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Abstract

The emergence of new technologies has changed the way clinicians perform di-

agnosis. Medical imaging play a crucial role in this process, given the amount of

information that they usually provide as non-invasive techniques. Despite the

high quality offered by these images and the expertise of clinicians, the diag-

nostic process is not a straightforward task since different pathologies can have

similar signs and symptoms. For this reason, it is extremely useful to assist this

process with the inclusion of an automatic tool that reduces the bias when ana-

lyzing this kind of images. In this work, we propose an ensemble classifier based

on probabilistic Support Vector Machine (SVM) in order to identify relevant

patterns while providing information about the reliability of the classification.

Specifically, each image is divided into patches and features contained in each

one of them are extracted by applying kernel PCA. The use of base classifiers

within an ensemble allows our system to identify the informative patterns re-

gardless of their size or location. Decisions of each individual patch are then

combined according to the reliability of each individual classification: the lower

the uncertainty, the higher the contribution. Performance is evaluated in a real
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scenario where distinguishing between pneumonia patients and controls from

chest Computed Tomography (CCT) images, yielding an accuracy of 97.86%.

The large performance obtained and the simplicity of the system (use of deep

learning in CCT images would highly increase the computational cost) evidence

the applicability of our proposal in a real-world environment.

Keywords: Computer-aided diagnosis, Medical imaging, Probabilistic machine

learning, uncertainty, Pneumonia.

1. Introduction

Medical imaging play a crucial role in the clinical practice worldwide. As a

non-invasive technique, they provide crucial information for the diagnosis of a

wide range of diseases. Despite the high spatial resolution that current medical

imaging provide, performing a correct diagnosis is not a straightforward task.

Success depends on factors such as the expertise of the doctors or the overlap-

ping between symptoms associated with similar pathologies. This leads to a

manual, time-consuming process that may delay diagnosis and the election of a

correct treatment. Previous studies have employed machine learning methods

for the automatic detection of diseases. Some of them have been used for de-

limitating the regions of interest as an initial step of the classification pipeline

[1, 2, 3], whereas others have been successfully employed in the classification

stage [4, 5, 6]. The emergence of deep neural networks has revolutionized the

automatic classification of medical images. These alternatives provide an excel-

lent performance both as a feature extractor and in the classification stage of a

wide range of pathologies [7, 8, 9]. However, the use of too much complex alter-

natives can degrade performance in contexts with a high amount of information.

This complexity is partially alleviated in scenarios where two-dimensional im-

ages are employed, but when using three-dimensional ones, the computational

burden highly increases.

One solution is to select only one slice, constraining the images to have two

dimensions. [10] successfully employed this alternative within a transfer learning
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setting and discriminant correlation analysis. [11] also used it in combination

with DenseNet, leading to a high classification performance. However, this ex-

treme dimensionality reduction leads to a vast loss in the spatial information

that this kind of images provide. In fact, this is essentially the advantage of 3D

images over 2D ones: higher resolution and volumetric data. Thus, eliminating

the third dimension can drastically mitigate the potential of three-dimensional

images. Another important issue is the way the target slice is selected from the

volumetric image, since it is not a trivial task. One possibility is to choose the

slice displaying the largest number of lesions. However, this process requires

clinicians to do it manually, which is not ideal when trying to automatize the

diagnosis. It seems clear that the simplest solution is to employ the whole 3D

image and not selecting only one slice, but this entails a high computational

cost. This workload would be even worse when using deep learning and three-

dimensional convolutions for feature extraction. Besides, training a deep learn-

ing model requires a considerable amount of data, especially when the number

of features is high like in 3D images. Thus, it is necessary to find a solution that

leads to a high classification performance while mitigating the computational

load associated with the processing of volumetric data.

In this work, we employ an ensemble classifier based on probabilistic SVM

in order to identify relevant patterns while providing information about the

reliability of the classification. In particular, each three-dimensional image is

divided into a number of cubic patches. Features contained in each one of them

are extracted by applying kernel PCA, and the most informative components

are then entered into an RBF-SVM classifier. The use of base classifiers within

an ensemble allows our system to identify the informative patterns regardless

of their size or location. Decisions of each individual patch are then combined

according to the reliability of each individual classification: the lower the un-

certainty, the higher the contribution, and vice versa. Performance is evaluated

in a real scenario where distinguishing between controls vs pneumonia patients.

The method presented in this work successfully employs machine learning

from a probabilistic perspective, guiding the ensemble classification according
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to the uncertainty of individual predictions. This allows to strike a balance be-

tween performance and the computational burden, which is especially relevant

when processing three-dimensional images. The rest of the paper is organized

as follows. Section 2 summarizes similar works developed for image classifica-

tion. Section 3 provides a complete explanation of the method presented in this

work. First, the kernel PCA is described, whereas the probabilistic SVM is also

detailed. After that, it is explained how the different base classifiers are fused

within the ensemble framework. Afterwards, the applicability of the proposed

method is assessed in the detection of pneumonia associated with COVID-19.

The database employed for that purpose is explained in Section 4, in addition

to the preprocessing pipeline and the three experiments conducted. Results

are described in Section 5 and discussed in Section 6. Finally, conclusions and

future lines of research are contained in Section 7.

2. Related works

The creation of intelligent systems for the automation of image classification

is commonly used in a wide range of scenarios. Algorithms based on machine

learning have been successfully used in the automotive industry in order to

ensure the integrity and quality of different components [12]. These approaches

have also been employed in other applications such as the automatic evaluation

of the porosity of different materials [13], in addition to the prediction of the

production capacity of hydropower industries [14]. Other alternatives in the field

of computer vision have focused on the prediction and management of traffic flow

from cameras located in roads [15]. This work combines a mixture of Gaussian

(MOG) modeling for background removal with a transfer learning approach

to detect the different objects in the video images. This allows tracking the

position of each pedestrian and bicycle, predicting their trajectory and the risk of

collision with another vehicle. Another work focused on the analysis of satellite

images for improving the agricultural production [16]. This alternative employed

an expanded version of Randomized Quasi-Exhaustive (RQE) to extract a set
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of interdependent features from integral images. Then, a classifier based on

random forest was used to compute the posterior probability that each pixel

belongs to each agricultural field. [17] presented a framework for predicting a

tennis game outcome by analyzing the players performance. They employed a

deep neural network for the extraction of high-level statistics, in addition to

recognize fine-grained tennis actions based on an Inception architecture [18].

Ensemble classification has also been used for image analysis, especially in

contexts where its performance is larger than the one obtained by individual

classifiers. Numerous works in literature have combined the decision of a number

of base classifiers in order to improve the modeling of some data. [19] proposed

a variant of ensemble architecture based on random forest in order to detect and

classify epileptic seizure. The EEG data was entered into all the classifiers within

the ensemble, obtaining the final decision as a combination of individual outputs

through a majority voting. Similarly, [20] presented a two-stage ensemble of

deep architectures for melanoma classification. Skin lesions were previously

segmented by an U-sharped architecture. Afterwards, the preprocessed images

were entered into five state-of-the-art networks. The final decision was computed

by combining each individual network through its output probability, so that

a network with a high output probability had more influence than one with

a lower probability. [20] developed a robust quality estimation for ensemble

architectures in segmentation contexts. In this case, they employed the SIMPLE

[21] method in order to combine the outputs of the individual classifiers within

the ensemble. This approach is based on an iterative procedure that combines

atlas selection and the performance of propagated segmentation as a weight

in the fusion process. Results showed a better performance than the classical

majority voting.

With reference to probabilistic approaches, previous studies have used them

for different purposes. [22] employed these alternatives as a feature transfor-

mation method. Specifically, they entered features in their original space into

a probabilistic Support Vector Machines (SVM) classifier, leading to new fea-

tures in a transformed space. These outputs were then combined by using an

5



adaptive similarity fusion, yielding a high performance in the classification of

medical images. [23] proposed a Bayesian classification framework based on

a local probabilistic model for image classification. The idea behind Bayesian

classifiers is that they offer a measure of the risk of each classification decision,

which is considerably more informative than providing the class label itself.

The main finding in [23] is that probability distribution for each class is simpler

and more accurate when computed in a local sample space than when models

are optimized in the whole sample space. Following a similar approach, [24]

proposed a probabilistic model for simultaneously classifying and annotating

images from different sports, whereas [25] presented a method based on the

expectation–maximization (EM) algorithm to refine the final annotation of the

images.

3. Methodology

3.1. Kernel Principal Component Analysis

One of the main challenging problems in classification is related to the small

sample size problem [26], which occurs when datasets are formed by high-

dimensional data but with a small number of samples. Unfortunately, it is not

uncommon to find large differences between the number of features and samples,

so that finding a solution that alleviates this issue is crucial. Principal Compo-

nent Analysis (PCA) is a multivariate approach that has been widely used to

reduce the dimensionality of the data [27, 28, 29]. This method attempts to find

a linear subspace with a lower dimensionality than the original space. Given

a set of N samples xk, xk = [xk1, . . . ,xkn] ∈ Rn, the aim of PCA is to find

the projection directions that maximize the variance of a subspace [30]. This

is equivalent to compute the eigenvalues from the covariance matrix. There are

some occasions in which features can not be linearly extracted. In kernel PCA

[31, 32], vector x is projected from the input space, Rn, to a high-dimensional

space, Rf , by applying a non-linear mapping function Φ : Rn → Rf , f > n. In
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the new feature space, Rf , the eigenvalue problem can be described as follows:

CΦwΦ = λwΦ (1)

where CΦ is a covariance matrix. All the solutions wΦ with λ 6= 0 are in the

transformed space Φ(x1, . . . ,Φ(xN )), and there exist coefficients αi such that:

wΦ =

N∑
i=1

αiΦ(xi) (2)

Defining an NxN matrix K by

Kij = k(xi,xj) = Φ(xi) · Φ(xj) (3)

the PCA problem becomes:

NλKα = K2α ≡ Nλα = Kα (4)

where α denotes a column vector with entries α1 . . . αN [32].

A nonlinear version of PCA is obtained when using a nonlinear kernel such

as the radial basis function (RBF), defined as follows:

k(xi,xj) = exp

(
−0.5 ‖xi − xj‖2

σ2

)
(5)

Finally, vectors in the high-dimensional feature space are projected into a

lower dimensional spanned by the eigenvectors wΦ. Given a sample x whose

projection is Φ(x) in Rf , the projection of Φ(x) onto the eigenvectors wΦ is the

nonlinear principal components corresponding to Φ, as follows:

wφ · Φ(x) =

N∑
i=1

αi(Φ(xi)Φ(x)) =

N∑
i=1

αiK(xi,x) (6)

The dominant eigenvectors of the covariance matrix described in Equation

1 span a new subspace. Then, the number of eigenvectors that explained 90%

of the total variance are selected for the subsequent classification step.
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3.2. Classifier

The resulting eigenvectors were then entered into the classification stage,

which was based on an SVM classifier with RBF kernel [33]. This alternative

can be mathematically described as follows:

ri = sign
( Nsv∑
i=1

αiyiK(xi, zj) + b
)

(7)

where ri is the classification response for sample i; Nsv is the number of support

vectors; αi is the Lagrange multiplier; yi is the class membership of sample i;

K(xi, zj) is the kernel function and b is the bias parameter [34]. In order to

mitigate the effect of class imbalance, we incorporated the weights of the classes

into the cost function of the SVM in order to assign to each sample a different

relevance in the classification decision [35, 36]. This means that samples from

the majority class had a lower influence in the penalty term than the ones from

the minority class.

The output of the classifier informs us about the class each sample belongs

to. When classifying medical images it is particularly convenient to know not

only if a patient suffers or not a disease but a degree of certainty of the pre-

diction. However, standard SVMs do not provide any additional information

of the predictions. [37] proposed a method for mapping the outputs of SVMs

to probabilities. This was based on the decomposition of the feature space into

a direction orthogonal to the separating hyperplane and the rest of dimensions

of the feature space. Despite its good performance, this approach requires a

linear solution for every evaluation of the SVM. [38] suggested an alternative

based on training a logistic regression model on the classifier outputs in order

to transform them into a probability distribution. The posterior probability can

be defined as follows:

P (y = 1|f) =
1

1 + exp(Af +B)
(8)

The parameters A and B are fit using maximum likelihood estimation from a
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training set (fi, yi). Let (fi, ti) a new training set, where ti are target probabil-

ities defined as:

ti =
yi + 1

2
(9)

Parameters can be estimated by minimizing the negative log likelihood of the

training data, which is a cross-entropy error function:

min
[
−
∑
i

ti log(pi) + (1− ti) log(1− pi)
]

(10)

where

pi =
1

1 + exp(Afi +B)
(11)

We employed Equation 8 for computing the probability that a test sample

belonged to a specific class. However, this measure itself doest not quantify the

uncertainty of the prediction. To do so, we used a Bootstrap method following

a random sampling with replacement scheme [39, 40]. This process consists on

selecting part of the training set (80% in our case), training the SVM classifier

and computing the posterior probability of each test sample. Then, a new

subset is randomly picked up from the training images and computed again the

posterior probability of the test sample. This operation was repeated 500 times

in order to build a distribution of probabilities. Finally, the uncertainty for a

specific test sample k was computed as the variance of the posterior probabilities,

as follows:

ui =

∑K
i=1(xi − µ)2

K
(12)

where xi is the i-th element of the probabilities distribution x, µ is the mean

of the distribution and K is the number of times that the Boostrapping pro-

cess is repeated. Section 3.3 provides a detailed explanation about the use of

uncertainty in our classification framework.
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Figure 1: Schema of the classification system proposed in this work.
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3.3. Ensemble Classification

The development of a CAD (Computer-aided diagnosis) system for the de-

tection of a certain disease relies on the assumption that patterns associated

with this pathology are similar among patients. However, the signs and symp-

toms may differ depending on the virulence of the disease. The presence of

other abnormal findings that are not related to the disorder can also affect the

reliability of the classification system, in addition to the artifacts during the

acquisition of the images. To overcome these potential pitfalls, we propose an

ensemble framework in which different classifiers analyze local regions of the

images. Afterwards, the decisions of each classifier are combined according to

the reliability of each classifier’s prediction. This means that images are first

divided into different regions. When using three-dimensional images, they are

divided into cubic patches [41]. For each individual patch, kernel PCA is ap-

plied, entering the resulting components into the classifier. The number (and

hence, size) of the patches were selected in order to match the potential size of

the informative patterns, guaranteeing to strike a balance between performance

and computational cost. Finally, each individual classifier was then fused into

a global one following a specific procedure.

Majority voting has been widely used as a way of combining the output of

individual classifiers into a global decision [42, 43]. However, this is not the

optimum choice to combine different classifiers decisions because some of them

can be more reliable than others. In this work, we compute the weight associ-

ated with each patch according to the uncertainty derived from the posterior

probabilities obtained by the SVM classifier. If the variance of the probabilities

of a classifier in a specific prediction is high, its contribution to the final ensem-

ble would be low, and viceversa [44]. Defining ukl (y) as the uncertainty of the

test sample y obtained from the k -th classifier corresponding to the l -th class,

the empirical average of the l -th weights (inverse of uncertainties) over the K
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classifiers can be calculated as follows:

El(y) =

∑K
k=1

1
uk
l (y)

K
(13)

The class label of the test sample y is then assigned to the class with the

maximum average weight as:

Label(y) = arg max
l

El(y) (14)

Figure 1 shows a scheme of the ensemble classification framework proposed

in this work.

4. Application to pneumonia detection

The following sections evaluate the applicability of the proposed method as

a tool for identifying pneumonia from CT images. Specifically, we assessed the

performance of our approach in order to detect the patterns associated with this

pathology, distinguishing between controls and COVID-19 patients.

4.1. Database description

The dataset employed in this work was provided by HT Médica, a com-

pany specialized in radiology that offers innovative solutions for image diagnosis.

The dataset comprises 513 CCT images, including 100 control patients and 413

characterized as depicting pneumonia associated with COVID-19. Controls are

formed by healthy subjects and patients who have been diagnosed from atelec-

tasis, bronchopneumonia, chronic obstructive pulmonary disease, emphysema

and pneumothorax . All images were obtained as part of patient’s routines clin-

ical care during the first wave of the COVID-19 pandemic in Spain (March to

June 2020). Data were anonymized before being used in this study following

the requirements stated by medical ethics committees. Figure 2 shows a slice

of a CCT scan from a control (CL) and a patient suffering from pneumonia

(PNEU).
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Figure 2: Slices of two CCT images of a control (left) and a pneumonia caused by COVID-19
(right). Note some clear artifacts in COVID-19 image.

4.2. Image preprocessing

When working with medical images, it is crucial to apply preprocessing in

order to improve the subsequent classification performance. Therefore, this op-

eration must adapt images to the requirements of the classification framework.

Given the high computational and memory requirements of CCT volumes, we

downsampled the input images to obtain a final map of 128x128x128. We also

performed an automatic lung segmentation in order to separate voxels corre-

sponding to lung tissues from those of the surrounding anatomy. To do so,

we applied a histogram equalization to improve the contrast of the images by

modifying the intensity distribution of the voxels in the image. After that, the

Otsu’s method [45] was employed for computing the threshold that separated

target and non-target voxels. This alternative relies on the maximization of the

between-class variance to separate the voxels belonging to the different classes.

After lung segmentation, the resulting images were registered employing the

Elastix software [46]. This process consists on finding a coordinate transforma-

tion T (x) that modifies a moving image IM (x) to be aligned with a fixed image

IF (x). A transformation model Tµ(x), with parameters µ, can be formulated as

an optimization problem in which a cost function C is minimised with respect

to µ, as follows:

µ̂ = arg min
µ

C (Tµ; IF , IM ) (15)

We employed the average of all the images in the database as the fixed image

13



DownsamplingDataset Lungs
segmentation

128 x 128 x 128
513 CT scans

Images 
registration Standardization

𝑋 ! = 	
𝑋 − 𝜇
𝜎

Figure 3: Diagram of the preprocessing steps.

, whereas each individual image was iteratively selected as the moving one. We

used the Mean Square Difference (MSD) as the cost function in order to evaluate

the similarity between the fixed and the moving image. This function is defined

as follows:

MSD(Tµ; IF , IM ) =
1

N

∑
x∈ΩF

(IF (x)− IM (Tµ(x)))2 (16)

where ΩF denotes the fixed image domain andN the number of voxels x sampled

from the domain of the fixed image. See [47] for a more detailed explanation.

Finally, we performed an intensity normalization procedure for each individual

image based on standardization. Each image was transformed such the resulting

distribution had a zero mean and unit variance, as follows:

I ′ =
I − µ
σ

(17)

where I is the original image and I ′ is the resulting one. Figure 3 shows a

scheme of all the stages of the preprocessing.

4.3. Performance Evaluation

We employed a Leave-One-Out cross-validation scheme to estimate the gen-

eralization ability of our method [48]. From the 513 CCT scans, 512 were

employed to train the model, whereas the remaining one was used for testing.

This was performed within an iterative process in which all scans were used at

some point as the test sample. The performance of the classification framework

was evaluated in terms of different metrics derived from the confusion matrix:
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balanced accuracy, sensitivity, specificity, precision and F1-score, computed as

follows:

Bal Acc =
1

2

(TP
P

+
TN

N

)
Sens =

TP
TP + FN

Spec =
TN

TN + FP
Prec =

TP
TP + FP

F1− score =
2× Prec× Sens
Prec+ Sens

(18)

where TP is the number of pneumonia patients correctly classified (true posi-

tives), P is the number of pneumonia patients, TN is the number of controls

correctly classified (true negatives), N is the number of controls, FP is the num-

ber of controls classified as pneumonia (false positives) and FN is the number

of pneumonia patients classified as controls (false negatives). The area under

the ROC curve was also employed as an additional measure of the classification

performance [49, 50].

One crucial aspect is to evaluate the level of agreement of the different clas-

sifiers within the ensemble. To do so, we used a kappa-uncertainty diagram

[51, 52]. This measure relies on Cohen’s kappa coefficient [53], a statistic that

compares an observed accuracy with an accuracy obtained by chance, providing

a measure of how closely instances classified by a classifier match the ground

truth [54]. Cohen’s kappa can be mathematically defined as:

k =
pA − pE
1− pE

(19)

where pA is the observed relative agreeement between two annotators, and pE

is the probability of agreement by chance. Although acceptable kappa statistic

values vary on the context, the closer to 1, the better the classification. Section

5 summarizes the kappa scores obtained by the different members of the ensem-

ble, in addition to how accuracies of individual classifiers and kappa values are

related.
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Table 1: Summary of previous works focused on the automatic identification of pneumonia in
addition to the best results obtained by our method.

Research work Dataset Method Classification context Results (%)
[55] 772 CT scans MSANet Normal vs Bacterial vs Viral vs COVID Acc = 97.46
[56] 1000 CT scans GAN model Normal vs COVID Acc = 99.95
[57] 1397 CT scans DenseNet-121 Normal vs COVID Acc = 90.80
[56] 4356 CT scans COVNet Normal vs COVID AUC = 0.96
[58] 852 CT scans ResNet-50 Normal vs COVID Acc = 93.01
[59] 137 CT scans 3D-Resnet-10 Severe vs Critical COVID AUC = 0.91
[60] 400 CT scans VGG16 Normal vs COVID Acc = 99.00
[61] 436 CT scans ResNet-50 Normal vs COVID Other pathologies Acc = 97.10
[62] 234 CT scans DenseNet-121 Normal vs COVID Acc = 99.00
[63] 542 CT scans 3D CNN Normal vs COVID Acc = 90.80
[64] 1110 CT scans COV-CAF Normal vs COVID Acc = 97.76
[65] 1164 CT scans CCSHNet Normal vs COVID vs Pneumonia vs Tuberculosis Acc = 96.46
[66] 4154 CT scans ResNet-50 Normal vs COVID vs Other pathologies Acc = 95.00
[67] 63849 CT scans ResNet-50V2 Normal vs COVID Acc = 99.49

Our method 513 CCT scans Probabilistic Ensemble Normal vs COVID Acc = 97.86

.

4.4. Experimental setup

Performance of the classification framework developed in this work was eval-

uated according to three different experiments:

• Experiment 1: Classification between controls and COVID-19

patients. The aim is to detect the presence of pneumonia patterns in the

different patches each CCT is divided into. The classification system was

based on an ensemble of RBF-SVM classifiers, whose parameters γ and

C were optimized by using a grid search within a 5-Fold Cross-Validation

scheme. The final values used were γ = 3 and C = 1. Besides, patches

were only evaluated if 20% of their voxels contain lung regions.

• Experiment 2: Evaluation of the effect of the patch size in the

ensemble classification performance. A crucial aspect in the system pro-

posed is the size of the cubic patches used for each individual classifier.

A wide range of values were employed (from 24 to 56) in order to check

the existence of an optimum size. This would be clearly related to the

size of the patterns associated with COVID-19. Moreover, we study the

relationship between the patch size and the uncertainty measures derived

from kappa scores in order to guide the election of a proper cubic region

as a member of the ensemble.

• Experiment 3: Evaluation of the level of agreement of the differ-

ent classifiers within the ensemble. It is of great relevance to measure
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Figure 4: Data image coefficients after polynomial kernel PCA projection and decision surfaces
from the RBF-SVM classifier for two different patches. The number of eigenvectors needed
for retaining 90% of the variance ranges from 20 to 30. The hyperplane allows the separation
between Controls and COVID-19 patients.

the performance of each individual classifier and compare it with the one

obtained by the ensemble. Besides, we study how this relationship varies

for different patch sizes.

Table 1 summarizes recent works focused on the automatic detection of

pneumonia. Besides, it includes information about the methodology employed

as well as a comparison with the results obtained by the method proposed in

this work.

Table 2: Performance of the ensemble classification proposed in this work for the different
patch sizes evaluated.

Patch size Bal Acc (%) Sens (%) Spec (%) Prec (%) AUC F1-score (%)
Baseline approach: Voxels as Features

28 x 28 x 28 58.73 ±2.43 67.2 ±1.92 59.14 ±1.46 60.02 ±2.04 0.59 ±0.14 61.12 ±1.86
Ensemble approach: kernel PCA

24 x 24 x 24 96.89 ±1.43 100 84.45 ±0.87 96.42 ±1.01 0.91 ±0.76 98.08 ±0.55
28 x 28 x 28 97.86 ±0.76 100 90.18 ±0.86 96.98 ±1.02 0.95 ±0.01 98.75 ±0.45
32 x 32 x 32 97.27 ±0.98 100 86.98 ±1.24 96.72 ±1.12 0.93 ±0.13 98.33 ±0.52
42 x 42 x 42 89.68 ±1.64 100 81.04 ±1.09 88.82 ±1.49 0.89 ±0.15 94.08 ±0.87
48 x 48 x 48 85.50 ±1.47 100 71.35 ±2.01 93.44 ±0.76 0.86 ±0.20 96.61 ±0.79
56 x 56 x 56 84.00 ±1.52 100 68.19 ±1.87 92.81 ±0.56 0.84 ±0.18 96.27 ±0.73

5. Results

We first explore the performance of the ensemble classifier in terms of differ-

ent measures, as summarized in Table 2. We can see that the maximum accuracy

obtained is 97.86% when a cubic of 28x28x28 voxels is employed in each indi-

vidual classifier. This manifests the high discrimination ability of the ensemble

17



Figure 5: Left: Classification accuracies and their confidence bands obtained by the ensemble
classifier for different patch sizes. The size is given in terms of the side of the cubic, so that a
patch size = 24 refers to a cubic region of 24x24x24 voxels. Right: ROC curves obtained by
the ensemble approach for different patch sizes.
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Figure 6: Diversity-accuracy diagrams of the ensemble classifier for two different patch sizes.
The x-axis represents the balanced accuracy obtained by each individual classifier and the
resulting ensemble. The y-axis represents diversity of the classifiers evaluated by the kappa
measure. Each marker represents the kappa-accuracy score obtained by by each individual
classifier, whereas large stars represent the centroid of the resulting distribution. The dashed
vertical lines represent the ensemble accuracies for the different patch sizes.
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system. We also compared our system with a voxel-as-features (VAF) baseline

method, in which all voxels of the patch are used as a feature vector. Results

show that our approach highly outperformed the baseline, evidencing the need

of applying feature extraction before classification. In fact, the projection pro-

vided by the eigenvectors allows the classifier to find an optimum solution for

separating the two classes (see Figure 4). We also evaluate how performance

differs according to the patch sizes of the base classifiers within the ensemble.

Figure 5 provides a visual representation of the relationship between accuracy

and patch size. Despite accuracies are lower than the one obtained by the cubic

of 28x28x28 voxels, other patch sizes also lead to high performance, confirming

that the system proposed can detect the presence of pneumonia even when the

size of the patches is not ideal. However, results evidence that accuracy starts

decreasing when too large patches are employed. A similar behavior occurs

when referring to the area under the ROC curve, as Figure 5 shows. Patches

that cover too wide regions can add confounds due to other anatomical struc-

tures unrelated to COVID-19 but with a similar appearance. Besides, the use of

an exceeding size for the region covered by each base classifier can be detrimen-

tal for identifying the location of pneumonia. This can be especially relevant

when the pulmonary affection of the patient is not severe.

We also use the kappa-accuracy diagram to evaluate the level of agreement

between the classifier outputs. Figure 6 shows these diagrams for two different

patch sizes. The cloud points represent the kappa score-accuracy obtained by

each individual classifier, whereas large stars represent the centroid of the result-

ing distribution. The most interesting aspects to highlight are the relationship

between kappa score and accuracy of individual classifiers, in addition to the

differential performance between each base classifier and the resulting ensem-

ble. We can see that kappa diversity and accuracy are linearly dependent: a

low kappa score leads to a low classification accuracy, and vice versa. Moreover,

the accuracy of the ensemble classifier is much higher than the one obtained by

individual members, supporting the suitability of this approach in this context.

Although predictions of all base classifiers are used for taking the final decision,
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it is worth remembering that their contribution are weighted by the uncertainty

of their predictions. If a classifier is much better than the others (in terms of

accuracy and reliability), its decision will contribute much more than the rest.

Figure 6 shows an extreme case in which one base classifier overcomes by far

the rest of the members of the ensemble. When the patch size was 64 (green

line and markers), performance of the ensemble was exactly the same as perfor-

mance of the best individual classifier, which is due to the large weight of this

classifier compared to the rest. With reference to the patch size of 28, it shows

a more desirable behavior: the final result is given by the combination of more

than one member of the ensemble.

6. Discussion

In this study, an image classification framework based on a probabilistic

combination of classifiers is proposed. This approach relies on a scheme in which

each image is divided into different patches. From each one of them, features

are extracted by using kernel PCA, and classification is then performed through

a probabilistic RBF-SVM classifier. The outputs of individual classifiers are

combined in an ensemble according to the reliability of their predictions. We

evaluated the performance of this approach in terms of different measures and

studied the influence of the patches size in the global performance and the

relationship between individual and global decisions.

The high performance shown by the classification system proposed in this

work led to an accurate tool for detecting the presence of pneumonia in CCT

scans, in addition to spatially identify where this affection is located. It is

extremely important that a simple method like kernel PCA was able to extract

the relevant information from each patch. There is a current tendency to use

deep learning for the analysis of medical images, especially due to the large

performance that these alternatives provide. However, there are some scenarios

in which deep learning is not always the best choice for two main reasons.

First, the use of convolutional blocks in 3D images requires a high amount of
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mathematical operations, leading to an excessive increase in the computational

cost. Besides, the convergence and generalization ability of a convolutional

neural network are highly influenced by the size of the dataset. Previous studies

have performed dimensionality reduction of the input data by selecting only

one slice from the 3D CCT. However, this is not the optimal choice for several

reasons. It is likely that using only one slice discards information that could be

relevant for the classification process. Moreover, one of the main advantages of

CCT over CXR is its high resolution and the three-dimensional volumes that

it provides, so that reducing the images in order to have two dimensions can

be detrimental. Another important issue is that the process for selecting the

slice that contains the pulmonary affection is not trivial. This is especially

challenging when patients show an incipient pneumonia that is only located in

a few lung regions. In this scenario, the selection of the slice would require

the help of clinicians, eliminating the desired automaticity that our approach

provides.

Another crucial aspect of our method is the way different members of the

ensemble are combined. Unfortunately, COVID-19 often causes severe bilateral

pneumonia, which means that the pathology is spread across large regions of

the lungs. However, in first or intermediate stages of the disease only small

pulmonary regions are damaged. This means that when a CCT image is divided

into patches, most of them would be classified as controls since no pneumonia

patterns would be found. When employing majority voting for the combination

of individual classifiers within an ensemble, the final decision only depends on

the number of patches that votes for a certain class. In the described scenario,

all images from the first stages of the disease (where lung damage is scarce)

would be labelled as control patients, invalidating its use as an accurate tool for

the detection of pneumonia. However, since we weighted each member of the

ensemble according to their uncertainty, the decisions of some members are more

important than others. Patches that contain features similar to controls will lead

to a high uncertainty. On the other hand, patches with lung lesions will be easily

distinguished from controls, resulting in a low uncertainty and therefore, a high
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weight in the final decision. Thus, our system detects pneumonia for different

grades of severity, from early stages to the hyperinflammation phase. This is

extremely useful for an early diagnosis of the pathology and can help doctors

to select the proper treatment that speeds up the recovery of the patient.

We have developed a complete system that is able to identify the patterns

associated with pneumonia caused by COVID-19. It is worth highlighting the

high performance obtained by our proposal: the accuracy and the AUC obtained

were 97.86% and 95.31%, respectively. These results overcome other similar

techniques in previous studies [8, 68, 43, 69, 70]. There are some relevant aspects

regarding our system to be mentioned. First, our system obtained excellent

results while keeping a simple solution for the classification of three-dimensional

images. Second, the probabilistic nature of the classification scheme provides

extremely useful information for clinicians. Our approach detects the presence

(or not) of pneumonia and a measure of the uncertainty of its prediction, which

can be converted in visual maps (patches with highest accuracy and lowest

uncertainty) that help doctors to identify the pulmonary affection associated

with COVID-19.

7. Conclusions

The emergence of new technologies has manifested their high usefulness in

the diagnosis of a wide range of diseases. This utility is even higher when ap-

plying to medical imaging, given the amount of information that they usually

provide. In this paper, we propose a method to process images and identify rel-

evant features by using an ensemble probabilistic framework. This is addressed

by dividing the images into small regions, applying kernel PCA and performing

classification for each individual region. The outputs of each individual clas-

sifier are then combined into a global one according to the reliability of each

individual prediction: the lower the uncertainty, the higher the contribution.

Performance is evaluated in a real scenario where distinguishing between pneu-

monia patients and controls from chest Computed Tomography (CCT) images,
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yielding an accuracy of 97.86%. The combination of individual classifiers pro-

vides an automatic tool that detects the presence of the pathology, identifies its

location and quantifies the reliability of its prediction. The large performance

obtained and the simplicity of the system (use of deep learning in CCT images

would highly increase the computational cost) evidence the applicability of our

proposal to assist clinicians in a real-world environment. Future versions could

optimize the system to adapt to the idiosyncrasy of different types of medical

imaging, as well as exploring more complex frameworks in contexts where the

computational cost is not too problematic (e.g. two-dimensional images).
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