Dσµν)ℓeBµν

EBu ū(σµνγρ + γρσµν)u∂ρeBµν EBe ē(σµνγρ + γρσµν)e∂ρeBµν

E ′Bu iū(σµν /D−
←
/Dσµν)uBµν E ′Be iē(σµν /D−

←
/Dσµν)eBµν

E ′
eBu

iū(σµν /D−
←
/Dσµν)ueBµν E ′

eBe
iē(σµν /D−

←
/Dσµν)eeBµν
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