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QUALITATIVE PROPERTIES OF SINGULAR SOLUTIONS TO THE

FRACTIONAL YAMABE PROBLEM

SERGIO CRUZ-BLÁZQUEZ 1, AZAHARA DELATORRE *, AND DAVID RUIZ

Abstract. In this paper we are interested in the qualitative properties of the solutions to
the fractional Yamabe problem in R

n which present an isolated singularity. In particular, we
prove that the Morse index of any such solution is infinity. The proof uses an Emden Fowler
type transformation, so that we can pass to a nonlocal 1D problem posed in R.
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1. Introduction and statement of the results

The problem of finding a metric conformal to a given one with positive constant scalar
curvature receives the name of Yamabe problem, and is a classic problem in Geometric Analysis.

In the case of Rn (n ≥ 3), if the conformal metric is written as gu = u
4

n−2 |dx|2, we are led to
the search of positive solutions to the equation:

−∆u = u
n+2
n−2 in R

n.

It is well known that the only positive smooth solutions to such problem are the Talentian
functions, which correspond to the metrics coming from the stereographic projection, composed
with dilations and translations of the euclidean space.

Of particular interest is the existence of such conformal metrics with singularities: for in-
stance, one can consider the problem:

(1.1) −∆u = u
n+2
n−2 in R

n \ {0}, lim
x→0

u(x) = +∞.
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It was shown by Caffarellli, Gidas and Spruck [3] that positive solutions of (1.1) must be
radially symmetric and the solution can be written as

u(x) = |x|
−(n−2)

2 v(|x|),

where v is a function bounded between two positive constants. Writing the equation for the
new function v(r) and using the Emden Fowler change of variable (|x| = r = e−t) the problem
reduces to a second order ODE, that can be explicitly solved [18, 19]. We remark that the
analysis of its phase portrait shows that all solutions must be periodic in the t variable.

In the last years, nonlocal problems have captured a lot of attention and different generaliza-
tions of the known curvatures to the nonlocal setting have been developed. In particular, using
the relation between scattering operators of asymptotically hyperbolic metrics and Dirichlet-
to-Neumann operators of degenerate elliptic problems (see [13]), a definition of a one-parameter
family of nonlocal operators was introduced by González and Chang in [6]. Correspondingly,
a one-parameter family of intrinsic curvatures Qs with good conformal properties are defined.

The fractional or nonlocal Yamabe problem has been posed in parallel to the classic one:
finding a complete conformal metric with constant fractional curvature. Solvability of the
problem was first considered by González and Qing [11] and, assuming some dimensional and
geometric properties on the manifold, it was proven in [11, 12, 15]. The most general case
was proven by Kim, Musso and Wei [15], assuming the validity of the fractional positive mass
conjecture. Let us observe that the fractional Yamabe problem with s = 1

2 is deeply related to
the so-called Escobar problem, which is another analogue of the Yamabe problem for manifolds
with boundaries. Being more specific, the solutions to the problem:







∆u = 0 in R
n
+

∂u

∂ν
= −Cu

n
n−2 on R

n−1,

give rise to flat metrics in R
n
+ with constant mean curvature of the boundary. And such

problem is equivalent (via the well known extension for the fractional Laplacian) to the nonlocal
equation:

(−∆)su = Cu
N+2s
N−2s on R

N ,

with N = n− 1, s = 1
2 .

When we allow the presence of singularities, the existence of complete Yamabe metrics
depends on the geometry of the ambient manifold. In particular, there are upper bounds on
the Hausdorff dimension of the singular set, which are explicit for the sphere (see [20]). In the
nonlocal setting, a necessary condition was found in [10] (see also [1, 5]).

In this paper we consider solutions to the fractional Yamabe problem in R
n with one isolated

singularity, i.e.,

(1.2) (−∆)su = u
n+2s
n−2s in R

n \ {0}, lim
x→0

u(x) = +∞.
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Here s ∈ (0, 1), n > 2s and (−∆)s stands for the fractional laplacian, i.e., the integro-
differential operator defined by

(−∆)su(x) = cn,sP.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy, cn,s =

22sΓ(n+2s
2 )

Γ(2− s)π
n
2

s(1− s).

Solutions to (1.2) give rise to metrics gu := u
4

n−2s |dx|2 which have constant fractional curvature.
According to [4] (see also [7]), all singular solutions for this equation are radially symmetric
and satisfy:

(1.3) c1|x|
−n−2s

2 ≤ u(x) ≤ c2|x|
−n−2s

2 , 0 < c1 < c2.

Moreover we have the following explicit solution, see [8, Proposition 2.7]:

(1.4) u0(x) = κ−1
n,s|x|

−(n−2s)
2 , where κn,s = 22s

(

Γ(n+2s
4 )

Γ(n−2s
4 )

)2

.

The main scope of this paper is to obtain qualitative properties of the set of solutions of
(1.2). Our first result is the following.

Theorem 1.1. Let u ∈ C2
loc(R

n\{0}) be any solution of (1.2). If u(x) ≥ u0(x) or u(x) ≤ u0(x)
for all x ∈ R

n \ {0}, then u(x) = u0(x).

We are also concerned with the Morse index computation of the singular solutions. In this
regard, we prove the following theorem:

Theorem 1.2. Let u ∈ C2
loc(R

n \{0}) be any singular solution of (1.2). Then its Morse index
is infinity.

The main motivation of Theorem 1.2 is the blow-up analysis of solutions to the fractional
Yamabe problem. Indeed, in many circumstances, one tries to prove compactness of solutions
via a contradiction argument. If the sequence of solutions is unbounded, a rescaling argument
yields a solution posed in the euclidean space. Under certain hypotheses of the rescaling, the
limit solution could be singular at the origin. If one has a bound on the Morse index of the
blowing-up solutions, then the limit solution should have finite Morse index, and Theorem 1.2
would give a contradiction.

The proofs of Theorems 1.1 and 1.2 follow at first the strategy of the local case; indeed, the

estimate (1.3) motivates the change of unknown v(r) = κn,sr
n−2s

2 u(r), with r = |x|. In polar
coordinates (r, θ) ∈ (0,+∞) × S

n−1, the fractional Laplacian satisfies the following conformal
property (see [6, 8]):

(−∆s)
(

r−
n−2s

2 v(r)
)

= r−
n+2s

2 (Pv(r) + v(r)) ,

where

Pv(t) := P.V.

∫

R

(v(t) − v(τ))K(t− τ) dτ,

with

(1.5) K(t) = γn,s e
−n+2s

2
|t|

2F1

(

n+2s
2 , 1 + s; n2 ; e

−2|t|
)

, γn,s > 0.
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Here 2F1 represents the hypergeometric function. In particular, we have the following asymp-
totic behavior for the kernel (see for instance [2, 9]):

(1.6) K(ξ) ≍

{

|ξ|−1−2s as |ξ| → 0,

e−
n+2s

2
|ξ| as |ξ| → +∞.

Via the Emden-Fowler change of variable r = e−t we are led now with the fractional problem:

(1.7) Pv + v = v
n+2s
n−2s , in R.

Moreover, by (1.3), the solution v satisfy:

(1.8) 0 < c1 ≤ v(t) ≤ c2, ∀ t ∈ R.

Observe that the solution v = 1 of (1.7) corresponds to the solution (1.4). It is worth to
point out, however, that the classical methods for ODE’s cannot be applied here, and a “phase
portrait” seems not possible (see [8, 2]).

Little is known about the qualitative properties of the solutions of (1.7). Inspired by the
classical case, one could conjecture that all such solutions v are periodic in t: this is by now a
major open problem. Periodic solutions have been constructed in [9] (see also [1, 2]).

In order to prove Theorem 1.1 it suffices to show that any solution v must intersect the
constant solution 1. This is done by using the first eigenfunction of the operator P in bounded
large domains, and using a convenient comparison principle.

The proof of Theorem 1.2 reduces to show that the Morse index of any solution v of (1.7)
is also infinity. In order to show this, we discuss two different cases.

We say that a solution v satisfies the Oscillation Condition if there exist constants M > 0
and ǫ > 0 such that for any interval I = [a, b] with length |b− a| =M , then:

max{v(t) : t ∈ I} > 1 + ε and min{v(t) : t ∈ I} < 1− ε.

If the solution v does not satisfy the Oscillation Condition, we prove that there exists a
sequence τn ∈ R such that v(· − τn) → 1 in Ckloc. The proof of this fact uses Theorem 1.1.
Moreover, one can check that the solution 1 has infinite Morse index, and in this way we
conclude.

If, instead, the solution v satisfies the Oscillation Condition, we prove that one can use
the function |v′|, conveniently truncated, to make the quadratic form become negative. An
iterative argument gives the existence of many such truncations, and this implies that the
Morse index is infinity.

The rest of the paper is organized as follows. In Section 2 we are concerned with Theorem
1.1. For that, some preliminaries are in order. In particular, we need to consider the associated
eigenvalue problem in bounded domains. In Section 3 we first give a definition of the Morse
index associated to problem (1.2), and we show its relation with the Morse index of solutions
to problem (1.7). We then use this relation to prove that the latter is infinity.
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2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by showing that any solution v for (1.7) has to intersect
the constant solution v0 ≡ 1. To start with, let us recall the definition of the fractional Sobolev
space Hs(Ω):

Hs(Ω) =

{

u ∈ L2(Ω) :
|u(x) − u(y)|

|x− y|s+n/2
∈ L2(Ω× Ω)

}

, s ∈ (0, 1),

equipped with the norm

‖u‖Hs(Ω) =

(

‖u‖2L2(Ω) +

∫

Ω

∫

Ω

|u(x)− u(y)|2

|x− y|n+2s dx dy

)
1
2

.

As has been anticipated in the introduction, most of the time we will consider Sobolev Spaces
in dimension 1.

Lemma 2.1. Let I ⊂ R be any interval, u ∈ L∞(R) such that u|I ∈ C2(I). Then Pu ∈ C(J)
for any J ⊂⊂ I, where

Pu(t) := P. V.

∫

R

(u(t)− u(τ))K(t− τ)dτ, t ∈ J.

Here K is given in (1.5) (and hence satisfies (1.6)).

The proof of this lemma is standard, using the asymptotic properties of the kernel K (see
(1.6)), and is left to the reader.

The operator P satisfies a maximum principle, which is stated and proven below for the
sake of completeness.

Proposition 2.2 (Maximum Principle). Let I ⊂ R be an open interval, u ∈ L∞(R) such that
u|I ∈ C2(I). Assume that u(t) ≥ 0 for all t ∈ R, and Pu(t) ≥ 0 for any t ∈ I. Then, either
u(t) > 0 for all t ∈ I or u(t) = 0 a.e. t ∈ R.

Proof. Assume u ≥ 0, u not identically equal to 0, and assume that for some t0 ∈ I, u(t0) = 0.
Then,

Pu(t0) = P.V.

∫

R

K(t0 − τ)(u(t0)− u(τ)) dτ = P.V.

∫

R

K(t0 − τ)(−u(τ)) dτ < 0.

This proves the result. �

As anticipated in the introduction, the first eigenvalue of P on bounded intervals will play
a major role in the proof of Theorem 1.1. On that purpose, we introduce the quadratic form

(2.1) T (v) =
1

2

∫

R

∫

R

K(t− τ)(v(t)− v(τ))2 dt dτ,

defined for every compactly supported v ∈ Hs(R).

Definition 2.3. Given any M > 0, we define the first eigenvalue of P in [−M,M ] as

λ1(M) = inf

{

T (v)
∫

R
v(t)2 dt

: v ∈ Hs(R) \ {0}, supp v ⊂ [−M,M ]

}

.
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The properties of λ1(M) that will be needed later are collected in the following lemma:

Lemma 2.4. The following assertions hold true:

(i) λ1(M) > 0 for every M > 0.
(ii) There exists a continuous, nonnegative function φ1 ∈ Hs(R) such that suppφ1 ⊂

[−M,M ], φ1(t) > 0 for every t ∈ (−M,M) and

T (φ1)
∫

R
φ1(t)2dt

= λ1(M).

Moreover, φ1 ∈ C∞(−M,M) and it satisfies

(2.2) Pφ1 = λ1φ1 in (−M,M).

(iii) λ1(M) → 0, as M → +∞.

Proof. Observe that, by definition, λ1(M) ≥ 0. We first prove that λ1(M) is achieved by a
nonnegative function φ1 for every M > 0. Take vk ∈ Hs(R) with supp vk ∈ [−M,M ] such that
∫

R
vk(t)

2 dt = 1 and T (vk) → λ1(M). By (1.6), there exists a constant C1 = C1(M) such that

(2.3) K(ξ) ≥ C1|ξ|
−1−2s for |ξ| ≤M.

Using (2.3) and the expression for T given in (2.1),

T (vk) + ‖vk‖L2(R) ≥ min{C1, 1}‖vk‖
2
Hs(R).

Therefore, vk is bounded in Hs(R) and up to taking a subsequence we can assume that vk ⇀ φ1
weakly in Hs(R) and strongly in L2(R) (see [14, Theorem 7.1]). A standard minimization
argument permits us to conclude that φ1 is a minimizer. With this in mind, if λ1(M) = 0,
then φ1 would be constantly equal to 0, contradicting ‖φ1‖L2(R) = 1.

Now, testing the quotient with |φ1| , we see that

T (|φ1|) =
1

2

∫

R

K(t− τ)(|φ1(t)| − |φ1(τ)|)
2dτdt ≤

1

2

∫

R

K(t− τ)(φ1(t)− φ1(τ))
2dτdt = T (φ1).

Thus, we can assume that φ1 ≥ 0. (2.2) is the Euler-Lagrange equation for the functional T
under the constraint

∫

R
v2 = 1, and the maximum principle (Proposition 2.2) gives us φ1(t) > 0

for all t ∈ (−M,M). The regularity of φ1 is known (see [16, Section 6.1] and the references
therein), being φ1 ∈ C0(R)∩C1(−M,M). A bootstrap argument yields interior C∞ regularity.

Finally, we show that λ1(M) → 0, as M → +∞. By (1.6), the following bound holds:

K(ξ) ≤ C|ξ|−1−2s for every ξ ∈ R.

Then,

(2.4) λ1(M) ≤ Cµ1(M)/2,

where:

µ1(M) := inf

{

∫

R

∫

R
(v(t)− v(τ))2|t− τ |−1−2s dt dτ

∫

R
v(t)2 dt

: v ∈ Hs(R) \ {0}, supp v ⊂ [−M,M ]

}

.

It is clear that µ1(M) is decreasing in M . Moreover, by the scaling properties of the terms in
the definition of µ1(M), we have that:
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µ1(M) = µ1(1)M
−2s.

From this inequality and (2.4), the claimed result follows. �

We are now ready to prove Theorem 1.1, which is an immediate consequence of the next
result:

Proposition 2.5. Let v a solution of (1.7) satisfying (1.8). Assume that v(t) ≥ 1 (or v(t) ≤ 1)
for all t ∈ R. Then v(t) ≡ 1.

Proof. Assume first that v ≥ 1. Observe that

(2.5) P (v − 1) ≥
4s

n− 2s
(v − 1) ≥ 0 in R.

This is a consequence of the concavity of the function t → t
n+2s
n−2s − t together with the fact that

P1 = 0. By Proposition 2.2 we have that either v = 1 or v − 1 > 0. Let us see that the latter
possibility yields a contradiction.

By Lemma 2.4, (3), it is possible to find M > 0 such that λ1(M) < 4s
n−2s . We will denote

by φ1 the corresponding eigenfunction, satisfying

(2.6) Pφ1 = λ1(M)φ1 in (−M,M).

Let us recall that φ1 ∈ Hs(R)∩C0(R), supp φ1 = [−M,M ] and φ1(t) > 0 for all t ∈ (−M,M).
Then, we can define α > 0 as:

0 < sup

{

φ1(x)

v(x)− 1
, x ∈ R

}

= max

{

φ1(x)

v(x)− 1
, x ∈ R

}

:= 1/α.

By continuity, we have that w := v − 1− αφ1 ≥ 0 but there exists t0 ∈ (−M,M) such that
w(t0) = 0. We can now combine (2.6) with (2.5) to conclude that, for any t ∈ (−M,M),

Pw(t) ≥
4s

n− 2s
(v − 1)− λ1(M)αφ1 ≥ λ1(M)w(t) ≥ 0.

But this is a contradiction with Proposition 2.2, and we conclude.
Now, let us consider the case v ≤ 1. Again by concavity, and taking into account (1.8), we

observe that there exists c > 0 such that

v
n+2s
n−2s − v ≤ c(v − 1).

Hence,

P (1− v) ≥ c(1− v),

and we can argue analogously as above by taking M such that λ1(M) < c. �

3. Proof of Theorem 1.2

This section addresses the proof of Theorem 1.2. First of all, we will specify the definition of
the Morse Index in our setting. We will see that some of its fundamental properties carry over
naturally to the nonlocal case, others, such as its behavior when passing to the limit, require
more attention.
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Definition 3.1. Given u a solution of (1.2), we define the associated quadratic form as:

(3.1) Qu[ψ] =
1

cn,s

∫

Rn\{0}
ψ(−∆)sψ −

n+ 2s

n− 2s

∫

Rn\{0}
u

4s
n−2sψ2,

which is well defined, at least, for functions ψ ∈ C∞
0 (Rn \ {0}). We define the Morse index of

the solution u as follows:

Ind(u) = sup {dim(E) : E ⊂ C∞
0 (Rn \ {0}) a vector space such that Qu|E is negative definite} .

Our intention is to show that the Morse index Ind(u) of any solution u of (1.2) is infinity.
To show this, it suffices to consider subspaces E of radially symmetric functions of arbitrary
dimension where Qu|E is negative definite. In this particular setting, we can work with the
following alternative quadratic form:

Lemma 3.2. Let u(x) be a (radially symmetric, thanks to [4]) solution of (1.2), and ψ ∈
C∞
0 (Rn\{0}) a radially symmetric function. Then,

Qu[ψ] =
∣

∣S
n−1
∣

∣Qv[φ],

where v(t) = r
n−2s

2 u(r), φ(t) = r
n−2s

2 ψ(r), r = e−t and

(3.2) Qv[φ] =
1

2

∫

R

∫

R

(φ(t)− φ(τ))2K(t− τ) dτdt+

∫

R

(

1−
n+ 2s

n− 2s
v(t)

4s
n−2s

)

φ(t)2dt.

Proof. We rewrite (3.1) using polar coordinates and the change of variable t = − log r

Qu[ψ] =

∣

∣S
n−1
∣

∣

cn,s

∫ ∞

0
ψ(r)(−∆)sψ(r)rn−1 dr −

n+ 2s

n− 2s

∣

∣S
n−1
∣

∣

∫ ∞

0
u(r)

4s
n−2sψ2(r)rn−1 dr

=
∣

∣S
n−1
∣

∣

∫

R

e
n−2s

2
tφ(t)e

n+2s
2

t (Pφ(t) + φ(t)) e−(n−1)tetdt

−
n+ 2s

n− 2s

∣

∣S
n−1
∣

∣

∫

R

e2stv(t)
4s

n−2s e(n−2s)tφ(r)2e−(n−1)tetdt

=
∣

∣S
n−1
∣

∣

(
∫

R

φ(t)Pφ(t)dt+

∫

R

φ(t)2dt−
n+ 2s

n− 2s

∫

R

v(t)
4s

n−2sφ(t)2dt

)

.

(3.3)

We claim that:

(3.4)

∫

R

φ(t)Pφ(t)dt =
1

2

∫

R

∫

R

K(t− τ) (φ(t)− φ(τ))2 dτdt.

By definition,
∫

R

φ(t)Pφ(t)dt =

∫

R

φ(t)

(

P.V.

∫

R

(φ(t)− φ(τ))K(t− τ)dτ

)

dt

=

∫

R

φ(t)

(

lim
ε→0

∫

R\(t−ε,t+ε)
(φ(t)− φ(τ))K(t− τ)dτ

)

dt.

Call

Fε(t) := φ(t)

∫

R\(t−ε,t+ε)
(φ(t)− φ(τ))K(t − τ)dτ.
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Also, for R > 0 large enough, define A(t, ε,R) = [t − R, t + R] \ (t − ε, t + ε). Then, by the
properties of the kernel K and Taylor expansion,

|Fε(t)| = |φ(t)|

∣

∣

∣

∣

∣

φ′(t)

∫

A(t,ε,R)
K(t− τ)(t− τ)dτ +

1

2

∫

A(t,ε,R)
φ′′(ξ)K(t− τ)(t− τ)2 + C

∣

∣

∣

∣

∣

≤ |φ(t)|

(

∥

∥φ′′
∥

∥

L∞(R)

∫ t+ε+R

t+ε

C̄

|t− τ |2s−1dτ + C

)

≤ C |φ(t)| ,

for some ξ depending on t, τ, ε and R. Since φ(t) is compactly supported, by the Dominated
Convergence Theorem we can write

∫

R

φ(t)Pφ(t)dt = lim
ε→0

∫

R

∫

R\(t−ε,t+ε)
φ(t)(φ(t) − φ(τ))K(t − τ)dτdt.

Observe that the function φ(t)(φ(t)−φ(τ))K(t− τ) is integrable in {(t, τ) ∈ R
2 : |t− τ | > ε}.

Therefore, relabeling the integration variables and using Fubini’s Theorem, one can see that

lim
ε→0

∫

R

∫

R\(t−ε,t+ε)
φ(t)(φ(t) − φ(τ))K(t − τ)dτdt = − lim

ε→0

∫

R

∫

R\(t−ε,t+ε)
φ(τ)(φ(t) − φ(τ))K(t− τ)dτdt.

Consequently,
∫

R

φ(t)Pφ(t)dt = lim
ε→0

∫

R

∫

R\(t−ε,t+ε)
φ(t)(φ(t)− φ(τ))K(t − τ)dτdt =

= lim
ε→0

1

2

∫

R

∫

R\(t−ε,t+ε)
(φ(t)− φ(τ))2K(t− τ)dτdt,

and the claim follows because of integrability of the last term.

Finally, we can combine (3.3) and (3.4) to conclude the proof of the Lemma. �

The above lemma motivates the following definition:

Definition 3.3. Let us define:

ind(v) = sup{dimF : F ⊂ C∞
0 (R)a vector space such that Qv|F is negative definite}.

Clearly, since we are restricting ourselves to radial functions, Ind(u) ≥ ind(v) where v(t) =

r
n−2s

2 u(r), r = e−t.

Remark 3.4. A first remark is that the Morse index of the solutions v as defined above is
translation invariant. In other words, if v is a solution of (1.7) and we define va(t) = v(t−a),
a ∈ R, then va is also a solution of (1.7) and ind(v) = ind(va).

The following result shows that for every convergent sequence of solutions of (1.7), one
can take a subsequence whose Morse Index stays above the Morse Index of its limit. There
exist analogue results for the local case, but their proofs cannot be translated to the nonlocal
framework immediately.

Lemma 3.5. Let vk be a sequence of solutions of (1.7) satisfying (1.8) uniformly in k. Then,
up to taking a subsequence, vk → v∞ in Chloc(R) for any h ∈ N and v∞ also solves (1.7).
Moreover,
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(3.5) lim inf
k→+∞

ind(vk) ≥ ind(v∞).

Proof. The C∞−regularity of the solutions of (1.7) is well-known, see [9, §3] and [14]. In any
given compact set Ω ⊂⊂ R, all the derivatives of vk are uniformly bounded and equicontinuous

(see [9, Remark 3.3]) and thus admit a uniformly convergent subsequence v
(l)
k → v

(l)
∞ in Ω

by Ascoli-Arzelà Theorem (see also [17, Th. 7.17]). By a standard Cantor diagonalization
argument, we have vk → v∞ in C∞

loc(R).

Now, let us show that v∞ solves (1.7). We will use the local C∞ convergence and the decay
of the kernel given by (1.6) to see that Pvk → Pv∞ a.e. in R. Let us call wk = vk− v∞. Then,
for every fixed t ∈ R :

Pwk(t) = P.V.

∫

R

K(t− τ)((wk(t)− wk(τ))dτ

≤ P.V.

∫

I
K(t− τ)((wk(t)− wk(τ))dτ + C

∫

R\I
|wk(t)− wk(τ)| e

−n+2
2

(τ−t)dτ
(3.6)

where I = [t −M, t +M ] and M > t + 1. By Taylor expansion, using the symmetry of the
kernel,
(3.7)

P.V.

∫

I
(wk(t)−wk(τ))K(t−τ)dτ ≤ w′

k(t)P.V.

∫

I
(τ−t)K(t−τ)dτ+C

∥

∥w′′
k

∥

∥

L∞(I)

∫

I

(τ − t)2

|t− τ |1+2s .

Notice that the first term in the right-hand side of (3.7) is zero because of symmetry, and the
second one is finite since s < 1. On the other hand,

(3.8)

∫

R\I
|wk(t)− wk(τ)| e

−n+2
2

(τ−t)dτ ≤ |wk(t)|
4e

−M(n+2)
2

n+ 2
+

∫

R\I
|wk(τ)| e

−n+2
2

(τ−t)dτ → 0,

by the Dominated Convergence Theorem, since wk → 0 a.e. in R. Inserting (3.7) and (3.8) in
(3.6), we conclude

|Pwk(t)| ≤ C
(

∥

∥w′′
k

∥

∥

L∞(I)
+ |wk(t)|

)

→ 0.

Let us now show (3.5). Take F ⊂ C∞
0 (R) a finite dimensional vector space such thatQv∞ [ψ] < 0

for all ψ ∈ F . By compactness, we can show that Qv∞ [ψ] < −ε < 0 for all ψ ∈ F , ‖ψ‖ = 1,
where ‖ · ‖ represents any norm in F .

Given ψ ∈ F , ‖ψ‖ = 1, we have that from the definition of Qv given in (3.2),

Qvk [ψ] → Qv∞ [ψ].

Then, there exists k0 ∈ N such that if k ≥ k0, Qvk |F is negative definite. As a consequence,
ind(vk) ≥ dim F . This concludes the proof. �

The proof of Theorem 1.2 is divided into two cases, depending on the behavior of the solution
v. This is determined by the following definition.
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Definition 3.6. Let v be a solution for (1.7). We say that v satisfies the Oscillation Condition
(OC) if

∃ M > 0, ǫ > 0 : ∀a, b ∈ R, b− a =M,

max{v(t) : t ∈ [a, b]} > 1 + ε and min{v(t) : t ∈ [a, b]} < 1− ε.
(OC)

In the next proposition we prove that if v does not satisfy the above Oscillation Condition,
its Morse index is infinity.

Proposition 3.7. Let v be a solution of (1.7) satisfying (1.8). If v does not satisfy (OC),
then ind(v) = +∞.

Proof. Take Mk := k and ǫk :=
1
k for any k ∈ N. Then there exists a sequence of points tk ∈ R

and intervals Ik = [tk − k/2, tk + k/2] such that either

(3.9) max{v(t) : t ∈ Ik} ≤ 1 + εk, or min{v(t) : t ∈ In} ≥ 1− εk.

We suppose that the first possibility holds, the other case being analogous. Define a sequence
of bounded functions by translation as vk(t) = v(t−tk); we can apply Lemma 3.5 to assert that
there exists v0 solution to (1.7) such that vk → v0 in Chloc(R). Since max{v(t) : t ∈ Ik} ≤ 1+ 1

k
we conclude that v0(t) ≤ 1 for all t ∈ R. By Proposition 2.5, we conclude that v0(t) = 1 for
all t ∈ R. We now use Lemma 3.5 to conclude that

lim inf
k→+∞

ind(vk) ≥ ind(1).

By the invariance of the Morse index via translation (see Remark 3.4), we have that actually
ind(vk) = ind(v).

The proof concludes by showing that ind(1) = +∞. In this case the quadratic form reads:

Q1[φ] =
1

2

∫

R

∫

R

(φ(t)− φ(τ))2K(t− τ) dτdt−
4 s

n− 2s

∫

R

φ(t)2dt.

By Lemma 2.4, we can take M > 0 so that λ1(M) < 4 s
n−2s . If φ1 is the corresponding

eigenfunction, we have that Q1[φ1] < 0. Using the density of C∞
0 (−M,M) in

{u ∈ Hs(R) : suppu ⊂ [−M,M ]}, we find φ ∈ C∞
0 (−M,M) with

Q1[φ] < 0.

Take now m ∈ N, and define ψj(x) = φ(x − j(dm + 2M)), j = 1 . . . m, where dm is a
large positive constant that will be chosen later, and provides a lower bound for the minimal
distance between the supports of ψj . Clearly, the functions ψj form a linearly independent set
in C∞

0 (R). Given 0 6= ψ =
∑m

j=1 αjψj , we have that:

Q1[ψ] =

m
∑

j=1

α2
jQ1[ψj ] +

m
∑

i 6=j

αiαjA1[ψi, ψj ].

Here A1 denotes the bilinear form:

A1[φ,ϕ] =
1

2

∫

R

∫

R

(φ(t)− φ(τ)) (ϕ(t)− ϕ(τ))K(t− τ) dτdt−
4 s

n− 2s

∫

R

φ(t)ϕ(t)dt.
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Observe that for i 6= j, since ψi and ψj have disjoint supports:

|A1[ψi, ψj ]| ≤

∫

supp(ψi)
|ψi(t)|

∫

supp(ψj )
|ψj(τ)|K(t− τ) dτdt

≤ K(|i− j| (dm + 2M))

(
∫

R

|ψi(t)| dt

)(
∫

R

|ψj(τ)| dτ

)

→ 0 if dm → +∞.

Then, for sufficiently large dm, we conclude that Q1[ψ] < 0. By definition, ind(1) ≥ m. Since
m is arbitrary, we conclude.

�

We finish the proof of Theorem 1.2 by showing that the Morse index of the solutions of (1.7)
that satisfy (OC) is also infinite. This computation is based on the following proposition:

Proposition 3.8. Let v be a solution to (1.7) which satisfies the Oscillation Condition (OC)
given in Definition 3.6 for certain M > 0, ε > 0. Then for any interval I = [a, b] of length
|b− a| ≥ 5M , there exists a function φ ∈ C∞

0 (R) with supp φ ⊂ I such that

‖φ‖L∞ ≤
1

δ
and Qv[φ] ≤ −δ

where δ > 0 does not depend on the choice of the interval I.

Proof. Take I = [a, b] an interval as in the statement of the proposition. The proof is developed
in several steps.

Step 1: There exists a < x0 < x1 < b such that v′(xj) = 0, j = 0, 1, and

(3.10)

∫ x1

x0

(v′(t))+ dt > 2ε,

∫ x1

x0

(v′(t))− dt > 2ε.

Here f+(x) := max{f(x), 0} and f−(x) := max{−f(x), 0} denote the functions positive and
negative part of f .

Take ti, i = 1 . . . 6, t1 = a, t6 = b, ti+1 − ti =
b−a
5 , and define Ii = [ti, ti+1], i = 1 . . . 5. By

the Oscillation Condition (OC), there exists yi ∈ (ti, ti+1) with v(yi) = 1, i = 1 . . . 5.
Observe now that the interval [y1, y3] contains I2. Again by (OC), there exists an interior

global maximum and minimum of v in (y1, y3) which are greater than 1 + ε and smaller than
1− ε, respectively. Take x0 = min{t > y1 : v

′(t) = 0}.
We now reason analogously in the interval [y3, y5], which contains I4, and define x1 =

max{t < y5 : v
′(t) = 0}.

Let us take the minimum value of v in (y1, y3), achieved at y, and the maximum of v in
(y3, y5), attained at ȳ. Then,

2ε ≤ v(ȳ)− v(y) =

∫ ȳ

y
v′(s) ds ≤

∫ ȳ

y
(v′(s))+ ds ≤

∫ x1

x0

(v′(s))+ ds.

By taking a maximum in (y1, y3) and a minimum in (y3, y5), we can reason as previously to
obtain

2ε ≤

∫ x1

x0

(v′(s))− ds,
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as claimed.

Step 2: Define η : R → R as:

η(t) =

{

|v′(t)| t ∈ [x0, x1],
0 otherwise.

Then η ∈ Hs(R) and Qv[η] < −δ, where δ > 0 depends only on ε and M .
The assertion η ∈ Hs(R) is inmediate from its definition. Let us now compute the quadratic

form (3.2) on η. We first claim that

(3.11) Qv[η] =

∫ x1

x0

∫ x1

x0

K(t− τ)
(

v′(t)v′(τ)− |v′(t)v′(τ)|
)

dt dτ.

Indeed, letting J = [x0, x1], (3.2) applied to η reads

Qv[η] =
1

2

∫

R

∫

R

(η(t)− η(τ))2K(t− τ) dτdt +

∫

R

(

1−
n+ 2s

n− 2s
v(t)

4s
n−2s

)

η(t)2dt

=
1

2

∫

J

∫

J

(

|v′(t)| − |v′(τ)|
)2
K(t− τ) dτ dt+

∫

J

∫

R\J
v′(t)2K(t− τ) dτ dt

+

∫

J

(

1−
n+ 2s

n− 2s
v

4s
n−2s (t)

)

v′(t)
2
dt.

Additionally, we can differentiate the equation (1.7) to get

Pv′(t) +

(

1−
n+ 2s

n− 2s
v(t)

4s
n−2s

)

v′(t) = 0.

Testing this new equation with

ϕ(t) =

{

v′(t) t ∈ [x0, x1],
0 otherwise,

we obtain
∫

J

(

1−
n+ 2s

n− 2s
v(t)

4s
n−2s

)

v′(t)2dt = −

∫

J
v′(t)

(

P.V.

∫

R

(v′(t)− v′(τ))K(t − τ)dτ

)

dt

= −

∫

J
v′(t) lim

ε→0

∫

R\(t−ε,t+ε)
(v′(t)− v′(τ))K(t− τ)dτdt.

For R > 0 large enough, reasoning as in the proof of Lemma 3.2, we get the existence of a
constant C = C(R) > 0 such that

∣

∣

∣

∣

∣

v′(t)

∫

R\(t−ε,t+ε)
(v′(t)− v′(τ))K(t− τ)dτ

∣

∣

∣

∣

∣

≤ C
∣

∣v′(t)
∣

∣ , for all t ∈ J.
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Therefore, by the Dominated Convergence Theorem:
∫

J
v′(t) lim

ε→0

∫

R\(t−ε,t+ε)
(v′(t)− v′(τ))K(t− τ)dτdt = lim

ε→0

∫

J

∫

R\(t−ε,t+ε)
v′(t)(v′(t)− v′(τ))K(t− τ)dτ

= lim
ε→0

(

∫

J

∫

J\(t−ε,t+ε)
v′(t)(v′(t)− v′(τ))K(t− τ)dτ +

∫

J

∫

(R\J)\(t−ε,t+ε)
v′(t)(v′(t)− v′(τ))K(t− τ)dτ

)

= −
1

2

∫

J

∫

J

(

v′(t)− v′(τ)
)2
K(t− τ) dτ dt−

∫

J

∫

R\J
v′(t)2K(t− τ) dτ dt,

where in the last step we have used Fubini’s Theorem together with the integrability of
v′(t)(v′(t)− v′(τ))K(t − τ) in {(t, τ) ∈ J2 : |t− τ | > ε}. Finally, substituting:

Qv[η] =
1

2

∫

J

∫

J

(

(

|v′(t)| − |v′(τ)|
)2

−
(

v′(t)− v′(τ)
)2
)

K(t− τ)dτdt

=

∫

J

∫

J
K(t− τ)

(

v′(t)v′(τ)− |v′(t)||v′(τ)|
)

dτdt.

Let us define

(3.12) J+ = {x ∈ J : v′(t) > 0} and J− = {x ∈ J : v′(t) < 0},

which are nonempty because v satisfies (3.10). Then, using (3.11) we can bound the quadratic
form as follows

Qv[η] = 2

∫

J+

∫

J−

K(t− τ)
(

v′(t)v′(τ)− |v′(t)v′(τ)|
)

dt dτ

= 4

∫

J+

∫

J−

K(t− τ)v′(t)v′(τ) dt dτ < 4K(10M)

∫

J+

v′(t) dt

∫

J−

v′(τ) dτ < −4K(10M)ε2.

The last two inequalities follow from the monotonicity of the kernel, the bound
|t− τ | ≤ 2 |x1 − x0| < 10M and (3.10).

Step 3: Conclusion.

We conclude since C∞
0 (I) is dense in {u ∈ Hs(R), supp u ∈ I}. �

Conclusion of the Proof of Theorem 1.2. By Proposition 3.7, it suffices to show that
ind(v) = +∞ for any solution v of (1.7) satisfying the Oscillation Condition. In this case, we
will work with a family of translations of the functions given by Proposition 3.8.

Given m ∈ N, take m disjoint intervals Ij, j = 1, . . . ,m, of length 5M , and φj as in
Proposition 3.8. In the spirit of the proof of Proposition 3.7, we consider minimal distance
between all the intervals, d = min{|ti − tj |; ti ∈ Ii, tj ∈ Ij , i 6= j}, that will be taken large
enough. We remark that the functions φj with j = 1, . . . ,m are linearly independent, since
they have disjoint supports.

Now, take any nontrivial linear combination of φj , φ =
∑m

j=1 λjφj , and evaluate Qv[φ]:

Qv[φ] =
m
∑

j=1

λ2jQv[φk] +
m
∑

i 6=j

λiλjAv[φi, φj ],
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where Av is the bilinear form associated to Qv, that is,

Av[φ,ϕ] =
1

2

∫

R

∫

R

(φ(t)− φ(τ)) (ϕ(t)− ϕ(τ))K(t−τ) dt dτ+

∫

R

(

1−
n+ 2s

n− 2s
v

4s
n−2s (t)

)

φ(t)ϕ(t) dt.

We estimate as follows:

Qv[φ] ≤ −δ

m
∑

j=1

λ2j +

m
∑

i 6=j

λiλjK(d)

(
∫

R

∫

R

|φi(t)| |φj(τ)| dt dτ

)

≤ −δ

m
∑

j=1

λ2j +

m
∑

i 6=j

λiλjK(d)
(5M)2

δ2
,

where δ > 0 is given by Proposition 3.8. By taking d sufficiently large, we can have that
Qv[φ] < 0, so ind(v) ≥ m by definition. Since m ∈ N was arbitrary, we conclude. �
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