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Abstract. Classification of medical imaging is one of the most popular applica-
tion of intelligent systems. A crucial step is to find the features that are relevant
for the subsequent classification. One possibility is to compute features derived
from the morphology of the target region in order to check its role in the pathol-
ogy under study. It is also possible to extract relevant features to evaluate the
similarity between different regions, in addition to compute morphology-related
measures. However, it can be much more useful to model the differences be-
tween regions. In this paper, we propose a method based on the principles of
siamese neural networks to extract informative features from differences between
two brain regions. The output of this network generates a latent space that char-
acterizes differences between the two hemispheres. This output vector is then fed
into a linear SVM classifier. The usefulness of this method has been assessed with
images from the Parkinson’s Progression Markers Initiative, demonstrating that
differences between the dopaminergic regions of both hemispheres lead to a high
performance when classifying controls vs Parkinson’s disease patients.
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1 Introduction

Current medical images provide an extremely useful information for the diagnosis of a
wide range of diseases. Despite these images have a high quality, their correct interpre-
tation and the subsequent diagnosis is not a straightforward task. The emergence of arti-
ficial intelligence has revolutionized the study of different pathologies, given the ability
of this kind of techniques for being used within a computer aided diagnosis (CAD)
system [12]. When applying to neuroimaging, this tool usually finds relevant patterns
that are extremely useful for the identification of neurological disorders. In fact, a high
number of studies have developed intelligent systems for this purpose. For instance,
these methods have demonstrated a good performance when diagnosing Alzheimer’s
disease [2, 16, 1, 9]. These works use information contained in magnetic resonance or
positron emission tomograpy (PET) images to classify controls vs AD patients, in addi-
tion to detect the progression from mild cognitive impairment to a severe dementia. In a
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similar way, changes associated with Parkinson’s disease have also been automatically
detected by these alternatives [6, 17, 21]. They usually employ DaTSCAN neuroimages
given their suitability for visualizing the dopamine deficiency.

Moreover, classification models focus their analysis on a specific brain region that
characterizes the pathology. Besides, the definition of this region of interest consid-
erably reduces the dimensionality of the data, addressing the curse of dimensionality
problem associated with statistical classification. After that, the simplest alternative is
to evaluate the intensity of the voxels contained in this region. However, it is unlikely
that differences in intensity allow to interpret the cognitive state of the patient. An-
other option is to compute features based on the morphology of the region [11, 26].
Thus, the region is characterized by a series of measurements such as size, position of
the centroid, roundness, etc. Despite this alternative has been successfully employed in
previous studies, it seems suboptimal for one crucial reason: the relevance of features
varies for each individual classification context. This means that some features can be
extremely informative in one scenario, but completely irrelevant in a different one. An
interesting alternative is to directly model the differences between regions, instead of
extracting features associated with each one of them. In this case, a siamese neural net-
work is an excellent choice [14, 8]. According to its name, this architecture consists of
two identical neural networks sharing the same structure that compare their individual
outputs at the end by using a distance metric. A global output is then generated from
this resulting measure.

In this work, we propose an alternative for automatically computing differences be-
tween two regions that can be subsequently used for classification. Specifically, our
proposal relies on the use of a siamese neural network with two inputs that extracts
informative features from both regions. Once the model is trained, the latent space of
the dense layer leads to a feature vector that is entered as input of a linear classifier. The
proposed methodology has been evaluated using PET images from the Parkinson’s Pro-
gression Markers Initiative [18]. Specifically, we aim at demonstrating that differences
between the dopaminergic regions of both hemispheres can be used as discriminative
features to distinguish between controls and patients suffering from Parkinson’s disease.

The rest of the paper is organized as follows. Section 2.1 contains a description of
the dataset used for the evaluation of the performance of the system. Section 2.2 details
the preprocessing applied to this database before entering into the siamese neural net-
work, which is explained in Section 2.3. Results are summarized in Section 3, whereas
conclusions and future work are available in Section 4.

2 Material and methods

2.1 Dataset

The method proposed in this work aims at measuring the asymmetry between different
brain regions that can be relevant for classification purposes. The database employed in
this work contains DaTSCAN SPECT images from 1413 subjects, 1218 from patients
suffering Parkinson’s disease (PD) and 195 controls (CN) from the PPMI dataset [19].
This repository contains data from an observational clinical study to verify the progres-
sion markers in Parkinson’s disease. Raw projection data are acquired into a 128 x 128
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matrix stepping each 3 degrees for a total of 120 projection into two 20% symmetric
photopeak windows centered on 159 KeV and 122 KeV with a total scan duration of
approximately 30–45 min. Table 1 summarizes the demographics of the patients in the
database. Thus, the goal in this specific context is to evaluate if differences in the shape
of the dopaminergic regions can be used to distinguish between PD patients and CN.

Control Parkinson’s

Fig. 1: Slice of the 3D images corresponding to a control (left) and a PD patient (right).

Table 1: Patient Demographics
Evaluation Sex (M/F) Mean Age ± Std
NC 130/65 61.02± 11.25
PD 798/420 62.93± 9.92

2.2 Preprocessing

DaTSCAN images from the PPMI database were spatially normalized according to the
MNI152 template, which is based on the average of 152 scans from normal subjects.
We further used SPM12 [27] to preprocess the images, applying affine and local defor-
mations to achieve the best warping between the images with the DaTSCAN template
defined in [22]. After that, the regions of interest were selected, which refers to those
that reveal dopaminergic activity. As a result, this process led to a reduction in the size
of the images, from the original (95, 69, 79) to the final (29,25,41). This final step al-
lows a reduction in the computational cost of the classification system while preserving
the information contained in the target regions.

Another crucial aspect is related to the intensity levels of the images. The idea be-
hind these functional images is that the intensity in each pixel provides an indirect
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measure of the neurophysiological activity. This means that the same value in two dif-
ferent pixels should correspond to the same drug uptake, whereas abnormal differences
in these values can reveal a wide range of pathologies [25, 24, 7]. This paper employs
Integral Normalization [13], in order to ensure that there is a clear relationship between
intensity levels and drup uptakes, as follows:

Îi =
Ii
In,i

(1)

where Ii refers fo the image of the ith subject in the database, Îi is the resulting normal-
ized image, and In,i is the intensity normalization value. This is computed as the mean
of the image for each independent subject. Then, the resulting values were standardized
in the range [0,1]. Finally, each resulting image is then partitioned into two subim-
ages. The first one contains the dopaminergic region of the left hemisphere, whereas
the second includes the dopaminergic region of the right one. These two images for
each individual subject are entered into the classification system proposed in this work,
which is fully described in next sections.

2.3 Siamese neural network

The siamese architecture was introduced in the 1990s within a signature verification
system [5]. A siamese neural network consists of the union of two identical neural net-
works with exactly the same configuration. This means that they have the same param-
eters and even share common weights. During the training, each network processes the
inputs as an individual feedforward network, processing information in only one direc-
tion. Briefly, each neuron of a specific layer processes the input, and sends the output to
all the neurons of the following layer. Since both networks share the same weights, they
are updated at the same moment through the error back-propagation process. Given that
the siamese architecture is based on two individual networks, each one of them receives
an input and produces an output in its final layer. The main aspect of this framework
is that the outputs of both subnetworks are compared according to a distance measure.
Based on this value, the final output of the siamese network is then used to assign a
label to the data inputs. The output can be seen as the semantic difference between the
projected representation of the inputs [8].

Despite this network has been widely used with the aim of evaluating the similarity
between two inputs (e.g. fingerprints [3] or signatures [5]), it can be used as an interme-
diate stage within a different classification context. Figure 2 depicts a representation of
the siamese neural network employed in this work. In our case, we trained the siamese
network with the SPECT images of the database described in Section 2.1. The aim in
this application context was to test that asymmetry between the dopaminergic regions
of each hemisphere differs from PD patients and controls. In other words, our hypothe-
sis is that differences between left and right striatum are relevant to distinguish people
who suffer from Parkinson’s disease and those that do not. This way, the left and right
dopaminergic regions are entered into the two inputs of the siamese network. The model
is then trained in order to learn the differences between the two inputs. To do so, the
Hinge function [10] is used to compute the loss associated with the distance between
the outputs of the two subnetworks, as follows:
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Fig. 2: Architecture of the siamese network used to compute the embeddings.

l(y) =

{
0 t · y ≥ 1
1− t · y otherwise (2)

where t = {−1, 1} corresponds to the actual label and y is the output of the linear
layers.

Once the training process is finished, the information contained in the final layer is
retrieved. This is obtained as the combination of the output of the lineal layer of each
individual branch. This embedding is then used as the feature vector within a classifi-
cation framework. Specifically, the vectors associated with each individual sample are
used to train a linear Support Vector Machine (SVM) classifier. Different metrics from
the confusion matrix are employed to evaluate the performance of this scheme. Be-
sides, a 5-fold cross-validation scheme was used to preserve the independence between
training and test sets.

3 Results

In this section, we present the results obtained by the proposed method. First of all, we
used the T-distributed Stochastic Neighbor Embedding (TSNE) for reducing the dimen-
sionality of the embeddings to two dimensions in order to improve the visualization of
data associated with the two classes: PD patients and controls. As Figure 3 shows, the
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samples are grouped into two different clusters. It is worth highlighting that there is a
clear separation between both classes since most of samples are correctly located. This
demonstrates that the information contained in the embedding allows the distinction
between the two classes.

Fig. 3: Projection over the first two dimensions of the embeddings associated with con-
trols (blue) and PD (red).

Table 2 summarizes the performance in terms of different metrics. With reference
to balanced accuracy, a 96.78% was obtained, whereas our proposal led to an AUC
of 99.16%. This demonstrates the suitability of the proposed method for this classifi-
cation context. Figure 4 depicts the ROC curve obtained by our method. This graphic
provides a visual evidence of the large performance obtained by our proposal. In fact,
the large AUC obtained manifests that most of samples are properly assigned to their
corresponding class.

Figure 5 provides a crucial information that certifies the separability between the
two classes. Figure 5a contains two different clusters, similar to the ones obtained in
Figure 3. However, in this case it is represented the pairwise distance between the vec-
tors contained in the dense layers of both branches in the siamese network. It is impor-
tant to note that this distance is much lower for controls than for PD patients, evidencing
that the asymmetry between the dopaminergic regions of both hemispheres is higher in
PD patients. Therefore, as Figure 5 states, there is a much higher variability regarding
the differences between both hemispheres in PD patients compared with controls. This
means that PD patients are extremely different than controls, but they also vary one
from each other, as the large variance in the sample shows.
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Table 2: Classification results obtained by the proposed method and by other previous
works.

Method Accuracy Sensitivity Specificity AUC
Ours 96.78 ±1.99 97.66 ±1.65 95.90 ±3.84 99.16
[25] 95.00 ±3.00 95.00 ±5.00 95.00 ±4.00 97.00
[20] 94.10 ±4.50 93.30 ±5.80 95.80 ±7.90 94.60
[4] 92.00 94.00 91.00 -

[23] 84.60 71.60 97.50 85.90
[15] 95.20 97.50 90.90 -
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Fig. 4: ROC curves obtained for classification using PET, MRI and mixed mode images

4 Conclusions and future work

In this work, we propose a method based on siamese neural networks to assess anatom-
ical differences in medical imaging. These differences are then evaluated in a classifica-
tion context in order to quantify their relevance as a feature extractor. Once the network
is optimized to compute similarities between two different inputs, vectors from the final
dense layer are extracted. These features are then entered into a linear SVM classifier,
leading to an accuracy of 96.78%

The excellent results manifest the usefulness of the method, paving the way to future
research not only in brain imaging but also in other biomedical signals. Additionally,
the inclusion of the cosine similarity in the loss function could help in a better com-
putation of the similarities between the two inputs of the neural network. Finally, our
findings reveal that differences between two structures can be even more informative
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Fig. 5: (a) Distribution of the inter-hemispheric distances computed by the proposed
model for Parkinson’s patients and controls. (b) Boxplots of the distributions of dis-
tances in both classes.

that the nature of the regions itself, even when these differences had been considered as
irrelevant in the context under study.
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term prediction from mci to ad by applying searchlight analysis. In: 2016 IEEE
13th International Symposium on Biomedical Imaging (ISBI). pp. 10–13 (2016).
https://doi.org/10.1109/ISBI.2016.7493199

3. Baldi, P., Chauvin, Y.: Neural networks for fingerprint recognition. Neural Computation 5(3),
402–418 (1993). https://doi.org/10.1162/neco.1993.5.3.402
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