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The automation in the diagnosis of medical images is currently a challenging task. The use of Computer

Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when

hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has

been recently revolutionized by deep learning approaches. These alternatives usually obtain a large

performance based on complex solutions, leading to a high computational cost and the need of having15

large databases. In this work, we propose a classification framework based on sparse coding. Images

are first partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The

original signals are then transformed as a linear combination of the elements of the dictionary. Then, they

are reconstructed by iteratively deactivating the elements associated with each component. Classification

is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated20

in a real context where distinguishing between four different pathologies: control vs bacterial pneumonia

vs viral pneumonia vs COVID-19. Our system differentiates between pneumonia patients and controls

with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results

and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians

when their workload is high.25

Keywords: Computer-aided diagnosis, medical imaging, machine learning; deep learning, sparse coding;
dictionary; pneumonia; COVID-19.

1. Introduction

Nowadays, medical images are extremely relevant for

the diagnosis of a high number of diseases. The in-

formation provided by these images can be analyzed30

solely or combined with other complementary tests.

In both cases, a proper interpretation of the images

is crucial for avoiding the delay in the diagnostic

process, which can risk the patient’s health. With

the advance of artificial intelligence (AI), computer35

aided diagnosis (CAD) systems have been success-

fully used in the study of different pathologies. The

idea behind these methods is the identification of a

pattern in new samples based on the information ac-

quired in previous data.1–5 The simplest approach40

analyzes the information contained in group of pix-

els/voxels (for bidimensional and three-dimensional

images, respectively) from raw data. Working in the

original space makes it necessary to handle a large

amount of features. Besides, the number of samples is45

usually much lower, originating the so-called curse of

dimensionality problem.6 To address this issue, two

1
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main alternatives have been developed in order to

reduce the dimensionality of the feature space. The

first one consists on identifying the most discrimina-50

tive features, discarding the rest for the subsequent

analysis.7–9 The second relies on computing a new

set of features of a lower dimension than the original

space.10–12

The suitability of these intelligent systems de-55

pends on the context. The ultimate aim of CAD

frameworks is the classification of a specific pathol-

ogy with the largest performance as possible. How-

ever, there are other important factors to take into

account when designing a classification system, such60

as the interpretability of the model. For example,

a CAD framework for the prediction of Alzheimer’s

disease (AD) must differentiate between brain dam-

age due to aging from the atrophy caused by a cog-

nitive impairment. Besides, it is extremely useful to65

identify the brain regions that are first affected by

this neurological disorder, allowing clinicians to in-

crease their knowledge about this disease. This du-

ality between performance and spatial information

has been successfully met in previous studies.13,14
70

Following the example of AD, Ref.15 presents a ro-

bust ensemble scheme that combines images of dif-

ferent modalities for an early diagnosis of this dis-

ease. Specifically, they determined the role of each

brain region in the first stages of AD according to75

the anatomical information derived from an atlas.

Other recent works propose the use of fractals for

generating informative features for the classification

of Parkinson’s disease (PD).16 This kind of method-

ologies, based on machine learning, has also been ap-80

plied in the diagnosis of different pathologies such as

autism spectrum disorder (ASD),17–19 epilepsy20–22

or cancer.23–25

The emergence of deep learning and the ad-

vances in computation have revolutionized the85

biomedical image processing.26–33 Convolutional

neural networks (CNN) have particularly undergone

a real step forward in image classification.34–42 CNNs

are biologically-inspired models that compute im-

age features at different abstraction levels. They90

are based on convolution, a mathematical operation

which is subsequently applied to the response of the

previous layer in a neural network.43 These stud-

ies provide good results compared to other machine

learning algorithms, and their use in medical images95

is widely established.1,44–53 The main drawback of

these architectures is the high complexity that they

usually entail. This causes that networks tend to be

overfitted because of the limitations of the train-

ing algorithms, leading to a drop in performance.54
100

Moreover, the generalization ability of these alter-

natives highly depends on the size of the dataset

from which the model is trained. When the number

of samples is high, methods based on deep learning

usually learn the main features that characterize the105

different classes to distinguish from. However, it is

much more difficult to learn the relationship between

samples and labels when data is limited. Thus, the

optimum performance of deep learning alternatives

would be reached in scenarios where a vast number110

of images are available.

Despite the rising of public datasets, the require-

ments needed for the correct use of deep learning

approaches can not always be met. In this work, we

provide an alternative framework for image classifi-115

cation based on sparse coding.55 First, images are

partitioned into a number of squared tiles, and a

dictionary is built after applying PCA to a matrix

where all the tiles are stored. These tiles are coded

from their original space to the new one created as a120

linear combination of the elements of the dictionary.

After that, tiles are reconstructed in a process where

atoms associated with different components are it-

eratively deactivated. The differences in the recon-

struction errors in each iteration produce patterns125

that are extremely informative. In fact, we hypothe-

size that these patterns are different for the patholo-

gies studied in this work. Finally, errors are entered

into a classifier, deciding the label of each individual

sample. Performance is evaluated in a real scenario130

where trying to identify the presence of pneumonia in

chest X-ray (CXR) images. Specifically, our method

is applied in four contexts of incremental difficulty:

from a control vs pneumonia patients to a multiclass

context where differentiating between four patholo-135

gies: controls vs bacterial pneumonia vs viral pneu-

monia vs COVID-19.

This work skillfully combines a wide range of

techniques based on machine learning and sparse

representation for image classification, providing a140

large performance while reducing the computational

cost associated with other techniques such as deep

learning. The rest of the paper is organized as fol-

lows. Section 2 reviews related works for image clas-

sification. Section 3 describes the different stages of145
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the methodology proposed. First, the sparse-coding

method is presented. Finally, two different classifi-

cation algorithms are detailed: Support Vector Ma-

chines (SVM) and Random Forest (RF). Afterwards,

in Section 4, the applicability of our proposal is eval-150

uated in the diagnosis of different types of pneu-

monia. Details regarding the dataset are also pro-

vided in this section, in addition to an explanation

of the preprocessing of the images and a description

of the two main experiments conducted. Results are155

summarized in Section 5 and discussed in Section 6,

whereas conclusions and future works are available

in Section 7.

2. Related works

The use of intelligent systems for image classifica-160

tion is commonly used in a wide range of scenarios.

Ref.56 proposed a deep-learning approach for con-

struction vehicle detection. Ref.57 developed an au-

tomated classification of indoor air quality by an-

alyzing an electroencephalogram (EEG) signal. Ac-165

cording to these results, the EEG signal could be

used for automatically control indoor environmental

quality changes, reducing the drowsiness and increas-

ing attention. Ref.58 presented a multi-phase blend-

ing method to improve the accuracy of object detec-170

tors. In a medical-related context, Ref.59 proposed

a solution for maximizing the visibility of the mi-

nority class instance in imbalanced datasets. To do

so, they employed soft clustering to detect epilepsy

and PD. Other studies have focused on the diagnosis175

of dyslexia. Specifically, Ref.60 developed a diagnos-

tic method based on involuntary neurophysiological

responses to different auditory stimuli. Briefly, they

analyzed the temporal behavior and spectral content

of EEG signals to infer a connectivity model that re-180

veals the brain areas that process auditory stimuli in

a synchronized way.

With reference to sparse representation, this

framework has also been widely used in different

contexts such as machine learning,61,62 computer185

vision63,64 and pattern recognition.65,66 This tech-

nique has demonstrated to be an effective way of

handling data sets with high dimensionality,67 and

an excellent option for image classification.68 Ref.69

proposed a two-layer sparse coding for classifying190

images obtained from satellites, whereas Ref.70 in-

troduced a weighted sparse approach for the classi-

fication of hyperspectral images. Sparse representa-

tions have also been considered for medical image

classification. Ref.71 presented an alternative to K-195

Means clustering algorithm based on spatial pyramid

image representation, demonstrating a high classi-

fication performance. Other algorithms focused on

preserving the spatial information within the sparse

operation, alleviating its instability and improving200

the precision in the image representation.72 The high

performance of this methodology has also been ap-

plied in medical diagnoses. Ref.73 employed sparse

coding for segmenting brain tumors based on their

location and intensity. Similarly, Ref.74 proposed an205

algorithm based on dictionary learning and sparse

coding for the identification of different types of tu-

mors in histological images, whereas Ref.75 used a

very similar framework for segmenting lesions asso-

ciated with multiple sclerosis. Other previous works210

have introduced the use of sparse learning methods

in the CDR computation from retinal fundus,76 as

well as in cataract grading from slit lamp lens im-

ages.77 Histopathological images are another impor-

tant context where sparse coding has been employed.215

Specifically, sparse representations have been used in

conjunction with group clustering priors for cervi-

gram segmentation. Similarly, Ref.78 combined an

autoencoder with a dictionary learning framework

to extract sparse features in a classification context,220

whereas Ref.79 added a spatial pyramid matching to

enhance the performance of the system.

3. Methodology

3.1. Patches extraction

One crucial aspect for obtaining a good classifica-225

tion performance is related to the number of sam-

ples available. The higher this number, the more

discriminating features could be learnt by the clas-

sifier, increasing the resulting accuracy in most of

scenarios.80,81 Unfortunately, it is not uncommon230

to have access to datasets in which the number of

samples is quite reduced. This is highly established

in medical images datasets, since their acquisition

is not unexpensive. Another important point to be

considered is the existence of inhomogeneities be-235

tween images of the same class. These images can

have similar low-level features, but differing in the

location, shape or size of their most relevant char-

acteristics. To overcome these issues, we propose a

non-overlapping tile extraction step. Let IH×W be240
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the original image, where H and W are its height

and width, respectively. The image is then divided

into N number of tiles (also known as patches), pi,

with i = {1, 2, . . . , N} and patch dimensions given

by h× w. Thus, the number of samples to train the245

classifier is multiplied by the number of patches di-

visions (see Figure 1), as follows:

N =

(
H

h

)
×

(
W

w

)
(1)

It is worth mentioning that it would be possi-

ble to employ an overlapping patches-extraction ap-

proach. However, we discard this alternative despite250

leading to a higher number of samples for the subse-

quent classification process. The main reason is that

overlapping patches contain redundant information

for a group of pixels.82 This is usually controlled by

a sliding parameter, which defines the magnitude of255

the step from a patch to the next one. In an extreme

scenario in which this parameter is very small (e.g.

s=1), most of pixels contained in one patch are also

in the adjacent ones. The use of a non-overlapping

approach guarantees the spatial independence of all260

the subdivisions of the image, preserving the rela-

tionship between the informative features and their

location.

3.2. Sparse coding

After dividing the images into patches, they are en-265

tered into a sparse coding process. The idea behind

this technique is derived from the way the primary

visual cortex in human brain works. The number of

neurons in this brain region is much higher than the

number of receptor cells in the retina, which suggests270

that a sparse code is used to efficiently represent nat-

ural scenes.83–85 Sparse coding relies on the assump-

tion that data can be represented in terms of a linear

combination of basis elements,63 which form the so-

called dictionary.86 Consider a number of samples of275

class i, Ai = [vi,1,vi,2, . . . ,vi,ni
] ∈ Rm×ni . A new

sample y ∈ Rm can be approximated by the linear

span of the initial number of samples as follows:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

(2)

where αi,j ∈ R, j = 1, 2, . . . , ni represent the ele-

ments of the dictionary, which are usually termed280

atoms. As its name suggests, the sparsity nature of

the sparse coding method relies on the ability of rep-

resenting a signal in terms of a linear combination

of a few atoms. From a mathematical perspective, a

solution to the problem can be found by obtaining285

a matrix such that each column of the input data

can be approximated by a linear combination of the

columns of the input matrix.

3.3. Creation of the dictionary

The main advantage of sparse coding is that a com-290

plex signal (e.g. a medical image) can be represented

in a very concise manner. A crucial aspect in this

process is how the dictionary is built. The simplest

alternative is to use a prespecified transform matrix,

which usually leads to fast solutions for the evalu-295

ation of the sparse representation. One option is to

generate a dictionary entry for each individual patch

of all images. This would lead to a dictionary size

given by the number of samples available (number of

patches × number of images). It can be problematic300

that the size of the resulting dictionary is too high

for two main reasons. First, a dictionary with a high

number of atoms would lead to a slow process when

transforming and reconstructing the images because

of the matrices multiplication this process relies on.305

Second, employing features in the original space can

be suboptimal, making that atoms do not reflect the

main features of the different classes. In this work,

we propose a method based on Principal Component

Analysis (PCA) for the creation of the dictionary in310

order to maximize the differences in the representa-

tion of the different images.16 Briefly, patches of dif-

ferent images are individually stored by columns in a

matrix, and PCA87–89 is then applied to this matrix.

The aim of PCA is to find the projecting directions315

of maximum variance of a certain subspace given N

samples xk, with xk = [xk1, . . . ,xkn] ∈ Rn.90 This

means that the vector, x, is projected from the origi-

nal space, Rn, to a new one with a higher dimension,

Rf . The eigenvalue problem in the new feature space320

is given by:

CΦwΦ = λwΦ (3)

where the covariance matrix is represented by CΦ.

The transformed space, Φ(x1, . . . ,Φ(xN )), contains

the solutions wΦ with λ 6= 0. Regarding coefficients
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Figure 1. Process for the creation of the dictionary. First, images are divided into patches of equal size. These patches
are organized by columns into a matrix. A PCA is then used to maximize the variance of the projected components. The
resulting ones form the final dictionary.

β, they are given by:325

wΦ =
N∑
i=1

βiΦ(xi) (4)

Each element of matrix K, with a NxN size,

can be defined as:

Kij = k(xi,xj) = Φ(xi) · Φ(xj) (5)

Thus, the mathematical problem is redefined as:

NλKβ = K2β → Nλβ = Kβ (6)

where β is a vector with elements β1 . . . βN .91

Finally, vectors in the new feature space are pro-330

jected into a space with a lower dimension described

by the eigenvectors wΦ. Given a sample x, Φ(x)

would be its projection in the transformed space. Ac-

cording to Equation 4 and Equation 5, the projection

of Φ(x) onto the eigenvectors wΦ corresponds to the335

nonlinear principal components of Φ, as follows:

wφ·Φ(x) =

N∑
i=1

βi(Φ(xi)Φ(x)) =

N∑
i=1

βiK(xi,x) (7)

Figure 1 depicts a schematic representation of

the dictionary generation. The eigenvectors (also

known as principal components) of the covariance

matrix correspond to the directions of maximum340

variance of the data manifold. Given that eigenvec-

tors are obtained from images, they are useful for

determining the variance of patterns associated with

the different classes contained in a collection of im-

ages. Since the first eigenvectors compress the most345

part of the explained variance, they are usually cho-

sen in increasing-variance order. Thus, the resulting

first C components are the atoms that form the dic-

tionary, guaranteeing that these atoms represent cru-

cial information to be used in the subsequent classi-350

fication. We include in Algorithm 1 a pseudocode to

clarify the construction of the dictionary.
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Algorithm 1 Pseudocode for the dictionary con-

struction.
1: procedure GenerateDictionary(steps)

2: // Input: CXR Images

3: for i = 1→ NSubjects do

4: img = Data[i,:]

5: // Image is divided into P patches

6: img = patchify(img)

7: // Create a matrix of F files (number of

pixels in each patch) and NSubjects x P columns

8: patches = zeros(F, NSubjects * P)

9: a = 1

10: for j = 1→ P do

11: patches[:,a] = img[j]

12: a = a+1

13: end for

14: end for

15: eigenvectors = PCA(patches)

16: dictionary = eigenvectors

17: // Compute sparse representation of patches

18: sparse patches = dictionary(patches)

19: // Create a matrix for reconstructed patches

20: rec patches = zeros(F, NPatches)

21: // And another one for the reconstruction er-

rors

22: rec errors = zeros(NComponents, NPatches)

23: a=0

24: for k = 1→ NPatches do

25: // Deactivate atoms from Component c

26: dictionary[:,c] = 0

27: rec patch = dictionary(sparse patches)

28: rec errors[c,k] = patch-rec patch

29: end for

30: //Divide rec errors in training and test

31: model.fit(rec errors tr)

32: pred = model.predict(rec errors te)

33: end procedure

3.4. Sparse representation

Once the dictionary is built, the sparse representa-

tion of the different patches is computed. Specifically,355

the decomposition coefficient vector α̂ is obtained by

solving the L1-norm minimization92,93 problem as

follows:

α̂ = arg min
α

‖α‖1 subject to ‖Xα− y‖2 ≤ ε (8)

where X is the dictionary and y is the image patch to

be transformed. All patches are reconstructed by em-360

ploying a modified version of the dictionary within an

iterative process in order to evaluate the information

of each individual class stored by each component.

First, the atoms associated with the first component

are set to zero, using the elements of all but this com-365

ponent. In the second step, the unused atoms are the

ones related to the second component, and so on. The

number of reconstructions for each individual patch

is given by the number of components employed dur-

ing the construction of the dictionary. Then, a sparse370

reconstruction error is estimated for each compo-

nent. These errors are obtained by comparing the

reconstruction of each patch with the original patch.

Specifically, for each individual component is deacti-

vated, the difference between the original patch and375

the reconstructed version is computed, as follows:

e = ‖Xα̂‖ − y (9)

Previous studies have employed the reconstruc-

tion errors for deciding the class each test sample

belongs, in a process known as sparse coding clas-

sification (SRC).63,86,92,94 In this approach, the re-380

construction errors are computed by employing the

sparse coefficients α̂l associated with each class l:

el =
∥∥Xlα̂l

∥∥− y for l = 1, . . . , C (10)

where C is the number of classes. The class label for

the test sample y is assigned as the class with the

minimum reconstruction error:385

Label(y) = arg min
l

el(y) (11)

The simplicity of SRC is detrimental in scenar-

ios where informative patterns are very similar in

the different classes. Moreover, our framework does

not lead to an only reconstruction error, but a num-

ber given by the components employed when con-390

structing the dictionary and the patches contained in

each image. Thus, the use of SRC within our scheme

would lead to a different class assignment for each

patch and component, which could be then com-

bined into a global classification decision (e.g., with395

an ensemble approach95,96). However, we designed

our method as a feature extractor prior to the clas-

sification task, employing a more complex algorithm

to separate the different classes.
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3.5. Classification400

3.5.1. Support Vector Machines

The reconstruction errors were then entered as in-

put of the classification stage, which was based on an

SVM classifier with a linear kernel. This algorithm

selects a hyperplane that separates the samples from405

the two classes. A linear SVM classifier, f , can be

mathematically described by a pair of (x,x), as fol-

lows:

f(xi) = 〈w,xi〉+ b (12)

where w and xi are the weight and the feature vector,

respectively, and b is the error term. A point x would410

be classified as positive or negative depending on if

f(x) > 0 or if f(x) < 0. The resulting hyperplane

with the maximum margin is computed by solving

the optimisation problem described in Ref.97 :

1

2
‖w‖2 + C

∑
i

ξi subject to

yi(〈w,xi〉+ b) ≥ 1− ξi ∀iξi ≥ 0 ∀i
(13)

where C is the penalty for misclassification. The op-415

timisation problem can be solved as follows:

w =

n∑
i=1

yiαixi (14)

once Lagrangian multipliers are applied. The deci-

sion function can be rewritten in its dual form by

substituting the value of w in Equation 12:

f(xi) =

n∑
i=1

αiK(x,xi) + b (15)

where αi and b are the coefficients to be learnt from420

the examples and K(x,xi) is the kernel function em-

ployed to characterize the similarity between samples

x and xi. Since classes were unbalanced, we included

the weights of the different classes into the cost func-

tion in order to both classes contribute equally.425

3.5.2. Random Forest

For a multiclass classification, the reconstruction er-

rors of the different patches of the images were en-

tered into a Random Forest classifier. RF is an en-

semble method that combines a number of decision430

trees in order to improve the performance of indi-

vidual classifiers. The trees are built from k ran-

dom vectors, Θk, which are independent of the past

random vectors Θ1,Θ2,Θ3, . . . ,Θk−1 but with the

same distribution. The process developed in Ref.98
435

employs bagging for generating each random vector

Θ as the N observations randomly drawn from the

training set. Once a large number of trees is gener-

ated {h(x,Θk), k = 1, . . . N}, each one of them casts

a vote for the most popular class at input X. The440

majority vote of the trees determines the final deci-

sion of the ensemble.

One important aspect of RF classifiers is related

to their convergence and generalization error.98,99

Given a set of classifiers h1(x), h2(x), . . . , hk(x), and445

a training set randomly drawn from the distribution

of a random vector (X,Y), the margin function is de-

fined as:

mg(X, Y ) = avkI(hk(X) = Y )−maxj 6=Y avkI(hk(X) = j)

(16)

where X is the input metric, avk refers to the aver-

age number of votes at X, Y for the corresponding450

class and I(·) is the indicator function. The margin

is a measure about the extent to which the average

number of votes at X, Y for the right class exceeds

the average vote for any other class. Thus, the larger

the margin, the more confidence in the classification.455

The generalization error es given by:

PE∗ = PX,Y (mg(X, Y ) < 0) (17)

where PX,Y indicates that the probability is over the

X, Y space. According to Theorem 1.2 in Ref.,98 as

the number of trees increases, for almost surely all

sequences Θ1, . . . PE
∗ converge to:460

PX,Y (PΘ(h(X,Θ) = Y )−maxj 6=Y PΘ(h(X,Θ) = j) < 0)

(18)

Figure 2 shows a schematic representation of the

entire classification framework, from the dictionary

creation within the sparse coding to the classifier’s

decision. This process can be summarized as follows:

• Division of the images into patches. Informa-465

tive patterns can be located in small regions,

so that partitioning the images increases the

number of exemplars of informative and non-

informative regions. The size of the resulting
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Figure 2. Scheme of the classification pipeline. After building the dictionary, the sparse representation of each image
patch is computed. The reconstruction is performed by employing an iterative process in which the elements of the dic-
tionary are partially employed. First, the atoms associated with the first component are set to zero, using the elements of
all but this component. In the second step, the unused atoms are the ones related to the second component, and so on.
This process is performed both in the training and the test set. The reconstruction errors are computed as the difference
between the original and the transformed images. The resulting errors obtained in each individual patch are then used as
the input of the classifier, leading to the label prediction.

Control Bacterial Pneumonia Viral Pneumonia Covid-19 Pneumonia

Figure 3. CXR images of the different pathologies evaluated in this work.

patches must be adapted to the specific char-470

acteristics of the images to be processed. For

example, the size of the patches in pneumo-

nia images must be large enough to contain

the patterns of the pulmonary damage asso-

ciated with this pathology.475
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• Creation of a matrix where each column cor-

responds to an individual patch. The size of

the resulting matrix will be M × N , where

M is the number of voxels contained in each

patch and N is the product of the number480

of patches contained in each image and the

total number of images.

• Application of PCA to this matrix to ob-

tain an optimum dictionary by maximizing

the variance of the projected components.485

The eigenvectors will be the elements of the

dictionary, so that their size will be derived

from the number of principal components

preserved.

• Computation of the decomposition coeffi-490

cient vector α̂ by solving the L1-norm mini-

mization problem by sparse coding:

α̂ = arg minα ‖α‖1
• Estimation of the reconstruction error for

each patch y. To do so, the sparse coeffi-495

cients associated with each component are

iteratively set to zero to evaluate their in-

fluence in the reconstruction performance.

Each error is computed as follows: e =

‖Xα̂‖ − y500

• The resulting reconstruction errors are the

input features of a SVM/RF classifier in case

of a binary/multiclass classification, respec-

tively.

4. Application to pneumonia detection505

In the following subsections, the proposed method-

ology is evaluated in detail using chest X-ray (CXR)

images to show the applicability of the proposal in

the detection of pneumonia. Specifically, we evalu-

ated the performance of our method in a real context510

where distinguishing between controls and different

types of pneumonia: bacterial, viral and COVID-19.

4.1. Database description

Images from controls and bacterial/viral pneumo-

nia were obtained from Ref.100 . These images were515

acquired from retrospective cohorts of one to five

years patients from Guangzhou Women and Chil-

dren’s Medical Center, Guangzhou101 as part of

routines clinical care. Institutional Review Board

(IRB)/Ethics Committee approvals were obtained.520

The work was conducted in a manner compliant with

the United States Health Insurance Portability and

Accountability Act (HIPAA) and was adherent to

the tenets of the Declaration of Helsinki. The dataset

comprises 5856 CXR images, 4273 from pneumonia525

patients and 1583 controls. The COVID-19 dataset

contains 576 CXR images from adults.102 Figure 3

shows the CXR images associated with the different

pathologies evaluated in this study: controls (CTL),

bacterial (BAC) and viral (VIR) pneumonia, and530

COVID-19 (CVD-19).

4.2. Image preprocessing

CXR are usually images with a low resolution and

high levels of noise. This is mainly due to the low

X-ray radiation applied during the acquisition of the535

images as well as the movement of patients along this

process. Preprocessing can mitigate these effects and

improve the results of the subsequent classification.

We first downsampled the images to a final size of

224x224 in order to mitigate the computational bur-540

den while preserving their quality. Then, an intensity

normalization based on standardization was applied.

This procedure transforms each image in order to

the resulting distribution has a mean (µ) of 0 and a

standard deviation (σ) of 1:545

I ′ =
Io − µ
σ

(19)

where Io and I’ are the original and the preprocessed

image, respectively.

4.3. Sparse coding representation from
patches

As explained in previous sections, we propose the550

use of sparse coding to obtain a sparse representa-

tion of an input image from a linear combination

of elements. In our case, the elements correspond to

the atoms of a dictionary, obtained after applying

PCA to a matrix where patches of different images555

were contained. This allows that the atoms maximize

the differences in the representation of the different

classes. In this process, there are two main parame-

ters to have into account in the experiments.

• The number of patches each image is divided560

into.

• The threshold on the variance explained,

which limits the number of eigenvectors used

in the PCA projections.
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In the experiments, we varied the size of the565

patches and the number of resulting components

from PCA to evaluate their influence in performance.

4.4. Performance evaluation

In order to estimate the generalization ability of the

classifier, we used a 5-fold stratified cross-validation570

scheme for all experiments.103 With reference to per-

formance, we computed the following parameters de-

rived from the confusion matrix:

Bal Acc = 1
2

(
TP
P + TN

N

)
Prec = TP

TP +FP

Sens = TP

TP +FN
Spec = TN

TN+FP

F1− score = 2×Prec×Sens
Prec+Sens AUC = 1

2

(
TP
P + TN

N

)
where TP corresponds to the number of patients cor-

rectly classified as pneumonia (true positives), TN575

refers to the number of controls properly identified

(true negatives), FP quantifies the number of con-

trols labelled as pneumonia (false positives), whereas

FN refers to false negatives, i.e. the number of pneu-

monia patients who are mistakenly diagnosed as con-580

trols. We employed as an additional measure the area

under the ROC curve (AUC).104,105 In the multi-

class scenario, the information derived from param-

eters such as Sens or Spec can not be easily inter-

preted. In this context, we employed a method based585

on a multi-class One-vs-One scheme to compare ev-

ery unique pairwise combination of classes.106 The

multiclass-AUC was computed by averaging the re-

sults obtained for each individual comparison. More-

over, a multiclass version of the balanced accuracy590

was computed, as follows:

Multiclass Bal Acc =
1

M

M∑
m=1

rm
nm

(20)

where M is the number of classes, nm is the number

of samples belonging to class m and rm is the number

of samples belonging to class m that are accurately

predicted.595

4.5. Experimental setup

We define three different experiments associated with

the identification of pneumonia patterns:

• Experiment 1: Binary Classification to

differentiate between the different patholo-600

gies in three contexts: CTL vs PNEU,

which includes all images labelled as CTL

and PNEU regardless of the type of pneu-

monia; BAC vs VIR, which divides the

images from patients diagnosed from pneu-605

monia according to the cause of the disease

(bacterial or viral); VIR vs CVD19 for vi-

ral pneumonia. In the last context, the aim

was to identify whether viral pneumonia was

caused by COVID-19 or not. In this first610

experiment, the resulting features from the

sparse coding phase were then entered into

a linear SVM classifier. The cost parameter

was optimized within a grid-search process

in the training phase, ranging from 10−5 to615

105.

• Experiment 2: Multiclass Classifica-

tion by using an RF classifier in order to dis-

tinguish between the four different patholo-

gies contained in the database. This algo-620

rithm combines the decisions of individual

trees to obtain the final diagnosis of the pa-

tient. The process for building the dictio-

nary in addition to the classification frame-

work are identical to Experiment 1 except625

the aforementioned change in the classifier.

• Experiment 3: Evaluation of the effect

of different parameters in the classi-

fication performance. First, we repeated

the previous experiments with a limited630

number of samples in order to assess how

performance varies when a lower number

of samples is available. Specifically, the size

of the dataset was iteratively reduced from

100% to 25% with a step size of 25%. Be-635

sides, two different kernels (polynomial of

second and third degree and Radial-Basis

Function (RBF)) were used in order to com-

pare the original results in the four classifi-

cation frameworks where a linear kernel was640

employed.

The code was written in Python 3.6, and a num-

ber of additional libraries was used: Scikit-Learn 1.0,

Numpy 1.19.5, Patchify 0.2.3. The experiments were

carried out on a cluster with the following hard-645

ware specifications: two Intel® Xeon® E5-2630 node
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Table 1. Summary of previous works focused on the automatic identification of pneumonia in addition to the best results
obtained by our method.

Research work Dataset Method Classification context Results (%)
107 1000 CT scans GAN model Normal vs COVID Acc = 99.95
108 4356 CT scans COVNet Normal vs COVID AUC = 96.00
109 6374 CXR images Bayesian Deep Learning Normal vs Bacterial vs Viral vs COVID pneumonia Acc = 98.06
110 513 CT scans Probabilistic Machine Learning Normal vs COVID Acc = 97.86
111 137 CT scans 3D-Resnet-10 Severe vs Critical COVID AUC = 90.90
112 2905 CXR images Fibonacci patterns Normal vs COVID Acc = 99.78
113 13962 CXR images DeepDRR Normal vs COVID Acc = 94.00
114 3141 CXR images Resnet-50 Normal vs COVID Acc = 96.10
115 3487 CXR images DenseNet-201 Normal vs Bacterial vs Viral pneumonia Acc = 97.94
116 1428 CXR images VGG19 Normal vs COVID vs Bacterial pneumonia Acc = 98.75
117 3993 CXR images Resnet-50 Normal vs COVID vs Other pneumonia Acc = 99.87
118 852 CXR images COVIDNet Normal vs COVID Acc = 97.72
119 3487 CXR images CheXNet Normal vs Bacterial vs Viral pneumonia Acc = 97.80
120 1142 CXR images DarkNet Normal vs COVID vs Viral pneumonia Acc = 87.02
121 400 CT scans VGG16 Normal vs COVID Acc = 99.00
122 234 CT scans DenseNet-121 Normal vs COVID Acc = 99.00
123 1110 CT scans COV-CAF Normal vs COVID Acc = 97.76
124 1164 CT scans CCSHNet Normal vs COVID vs Pneumonia vs Tuberculosis Acc = 96.46
125 4886 CXR images Ensemble Deep Learning Normal vs COVID Acc = 99.80
126 63849 CT scans ResNet-50V2 Normal vs COVID Acc = 99.49

Our method 6432 CXR images Sparse coding Normal vs Pneumonia AUC = 97.39
Our method 4849 CXR images Sparse coding Bacterial vs Viral pneumonia AUC = 84.51
Our method 2069 CXR images Sparse coding Viral vs COVID19 pneumonia AUC = 99.14
Our method 6432 CXR images Sparse coding Normal vs Bacterial vs Viral vs COVID pneumonia AUC = 87.04

.

2.40GHz processors, with 10 cores per processor. Be-

sides, the total RAM memory capacity of the system

is 128 GB.

Table 1 provides an overview of recent works650

focused on the automatic detection of pneumonia,

including the methodology employed and the results

obtained. Despite the number of works for the detec-

tion of pneumonia is high, comparing between dif-

ferent approaches is not a straightforward task be-655

cause two main reasons. First, many studies employ

datasets that are not publicly available. Since results

highly depend on the difficulty of the classification

task, they are affected by the images used. Second,

there is a high variability between the datasets that660

most works use: from the modality of the images

(CT or X-ray), to the pathologies to be detected

(viral/bacterial pneumonia, COVID, other lung ab-

normalities, etc) or the number of images from each

class.665

5. Results

We first explore how performance varies according to

two parameters: the number of patches each image is

divided into and the number of components retrieved

from PCA to build the dictionary. Results are sum-670

marized in Table 2 for the four different classification

contexts. We can see that the maximum accuracy

obtained in the CTRL vs PNEU scenario is 97.74%,

with a patch size of 14x14 and 9 components used to

compute the dictionary. It is important to note that675

there is not a clear relationship between these two

variables and the resulting accuracy. However, a drop

in accuracy appears when too large patches are used

(56x56). This can be related to the fact that pneu-

monia patterns are usually located in small regions680

of the CXR images. When applying sparse coding,

information extracted can be related to pulmonary

affections derived from pneumonia. However, when

the size of patches increases, this information can be

due to other sources such as pulmonary structures685

that are completely normal, increasing the difficulty

of the classification task.

It is important to mention that the performance

in the second context (BAC vs VIR pneumonia) is

slightly lower than in the first scenario, manifesting690

the higher difficulty of this classification. Specifically,

the maximum accuracy was 84.88%, with a patch size

of 14x14 and 9 components. We also observe that

the discrimination ability of the proposed system is

larger in the VIR vs CVD19 scenario, with a maxi-695

mum accuracy of 99.36%. This can evidence that the

pathology caused by COVID-19 is more severe and

different than the one caused by other virus or bacte-

ria. Finally, the best result in the multiclass context

led to an accuracy of 86.73%. Results in terms of dif-700

ferent metrics associated with the situation of max-



November 21, 2023 12:50 manuscript˙ijns

12 Juan E Arco, Andrés Ortiz, Javier Ramı́rez, Yu-Dong Zhang and Juan M Górriz

Table 2. Balanced accuracies (and their deviations) of the classification approach proposed in this work in the different
contexts evaluated. Patch size is given in pixels.

Controls vs Pneumonia

Number of PCA components

Patch size N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

14x14 96.13±0.35 95.79±0.59 96.34±0.44 96.91±0.49 97.43±0.59 97.65±0.41 97.05±0.31 97.74±0.33
16x16 95.96±0.54 95.85±0.43 95.99±0.53 96.59±0.31 96.73±0.25 96.86±0.24 96.88±0.33 96.77±0.43
28x28 93.95±1.17 94.22±0.97 93.80±0.83 94.02±1.01 94.06±0.76 93.22±0.88 93.58±0.45 93.63±0.54
32x32 89.63±1.52 92.97±0.72 92.64±1.02 92.14±0.86 91.92±0.65 92.02±1.37 92.26±0.76 92.96±0.73
56x56 76.29±1.72 81.95±0.30 82.93±0.75 84.69±0.61 86.75±1.19 87.45±1.24 86.48±0.81 87.90±0.76

Bacterial vs Viral pneumonia

Number of PCA components

Patch size N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

14x14 83.29±0.98 82.76±0.95 84.16±0.79 83.85±1.16 84.98±0.98 84.24±1.43 83.87±0.47 84.88±1.13
16x16 82.83±1.29 81.74±0.92 82.48±0.91 81.29±0.64 84.55±1.13 82.54±1.13 83.39±1.48 83.78±0.65
28x28 79.57±1.25 79.43±1.42 79.76±1.09 79.84±1.21 80.67±1.40 79.84±1.38 79.28±2.09 80.29±1.21
32x32 79.33±1.10 79.53±1.15 79.43±1.63 80.17±1.56 79.38±0.99 80.00±1.60 79.55±0.94 79.20±1.40
56x56 61.60±1.26 67.96±1.59 69.63±1.84 74.08±1.45 74.06±1.17 73.89±1.27 75.64±1.27 75.94±1.00

Viral vs COVID19 pneumonia

Number of PCA components

Patch size N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

14x14 99.08±0.01 99.17±0.02 98.24±0.02 98.75±0.01 98.56±0.01 98.78±0.01 98.96±0.01 99.02 ±0.01
16x16 98.87±0.01 98.86±98.86 98.92±0.01 98.92±0.01 98.90±0.01 99.36±0.01 99.14±0.01 98.98±0.01
28x28 97.81±0.01 98.23±0.01 98.75±0.02 98.86±0.01 98.96±0.01 98.95±0.01 98.91 ±0.01 98.95±0.01
32x32 97.47±0.02 98.13±0.05 98.76±0.01 99.76±0.01 98.85±0.01 98.55±0.01 98.95±0.01 98.95±0.01
56x56 96.52±0.03 98.36±0.05 98.79±0.05 98.74±0.04 98.84±0.02 97.08±0.03 98.23±0.04 98.51±0.03

Multiclass

Number of PCA components

Patch size N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

14x14 85.05±1.40 85.41±1.19 85.98±1.04 85.54±1.07 86.59±0.92 86.73±1.08 84.61±1.08 84.16±1.30
16x16 85.37±1.15 84.22±1.11 84.50±1.33 84.05±1.23 84.31±1.22 84.64±0.99 85.14±1.09 83.44±1.10
28x28 82.83±1.06 81.81±1.29 82.21±1.20 81.27±1.26 81.59±1.17 81.61±1.21 81.28±0.87 81.46±1.13
32x32 82.33±1.45 81.49±1.42 81.02±1.19 80.79±1.38 81.62±1.27 81.17±1.04 80.82±1.02 80.71±0.99
56x56 67.21±1.21 72.43±0.80 74.72±1.18 75.19±0.75 74.56±0.67 74.75±0.84 73.97±0.84 75.49±0.97

Table 3. Performance metrics obtained in the maximum balanced accuracy scenario for all the classification contexts
evaluated.

Controls vs Pneumonia

Bal Acc (%) Sens (%) Spec (%) AUC (%) Prec (%) F1-score (%)

97.74±0.33 98.08±0.33 96.70±1.29 97.39±0.60 98.92±0.42 98.50±0.22

Bacterial vs Viral Pneumonia

Bal Acc (%) Sens (%) Spec (%) AUC (%) Prec (%) F1-score (%)

84.88±1.13 81.97±1.13 87.05±1.66 84.51±1.07 82.57±1.91 82.26±1.21

Viral vs COVID19 Pneumonia

Bal Acc (%) Sens (%) Spec (%) AUC (%) Prec (%) F1-score (%)

99.36±0.02 99.05±0.01 99.56±0.01 99.14±0.02 98.72 ±0.01 98.88±0.02

Multiclass

Multiclass Bal Acc (%) AUC (%)

86.73±1.08 87.04±1.21

imum accuracy are shown in Table 3. Figure 4 sum-

marizes the influence of the size of each individual tile

in the classification performance. The maximum ac-

curacies are obtained with squared patches of 14x14705

or 16x16 pixels in the different classification contexts.

Our results show that the accuracy starts decreas-

ing when too large patches are employed. This evi-

dences that covering too wide regions can be detri-

mental for the identification of pneumonia, especially710

in cases where this affection is not severe. Figure 5

depicts the ROC curves for the different classifiers.

The best results are obtained in the VIR vs CVD-19
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Figure 4. Influence of the patch size in the classification performance for the different contexts evaluated. Representations
correspond to the scenario that leads to the maximum performance.
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Figure 5. ROC curves obtained in the different classification scenarios. A multiclass version of the ROC curve was
computed for the multiclass context.

context, since differences between these two groups of

patients are clear. However, our system can also dis-715

tinguish between patients with the same pathology

(pneumonia) but different etiology (bacteria, virus or

COVID-19). Figure 6 shows a distribution of the re-

construction errors in the four classification contexts.

We can see that errors vary depending on the com-720

ponents used for the image reconstruction. It is also

important to note the differential influence of each

component when reconstructing patches associated
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Figure 6. Distribution of the reconstruction errors in the four classification contexts.

with the four classes, which manifests the subsequent

discrimination ability of the classifier.725

Table 4 summarizes the influence of the size of

the dataset in the classification performance. We can

see that a decrease in the number of samples does

not lead to a drop in performance. Moreover, vari-

ations in the results are minimum, leading to slight730

better performance in some cases when reducing the

dataset. This evidences the robustness of our method

and its suitability in situations where large datasets

are not available. Regarding the effect of the kernel

employed, our results show that the linear kernel is735

the optimum one for most classification scenarios, al-

though performance is very similar for the different

kernels (see Table 5). Further discussion about the

results and their implications are provided in Sec-

tion 6.740

6. Discussion

In this work, a classification framework based on

sparse coding is proposed. This approach is based

on the construction of a dictionary that relies on the

assumption that an image can be expressed as a lin-745

ear combination of different atoms. We employed a

scheme in which each image was divided into patches

and the dictionary was built from the components of

maximum variance from the patches of all images.

The errors obtained from the iterative reconstruc-750

tion were then used as input features of a classifier.

The performance of this alternative was evaluated

in three scenarios. In the first and in the third one,

the two classes generated relatively big differences

in the observed pattern (pneumonia vs control, vi-755

ral pneumonia vs COVID-19), whereas in the second

(bacterial vs viral pneumonia) these differences were

extremely small. Besides, the performance of a mul-

ticlass classifier was also evaluated in order to check

if this method could simultaneously differentiate be-760

tween the different pathologies.

Previous studies have employed sparse coding

for the processing and analysis of different sig-

nals.16,127 However, most of them have used it within

the classification stage instead of as a feature ex-765

tractor. Specifically, images are reconstructed from

atoms of the dictionary corresponding to the differ-

ent classes. The final label is assigned according to
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Table 4. Effect of the sample size in the classification performance. All analyses were carried out with the optimum patch
size, i.e. the one that led to a large performance in each clasification when the whole dataset was used.

Controls vs Pneumonia

Number of PCA components

Dataset size (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

100 96.13±0.35 95.79±0.59 96.34±0.44 96.91±0.49 97.43±0.59 97.65±0.41 97.05±0.31 97.74±0.33
75 96.57 ±0.86 96.76 ±0.44 97.67 ±0.20 97.46 ±0.55 97.94 ±0.66 98.25 ±0.50 98.11 ±0.56 98.50 ±0.30
50 97.26 ±0.40 97.19 ±0.52 98.17 ±0.39 98.19 ±0.58 98.82 ±0.16 98.75 ±0.10 98.60 ±0.33 98.85 ±0.29
25 97.00 ±0.32 97.51 ±0.65 98.19 ±0.50 98.38 ±0.73 98.69 ±0.36 98.81±0.24 98.44 ±0.34 98.69 ±0.46

Bacterial vs Viral pneumonia

Number of PCA components

Dataset size (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

100 83.29±0.98 82.76±0.95 84.16±0.79 83.85±1.16 84.98±0.98 84.24±1.43 83.87±0.47 84.88 ±1.13
75 84.54 ±1.43 85.65 ±0.86 85.23 ±1.14 85.21 ±1.37 85.59 ±0.82 86.31±0.96 87.52 ±0.74 87.69 ±0.81
50 84.92 ±2.26 86.62 ±2.60 86.82 ±2.44 87.64 ±1.98 88.68 ±1.51 89.38 ±1.03 88.39 ±0.99 87.23 ±1.80
25 84.55 ±1.42 85.65 ±0.86 85.21 ±1.11 85.18 ±1.44 85.81 ±0.82 86.25 ±0.99 86.44 ±1.01 86.97 ±0.84

Viral vs COVID19 pneumonia

Number of PCA components

Dataset size (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

100 99.08±0.01 99.17±0.02 98.24±0.02 98.75±0.01 98.56±0.01 98.78±0.01 98.96±0.01 99.02 ±0.01
75 98.54 ±0.04 98.76 ±0.07 99.01 ±0.04 99.06 ±0.09 98.89 ±0.06 99.21 ±0.01 99.17 ±0.02 99.09 ±0.01
50 99.05 ±0.06 98.42 ±0.08 98.76 ±0.11 99.14 ±0.08 99.11 ±0.08 99.27 ±0.01 99.25 ±0.02 99.19 ±0.01
25 98.45 ±0.12 98.58 ±0.07 98.21 ±0.14 98.47 ±0.15 98.88 ±0.10 99.12 ±0.03 99.18 ±0.02 99.15 ±0.02

Multiclass

Number of PCA components

Dataset size (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

100 85.05±1.40 85.41±1.19 85.98±1.04 85.54±1.07 86.59±0.92 86.73 ±1.08 84.61±1.08 84.16±1.30
75 86.97 ±0.89 85.98 ±0.75 85.86 ±0.75 86.11 ±1.29 86.01 ±0.95 86.10 ±0.78 86.22 ±0.79 85.87 ±0.79
50 88.15 ±0.94 87.79 ±0.99 87.30 ±0.56 87.38 ±0.76 87.90 ±0.75 88.69 ±1.28 88.19 ±0.85 88.26 ±0.82
25 87.22 ±1.78 85.42 ±1.77 86.46 ±1.95 86.11 ±1.74 87.18 ±1.35 87.70 ±1.26 85.54 ±1.14 85.02 ±1.23

Table 5. Performance obtained for different kernels in the three binary
classification scenarios.

Controls vs Pneumonia

Linear Polynomial (d=2) Polynomial (d=3) RBF

97.74 ±0.33 97.59 ±0.24 96.88 ±0.87 95.67 ±1.04

Bacterial vs Viral pneumonia

84.88 ±1.13 86.57 ±0.81 84.56 ±1.34 82.34 ±1.73

Viral vs COVID19 pneumonia

99.36 ±0.01 99.24 ±0.02 99.18 ±0.01 98.25 ±0.02

the class that yields a minimum reconstruction error.

This alternative, applied in combination with ensem-770

ble classification, has shown a high performance in

previous works.128–130 However, it is difficult to use

an ensemble version when input images are not an-

alyzed as a whole but divided into patches. With

reference to our application context, patterns associ-775

ated with COVID-19 can be distributed in different

locations of the image. According to the severity of

the infection, they can be widespread or bounded in

small regions. This last situation can be highly prob-

lematic when trying to automatize the diagnosis for780

one main reason. It is possible that most of the re-

gions within the ensemble are labeled as ’controls’

because they are not affected by the pulmonary af-

fection, whereas only a small number of regions are

identified as ’covid patient’. In this case, combining785

the results from individual patches is not straight-

forward. Employing majority voting is not an opti-

mum solution, especially when a non-severe affection

is present. Previous studies have weighted the contri-

bution of individual patches according to a specific790

residual e.g. uncertainty in Bayesian frameworks.109

There are some scenarios in which two lung regions

are labeled with opposite diagnoses and both clas-

sifier’s decisions are correct, especially if the pneu-

monia is not widespread. In order to overcome this795

issue, features extracted from individual parts of the

images are treated as a whole in the classification

stage to optimize the diagnostic process.
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Another remarkable aspect of the proposed

method is the high performance obtained without800

requiring a previous preprocessing of the images.

The use of artificial intelligence for the automatic

detection of different pathologies is widespread, e.g.

neurological disorders such as Parkinson’s16,47,131 or

Alzheimer’s.13,132,133 When analyzing patterns asso-805

ciated with brain anatomy or function, most of these

techniques require a spatial correspondence between

the images of all subjects. This can be obtained by

employing operations based on spatial transforma-

tions such as registration or normalization. However,810

the application of these approaches to CXR images

is much harder for several reasons. First, there is a

high variability in the size and shape of lungs. And

most important, there are discrepancies in the po-

sition of each patient inside the scanner for all the815

images acquired. When trying to apply spatial trans-

formations to mitigate these issues, it is possible to

introduce high levels of noise that invalidate the re-

sults obtained. We have developed an accurate tool

that does not require any additional preprocessing to820

get a high performance. In fact, the information ex-

tracted from the sparse coding methodology in addi-

tion to the computation of the reconstruction errors

perform consistently well despite no spatial corre-

spondence between the different images is computed.825

It is worth mentioning that our method can be

an excellent option in contexts where the applica-

bility of deep learning approaches is not straight-

forward. Alternatives based on deep learning have

shown an ideal solution when applied to medical830

imaging in a wide range of scenarios. Therefore, pre-

vious works have demonstrated a high performance

when used to detect pneumonia.107,134–136 The main

issue is that this kind of techniques require a high

number of training samples in order to learn the fea-835

tures that allows the detection of a specific pathol-

ogy. The implementation of a global repository of

COVID-19 images would address this problem. How-

ever, collaboration between different medical centers

is not always possible. For this reason, it is impor-840

tant to note that the design of our method mitigates

the influence of the data size in performance. An-

other crucial difference between our proposal and

deep learning methods is related to the computa-

tional burden. Specifically, the number of mathemat-845

ical operations performed by our approach is consid-

erably lower than the ones employed in deep learn-

ing. In fact, the computational time of the proposed

method was a 75% lower than the time needed for the

deep learning approach employed in Ref.,109 where850

the same dataset was used. This time was computed

as the average between the computational time ob-

tained by the different number of components used.

This evidences the suitability of our framework in re-

search centres with reduced computational resources.855

Moreover, the high performance obtained in the mul-

ticlass classification shows that the tool proposed

in this work can be successfully employed in a real

scenario. These results reveal the usefulness of this

technique not only for identifying pneumonia, but to860

properly identify the cause of this pathology.

7. Conclusions and Future Work

In this paper, we propose a method to process images

and extract informative features using sparse coding.

This is addressed by dividing the images into differ-865

ent patches, and storing them into a matrix. PCA is

applied to this matrix in order to build a dictionary

that maximizes the differences in the representation

of the different patches. Once a sparse representation

is obtained, the reconstruction errors are computed870

and entered as features into a classifier. We obtained

a 86.73% of accuracy and AUC of 0.87 in the mul-

ticlass scenario, where different types of pneumonia

are distinguished. These results validate the applica-

bility of the method as an aid for clinicians in a real875

and complex context. Besides, the reduced compu-

tational cost compared to deep learning while pre-

serving a large performance paves the way to use

this methodology with other image modalities such

as MRI or PET. Future versions of the method could880

employ more sophisticated algorithms such as En-

hanced Probabilistic Neural Network,137 Neural Dy-

namic Classification,138 Dynamic Ensemble Learning

Algorithm139 or Finite Element Machine140 in order

to improve the classification performance.885

8. Funding

This work was supported by the MCIN/

AEI/10.13039/501100011033/ and FEDER “Una

manera de hacer Europa” under the RTI2018-

098913-B100 project, by the Consejeŕıa de890
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Górriz, “Robust ensemble classification methodol-
ogy for i123-ioflupane SPECT images and multi-1560

ple heterogeneous biomarkers in the diagnosis of
Parkinson’s disease,” Frontiers in Neuroinformat-
ics, vol. 12, p. 53, 2018.
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