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Center-of-mass momentum dependence of short-range correlations
with the coarse-grained Granada potential
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The effect of the center-of-mass motion on the high-momentum distributions of correlated nucleon pairs is
studied by solving the Bethe-Goldstone equation in nuclear matter with the Granada nucleon-nucleon potential.
We show that this coarse-grained potential reduces the problem to an algebraic linear system of five (ten)
equations for uncoupled (coupled) partial waves that can be easily solved. The corresponding relative wave
functions of correlated pn, pp, and nn pairs are computed for different values of their center-of-mass (CM)
momentum. We find that the pn pairs dominate the high-momentum tail of the relative momentum distribution,
and that this only depends marginally on center-of-mass momentum. Our results provide further justification and
agreement for the factorization approximation commonly used in the literature. This approximation assumes that
the momentum distribution of nucleon pairs can be factorized as the product of the center-of-mass momentum
distribution and the relative momentum distribution.
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I. INTRODUCTION

The nucleon-nucleon (N-N) correlations and the attempts
to reduce it to a problem of self-consistent fields, similar to
the Hartree method [1,2] of atomic physics, constitute an old
topic in nuclear physics [3–10]. It has experienced a revival in
the last two decades due to the advent of high energy electron
beams accelerators facilities such as the Continuous Electron
Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab)
[11,12], from both the experimental [13–29] and theoretical
[30–68] points of view (for recent reviews the reader is re-
ferred to [69–72]).

From the theoretical side, the short-range N-N corre-
lations (SRCs) are very important in different contexts
of nuclear physics, covering aspects from fundamental
to applied nuclear physics: properties of nuclear matter
[31,39,73–75]; high momentum components in the nuclear
wave function [35,47,50,76–78]; implications in nuclear
astrophysics and evolution of neutron stars through the equa-
tion of state of nuclear and neutron matter [44,79–83];
calculations of symmetry energy and pairing gaps in nu-
clear and neutron matter [53,62,66,84]; models of relativistic
heavy-ion collisions [85]; calculations of nuclear matrix ele-
ments for neutrinoless double beta decay [86,87]; description
of (e, e′), (e, e′N ), and (e, e′NN ) reactions [33,37,38,45,56];
and, recently, the universality of the N-N SRCs and its con-
nection with factorization properties of the nuclear wave
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functions and momentum distributions, and with the nuclear
contacts [57,58,88–94], just to mention a few of them.

Traditionally, there have been two main methods to
tackle this complex problem: the use of Jastrow correla-
tion functions with adequate behaviors at short and long
internucleon distances applied to Slater determinants of
single-particle wavefunctions within variational approaches
[5,34,37,49,95–102]; and the Brueckner theory of nuclear
matter [9,103,104] by solving the Bethe-Goldstone (B-G)
equation [7,105,106] or the effective interaction encoded in
the G-matrix formalism [107–113].

There are also other useful methods to deal with this prob-
lem: the similarity renormalization group (SRG) methods,
which can provide phase equivalent potentials that soften the
short-range interaction, thus avoiding the problems related
with the hard core [55,114,115]; and the ab initio variational
Monte Carlo methods, which solve exactly the nonrelativistic
many-body problem for light nuclei when a particular N-N
interaction is given [116–121].

Our aim in this work is to extend our two previous papers
[63,68] on the short-range correlations in the independent pair
approximation picture [122] for the case when the total center-
of-mass (CM) momentum of the nucleon pair is different from
zero, KCM �= 0, and to study its effect on the high-momentum
components of the relative wave function in momentum space.
To this end we make use of the coarse-grained Granada po-
tential of Ref. [123], and we use the angular average of the
Pauli-blocking operator appearing in the B-G equation. This
approximation has been widely used in the past by many other
authors [9,36,108,109,124–126]. Other successful attempts to
solve this problem without resorting to the approximation of
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the angular average of the Pauli-blocking operator have been
explored in Refs. [127–133].

Given the fact that the coordinate space method is not
widely used and it is essential for our coarse-grained treatment
of the N-N interaction, we provide in two appendices all the
necessary material to make the paper as self-contained as
possible, in order to target it at a wider audience.

Therefore, the structure of this paper is as follows: in Sec. II
we describe the formalism to solve the B-G equation with the
angular average of the Pauli-blocking operator by performing
a partial wave expansion for the radial part of the correlated
relative wave function. In Sec. III we derive the correlated
wave function in momentum space by applying the Fourier
transform to the wave function in coordinate representation,
and obtaining the high-momentum components in the relative
wave function induced by the SRCs. In Sec. IV we present
our results and discuss them in depth. In Sec. V we draw our
conclusions. Finally, we provide Appendices A and B at the
end of the paper.

II. THEORETICAL FRAMEWORK

A. General formalism

The Brueckner reaction matrix G plays a crucial role
in describing nucleon-nucleon scattering within the nuclear
medium. It is a fundamental concept in nuclear many-
body theory, and its properties are closely related to the
Bethe-Goldstone equation. The G matrix is a solution to
the Bethe-Goldstone equation and is essentially a modified
nucleon-nucleon scattering matrix that takes into account the
influence of the nuclear medium on nucleon interactions.
It can be thought of as a generalization of the Lippmann-
Schwinger equation, which is commonly used to describe
scattering in vacuum.

The Brueckner G matrix is usually represented in operator
form as the well-known B-G equation:

G = V + V
Q

E − H0
G, (1)

where G is the G matrix or effective interaction; V repre-
sents the nucleon two-body potential; Q is the Pauli-blocking
operator that prevents scattering over two-particle occupied
states; E represents the energy eigenvalue of the two-nucleon
system; and, finally, H0 is the unperturbed or free Hamiltonian
containing the sum of the kinetic energies of the two indepen-
dent particles. The action of the Pauli-blocking operator over
uncorrelated two-particle states |k1, k2〉 is given by

Q|k1, k2〉 =
{

|k1, k2〉 if both |ki| > kF

0 otherwise.
(2)

It is well known that due to translational invariance sym-
metry [134], if the N-N potential only depends on the relative
coordinate r of the two-nucleon system and not on the CM
coordinate RCM, then the CM momentum of the two-nucleon
system is conserved, i.e., it is a constant of motion. This means
in practice that the CM motion can be described by a plane
wave in nuclear matter, and that the correlated total wave
function is separable into a product of a plane wave for the CM

motion and a correlated relative wave function, ψKCM,k(r),
depending explicitly on the relative coordinate r, the initial
relative momentum k, and also on the total momentum KCM

of the nucleon pair (see, for instance, Refs. [63,134]). The
dependence on the total momentum KCM of the nucleon pair
in the relative wave function can be understood if one observes
that the Pauli-blocking operator Q explicitly depends on the
CM momentum in the eigenket representation of CM and
relative momenta for the two-nucleon system |KCM, k〉. The
relationships between these two different representations for
the two-nucleon system are given by

RCM = 1

2
(r1 + r2), KCM = k1 + k2,

r = r1 − r2, k = 1

2
(k1 − k2),

〈RCM, r |r1, r2〉 = δ3

(
RCM − 1

2
(r1 + r2)

)
× δ3(r − (r1 − r2)),

〈KCM, k |k1, k2〉 = δ3

(
k1 − k − KCM

2

)
× δ3

(
k2 + k − KCM

2

)
= δ3(KCM − (k1 + k2))

× δ3

(
k − 1

2
(k1 − k2)

)
,

〈RCM, r |KCM, k〉 = 〈r1, r2 |k1, k2〉 = ei k1·r1

(2π )
3
2

ei k2·r2

(2π )
3
2

= ei KCM·RCM

(2π )
3
2

ei k·r

(2π )
3
2

. (3)

The advantage of using the CM and relative momenta
representation for initial and final two-nucleon states |KCM, k〉
is based on the fact that then the Brueckner G matrix can be
solved solely for the relative wave function, at the price of in-
troducing a dependence on the total momentum KCM through
the Pauli-blocking operator Q. But the SRCs are completely
incorporated in the relative wave function ψKCM,k(r).

On the other hand, if one insists on working with the two-
nucleon momenta eigenket representation |k1, k2〉, the action
of the Pauli-blocking operator on these states is much simpler
[see Eq. (2)], but then one spoils the simplicity of the N-N
potential matrix elements in the CM and relative coordinates
representation,

〈R′
CM, r′|V |RCM, r〉 = δ3(R′

CM − RCM)V (r) δ3(r′ − r), (4)

if the potential is, additionally, local in the relative coordinate,
as the one we use in this work and in our previous ones
[63,68,123,135]. Furthermore, with the latter approach one
has to self-consistently solve the B-G equation for a correlated
two-body wave function, �(r1, r2), depending on the coordi-
nates and quantum numbers of the single nucleons (see for
example Eq. (3) of Ref. [63]), instead of solving a one-body
relative wave function with external inputs (KCM, k) in a
single relative coordinate ψKCM,k(r).
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The B-G equation in operator form, given in Eq. (1), is
equivalent to the following equation for the perturbed or cor-
related two-nucleon state:

|�KCM,k〉 = |KCM, k〉 +
∫

d3K ′
CM d3k′ Q(K′

CM, k′)
(K2

CM−K′ 2
CM)

2MT
+ (k2−k′ 2 )

2μ

×
∣∣∣∣K′

CM

2
+ k′,

K′
CM

2
− k′

〉
〈K′

CM, k′|V |�KCM,k〉,
(5)

where |KCM, k〉 is the unperturbed or uncorrelated state, and
Q(K′

CM, k′) is the Pauli-blocking operator depending on the
CM and relative momenta and is given by

Q(K′
CM, k′) = θ

(∣∣∣∣K′
CM

2
+ k′

∣∣∣∣ − kF

)
θ

(∣∣∣∣K′
CM

2
− k′

∣∣∣∣ − kF

)
,

(6)

with θ (x) the Heaviside or step function. Additionally, in
Eq. (5), μ = MN

2 is the reduced mass of the two-nucleon sys-
tem and MT = 2MN is its total mass. Finally, the integration
over the off-shell states runs over the total CM and relative
momenta of the two-nucleon pair. It is also important to notice
that, despite its dependence, the ket |K′

CM
2 + k′, K′

CM
2 − k′〉 is

not a ket belonging to the CM and relative momenta represen-
tations, as they are, for instance, |KCM, k〉 or 〈K′

CM, k′|, but it
is a ket belonging to the two-nucleon single momenta repre-
sentation |k1, k2〉 with k1 = K′

CM
2 + k′ and k2 = K′

CM
2 − k′.

The formal derivation of Eqs. (5) and (7) (see below) start-
ing from Eq. (1) is deferred to Appendix A.

Now, to get rid of the CM momentum in Eq. (5), it is
completely necessary to assume that the potential is of the
form given by Eq. (4), i.e, a local potential not depending on
the CM coordinate.1 With this assumption, which is right for
the kind of coarse-grained potential used in this work, one can
obtain a similar equation to that given in (5) but for the relative
ket, removing as much as possible the dependence on the CM
momentum. The final result is

|ψKCM,k〉 = |k〉 +
∫

d3k′ Q(KCM, k′)
k2 − k′ 2

|k′〉〈k′|2μV |ψKCM,k〉,

(7)

where |ψKCM,k〉 is the relative part of the perturbed |�KCM,k〉
state of Eq. (5); |k〉 is the plane wave state with definite

1The assumption of locality is also exploited specifically in
other computational frameworks such as the Monte Carlo approach
[116–121]. As already mentioned in the introduction, the SRG
method reduces the core at the expense of introducing strong nonlo-
calities. In contrast, the Monte Carlo method needs a strong repulsive
core below 0.5 fm within a purely local interaction scheme. The main
advantage of the coarse-graining approach is that the quality of the
N-N interaction fits is compatible with the assumption that possible
nonlocalities take place at distances below the coarse-graining scale
of �r = 0.6 fm, and simultaneously reduces the short distance core.
As we will show, this has the further practical advantage of reducing
tremendously the computational effort.

FIG. 1. Representation of the different zones of the phase
space in the variables (KCM, k′) where the angular average of the
Pauli-blocking operator Q(KCM, k′) takes different values. To avoid
specifying a definite value for the Fermi momentum kF , the axes of
the plot are represented in units of the Fermi momentum.

relative momentum k; and the integral over the off-shell states
|k′〉 now only runs over the relative two-nucleon momentum.
It is not possible to remove completely all the dependence
on the total momentum KCM because of the presence of the
Pauli-blocking operator, as is obvious from Eq. (7).

B. Angular average of the Pauli-blocking operator

The main problem when solving Eq. (7), besides the form
of the N-N potential, is the additional angular dependence
introduced by the Pauli-blocking function given in Eq. (6).
Indeed, the function Q(KCM, k′) depends explicitly on the
polar angle between the vectors KCM and k′ and, therefore,
breaks rotational invariance in Eq. (7) even for a central N-
N potential [127], causing a mixing among different partial
waves if one tries to perform a partial wave expansion to
solve Eq. (7). Although some few authors have solved the
problem in general for different (noncentral) N-N potentials
[128–133], we are going to use in this work the approxi-
mation, first proposed by Brueckner [9] and also taken by
many other authors [36,108,109,124–126], of substituting the
angle-dependent Pauli-blocking function Q(KCM, k′) by its
angular average around the direction defined by the CM
momentum. This approximation amounts to performing the
replacement

Q(KCM, k′) −→ Q(KCM, k′) ≡ 1

4π

∫
d�k̂′ Q(KCM, k′) (8)

in Eq. (7). With this replacement, now the angle-averaged
Pauli-blocking function Q(KCM, k′) only depends on the mag-
nitude of both CM and relative momenta, but not on the angle
between both vectors ( ̂KCM, k′).

Obviously, the angular average of a function [see Eq. (6)]
that can only take the values 1 or 0 is another function that can
continuously reach values between 0 and 1 depending on the
different zones of the (KCM, k′) plane, as depicted in Fig. 1.
The functional form of Q(KCM, k′) for KCM < 2 kF has been
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well known since the time of Brueckner [9]:

Q(KCM, k′)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 � k′ �

√
k2

F − K2
CM
4 ,

K2
CM
4 +k′ 2−k2

F

KCM k′ if
√

k2
F − K2

CM
4 < k′ � kF + KCM

2 ,

1 if k′ > kF + KCM
2 .

(9)

We restrict our study in this work to the zone KCM < 2 kF ,
corresponding to the abscissa axis range of Fig. 1, because
this is the maximum total (CM) momentum of an uncorrelated
nucleon pair in the ground state of nuclear matter, i.e., when
both nucleons have their largest single momentum, kF , in the
parallel direction.

The region labeled by (a) in Fig. 1, where the angle-
averaged Pauli-blocking function Q(KCM, k′) = 0, corre-
sponds to the forbidden region for two nucleons to scatter
below the Fermi momentum kF ; i.e., this region, limited by
the quarter of an ellipse with semimajor and semiminor axes
2 kF and kF , respectively, corresponds to the region where the
single off-shell nucleon momenta satisfy that both |k′

i| < kF ,
and thus this region is excluded by the Pauli-blocking operator
[cf. Eq. (2)].

The region labeled by (c) in Fig. 1, where the function
Q(KCM, k′) takes the value 1, corresponds to the totally al-
lowed region for two off-shell nucleons to scatter above the
Fermi momentum kF , i.e., this region bounded from below by
the straight line k′ = kF + KCM

2 is the region where the single
off-shell nucleon momenta always satisfy that both |k′

i| > kF ,
and thus this region is fully included by the Pauli-blocking
operator [cf. Eq. (2)].

Finally, the region labeled by (b) in Fig. 1, bounded
by the ellipse from below and by the straight line from
above, corresponds to the transition region between both ex-
treme situations of zones (a) and (c). In this region, (b),
the angle-averaged Pauli-blocking function Q(KCM, k′) takes
intermediate values between 0 and 1, depending of course
on the values of KCM and k′ within this region. Physically,
the picture of this region represents situations where, when
performing the angular average of Eq. (8), for some values of
the angle between KCM and k′ both single nucleon momenta
are above the Fermi momentum (|k′

i| > kF ), thus contributing
the maximum to the integral of Eq. (8); while for other values
of the angle ( ̂KCM, k′), one or both single momenta of the
nucleon pair are below the Fermi momentum (|k′

i| < kF ), thus
contributing 0 to the integral. Therefore, the final result is an
intermediate-valued function between 0 and 1, as shown in
Fig. 2.

What is being shown in Fig. 2 is exactly the piecewise func-
tion Q(KCM, k′) of Eq. (9) when the momenta are expressed
in units of the Fermi momentum kF , for the same range in
the variables ( KCM

kF
, k′

kF
) as that plotted in Fig. 1. Each panel

corresponds to a selected value for the CM momentum of the
nucleon pair, and the Q function is represented in terms of
the relative momentum of the pair. We comment on several
properties of this function:

(1) For KCM = 0 the Q function is exactly a step function,
namely θ (k′ − kF ), and therefore it presents a discon-
tinuity at the point k′ = kF . This situation corresponds
to moving along the y axis in Fig. 1. In this case the
function is zero on the green region until one reaches
the point k′ = kF (where the ellipse and the straight
line cut each other), and beyond that point, for k′ > kF ,
the Q function is always equal to 1. Therefore, this
corresponds to the situation when the region (b) of
Fig. 1 reduces to a single point when moving along
the y axis.

(2) For relatively low values of the CM momentum,
KCM � kF , the joining Q function between regions (a)
and (c) of Fig. 1, i.e., along the region (b) of the same
figure for a definite CM momentum (moving along a
vertical straight line in Fig. 1), is almost a straight line
with large slope. This is because the Q function has to
increase from 0 to 1 in a relatively short range of k′
values, thus making a larger slope.

(3) For intermediate values of the CM momentum, kF �
KCM � 2 kF , a clear curvature in the joining Q function
is evident, especially at the lowest k′ values, i.e., in
region (b) of Fig. 1 but close to the ellipse. In addition,
as the Q function has a longer range in k′ values to rise
from 0 to 1, the average slope is much less steep than
in the case discussed in the previous point.

(4) For the maximum allowed CM momentum of two nu-
cleons below the Fermi momentum, KCM = 2 kF , the
region (a) of Fig. 1 reduces to a single point (k′ = 0),
and the Q function in region (b) of the same figure is
exactly a straight line in the k′

kF
variable with slope 1

2 .
This can be analytically proved from the second line
of Eq. (9) by simply substituting KCM = 2 kF .

(5) Finally, it is worth noticing that, except for KCM = 0,
the piecewise function of Eq. (9) is a continuous func-
tion even at the curves separating the three different
regions of Fig. 1, i.e., at the ellipse and the straight line
of the same figure. However, this Q(KCM, k′) function
has no continuous derivatives with respect to the k′
variable precisely along the ellipse and the straight
line of Fig. 1. This behavior is clearly observable from
Fig. 2, where at the joining points where Q is 0 or 1,
the slopes are different if one approaches that point
from below or above it. This last behavior for the
derivative at the curves delimiting the different regions
in Fig. 1 was already pointed out in Ref. [108], and it
will be very relevant to interpret the high-momentum
components of the relative wave functions that will be
shown in Sec. IV B.

C. B-G integral equation for the radial wave function

In principle, performing a partial wave expansion of Eq. (7)
along the lines of that carried out in Ref. [9], a set of cou-
pled integral equations is obtained for the radial components
of the relative wave function. The formal derivation of this
last equation is also deferred to Appendix B. In this work
we extend the system of equations presented in [68]. This
previous study considered these equations in the specific case
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FIG. 2. Plots of the angle-averaged Pauli-blocking function Q(KCM, k′) for different values of the total CM momentum of the nucleon pair,
ranging from 0 up to 2 kF . The different panels are labeled by the CM momentum in units of the Fermi momentum kF . The abscissa axis
corresponds to the relative k′ momentum of the pair, in units of the Fermi momentum as well. The range spanned in the variables (KCM, k′) is
the same as that also displayed in Fig. 1.

where the relative momentum is oriented along the z axis
and the CM momentum is zero. However, in this paper we
investigate the general case where the relative momentum can
point in any direction, and the CM momentum is nonzero.
This modification only impacts the radial functions in the
coupled channels, which in Ref. [68] depended on a single
angular momentum label, ũl . In the general case considered
here, these functions now depend on two angular momentum
indices, ũl l ′ . Another difference with respect to what was done

in Ref. [68] is the form of the in-medium Green’s function for
the problem when KCM �= 0.

Following the same normalization for the perturbed radial
wave function as in Ref. [68], the result is

ũSJ
k,l l ′ (r) = ĵl (kr)δll ′ +

∫ ∞

0
dr′ G̃KCM

k,l ′ (r, r′)

×
∑

l ′′
U SJ

l ′,l ′′ (r
′) ũSJ

k,l l ′′ (r
′), (10)
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where ũSJ
k,l l ′ (r) is the perturbed radial wave function; ĵl (kr) =

(kr) jl (kr) is the reduced spherical Bessel function of the
first kind; U SJ

l,l ′ (r) = 2μV SJ
l,l ′ (r) is the reduced potential matrix

element for the channel with total spin S = 0, 1 and total
angular momentum J between partial waves with different (or
equal) orbital angular momenta (l, l ′); and, finally, G̃KCM

k,l (r, r′)
is the Green’s function for the radial B-G equation and it is
given by

G̃KCM
k,l (r, r′) = 2

π

∫ ∞

0
dk′ ĵl (k

′r)
Q(KCM, k′)

k2 − k′ 2
ĵl (k

′r′). (11)

In general, the radial wave functions of Eq. (10) depend
on two angular momentum indices, ũl l ′ . Due to the tensor
force, the channels with l, l ′ = J ± 1 are coupled, while in
the uncoupled channels one has l = l ′ (see Appendix B).

Note that the radial wave functions ũSJ
k,l l ′ (r) also depend

implicitly on the value of the CM momentum KCM, although
this dependence has not been written explicitly in order to
shorten the notation.

The Green’s function of Eq. (11) is a symmetric function
and reduces to the Green’s function given in Eq. (13) of
Ref. [68] for the particular case when KCM = 0. The inte-
gral of the oscillatory integrand of Eq. (11) over the infinite
interval for k′ > kF + KCM

2 is carried out with Levin-type inte-
gration methods [136,137].

At first sight one could foresee a divergence in the inte-
grand of Eq. (11) when k′ = k. However, for the calculations
carried out in this work, one should have in mind that the
initial relative momentum k of the nucleon pair is restricted to
lie in region (a) of Fig. 1, because only in this region do both
initial nucleons have individual momenta below the Fermi
momentum kF . Despite the general limits of integration in
Eq. (11), the averaged Pauli-blocking operator is zero unless

k′ >

√
k2

F − K2
CM
4 . Therefore, the true lower limit in the integral

of Eq. (11) is k′ =
√

k2
F − K2

CM
4 instead of zero, for a general

total momentum of the nucleon pair satisfying KCM � 2kF .
The only point where there could be some divergence in the
integrand is when the initial relative momentum of the pair,
k, lies exactly in the ellipse of Fig. 1. This would mean that
there could be a singularity exactly at the truly initial point
of the integration interval in Eq. (11). However, at this point,

k = k′ =
√

k2
F − K2

CM
4 , the integrand is, in general, finite, as it

can be proven below by taking the limit k′ → k+. The only
possible source of divergence is the quotient Q(KCM,k′ )

k2−k′ 2 .
If we calculate the limit of this quotient when k′ → k+ ≡√

k2
F − K2

CM
4 , we obtain the result

lim
k′→k+

Q(KCM, k′)
k2 − k′ 2

= lim
k′→k+

K2
CM
4 +k′ 2−k2

F

KCM k′

k2
F − K2

CM
4 − k′ 2

= lim
k′→k+

−1

KCM k′ .

Therefore, at the end, the only point of possible divergence
corresponds to the case KCM = 0. In this particular case for
the value of the total momentum of the nucleon pair, we are
integrating over k′ in Eq. (11) along the y axis of Fig. 1, and
the only possible point of divergence corresponds to the case

when k = k′ = kF . Note that in this case (see Fig. 1), the
region (b) gets reduced to a single point where the averaged
Pauli-blocking operator has a sudden discontinuity at k′ = kF ,
passing from zero to one, as the top left panel of Fig. 2
shows. In this case, effectively the integrand of Eq. (11) has a
discontinuity, but only when the initial relative momentum k
of the pair reaches its maximum allowed value kF .

This situation physically corresponds to two back-to-back
nucleons, each carrying the maximum single momentum kF .
In the calculations carried out here for KCM = 0, or in those
performed in Ref. [68], we always have taken k < kF , thus
avoiding any problem related with this singularity.

Now, we can introduce in Eq. (10) the form of the coarse-
grained Granada potential given by the sum of delta shells for
each channel, defined by the values of the total spin S and total
angular momentum J:

U SJ
l,l ′ (r) =

Nδ∑
i=1

(λi )
SJ
l,l ′ δ(r − ri ), (12)

where the five (Nδ = 5) delta-shells strengths (λi)SJ
l,l ′ are given

in Table I of Ref. [123], and they were fitted to reproduce
the phase shifts of N-N scattering below the pion produc-
tion threshold. In this calculation we neglect the one-pion
exchange (OPE) contribution, which starts at distances larger
than 3 fm. While this contribution is essential to describe the
physical scattering data with a high quality fit (particularly for
the peripheral waves), its influence becomes marginal for the
study of short distance correlations and makes the calculation
unnecessarily more cumbersome.

The whole point of our framework has been to realize in
previous works that, even though in the current and traditional
jargon of nuclear physics, short distance effects are thought to
imply extremely small wavelengths, this is actually not so. In-
cluding more delta shells does not improve the description of
the scattering data in the elastic regime. In fact, from a statis-
tical point of view, the fits to the N-N data do not improve but
the statistical correlation among fitting parameters increases
and, hence, these additional deltas are largely redundant.

At the present stage it is difficult to ponder on the impact
on 3,4,5-body excitations within our approach. There have
been attempts where mostly the 3-body interaction is included
[138–143] as an effective (averaged) 2-body one. Our expec-
tation would be that these terms may modify the total strength
of the wave function but not the asymptotic behavior.

With this kind of potential given in Eq. (12), one can easily
perform the integral over the radial coordinate in Eq. (10), thus
obtaining the following algebraic equation

ũSJ
k,l l ′ (r) = ĵl (kr)δll ′ +

Nδ∑
i=1

G̃KCM
k,l ′ (r, ri )

∑
l ′′

(λi)
SJ
l ′,l ′′ ũSJ

k,l l ′′ (ri ).

(13)
The form of the potential, Eq. (12), has allowed us to

transform, in general, a coupled integral equation for the radial
wave functions, Eq. (10), into a linear system of coupled
algebraic equations for the radial wave functions at the grid
points ri. Indeed, if we now take r = r j with j = 1, 2, . . . , Nδ ,
then Eq. (13) transforms into the coupled linear system
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given by

ũSJ
k,l l ′ (r j ) = ĵl (kr j )δll ′ +

Nδ∑
i=1

G̃KCM
k,l ′ (r j, ri )

×
∑

l ′′
(λi)

SJ
l ′,l ′′ ũSJ

k,l l ′′ (ri ). (14)

Once the values of the radial wave functions at the grid
points are obtained, the B-G equation itself, namely Eq. (13),
directly allows for a sensible interpolation of the wave func-
tion to any point between the grid points.

The total spin S of the two-nucleon system is known to be
conserved by the N-N interaction. When the two nucleons are
in a singlet spin state, S = 0, then the tensor force does not
couple states with different orbital angular momentum, and
therefore l = l ′ = l ′′ = J in Eq. (14). In this case we have an
inhomogeneous linear system of Nδ = 5 equations (one for
each one of the possible values of r j) with five unknowns,
which are the five values of the radial wave functions ũ0J

k,J (ri )
at the five grid points ri.

When the two nucleons are coupled to total spin S = 1,
for a given total angular momentum J of the partial wave,
there are three possibilities for the orbital angular momentum,
l = J − 1, J, J + 1, except for J = 0, where only l = 1 (P
state) is allowed. Due to the conservation of parity in the N-N
interaction, in the triplet channels (S = 1), partial waves with
angular momenta l = l ′ = J and parity P = (−1)J are decou-
pled from those with l, l ′ = J ± 1 and parity P = (−1)J+1.
In the former case, l = l ′ = J , Eq. (14) reduces again to five
equations for the radial wave function values at the grid points.

However, the partial waves for the case S = 1 and (l, l ′) =
J − 1, J + 1 are known to be coupled due to the tensor part
of the N-N interaction, which has off-diagonal components in
the orbital angular momentum basis. In this case, we have to
simultaneously solve a coupled system for four different radial
wave functions at the grid points of the form given in Eq. (14).
Now the sum over l ′′ in Eq. (14) runs over two values l ′′ = J −
1, J + 1 for each pair of (l, l ′) values. Therefore, the linear
system we have to solve in this case is, a priori, a coupled
inhomogeneous one of 20 equations with 20 unknowns. These
unknowns are precisely the four coupled radial wave functions
at the five grid points.

Finally, once the values of the perturbed radial wave func-
tion for each partial wave 2S+1lJ are known at the grid points,
ũSJ

k,l l ′ (ri ), then the wave function can be known at any other
point r by means of Eq. (13).

Just to see the difference with respect to Eqs. (16) and
(17) of Ref. [68], which are valid only when the relative
momentum k defines the z axis, we write below the general
coupled equations for the 3S1 - 3D1 coupled channels:

ũ11
k,0 0(r) = ĵ0(kr) +

∫ ∞

0
dr′ G̃KCM

k,0 (r, r′)
[
U 11

0,0(r′) ũ11
k,0 0(r′)

+ U 11
0,2(r′) ũ11

k,0 2(r′)
]
, (15)

ũ11
k,0 2(r) =

∫ ∞

0
dr′ G̃KCM

k,2 (r, r′)
[
U 11

2,0(r′) ũ11
k,0 0(r′)

+ U 11
2,2(r′) ũ11

k,0 2(r′)
]
, (16)

ũ11
k,2 0(r) =

∫ ∞

0
dr′ G̃KCM

k,0 (r, r′)
[
U 11

0,0(r′) ũ11
k,2 0(r′)

+ U 11
0,2(r′) ũ11

k,2 2(r′)
]
, (17)

ũ11
k,2 2(r) = ĵ2(kr) +

∫ ∞

0
dr′ G̃KCM

k,2 (r, r′)
[
U 11

2,0(r′) ũ11
k,2 0(r′)

+ U 11
2,2(r′) ũ11

k,2 2(r′)
]
. (18)

Note that Eqs. (15) and (16) involve only the compo-
nents (l, l ′) = (00), (02) of the radial wave functions, while
Eqs. (17) and (18) involve (l, l ′) = (20), (22). Therefore,
these two pairs of equations can be solved separately as two
linear systems of ten equations with ten unknowns when using
the coarse-grained potential with five delta shells.

III. RELATIVE WAVE FUNCTION IN MOMENTUM SPACE

The derivation of the results of this section follows almost
the same lines as those of Sec. III C of Ref. [68], with caution
because in general the perturbed radial wave functions depend
now on two angular momentum labels, l l ′ (as sketched in
Sec. II C and shown in Appendix B), but for the general case
when KCM �= 0. At the end of Sec. II A we wrote the B-G
equation that satisfies the relative perturbed wave function
|ψKCM,k〉 without mentioning the spin of the two-nucleon pair;
cf. Eq. (7). When the approximation of performing the angular
average of the Pauli-blocking operator is taken into account,
the relative ket |ψKCM,k〉 no longer depends on the direction
of the CM momentum K̂CM of the two-nucleon system; i.e.,
all directions of the CM momentum are equivalent in infinite
nuclear matter. Or, to say it in other words, there is an isotropy
property for the direction of the CM momentum K̂CM.

If, finally, we also add the spin state of the two-nucleon
pair to the relative ket state we have a new ket state, labeled
as |ψk, SMS〉KCM , whose meaning is that it is the perturbed ket
state with initial unperturbed relative momentum k of the two-
nucleon system, and with total spin S and third component
of spin MS . This relative ket state can be projected over the
bra 〈p| to obtain the probability amplitude of finding the state
|ψk, SMS〉KCM in other one with relative momentum p due to
the N-N interaction and the medium (angular average of the
Pauli-blocking operator) effects.

If we had an unperturbed state with relative momentum k
and spin state (S, MS ), its wave function in coordinate repre-
sentation would be

〈r|k; SMS〉 = ei k·r

(2π )
3
2

χSMS

= 4π

(2π )
3
2

∑
J,M

∑
l,m

il jl (kr)Y ∗
lm(k̂)〈lm; SMS|JM〉

×YlSJM (r̂)

= 4π

(2π )
3
2

∑
J,M

∑
l,l ′,m

il jl (kr)Y ∗
l ′m(k̂) δl ′l

×〈l ′m; SMS|JM〉YlSJM (r̂), (19)
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where in the last step we have added an additional sum over l ′
with the Kronecker delta δl ′l in order to match the expansion
of the perturbed or correlated state (see below).

In Eq. (19) we have coupled the orbital angular momentum
and spin angular momentum states, i.e., l ⊗ S, to obtain the
spin-angular eigenfunctions, YlSJM (r̂), with well-defined total
angular momentum J and third component M, defined by

YlSJM (r̂) =
∑
m,MS

〈lm; SMS|JM〉Ylm(r̂) χSMS
. (20)

A similar expansion in partial waves to that of Eq. (19)
also holds for the perturbed state |ψk, SMS〉KCM in coordinate
representation,

〈r |ψk, SMS〉KCM
= 4π

(2π )
3
2

∑
J,M

∑
l,l ′,m

il ′ Y ∗
l ′m(k̂) uSJ

k,l ′ l (r)

×〈l ′m; SMS|JM〉YlSJM (r̂), (21)

where the perturbed radial wave functions uSJ
k,l ′ l (r) are nor-

malized with respect to those appearing in Sec. II C as

uSJ
k,l ′ l (r) = ũSJ

k,l ′ l (r)

k r
, (22)

in order to approach the free solution, the spherical Bessel
functions of the first kind, at long distances for the diagonal
case, l = l ′.

With these two partial wave expansions for the unperturbed
and perturbed states, Eqs. (19) and (21), we can calculate
the bra-ket product 〈p|ψk, SMS〉KCM in momentum space by
performing the Fourier transform:

〈p|ψk, SMS〉KCM =
∫

d3r

(2π )
3
2

e−i p·r〈r|ψk, SMS〉KCM

= 2

π

∑
J,M

∑
l,l ′,m

il ′−l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉

×YlSJM ( p̂)
1

p k

∫ ∞

0
dr ĵl (pr) ũSJ

k,l ′ l (r).

(23)

To obtain the final expression of Eq. (23), we have used the ex-
pansion of the plane wave in spherical harmonics (Rayleigh’s
formula) and Eq. (21) for the perturbed wave function in
coordinate representation, and we have also carried out the
angular integration over r̂ between a spherical harmonic and a
spin-angular eigenfunction, with the aid of∫

d�r̂ Y ∗
l ′m′ (r̂) YlSJM (r̂) = δl,l ′

∑
ms

〈lm′; Sms|JM〉χSms .

(24)
Finally, we have performed the sum over the orbital angu-
lar momentum label with the Kronecker delta, and we have
coupled again one spherical harmonic with the spinor wave
function appearing in Eq. (24) to obtain the spin-angular
eigenfunction YlSJM ( p̂).

The form of Eq. (23), apart from the normalization factors,
is completely equivalent to that of the perturbed ket in position
representation, given by Eq. (21). In this case, we identify the

“radial” partial wave function in momentum representation as

φSJ
k,l ′ l (p) = 2

π

1

p k

∫ ∞

0
dr ĵl (pr) ũSJ

k,l ′ l (r). (25)

It is also worth noticing that the “radial” wave function
φSJ

k,l ′ l (p) for each partial wave also depends on the magnitude
of the CM momentum of the nucleon pair, KCM, via the depen-
dence on it of the radial wave function ũSJ

k,l ′ l (r) [cf. Eq. (13)],
as already been mentioned in the discussion given in Sec. II C.
However, this dependence has not been explicitly written here
to avoid a very cumbersome notation.

In the next step, to obtain an analytical expression for the
“radial” wave function φSJ

k,l ′ l (p), one needs to substitute the
radial wave function ũSJ

k,l ′ l (r) from Eq. (13) into Eq. (25),
and to use the explicit expression of the Green’s function,
G̃KCM

k,l (r, r′), given in Eq. (11), to carry out the integration
over the radial variable in Eq. (25). It is also necessary to
use the orthogonality property of the reduced spherical Bessel
functions, ∫ ∞

0
dr ĵl (pr) ĵl (kr) = π

2
δ(p − k), (26)

to obtain the final result:

φSJ
k,l ′ l (p) = δl ′l

1

p k
δ(p − k) + �φSJ

k,l ′ l (p), (27)

where

�φSJ
k,l ′ l (p) = 2

π

1

p k

Q(KCM, p)

k2 − p2

Nδ∑
i=1

ĵl (pri )

×
∑

l ′′
(λi )

SJ
l,l ′′ ũSJ

k,l ′ l ′′ (ri). (28)

The first term of Eq. (27) corresponds to the unperturbed
“radial” component of the state |ψKCM,k〉 of Eq. (7), coming
from the bra-ket product 〈p|k〉, while the second term, given
explicitly in Eq. (28), corresponds actually to the high mo-
mentum components induced in the perturbed relative wave
function by the N-N interaction and the medium.

For the ground state of an uncorrelated two-nucleon system
in nuclear matter with single momenta |ki| � kF , their relative
momentum k is constrained to lie in region (a) of Fig. 1.
Therefore, there is no divergence problem in the second term
of Eq. (27) when p approaches k from above, because in that
case the angle-averaged Pauli-blocking function Q(KCM, p) is
exactly 0 on the ellipse delimiting region (a) from (b) in Fig. 1,
and below the ellipse as well [cf. Eq. (9)].

Another interesting check corresponds to the case when the
CM momentum of the two-nucleon system is zero, KCM = 0.
In this case, Eq. (28) should reduce to Eq. (30) of Ref. [68].
And indeed this is the case, because for KCM = 0 the angle-
averaged Pauli-blocking function Q(0, p) reduces to the step
function θ (p − kF ), as can be deduced from the discussion
given in point 1 of Sec. II B.

Some words of caution must be given again: in general,
the radial wave functions, either in coordinate or momentum
representation, depend on two labels for the orbital angular
momenta, except for the uncoupled nucleon-nucleon partial
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waves, where l = l ′ and there are no off-diagonal wave func-
tions.

A. High-momentum density distribution

We are going to obtain the high-momentum density dis-
tributions for a given total spin S = 0, 1 of the nucleon pair.
To this end, we have to integrate the modulus squared of
the probability amplitude, given in Eq. (23), of finding the
perturbed wave function with momentum p, over the solid
angle of p̂, assuming that we do not measure the direction
of this momentum with respect to the fixed CM momentum,
KCM. This quantity is given by

ρ
SMS
k,KCM

(p) =
∫

d�p̂|〈p|ψk, SMS〉KCM |2

=
∑
l,l ′,m

∑
l ′′,m′′

∑
JM

il ′−l ′′ Y ∗
l ′m(k̂)Yl ′′m′′ (k̂)

×〈l ′m; SMS|JM〉〈l ′′m′′; SMS|JM〉φSJ∗
k,l ′′ l (p)

×φSJ
k,l ′ l (p), (29)

where we have used the orthogonality property of the
spin-angular eigenfunctions YlSJM ( p̂) to integrate over the
directions of p̂,∫

d�p̂ Y∗
l ′SJ ′M ′ ( p̂) YlSJM ( p̂) = δl,l ′ δJ,J ′ δM,M ′ , (30)

to carry out some discrete sums appearing when taking the
modulus squared of Eq. (23).

If, in addition, we do not measure the third component of
the spin of the pair of nucleons along the quantization axis
defined by KCM, we have to perform again a sum over MS

in Eq. (29), and an average over the number of different MS

values for each total spin S. We thus obtain

ρS
k,KCM

(p) = 1

2S + 1

S∑
MS=−S

ρ
SMS
k,KCM

(p)

= 1

2S + 1

∑
l,l ′,m

∑
l ′′,m′′

∑
J

il ′−l ′′ Y ∗
l ′m(k̂)Yl ′′m′′ (k̂)

×φSJ∗
k,l ′′ l (p) φSJ

k,l ′ l (p)
∑
M,MS

〈l ′m; SMS|JM〉

× 〈l ′′m′′; SMS|JM〉. (31)

Note that the final sum over the third components of an-
gular momenta of the product of two Clebsch-Gordan (C-G)
coefficients can be carried out with the aid of the symmetry
properties of these coefficients when changing the order of
coupling, and using their orthonormality properties. The sym-
metry property that we need here is to change the order of
coupling from [l ⊗ S]J to [J ⊗ S]l , where l stands for anyone
of the two orbital angular momenta appearing in Eq. (31):

〈lm; SMS|JM〉 = (−1)S+MS

√
2J + 1

2l + 1
〈J,−M; SMS| l,−m〉.

(32)

Using the above symmetry property of the C-G coefficients in
the last sum of Eq. (31), we obtain

ρS
k,KCM

(p) = 1

2S + 1

∑
l,l ′,m

∑
J

Y ∗
l ′m(k̂) Yl ′m(k̂) �(JSl ′)

× (2J + 1)

(2l ′ + 1)

∣∣φSJ
k,l ′ l (p)

∣∣2
. (33)

To obtain the above equation we have used the following in the
final sum of Eq. (31) over the third components M, MS: the
fact that the factor (−1)2(S+MS ) is always positive regardless
of the spin of the nucleon pair being integer or half-integer
(of course it is always integer, but the factor would also
be positive in the case of half-integer spin); the fact that
the sum over M ≡ −M ′ can be carried out in reverse order
without changing anything; the orthonormality property of
the C-G coefficients, which when summed over M, MS give
�(JSl ′) δl ′,l ′′ δm,m′′ ; and, finally, performing the sums over l ′′
and m′′ with the aid of the Kronecker deltas.

Finally, notice that in Eq. (33) the sum over m only affects
the spherical harmonics, and this can be simplified a lot by
using ∑

m

Y ∗
l ′m(k̂) Yl ′m(k̂) = (2l ′ + 1)

4π
, (34)

thus giving the final result

ρS
k,KCM

(p) = 1

2S + 1

∑
l,l ′,J

�(JSl ′)
(2J + 1)

4π

∣∣φSJ
k,l ′ l (p)

∣∣2
. (35)

It is also worth noting that �(JSl ′) is the triangular in-
equality for the coupling of two angular momenta to a third
one, meaning that the sum over J and l ′ in Eq. (35) is restricted
to run over those values of J and l ′ that are compatible for
coupling to a total spin of the two-nucleon system of S = 0 or
S = 1. To be more specific, for a given total spin S and total
angular momentum J for the partial wave, the sum over l ′ runs
from |J − S| to J + S, with another restriction coming from
the antisymmetry of the relative wave function for a system
of two identical fermions such as the proton-proton (pp) or
neutron-neutron (nn) pair. For these cases, if S = 0 (antisym-
metric spin state in terms of the single nucleon spin states)
then only even orbital angular momenta contribute; while if
S = 1 (symmetric spin state in terms of the single nucleon
spin states) only odd values of l and l ′ contribute in the sum
of Eq. (35). However, this is not the case for a neutron-proton
(np) pair, where all the (l, l ′) values compatible with the rules
of angular momentum coupling (from |J − S| to J + S), and
coupling of partial waves due to the tensor force of the N-N
potential are allowed in the sum of Eq. (35).

Finally, it is also worth warning the reader that Eq. (35) is
the general equation instead of Eq. (34) of Ref. [68], where
the relative momentum k was chosen to lie along the z axis.
Although not explicitly written, the “radial” momentum wave
functions φSJ

k,l ′ l (p) depend on the magnitude of the CM mo-
mentum of the two-nucleon system, while in Ref. [68] the
results were obtained for KCM = 0 only. However, in order to
facilitate the comparisons with the results of Ref. [68] for the
high-momentum density distributions for a given total spin S
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of the nucleon pair, and to see the differences, in the results
section (Sec. IV) we are going to use the same normaliza-
tion for the high-momentum density distributions as defined
in Ref. [68], i.e., we are going to adopt the convention of
Eq. (43) of that reference to plot the high-momentum density
distributions for a given spin S. This convention amounts to
plot 4π (2S + 1)ρS

k,KCM
(p), with ρS

k,KCM
(p) defined by Eq. (35),

in order for a straightforward comparison of Figs. 8, 9(a),
and 10 of Ref. [68] with the ones obtained from Eq. (35)
(see Sec. IV for the discussion).

IV. RESULTS AND DISCUSSION

In this section we provide results for the perturbed radial
wave functions in coordinate and momentum representations.
We show the results for a Fermi momentum of kF = 250
MeV/c and an initial relative momentum of the pair of k =
140 MeV/c, in order to compare with what was done in
Ref. [68]. The results of this section were calculated for
different CM momenta. All the pairs (KCM, k) belong to the
region (a) of Fig. 1, thus we are always in the region where
the single-nucleon momenta are below the Fermi momentum
(|ki| � kF ), i.e., in the ground state of nuclear matter.

While we show for definiteness results for k = 140 MeV/c
of relative momentum, halfway to the Fermi momentum, we
have verified that our conclusions regarding the CM do not
depend strongly on the particular k value. Actually, for zero
CM momentum, the universality of the particle pair distri-
bution was explicitly verified in our previous work for k =
40, 140, 200 MeV/c (see Fig. 10(a) in Ref. [68]). However,
the wave function with initial momentum k does depend di-
rectly on the CM momentum as a direct consequence of the
B-G equation, as can be seen explicitly in Eq. (28). Regarding
the Fermi momentum dependence, as a direct consequence
of the Pauli blocking kernel, the momentum distribution is
shifted above the Fermi momentum.

A. Perturbed radial wave functions in coordinate representation

In this subsection, for the uncoupled partial waves, l = l ′,
we use the notation ũSJ

k,l ≡ ũSJ
k,l l for the radial wave functions

in the figures.
In Fig. 3 we show results for the radial wave functions

in coordinate representation, corresponding to the solutions
of Eq. (13) for the uncoupled N-N partial waves for differ-
ent total CM momenta of the nucleon pair corresponding to
KCM = 0, 100, 200, 300, and 400 MeV/c. All these CM mo-
menta are compatible with having a relative momentum of the
nucleon pair k = 140 MeV/c and both initial single-nucleon
momenta fulfilling the condition of lying below the Fermi
momentum kF (in fact, the maximum allowed CM momentum
for k = 140 MeV/c under the above conditions corresponds
to Kmax

CM = 414.25 MeV/c). The values of the strength param-
eters (λi )SJ

l,l ′ of the delta-shell Granada potential are those of
Table I of Ref. [123] and they were fitted to reproduce the N-N
scattering phase-shifts of the Granada database [144] below
the pion production threshold.

It is evident from Fig. 3 that the impact of the two-nucleon
CM motion on the radial wave functions is minimal within

the scale of the figure. However, it becomes more noticeable
for the low-lying uncoupled partial waves, such as the S or P
waves. For the D waves, the effect is a bit more pronounced
in the triplet 3D2 partial wave than in the singlet 1D2 one,
because of the strength parameters of the potential at the first
delta shell (in this case they correspond to λ2 in Table I of
[123]); the attractive behavior of the first delta-shell param-
eter in the 3D2 partial wave is much stronger than in the
1D2 one.

The reasons for the SRCs’ effects (distortions in the radial
wave functions) being more distinguishable in the low lying
l partial waves have to do not only with the strength param-
eters of the delta-shell potential (cf. Table I of Ref. [123]),
but also with the centrifugal barrier of each partial wave
(rising with the l value), which prevents the two nucleons
from approaching each other more closely. The effects of
SRCs are particularly noticeable at short internucleon dis-
tances. In the case of higher partial waves, such as D or F
waves, the probability of nucleons approaching each other
is significantly suppressed due to the presence of the cen-
trifugal barrier. As a result, the influence of SRCs on these
higher partial waves is less pronounced compared to the lower
ones.

Nonetheless, the important point of Fig. 3 is that there
is little dependence on the CM momentum in the perturbed
radial wave functions at short distances, and this fact will have
important consequences in the momentum distributions for
each partial wave, �φSJ

k,l ′l (p) [Eq. (28)], at high probed relative
momenta p, as will be shown later.

In order to magnify the differences between the perturbed
wave functions and the free ones shown in Fig. 3, we present
the defect wave functions in Fig. 4. These are defined as the
difference between the perturbed wave functions and the free
solutions,

�ũSJ
k,l (r) ≡ ũSJ

k,l (r) − ĵl (kr), (36)

for the diagonal l ′ = l case.
Here we also observe the general trend discussed in Fig. 3,

namely, the amplitude of the distortion in the perturbed wave
function (importance of SRCs effects), in general, gets smaller
when the value of the orbital angular momentum l increases
(cf. the different scales in the vertical axes of Fig. 4), thus re-
flecting the importance of the centrifugal barrier that prevents
the two nucleons from approaching each other more closely
and experiencing the short-range N-N interaction, although
the strength parameters of the delta-shell Granada potential
also play a role. On the other hand, the magnitude of the
distortion is quite insensitive to the state of global motion
of the two-nucleon system, i.e., the value of the CM mo-
mentum (notice that the values at the cusps are more or less
the same for the different curves in each panel of Fig. 4).
Therefore, we can write, in general, a sort of hierarchy for
the magnitude of the distortions in the wave functions due to
the SRCs:

�ũl=0 > �ũl=1 > �ũl=2 > �ũl=3. (37)

It is also worth noticing that the amplitudes of the distor-
tions in Fig. 4 are related to the importance of that partial
wave in the two-nucleon relative high-momentum distribution
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FIG. 3. Reduced radial wave functions ũSJ
k,l (r) for the uncoupled N-N partial waves (l = l ′). The results are given for relative momentum

k = 140 MeV/c, and for each partial wave the free solution ĵl (kr) as well as those for different values of the CM momentum are given. The
results for KCM = 0 MeV/c (dashed green lines) are the same as those shown in Fig. 1 of Ref. [68]. Although not distinguishable in all panels,
the curves labeled in the key of the 1S0[np] panel are also displayed in all the others.

ρS
k,KCM

(p) given by Eq. (35), since the different wavelengths
overlapping (with different amplitudes of course) in the de-
fect wave functions of the same figure are related to the

corresponding high-momentum components in the relative
momentum distribution for each partial wave |φSJ

k,l ′ l (p)|2, as
in any continuous harmonic Fourier analysis.
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FIG. 4. Defect wave functions �ũSJ
k,l (r) ≡ ũSJ

k,l (r) − ĵl (kr) for the uncoupled N-N partial waves, l ′ = l . The results are given for relative
momentum k = 140 MeV/c and for the same values of the CM momentum as in Fig. 3. The results for KCM = 0 MeV/c (solid purple lines)
are the same as those shown as short-dashed green lines in Fig. 1 of Ref. [68], but on a different vertical scale. Notice that the scales on the
vertical axes are, in general, different for each partial wave as well.

In Fig. 5 we display the correlation function for each un-
coupled N-N partial wave, defined by

fcorr (r) ≡ ũSJ
k,l (r)

ĵl (kr)
. (38)

Again, the most remarkable feature of these plots is the little
dependence of the correlation function on the different CM
momenta of the nucleon pair. The boldest dependence on the
CM momenta, especially close to the origin (r = 0), occurs
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FIG. 5. Correlation functions fcorr (r) ≡ ũSJ
k,l (r)

ĵl (kr)
for the uncoupled N-N partial waves, l ′ = l . The results are given for relative momentum

k = 140 MeV/c and for the same values of the CM momentum as in Figs. 3 and 4. The results for KCM = 0 MeV/c (solid green lines) are the
same as those shown in Fig. 2 of Ref. [68].

for the 3D2 partial wave. The departures of the correlation
functions from unity occur only at short distances, and these
functions rapidly approach 1 at larger distances, which means
that the perturbed solutions reach the free ones without any

phase-shift:

fcorr (r) −→ 1 ⇐⇒ ũSJ
k,l (r) −→ ĵl (kr) for r > 3 fm.

(39)
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FIG. 6. Perturbed radial diagonal wave functions ũSJ
k,l l (r) (for l ′ = l) for the coupled N-N partial waves 3S1 - 3D1 and 3P2 - 3F2. The results

are given for relative momentum k = 140 MeV/c, and for each partial wave the free solutions ĵl (kr) to which they trend when r → ∞ are
shown, as well as those for different values of the CM momentum. Although not distinguishable in all the panels, the curves labeled in the key
of the upper left panel are also displayed in all the others.

Indeed, special attention must be paid to the zeros of the
reduced spherical Bessel functions ĵl (kr) in the analysis. At
these zeros, the perturbed wave functions can have numerical
uncertainties that may give the impression of a nonzero phase
shift at long distances, even although the correlation func-
tions approach unity. This is due to two reasons: numerical
uncertainties in the calculation of ũSJ

k,l (r) at the nodes, that
prevent an exact cancellation of both nodes when numerically
evaluating Eq. (38), and the fact that the perturbed wave
function truly converges on the free one precisely at very long
distances, thus the quotient at the nodes is never exactly 1.
This is, for example, the reason for plotting the correlation
function for the 1S0 partial wave of Fig. 5 only up to 4 fm,
precisely because the node for the value of k considered in the
same panels of Fig. 3 appears between 4 and 5 fm.

In Fig. 6 we show the diagonal l = l ′ radial wave functions
for the coupled N-N partial waves 3S1 - 3D1 and 3P2 - 3F2, for
different values of the CM momentum of the two-nucleon
system and for a relative momentum of k = 140 MeV/c. For
the coupled channels, the notation SS refers to the partial wave
with l = l ′ = 0, SD refers to the partial wave with l = 0 and
l ′ = 2, and so on, following the usual spectroscopic notation
for the orbital angular momenta. The general trend with re-
spect to the dependence of them on the CM momentum is
similar to that of the uncoupled partial waves, i.e., there is
little dependence on the value of the CM momentum. And,
the departure from the free solution is more remarkable for
the lower values of the orbital angular momenta l . The most
striking dependence on the CM momentum occurs for the

SS wave at the cusp, but it is also similar to the case of the
uncoupled 1S0 partial wave (cf. first panels of Figs. 3 and 6).

In Fig. 7 we show the defect diagonal (l = l ′) radial wave
functions for the N-N coupled channels, together with their
coupled off-diagonal (l �= l ′) partners on the right panels.
The most remarkable feature is that the size of the distortion
due to the short-range correlations is similar in the partial
waves which are coupled between themselves, i.e., those cor-
responding to the left and right panels in each row of the
figure. Furthermore, the distortions are more sizable for the
lower l partial waves, as already remarked in the discussion
of Fig. 6; and, in general, there is little dependence on the
CM momentum of the nucleon pair, although this can seem
enhanced because of the scales shown in Fig. 7 with respect
to those of Fig. 6.

In Fig. 8 we show the correlation functions for the diagonal
(l = l ′) coupled N-N partial waves. Their behavior is, in gen-
eral, similar to that of the uncoupled partial waves, i.e., their
departure from 1 at short distances is very similar in magni-
tude, and there is little dependence on the CM momentum of
the nucleon pair, except for the DD radial wave function of the
3S1 - 3D1 coupled channel, where there is a more pronounced
dependence on the CM momentum for the highest one shown
in the upper right panel of Fig. 8. Nonetheless, similar be-
haviors can be also observed in the 3D2 channel of Fig. 5 or
even, to a lesser extent, in the PP component of the 3P2 - 3F2

channel, shown in the bottom left panel of Fig. 8.
In Fig. 9 we observe the long-range behavior of the defect

coupled radial wave functions for KCM = 0. The left panels
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FIG. 7. Defect diagonal (l = l ′) wave functions �ũSJ
k,l l (r) ≡ ũSJ

k,l l (r) − ĵl (kr) (left panels) and off-diagonal wave functions ũSJ
k,l l ′ (r) (for

l �= l ′) (right panels) for the coupled N-N partial waves 3S1 - 3D1 and 3P2 - 3F2. The results are given for relative momentum k = 140 MeV/c
and for the same values of the CM momentum as in Fig. 6.

compare the (J − 1, J − 1) waves to the (J − 1, J + 1) ones,
while in the right panels the (J + 1, J + 1) waves are com-
pared to the (J + 1, J − 1) ones. In each panel, both functions
approach zero in an oscillatory manner, as expected. However,
this decrease occurs very slowly in the scale of each plot,

indicating a gradual decrease in amplitude as the distance
increases. It is worth noticing that the coupled waves shown in
each panel have the same order of magnitude, in concordance
with the findings discussed in Fig. 7. This order of magni-
tude, which is a measure of their deviation with respect to
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FIG. 8. Correlation functions fcorr (r) for the diagonal (l = l ′) wave functions, whose trend when r → ∞ should be 1, for the coupled
N-N partial waves 3S1 - 3D1 and 3P2 - 3F2. The results are given for relative momentum k = 140 MeV/c and for the same values of the CM
momentum as in Figs. 6 and 7.

FIG. 9. Long range (r → ∞) behavior of the defect diagonal wave functions and the off-diagonal ones for the N-N coupled channels, and
for KCM = 0. All of them go to zero, but are slowly converging on the scale of each figure. This means that there is no phase shift in the B-G
wave functions ũl l (r) with respect to the free solution when r → ∞.
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FIG. 10. “Radial” wave functions |�φSJ
k,l ′ l (p)|2 for the uncoupled N-N partial waves, i.e., for l = l ′. The results are given for relative

momentum k = 140 MeV/c, and for different values of the CM momentum as labeled in the key of the first panel. The results for KCM = 0
MeV/c (solid purple lines) are the same as those shown in the upper panel of Fig. 6 of Ref. [68].

their free asymptotic behavior, and therefore a measure of the
importance of the short-range correlations in each channel, is
higher the lower the orbital angular momentum l is, in perfect
accordance with the findings of the discussion of Fig. 7 as
well.

B. “Radial” wave functions in momentum representation:
High-momentum components

In Figures 10 and 11 we show the square of the
high-momentum component of the “radial” wave function
|�φSJ

k,l ′ l (p)|2 in momentum space [see Eq. (28)], for different
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FIG. 11. “Radial” wave functions |�φSJ
k,l ′ l (p)|2 for the coupled N-N partial waves. The results are given for relative momentum k = 140

MeV/c, and for different values of the CM momentum as labeled in different colors in the key of the first panel. The solid lines correspond to
the diagonal l ′ = l waves, while the dashed lines are the results corresponding to the off-diagonal (l ′ �= l) coupled waves.

CM momenta of the nucleon pair, of the uncoupled and cou-
pled N-N partial waves, respectively. The vertical black lines
in the different panels at p = 250 MeV/c mark the position of
the Fermi momentum. These show the high-momentum com-
ponents in the relative wave function due to the short-range
correlations.

As already discussed in Fig. 2, the angle-averaged Pauli-
blocking function appearing in Eq. (28) is always a piecewise
function bounded between 0 and 1, depending on the values
of the CM momentum KCM and the probed relative one p
of the nucleon pair. Therefore, if one wants to look at the
effects produced in the high-momentum components by the
influence of the CM momentum on the radial wave functions
at the grid points, one should look at regions of p in Figs. 10
and 11 where the angle-averaged Pauli blocking operator
does not depend at all on KCM. These regions of p where
Q(KCM, p) = 1 correspond to zone (c) in Fig. 1, i.e., when
p > kF + KCM

2 . In the most unfavorable situation, we should
look at p > 2kF = 500 MeV/c in Figs. 10 and 11.

In this region of values of p, the only observable differ-
ences between the curves for distinct CM momenta can only
come from the differences in the radial wave functions at the
grid points ri, shown in Figs. 3, 6, and the right panels of
Fig. 7. However, if we look in Figs. 10 and 11 at p � 500
MeV/c, we do not observe almost any difference between
the curves for distinct CM momenta, except for the particular
cases of the 3D2 and the DS − DD coupled components of
the 3S1 - 3D1 partial waves, which will be explained later.
Therefore, the conclusion is that the differences due to the
CM momentum dependence on the radial wave functions

(even the largest ones for the low l partial waves) observed in
Figs. 3, 4, 6, and 7 mostly completely irrelevant for the tail of
high-momentum components (p � 2kF ) in the relative wave
function of the nucleon pair. This points out the universality
of SRCs or, at least, that the global motion state of the nucleon
pair has negligible influence in the tail of high momentum
components.

However, if we observe Figs. 10 and 11 for p � 2kF =
500 MeV/c, the angle-averaged Pauli-blocking function,
Q(KCM, p) of Eq. (28), starts to play a significant role. For
a fixed value of the CM momentum of the pair, when dimin-
ishing the probed relative momentum p, we are entering into
region (b) of Fig. 1 from region (c) of the same figure. And, in
region (b) of Fig. 1, the value of the Q(KCM, p) function starts
to get reduced from 1 at the right line p = kF + KCM

2 to 0 at the

ellipse p =
√

k2
F − K2

CM
4 .

This reduction in the value of the angle-averaged Pauli-
blocking function gets reflected in the departures from the
purple lines of almost all the curves for KCM > 0 MeV/c in
Figs. 10 and 11 at different values of p. The smaller the value
of KCM is, the smaller the value of p is at the point where
the deviation from the purple curves occurs. This fact can
be easily understood looking again at Fig. 1. Indeed, if we
plot imaginary vertical lines in Fig. 1 at the CM momenta
depicted in Figs. 10 and 11, we observe that region (b) along
these imaginary vertical lines starts to become larger when
the CM momentum increases. This is so because the right
line is growing and the ellipse is diminishing. This causes the
point of deviation from the purple curves (corresponding to
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KCM = 0) in Figs. 10 and 11 to be larger in the p variable
when the CM momentum is also larger. In fact, the exact point
of deviation from the purple curves occurs at pdev(KCM) =
kF + KCM

2 , which of course depends on the value of the CM
momentum.

Another interesting features that can be observed in
Figs. 10 and 11 is that for KCM > 0 MeV/c the high-
momentum distributions intrude below the Fermi momentum
marked by the vertical lines on the same figures. This, again,
can be easily understood by looking at Fig. 1: for KCM > 0
MeV/c, the points p below which the high-momentum distri-
butions are zero correspond to the ellipse points, and these are
always below the Fermi momentum when KCM > 0. The par-
ticular case when KCM = 0 corresponds to the purple curves
in Figs. 10 and 11, and for this CM momentum the high-
momentum distribution is zero exactly at p = kF . However,
there are never high-momentum distributions for p < k. The
only low momentum component is the unperturbed compo-
nent for p = k, represented by the Dirac delta function in
Eq. (27).

Another interesting point is that the high-momentum dis-
tributions |�φSJ

k,l ′ l (p)|2 are continuous at the deviation points
from the purple lines, pdev(KCM), but their derivatives with
respect to p at these points are not continuous. This fact is
completely related to the discontinuity in the derivative of
the angle-averaged Pauli-blocking function (see Fig. 2) at the
joining point between regions (b) and (c) of Fig. 1 along a
vertical line for a constant value of KCM. This feature was
already discussed in point 5 at the end of Sec. II B. In par-
ticular, this effect is very clearly observable for the curves of
Figs. 10 and 11 corresponding to KCM = 100 MeV/c, whose
angle-averaged Pauli-blocking function has a behavior very
similar to that of the second panel (KCM = 0.5 kF ) in Fig. 2.
Indeed, in these cases of low CM momenta, the discontinuities
in the derivative of the Q(KCM, p) function at pdev = kF + KCM

2
are much more pronounced than for larger CM momenta, as
can be observed in the different panels of Fig. 2 (notice that
for the first panels the slope of the transition curve between 0
and 1 is much steeper than for the last panels).

The case of the 3D2 partial wave high-momentum distribu-
tion shown in Fig. 10 deserves a separate explanation for its
behavior at p ≈ 600 MeV/c. This is the region of p values
where the angle-averaged Pauli-blocking function is equal to
1, and therefore any difference between the curves for distinct
CM momenta can be solely ascribed to differences in the
perturbed radial wave functions at the grid points [̃u12

k,2(ri )]
for the different CM momenta of the nucleon pair, as appear
in Eq. (28). The explanation is as follows: when KCM = 0
MeV/c, the corresponding curve (purple line) in Fig. 10 does
not have a node at p ≈ 600 MeV/c, but a local minimum
very close to 0; however, the differences in the perturbed
radial wave functions at the grid points when varying the CM
momentum make this local minimum become also a node for
KCM ≈ 200 MeV/c (short-dashed blue line). Finally, if one
increases the value of the CM momentum above 200 MeV/c,
the minimum of the function �φ12

k,22(p) at p ≈ 600 MeV/c
starts to have negative values and cuts the p axis at two nodes
very close to p ≈ 600 MeV/c, but each one of them at one
side of the negative minimum. This gives the particular pattern

shown in the 3D2 panel of Fig. 10 for the square of the function
�φ12

k,22(p) around p ≈ 600 MeV/c, presenting two very close
nodes for KCM = 300 and 400 MeV/c.

The differences observed in the DS − DD coupled waves
of the 3S1 - 3D1 (top right panel of Fig. 11) channel, partic-
ularly between the case of KCM = 400 MeV/c and the other
CM momenta, can be explained by looking at the defect radial
wave functions for that channel in Fig. 7 (second line plots of
that figure). In this case, in contrast to the others of the same
figure, one can observe a relevant difference at short distances
between the curve for KCM = 400 MeV/c and those for the
other CM momenta. This is particularly evident for the DS
relative wave function. Notice that, despite being basically D
waves, the magnitude of the distortion at short distances is
quite similar to that of the PP − PF (l = 1) coupled waves.
However, for this latter case, all the distortions depend little
on the CM momentum, while in the DS − DD case there
is a significant difference between the case with KCM = 400
MeV/c and the other CM momenta configurations, whose
curves show a softer dependence on the total momentum.
This makes the high-momentum components for this DS-DD
coupled channel depend substantially more on the CM mo-
mentum, especially for the DS component at p � 625 MeV/c
(note that the vertical scales in Fig. 11 are logarithmic).

In Fig. 12 we display the total high-momentum distribu-
tions of a nucleon pair with initial relative momentum k and
spin S, for p > k, which we define as:

ρ̄S
k (p) = 4π (2S + 1)ρS

k,KCM
(p)

=
∑
l,l ′,J

�(JSl ′) (2J + 1)
∣∣�φSJ

k,l ′ l (p)
∣∣2

, (40)

where ρS
k,KCM

(p) is given by Eq. (35) but replacing φSJ
k,l ′ l by

�φSJ
k,l ′ l . We show results for np (solid lines) and pp pairs

(dashed lines) at relative momentum of k = 140 MeV/c for
different CM momenta of the pair, as labeled in the key of the
top left panel of Fig. 12. The purpose of giving the quantity
ρ̄S

k (p) is because it is directly comparable with Eq. (43) of
Ref. [68] and with Figs. 8 and 9 (upper panel) of the same
reference.

The upper left panel of Fig. 12 shows the total high-
momentum density distribution (summed over the different
partial waves) for correlated np and pp pairs with total spin
S = 0. Both np and pp momentum distributions are very sim-
ilar in the intermediate region of probed relative momentum
450 � p � 850 MeV/c. This is due to the fact that the 1P1

contribution, which is present in np pairs with S = 0 but not
in pp pairs with the same total spin, is quite irrelevant in
this region of p if compared with the dominant component
coming from the 1S0 partial wave. However, the differences
between np and pp pairs are patent at p ≈ 400 MeV/c, where
the dominant 1S0 partial wave has a node, and then the 1P1

contribution makes the difference between np and pp pairs,
because for the latter only the 1D2 partial wave can be added
(due to antisymmetry considerations of the relative wave func-
tion for two identical fermions), and its contribution is far less
important than that of the 1P1 channel.
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FIG. 12. Probability densities of high-momentum components per nucleon pair ρ̄S
k (p) [see definition given in Eq. (40)] for S = 0 (upper

left panel), S = 1 (upper right panel), and summing the contributions from the two spin configurations (lower left panel). The results are given
for relative momentum k = 140 MeV/c, and for different values of the CM momentum as labeled in the key of the first panel. The solid lines
refer to momentum distributions of np pairs, while the dashed lines correspond to pp pairs. The results for KCM = 0 MeV/c (purple lines) are
essentially the same as those shown in Fig. 8 and in the upper panel of Fig. 9 of Ref. [68]. Therefore, these curves are directly comparable
with the quantity defined in Eq. (43) of Ref. [68]. On the other hand, the lower right panel corresponds to the ratio of high-momentum density
distribution of np over pp pairs, for the same CM momenta displayed in the other panels. This is straightforwardly comparable with the lower
panel of Fig. 9 in Ref. [68]. The ratios are, generally, 18 ± 5 for a wide range of high momentum components and are almost insensitive to the
CM momenta of the nucleon pair.

In the upper right panel of Fig. 12 we show the same
total high-momentum distributions for correlated np and pp
pairs in the triplet spin state, S = 1. In this case the differ-
ences between np and pp pairs are much clearer in the whole
range of p. This is because for pp pairs in the triplet state
only odd l partial waves contribute (P and F waves), while
for np pairs all triplet partial waves are summed, especially
the most relevant ones, such as the 3S1 - 3D1 coupled chan-
nel. Basically, the presence of the 3S1 - 3D1 channel in the
np high-momentum distribution, while not in the pp one,
makes the former much larger, in general by several orders of
magnitude.

In the lower left panel of Fig. 12, we can observe the sum of
both singlet and triplet contributions for the high-momentum
distributions of np and pp pairs. This panel represents the
high-momentum density distribution of a nucleon pair regard-
less of its total spin state. It is evident that the np distribution
is approximately an order of magnitude larger than the pp
distribution. This observation is consistent with the findings
of Ref. [68], which also reported a similar trend in its Figs. 9
and 10.

It is also worth pointing out that the so-far-discussed three
panels shown in Fig. 12 share several common features with
those of Figs. 10 and 11, namely, very little dependence
of the high-momentum distributions on the CM momentum

of the pair for p � kF + KCM
2 ; intrusion of the momentum

distributions below the Fermi momentum for KCM > 0; and,
finally, it is very clear that the pair momentum distributions
are continuous at the deviation points pdev(KCM) = kF + KCM

2 ,
but not their derivatives at these points. This latter fact has
been already discussed in relation with Fig. 2.

Finally, in the lower right panel of Fig. 12 we show the ratio
ρ̄

np
k (p)

ρ̄
pp
k (p)

for a relative momentum of the pair of k = 140 MeV/c

and for the five different CM momenta displayed in the other
panels of the same figure, as a function of the probed high
momentum p. Again, the ratio is quite insensitive to the CM
momenta of the nucleon pair, and, for a wide range of probed
high momentum p, the ratio is 18 ± 5, which is the claimed
averaged ratio measured in Ref. [21] for the ground state of
the 12C nucleus.

To finish, in Fig. 13 we present a comparative analysis of
our results with those obtained from a realistic calculation
in a finite nucleus using the variational Monte Carlo (VMC)
approach, as reported in Ref. [50]. The comparison is focused
on the relative-momentum densities for neutron-proton (np)
and proton-proton (pp) pairs, which were determined from
the solution of the Bethe-Goldstone equation for a center-of-
mass momentum KCM of 0 and an initial relative momentum
k of 140 MeV/c. To provide a comprehensive assessment,
we compared our findings with the high momentum pair
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FIG. 13. Comparison of the np and pp pairs’ high-momentum
distributions of this work, for KCM = 0 and k = 140 MeV/c, with
those for 8Be nucleus found in Fig. 15 of Ref. [50], calculated within
the variational Monte Carlo (VMC) approach. The two-nucleon
momentum densities are plotted as functions of the high relative
momentum p. The high momentum np distributions have been nor-
malized to 1 fm3.

distribution of the nucleus 8Be, specifically for KCM = 0, as
depicted in Fig. 15 of Ref. [50].

It is important to note that the pair momentum distribution
presented in Ref. [50] involves the utilization of the full nu-
clear wave function. Establishing a direct and straightforward
relationship between this distribution and the solution of the
Bethe-Goldstone equation for a specific pair with an initial
relative momentum k is not a trivial task, and deserves further
investigation.

Here we make some remarks to explain how this com-
parison was carried out. As our two-nucleon densities have,
in general, a weak dependence (see Fig. 10 of Ref. [68]) on
the initial relative momentum k of the pair, we have chosen
again k = 140 MeV/c to perform the comparison, which is
an intermediate value for the initial relative momentum of the
pair when its total momentum is zero. In the comparison with
the nucleon-pair momentum distributions in 8Be for back-
to-back (KCM = 0) pairs found in Fig. 15 of Ref. [50], we
have disregarded the part of the distributions below q < kF =

250
197.33 = 1.267 fm−1, for normalization purposes, in order to
focus on the high momentum contribution.

However, given that our pair momentum distributions
exhibit only weak dependence on the precise value of k,
and under the reasonable assumption that the contribution
from high momenta primarily reflects short-distance behavior
which is relatively independent on the nuclear size, the trends
provided by Fig. 13 offer a valuable insight into the compari-
son between np and pp pair distributions and what is expected
in finite nuclei. Indeed, we observe that the relationship be-
tween the np and pp distributions in our study approximates
the same trend observed in Ref. [50].

What we have done is to normalize our np-pair distribu-
tion, for KCM = 0, taken from the lower left panel of Fig. 12,
in such a way that the integral

∫
ρ̄np(p) p2 d p = 1 fm3. And

we have done exactly the same for the np-pair distribution
of Fig. 15 of Ref. [50] starting from q � 1.267 fm−1. Later,
we scaled the pp-pair momentum distributions in both models

accordingly with the normalization factors found in the pre-
vious procedure, in order to keep the proportionality between
the nucleon-pair momentum densities. Although in Fig. 15 of
Ref. [50] there are no units on the y axis for the momentum
distribution, according to Eq. (6) of the same reference the
right units for the nucleon-pair distribution of that figure are
fm6 [145].

The result of the comparison can be observed in Fig. 13,
where our results are shown as solid lines, while the results
of Ref. [50] are displayed as filled squares for the np-pair
distribution, and as filled circles for the pp one. For relative
intermediate momentum, p � 500 MeV/c, the respective mo-
mentum distributions look quite similar in size and shape.
However, for larger relative momenta, they start to differ
significantly: the nucleon-pair momentum distributions calcu-
lated in 8Be start to be larger by almost one order of magnitude
with respect to those of this work for nuclear matter. However,
recent calculations [146,147] with the same methods based on
chiral interactions clearly show a trend in qualitative agree-
ment similar to that presented in Fig. 13. Presumably, this
feature is related to the comparatively harder core of the AV18
potential, as compared to the current chiral interactions and
our coarse-grained potential.

Finally, this approximation suggests that, despite the inher-
ent complexities associated with a full nuclear wave function,
and differences in nuclear matter and finite nuclei, our theoret-
ical framework captures important aspects of neutron-proton
and proton-proton pair interactions. These results are in
themselves remarkable and suggest a quantitative connection
between nuclear matter and finite nuclei.

V. CONCLUSIONS

In this work we have extended our previous studies [63,68]
about the effects of SRCs on the high-momentum components
of the relative wave function for a nucleon pair in nuclear
matter. The extension amounts to taking the angular average
of the Pauli-blocking operator for the case with KCM �= 0, and
observing its effects on the tail of relative high-momentum
components.

Our findings indicate minimal dependence on the CM mo-
mentum of the nucleon pair in the majority of plots presented
in this paper. This consistency is observed in various aspects,
including the relative wave function at short distances, corre-
lation functions in the proximity of the origin, and defect wave
functions. Furthermore, we also observe limited sensitivity to
the overall CM momentum of the pair when examining the
higher-momentum components of the relative wave function.
This holds true as long as the probed relative momentum p
exceeds 2kF , where kF represents the Fermi momentum. This
last finding is consistent with the universality of SRCs and
with the factorization Ansätze used in the literature to express
the pair momentum distribution as a product of the momen-
tum distribution of the CM times the momentum distribution
of the relative motion, the last being a universal function
[29,57,58,67,148].

In our case, the momentum distribution of the CM motion
can be described by a three-dimensional Dirac delta function.
This is due to the conservation of total momentum in the
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Bethe-Goldstone equation. In finite nuclei, the momentum
distribution of the CM is broadened. This broadening has been
observed and modeled using a three-dimensional Gaussian
function in Ref. [29]. This approach is reasonable as the
Dirac delta function can be considered as a limiting case of
a Gaussian function with an infinitesimally small width.

Therefore, it is reasonable to assume that our findings
regarding the independence of the relative high-momentum
distribution of a pair on the CM momentum could be extrapo-
lated to finite nuclei. This assumption holds true as long as the
distribution is generated by universal short-range correlations,
considering the inherent limitations in obtaining an exact res-
olution of the problem in such systems.
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APPENDIX A: FORMAL DERIVATION OF B-G EQUATION
FOR TOTAL AND RELATIVE PERTURBED STATES

In this Appendix we give the formal derivation of Eqs. (5)
and (7) starting from Eq. (1). If we apply Eq. (1) in operator
form to a ket in the CM and relative momenta representation
|KCM, k〉 which represents a two-nucleon state with definite
total CM momentum KCM and relative one k, we obtain

G|KCM, k〉 = V |KCM, k〉 + V
Q

E − H0
G|KCM, k〉. (A1)

If we use now the definition of the G matrix or effective
interaction

G |KCM, k〉︸ ︷︷ ︸
unperturbed

state

≡ V |�KCM,k〉︸ ︷︷ ︸
perturbed

state

, (A2)

which means that the action of the effective interaction over
the unperturbed state is the same as the action of the potential
over the corresponding perturbed state, then Eq. (A1) trans-
forms into

V |�KCM,k〉 = V |KCM, k〉 + V
Q

E − H0
V |�KCM,k〉, (A3)

where E is the energy eigenvalue of the perturbed two-
nucleon state |�KCM,k〉, and H0 = T1 + T2 is the unperturbed
Hamiltonian containing only the one-body kinetic energy
operators.

Formally, in Eq. (A3), assuming that V is invertible, we
can act from the left by the inverse potential operator V −1,
thus eliminating the first appearance of the potential operator
in all the terms of the equation. Additionally, we can also
introduce a resolution of the identity operator in terms of the

direct product of two single-particle momentum eigenstates,
I = ∫

d3k1 d3k2|k1, k2〉〈k1, k2|, in between the Q
E−H0

and V
operators. With this, Eq. (A3) becomes

|�KCM,k〉 = |KCM, k〉 +
∫

d3k1 d3k2

×θ (|k1| − kF ) θ (|k2| − kF )

E − (Tk1 + Tk2 )

×|k1, k2〉〈k1, k2|V |�KCM,k〉, (A4)

where the two step functions come from the action of the
Pauli-blocking operator Q over the two-particle momentum

eigenstates |k1, k2〉, and Tki = k2
i

2MN
(with i = 1, 2) are the

kinetic energy eigenvalues.
Again, in Eq. (A4), we can introduce another

resolution of the identity operator in terms of the
CM and relative momenta eigenstates representation,
I = ∫

d3K ′
CM d3k′|K′

CM, k′〉〈K′
CM, k′|, in between the bra

〈k1, k2| and the potential V operator. In this way, we obtain

|�KCM,k〉 = |KCM, k〉 +
∫

d3k1 d3k2

× θ (|k1| − kF ) θ (|k2| − kF )

E − (
Tk1 + Tk2

)
× |k1, k2〉

∫
d3K ′

CM d3k′〈k1, k2|K′
CM, k′〉

× 〈K′
CM, k′|V |�KCM,k〉. (A5)

Finally, using the first line for the bra-ket product
〈k1, k2|K′

CM, k′〉 given in Eqs. (3), we can easily perform in
Eq. (A5) the integrations over k1 and k2 with the aid of the
two Dirac delta functions, obtaining

|�KCM,k〉 = |KCM, k〉 +
∫

d3K ′
CM d3k′ Q(K′

CM, k′)

E −
(

K′ 2
CM

4MN
+ k′ 2

MN

)
×

∣∣∣∣K′
CM

2
+ k′,

K′
CM

2
− k′

〉
×〈K′

CM, k′|V |�KCM,k〉. (A6)

In Eq. (A6), Q(K′
CM, k′) stands for the two step functions

written in terms of the CM and relative momenta [see Eq. (6)].
The final step to get Eq. (5) of Sec. II A is to assume

that the true energy eigenvalue E of the perturbed state does
not change too much from the energy eigenvalue of the un-

perturbed initial state, i.e., E � K2
CM

4MN
+ k2

MN
, and to write the

energy denominator in Eq. (A6) in terms of the total and re-
duced masses of the two-nucleon system. This approximation
for the true energy eigenvalue has also been done by other
authors, such as Ref. [134] in the context of the independent
pair approximation.

The next step to obtain Eq. (7) of Sec. II A consists in trying
to remove as much as possible the dependence on the CM
momentum in Eq. (A6). For this to be possible it is completely
necessary to assume that the potential does not depend at all
on the CM coordinate; we will further assume that it is also
local in the relative coordinate as well, as given in Eq. (4).
To this end, we may introduce two resolutions of the identity
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operator, one in terms of the CM and relative momenta eigen-
kets representation I = ∫

d3K ′′
CM d3k′′|K′′

CM, k′′〉〈K′′
CM, k′′| in-

side the term with the integrals in Eq. (A6) and acting
from the left on the |K′

CM
2 + k′, K′

CM
2 − k′〉 ket, and the other

one in terms of the CM and relative position eigenkets,
I = ∫

d3R′
CM d3r′|R′

CM, r′〉〈R′
CM, r′|, and acting in between

the potential V operator and the perturbed state in Eq. (A6)
as well:

|�KCM,k〉 = |KCM, k〉 +
∫

d3K ′
CM d3k′ Q(K′

CM, k′)
(K2

CM−K′ 2
CM)

2MT
+ (k2−k′ 2 )

2μ

∫
d3K ′′

CM d3k′′|K′′
CM, k′′〉 δ3

(
K′

CM − K′′
CM

2
+ k′′ − k′

)

× δ3

(
K′

CM − K′′
CM

2
+ k′ − k′′

) ∫
d3R′

CM d3r′ V (r′)〈K′
CM, k′|R′

CM, r′〉〈R′
CM, r′|�KCM,k〉. (A7)

The two Dirac delta functions in Eq. (A7) come from the bra-ket product 〈K′′
CM, k′′|K′

CM
2 + k′, K′

CM
2 − k′〉, where the first line of

the bra-ket product 〈KCM, k|k1, k2〉 given in Eqs. (3) was used with k1 = K′
CM
2 + k′ and k2 = K′

CM
2 − k′, and accordingly for the

doubly primed CM and relative momenta variables of the bra.
To further proceed with Eq. (A7), it is necessary to pass from ket notation to wave function notation, in order to remove

totally all the integrals over CM coordinates and momenta. To this end, we multiply both sides of Eq. (A7) from the left by the
bra 〈RCM, r|; we also use the final line of Eqs. (3) for the unperturbed or plane wave states and

〈RCM, r|�KCM,k〉 = ei KCM·RCM

(2π )
3
2

ψKCM,k(r)

(2π )
3
2

(A8)

for the perturbed wave functions in coordinate representation. It is worth noting that the plane wave for the CM motion in
Eq. (A8) appears because the potential does not depend on the CM coordinate and it is, therefore, a constant of motion in our
problem. Then, substituting the plane waves and Eq. (A8) into Eq. (A7), we can straightforwardly carry out the integrals over
k′′, R′

CM, K′
CM and K′′

CM in Eq. (A7). The final result is

ei KCM·RCM

(2π )
3
2

ψKCM,k(r)

(2π )
3
2

= ei KCM·RCM

(2π )
3
2

ei k·r

(2π )
3
2

+ ei KCM·RCM

(2π )
3
2

∫
d3k′ Q(KCM, k′)

k2 − k′ 2

ei k′ ·r

(2π )
3
2

∫
d3r′ e−i k′ ·r′

(2π )
3
2

2μV (r′)
ψKCM,k(r′)

(2π )
3
2

.

(A9)

In Eq. (A9) the plane wave for the CM motion cancels on both sides, and what remains is an integral B-G equation for the
“single” particle relative wave function ψKCM,k(r), which can also be written as

〈r|ψKCM,k〉 = 〈r|k〉 +
∫

d3k′ Q(KCM, k′)
k2 − k′ 2

〈r|k′〉
∫

d3r′ 〈k′|r′〉 2μV (r′) 〈r′|ψKCM,k〉

= 〈r|k〉 + 〈r|
∫

d3k′ Q(KCM, k′)
k2 − k′ 2

|k′〉 〈k′|
(∫

d3r′ 2μV (r′) |r′〉 〈r′|
)

︸ ︷︷ ︸
spectral resolution of the

2μV operator

|ψKCM,k〉. (A10)

Finally, in Eq. (A10), the bra 〈r| is arbitrary and appears
on both sides of the equation. That bra can be removed from
both sides and what remains is an integral equation for the ket
|ψKCM,k〉, which is precisely Eq. (7) of Sec. II A.

APPENDIX B: FORMAL DERIVATION OF THE INTEGRAL
B-G EQUATION FOR THE RADIAL PART OF THE

RELATIVE WAVE FUNCTION

Our aim in this Appendix is to obtain Eq. (10) of
Sec. II C by performing a partial wave expansion of Eq. (7)
in Sec. II A, but having substituted the general Pauli-blocking
function Q(KCM, k′) by its angular average Q(KCM, k′) given
in Eq. (9).

Until now, all the discussion given in Appendix A has omit-
ted the spin of the single-particle states or the total spin of the
two-nucleon system. The latter can be totally ascribed to the
relative kets |ψKCM,k〉 and |k〉 in Eq. (7). This last equation is
an integral equation for the perturbed ket |ψKCM,k〉, i.e., the
same state appears on the left-hand side of the equation and
on the right-hand one.

Additionally, it is a well-known fact that the N-N po-
tential conserves the total spin S of the nucleon pair, its
total angular momentum J , and the third component of the
latter M, but neither the third component of the total spin
MS nor the orbital angular momenta, which can get mixed
by the tensor force of the N-N potential. We start from
Eq. (7) by substituting the Pauli-blocking function by its an-
gular average, putting the spin and its third component on
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the unperturbed and perturbed states, and now the resolu-
tion of the identity in terms of the momentum eigenkets is
I = ∑

S′,M ′
S

∫
d3k′|k′; S′M ′

S〉〈k′; S′M ′
S|:

|ψk; SMS〉KCM = |k; SMS〉 +
∑
S′,M ′

S

∫
d3k′ Q(KCM, k′)

k2 − k′ 2

× |k′; S′M ′
S〉 〈k′; S′M ′

S|2μV |ψk, SMS〉KCM .

(B1)

We know that for a large family of N-N potentials they have
the properties of being local, preserving the total spin S, the
total angular momentum J , and its third component M, but
that due to the tensor force they mix orbital angular momenta.
This means that we can write the spectral resolution of the
potential as

V =
∫ ∞

0
dr r2

∑
l,l ′

∑
S,J,M

V SJ
ll ′ (r)|r; lS; JM〉〈r; l ′S; JM|, (B2)

where the basis |r; lS; JM〉 is given in terms of the eigenbasis
of position and spin, |r; SMS〉, as

|r; lS; JM〉 =
∑
m,MS

∫
d�r̂ Ylm(r̂)〈lm; SMS|JM〉 |r; SMS〉.

(B3)
The spectral resolution of the potential given in Eq. (B2)
ensures that its matrix elements between eigenkets of the form
given in Eq. (B3) is

〈r′; l1S1; J1M1|V |r′′; l2S2; J2M2〉
= δS1,S2 δJ1,J2 δM1,M2

1

r′ r′′ δ(r′ − r′′) V S1J1
l1l2

(r′), (B4)

which is the obvious result for a local radial potential which
preserves spin, total angular momentum, and its third compo-
nent, but it is not necessarily diagonal in the orbital angular
momentum. To derive Eq. (B4) we have used the orthogonal-
ity condition of the eigenbasis |r; lS; JM〉:

〈r′; l1S1; J1M1|r; lS; JM〉 = 1

r r′ δ(r − r′) δl,l1δS,S1δJ,J1δM,M1 ,

(B5)

which in turn can be obtained by evaluating the bra-ket prod-
uct with the expansion of the eigenbasis given in Eq. (B3)
and using the more obvious orthogonality condition of the
eigenbasis of position and spin |r; SMS〉.

Introducing the spectral resolution of the potential,
Eq. (B2), into the bra-ket product of Eq. (B1), we obtain

〈k′; S′M ′
S|2μV |ψk, SMS〉KCM

=
∫ ∞

0
dr r2

∑
l,l ′

∑
S′′JM

2μV S′′J
ll ′ (r)

× 4π

(2π )
3
2

δS′′,S′ i−l jl (k
′r)

∑
m

Ylm(k̂′)〈lm; S′′M ′
S|JM〉

×
(∫

d3r′〈r; l ′S′′; JM|r′〉〈r′|ψk, SMS〉KCM

)
, (B6)

where in the last piece between parenthesis we have intro-
duced a resolution of the identity in the form

∫
d3r′|r′〉〈r′|,

and we have also used that

〈k′; S′M ′
S|r; lS′′; JM〉 = 4π

(2π )
3
2

δS′′,S′ i−l jl (k
′r)

×
∑

m

Ylm(k̂′)〈lm; S′′M ′
S|JM〉.

(B7)

This last expression can be easily obtained by multiply-
ing Eq. (B3) from the left by the bra 〈k′; S′M ′

S|, using the
Rayleigh expansion for the plane wave, and carrying out the
calculations.

In Eq. (B6) we can substitute Eq. (21) for the correlated
wave function in coordinate representation, and the bra-ket
product

〈r; l ′S′′; JM|r′〉 = 1

r r′ δ(r − r′) Y†
l ′S′′JM (r̂′), (B8)

where this last equation can be easily obtained from Eq. (B3)
by multiplying from the left by a position eigenstate, carrying
out the calculations, and taking its complex conjugate.

Carrying out the calculations of the piece between paren-
thesis of Eq. (B6) we obtain finally∫

d3r′〈r; l ′S′′; JM|r′〉〈r′|ψk, SMS〉KCM

= 4π

(2π )
3
2

∑
l ′′m′′

il ′′uSJ
k,l ′′ l ′ (r) Y ∗

l ′′m′′ (k̂) δS,S′′ 〈l ′′m′′; SMS|JM〉,

(B9)

where to obtain the above result we have integrated over r′
with the aid of the Dirac delta function of Eq. (B8), and we
have also used the orthogonality properties of the spin-angular
wave functions, namely∫

d�r̂′ Y∗
l ′S′′JM (r̂′) YlSJ ′M ′ (r̂′) = δl ′,l δS′′,S δJ,J ′ δM,M ′ , (B10)

in order to carry out some discrete sums over J ′, M ′, l in the
expansion of the perturbed wave function in partial waves,
given by Eq. (21).

Introducing the result of Eq. (B9) into Eq. (B6), we obtain
finally

〈k′; S′M ′
S|2μV |ψk, SMS〉KCM

= (4π )2

(2π )3
δS,S′

∑
l,l ′m

∑
JM

∑
l ′′m′′

il ′′−l

×Ylm(k̂′) Y ∗
l ′′m′′ (k̂)〈lm; SM ′

S|JM〉〈l ′′m′′; SMS|JM〉

×
∫ ∞

0
dr′ r′ 2 U SJ

ll ′ (r′) jl (k
′r′) uSJ

k,l ′′ l ′ (r
′), (B11)

where U SJ
ll ′ = 2μV SJ

ll ′ is the reduced potential.
If we now introduce the matrix element so far calculated in

Eq. (B11) in the B-G equation for the relative ket, Eq. (B1),
multiply from the left by the position eigenbra 〈r|, and sub-
stitute Eqs. (19) and (21) for the expansions of the free and
perturbed wave functions in coordinates representation, we
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have Eq. (21) on the left-hand side (LHS), while on the right-hand side we have

LHS = 4π

(2π )
3
2

∑
JM

∑
l l ′m

il ′ jl ′ (kr) δl ′l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂) +

∑
S′,M ′

S

∫
d3k′ Q(KCM, k′)

k2 − k′ 2

⎛⎝ 4π

(2π )
3
2

∑
J ′M ′

∑
l1l ′1m1

il ′1

× jl ′1 (k′r) δl ′1l1Y
∗

l ′1m1
(k̂′)〈l ′

1m1; S′M ′
S|J ′M ′〉Yl1S′J ′M ′ (r̂)

⎞⎠⎛⎝ (4π )2

(2π )3
δS,S′

∑
l,l ′m

∑
JM

∑
l ′′m′′

il ′′−l Ylm(k̂′) Y ∗
l ′′m′′ (k̂)

×〈lm; SM ′
S|JM〉〈l ′′m′′; SMS|JM〉

∫ ∞

0
dr′ r′ 2 U SJ

ll ′ (r′) jl (k
′r′) uSJ

k,l ′′ l ′ (r
′)

⎞⎠. (B12)

In the second term of the above equation we can carry out the sum over S′ because of the presence of the Kronecker delta δS,S′ .
In addition, we can carry out the integration over the angles of k̂′ exploiting the orthogonality of the spherical harmonics of k̂′,
thus obtaining δl ′1l δm1m, and carry out the additional sums over l ′

1 and m1, obtaining at the end

LHS = 4π

(2π )
3
2

∑
JM

∑
l l ′m

il ′ jl ′ (kr) δl ′l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂) + (4π )3

(2π )
9
2

S∑
M ′

S=−S

∑
J ′M ′

∑
JM

∑
l,l ′m

∑
l ′′m′′

∑
l1

il ′′ δl,l1

×〈lm; SM ′
S|J ′M ′〉〈lm; SM ′

S|JM〉〈l ′′m′′; SMS|JM〉Y ∗
l ′′m′′ (k̂) Yl1SJ ′M ′ (r̂)

∫ ∞

0
dk′ k′ 2 Q(KCM, k′)

k2 − k′ 2
jl (k

′r)

×
∫ ∞

0
dr′ r′ 2 U SJ

ll ′ (r′) jl (k
′r′) uSJ

k,l ′′ l ′ (r
′). (B13)

Again, in the second term of Eq. (B13) we can perform easily the sum over l1. Furthermore, the sum over m and M ′
S for fixed

(l, S, J, M, J ′, M ′) only involves two Clebsch-Gordan coefficients and its result is δJJ ′ δMM ′ , and we can then carry out the sum
over J ′ and M ′, obtaining

LHS = 4π

(2π )
3
2

∑
JM

∑
l l ′m

il ′ jl ′ (kr) δl ′l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂) + (4π )3

(2π )
9
2

∑
JM

∑
l,l ′

∑
l ′′m′′

il ′′ 〈l ′′m′′; SMS|JM〉 Y ∗
l ′′m′′ (k̂)

×YlSJM (r̂)
∫ ∞

0
dr′ kr′

kr
U SJ

ll ′ (r′) uSJ
k,l ′′ l ′ (r

′)
∫ ∞

0
dk′ (k′r) jl (k

′r)
Q(KCM, k′)

k2 − k′ 2
(k′r′) jl (k

′r′). (B14)

Finally, the second term of Eq. (B14) can be arranged in the final form

LHS = 4π

(2π )
3
2

∑
JM

∑
l l ′m

il ′ jl ′ (kr) δl ′l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂) + (4π )

(2π )
3
2

∑
JM

∑
l,l ′′

∑
l ′m

il ′ 〈l ′m; SMS|JM〉 Y ∗
l ′m(k̂)

×YlSJM (r̂)
∫ ∞

0
dr′ U SJ

ll ′′ (r
′)

ũSJ
k,l ′ l ′′ (r

′)
kr

2

π

∫ ∞

0
dk′ ĵl (k

′r)
Q(KCM, k′)

k2 − k′ 2
ĵl (k

′r′)︸ ︷︷ ︸
G̃

KCM
k,l (r,r′ )

, (B15)

where in Eq. (B15) we have used the definition of the Green’s function for the radial B-G equation, given in Eq. (11), and the
normalization of the perturbed radial wave function given in Eq. (22) has also been used. Finally, also in the second term of
Eq. (B15) the labels l ′ ↔ l ′′ and m′′ → m have been renamed in the sums.

Therefore, at the end, we have on both sides of the equation

4π

(2π )
3
2

∑
J,M

∑
l,l ′,m

il ′ uSJ
k,l ′ l (r)Y ∗

l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂)

= 4π

(2π )
3
2

∑
JM

∑
l l ′m

il ′ jl ′ (kr) δl ′l Y ∗
l ′m(k̂)〈l ′m; SMS|JM〉YlSJM (r̂) + 4π

(2π )
3
2

∑
JM

∑
ll ′m

∑
l ′′

il ′ 〈l ′m; SMS|JM〉Y ∗
l ′m(k̂) YlSJM (r̂)

×
∫ ∞

0
dr′ G̃KCM

k,l (r, r′) U SJ
ll ′′ (r

′)
ũSJ

k,l ′ l ′′ (r
′)

kr
. (B16)

Obviously, the factors cancel on both sides, and to obtain the equation for the radial part we have to get rid of all the angular
dependencies on k̂ and r̂. To this end, we can multiply from the left by the spin-angular wave function Y†

l1S1J1M1
(r̂) and integrate
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over the solid angle of r̂. Using the orthogonality properties of these functions we can perform trivially the sums over l , J ,
and M:

δS,S1

∑
l ′m

il ′ uSJ1
k,l ′ l1

(r)Y ∗
l ′m(k̂)〈l ′m; SMS|J1M1〉 = δS,S1

∑
l ′m

il ′ jl ′ (kr) δl ′l1 Y ∗
l ′m(k̂)〈l ′m; SMS|J1M1〉

+ δS,S1

∑
l ′m

∑
l ′′

il ′ 〈l ′m; SMS|J1M1〉Y ∗
l ′m(k̂)

∫ ∞

0
dr′ G̃KCM

k,l1
(r, r′) U SJ1

l1l ′′ (r
′)

ũSJ1
k,l ′ l ′′ (r

′)

kr
.

(B17)

We can take without loss of generality that S1 = S to get rid of the Kronecker deltas. Then, we can multiply on both sides of
Eq. (B17) by Ylm′ (k̂) and integrate over the solid angle of k̂. Using the orthogonality of the spherical harmonics, we can carry out
the sum over l ′ and m, thus obtaining finally

uSJ
k,l l ′ (r) = jl (kr) δl,l ′ +

∫ ∞

0
dr′ G̃KCM

k,l ′ (r, r′)
∑

l ′′
U SJ

l ′l ′′ (r
′)

ũSJ
k,l l ′′ (r

′)
kr

, (B18)

where in Eq. (B18) we have canceled the Clebsch-Gordan coefficients after having carried out the sum over l ′ and m because
they were the same on both sides of the equation. And finally we have renamed the free indices J1 → J , and l1 → l ′ on both
sides of the equation after having performed the sums. Finally, if we multiply both sides by kr, we obtain the B-G equation for
the perturbed (correlated) relative radial wave function [see Eq. (10)]:

ũSJ
k,l l ′ (r) = ĵl (kr) δl,l ′ +

∫ ∞

0
dr′ G̃KCM

k,l ′ (r, r′)
∑

l ′′
U SJ

l ′l ′′ (r
′) ũSJ

k,l l ′′ (r
′). (B19)
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