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Abstract. We present a protocol to produce a class of non-thermal Fock state

mixtures in trapped ions. This class of states features a clear metrological advantage

with respect to the ground state, thus overcoming the standard quantum limit without

the need for full sideband cooling and Fock-state preparation on a narrow electronic

transition. The protocol consists in the cyclic repetition of red-sideband, measurement

and preparation laser pulses. By means of the Kraus map representation of the

protocol, it is possible to relate the length of the red sideband pulses to the specific

class of states that can be generated. With the help of numerical simulations, we

analyze the parametric regime where these states can be reliably reproduced.

1. Introduction

Trapped ions are a platform of reference for the implementation and testing of quantum

information protocols [1,2], with several recent achievements in the quantum computing

race [3]. Beyond quantum computation, quantum logic spectroscopy [4] has opened up

a useful avenue in quantum metrology [5], both in the context of optical clocks [6] and

force sensing [7–9]. Nevertheless, non-vanishing fluctuations of the motional ground

state set a fundamental limit (standard quantum limit, SQL) in the precision of many

quantum sensors.

An ongoing effort to improve the sensing capabilities of trapped ions is underway,

with promising strategies arising in recent times. One of these consists in the use

of non-thermal motional states. Squeezed states were one of the first workarounds

to SQL that were proposed and implemented to great success [10] in the photonic

context, and has been proposed [11, 12] and implemented [13–15] in the context of

trapped ions. In order to avoid the accurate control of the phase of squeezed states

with respect to the measured force, excited Fock states (n = 1, 2, ...) have recently
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Figure 1. (a) Production process and energy levels of a trapped state for n0 = 1. (b)

Trapped (blue bars) and thermal (red dots) probability distributions for various values

of 〈nph〉 and n0 = 1 (associated with the trap series 0, 1, 4, 9, 16, . . .). (c) Thermal and

trapped state entropy for n0 = 1 as a function of 〈nph〉. (d) Experimental realisation

through a third energy level with a fast decay rate back to the electronic ground state.

been proposed [16] as a means to achieve metrological advantages with respect to the

ground state. Their production involves ground state cooling [17], often via a transition

that resolves motional Fock states and therefore severely delays the cooling process.

Although higher cooling rates can be obtained by applying electromagnetically induced

transparency [18], they cannot be arbitrarily increased [19, 20] unless more elaborate

implementations are considered [21].

Here we analyze a novel and simple protocol for the production of Fock state

mixtures that circumvents the need for ground-state laser cooling and repeated blue-

sideband cycles to prepare a specific Fock state. These mixtures, that we term trapped

states, retain a significant metrological advantage with respect to the ground state.

They feature a reduced entropy with respect to the states they were created from and,
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in addition, their parity can be well defined. In this paper we explore in detail the

production process as well as the properties of trapped states, which can be generated

with red-sideband excitations although also blue-sideband excitations can be used.

The paper is structured as follows. In sec. 2 we present the protocol formally, we

define the concept of trapped states, and also analyze their form in the special case of

an initially thermal ion. Sec. 3 introduces the Kraus map representation of the protocol.

In sec. 4 we explore the applicability of the trapped state in the context of quantum

metrology and displacement sensitivity. In sec. 5 we extend the idea to the use of blue-

sideband excitations. Finally, in sec. 6 we simulate the results numerically under realistic

conditions by employing a Lindblad master equation and provide the final conclusions

of the work.

2. Implementation of the Protocol

We consider implementation of our protocol in a trapped-ion architecture. Let us model

the electronic degrees of freedom of a trapped ion with a two-level system: an electronic

ground state |g〉 and an excited state |e〉, with transition frequency ω. Its motional

degrees of freedom are approximated by a quantum harmonic oscillator of natural

frequency ν. Control is exerted by means of a laser field of frequency ωl that induces

Rabi oscillations of frequency Ω and is characterized by a Lamb-Dicke parameter η [22].

The Hamiltonian in the rotating wave approximation (RWA) with respect to ωlσz/2 and

taking h̄ = 1 is

H =
∆

2
σz + νa†a+

Ω

2

[
σ+D (iη) + σ−D† (iη)

]
, (1)

where ∆ = ω − ωl is the detuning of the laser with respect to the transition, a is

the annihilation operator of the harmonic oscillator, D (α) = exp
(
αa+ α∗a†

)
is the

displacement operator, σ+ = |e〉 〈g|, σ− = (σ+)
†

are the spin raising and lowering

operators respectively and σz = 1 − 2σ−σ+. The Lamb-Dicke regime is quantitatively

expressed by η
√
〈nph〉 � 1, where 〈nph〉 is the average phonon number. In this regime,

transitions that modify the motional state by more than a single phonon are strongly

suppressed. In this limit, setting the detuning ∆ = ν, and additionally performing a

RWA with respect to ν
(
a†a+ σz/2

)
, yields the red sideband (RSB) Hamiltonian

HRSB =
iηΩ

2

(
aσ+ − a†σ−

)
, (2)

also known as the the Jaynes-Cummings Hamiltonian [23]. It generates Rabi oscillations

between states |g, n〉 ↔ |e, n− 1〉 at a frequency ηΩ
√
n.

The protocol, that we call selective population trapping (SPT) protocol, simply

consists in the periodic alternation of RSB laser pulses with measurement and

preparation steps. In particular, we consider three steps

(i) A RSB pulse is applied for a time τ = 2π/(ηΩ
√
n0), where n0 > 0 is an integer of

our choice that determines the form of the trapped state.
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(ii) An unread measurement of the electronic state of the ion is performed at time τ .

(iii) The ion is projected back into its electronic ground state |g〉.
The effect of this process is illustrated in fig. 1(a). Population of most Fock states

cascades down analogously to a sideband-cooling scheme. Nevertheless, the length of

the sideband pulse τ matches the red-sideband period of motional Fock states |n0m
2〉,

where m is any natural number. All states for which the sideband pulse represents a full

Rabi oscillation will remain trapped. Eventually, motional Fock mixtures are generated

that have the form

µtr =
∞∑
m=0

ptr(m)
∣∣∣n0m

2
〉 〈
n0m

2
∣∣∣ , (3)

where the initial population of all states below trap |n0(m+ 1)2〉 has been deposited in

trap |n0m
2〉, so that, for an initial motional state µ0, we have

ptr(m) =
n0(m+1)2−1∑
k=n0m2

〈k|µ0 |k〉 . (4)

For the particular case of an initially thermal distribution µth0 of inverse temperature β,

we have 〈k|µth0 |k〉 = (1− e−βν)e−βνk, and the final trapped state distribution becomes

pthtr (m) = e−βνn0m2 − e−βνn0(m+1)2 . Some examples are presented in fig. 1(b).

The state described by eq. (3) is a non-thermal probability distribution. The

function ptr(m) may even be non-monotonous: the position of its maximum depends

only on the initial state µ0 and the time τ , as it can be clearly seen in fig. 1(b). Since

the protocol concentrates population in a few trapping levels, it is expected to reduce

the entropy of the state, as shown in fig. 1(c). A proof that this is always the case for

an initially diagonal state in the Fock basis can be found in the Appendix.

Periodic electronic state measurement and preparation (steps 2 and 3 of the

protocol) may be implemented by using electronic shelving techniques [24]: an additional

laser resonantly couples |e〉 to a higher excited level of the ion |f〉, which has a fast decay

rate back to the electronic ground state of the system, see fig. 1(d). This technique is

also commonplace in implementations of standard sideband cooling in order to increase

cooling rates.

3. Kraus Maps Analysis and Steady State

As a way to analyze the dynamics of the motional degrees of freedom, we employ

the Kraus sum representation of quantum processes [25]. The effect of the sideband,

measurement and preparation pulses are summarized by Kraus maps Ke or Kg,

depending on the outcome of the electronic state measurement. Disregarding the

measurement outcome, the unconditional evolution of the density matrix µ(τ) of the

motional degrees of freedom is

µ(τ) =
∑
i=e,g

Kiµ0K
†
i . (5)
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Kraus maps satisfy the condition
∑
i=e,gK

†
iKi = 1. Under the described protocol, they

are computed as Ki = 〈i|U (τ) |g〉, with U (τ) = e−iHRSB ·τ being the unitary evolution

operator associated with the red sideband pulse. The final expressions read

Kg =
∞∑
n=0

cos
(√

n
ηΩ

2
τ
)
|n〉 〈n| , (6)

Ke = −
∞∑
n=0

sin
(√

n+ 1
ηΩ

2
τ
)
|n〉 〈n+ 1| . (7)

Since by step 3 of the protocol the electronic state is prepared back into |g〉, the same

set of Kraus maps can be used to describe repeated iterations of the SPT-Protocol. This

is a useful property in order to extract the steady state of the Fock state populations.

From the structure of the Kraus maps it can be seen that the evolution of

populations and coherences is decoupled. In particular, we may describe the stroboscopic

evolution of the vector of populations p(t) = (p0, p1, ..., pn, pn+1, ...)
T [with pn =

〈n|µ(t) |n〉 and t = kτ any integer multiple of τ ] by means of the dynamical map

E (τ). It is a matrix whose components are related to the Kraus maps

Emn (τ) =
∑
i=e,g

〈m|Ki (τ) |n〉 〈n|K†i (τ) |m〉 . (8)

The steady state populations pss satisfy the equation pss = E(τ)pss, which implies

sin2
(√

n
ηΩ

2
τ
)
pssn = sin2

(√
n+ 1

ηΩ

2
τ
)
pssn+1. (9)

Beyond the trivial solution (which corresponds to pss0 = 1 and pssn = 0 for any n > 0),

this equation illustrates the reason for the choice τ = 2π/(ηΩ
√
n0), since it is only for

this case that additional solutions exist, corresponding to the trapped states.

4. Displacement Sensitivity and Quantum Metrology

We now analyze the metrological advantage trapped states can have with respect

to the ground state in the field of displacement sensitivity. In the spirit of [16], a

phase-space displacement α is implemented by letting the ion interact with an external

electric field. This corresponds to the state transformation µtr → D(α)µtrD
†(α) with

D(α) = exp(αa† − α∗a). In the simplest approach, the interaction is interrupted by a

state read-out measurement for the motional state |n〉 of the ion. This measurement

carries some information about α. In particular, with the help of the overlap function

ξ (α) = tr
{
|n〉 〈n|D(α)µtrD

†(α)
}

between the initial and the displaced state one can

express the Fisher information of the measurement with

F (α) =
1

ξ (α) [1− ξ (α)]

[
dξ (α)

dα

]2
, (10)

which can then be used to quantify the metrological gain in comparison to the SQL as

g =
FQ (α)

FSQL
, (11)
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Figure 2. Fisher information of the displacement amplitude |α| carried by a projective

measurement of the motional ground state |0〉 given an initial thermal state of different

values of 〈nph〉.

where FQ (α) = maxαF (α) stands for the quantum Fisher information and FSQL is the

Fisher information produced by the motional ground state |0〉. The quantum Fisher

information is then directly linked to the achievable measurement sensitivity ∆α by

means of the Cramer-Rao bound ∆αCR, given by

∆α ≥ ∆αCR =
1√

NFQ (α)
. (12)

More details on the calculations of state overlap and the associated Fisher information

are included in the Appendix.

Thermal State The Fisher information of a thermal state characterized by an average

population 〈nph〉 is significantly lower than the standard quantum limit and is therefore

not appropriate for metrological purposes. As illustrated in fig. 2, the maximum Fisher

information decreases with an increasing 〈nph〉 and appears at larger values of the

displacement amplitude |α|. This justifies the use of sideband cooling to achieve higher

sensitivities, although trapped states can overcome the SQL without it, as we will now

show.

Trapped State Figure 3 shows the Fisher information of a trapped state as a function

of the displacement amplitude |α|. We consider trapped states created from thermal

states with different values of temperature represented by their initial average phonon

number 〈nph〉. For each value, two curves are presented, each one corresponding to a

measurement for a different Fock state. The blue curve indicates a measurement of

the most likely Fock state of the given trapped mixture µtr, i.e. the Fock state |n0m
2〉

with highest ptr(m). The red curve corresponds instead to a measurement of the next

Fock state |n0m
2 + 1〉, which is not a member of the trapping series. Red curves do not

feature higher peaks in the Fisher information, they do however result in higher Fisher

information values for very small displacement amplitudes. By comparison with fig. 2,

it becomes apparent that trapped states produce significantly higher Fisher information
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Figure 3. Trapped state Fisher information as a function of the displacement

amplitude |α| for different values of the average phonon number of the initial thermal

state 〈nph〉 and measured Fock state n.

than thermal states. Additionally, the Fisher information exceeds the SQL under certain

conditions, as it can be seen in fig. 3 for 〈nph〉 = 5, 〈nph〉 = 10 and 〈nph〉 = 15. As

opposed to thermal states, achievable values of Fisher information by trapped states

increase with larger initial temperatures. This proves that trapped states can be useful

for metrological purposes, since they can provide higher displacement sensitivities than

the motional ground state.

In particular, we can expect the following metrological gains:

〈nph〉 = 5 : g
SQL

=
Ftr (α ≈ 0.4)

FSQL
≈ 1.75 dB,

〈nph〉 = 10 : g
SQL

=
Ftr (α ≈ 0.3)

FSQL
≈ 2.75 dB, and

〈nph〉 = 15 : g
SQL

=
Ftr (α ≈ 0.24)

FSQL
≈ 3.5 dB.

It is worth stressing that trapped states have finite entropy [see fig. 1(c)] and still are

expected to provide a metrological gain with respect to the pure ground state (of zero

entropy).

5. Blue-Sideband Trapping

Here we extend the idea of selective population trapping for the case of a blue-sideband

(BSB) excitation. The SPT protocol stays as defined in sec. 2, with the only exception

being that now a BSB transition is implemented in the first step. Since all the analytical

derivations for this section are formally identical to the ones detailed in the RSB case,
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we are going to simply present the results in a compact form and only focus on the

differences between the two processes. The Hamiltonian in this case is also known as

anti-Jaynes-Cummings Hamiltonian and is given in the RWA by

HBSB = −iηΩ

2

(
a†σ+ − aσ−

)
. (13)

The corresponding Kraus maps have the form

K
′

g =
∞∑
n=0

cos
(√

n+ 1
ηΩ

2
τ
)
|n〉 〈n| , (14)

K
′

e =
∞∑
n=0

sin
(√

n+ 1
ηΩ

2
τ
)
|n+ 1〉 〈n| . (15)

Solving for the steady state of these Kraus maps, the following equations arise

sin2
(√

n+ 1
ηΩ

2
τ
)
pssn = sin2

(√
n
ηΩ

2
τ
)
pssn−1. (16)

For a BSB-pulse time τ = 2π/(ηΩ
√
n0), the final mixture now has the form

µ′tr =
∞∑
m=1

p′tr(m)
∣∣∣n0m

2 − 1
〉 〈
n0m

2 − 1
∣∣∣ , (17)

A difference in comparison to the RSB case is that now the first member of the trapping

series can be arbitrarily chosen and is not necessarily the motional ground state |0〉.
A very interesting feature of the trapped state produced by a BSB excitation is

that one can reduce the entropy of the motional degree of freedom (the proof of this

is formally equivalent to the one presented in the appendix) by increasing its energy.

Additionally, with the BSB version of the protocol it is possible to create mixtures of

definite odd Fock state parity, whereas RSB mixtures can be created with definite even

parity.

6. Numerical Simulation

So far, the SPT protocol has been presented analytically, assuming a Jaynes-Cummings

Hamiltonian [eq. (2)] or an anti-Jaynes-Cummings Hamiltonian [eq. (13)]. Additionally,

both the measurement and the spontaneous decay of the ion back to the electronic

ground state have been assumed to be instantaneous. In this section, we test the

predictions in a more realistic scenario by performing numerical simulations that include

both finite ground state preparation time and the full Hamiltonian [eq. (1)].

Lindblad Master Equation and Evolution in Two Steps

In this numerical simulation we model the SPT-Protocol as a two-step process: (1) the

unitary evolution of the closed electronic-motional system for time τ and (2) the unread

measurement followed by the spontaneous decay of the ion due to photon emission

taking an extra time τe→g. This is done by means of a master equation in Lindblad
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form [26] as given in [27]. It acts on the total density matrix ρ, involving both electronic

and motional degrees of freedom, and is expressed by the following equation

d

dt
ρ = −i [H, ρ] +

Γ

2

(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
≡ L(Ω,Γ)ρ, (18)

where Γ is the decay rate between the two qubit states and L stands for the Liouvillian

of the system. By using the full Hamiltonian from eq. (1), we include the effects of off-

resonant carrier and blue sideband excitations, as well as all higher-order Lamb-Dicke

terms.

The dynamical map describing the evolution of ρ is the result of the product

Esim (τ + τe→g)=Ed (τe→g) · Eu (τ), where Eu (t) = exp[L(Ω, 0)t] represents the unitary

part of the evolution (with Γ = 0) and Ed(t) = exp[L(0,Γ)t] the dissipative part of the

evolution (with Ω = 0). This is illustrated in fig. 4.

Figure 4. Schematics for the two-step process describing one cycle of the numerical

simulation of the SPT-Protocol. The dashed vertical lines represent the end of the

unitary interaction and the solid lines the density matrix after a whole cycle of the

protocol.

Results and Discussion

We compare the analytical prediction for the population vector pR after R repetitions

of the SPT protocol as provided by the ideal dynamical map E(τ) from eq. (8),

pR = ER(τ)p0, and as computed from the numerical simulation, ρ (Rτ +Rτe→g) =

ERsim(τ + τe→g)ρ (0) . This facilitates identification and analysis of the three parametric

requirements (R � 1 , η � 1 and Ω � ν) necessary for SPT to work. For simplicity,

throughout this section we use n0 = 1. Simulations were performed with a cutoff

dimm = 14 for the motional Hilbert space (maximum Fock state number), which was

found to produce sufficient convergence.

Number of Repetitions First, varying the number of repetitions R and comparing the

results leads to an understanding of how many applications of the SPT-Protocol are

necessary in order to observe the effect of population trapping expected in the steady

state. For the parametric regime in which trapped states are well approximated (η � 1

and Ω � ν), we find that R = 30 is sufficient to reach a reasonable approximation to

the steady state, since higher values do not appreciably modify the distribution.
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Figure 5. Comparison between the analytical predictions ptr (blue) and simulated

results psim (black) for the probability distribution of Fock populations for R = 30

repetitions of the protocol applied on an initially thermal state pth (red) for various

values of the Lamb-Dicke parameter. The following parameter values have been used:

n0 = 1, Ω = 10−4ν, β = 0.01ν−1, δ = ν and Γe→g = 1000ν.

Lamb-Dicke Parameter A small η leads to population distributions significantly closer

to the analytical predictions, as can be seen in fig. 5. This is due to the Lamb-Dicke

approximation η
√
〈nph〉 � 1, which loses its validity both as n or η increase. For values

of η ≤ 0.02, the simulated results completely match the analytical ones after about

20 repetitions of the protocol. Values in the range 0.02 < η < 0.06 only approach the

predictions within a margin of about 10%, while for higher values the two predictions are

completely incompatible. For larger η, the Lamb-Dicke approximation is no longer valid

and one needs to account for higher order terms of the form a†(m+n)am, which couple

states with quantum numbers that vary by n, i.e. |g,m〉 → |e,m+ n〉. The role of n in

the loss of validity of the Lamb-Dicke approximation is also clear from the simulation:

as η increases, lower values of n are affected. As shown in the top right subplot of fig. 5,

a small increase in η primarily affects trapping state n = 9, while further increase of

η (bottom right) unstabilizes the n = 4 trapping state as well. Meanwhile the n = 1

trapping state remains stable and accumulates the escaped population.

An interesting effect that can be observed in the bottom right subplot of fig. 5, is

the formation of a trap at n = 10 for η = 0.1, which cannot be explained within the

Jaynes-Cummings type model employed in the previous sections. The trapping at that

state is very persistent, and is present even after 1000 repetitions of the protocol. We

suspect this behaviour to be due to the Debye-Waller reduction factor of the Lamb-Dicke

parameter due to high-order effects [31] and will be investigated elsewhere. At any rate,

it is an indication that the concept of selective population trapping could be extended

to models that account for all Lamb-Dicke orders.

Rabi Frequency We now focus on how different Rabi frequencies influence the results,

as shown in fig. 6. Increased Ω leads to some population escaping the traps due to



Production of Fock Mixtures in Trapped Ions for Motional Metrology 11

0

0.2

0.4

0 2 4 6 8 10 12 14

Ω = 0.02ν

0 2 4 6 8 10 12 14

Ω = 0.1ν
0

0.2

0.4
Ω = 0.0001ν Ω = 0.01ν

Occupation number n

P
ro
b
a
b
il
it
y

ptr
psim
pth

Figure 6. Comparison between the analytical predictions ptr (blue) and simulated

results psim (black) for the probability distribution of Fock populations for R = 30

repetitions of the protocol applied on an initially thermal state pth (red) for various

values of the Rabi frequency. For all the subplots, the following parameter values have

been used: n0 = 1, η = 0.02, β = 0.01ν−1, δ = ν and Γe→g = 1000ν.

off-resonant carrier excitation, as the corresponding term in the Hamiltonian of eq. (1)

becomes more important. In order to remain within the regime of validity of the RWA

underlying HRSB, we observe that Rabi and trap frequencies require a separation of

approximately three orders of magnitude. Values of Ω that are only two orders of

magnitude larger than ν quickly destabilize the traps. In contrast to an increased Lamb-

Dicke parameter, this affects the lower lying traps first. It has also been observed that,

for higher Rabi frequency values that are within the range of about (0.5− 1) % of the

trap frequency, the analytical result is better reproduced for about twenty repetitions

of the protocol, instead of the thirty shown in the figures.

In conclusion, population trapping as described in sec. 2 is experimentally applicable

in the regimes given by η ≤ 0.02 and Ω ≤ 0.005ν, which directly results from the

approximations made in the derivation of the Hamiltonian in eq. (2).

Conclusions

We have presented a protocol for the creation of a special class of motional states in

trapped ions. The protocol is simple and involves the alternate concatenation of red

or blue sideband pulses with measurement and preparation pulses. The form of the

generated state depends on the duration of the sideband pulses and populates only

Fock states proportional to perfect square numbers. The presence in the mixture of

excited Fock states makes them especially suitable for motional metrology, improving

on the standard quantum limit without the need for long sideband cooling pulses. The

protocol works best with small values of the Lamb-Dicke parameter in order to avoid

deleterious high-order effects, and small Rabi frequencies to suppress carrier effects.

Such a protocol might be applied in a Penning trap to measure the motional frequencies
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of a single ion and even extend it to the case of an unbalanced two-ion crystal where

the motional modes of the crystal has to be probed [32,33].
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Appendix A. Trapped and Thermal State Entropy

The Von Neumann entropy [28] of the system described by a density matrix µ is given

by

S = −kBtr (µ lnµ) , (A.1)

which for a diagonal density matrix simplifies to

S = −kB
∞∑
m=0

pm · ln (pm) , (A.2)

and essentially quantifies the degree of mixedness for a given state. Since in a trapped

state there are significantly fewer states populated, one would expect a lower entropy

compared to the thermal state that was used to produce it. The following table shows

the first few probabilities involved in the sum of eq. (A.2) for both a diagonal and a

trapped state, assuming n0 = 1, in order to get an idea on how they relate to each other.
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Thermal p0 p1 p2 p3 p4
Trapped p0

∑3
m=1 pm 0 0

∑8
m=4 pm

It is apparent that the contribution to entropy generated by three states with

probabilities p1, p2 and p3 respectively is replaced in the trapped state case by the

contribution of a single state of total probability p1 + p2 + p3.

In general, we have trapped state probabilities

ptr(m) =
B∑
k=A

pk, (A.3)

where A ≡ n0 · m2 and B ≡ n0 (m+ 1)2 − 1. The contribution to the entropy

corresponding to a single trap and the states until the next trap is

ptr(m) ln [ptr(m)] = ln [ptr(m)]
B∑
k=A

pk. (A.4)

If we compare it to the contribution to the entropy of the same states in the original

distribution
B∑
k=A

pk ln (pk) = pA ln (pA) + pA+1 ln (pA+1) + ...+ pB ln (pB) . (A.5)

Considering that ptr(m) > pk with k between A ≡ n0 · m2 and B ≡ n0 (m+ 1)2 − 1

leads to ln [ptr(m)] > ln (pk). In combination with equations (A.4) and (A.5) we get

ptr(m) ln [ptr(m)] >
B∑
k=A

pk ln (pk) . (A.6)

Summing over the remaining traps and multiplying with −kB yields the trapped entropy

Str and original entropy S0 the predicted result

Str < S0. (A.7)

Appendix B. State Overlap

For a prepared state of the form µ0 =
∑∞
m=0 pm |m〉 〈m| the state overlap between the

pure state and displaced prepared state can be calculated by

ξ (α) = tr

{
|n〉 〈n|D (α)

∞∑
m=0

pm |m〉 〈m|D† (α)

}

=
∞∑
m=0

pm |〈n|D (α) |m〉|2 .

The general formula for the scalar product between two displaced Fock states as given

in [29] is

〈n|D† (β)D (α) |m〉 =

√
m!

n!
(α− β)n−m 〈β| α〉 Ln−mm {(α− β) (α∗ − β∗)}(B.1)

with 〈β| α〉 = exp
{
αβ∗ − 1

2
(αα∗ + ββ∗)

}
.
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Inserting β = 0 gives

ξ (α) = e−|α|
2
∞∑
m=0

pm
m!

n!
|α|2(n−m)

{
Ln−mm

(
|α|2

)}2
, (B.2)

with Lνµ (x) being the generalized Laguerre polynomials as defined in [30].

Inserting the thermal and trapped probability distribution in eq. (B.2) gives the

respective overlap expressions.

Appendix C. Fisher Information

The Fisher information is a measure of how quickly a probability distribution P (x|θ)
changes with respect to the parameter θ. In order to derive an analytical expression for

the Fisher information we follow the method from [16].

The precision of an estimation is limited by the Cramer-Rao bound as

∆θest ≥ ∆θCR =
1√

NF (θ)
, (C.1)

where θest is an arbitrary estimator for θ, N is the number of repeated measurements,

and

F (θ) =
∑
x

1

P (x|θ)

[
∂P (x|θ)
∂θ

]2
(C.2)

is the classical Fisher Information. In metrological applications, one is interested in

maximizing the precision estimation of the parameter θ. For this purpose, a minimum

∆θCR, or equivalently a maximum F (θ) is required.

The probability distribution P (x|θ) = tr {Πxµ (θ)} depends on the quantum

state µ (θ) and the choice of the performed measurement, described by the projectors

{Πx}. For processes where the parameter θ is imprinted by a unitary process, i.e.

µ (θ) = U (θ)µ0U
† (θ), the Fisher information has a lower bound given by

F (θ) ≥ 1

(∆M)2µ(θ)

[
∂ 〈M〉µ(θ)

∂θ

]2
, (C.3)

where 〈M〉µ(θ) = tr {Mµ (θ)} is the mean value and (∆M)2µ(θ) = 〈M2〉µ(θ)− 〈M〉
2
µ(θ) the

variance of the measured observable M =
∑
x xΠx.

If there exist only two possible outcomes from a measurement, x = 0, 1, this bound

is tight. Considering that the probabilities must add up to one, P (0|θ) = 1 − P (1|θ)
and the variance becomes

(∆M)2µ(θ) = P (1|θ) [1− P (1|θ)] . (C.4)

Let us now consider the metrological protocol described in the manuscript. Starting

with a state ρ0, we are interested in how a displacement D(α) affects the probability

distribution of the state. In other words, we investigate how sensitive the ion is to that

displacement. The higher the sensitivity (quantified by the Fisher information), the
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more precise the parameter estimation is for the parameter θ = α. The displacement

operator is unitary and transforms the density matrix as

µ (α) = D (α)µ0D
† (α) . (C.5)

A projective measurement for a pure Fock state |n〉 〈n| has only two possible outcomes,

and therefore the bound (C.3) is tight and the measured observable M takes the form

M =
∑
x=0,1

xΠx = |n〉 〈n| . (C.6)

This results in a mean value of

〈M〉µ(α) = tr {Mµ (α)} = ξ (α) . (C.7)

Combining this with P (1|α) = tr {Π1µ (α)} = ξ (α) and the tightness of the bound

(C.3) results in

F (α) =
1

ξ (α) [1− ξ (α)]

[
dξ (α)

dα

]2
. (C.8)
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