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A B S T R A C T

We consider facility location problems with a new form of equity criterion. Demand points have preference
order on the sites where the plants can be located. The goal is to find the location of the facilities minimizing
the envy felt by the demand points with respect to the rest of the demand points allocated to the same plant.
After defining this new envy criterion and the general framework based on it, we provide formulations that
model this approach in both the discrete and the continuous framework. The problems are illustrated with
examples and the computational tests reported show the potential and limits of each formulation on several
types of instances. Although this article is mainly focused on the introduction, modeling and formulation of
this new concept of envy, some improvements for all the formulations presented are developed, obtaining in
some cases better solution times.
1. Introduction

The notion of equity has played a very important role in decision
theory and operations research over the years since it is one of the
most common criteria to judge fairness. It is mainly due to the fact
that satisfaction is envy-free, i.e., a solution of a decision process such
that every involved decision-maker likes its own solution at least as
much as the one of any other agent. In particular, the envy-freeness
criterion has been used in many different problems related to fair
resource allocation, fair queuing processes, fair auctions, and pricing
problems, among others (see e.g. Brams and Fishburn, 2000; Chun,
2006; Dall’Aglio and Hill, 2003; Domínguez et al., 2022; Haake et al.,
2002; Moulin, 2014; Ohseto, 2005; Pápai, 2003; Reijnierse and Potters,
1998; Shioura et al., 2006; Webb, 1999).

One of the most analyzed areas in operations research is facility
location, whose goal is to find the most appropriate positions for a set
of facilities providing services in order to satisfy the demand required
by a set of users. Facility location problems are classified according to
two main characteristics: the solution domain and the criteria used to
evaluate the goodness of a solution. Concerning the solution domain,
in case the placements of the services are to be chosen from a finite set
of potential facilities, the problem is called a Discrete Facility Location
problem (DFLP) while if the positions of the facilities are chosen from
a continuous set, the problem is called a Continuous Facility Location
problem (CFLP). Apart from the practical applications of these two
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frameworks, the main difference between these two settings stems from
the tools that are applied to solve the problems. While in DFLP Integer
Linear Programming is the most common tool used to solve, exactly,
the problems, in CFLP one resorts to the use of convex analysis or
global optimization tools due to the non-linear nature of the problems.
The interested reader is referred to Laporte et al. (2019) for recent
contributions in this area.

Concerning the evaluation criteria, the most usual measure to evalu-
ate a given set of positions with respect to a set of customers is the sum
of the overall allocation costs. This cost usually represents the access
cost of customers to the facilities, and it is an accurate indicator of the
efficiency of the logistic system. With such a measure one assumes that
for the customers, the least costly the better, which is a natural assump-
tion. This criterion is the one used in the well-known 𝑝-median (Hakimi,
1964) problem or the multifacility continuous location problem (Blanco
et al., 2016). However, other measures have also been proposed in the
literature.

In this paper, we introduce an equity criterion that can be in-
corporated to make decisions on different facility location problems.
Measuring the goodness of the solutions to location problems by means
of equity criteria is not new. However, still the body of literature
analyzing facility location problems under the equity lens is scarce,
being the maximum the most representative objective function in this
area, giving rise to the well-known (discrete and continuous) 𝑝-center
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problems. In spite of that, some authors have already analyzed the
use of criteria that promote equitable or fair solutions in some facility
location problems.

Savas (1978) stated the insufficiency of efficiency and effectiveness
measures in location models for public facilities. Halpern and Maimon
(1981) considered a large number of tree networks in order to de-
termine the agreement and disagreement of the solutions to location
problems using the median, center, variance, and Lorentz measures.
Mulligan (1991) designed a simple experiment consisting of locating
a facility in an interval of the real straight line regarding three demand
points. Apart from a comparative analysis of the optimal solutions
for nine equality measures, he also provided the standardized travel
distance curves for them. Erkut (1993) proposed a general framework
for quantifying inequality and presented some axioms for the appro-
priateness of the inequality measures. He also showed that only two
of his considered measures – the coefficient of variation and the Gini
coefficient – hold both the scale-invariance property and the principle
of transfers or Pigou-Dalton property. Berman and Kaplan (1990) ad-
dressed the equity question using taxes. Marín et al. (2010) considered,
as a general measure of equity, the ordered median function applied to
discrete 𝑝-facility location problems. Mesa et al. (2003) and Garfinkel
et al. (2006) addressed some algorithmic aspects of equity measures
on network location and routing. Bertsimas et al. (2012) proposed a
fairness measure and incorporated it into resource allocation problems.
More recently, Filippi et al. (2021) apply the conditional 𝛽-mean as a
fairness measure for the bi-objective single-source capacitated facility
location problem. Blanco and Gázquez (2023) introduced a new fair-
ness measure for the maximal covering location problem combining the
approach in Bertsimas et al. (2012) with ordered weighted averaging
operators. A review of the existing literature on equity measurement
in location theory and a discussion on how to select an appropriate
measure of equity was given in the paper by Marsh and Schilling
(1994). Also, the equality objective literature was reviewed in Eiselt
and Laporte (1995) within a general discussion of objectives in loca-
tion theory based on the physical concepts of pulling, pushing, and
balancing forces.

The envy criterion has also been considered in location theory as
an equity criterion. In this framework, envy is defined with respect
to the revealed preference of each demand point for the sites of the
potential serving facilities. It is assumed that the users (demand points)
elicit their preferences for the sites where the plants can be located. A
positive envy appears between two users when one of them is allocated
to a plant strictly more preferred than the one the other is allocated to.
The goal is to find the location of the facilities minimizing the total envy
felt by the entire set of demand points. A limitation of this approach
is that information is common knowledge. Thus, it is assumed that the
decision-maker has previous complete knowledge of the preferences of
all customers at the demand points or, alternatively, that all customers
do not lie when they are asked about their preferences. Espejo et al.
(2009) study a discrete facility location problem with an envy criterion.
There, it is assumed that demand points feel envy with respect to all
other better-located demand points. Instead, in this paper we propose
a novel envy measure that does not require the decision-maker to have
a complete knowledge of the preferences of all other users. Rather than
that, only partial knowledge of the points that are allocated to the same
facility is considered. Specifically, we assume that the users only feel
envy with respect to the users allocated to the same facility. On the
other hand, in Espejo et al. (2009) the envy is measured using only
the preferences of the points, whereas in our case the dissatisfaction of
the user is given by a function that is independent of the preference
function.

Following the applications of the envy criterion to location theory,
one can find an adaptation of the notion of envy to the system
of ambulances location in Chanta et al. (2011) with the objective
of minimizing the sum of envies among all users with respect to an
2

ordered set of operating stations. Also in Chanta et al. (2014), the envy s
is redefined as differences in customers’ satisfaction between users,
where satisfaction is measured by the survival probability of each user.

In Table 1 we summarize some of the equity criteria that have
been considered in location science, classified by the domain (discrete,
continuous, network, or general), number of facilities to be located
(multi or single), and main equity measures applied in the works,
sorted by publication year. The most commonly used measures are the
center (Current and Ratick, 1995; Hakimi, 1964; Jung et al., 2019;
Liu and Salari, 2022; Xu et al., 2023), the absolute deviation and its
variants (Berman and Kaplan, 1990; Kalcsics et al., 2015; McAllister,
2010; Morrill and Symons, 1977; Mulligan, 1991; Shehadeh and Sny-
der, 2023; Xu et al., 2023), Gini/envy (Chanta et al., 2011; Drezner and
Drezner, 2011; Espejo et al., 2009; Romero et al., 2016; Shehadeh and
Snyder, 2023; Wang and Zhang, 2021), and the range (Erkut, 1993;
Kalcsics et al., 2015; Marín, 2011; Puerto et al., 2009; Shehadeh and
Snyder, 2023; Xu et al., 2023). A detailed overview of all the equity
measures that have been proposed in facility location can be found
in the seminal papers (Barbati and Piccolo, 2016; Eiselt and Laporte,
1995; Marsh and Schilling, 1994). Nevertheless, as far as we know, an
equitable version of a 𝑝-facility location problem, in both a discrete
and a continuous domain, that avoids comparisons between customers
allocated to different facilities has never been analyzed.

The need of measuring locally the envy naturally arises when a
user feels envy of other users in their close neighborhood, or those for
which one can share the information about its allocation. In several
practical situations, as for instance the location of schools or health
centers (as well as the allocation of users to these facilities) an ideal
envy-free solution would be one in which all the users allocated to a
same facility are equally satisfied. The determination of the position
of the facilities and the allocation patterns incorporating this paradigm
would avoid undesirable cases in which, to minimize (in average) the
envy of all pairs of users, the satisfaction of a single user to its assigned
facility is poor because compared to a user to which he/she will never
know its allocation, the difference between their preferences is large.
Additionally, in our approach, we force the users to be allocated to
the most preferred open facility. Thus, the solutions obtained with
our methodology assure a minimum envy among the users with the
same preferred open facility. In Marsh and Schilling (1994), the authors
classify equity criteria based on three different dimensions: reference
istribution, scale and metric. Specifically, the reference distribution is
he comparison value for each user. That perfect equity is considered as
chieved when the effect on each user is equal to its associated level(s)
n the reference distribution(s). The envy criterion is identified with
he so-called peer reference distribution, that is, each user is compared
ith all other users. The equity measure that we propose could be

een then as a novel reference distribution which is not fully peer
efined but determined by the set of users allocated to the same service.
one of the previous works in the literature mentions this type of

eference distribution in the list of equity measures and, in particular,
ts application to facility location problems.

The model addressed in this paper fits well with the location of ser-
ices provided by public administrations where the planner (decision-
aker) takes into account users’ preferences but at the same time
ishes to offer the same service quality to all users allocated to the

ame service center. This policy ensures that when users meet at the
ervice center none of them have the incentive to complain on the
asis of other users’ quality of service. This may be applicable to outpa-
ient consultations in public health systems where a central authority
llocates population areas to outpatient centers or to the location of
ivic centers offering service to population areas. In the continuous
etting, the intra-envy location applies to determine the position of
igh-Performance Computers (HPC) servers and job allocation to them

uch that the communication/energy costs of all jobs allocated to the
ame node have to be similar to ensure a fair comparison of the
omputational hardness of the jobs run in the same node (which are

upposed to run under the same conditions) (Meng et al., 2015).
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Table 1
Some works incorporating equity in facility location (D: discrete, C: continuous, N: network, M: multi-facility, S: single-facility).

Equity measure Domain #Facilities Reference

Center D M Hakimi (1964)
min variance General M Morrill and Symons (1977)
Coulter index D M Coulter (1980)
Weighted mean D M Heiner et al. (1981)
Gravity D M Segall (1989)
min abs dev N S Berman and Kaplan (1990)
min abs dev, envy C (line) S Mulligan (1991)
Range D M Erkut (1993)
Center D M Current and Ratick (1995)
max lex C (line) S Kumar and Kleinberg (2006)
Range N M Puerto et al. (2009)
Envy D M Espejo et al. (2009)
min std General M McAllister (2010)
sq envy among facilities C M Drezner and Drezner (2011)
Range D M Marín (2011)
Restricted distances D M Batta et al. (2014)
Envy D M Chanta et al. (2011)
Variance, Abs Dev, Range N 2 Kalcsics et al. (2015)
Restricted satisfaction D M Caramia and Mari (2016)
Envy D M Romero et al. (2016)
Neighborhood radius center D M Jung et al. (2019)
𝓁𝑝-norm aggregation D M Bektaş and Letchford (2020)
Conditional 𝛽-mean D M Filippi et al. (2021)
abs dev, range, var/std dev, envy, regret D M Shehadeh and Snyder (2023)
Proportional share, envy C (line) M Wang and Zhang (2021)
(𝛼, 𝜆)-fairness C+D (Covering) M Blanco and Gázquez (2023)
Center D M Liu and Salari (2022)
abs dev, range, center D (Covering) M Xu et al. (2023)
In this work we introduce the notion of intra-envy and incorporate
t to 𝑝-facility location problems, both in discrete and continuous
omains. The intra-envy felt by user 𝑎 to user 𝑏, allocated to the same

facility, is defined as the difference between the satisfaction of user
𝑎 and 𝑏 in case 𝑏 is more satisfied than 𝑎 with its allocation, and
zero otherwise. The overall intra-envy is the sum of all these pairwise
intra envies. We develop different mathematical programming formu-
lations for these problems. We start by constructing natural models by
explicitly modeling the intra-envy. We also provide equivalent formu-
lations based on the representation of the envy objective as an ordered
median function. One of the main differences of our models with
respect to classical 𝑝-median problems is that the closest assignment
constraints (Espejo et al., 2012) are needed to assure that each user is
allocated to its most desirable open facility, which would not be assured
by the objective functions as in the standard location problems.

The main contributions of this paper are:

• We introduce a new equity measure, the intra-envy, and incor-
porate it to general continuous and discrete 𝑝-facility location
problems.

• We further analyze continuous facility location problems under
the intra-envy criterion and provide three mathematical optimiza-
tion formulations for solving, exactly, the problems. The first
formulation is based on explicitly representing the intra-envy
with linear constraints. The other two formulations are based on
rewriting the intra-envy problem as a ordered median problem.

• We study the use of intra-envy measures in 𝑝-facility discrete
location problems and provide three different mathematical op-
timization formulations.

• We report the results of an extensive battery of computational ex-
periments on continuous and discrete location instances, analyze
the computational limitations of our approaches as well as the
structural properties of the obtained solutions compared to the
𝑝-median and the standard minimum envy criteria.

The paper is organized as follows. The intra-envy location problem
in a general framework is introduced in Section 2. At the end of
the section we analyze the properties of this new equity measure.
The specific study of the application of the intra-envy criterion to
3

continuous and the discrete facility location problems, including for-
mulations and improvements can be found in Sections 3 and 4. In
Section 5 we analyze the results of a battery of computational ex-
periments. We analyze both the computational performance of the
proposed solution approaches and the structural comparison of the
solutions obtained with the intra-envy, the standard envy, and the
median criteria. Finally, some conclusions are drawn.

2. The general minimum 𝒑-intra-envy facility location problem

In this section we introduce the problem that we analyze and fix the
notation for the remaining sections. We provide here a framework for
the 𝑝-intra-envy facility location problem for general domains and cost
functions.

Let  = {𝑎1,… , 𝑎𝑛} be a finite set of demand points in R𝑑 indexed
in set 𝑁 = {1,… , 𝑛}. Abusing the notation, throughout this paper we
refer to a demand point interchangeably by 𝑎𝑖 or by the index 𝑖, for
𝑖 ∈ 𝑁 . Denote by  a (not necessarily finite) set of points also in R𝑑

that represent the set of potential locations for a facility. In order to
quantify the cost incurred by a demand point when it is allocated to a
facility in  , each demand point, 𝑎𝑖, is assumed to be endowed with
a cost function 𝛷𝑖 ∶  → R+ that represents the cost of allocating
the service demanded by the user 𝑖 from each of the potential facilities
in  . These cost functions can be induced by distances or by general
functions representing the dissatisfaction of the users for the different
potential facilities.

We are also given 𝑝 ∈ Z with 𝑝 ≥ 1, and we denote by 𝑃 = {1,… , 𝑝}
the index set of the facilities to be located. A 𝑝-Facility location problem
consists of choosing 𝑝 facilities from  minimizing certain cost function
to the demand points. It is usual to assume, as we also do here, that
users are allocated to the least costly (or equivalently, most preferred)
open facility. We also assume that in case of ties, demand points are
allocated to the facilities producing the less global intra-envy.

In this paper, we will measure the goodness of a selected set
of facilities by the overall envy of the pairwise allocation costs be-
tween demand points allocated to the same facility. Specifically, if
𝐗 = {𝑋 ,… , 𝑋 } ⊂  is a given set of facilities and 𝑗(𝓁) ∶=
1 𝑝
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argmin𝑗∈𝑃 𝛷𝓁(𝑋𝑗 ), i.e., the most preferred facility for the user, for each
air of demand points 𝑖, 𝑘 ∈ 𝑁 , we compute the intra-envy of 𝑖 for 𝑗 as:

E𝑖𝑘(𝐗) =
{

𝛷𝑖(𝑋𝑗(𝑖)) −𝛷𝑘(𝑋𝑗(𝑘)) if 𝛷𝑘(𝑋𝑗(𝑘)) < 𝛷𝑖(𝑋𝑗(𝑖)) and 𝑗(𝑖) = 𝑗(𝑘)
0 otherwise.

That is, if the least costly open facility for 𝑖 and 𝑘 coincides and the
allocation cost of 𝑘 is smaller than the allocation cost for 𝑖, an intra-envy
of 𝑖 for 𝑘 is incurred, equal to the difference between the allocation cost
of 𝑖 and the allocation cost of 𝑘.

The goal of the 𝑝-Intra-Envy Facility Location Problem (𝑝-IEFLP, for
short) is to choose 𝑝 out of the facilities from  minimizing the overall
sum of the intra-envy of all pairs of demand points allocated to the
same facility. Formally, the problem can be formulated as follows:

min
𝐗⊆∶
|𝐗|=𝑝

∑

𝑖∈𝑁

∑

𝑘∈𝑁
IE𝑖𝑘(𝐗). (𝑝-IEFLP)

Observe that, avoiding duplicates and zeros in the expression being
minimized above, the objective function can be equivalently rewritten
as:
∑

𝑖∈𝑁

∑

𝑘∈𝑁
IE𝑖𝑘(𝐗) =

𝑛−1
∑

𝑖=1

𝑛
∑

𝑘=𝑖+1∶
𝑗(𝑘)=𝑗(𝑖)

|𝛷𝑖(𝑋𝑗(𝑖)) −𝛷𝑘(𝑋𝑗(𝑘))|.

Using the usual allocation variables in facility location

𝑥𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if plant 𝑗 is the least costly
open facility for 𝑖,

0 otherwise,
∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 ,

and the variables 𝑋1,… , 𝑋𝑝 ∈  that represent the locations for the
facilities, the problem can be stated as follows:

min
∑

𝑗∈𝑃

∑

𝑖∈𝑁

∑

𝑘∈𝑁∶
𝑖<𝑘

|𝛷𝑖(𝑋𝑗 ) −𝛷𝑘(𝑋𝑗 )|𝑥𝑖𝑗𝑥𝑘𝑗 , (1)

s.t.
∑

𝑗∈𝑃
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁, (2)

𝛷𝑖(𝑋𝑗 ) ⋅ 𝑥𝑖𝑗 ≤ min
𝓁=1,…,𝑝

𝛷𝑖(𝑋𝓁), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (3)

𝑋1,… , 𝑋𝑝 ∈  , (4)
𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 .

The objective function (1) accounts for intra-envy between pairs of
points allocated to the same facility. Constraints (2) assure that a single
allocation is obtained for each demand point and (3) model the closest-
assignment assumption (Espejo et al., 2012). The set of constraints
(4) indicates the domain of the positions of the facilities on a set of
potential facilities.

We analyze here the two main frameworks in facility location based
on the nature of the set  . On the one hand, we will study the continuous
case in which  = R𝑑 and, then, the facilities are allowed to be located
in the whole decision space. On the other hand, we will analyze the
discrete case in which  = {𝑏1,… , 𝑏𝑚} is a given finite set of potential
locations for the facilities.

Note that there are several differences when analyzing 𝑝-IEFLP
under these two frameworks:

1. In the discrete case, the possible costs between the demand
points and the potential facilities can be obtained in a pre-
processing phase since the possibilities for the values of 𝑋𝑗
are known and finite. Thus, one can compute a cost matrix
𝛷 = (𝛷𝑖(𝑏𝑗 )) ∈ R𝑛×𝑚 that serves as input for the problem. In
contrast, in the continuous case the costs can only be known
when the coordinates of the facilities are computed and, then,
their values have to be incorporated as decision variables to the
problem. Furthermore, in a continuous problem, the shape of the
cost functions 𝛷1,… , 𝛷𝑛 has a significant impact in deriving a
4

suitable mathematical programming formulation of the problem.
2. The closest-assignment constraints (3) must be treated differ-
ently for the continuous and the discrete case because of the
knowledge of the cost values. For the discrete case, there are
different approaches to incorporate linear constraints enforcing
this requirement (see Espejo et al. (2012)). In the continuous
case, this requirement must also be ensured using different, but
simple, strategies.

3. The absolute values in the objective function measuring the
intra-envies in case the costs are known, as in the discrete case,
are constant values. In the continuous case these values are
unknown and part of the decision problem.

In what follows, we illustrate the different situations when locating
𝑝 facilities with different criteria, namely, the 𝑝-median, the 𝑝-envy (Es-
pejo et al., 2009) and the 𝑝-intra-envy with the continuous and discrete
frameworks.

Example 2.1. Consider the six demand points in the real line  =
{1, 2, 4, 6, 10, 14}. For the discrete problem, we assume that each de-
mand point is also a potential facility. We aim to locate 𝑝 = 2
facilities.

In the discrete setting, the dissatisfaction matrix (based on dis-
tances) can be prespecified as:

𝛷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 3 5 9 13
1 0 2 4 8 12
3 2 0 2 6 10
5 4 2 0 4 8
9 8 6 4 0 4
13 12 10 8 4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In Fig. 1 we show the optimal solutions for the 𝑝-median, the 𝑝-envy,
and the 𝑝-intra-envy problems (from top to bottom). The open facilities
are highlighted with gray color circles and the arrows indicate the open
facility where each of the users are allocated.

The optimal solution of the 𝑝-median problem on this instance,
where the aim is to minimize the total distance between plants and
their allocated users, is obtained locating plants at sites 2 and 14 and the
optimal allocation pattern can be seen in the first picture of the figure.
There, customer located at 1 is allocated to the facility in position 2 at a
distance of 1 unit. Customer at 6, which is allocated to the same plant,
and whose distance to the plant is 4, feels envy from 1 of 4−1 = 3 units.
However, customer at position 10 does not pay attention to customer
at 1 since it is not allocated to its same plant. Using the notation
introduced above, the intra-envy matrix induced for facilities located
at positions 2 and 14 is

IE(2, 14) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0
0 0 0 0 0 0
1 2 0 0 0 0
3 4 2 0 0 0
0 0 0 0 0 4
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here, each row represents the envy of a customer with respect to each
of the other demand points. The overall intra-envy for this solution is
17 units.

An optimal solution of the minimum envy problem previously stud-
ied in Espejo et al. (2009) for this instance is shown in the second
picture of Fig. 1. There, instead of computing the envy only with respect
to the demand points allocated to the same plant, the envy is calculated
with respect to all the demand points, no matter if the demand points
are allocated to the same facility or not. For this problem it is optimal
to locate plants at 4 and 10, and the corresponding intra-envy matrix is
in this case

IE(2, 10) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

0 1 3 1 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

.

⎝0 0 0 0 4 0⎠
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Fig. 1. Solution of the discrete problems of Example 2.1 (from top to bottom: 𝑝-median, 𝑝-envy and 𝑝-intra-envy problems).
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The overall intra-envy is now 13 units.
In the third line of the figure we see the optimal solution to the

discrete 𝑝-intra-envy location problem. The plants have been located at
nodes 2 and 10. The envy matrix is

IE(2, 10) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0
0 0 0 0 0 0
1 2 0 0 0 0
0 0 0 0 4 0
0 0 0 0 0 0
0 0 0 0 4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

being the total intra-envy equal to 12. Note that, for instance, user 6
which is at the same distance from 2 than from 10 feels a lower envy
to its neighbors when it is allocated to 10 instead of being allocated to
2, implying an overall smaller intra-envy.

Example 2.2. In Fig. 2 we show the results for the 2-median problem,
the 2-envy problem, and the 2-intra-envy problem on the plane (with
cost function measured by the 𝓁1-norm) for the set of 6 demand points
{(8, 1), (1, 13), (17, 11), (18, 15), (11, 9), (19, 7)}.

The solution of the 2-median problem on the plane is shown in the
op picture. The facilities to be located are 𝑋1 = (8, 9) and 𝑋2 = (18, 11).
he intra-envy matrix is in this case

E ((8, 9), (18, 11)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 5 0
3 0 0 0 8 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0
0 0 4 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ith overall intra-envy equal to 24.
In the second picture we show the result of solving a modified

ersion of the minimum envy problem analyzed in Espejo et al. (2009)
or the continuous case. The optimal facilities are located at positions
1 = (8.5, 15) and 𝑋2 = (14.5, 4). The intra-envy matrix in this case is

E ((8.5, 15), (14.5, 4)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 2
0 0 0 0 0 0
0 0 0 0 1 2
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ith an overall intra-envy of 7. In this solution, all the demand points
ish to be positioned at the same distance with respect to their clos-
st facilities. Specifically, in all pairwise comparisons between the
istances, a maximum difference of 2 units is observed.

Finally, in the bottom picture of Fig. 2 we show the solution of the
5

-intra-envy problem in the continuous case. The two facilities are at
1 = (4, 6.5), and 𝑋2 = (19, 12), being the intra-envy matrix

E ((4, 6.5), (19, 12)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ith an overall intra-envy of 4 units. The envy is computed only
omparing pairs of demand points allocated to the same facility. The
deal solution is that in which all the points allocated to a facility are
t the same distance to it. In the optimal solution, points numbered as
, 2 and 5 are allocated to the same facility at the same distance, and
hen the envy among those points is zero.

.1. Equity properties

There are some desirable properties for a measure to be considered
quitable (see, for example, Barbati and Piccolo (2016), Marsh and
chilling (1994) and Mulligan (1991), among some others). In Barbati
nd Piccolo (2016), the authors classify these properties into two types:
xiomatic binary properties and axiomatic computable properties, the
irst being those that can be either verified or not by an equality mea-
ure whereas the second are those that can be verified with different
egrees of intensity. The axioms of the first type are: the transfer
rinciple, the scale invariance principle, the normalization property
nd the impartiality property. The second type of axioms are: analytical
raceability property, Pareto optimality solution and adequacy. The
uthors propose also three so-called optimization properties (that can be
lso classified into binary or computable): transformation invariance,
symptotic property, and the monotonic property.

In what follows we detail each of these properties and analyze the
erification of them by the overall intra-envy measure:

• Transfer principle: This property is also known as the Pigou-Dalton
property and a measure verifies it if it prioritizes satisfying users
allocated to its most preferred facilities to those allocated to less
preferred facilities. Since the intra-envy is a Gini-like measure,
this property is verified (see e.g., Levy et al. (2006)).

• Scale invariance principle and normalization: This property states
that the measure is not affected by the units for which the dissat-
isfaction or cost is measured. Clearly, this property is verified by
the intra-envy.

• Impartiality property : This property states that equity only depends
on social factors and data and not from other aspects like race,
color, age or political. As already mentioned in Barbati and Pic-
colo (2016), in the location context this property is automatically
satisfied because users are not distinguished according to these

aspects.
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Fig. 2. Solution of the continuous problems of Example 2.2 (from top to bottom:
𝑝-median, 𝑝-envy and 𝑝-intra-envy problems).

• Analytical traceability property : This axiom refers to the computa-
tional tractability of the measure. The intra-envy of a given set of
𝑝 facilities can be easily computed.

• Pareto optimality : This property implies that as the solution im-
proves, none of the individuals or groups being affected will
be worse off. This property is not satisfied by the intra-envy,
but neither by the Gini index, the global envy or the absolute
deviation.
6

• Appropriateness: This property assures that a measure can be easily
understood and adequately defined in its decision making context.
It is verified by the intra-envy.

• Transformation invariance: This axiom was proposed in Drezner
et al. (2009) and is verified by a measure if changing with
the same transformation the position of all the users and the
position of the facilities, we obtain the same value for the measure
considered. Thus, it is satisfied by the intra-envy.

• Asymptotic and Monotonic property : These properties analyze the
trend of the different positions of the facilities and the demand
points. The measure of this property is based on simulation and
would require a further study. Based on the results in Barbati
and Piccolo (2016), the performance of the intra-envy should be
similar to the one described as AD in the mentioned paper.

3. The continuous minimum 𝒑-intra-envy facility location prob-
lem

In this section we will study the 𝑝-IEFLP assuming that the 𝑝
acilities to be located are allowed to be positioned in the whole space.
n this case, we assume that the preference function of user 𝑖 with
espect to a facility located at 𝑋 ∈ R𝑑 is given by the 𝓁1-norm based
istance in R𝑑 , i.e.,

𝑖(𝑋) = ‖𝑎𝑖 −𝑋‖1 =
𝑑
∑

𝓁=1
|𝑎𝑖𝓁 −𝑋𝑙|.

We provide three alternative mathematical programming formula-
ions for the problem. The first formulation is based on representing
nvy as pairwise differences of distances. In contrast, in the second
nd third formulations, we exploit the structure of the intra-envy as an
rdered median function of the distances. In both formulations, in order
o adequately represent the distance in terms of the variables defining
he positions of the facilities (which are part of the decision), we use
he following sets of decision variables:

𝑗𝓁 ∶ 𝓁th coordinate of the 𝑗th facility, ∀𝑗 ∈ 𝑃 ,𝓁 = 1,… , 𝑑.

𝑖𝑗 = 𝛷𝑖(𝑋𝑗 ) = ‖𝑎𝑖 −𝑋𝑗‖1, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 .

e also use the allocation variables 𝑥𝑖𝑗 described in the previous
ection.

irst formulation for the continuous 𝑝-IEFLP

In the first formulation, in addition, we use the following variables
o model the intra-envy between two demand points 𝑖 and 𝑘 for the set
f 𝑝 facilities 𝐗 = {𝑋1,… , 𝑋𝑝}:

𝑖𝑘 = IE𝑖𝑘(𝐗), ∀𝑖, 𝑘 ∈ 𝑁(𝑘 > 𝑖).

With the above sets of variables, the continuous 𝑝-IEFLP prob-
em can be formulated as the following mathematical programming
roblem that we denote as (M𝐶

1 ):

in
∑

𝑖∈𝑁

∑

𝑘∈𝑁∶
𝑘>𝑖

𝜃𝑖𝑘 (5)

s.t.
𝑝
∑

𝑗=1
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁, (6)

𝜃𝑖𝑘 ≥ 𝜙𝑖𝑗 − 𝜙𝑘𝑗 − 𝑈 (2 − 𝑥𝑖𝑗 − 𝑥𝑘𝑗 ), ∀𝑖 < 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 , (7)

𝜃𝑖𝑘 ≥ 𝜙𝑘𝑗 − 𝜙𝑖𝑗 − 𝑈 (2 − 𝑥𝑖𝑗 − 𝑥𝑘𝑗 ), ∀𝑖 < 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 , (8)

𝜙𝑖𝑗 ≤ 𝜙𝑖𝓁 + 𝑈 (1 − 𝑥𝑖𝑗 ), ∀𝑖 ∈ 𝑁, 𝑗 ≠ 𝓁 ∈ 𝑃 , (9)

𝜙𝑖𝑗 = 𝛷𝑖(𝑋𝑗 ), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (10)

𝑋1,… , 𝑋𝑝 ∈ R𝑑 , (11)

𝜃 ≥ 0, ∀𝑖, 𝑘 ∈ 𝑁, 𝑘 > 𝑖, (12)
𝑖𝑘
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𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 (13)

where 𝑈 is a big enough constant. The reader may note that differ-
ent 𝑈 ′𝑠 could be estimated for the different families of constraints,
amely (7)–(8) and (9), although we keep it simpler for the sake of
resentation.

In this model the objective function (5) accounts for the intra-envy
elt by every customer with respect to all other customers. Constraints
7) and (8) allow to adequately represent the envy between users 𝑖 and
, i.e., either IE𝑖𝑘(𝑋) = 𝛷𝑖(𝑋𝑗 ) − 𝛷𝑘(𝑋𝑗 ) or IE𝑘𝑖(𝑋) = 𝛷𝑘(𝑋𝑗 ) − 𝛷𝑖(𝑋𝑗 )

in case 𝑖 and 𝑘 are allocated to facility 𝑗. Constraints (9) assure the
closest-assignment assumption. Constraints (10) are the representation
of the 𝓁1 distances between demand points and the facilities. For 𝑖 ∈ 𝑁
nd 𝑗 ∈ 𝑃 , the constraint can be linearly modeled as follows:

𝑖𝑗𝓁 ≤ 𝑎𝑖𝓁 −𝑋𝑗𝓁 + 𝑈 (1 − 𝜉𝑖𝑗𝓁), ∀𝓁 = 1,… , 𝑑 (14)

𝑖𝑗𝓁 ≥ 𝑎𝑖𝓁 −𝑋𝑗𝓁 , ∀𝓁 = 1,… , 𝑑, (15)

𝑖𝑗𝓁 ≤ −𝑎𝑖𝓁 +𝑋𝑗𝓁 + 𝑈𝜉𝑖𝑗𝓁 , ∀𝓁 = 1,… , 𝑑, (16)

𝑖𝑗𝓁 ≥ −𝑎𝑖𝓁 +𝑋𝑗𝓁 , ∀𝓁 = 1,… , 𝑑, (17)

𝑖𝑗 =
𝑑
∑

𝓁=1
𝑤𝑖𝑗𝓁 , (18)

𝑖𝑗𝓁 ≥ 0, ∀𝓁 = 1,… , 𝑑,

𝑖𝑗𝓁 ∈ {0, 1}, ∀𝓁 = 1,… , 𝑑

here two sets of additional auxiliary variables are used: 𝑤𝑖𝑗𝓁 =
𝑎𝑖𝓁 −𝑋𝑗𝓁|, and 𝜉𝑖𝑗𝓁 that takes values 1 in case 𝑤𝑖𝑗𝓁 = 𝑎𝑖𝓁 −𝑋𝑗𝓁 ≥ 0 and

zero otherwise. Constraints (15) and (17) ensure that 𝑤𝑖𝑗𝓁 ≥ max{𝑎𝑖𝓁 −
𝑋𝑗𝓁,−𝑎𝑖𝓁 + 𝑋𝑗𝓁} while constraints (14) and (16) assure that 𝑤𝑖𝑗𝓁 ≤
max{𝑎𝑖𝓁 − 𝑋𝑗𝓁 ,−𝑎𝑖𝓁 + 𝑋𝑗𝓁}, defining adequately the absolute value
|𝑎𝑖𝓁 −𝑋𝑗𝓁|. Constraints (18) define the 𝓁1 distance by means of the sum
of the absolute values of the differences at all the coordinates between
the demand point and the facility. Note that with this representation of
the distance, ‖𝑋𝑗 − 𝑎𝑖‖1 can be expressed by the sum of the adequate
𝑤-variables (18).

A 𝑘-sum based formulation for the continuous 𝑝-IEFLP

The second formulation that we propose is based on the following
observation.

Lemma 3.1. Let 𝜙𝑖𝑗 = 𝛷𝑖(𝑋𝑗 ) if 𝑎𝑖 is allocated to 𝑋𝑗 and zero otherwise,
𝜙(𝑘)𝑗 the 𝑘th largest distance in the sequence of distances from all the
demand points to 𝑋𝑗 , and 𝑘𝑗 the number of points allocated to the 𝑗th
facility. The intra-envy function can be written as:
∑

𝑖∈𝑁

∑

𝑘∈𝑁
IE𝑖𝑘(𝑋1,… , 𝑋𝑝) =

∑

𝑗∈𝑃

∑

𝑘∈𝑁
(𝑘𝑗 − 2𝑘 + 1)𝜙(𝑘)𝑗 .

Proof. Let 𝑋1,… , 𝑋𝑝 ∈ R𝑑 be the chosen facilities, and 𝜙⋅𝑗 =
(𝜙1𝑗 ,… , 𝜙𝑛𝑗 ) the allocation costs of all the demand points to 𝑋𝑗 (as-
suming that the allocation cost of a demand point non allocated to
𝑋𝑗 is zero). Sorting 𝜙𝑗 in non increasing order results in the vector
(𝜙(1)𝑗 , 𝜙(2)𝑗 ,… , 𝜙(𝑘𝑗 )𝑗 , 0,… , 0) with 𝜙(1)𝑗 ≥ 𝜙(2)𝑗 ≥ ⋯ ≥ 𝜙(𝑘𝑗 )𝑗 ≥ 0.

With this notation, the intra-envy of the demand point sorted in the
𝑘th position for facility 𝑗 ∈ 𝑃 can be computed as:
𝑘𝑗
∑

𝑖=𝑘+1
(𝜙(𝑘)𝑗 − 𝜙(𝑖)𝑗 ) = (𝑘𝑗 − 𝑘)𝜙(𝑘)𝑗 −

𝑘𝑗
∑

𝑖=𝑘+1
𝜙(𝑖)𝑗

= (𝑘𝑗 − 𝑘)𝜙(𝑘)𝑗 − 𝜙(𝑘+1)𝑗 −⋯ − 𝜙(𝑘𝑗 )𝑗 .

Adding up the above expression for all 𝑘 we obtain that the intra-envy
for the 𝑗th facility can be written as:
7

𝑘𝑗−1
∑

𝑘=1

𝑘𝑗
∑

𝑖=𝑘+1
(𝜙(𝑘)𝑗 − 𝜙(𝑖)𝑗 ) =

𝑘𝑗−1
∑

𝑘=1

(

(𝑘𝑗 − 𝑘)𝜙(𝑘)𝑗 − 𝜙𝑗
(𝑘+1) −⋯ − 𝜙(𝑘𝑗 )𝑗

)

= (𝑘𝑗 − 1)𝜙𝑗
(1) + (𝑘𝑗 − 3)𝜙𝑗

(2) +⋯ + (1 − 𝑘𝑗 )𝜙(𝑘𝑗 )𝑗

=
𝑘𝑗
∑

𝑘=1
(𝑘𝑗 − 2𝑘 + 1)𝜙(𝑘)𝑗

=
∑

𝑘∈𝑁
(𝑘𝑗 − 2𝑘 + 1)𝜙(𝑘)𝑗 . □

The above result identifies the objective function of 𝑝-IEFLP as an
ordered median function of the allocation costs given by 𝛷 (see Mesa
et al. (2003)). This type of functions has been widely studied in location
science (see e.g., Marín et al. (2009)) and several representations
are possible to embed these sortings in a mathematical programming
formulation. One of the most effective representations is through the so-
called 𝑘-sums which is based on expressing the ordered median function

as a weighted sum of 𝑘-sums 𝑆𝑘(𝜙⋅𝑗 ) =
𝑘
∑

𝓁=1
𝜙(𝓁)𝑗 .

Lemma 3.2. Let 𝑗 ∈ 𝑃 , 𝑋𝑗 ∈ R𝑑 and 𝜙⋅𝑗 = (𝜙1𝑗 ,… , 𝜙𝑛𝑗 ) the allocation
costs of all the demand points to 𝑋𝑗 . Then:

∑

𝑘∈𝑁
(𝑘𝑗 − 2𝑘 + 1)𝜙(𝑘)𝑗 = 2

∑

𝑘∈𝑁∶𝑘<𝑘𝑗

𝑘
∑

𝓁=1
𝜙(𝓁)𝑗 − (2𝑛 + 1 − 𝑘𝑗 )

𝑛
∑

𝓁=1
𝜙(𝓁)𝑗 .

Proof. Observe that defining:

𝛥𝑗
𝑘 =

⎧

⎪

⎨

⎪

⎩

2 if 𝑘 < 𝑘𝑗 ,
1 − 𝑘𝑗 if 𝑘 = 𝑘𝑗 ,
0 otherwise,

we obtain

∑

𝑘∈𝑁
(𝑘𝑗 − 2𝑘 + 1)𝜙(𝑘)𝑗 =

∑

𝑘∈𝑁
𝛥𝑗
𝑘𝑆𝑘(𝜙⋅𝑗 ) =

∑

𝑘∈𝑁
𝛥𝑗
𝑘

𝑘
∑

𝓁=1
𝜙(𝓁)𝑗

= 2
∑

𝑘∈𝑁∶𝑘<𝑘𝑗

𝑆𝑘(𝜙𝑗 ) + (1 − 𝑘𝑗 )𝑆𝑘𝑗 (𝜙
𝑗 )

= 2
∑

𝑘∈𝑁
𝑆𝑘(𝜙𝑗 ) − 2(𝑛 − 𝑘𝑗 + 1)

×
𝑛
∑

𝓁=1
𝜙𝓁𝑗 + (1 − 𝑘𝑗 )

𝑛
∑

𝓁=1
𝜙𝓁𝑗

= 2
∑

𝑘∈𝑁
𝑆𝑘(𝜙⋅𝑗 ) − (2𝑛 + 1 − 𝑘𝑗 )

𝑛
∑

𝓁=1
𝜙𝓁𝑗

since 𝜙(𝑘)𝑗 = 0 for all 𝑘 > 𝑘𝑗 and then 𝑆𝑘(𝜙⋅𝑗 ) = 𝑆𝑘𝑗 (𝜙
𝑗 ) =

𝑛
∑

𝑙=1
𝜙𝑙𝑗 . In

the last equation the expression
𝑛
∑

𝓁=1
𝜙𝓁𝑗 is added up and removed to

aggregate in the first addend all the 𝑘-sums. □

With the above results, the objective function of 𝑝-IEFLP can be
rewritten as:

∑

𝑖∈𝑁

∑

𝑘∈𝑁
IE𝑖𝑘(𝐗) = 2

∑

𝑗∈𝑃

∑

𝑘∈𝑁

𝑘
∑

𝓁=1
𝜙(𝓁)𝑗 −

∑

𝑗∈𝑃
(2𝑛 + 1 − 𝑘𝑗 )

𝑛
∑

𝓁=1
𝜙𝓁𝑗 .

Different representations of 𝑘-sums are possible when they are
ncorporated to optimization problems (see e.g., Blanco et al. (2014),
arín et al. (2020), Ogryczak and Tamir (2003) and Puerto et al.

2017)). Specifically, we use the one proposed in Blanco et al. (2014)
o derive the following mathematical formulation for the continuous
-EIFLP where, additionally to the above-mentioned variables, we use
he set of auxiliary variables 𝛼𝑖𝑗 =

∑

𝓁∈𝑁 𝜙𝓁𝑗𝑥𝑖𝑗 in order to represent the

xpression 𝑘𝑗
𝑛
∑

𝜙𝓁𝑗 =
(

∑

𝑥𝑖𝑗
)

∑

𝜙𝓁𝑗 =
∑

𝑥𝑖𝑗𝜙𝓁𝑗 in the objective

𝓁=1 𝑖∈𝑁 𝓁∈𝑁 𝑖,𝓁∈𝑁



Computers and Operations Research 162 (2024) 106487V. Blanco et al.
function. The following formulation for the problem was denoted by
M2

𝐶 .

min 2
∑

𝑗∈𝑃

∑

𝑘∈𝑁

(

∑

𝓁∈𝑁
𝑢𝑘𝓁𝑗 +

∑

𝑖∈𝑁
𝑣𝑘𝑖𝑗

)

− (2𝑛 + 1)
∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝜙𝑖𝑗 +

∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝛼𝑖𝑗

(19)

s.t.
∑

𝑗∈𝑃
𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁, (20)

𝑤𝑖𝑗𝓁 ≤ 𝑎𝑖𝓁 −𝑋𝑗𝓁 + 𝑈 (1 − 𝜉𝑖𝑗𝓁), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 ,𝓁 = 1,… , 𝑑 (21)

𝑤𝑖𝑗𝓁 ≥ 𝑎𝑖𝓁 −𝑋𝑗𝓁 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 ,𝓁 = 1,… , 𝑑, (22)

𝑤𝑖𝑗𝓁 ≤ −𝑎𝑖𝓁 +𝑋𝑗𝓁 + 𝑈𝜉𝑖𝑗𝓁 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 ,𝓁 = 1,… , 𝑑 (23)

𝑤𝑖𝑗𝓁 ≥ −𝑎𝑖𝓁 +𝑋𝑗𝓁 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 ,𝓁 = 1,… , 𝑑, (24)

𝜙𝑖𝑗 ≤
𝑑
∑

𝓁=1
𝑤𝑖𝑗𝓁 + 𝑈 (1 − 𝑥𝑖𝑗 ), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (25)

𝜙𝑖𝑗 ≥
𝑑
∑

𝓁=1
𝑤𝑖𝑗𝓁 − 𝑈 (1 − 𝑥𝑖𝑗 ), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (26)

𝜙𝑖𝑗 ≤ 𝑈𝑥𝑖𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (27)

𝛼𝑖𝑗 ≥
∑

𝓁∈𝑁
𝜙𝓁𝑗 − 𝑈 (1 − 𝑥𝑖𝑗 ), ∀𝑖,𝓁 ∈ 𝑁, 𝑗 ∈ 𝑃 , (28)

𝑢𝑘𝓁𝑗 + 𝑣𝑘𝑖𝑗 ≥ 𝜙𝑖𝑗 , ∀𝑖, 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 , (29)

𝑢𝑘𝑖𝑗 , 𝑣𝑘𝑖𝑗 ≥ 0, ∀𝑘, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (30)

𝜙𝑖𝑗 ≥ 0, 𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (31)

𝛼𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 . (32)

The objective function represents the overall 𝑝-intra-envy as de-
tailed in the above comments. Constraints (20) are the single-allocation
constraints. Constraints (21)–(24) ensure the correct definition of the
absolute values 𝑤𝑖𝑗𝓁 = |𝑎𝑖𝓁 −𝑋𝑗𝓁| required to derive the 𝓁1 distances
between demand points and the facilities. Constraints (25) and (26)
assure that, in case the demand point 𝑎𝑖 is allocated to facility 𝑗, then,
the cost of allocating such a point to that facility, 𝜙𝑖𝑗 , is defined as the
𝓁1-norm based distance between 𝑎𝑖 and 𝑋𝑗 . Otherwise, by constraints
(27) the cost 𝜙𝑖𝑗 is fixed to zero. Constraints (28) (and the minimization
of the 𝛼-variables) ensure the correct definition of the 𝛼-variables.
Finally, constraints (29) allow computing adequately the 𝑘-sums.

Remark 3.1. Apart from the 𝑘-sum representation applied above based
on Blanco et al. (2014), other representations are possible. Specifically,
in Ogryczak and Tamir (2003) the authors provide an alternative
formulation that has been widely used in the literature. There, it is
proved that

𝑆𝑘(𝜙⋅𝑗 ) = min 𝑘𝑡𝑘𝑗 +
∑

𝑖∈𝑁
𝑤𝑘𝑖𝑗

s.t. 𝑡𝑘𝑗 +𝑤𝑘𝑖𝑗 ≥ 𝜙𝑖𝑗 , ∀𝑖 ∈ 𝑁

𝑡𝑘𝑗 ≥ 0,

𝑤𝑘𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑁.

This representation can be embedded in the following formulation that
we call M3

𝐶 :

min 2
∑

𝑗∈𝑃

∑

𝑘∈𝑁

(

𝑘𝑡𝑘𝑗 +
∑

𝑖∈𝑁
𝑤𝑘𝑖𝑗

)

− (2𝑛 + 1)
∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝜙𝑖𝑗 +

∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝛼𝑖𝑗 (33)

s.t. (20)–(28) (34)

𝑡𝑘𝑗 +𝑤𝑘𝑖𝑗 ≥ 𝜙𝑖𝑗 , ∀𝑖, 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 (35)

𝜙𝑖𝑗 ≥ 0, 𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (36)

𝑡𝑘𝑗 ≥ 0, ∀𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 , (37)

𝑤𝑘𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑃 , (38)
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𝛼𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 . (39)
4. The discrete minimum 𝒑-intra-envy facility location problem

In this section we analyze the case in which the set of potential
positions for the facilities is a finite set, i.e.,  = {𝑏1,… , 𝑏𝑚} ⊆ R𝑑 . We
denote by 𝑀 = {1,… , 𝑚} the index set for the potential facilities. We
assume that 1 ≤ 𝑝 ≤ 𝑚 − 1 plants have to be located.

In this situation, the distances/costs between the users and all the
potential sites can be computed in a preprocessing phase. We denote
by 𝐶 = (𝜙𝑖𝑗 )𝑛×𝑚 a costs matrix, where 𝜙𝑖𝑗 = 𝛷𝑖(𝑏𝑗 ) is the measure of the
dissatisfaction user 𝑖 will feel if he is allocated to site 𝑗.

In this case, the problem is reduced to choosing 𝑝 facilities out of the
𝑚 potential facilities minimizing the overall envy of the demand points.
Thus, apart from the 𝑥-variables indicating the allocation of users to
plants and the 𝜃-variables used to model the envy between demand
points, already defined in the previous sections, we use the following
set of variables:

𝑦𝑗 =

{

1 if a plant is located at site 𝑗,
0 otherwise,

∀𝑗 ∈ 𝑀.

With the above notation, the discrete minimum 𝑝-intra-envy facility
location problem can be formulated as the following mixed integer
linear programming problem that we denote by M𝐷

1 :

min
𝑛−1
∑

𝑖=1

𝑛
∑

𝑘=𝑖+1
𝜃𝑖𝑘 (40)

s.t.
∑

𝑗∈𝑀
𝑦𝑗 = 𝑝, (41)

∑

𝑗∈𝑀
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁, (42)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀, (43)

𝑦𝑗 +
∑

𝓁∈𝑀∶
𝜙𝑖𝑗<𝜙𝑖𝓁

𝑥𝑖𝓁 ≤ 1, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀, (44)

𝜃𝑖𝑘 ≥ |𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑥𝑖𝑗 + 𝑥𝑘𝑗 − 1), ∀𝑖 < 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑀, (45)

𝑦𝑖 ∈ {0, 1}, ∀𝑗 ∈ 𝑀, (46)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀. (47)

Constraints (41)–(43) are the classical 𝑝-median constraints that
assure that 𝑝 services are open, each customer is allocated to a single
plant and demand points are allowed to be allocated only to open
plants. Constraints (44) are the closest assignment constraints. They
avoid allocating a customer to plants which are less desired than
others that are open and have been chosen among several alternative
closest assignment constraints developed in the literature based on the
analysis made in Espejo et al. (2009) and the experience of the authors.
Constraints (45) ensure the adequate definition of the envy variables 𝜃.
Note that 𝜃𝑖𝑘 takes value |𝜙𝑖𝑗 − 𝜙𝑖𝑘| in case 𝑖 and 𝑘 are allocated to a
common plant 𝑗, i.e, whenever 𝑥𝑖𝑗 ⋅𝑥𝑘𝑗 = 1 (term which is linearized in
the constraint as 𝑥𝑖𝑗 + 𝑥𝑘𝑗 − 1). These constraints can be strengthened
by the following ones:

𝜃𝑖𝑘 ≥ |𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑥𝑖𝑗 + 𝑥𝑘𝑗 − 𝑦𝑗 ), ∀𝑖 < 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑀, (48)

since 𝑦𝑗 will take value 1 whenever 𝑥𝑖𝑗𝑥𝑘𝑗 will take value 1.
The above formulation is based on the classical variables and con-

straints of discrete location problems. A reduced formulation can be
derived using only the 𝑦-variables, with the following formulation,
named M𝐷

2 :

min
𝑛−1
∑

𝑖=1

𝑛
∑

𝑘=𝑖+1
𝜃𝑖𝑘 (49)

s.t.
∑

𝑗∈𝑀
𝑦𝑗 = 𝑝, (50)

𝜃𝑖𝑘 ≥ |𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑦𝑗 −
∑

𝓁∈𝑀∶
𝜙𝑖𝓁<𝜙𝑖𝑗 or

𝑦𝓁), ∀𝑖 < 𝑘 ∈ 𝑁, 𝑗 ∈ 𝑀, (51)
𝜙𝑘𝓁<𝜙𝑘𝑗
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𝜃𝑖𝑘 ≥ 0, ∀𝑖 < 𝑘 ∈ 𝑁, (52)

𝑦𝑗 ∈ {0, 1},∀𝑗 ∈ 𝑀. (53)

Constraints (51) make 𝜃𝑖𝑘 to take value |𝜙𝑖𝑗 − 𝜙𝑘𝑗 | when (i) plant 𝑗
is opened, and (ii) no other plant 𝓁 is opened if it is closer to 𝑖 or 𝑘 than
plant 𝑗. This means that the closest plant (or one of the closest plants
in case of tie) to both, 𝑖 and 𝑘, is 𝑗, and therefore 𝑖 and 𝑘 will be both
allocated to 𝑗 and the envy of this allocation will be (at least, in case
of tie) |𝜙𝑖𝑗 − 𝜙𝑘𝑗 |.

The following set of valid inequalities can be used to tighten the
formulation:

𝜃𝑖𝑘 ≥
∑

𝑗∈𝐽
|𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑦𝑗 −

∑

𝓁∈𝑀∶
𝜙𝑖𝓁<𝜙𝑖𝑗 or
𝜙𝑘𝓁<𝜙𝑘𝑗

𝑦𝓁), ∀𝐽 ⊆ 𝑀.

These inequalities were incorporated to the above formulation se-
quentially in the branch-and-bound tree by separating them with the
following strategy. Let 𝑦̄ ∈ [0, 1]𝑚 and 𝜃̄ ∈ R𝑛×𝑛

+ be a feasible relaxed
solution. For each 𝑖, 𝑘 ∈ 𝑁 , let 𝐽𝑖𝑘 = {𝑗 ∈ 𝑀 ∶ 𝑦̄𝑗 >

∑

𝓁∈𝑀∶
𝜙𝑖𝓁<𝜙𝑖𝑗 or
𝜙𝑘𝓁<𝜙𝑘𝑗

𝑦̄𝓁} and

𝜌𝑖𝑘 =
∑

𝑗∈𝐽𝑖𝑘

|𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑦̄𝑗 −
∑

𝓁∈𝑀∶
𝜙𝑖𝓁<𝜙𝑖𝑗 or
𝜙𝑘𝓁<𝜙𝑘𝑗

𝑦̄𝓁). If 𝜌̄𝑖𝑘 > 𝜃̄𝑖𝑘, then, incorporate

the cut:

𝜃𝑖𝑘 ≥
∑

𝑗∈𝐽𝑖𝑘

|𝜙𝑖𝑗 − 𝜙𝑘𝑗 |(𝑦𝑗 −
∑

𝓁∈𝑀∶
𝜙𝑖𝓁<𝜙𝑖𝑗 or
𝜙𝑘𝓁<𝜙𝑘𝑗

𝑦𝓁).

.1. 𝑘-sums based formulation

With the same ideas applied to reformulate the continuous problem
nto an ordered median problem, we obtain:

∑

∈𝑁

∑

𝑘∈𝑁
IE𝑖𝑘(𝐗) = 2

∑

𝑗∈𝑃

∑

𝑘∈𝑁

𝑘
∑

𝓁=1
𝜙(𝓁)𝑗 −

∑

𝑗∈𝑃
(2𝑛 + 1 − 𝑘𝑗 )

𝑛
∑

𝓁=1
𝜙𝓁𝑗𝑥𝓁𝑗

where 𝑘𝑗 is the number of demand points allocated to plant 𝑗. Thus the
following formulation that we call M𝐷

3 is valid for the problem:

min 2
∑

𝑗∈𝑃

∑

𝑘∈𝑁

(

∑

𝓁∈𝑁
𝑢𝑘𝓁𝑗 +

∑

𝑖∈𝑁
𝑣𝑘𝑖𝑗

)

− (2𝑛 + 1)
∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝜙𝑖𝑗𝑥𝑖𝑗

+
∑

𝑗∈𝑃

∑

𝑖∈𝑁
𝜙𝑖𝑗𝛼𝑖𝑗 (54)

s.t.
∑

𝑗∈𝑀
𝑦𝑗 = 𝑝, (55)

∑

𝑗∈𝑀
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁, (56)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀, (57)

𝑦𝑗 +
∑

𝓁∈𝑀∶
𝜙𝑖𝑗<𝜙𝑖𝓁

𝑥𝑖𝓁 ≤ 1, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀, (58)

𝛼𝑖𝑗 ≥
∑

𝓁∈𝑁
𝑥𝓁𝑗 − (𝑛 − 𝑝)(1 − 𝑥𝑖𝑗 ), ∀𝑖,𝓁 ∈ 𝑁, 𝑗 ∈ 𝑃 , (59)

𝑢𝑘𝓁𝑗 + 𝑣𝑘𝑖𝑗 ≥ 𝜙𝑖𝑗𝑥𝑖𝑗 , ∀𝑖,𝓁, 𝑘 ∈ 𝑁(𝓁 ≤ 𝑘), 𝑗 ∈ 𝑃 , (60)

𝑢𝑘𝑖𝑗 , 𝑣𝑘𝑖𝑗 ≥ 0, ∀𝑘, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (61)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑃 , (62)

𝛼𝑖𝑗 ≥ 0, ∀𝑖,𝓁 ∈ 𝑁, 𝑗 ∈ 𝑃 . (63)

5. Computational study

In this section we provide the results of our computational experi-
ence in order to evaluate the performance of the proposed approaches.
All the formulations were coded in Python 3.7 in an iMac with 3.3 GHz
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with an Intel Core i7 with 4 cores and 16 GB 1867 MHz DDR3 RAM.
We used Gurobi 9.1.2 as optimization solver. A time limit of 2 h was
fixed for all the instances.

In order to produce a set of test instances, we use a similar strategy
to the one in Espejo et al. (2009). We generate two different types
of instances for each combination of parameters, 𝑛, 𝑝 and 𝑑. For the
instances of type random, the demand points are uniformly generated
in [0, 100]𝑑 . In the instances of type blob the points were generated
as isotropic Gaussian blobs in [0, 100]𝑑 with ⌈

𝑛
3 ⌉ cluster centers and

standard deviation 1. Whereas uniform random instances are the most
frequent when generating random instances to test location science
problems, the blob instances more adequately represent the behavior
of users which are usually geographically clustered, simulating a higher
concentration of users around certain points of interest. The generated
instances are available at https://github.com/vblancoOR/intraenvy.

For the discrete problem, the set of potential sites for the facilities
are assumed to be the whole set of demand points and the cost matrix
𝛷 is pre-computed using the 𝓁1-norm.

We tested the formulations on a testbed of five instances for each
ombination of type (random and blob), 𝑑 ∈ {2, 3}, 𝑛 ∈ {10, 20, 30, 40,
0}. Thus, we have generated 100 random instances. We solved the
ifferent models for 𝑝 ∈ {2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40} with 𝑝 ≤ 3𝑛

4 .
For each of these instances, we run the following formulations for

he minimum 𝑝-intra-envy facility location problem:

Discrete Continuous
M1𝐷: (40)–(47) M1𝐶 : (5)–(13)
M2𝐷: (49)–(53) M2𝐶 : (19)–(32)
M3𝐷: (54)–(63) M3𝐶 : (33)–(39)

Combining the different approaches, the two different domains, and
the generated instances we solved 4568 problems. The complete results
of our experiments are available in the github repository mentioned
above. As expected, higher intra-envies occur in case 𝑝 is small com-
pared to 𝑛 (more users are to be allocated to the same facility). Thus, in
the analysis drawn in the following sections we focus on the results for
those problems where 𝑝 ≤ 7 (1000 problems for continuous instances
and 1723 for discrete instances).

5.1. 𝑝-median, 𝑝-envy and 𝑝-intraEnvy measures

The first experiment that we run is devoted to determining the
convenience of the intra-envy model in our instances. For each instance,
we solve three different facility location models for each of the two
different solution domains (discrete and continuous) that differ in their
optimization criterion, namely, 𝑝-median, envy, and intra-envy. In the
𝑝-median model, the goal is to minimize the overall sum of the distances
from each user to its closest facility, i.e.:

min
𝐗⊆∶
|𝐗|=𝑝

∑

𝑖∈𝑁
min

𝑗=1,…,𝑝
𝛷𝑖(𝑋𝑗(𝑖)). (𝑝-Median)

The (global) envy model aims to minimize the overall envy felt by the
users, no matter to which facility are allocated, that is, defining the
envy between two users 𝑖, 𝑘 ∈ 𝑁 for a given set of facilities 𝐗 ⊂  as:

Envy𝑖𝑘(𝐗) =
{

𝛷𝑖(𝑋𝑗(𝑖)) −𝛷𝑘(𝑋𝑗(𝑘)) if 𝛷𝑘(𝑋𝑗(𝑖)) < 𝛷𝑖(𝑋𝑗(𝑘)),
0 otherwise.

The envy problem consists of:

min
𝐗⊆∶
|𝐗|=𝑝

∑

𝑖∈𝑁

∑

𝑘∈𝑁
Envy𝑖𝑘(𝐗). (𝑝-Envy)

For each of these solutions, we evaluate the three different objective
functions and analyze the results which are shown in Figs. 3 to 8. In
these figures, the results for the 𝑝-median problem are highlighted in
green color, those for the envy problem in orange, and the results of
the intra-envy problem in blue color.

https://github.com/vblancoOR/intraenvy
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Fig. 3. Average deviations of 𝑝-median and envy solutions in the intra-envy measure with respect to the best intra-envy solution by 𝑝 (left) and 𝑛 (right) parameters for the
iscrete instances.
Fig. 4. Average deviations of 𝑝-median and envy solutions in the intra-envy measure with respect to the best intra-envy solution by 𝑝 (left) and 𝑛 (right) parameters for the
ontinuous instances.
In Figs. 3 and 4 we report the average deviations (by the values of 𝑛
nd 𝑝), in terms of intra-envy, on the solutions of the models that do not
onsider such a criterion in their objectives, namely 𝑝-median and envy,
or both the discrete and the continuous instances. The first observation
hat can be drawn is that the solutions of the Intra-Envy model do not
oincide with those obtained with the other models. Specifically, for
he discrete instances one can find instances for which the 𝑝-median
roblem obtains solutions deviated from the optimal intra-envy in more
han 20%. For the continuous instances, the difference is even more
mpressive with deviations close to 90% (caused by very small intra-
nvy values). For the discrete instances, this deviation decreases with
he values of 𝑝, whereas for the continuous instances, the situation is
he opposite: The larger the 𝑝 the larger the deviation. It is caused
y the fact that the continuous instances allow more flexibility and
n overall intra-envy close to zero as 𝑝 increases. Observe that a zero

intra-envy solution is one in which all the users allocated to a facility
assume the same allocation costs. If the closest-assignment constraints
were not present, it could be obtained by clustering users in the same
𝓁1-norm orbit around a point (the center). Since we also force the users
to be allocated to their closest facility, a close to zero-envy solution can
be also obtained by co-locating all the facilities at the same position
and deciding the clusters of users by similar distances to the single
center. This situation is not possible in the discrete instances, but in
the continuous instances, as far as 𝑝 increases, the facilities tend to co-
locate. Nevertheless, this is not the situation of the median objective,
where co-location is not a valid strategy.

The high deviation of the 𝑝-median problem with respect to the
intra-envy measure can be also observed when averaging by the value
of 𝑛. There, whereas the envy model seems to obtain stable solutions
10
with respect to the intra-envy, the 𝑝-median problem is on average de-
viated from the intra-envy in more than 10% for the discrete instances
and more than 70% for the continuous instances. We observed that the
deviation for the random instances is 10% smaller than the obtained
for the blobs instances.

Figs. 5 and 6 show the results of measuring the median objective
(overall allocation costs) on the envy-based solutions with respect to
the 𝑝-median solutions for the two types of instances. This devia-
tion is known as the price of fairness according to Bertsimas et al.
(2011). As expected, solutions with small global envy result in solutions
with higher overall median-based allocation costs. Nevertheless, the
deviations in these costs of the obtained solutions for the discrete
instances are not that large, being the overall extra cost of the intra-
envy model less than 9% with respect to the best 𝑝-median solution. The
performance of the continuous instances is again different with respect
to efficiency. On the one hand, the average deviations are larger than
15% in all cases. Nevertheless, the behaviors of the envy and the intra-
envy solutions are similar, being the envy model slightly more efficient
(in average 10% for the continuous instances and 2% for the discrete
ones) than the intra-envy model.

In Figs. 7 and 8 we evaluate the 𝑝-median and the intra-envy
model in terms of the global envy objective. In both types of instances,
although the 𝑝-median model seems to deviate more from the envy
model for small values of 𝑝, the deviations for larger 𝑝 are neglectable
for the discrete instances, being the overall global envy for this model
similar to those of the envy model. Nevertheless, the intra-envy model
results in solutions that differ from those of the envy model, being the
deviation consistently close to its average (around 3.5%).

Finally, in Figs. 9 and 10 we analyze the results obtained for the
different datasets that we tested in our experiments, namely, random



Computers and Operations Research 162 (2024) 106487V. Blanco et al.

i

d

a
o
𝑝
g
i
c

c
e
f

Fig. 5. Average deviations of envy and intra-envy solutions in the median measure with respect to the best median solution by 𝑝 (left) and 𝑛 (right) parameters for the discrete
instances.
Fig. 6. Average deviations of envy and intra-envy solutions in the median measure with respect to the best median solution by 𝑝 (left) and 𝑛 (right) parameters for the continuous
nstances.
Fig. 7. Average deviations of 𝑝-median and intra-envy solutions in the global-envy measure with respect to the best envy solution by 𝑝 (left) and 𝑛 (right) parameters for the
iscrete instances.
nd blob. We represent in those figures the average values of the
ptimal 𝑝-median, envy and intra-envy solutions aggregated by 𝑛 and
, respectively. As expected, under similar random generation strate-
ies (except the clustering), we obtain better solutions for the blobs
nstances. Recall that in these instances the demand points are already
lustered.

Summarizing, the solutions obtained with the intra-envy model
learly differ from those obtained with the classical 𝑝-median and the
nvy model proposed in Espejo et al. (2009). Although determining
acilities that exhibit minimum intra-envy has a direct impact on the
11
transportation costs of the solution, in the discrete instances these extra
costs are small enough to assume them in case one desires to avoid
envies among the demand points allocated to the same facility, whereas
in the continuous instances, they are similar to those obtained with the
envy model.

5.2. Computational performance

In this section we analyze the computational performance of the
different intra-envy formulations that we propose here. Specifically, we
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c

Fig. 8. Average deviations of 𝑝-median and intra-envy solutions in the global-envy measure with respect to the best envy solution by 𝑝 (left) and 𝑛 (right) parameters for the
ontinuous instances.
Fig. 9. Optimal median, envy and intra-envy values for the two types of continuous instances.
Fig. 10. Optimal median, envy and intra-envy values for the two types of discrete instances.
study the computational difficulty of solving each of the formulations
by means of the consumed CPU time and the MIPGap, for those
instances that we were not able to solve optimally within the time
limit. We summarize here the obtained results, whereas the detailed
results are available for the interested reader in https://github.com/
vblancoOR/intraenvy.

In Table 2 we show the average CPU time, in seconds, required by
the different formulations for solving the discrete location instances
with 𝑛 up to 30. We average our results by 𝑛 (number of users),
𝑝 (number of facilities to be located), type of instance (random or
blobs) and integer programming formulation for the 𝑝-intra-envy
problem (M1, M2, and M3). In case that any of the averaged instances
are not optimally solved before the time limit, we write TL. The results
of solving 300 different instances are summarized.

One can observe from these results that model M3, the one based
on the ordered median reformulation of the problem, is not competitive
with the other formulations. Specifically, even for instances with 𝑛 = 20,
formulation M2 required much more CPU time to solve the instances
12
Table 2
CPU times for discrete instances with 𝑛 ∈ {10, 20, 30}.
𝑛 𝑝 BLB RND

M1𝐷 M2𝐷 M3𝐷 M1𝐷 M2𝐷 M3𝐷

10
2 0.01 0.03 0.56 0.02 0.03 0.69
3 0.01 0.03 0.61 0.03 0.03 0.63
5 0.01 0.03 0.61 0.01 0.03 0.70

20

2 1.89 0.32 307.16 1.82 0.40 737.49
3 1.05 0.42 76.28 1.42 0.53 807.96
5 0.14 0.51 1050.24 0.54 1.00 6585.21
7 0.06 1.01 4247.95 0.19 1.22 6525.11

30

2 402.80 2.90 TL 412.41 103.39 TL
3 392.30 5.36 TL 131.35 9.74 TL
5 4.38 125.07 TL 9.44 635.34 TL
7 1.34 164.79 TL 4.34 1173.37 TL

than the rest of the formulations, for both the random and the blobs
instances. Note that the ordered median representation of the problem

https://github.com/vblancoOR/intraenvy
https://github.com/vblancoOR/intraenvy
https://github.com/vblancoOR/intraenvy
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Table 3
Computational results for discrete instances with 𝑛 ∈ {40, 50}.
𝑛 𝑝 CPU time %Unsolved %MIPGap %RootGap

M1𝐷 M2𝐷 M1𝐷 M2𝐷 M1𝐷 M2𝐷 M1𝐷 M2𝐷

40

2 1558.92 182.05 0% 0% 0% 0% 54% 100%
3 2024.13 380.26 0% 0% 0% 0% 46% 100%
5 1008.44 3944.59 0% 25% 0% 10% 30% 100%
7 421.95 6235.06 0% 60% 0% 33% 21% 100%

50

2 6756.18 558.82 80% 0% 49% 0% 65% 100%
3 7090.85 2933.55 95% 0% 48% 0% 57% 100%
5 6619.14 6994.48 70% 90% 21% 70% 40% 100%
7 4435.05 TL 40% 100% 6% 89% 30% 100%

requires 3𝑛2𝑝 auxiliary variables (𝑢- and 𝑣-variables in (54)–(63)) apart
from the 𝑛𝑝+𝑛 decision variables (𝑥 and 𝑦) whereas M1 (resp. M2) uses
2 auxiliary variables (𝜃) and the 𝑛𝑝 + 𝑝 (resp. 𝑛) decision variables.
e do not observe a significant difference in the behavior of the three

ormulations neither in the two dimensions (𝑑 = 2, 3) nor the type of
nstance (BLB or RND).

All the instances of these sizes were solved up to optimality with
ormulations M1 and M2. Nevertheless, M3 could not optimally solve

any of the instances with 𝑛 = 30 and 50% of the instances with 𝑛 = 20.
Comparing M1 and M2 for these instances, it seems that M2 requires

less CPU time for solving the instances with small values of 𝑝 (𝑝 ∈
{2, 3}) whereas M1 consumes less CPU time than M2 for instances with
larger values of 𝑝 (𝑝 ∈ {5, 7}).

In Table 3 we show the results obtained with formulations M1 and
M2 for the larger instances. We report there, for both formulations,
the consumed CPU time in seconds, the percentage of instances not
optimally solved within the time limit, the percent MIPGap, and the
percent deviation of the best obtained solutions with respect to the
relaxed solution after exploring the root node of the branch and bound
tree.

The same behavior of M1 and M2 was observed for these instances,
that is, M2 outperformed M1 for small values of 𝑝 whereas M1 obtained
better results for larger values of 𝑝. This performance is also observed
in the number of unsolved instances and the MIPGap.

The information about the rootgap provides details about the weak-
ness of the relaxed polyhedron induced by M2 with respect to M1 which
makes it more difficult to solve larger instances. In Table 4 we report
the results obtained for the continuous instances, organized similarly
to those of the largest discrete instances for the three formulations we
propose. We observe that the first formulation, M1, seems to have a
better performance than the others in both consumed CPU time and
number of optimally solved instances. Concretely, M1 solved 47% of
the instances whereas M2 and M3 only solved 19% and 15% of them,
respectively. Moreover, the MIPGap for the unsolved instances within
the time limit was smaller in the case of M1. As expected, the MIPGap
and the root relaxation gaps were very large since the nonconvex
terms that appear in the formulation to represent the closest distance
between users and facilities were reformulated using big M constraints.
Regarding CPU times, the easiest instances seem to be those with large
values of 𝑝, even if they use the largest number of variables for a fixed
value of 𝑛. These times were consistently paired with smaller root gap
relaxations.

Comparing the discrete and the continuous instances, the latter
exhibit a higher computational difficulty: Only a few instances with 30
users could be solved up to optimality, whereas in the discrete case this
size extended to 50 users.

Finally, in Fig. 11 we show the computational performance profile
of each of the models for the two different frameworks that we analyze
here (discrete: left, continuous: right). There, we show in the 𝑥-axis the
CPU time (log scale), and in the 𝑦-axis the percentage of instances that
were optimally solved by each of the models that we propose. In the
13

plots one can observe that most of the discrete instances (∼60%) for
small values of 𝑝 that we analyze were optimally solved by M1 or M2
in less than 500 s. In contrast, M3 only solve ∼20% of them in the same
time. The situation for the continuous instances is similar, although,
as already mentioned, the problem is even more challenging than the
discrete version: only ∼30% of the instances were solved to optimality
in less than 500 s and M1 is the method that solves the more instances
within this time.

6. Conclusions

We introduce in this paper the 𝑝-intra-envy facility location problem
in order to determine the optimal position of 𝑝 services by minimizing
the envy felt by the users allocated to the same facility. This problem
allows to find local fair solutions of 𝑝-facility location taking into
account the realistic assumption that users are not usually compared
with all rest of users but with those that make use of the same facility.
Furthermore, we provide a general framework for the problem which
is valid for the two most common solution domains in facility location,
discrete and continuous.

We derive different MILP formulations for the discrete and continu-
ous versions of the problem, assuming that the distance measure for the
continuous problems is the 𝓁1-norm. The results of an extensive battery
of computational experiments are reported. Apart from comparing
computationally the different formulations, we analyze the solutions
evaluating the proposed intra-envy measure, the global envy, and the
median functions.

Future research on the topic includes the study of valid inequalities
for the different models that we propose. For larger instances, it would
be helpful to design heuristic approaches that assure good quality
solutions in smaller computing times.
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Table 4
Computational results for continuous instances.
𝑛 𝑝 CPU time %Unsolved %MIPGap %RootGap

M1𝐶 M2𝐶 M3𝐶 M1𝐶 M2𝐶 M3𝐶 M1𝐶 M2𝐶 M3𝐶 M1𝐶 M2𝐶 M3𝐶

10
2 20.81 68.76 108.92 0% 0% 0% 0% 0% 0% 100% 100% 100%
3 22.72 286.76 398.21 0% 0% 0% 0% 0% 0% 50% 50% 50%
5 5.41 9.11 17.60 0% 0% 0% 0% 0% 0% 0% 0% 0%

20

2 2017.43 TL TL 15% 100% 100% 8% 100% 100% 100% 100% 100%
3 6681.26 TL TL 85% 100% 100% 77% 100% 100% 100% 100% 100%
5 TL TL TL 100% 100% 100% 100% 100% 100% 100% 100% 100%
7 5085.74 6557.49 6359.81 60% 80% 85% 60% 80% 84% 60% 80% 80%

30

2 7151.42 TL TL 95% 100% 100% 75% 100% 100% 95% 90% 95%
3 TL TL TL 100% 100% 100% 100% 100% 100% 100% 100% 95%
5 TL TL TL 100% 100% 100% 100% 100% 100% 100% 100% 100%
7 TL TL TL 100% 100% 100% 100% 100% 100% 100% 70% 95%
Fig. 11. Performance profiles for the intra-envy models (left: discrete, right: continuous).
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