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Abstract

The use of Multi-Voxel Pattern Analysis (MVPA) has increased consider-

ably in recent functional magnetic resonance imaging (fMRI) studies. A crucial

step consists in the choice of a method for the estimation of responses. How-

ever, a systematic comparison of the different estimation alternatives and their

adequacy to predominant experimental design is missing.

In the current study we contrasted three pattern estimation methods: Least-

Squares Unitary (LSU), based on run-wise estimation, and Least-Squares All

(LSA) and Least-Squares Separate (LSS), which rely on trial-wise estimation.

We contrasted the efficiency of these methods in an experiment where sustained

activity needed to be isolated from zero-duration events as well as in a block-

design approach and in a event-related design. We evaluated the sensitivity of

the t-test with two non-parametric methods based on permutation testing: one

proposed in Stelzer et al. (2013), equivalent to perform a permutation in each

voxel separately and the Threshold-Free Cluster Enhancement.

LSS resulted the most reliable approach to address the large overlap of signal

among close events in the event-related designs. We found a larger sensitivity

of Stelzers method in all settings, especially in the event-related designs, where

voxels close to surpass the statistical threshold in other approaches were now
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marked as informative regions.

Our results provide evidence that LSS is the most reliable approach for

unmixing events with different duration and large overlap of signal. This is

consistent with previous studies where LSS handles large collinearity better

than other methods. Moreover, Stelzers potentiates this better estimation with

its large sensitivity.

Keywords: Multi-voxel pattern analysis, pattern estimation, permutation

testing, fMRI, searchlight.
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1. Introduction

Multi-Voxel Pattern Analysis (MVPA) has become a widely used technique

in functional Magnetic Resonance Imaging (fMRI) studies. MVPA employs

brain activation patterns to discriminate between experimental conditions of

interest. This can be considered as a classification problem, where the classifier5

uses the features contained in the patterns (e.g. the voxels in the image) to learn

the relationship between them and the experimental conditions. Then, based

on this learning, the classifier predicts the experimental conditions to which

new images belong using only their activation patterns. Since the classifier uses

this information as input, the result of the classification process depends on10

the quality of the patterns and the way they are estimated. The sluggishness of

blood-oxygen-level-dependent (BOLD) signal adds difficulty to this classification

endeavor: during an experimental condition, the BOLD signal increases about

2 seconds after neural activity, peaking at about 5-8 seconds later and returning

to baseline approximately at 20 seconds (Logothetis and Wandell, 2004). In15

block designs, where an experimental condition is presented continuously for an

extended time interval, isolating the relevant signal is relatively straightforward.

This is similar to slow-event related designs where the inter-stimulus-interval

(ISI) is longer than the duration of the BOLD. However, when the ISI is short

(such as in rapid event-related designs), there is a large overlap between trials,20

which complicates the estimation of the contribution of each one of them to the

combination of individual hemodynamic responses (see Figure 1).

Most fMRI analyses use linear convolution models like the General Linear

Model (GLM) to extract estimates of responses to different event types (Fris-

ton et al., 1998), where the model estimation is carried out voxelwise and the25

BOLD time series is the dependent variable. The parameters of the GLM are

computed by minimizing the squared errors across scans between the timeseries

that is predicted, guided by information of the fMRI experiment like stimulus

onsets and assuming the shape of the BOLD response and the noise in the data.
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Equation (1) shows mathematically how this estimation is performed:30

β̂ =
(
XS

′
XS

)−1
XS

′
Y, (1)

where Y is the vector of the BOLD response time series, XS is the design matrix

and β is the vector of activation estimates.

Previous studies have explored different methods to obtain activation es-

timates (also known as beta weights or beta maps) in event-related designs

(Abdulrahman and Henson, 2016; Mumford et al., 2012). The most common35

is the so-called ‘Least-Squares Unitary’ (LSU), in which all trials of the same

type (e.g. experimental conditions) are collapsed into one single regressor, and

the trial variability is relegated to the GLM error term. Other studies have fo-

cused on obtaining single-trial parameter estimates. The most straightforward

approach is known as beta-series regression (Rissman et al., 2004), in which a40

different regressor is used for each trial. Following the notation in Mumford

et al. (2012), we from now on denote it as ‘Least-Squares All’ (LSA). Figure

2 shows a visual representation of how these two methods work. For two dif-

ferent stimuli (e.g. a letter and a face), LSU estimates the contribution to the

hemodynamic signal of each condition along the run, whereas LSA estimates it45

trial-by-trial. When trials have short ISI, the regressors become highly corre-

lated, which can inflate the variance of the resulting parameter estimates and

the subsequent classification accuracies (Mumford et al., 2014). To address this

drawback, Turner (2010) introduced an alternative method known as ‘Least-

Squares Separate’ (LSS), based on iteratively fitting a new GLM for each trial.50

There are different variants on this approach depending on the number of re-

gressors defined. In the simplest one, LSS-1, there is a parameter for the target

trial and another single nuisance parameter for the rest (see Figure 3). In LSS-2,

each GLM includes three regressors: the first one, for the target trial; the second

for the rest of the trials of the same type as the target, whereas the third is used55

for the trials of a different type. It is thus possible to define as many nuisance

parameters as trial types (e.g. LSS-N), although LSS-1 (from now on, LSS) is
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commonly used due to its simplicity and high performance (Abdulrahman and

Henson, 2016; Turner et al., 2012).

The advantages of single-trial estimates are reflected in the fields of neuro-60

science and also machine learning. Regarding the first one, a good example is

the study of working memory, where classic models assume that information

is stored via persistent neural activity (Sreenivasan et al., 2014). Whereas av-

eraging across trials may cancel out the noise and improve the signal-to-noise

ratio, trial-wise averaging may also remove important coding signals (e.g. Stokes65

and Spaal, 2016). From the machine learning standpoint, estimating one beta

map per trial yields a larger number of images to train the classifier, which

improves generalization. Pereira et al. (2008) discussed the important tradeoff

between having many noisy examples (e.g. one per trial) or fewer, cleaner ones

(e.g. one of each class per run), as a result of averaging images of the same70

class. Although there is not a fixed number of examples necessary to train the

classifier, the more the better. Hebart et al. (2016) showed that run-wise beta

estimates can be more reliable than single-trial ones, which can potentially lead

to higher accuracies (Ku et al., 2008) or slightly improve power (Allefeld and

Haynes, 2014). However, according to Pereira et al. (2008), at least a few tens75

of examples in each class are needed to properly estimate the parameters of the

classifier, so LSS or LSA would be the most recommended option.

When trying to compare different methodological alternatives for decoding

analysis, measuring the performance of the classifier is important, but evaluat-

ing its significance is crucial. In neuroscience research, the man aim is to deter-80

mine the probability of a decoding result at the group level. The large number

of voxels in fMRI analyses results in massive statistical tests, which need to be

corrected for multiple comparisons. Cluster-level inference has become the most

popular method due to its larger sensitivity compared to voxel-level inference.

As the name suggests, this method evaluates if a cluster is significant as a whole,85

not estimating the false-positive probability of each voxel within the region. To

do so, this approach relies on the assumption that there is a correlation between

adjacent voxels, so that the signal in each voxel is not completely independent
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of its neighbors. Cluster-level inference consists of two stages: firstly, a primary

threshold at the voxel level is employed to obtain those voxels that surpass a90

certain statistical p-value. The election of the threshold is arbitrary in some

way (Friston et al., 1994), and what is more important, results can highly vary

depending on the threshold considered. Setting a liberal primary threshold may

decrease the spatial specificity, in addition to a boost in the false-positives rate.

In fact, Woo and Wager (2014) demonstrated that using too liberal primary95

thresholds can have detrimental effects on false positives, localization and inter-

pretation. Regarding the second stage, a cluster-level extent threshold is used

in order to retain the set of voxels that surpass the minimum size that a cluster

should have to be considered significant. This threshold is computed based on

theoretical methods such as Random Field Theory (RFT, Worsley et al., 1999),100

Monte Carlo simulations (Forman et al., 1995) or non-parametric approaches

(Nichols and Holmes, 2002).

Previous studies have shown that RFT corrections tend to be too conserva-

tive (Hayasaka and Nichols, 2003) as well as prone to false positives (Eklund

et al., 2016). Besides, RFT imposes several assumptions about the data which105

are not always met, such as the smoothness of the fMRI images or the uniform

distribution of this smoothness over the brain. However, the key problem for

applying RFT in classification-based analysis is that the distribution of the ac-

curacies is unknown. As an alternative, statistical significance can be evaluated

by non-parametric approaches based on permutation testing, which does not110

require any assumption except exchangeability. The basic principles of permu-

tation testing are simple (Brammer et al., 1997; Bullmore et al., 1999; Chen

et al., 2011; Nichols and Holmes, 2002; Pereira and Botvinick, 2011; Winkler

et al., 2014a), and previous research has theoretically evaluated their use in

classification analyses (Golland and Fischl, 2003). Briefly, this test consists on115

shuffling the data, computing statistics and cluster sizes and generating a null

distribution of the cluster sizes, from which is possible to establish the mini-

mum size to reach the significance (see Nichols and Holmes (2001) for a more

detailed explanation). Based on this concept, Stelzer et al. (2013) proposed a
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framework to derive a cluster size p-value on the group level, employing a Monte120

Carlo method to combine individual results. In order to compute the cluster-

defining primary threshold, this method builds an empirical distribution for each

voxel separately, minimizing the effects related to spatial inhomogeneities that a

global accuracy threshold would have. An alternative solution was proposed by

Smith and Nichols (2009), the so-called Threshold-Free Cluster Enhancement125

(TFCE). This algorithm transforms the value of each voxel to a weighted score

of the surrounding voxels, summarizing the cluster-wise evidence at each voxel.

However, the most interesting contribution is that this approach does not re-

quire setting a cluster-defining primary threshold, eliminating the arbitrariness

on this election and the subsequent dependence of the results.130

Previous research has compared how different pattern estimation methods

compute the activity elicited by each trial separately. However, frequently,

paradigms aim at isolating the activity of different events within the same trial,

which suffers from significantly high signal overlap. The effect of alternative

methods in this type of experimental design is yet unknown. Therefore, in135

this study, we aimed at evaluating the performance of different approaches in

a context where a sustained activity had to be isolated from a zero-duration

event (Dataset 1). Specifically, we tested the performance of LSU, LSA and

LSS methods in the aforementioned design (Dataset 1), in addition to a classic

block design (Dataset 2) and a slow event-related design (Dataset 3). Based on140

previous studies (Abdulrahman and Henson, 2016; Mumford et al., 2014, 2012),

we predicted that LSS would estimate more accurately the signal elicited by each

trial event, due to the way this method addresses the collinearity between close-

in-time experimental conditions. This collinearity is lower both in blocked or

slow event-related designs, so that the three pattern estimation methods should145

be able to accurately estimate the activation patterns. Moreover, we examined

the suitability of parametric (t-test) and non-parametric (Stelzer’s and TFCE)

approaches to evaluate the significance of the results obtained with the different

estimation methods in the event-related design. We hypothesized that the two

non-parametric techniques would yield a higher sensitivity than the standard150
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t-test, although variations between the two permutation-based approaches were

expected due to the different cluster-search algorithms that they employ and the

way permutations are applied. In contrast, we predicted that the three pattern

estimation methods and the different statistical approaches would obtain similar

results in the block design.155
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2. Material and Methods

2.1. Dataset 1

2.1.1. Participants

Twenty-four students from the University of Granada (M = 21.08, SD = 2.92,

12 men) took part in the experiment and received an economic remuneration160

(20-25 euros, according to performance). All of them were right-handed with

normal to corrected-to-normal vision, no history of neurological disorders, and

signed a consent form approved by the local Ethics Committee.

2.1.2. Acquisition

fMRI data were acquired using a 3T Siemens Trio scanner at the Mind, Brain165

and Behavior Research Centre (CIMCYC) in Granada (Spain). Functional im-

ages were obtained with a T2*-weighted echo planar imaging (EPI) sequence,

with a TR of 2000 ms. Thirty-two descendent slices with a thickness of 3.5 mm

(20% gap) were obtained (TE = 30 ms, flip angle = 80◦, voxel size of 3.5 mm3).

The sequence was divided in 8 runs, consisting of 166 volumes each. After the170

functional sessions, a structural image of each participant with a high-resolution

T1-weighted sequence (TR = 1900 ms; TE = 2.52 ms; flip angle = 9◦, voxel

size of 1 mm3) was acquired.

We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) to pre-

process and analyze the neuroimaging data. The first 3 volumes were discarded175

to allow for saturation of the signal. Images were realigned and unwarped to

correct for head motion, followed by slice-timing correction. Afterwards, T1 im-

ages were coregistered with the realigned functional images. To better preserve

the spatial configuration of activations in individual subjects, images were not

smoothed or spatially normalized into a common space.180

2.1.3. Design

The task contained two events in each trial, first a word (positive, negative

or neutral in valence) and second two numbers, to which participants had to
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respond. These two numbers correspond to the offer that participants received,

from which they decided to collaborate or not based on the fairness/unfairness185

of the offer. They performed a total of 192 trials, arranged in 8 runs (24 trials

per run), in a counterbalanced order across participants. Each trial started with

the word for 1000 ms, followed by a jittered interval lasting 5500 ms on average

(4-7 s, +/0.25◦). Then, the numbers appeared for 500 ms followed by a second

jittered interval (5500 ms on average; 4-7 s, +/0.25◦). The first event was190

modeled as the duration of the word and the variable jittered interval, yielding

a global duration ranging from 5 to 8 seconds. The second event was modeled

as an impulse function (Dirac delta), i.e. with zero duration, as explained in

Henson (2005). However, we also modeled the first event as an impulse function

in order to evaluate its influence on the results. On the other hand, the beginning195

of runs and the inter-trial jittered intervals served as the implicit baseline. The

whole fMRI session lasted 41 minutes approximately.

To test the performance of the different approaches (accurate estimation of

signal activity for pattern estimation methods and large sensitivity and low false-

positives rate for statistical methods), we focused on two different classification200

analyses, one for each part of the trial. We firstly aimed at discriminating

the positive vs. negative valence of the words (e.g. Lindquist et al., 2015;

from now on, valence classification) that were equated in number of letters,

frequency of use and arousal (Gaertig et al., 2012). The total number of images

available for the classification procedure varied according to the method used to205

estimate the patterns. As Table 1 shows, LSU yielded 8 images per condition,

one for each run. LSA and LSS employed the same number, which equaled the

number of positive/negative trials in the experiment (64 of each category, per

participant). Secondly, we aimed to discriminate between fair and unfair offers

(fairness classification). LSU yielded again 8 images per condition. On the other210

hand, LSA and LSS obtained 96 images for each condition and participant.
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2.2. Dataset 2

We used data of six participants from the study published by Haxby et al.

(2001), which has served as example fMRI dataset several times (e.g. Hanson

et al., 2004; O’Toole et al., 2007). Neural responses were measured with gradi-215

ent echoplanar imaging on a GE 3T scanner (General Electric, Milwaukee, WI)

[repetition time (TR) = 2500 ms, 40 3.5-mm-thick sagittal images, field of view

(FOV) = 24 cm, echo time (TE) = 30 ms, flip angle = 90◦] while they performed

a one-back repetition detection task. High-resolution T1-weighted spoiled gra-

dient recall (SPGR) images were obtained for each subject to provide detailed220

anatomy (124 1.2-mm-thick sagittal images, FOV = 24 cm).

The dataset itself consists of 12 runs where the participants viewed grayscale

images of eight object categories: faces, houses, cats, bottles, scissors, shoes,

chairs and scrambled images. Each run began and ended with 12-s rest and

contained eight blocks of 24-s duration, one for each category, separated by 12-225

s of rest. Stimuli were presented for 500 ms with an interstimulus interval of

1500 ms. We focused on the faces vs. houses classification, although the rest

of the stimuli were also included in the GLM in order not to affect the implicit

baseline. Since only one block for each stimulus type was presented in each run,

LSU and LSA were equivalent. Although the LSS estimation was developed for230

event-related designs, we implemented a blocked-version of the LSS approach

by iteratively fitting a new GLM for each block. For each model, the target

condition is associated to one regressor, and the rest are associated to one error

regressor. Thus, there are 8 models for each run, one for category. All methods

yielded the same number of estimates to train the algorithm: 1 per run and235

condition.

2.3. Dataset 3

We used data from 33 participants of a recent study published by Visconti di

Oleggio Castello et al. (2017). The full database was openly available in Datalad

repository (http://datalad.org). Brain images were acquired using a 3T Philips240

Achieva Intera scanner with a 32-channel head coil [repetition time (TR) =
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2000 ms, 35 3-mm-thick axial images, field of view (FOV) = 24 cm, echo time

(TE) = 35 ms, flip angle = 90◦]. A single high-resolution T1-weighted (TE/TR

= 3.7/8.2 ms) anatomical scan was acquired with a 3D-TFE sequence. For a

more detailed explanation see the original work (Visconti di Oleggio Castello245

et al., 2017). Preprocessing was carried out following the same procedure used

for Dataset 1.

The dataset consists of 11 runs where the participants viewed pictures por-

traying different familiar and unfamiliar identities: four faces of friends, four

unknown faces, and the participant’s own face. A trial consisted of three dif-250

ferent images of the same individual (normal trial) or two different identities

(odball trials), each presented for 500 ms with no gap, followed by a 4500 ms

inter-trial interval displaying a white fixation cross. The order of the events was

pseudo-randomized to approximate a first-order counterbalancing of conditions.

A functional run contained 48 trials: four trials for each of the nine individuals255

(four familiar, four unfamiliar and self), four blank trials, four oddball and four

buffer trials (three at the beginning and one at the end). Each run had 10 sec-

onds of fixation at the beginning to stabilize the BOLD signal and at the end (to

collect the response to the last trials). We focused on discriminating the neural

activity associated to familiar vs. unfamiliar faces. Eleven beta estimates per260

condition were obtained by LSU, whereas LSA and LSS yielded 176.

2.4. Searchlight analysis

We employed a searchlight approach across the whole brain (Kriegeskorte

et al., 2006). We used The Decoding Toolbox (TDT, Hebart et al., 2015) to cre-

ate spherical regions of 12 mm, limiting the analysis to the voxels contained in it.265

This size was chosen according to previous studies that showed a systematic de-

crease in performance when a larger size is selected (e.g. Arco et al., 2016; Chen

et al., 2011). The procedure was repeated across all the positions of the brain,

yielding an accuracy map in which each value represented the accuracy obtained

when a given voxel was the center of the sphere. To classify images, we em-270

ployed a support vector machine (SVM) with a linear kernel (Misaki et al., 2010;
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Pereira et al., 2008). A leave-one-run-out scheme was used to cross-validate the

performance of the classifier (Coutanche and Thompson-Schill, 2012; Haynes

and Rees, 2006; Lee et al., 2011; Reddy et al., 2010; Wolbers et al., 2011). In

this scheme, the classifier is trained with images from all but one run, whereas275

the patterns of the remaining run are used to test the performance of the algo-

rithm. The number of images available for the training/testing process highly

depends on the dataset used, the pattern estimation method employed and the

classification problem evaluated. This information is summarized in Table 1.

2.5. Evaluating statistical significance280

The use of multivariate decoding for interpretation instead of prediction does

not aim at obtaining a classifier with the largest accuracy as possible, but ob-

taining a decoding model that performs reliably better than chance (Hebart and

Baker, 2017). This would demonstrate that there is information in the data re-

lated to the experimental condition under study, which increases our knowledge285

about the neural mechanisms associated with a certain task. Moreover, there is

a certain variability between each individual brain, so it is necessary to evaluate

if the obtained results are significant at the population level. We describe in

this section the theoretical framework of the three methods employed in this

work.290

2.5.1. Gaussian Random Field Theory

The first method evaluated is based on Gaussian Random Field Theory

(RFT), a mathematic framework that finds the specific threshold for a smooth

statistical map that provides the required family-wise error rate (Brett et al.,

2003). The smoothness of a statistical image is not usually known, but it can295

be estimated as the number of resels that the image has. The concept of resel

(resolution element), introduced in Worsley et al. (1992), is similar to the num-

ber of independent observations in the image, and is a function of the number

of voxels in the image and the FWHM. Another crucial concept is the Euler

characteristic (EC), which is a property related to the probability that a num-300
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ber of clusters are considered significant when a certain statistical threshold is

used. Following the expression derived from Worsley et al. (1992), it is possible

to compute the expected value of EC, as follows:

E[EC] = R(4loge2)(2π)−
3
2Zte

− 1
2Z

2
t , (2)

where R is the number of resels and Zt is the Z score threshold. This expres-

sion corresponds to images of two dimensions, but the methods are equivalent to305

three-dimensional images. It is worth noting that the expected value of the EC

is approximately equivalent to the probability of a family wise error, especially

at high thresholds. By setting this value to the standard 0.05, it is possible to

conclude that the remaining clusters have a maximum probability of 0.05 that

they have occurred by chance.310

We employed the functions provided by the SPM12 package (http://www.

fil.ion.ucl.ac.uk/spm/software/spm12) in order to apply this method. The

procedure followed was the same for all the datasets evaluated. After computing

the decoding accuracy map for each subject, all maps were normalized to a

standard EPI. Then, a voxel-wise t-test against the theoretical chance (0.5 in315

our binary-classification analyses) was applied to these normalized maps. We

employed a cluster-defining primary threshold of p < 0.001 (uncorrected), which

was later used to find significant clusters (FWE corrected, p < 0.05) on the

resulting map.

2.5.2. Stelzer’s320

The second method evaluated, Stelzer’s, combines results from each subject

with a Monte Carlo method and based on that, derives a cluster size p-value

on the group level. This approach is based on permutation tests, which unlike

RFT, relies on minimal assumptions. Specifically, a within-subject searchlight

analysis was performed shuffling the labels corresponding to the two experi-325

mental conditions to distinguish from. We carried out this step 100 times per

participant, yielding 100 permuted accuracy maps. Then, these maps were

spatially-normalized to a standard EPI image in order to register images of

14
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different subjects into the same coordinate system. A map from each partici-

pant was randomly picked following a Monte Carlo resampling with replacement330

(Forman et al., 1995), averaging the values voxel-wise and obtaining a permuted

group map. This procedure was carried out 50000 times, yielding 50000 group

permuted maps. This process is equivalent to build an empirical chance distri-

bution for each voxel in the brain. To evaluate the significance of each voxel,

it is necessary to compare the null distribution with the real accuracy. This335

accuracy is obtained by training the classifier with the actual labels, and aver-

aging the resulting maps across subjects (from now on, the real group map).

For a cluster-defining primary threshold of p-value = 0.001 and a distribution

of 50000 samples, a voxel will be significant when no more than 50 voxels of the

empirical distribution have a larger value than the value of the real group map.340

To compute the specific p-value for a voxel x, we employed the next equation:

pvoxel(x) =
1 + n(x)

1 +N
, (3)

where n(x) is the number of samples from the empirical distribution with a

larger value than the one obtained training the classifier with the actual labels

at the voxel x, and N is the number of permutations done.

Once the image has been thresholded at the voxel-level (applying the cluster-345

defining primary threshold), it is necessary to build an empirical distribution of

the cluster sizes of the 50000 permuted maps to compute the cluster-level extent

threshold that provides the required family-wise error rate. A set of contiguous

voxels are considered a cluster if they share a face, but not an edge or a vertex,

in which Stelzer et al. (2013) defines as a 6-connectivity scheme. This cluster350

search is also applied to the real group map, so that only the clusters which

surpass the cluster-level extent threshold are considered significant. A cluster

with a size s is computed to have a p-value of

pcluster =

∞∑
s′>s

Hcluster(s′) (4)

where Hcluster is the normalized histogram of cluster sizes in the empiri-
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cal distribution (number of clusters with size s′ divided by the total number355

of clusters). Once each cluster size has an associated p-value, an FWE cor-

rection (p = 0.05) was applied on all clusters p-values to correct for multiple

comparisons at the cluster level. The whole procedure is summarized in Figure

4.

Figure 5 shows an example of the group distribution of the accuracies in360

one voxel for Dataset 1 (valence classification) and Dataset 2. Training with

permuted labels results in accuracies around chance level (50%) in most of the

permutations. The green vertical line indicates the significance threshold at

which a given accuracy is considered significant, whereas the black one shows

the accuracy level obtained after training the classifier with the actual labels. It365

is worth noting that accuracies are not homogeneous along the brain, but they

depend on the region from which information is being decoded. For this reason,

it is remarkable that this method computes a different empirical distribution for

each voxel separately. We employed custom code to carry out all the described

stages of Stelzer’s method.370

2.5.3. TFCE

The last method used was TFCE, included in the FMRIB Software Library

(FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The basis of this method

is to transform images in order to facilitate the discrimination between signifi-

cant and non significant voxels. This transformation relies on the concept that375

in each image, there are sets of contiguous voxels which are candidates to be-

long to a cluster. There are two possible extreme scenarios: the first one is

that the intensity of the voxels is large (high statistical values) but they are

locally distributed. However, it is also possible that the signal is weak (low

statistical values) but spatially extended. The main aim of TFCE is to level380

these two situations so that both are equally likely to be a significant cluster.

Mathematically, the expression to compute a TFCE score is

TFCE(p) =

∫ hp

h=h0

e(h)EhHdh, (5)

16
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where h0 is typically zero, e is the extent of the cluster that voxel p belongs

to, h is the primary threshold (see Figure 6). For each voxel, a TFCE score is

computed as the sum of the product between the extent of the cluster and the385

different primary thresholds (h ranging from 0 to hp). The contribution of these

two factors depends on E and H. Smith and Nichols (2009) evaluated a wide

range of values for these parameters and established that E = 0.5 and H = 2

are the optimal.

The accuracy maps for all participants were entered into a second-level anal-390

ysis, where a one-sample t-test was used to contrast conditions. To assess sig-

nificance at the population level, permutation tests were applied. On each

permutation, the signs of the individual accuracy map were randomly flipped

and a new t-test was performed. This was repeated 50000 times, obtaining an

empirical null distribution of t-values. The TFCE transformation was later ap-395

plied in order to find significant clusters (FWE-corrected, p = 0.05). Figure 7

illustrates this procedure.
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3. Results

In this section, we are going to report the results obtained for all experiments

carried out during this work. In the following paragraphs we present the results400

from the three Datasets evaluated (1: two events of different duration in each

trial, 2: block design, 3: slow event-related) estimated with LSU, LSA and LSS

and statistically tested with parametric (t-test) and non-parametric (Stelzer’s

and TFCE) approaches. The main experiment and the motivation of this study

is to find the most reliable pattern estimation method that let isolate the neural405

activity of different events within the same trial, both with different durations.

It is of great importance to find the proper method since this context is broadly

used in cue-target paradigms. We assessed the performance of this kind of

approaches in different experimental settings in order to find the dependence

between the signal estimability and the level of collinearity. For this reason, we410

included data from a blocked-design (Dataset 2) and a slow event-related design

(Dataset 3). Since we wanted to provide a complete guidelines for this type

of analysis, we also evaluated different statistical significance methods due to

recent claims that parametric methods could not be valid when they are applied

to decoding accuracies. Specifically, we used a t-test, and two non-parametric415

methods based on permutation testing: Stelzer’s and TFCE. Additionally, we

evaluated different ways of modeling the two events in Dataset 1. In the first

one, the duration of the jittered interval that separates the two events is added

to the first event (words). The alternative is to model both events (words and

numbers) as impulse functions, e.g. with zero duration.420

3.1. Comparison of different pattern estimation models (LSU, LSA and LSS)

We first focused on comparing the three pattern estimation methods in three

different scenarios: i) a paradigm with two events of different durations per trial

(event-related design) where the individual contribution of the two events in a

trial was computed, Dataset 1, ii) a block-design data from the pioneering study425

of Haxby et al. (2001), Dataset 2, and iii) a slow event-related design from a
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recently published study (Visconti di Oleggio Castello et al., 2017), Dataset 3.

Results in terms of cluster detection and number of significant voxels observed

are summarized in Tables 2 and 5. For the valence classification in Dataset 1,

no significant voxels were found when LSU or LSA were applied regardless of430

the statistical method used, whereas the LSS method uncovered a set of infor-

mative regions (see Figure 8). In the fairness classification, LSA was the only

method that did not obtain any significant result. Table 3 shows the clusters

distribution in the valence classification after modeling the valence events as

duration/impulse, whereas 4 summarizes the results for fairness classification.435

Besides, Figures 10 and 11 show the large difference found between the two

models. Regarding Dataset 2, all pattern estimation methods showed larger

sensitivity in Dataset 2. Specifically, the informative regions obtained by each

one of them were very similar across methods. It is not surprising that LSA

allowed a reliable estimation of the neural activity in Dataset 3. Unlike Dataset440

1, the experiment had a slow design and the aim was to find differences at the

trial level and not to isolate the neural activity of different events within each

trial, which is considerably harder.

3.2. t-test vs. non-parametric methods

We next employed the three methods described in Section 2.5, that is, the t-445

test, Stelzer’s and TFCE, to assess significance of the obtained results. Figure 8

shows the significant results obtained by each of them when the LSS estimation

method was employed in the valence classification of Dataset 1. Here, the t-test

and TFCE yield essentially the same results in terms of number of voxels marked

as significant and their spatial distribution, but largely differ from Stelzer’s. In450

fact, this method obtains approximately 8 times more significant voxels than the

others. All clusters found by the t-test and TFCE are also included in Stelzer’s,

but their spatial extent is larger in the latter. In the fairness classification, this

differential sensitivity between the t-test and Stelzer’s is also obtained, but in

this case, TFCE yields very similar results to Stelzer’s instead than to the t-test455

(see Figure 13). It is important to highlight that when any of the non-parametric
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approaches was used, the difference in the informative regions obtained by the

LSU and LSS methods was minimum. We fully discuss the implications of this

finding in Section 4.

Figure 14 reveals the differences between the three approaches for Dataset460

2. Similarly to Dataset 1, Stelzer’s shows larger sensitivity regardless of the

estimation method used, (see Tables 2 and 5). Moreover, the location of the

significant voxels is quite similar across the three approaches: they found a single

massive significant cluster, slightly larger in case of TFCE and with a 35% of

more significant voxels in the case of Stelzer’s in comparison with the t-test.465

This superior sensitivity of non-parametric methods is also observed in Dataset

3 (see Table 2), whereas the most informative brain regions are summarized in

Figures 16 and 17.
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4. Discussion

We have shown for the first time that LSS is the most reliable approach470

for unmixing the contribution to the hemodynamic signal of different events

with variable duration within a trial. Moreover, the non-parametric procedure

proposed in Stelzer et al. (2013) is the most sensitive technique when group

statistics must be generated from local MVPA approaches such as a searchlight.

In this section we will discuss the results obtained by each method (pattern475

estimation and statistical) for the different datasets evaluated.

4.1. Comparison between LSU, LSA and LSS

In Dataset 1, we found large differences in performance across the pattern

estimation methods, particularly for the valence classification. Estimating re-

sponses through LSS allowed us to detect the involvement of a coherent set480

of brain regions, whereas using LSU and LSA did not yield significant results.

Previous studies showed that the performance of LSA and LSS (Abdulrahman

and Henson, 2016) is affected by parameters such as the ISI, noise and trial

variability. However, collinearity is another element that plays a crucial role in

the estimation of neural activity. The difficulty of applying decoding analyses485

in our paradigm is not due to a short interval between consecutive trials, but

the way the events are modeled in each trial. The regressor associated with the

first event includes the jitter interval that separates the first and the second

events, whereas the second is modeled as an impulse function (zero-duration).

Thus, the activity associated to the first event ends just when the second one490

starts, increasing the difficulty of isolating them. It is worth highlighting that,

to the best of our knowledge, this is the first time that these estimation meth-

ods are compared in a setting like this. Our results are coherent with findings

of previous studies. Analyses carried out by Mumford et al. (2012) concluded

that LSS outperforms LSA in high collinearity settings because the latter suf-495

fers more from collinearity, as it does not employ any regularization strategy.

Besides, it is worth remembering that this method was developed due to the

poor performance of LSA in rapid event-related designs.
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The two ways of modeling the first event lead to very different results. In fact,

considering the words as zero-duration events yielded no significant results for500

LSU/LSA in the valence classification, and only when t-test and Stelzer’s were

applied to the LSS estimation a small cluster was found. This is not surprising

since collinearity depends not only on how the events are modeled but the actual

duration of the activation, which is related to the nature of the cognitive process

that underlies the first event. Participants read an adjective with a certain505

valence, and then they have to get prepared until the target appears (second

event). Thus, there is a preparatory process that leads to a sustained activity

along time. However, the second event comprises a completely different process.

Once participants take a decision (cooperate or not depending on the fairness

of the offer), the process ends. For this reason, this event is modeled with zero510

duration. Assuming that the duration of the preparatory process is the same

as the target one is not correct, so that results obtained are not trustworthy.

This approach has been used in several previous studies of cognitive control (e.g.

Bode and Haynes, 2009; González-Garćıa et al., 2017, 2016; Sakai, 2008).

The analyses of the second event of Dataset 1 (e.g. the fairness classifica-515

tion) yielded significant results for the three pattern estimation methods, unlike

the valence classification where only LSS was sensitive enough. The key of this

finding is the classification problem itself. Neural activity differentially associ-

ated to valence is hard to obtain, as shown by recent metaanalytic approaches

(Lindquist et al., 2015), whereas the fairness of an offer generates large differ-520

ences and thus it is easier for the LSU approach to make a reliable estimation.

This is the reason why we did not find substantial differences between the two

ways of modeling the first event. Regarding LSA, we mentioned above the large

collinearity between the first event (adjective) and the second (offer), so it was

highly expected that LSA did not find any informative regions in neither the525

valence nor the fairness classification.

In Dataset 2 we found large similarities in the results obtained by all pat-

tern estimation methods. A block for each object category was presented only

once in each run, which means that no average was applied across experimental
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conditions of the same type. This yields the same number of beta maps for all530

classifiers, so that the disadvantages of LSA from a machine learning standpoint

are not met. Besides, block settings are not propitious for a better performance

of LSS since the overlap of signals is much lower than in event-related designs,

where this approach yields cleaner patterns. Another reason for this similarity

is the large perceptual difference in the neural activity elicited by each type535

of stimulus (faces and houses), so that it is straightforward for a classifier to

build a decision hyperplane that properly separates the corresponding activation

patterns.

We decided to use Dataset 3 in order to evaluate the performance of the

different pattern estimation methods in a context more similar to our experiment540

than Dataset 2. In Dataset 3, all pattern estimation methods were able to

extract significant regions. Besides, these regions are quite similar regardless of

the method used. It is remarkable that LSA allows a good estimation in this

setting. There is an important difference in the experimental design that can

explain this result: in Dataset 3 the aim was to isolate the activity of different545

trials, whereas Dataset 1 focused on separating different events within a trial.

Besides, the stimuli in Dataset 3 were presented in a slow event-related design,

with an ISI of 4.5 seconds plus null events, which means that collinearity in this

dataset was much smaller. According to Mumford et al. (2012), LSA may yield

a similar or better performance than LSS when the ISI increases, even when the550

simulations and real-data analyses that they performed were focused on rapid-

event related designs. Thus, it was expected that results would be better in this

case due to the slow setting of the experiment.

4.2. Comparison between t-test, Stelzer’s and TFCE

As a further goal, we aimed at testing the adequacy of different statistical555

approaches. For the valence classification of Dataset 1, we only obtained signif-

icant results when the LSS method was employed. The significance maps are

essentially the same after applying t-test and TFCE, both in the number of

significant voxels and in their location. On the other hand, Stelzer’s resulted in
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a larger sensitivity than the other methods, yielding eight times more signifi-560

cant voxels. Figure 9 compares the uncorrected results for the t-test (voxel-level

threshold: p < 0.001, but uncorrected for multiple comparisons) with the cor-

rected results obtained by Stelzer’s. In this case, there is much more coherence

between both methods regarding the number of voxels and, crucially, their lo-

cation. In fact, the three clusters that Stelzer’s marked as significant are found565

with the uncorrected t-test as well. Therefore, rather than being less sensitive

to false positives, Stelzer’s method seems to efficiently detect true data that

otherwise do not surpass the statistical threshold. There are several studies

that support that non-parametric approaches are able to simultaneously im-

prove the sensitivity while precisely controlling for false positives (e.g. Eklund570

et al., 2016; Nichols and Hayasaka, 2003; Silver et al., 2011; Stelzer et al., 2013;

Winkler et al., 2014b). In addition and most interestingly, the largest cluster un-

covered by LSS in the valence classification resides in the Medial Frontal Cortex

(see Figure 15) and includes the peak of maximum differences between positive

and negative valence observed in the published metaanalyses by Lindquist et al.575

(2015) (MNI = [9, 39, -9], see Figure 1). Thus, this close correspondence speaks

strongly in favor of the higher sensitivity of the method.

On the other hand, our study is the first to compare Stelzer’s and TFCE

methods. Although both use permutation testing for evaluating the significance,

the way in which they implement permutations may lead to the large differences580

observed. One of the most appealing aspects of Stelzer’s is that it takes into

account the spatial inhomogeneities of the image. In fact, the scheme used by

this approach is equivalent to compute a significance threshold for each voxel

separately. This controls the false-positives rate in non-informative voxels and

avoids being too conservative in the informative ones (Stelzer et al., 2013),585

which may lend it more sensitive in event-by-event estimations. An encouraging

finding is that there is large spatial overlap between the regions that TFCE and

Stelzer’s mark as significant. Specifically, all significant voxels in TFCE are also

considered significant by Stelzer’s, but the latter adds voxels to the previously

identified clusters (see Figure 8). We found even more similarities between590
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Stelzer’s and TFCE in the fairness classification. In fact, the way these voxels

are distributed is almost identical as Figure 12 reveals. Most information is

encoded in the Pre/Postcentral gyrus, the SMA (Supplementary Motor Area)

and the Cingulate Gyrus, as Figure 13 shows. These areas are consistent with

previous experiments based on the Ultimatum Game (UG), Corradi-Dell’Acqua595

et al. (2013). For a more detailed explanation of this task and the concordance

between the informative regions and our results, see the meta-analysis by Gabay

et al. (2014).

As predicted, similarities between the different statistical methods were

larger in Dataset 2. Regarding the t-test and TFCE, the spatial distribu-600

tion of the voxels was essentially the same, with a slight boost of 5% in the

number of significant voxels when the latter was applied. On the other hand,

Stelzer’s yielded 35% more significant voxels, but all the additional ones marked

as significant were adjacent to the clusters obtained by the other two methods.

Figure 15 highlights the regions where the information is mainly distributed and605

its variability over different statistical methods, much smaller than in Dataset

1. Results are essentially the same for each pattern estimation and statisti-

cal method, principally in the occipital pole and the fusiform gyrus. Stelzer’s

yielded more informative voxels in the cerebelum, but the t-test and TFCE

were more sensitive in the precuneus. It is important to point out the much610

larger increase in sensitivity that Stelzer’s yielded in Dataset 1 in comparison

with Dataset 2. One possibility is that noise was differently distributed in both

designs and generated a differential tendency to false-positives. The jitter be-

tween experimental conditions in Dataset 1 and the fact that we were isolating

different events within a trial with different duration may be the reason why615

a more adequate statistical method leads to larger improvement of sensitivity

in this dataset compared to a block design (Dataset 2). We highlight the im-

portance of this finding since although Stelzer’s showed a larger sensitivity in

all contexts, it was even higher than the other two methods in the most diffi-

cult case, when the overlap and collinearity between conditions were highest.620

The nature of the classification per se may also be of importance in this dif-
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ference. Whereas the classic block design from Haxby et al. (2001) contrasted

two stimuli with large perceptual and phylogenetic differences (e.g. Kanwisher

and Yovel 2006), the classification employed in Dataset 1 compared the same

physical stimuli (words), equated in length (number of letters), frequency of use625

and arousal levels. In addition, whereas the brain networks involved in face

processing are different from those activated by houses (Haxby et al., 2014),

isolating regions with a differential involvement in valence processing is much

harder (e.g. Lindquist et al., 2012, 2015).

Results in Dataset 3 show a great similarity between the two methods based630

on permutations, more sensitive than the t-test as in previous datasets. In fact,

they are more similar to those obtained in a block-design (Dataset 2) than in

the event-related of Dataset 1 given the aforementioned higher ISI (slow design).

Specifically, the occipital pole, followed by the MFG (Medial Frontal Gyrus) and

the MTF (Middle Temporal Gyrus) are the most informative regions (see Table635

5), which are consistent with the original study (Visconti di Oleggio Castello

et al., 2017). It is important to mention that the additional mechanisms that

we have employed to ascertain that results in all the analyses conducted are

trustworthy. The first one is the proper selection of a searchlight size. Ex-

periments carried out in Etzel et al. (2013) showed that the number of voxels640

considered informative in a searchlight map tends to grow as the searchlight

radius increases, even when the size of the informative region stays fixed. Thus,

the larger the searchlight size, the more likely to obtain false positives. This

is consistent with findings in Stelzer et al. (2013), where false positives were

boosted for a searchlight diameter of 11 voxels. For our analyses, we chose an645

intermediate value of 8-voxels searchlights to strike a balance between sensitivity

and specificity (Arco et al., 2016; Chen et al., 2011). Additionally, we selected

a conservative value for the initial-cluster forming threshold in order to control

false positives. The use of a liberal value can have detrimental effects on false

positives, location and even interpretation of neural mechanisms (Woo and Wa-650

ger, 2014). Likewise, Stelzer et al. (2013) fully studied the relationship between

this parameter and the results obtained and they highly recommend the election
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of a p-value ranging from 0.005 to 0.001. We chose the most conservative value

(p=0.001 ), prioritizing the control of false positives over sensitivity.
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5. Conclusion655

In this work, we compared three different pattern estimation methods, as

well as parametric and non-parametric approaches for testing significance in

a setting that requires the isolation of a sustained activity from zero-duration

events. The method with the best performance, Least-Squares Separate (LSS),

comprises an iterative fitting of a new GLM for each unique event, which ad-660

dresses the large overlap of signal from close events. This method was also

tested in a block-design and in a slow event-related design. In both scenarios,

this approach demonstrates its ability for improving the sensitivity and provides

more information about the brain regions involved in the cognitive process un-

der study. The different results regarding the statistical approach used suggest665

that using permutation testing in addition to a local-conservative significance

threshold indicates that the better performance is due to a better estimation of

brain activity and not to an unspecific boost in false-positives. This supports

recent claims that the t-test is not the proper option to determine the proba-

bility of a decoding result at the group level, due to the assumptions about the670

Gaussianity of the data that are not always met. Our study provides evidence of

which method yields a better performance in settings with large collinearity be-

tween signals of different duration, which paves the way for future neuroscience

studies.
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Table 1: Average number of beta maps obtained by each pattern estimation method and

dataset used, for each classification problem evaluated

Dataset 1 Dataset 2 Dataset 3

Method Valence Fairness Faces vs Houses Familiarity

LSU 8 8 12 11

LSA 64 96 12 176

LSS 64 96 12 176

38



Table 2: Summary of the clusters distribution by the different pattern estimation methods

and statistical tests in the first dataset (valence and fairness classification).

Least-Squares Unitary (LSU)

Valence classification Fairness classification

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 0 0 0 3 1 1

Average cluster size 0 0 0 628 15422 13909

Significant voxels 0 0 0 1883 15422 13909

Least-Squares All (LSA)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 0 0 0 0 0 0

Average cluster size 0 0 0 0 0 0

Significant voxels 0 0 0 0 0 0

Least-Squares Separate (LSS)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 4 3 5 2 1 1

Average cluster size 30 329 24 4469 17620 16790

Significant voxels 122 987 120 8938 17620 16790
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Table 3: Comparison of the clusters distribution by the different pattern estimation methods

and statistical tests in the valence classification after modeling the words as epochs/zero-

duration events.

Least-Squares Unitary (LSU)

Duration Impulse

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 0 0 0 0 0 0

Average cluster size 0 0 0 0 0 0

Significant voxels 0 0 0 0 0 0

Least-Squares All (LSA)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 0 0 0 0 0 0

Average cluster size 0 0 0 0 0 0

Significant voxels 0 0 0 0 0 0

Least-Squares Separate (LSS)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 4 3 5 1 1 0

Average cluster size 30 329 24 52 54 0

Significant voxels 122 987 120 52 54 0

40



Table 4: Comparison of the clusters distribution by the different pattern estimation methods

and statistical tests in the fairness classification after modeling the words as epochs/zero-

duration events.

Least-Squares Unitary (LSU)

Duration Impulse

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 3 1 1 2 1 1

Average cluster size 628 15422 13909 1058 13832 14399

Significant voxels 1883 15422 13909 2116 13832 14399

Least-Squares All (LSA)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 0 0 0 0 0 0

Average cluster size 0 0 0 0 0 0

Significant voxels 0 0 0 0 0 0

Least-Squares Separate (LSS)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 2 1 1 1 1 1

Average cluster size 4469 17620 16790 9742 16342 13584

Significant voxels 8938 17620 16790 9742 16342 13584
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Table 5: Summary of the cluster distribution obtained by the different pattern estimate

methods and the three approaches for testing the significance, in the two datasets used.

LSS showed a larger sensitivity compared to the other techniques, regardless of the way

the significance was evaluated. Moreover, non-parametric approaches revealed quite similar

results, yielding a considerable increase in the number of voxels marked as significant versus

the t-test. Besides, the better performance of LSS in terms of volume detection is supported

by non-parametric alternatives, which are more reliable than parametric since they rely on

minimum assumptions.

Least-Squares Unitary (LSU)

Dataset 2 Dataset 3

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 4 1 1 5 2 3

Average cluster size 1821 9881 7717 527 2511 748

Significant voxels 7283 9881 7717 2635 5021 2244

Least-Squares All (LSA)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 4 1 1 2 2 1

Average cluster size 1821 9881 7717 1476 1383 4489

Significant voxels 7283 9881 7717 2952 2766 4489

Least-Squares Separate (LSS)

t-test Stelzer TFCE t-test Stelzer TFCE

Number of clusters 4 1 1 2 3 1

Average cluster size 1831 9906 7692 1424 1463 4551

Significant voxels 7321 9906 7692 2847 4387 4551
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Figure 1: Schematics of two different fMRI designs: block and event-related. The first row

corresponds to the timing of event onsets. In block designs, several stimuli of the same

condition are presented consecutively, in what is known as epoch or block, and different

conditions usually alternate in time, so relatively large signal changes are measured. In event-

related designs, interleaved short-duration stimuli are employed. Given the delayed nature of

the BOLD signal, the data produced by different stimuli overlaps, and thus extracting the

signal caused by each one of them becomes more difficult.
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Figure 2: Comparison of two different approaches for pattern estimate. At the top of the

figure, LSU, in which all the trials of the same type for each run are collapsed into the same

regressor. At the bottom, LSA, based on estimating one model in which each event is modeled

as a separate regressor. LSU can yield less noisy estimates because of the averaging of all the

stimuli of the same type within a run, but the amount of resulting estimates to train the

classifier with is limited to the number of runs the experiment is divided into.
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Figure 3: LSS iteratively fits a new GLM for each unique event with two predicted BOLD

time courses: one for the target event and a nuisance parameter estimate which represents

the activation for the rest of the events. LSS estimates as many models as the total number

of regressors, and in each one only two of them are included: one for the event of interest and

a nuisance parameter estimate which stands for the activation for the rest of the events.
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Figure 4: Schematic representation of Stelzer’s method. For each subject, a classifier is trained

100 times permuting the labels of the images, resulting in 100 accuracy maps which are spa-

tially normalized into a common space. From each of the subjects, a map is randomly picked

following a Monte Carlo resampling with replacement procedure (?), averaging the values

voxel-wise to obtain a permuted group map. This procedure is repeated 50000 times, building

empirically a chance distribution for each voxel position and selecting the 50th greatest value,

which statistically corresponds to the accuracy threshold that marks the significance.
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Figure 5: Distributions of group permuted accuracies in one voxel for the two datasets used:

Dataset 1 (left) and Dataset 2 (right). While in Dataset 1 most accuracies are around chance

level, in the second one the number of voxels that surpass the threshold is much larger.
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Figure 6: For a given point p, the score TFCE is computed as the sum of the product between

the extent of the cluster and the different heights (established by h). This yields an enhanced

image where is levelled the contribution of large but weakly-activated clusters and small but

strongly-activated.
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Figure 7: Schematic representation of the TFCE approach. Once all subjects’ accuracy maps

are merged, the TFCE algorithm is applied. For a given point p, its value is replaced by an

average of the intensities of the voxels of its neighbourhood, enhancing the intensity within

cluster-like regions. To correct for multiple comparisons, the null distribution of the maximum

TFCE score is built up, testing the actual TFCE image against it.
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Figure 8: Significant results obtained by the LSS method when discriminating word valence

in Database 1. Results from the t-test and TFCE are practically the same, both in location

and number of significant voxels. Stelzer’s method, on the other hand, yields the significant

regions obtained by the other methods while increasing the number of significant voxels,

showing higher sensitivity.
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Figure 9: Comparison of the uncorrected results from the t-test (p <0.001) and the significant

voxels obtained by Stelzer’s. The distribution of the voxels is similar in both cases, so that

differences may rely on the inability to surpass the statistical threshold when the t-test is

applied.
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Figure 10: Comparison of the results obtained by the different pattern estimation and statis-

tical methods in the valence classification modeling the words as duration/impulse events.
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Figure 11: Significant results obtained by the different pattern estimation and statistical

methods in the fairness classification modeling the words as duration events.
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Figure 12: Significant results obtained by the different pattern estimation and statistical

methods in the fairness classification of Dataset 1 where words were modeled as zero-duration

events.
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Figure 13: Voxels distribution in the most informative regions for the fairness classification

of Dataset 1. Region SMA = Supplementary Motor Area.
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Figure 14: Significant results obtained by the different pattern estimation methods and tech-

niques for evaluating the statistical significance in Haxby’s experiment. LSA is equivalent to

LSU in this case, so only results for LSU and LSS are presented.
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Figure 15: Voxels distribution in the most informative regions for each statistical and pattern

estimation method. In Dataset 1, the Inferior Frontal Gyrus is the only region where the three

methods found informative voxels. Result are more similar in Dataset 2, where discrepancy

regarding the informative regions appears in the cerebelum and the precuneus.
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Figure 16: Significant results obtained by the different pattern estimation methods and tech-

niques for evaluating the statistical significance in Dataset 3.
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Figure 17: Voxels distribution in the most informative regions for each statistical and pattern

estimation method in Dataset 3.
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