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We present an algorithm and FORTRAN codes to compute the opposition effects in the
reflection of light from a semi-infinite discrete random medium at normal incidence to the
boundary of the medium. It is assumed that the medium is sparse enough that the waves
propagating between the scatterers are spherical. In this case, the reflection matrix is determined
only by contributions of the incoherent (diffuse) and coherent components. When calculating the
coherent component, the contribution of the doubly scattered radiation to the reflection matrix is
rigorously taken into account, while the contributions of the higher orders are calculated
approximately. To be more specific, the multiply scattered radiation coming to some point of the
medium “from above” is calculated exactly, but the radiation coming “from below”,
approximately. Under this supposition, the solution of the system of integral equations is reduced
to that of the system of linear algebraic equations. The matrix of this system is calculated with
the recurrent relation, which radically speeds up the computations as compared to the direct
procedure. This allows the opposition effect characteristics to be computed rapidly enough so
that the codes may be used in interpretation of the remotely measured intensity and polarization

of light reflected by different media to estimate, at least at a qualitative level, their properties.

Keywords: multiple scattering; coherent backscattering; opposition effects; discreate random

medium; reflection matrix

Highlights:
A fast algorithm to calculate the opposition effects is presented
FORTRAN codes to compute the opposition effects are described

Errors introduced by the algorithm are concisely considered
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1. INTRODUCTION

In the radiation reflected by many discrete media of natural and artificial origin, the so-
called photometric and polarimetric opposition effects are often observed. These phenomena are
usually associated with the weak localization effect, which has been under active experimental
and theoretical examination for the last years (see, e.g., [1-3] and references therein). The
interference nature of this effect suggests that its characteristics essentially depend in the
properties of the scattering medium, which is of key importance for interpretation of remote-
sensing data of different objects. Of particular value is this effect for retrieving the properties of
atmosphereless celestial bodies of the Solar system from the photometric and polarimetric
observational data [4, 5].

In recent years, considerable progress has been made in computations of the weak
localization characteristics for a plane-parallel layer of a medium containing scatterers, the sizes
of which are much larger than the wavelength of the incident radiation. The algorithm described
in [3] makes it possible to calculate the characteristics of this effect (the contribution of cyclical
diagrams into radiation scattered by a medium) with accounting for the near field and the
correlation in particle positions, specifically, under oblique radiation incidence onto the layer.
However, to calculate the characteristics of radiation reflected by random media containing
densely packed scatterers, the sizes of which are of the order of the wavelength, remains an open
problem. The contribution of the other diagrams, particularly, the diagrams responsible for the
mutual shielding or correlation of waves propagating in the medium along neighbor pathways, is
difficult to analyze (see, [2] and references therein).

More substantial advances have been made in the description of the weak localization
effect for sparse media, more precisely, in the frames of the model assuming that the waves
propagating between the scatterers in a medium are spherical. In this case the near-field effects
[6] and correlation in particle positions may be ignored, and the scattering characteristics of the
medium are determined only by contributions of the ladder and cyclical diagrams (i.e., the
diffuse and coherent components, respectively) [1-3]. To take into account the dense packing of
particles, at least approximately, it was proposed that randomly oriented clusters should be used
in this model as a volume element of the medium [7]. In this case, all effects connected with the
dense packing of scatterers are automatically accounted for, at least on the scale of clusters. The
comparison of the reflectance characteristics calculated with this model of a semi-infinite
medium to those measured in the laboratory shows that they agree well for some samples [7].
This gives grounds to suppose that this model of a medium can be successfully used to estimate,
at least approximately, the parameters of natural and artificial media investigated remotely.
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In this paper we describe the efficient algorithm to compute the reflectance characteristics
of a semi-infinite discrete random medium under normal radiation incidence. This algorithm
works rapidly, which is of high importance for the remote-sensing data analysis. The single
scattering matrix of randomly oriented scatterers (in particular, clusters of scatterers) obtained
from calculations or measurements serve as characteristics of a so-called “elementary (or
differential) volume element” of the discrete scattering medium, i.e., as input data for the
procedure.

2. BASIC RELATIONSHIPS

The described algorithm is based on the approximate method of solving the equation for
weak localization of waves reflected from a semi-infinite discrete random medium under normal
radiation incidence [8]. To calculate a sum of cyclical diagrams with this method, the radiation
coming to some point of the medium “from above” is determined exactly, while the radiation
coming “from below” is taken into account approximately (Fig. 1). Namely, it is assumed that
the intensity of multiply (more than twice) scattered radiation decreases exponentially with depth
below the considered point of the medium, while the rate of the decrease can be determined from
some independent relationship. In this case, the system of integral equations, describing the weak
localization effect, is reduced to the system of linear algebraic equations. Though all of the basic
equations were introduced in papers [7, 8], we describe them here with some comments and

explanations.

Fig. 1. Geometry of scattering by a semi-infinite particulate medium. The incident light
propagates normally to the boundary of the medium (zo = 0). The incidence direction is indicated
by the wave vector ko, o and 9 are the phase and scattering angles, respectively, “P” shows the
direction of observations, and letters “A” and “B” denote the scattered radiation that comes to

some point at a depth z from above and below, respectively.
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The reflection matrix S, describing the weak localization effect in the circular-
polarization (CP) representation, is [7, 8]

S(i)v _ ( ) é’*(qlu)(qp) (qn)(qlv) (1)
pnvu k4 R ( )qquL;/l

where p,n,x,v,q,0, =%1, the range of indices L,M is specified below (see Section3), 7 is the
particle number density, k,=2z/A, A is the wavelength of the incident radiation, the asterisk

denotes complex conjugation,

19)+i(1+ COSS)(M+1], (2)

e=Im(mg ) 1—-
(m.) )

My IS the complex effective refractive index of the medium, 4 is the scattering angle, and

i =-/—1. For sparse media, it can be assumed that m_, =1+i7C,, / 2k, , where C., is the mean

ext ext

extinction cross-section of scatterers in the medium.

The coefficients " are determined from the following system of linear algebraic

equations:
n)(uv) n)(uv, 27[77 i n)(qv 0
y (B0 — e 4 277 g Zﬂ((pqm )y G N 3)
0 qglm
where
(o) —Z/;W"W j A, (@)day, (@)1 (C, f)sin ado, (4)

T

G, = [ 1y (e, )by, (@)L, (@)+ (D1, (6 )l (@), (@)]sin oder. ()

Here, N =f{M —m|, d with indices are the Wigner d-functions [9], N, =x—p,

CN

- | (6)
" \/c2+X2(X+\/C2+X2)N
Cc =sin 9sin o, "
1
f =2|m(meﬁ)+|cosw||m(meff)(l_wj+ 8
) Re(meff)_l ( )
+icosw(l+cosd) ————+1|
cosY
g =2Im(m )L+ o |cos ). 9)
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By y with indices, we denote the coefficients of the Wigner d-function expansions of the

single scattering matrix averaged over orientations and properties of scatterers in the CP-
representation (the scattering matrix for a volume element in the medium). The analogous
coefficients in the linear-polarization (LP) representation, though in the basis of the generalized
spherical function closely related to the Wigner functions, are widely used in the radiative
transfer theory to calculate the diffuse component of the reflection matrix for different media
[10]. Their explicit form for spherical and randomly oriented irregular scatterers and the
formulas to convert from the CP-basis to the LP-basis and back can be found in a paper [13].

The quantities ¢ with indices are coefficients that have not appeared in the scattering

theory before. For spherical scatterers, the formulas required for calculating these coefficients
are given in papers [2, 7, 11], where their physical content is considered in detail. For arbitrary

scatterers, a calculation technique to obtain the coefficients ¢ is still lacking. It was shown in
papers [2, 11] that, for spherical particles and at 9 ~ 7, the following approximation is valid
C) o 5 P (10)
m m,y—-n '
where &, ,_, is the Kronecker delta. This approximation made it possible to generalize the weak-

localization equation obtained for a medium of spherical particles to the case of arbitrary

scatterers, for which the coefficients » can be calculated. Specifically, this is true for a medium

of the scatterers, the scattering matrix of which is measured in laboratory, if the examination is

thorough enough that the coefficients » can be calculated. In the following, we assume that

approximation (10) is obeyed.

As has been already mentioned, when deriving the above equations, we suppose that the
radiation coming from below and scattered more than twice decreases exponentially with
growing the depth z in the layer. We assume that this dependence takes the form

exp(—2oz Im(m,, )) , where the coefficient o characterizes the rate of the decrease of the

radiation intensity with depth. This coefficient is determined from the relationship that connects
the reflection matrix elements of the incoherent component with those for weak localization in
the exactly backscattering direction ($=x). These relationships for the diagonal matrix
elements are given in papers [10] and [11] in the LP and CP representations, respectively. For a
semi-infinite medium, an analogous approach to deriving the contribution of radiation coming
from below is proposed in a paper [3]; however, a more complicated nonlinear dependence of
the exponent on the depth z is introduced in that study. The fast algorithm proposed here for
computing the characteristics of the weak localization effect can be applied to both the linear and

nonlinear dependences of the exponent on z.
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Let us point to the following property of Egs. (1)—(5). In papers [3, 12], the weak
localization equations are written in such a way that they contain the single-scattering
contribution, which is then removed. In Egs. (1)—(5) above, the single-scattering contribution is
already absent. Coefficients (4) correspond to the double scattering, and they are calculated in a
rigorous manner, so that the approximation mentioned at the beginning of this section is used
only for the higher orders of the scattered radiation coming from below.

In actual practice, the reflection matrix in the LP representation R is used

R=R" +R©, (11)

Here, R™ is the reflection matrix of the diffuse component, while the elements of the reflection

matrix of the coherent component in the LP basis R’ take the form
R —uzs@ R =R =-U zsm RS =U zsm

pnpn? pn-pn? pn-p-n?

R3(§) UZs(C) PP RA(,E) UZs(C) PP Rég)_ Rig) IUZS(C) PP

pn-p-n pnpn pnp-n

(12)

where U = —7/2kZ cos 9 and n,p=+1,

3. AFAST ALGORITHM TO COMPUTE THE COHERENT REFLECTION MATRIX

The computing speed in solving system (3) is mainly determined by the computing speed
for matrix (5). The dimension of the matrix depends on the sizes of scatterers and the scattering
angle. The highest value of the index L depends on the sizes of scatterers and is determined by
the required accuracy of calculations of the coefficients y For example, for spherical particles,

the highest value of the index L is equal to the double value of the highest summation index I in

the Mie formulas (see, e.g., [13]). In general, —L <M < L. Because of this, the dimension of

matrix (5) is [21_(2l +1)]x[2l (2, +1)]; consequently, for the medium composed of scatterers

larger than the wavelength in size, the matrix dimension may be very large. For example, for the

medium composed of spherical scatterers with the size parameter x, =5 (X, =k,a, where a is

the scatterer radius), for which the maximal summation index can be determined as

|, =X, +4.05x}"*+8 [13], the dimension of matrix (5) is 1640 x 1640. When approximation

(10) is used, the matrix dimension falls dramatically to roughly 200 x 200 at $=x or to
somewhat larger dimensions at smaller scattering angles.

The computations of so large matrices can be made much faster with recurrent relation
(A.4) given in the Appendix. To use it, it is convenient to rewrite the integral in Eq. (4) as

follows:
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(1 (6 ), (@), (@) + (=) 1 (6, )y, (@), (@)]sin edeo. (13)

oty

As is seen from Egs. (4), (5), and (13), calculations of the matrix of system (5) and

coefficients (4) are reduced to calculations of the integrals such as

2
Flime = [ 1y (€. X)d sy, (@)d1, (@)sin eddeo, (14)
0
where N, ==£N,.
Though the recurrent relation (A.4) is applicable directly to integral (14), a more efficient

way is to expand the products of the Wigner functions to a series in the Wigner functions, i.e.,

L+l
ImN, _  qym+N; LM; ~LO
FLMNl =(-1) z CLMI—mCLNll—Nl

L=IL-]

O v [y

|, (C X)d o (@)sin edao . (15)

Here the C’s with indices are the Clebsch—Gordan coefficients [9], and M, =M —m.
Relationship (15) completely corresponds to (A.7) from the Appendix, which formula (A.4) can
be applied to.

Since the symmetry relation d,, (@) =(-1)"d%,,, (@) [9] is obeyed, the integral in the right
side of Eq. (15) may be calculated only for positive and zero values of M, . The reflection matrix

may be computed substantially faster also by using the following symmetry relations [7]:

ImN, _ LMN, _ M+m = |,-m,~N (Ng) _ M+m ~ (=Np)
FLMNl - Flle L= (_1) FL,—M,—N11 GLM(im - (_1) GL—MOI—m

(pn)(uv) _ M+m ~ (=p-n)(-x-v) (pn)(uv) _ M (=p-n)(-x—v)

o= (=1) LMim i =ED oy

Thus, the matrix of system (5) and coefficients (4) may be computed according to the
following algorithm. The arrays of values of the integrals in the right side of Eqg. (15) are
calculated for x = f , X =g, and the scattering angle ¢ =z . With the recurrent formula (A.4)
(see also relationship (A.7) in the Appendix), the integrals of type (15) are calculated; then,
coefficients (4) and matrix (5) are found. System (3) is solved, and the value of & is determined
with some method chosen. The computational procedure is repeated with the obtained value of
o to find coefficients (4) and matrix (5) and to solve system (3) for the other scattering angles
specified.

4. COMPUTATIONAL CODES

The described procedure was realized in the software package [14], the codes of which are

written in the Fortran-90 programming language. The coherent component of the reflection
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matrix R is calculated on the base of approximation (10). The coefficient o is found from the

equation

Riy’ =(Ry" + Ry — Ry +Ri) 12, (16)
which is valid for 9= [13] and solved with the simple bisection method. Here the matrix
RM™ =R® _R® and R™ corresponds to the single scattering.

To solve system (3), the iteration Bi-CGSTAB method [15] is used. The main program
opp_eff.f90 operates in conjunction with the file of input parameters data_inp.txt and other files
specified there. The data_inp.txt file contains the following data:

Number of integration intervals: this parameter specifies the number of identical subintervals K,
which the entire integration interval (w=/2) in integral (15) is divided into. The
Chebyshev quadrature formula is used for integration in each of the subintervals. As a
rule, K =6 is sufficient for calculating the integrals of type (15) with a high accuracy
even for very large scatterers.

alp0, dalpl, alpl, dalp2, alp2, dalp3, alp3: these are the boundaries of three predetermined

intervals for changing the phase angles o (o =7—9)---from0to «,, from ¢, t0 «,,
and from «, to o, (alp0, alpl, alp2, alp3); and each of them may have its own step of

changesin «--Aqa,, Aa,, and Aa, (dalpl, dalp2, dalp3), respectively.

3
v

3

sphere of a scatterer in the medium.

Relative particle concentration: ¢ = 1, where a, is the radius of the volume-equivalent

Output file: the name of the file containing the result of computations of the R® matrix
elements.

Input file of the single-scattering matrix expansion coefficients: the name of the file containing
the characteristics of a volume elements of the medium. This file should be prepared
beforehand. Its structure is described below.

Input file of the incoherent reflection matrix: the name of the file containing the R matrix
elements obtained in calculations of the incoherent component of the reflection matrix.
As the previous file, it should be prepared beforehand. Its structure is also described

below.
The first line of the Input file of the single-scattering matrix expansion coefficients should
contain the values of the following characteristics of a volume element of the medium: the single

scattering albedo @ =Q,., /Q,, (where Q,.,, and Q,, are the scattering and extinction efficiency

factors, respectively), the maximal value of the index L, Q..,, the asymmetry parameter

sca !

8
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<cos$>, and the equivalent size parameter x, = Kk,a, . The efficiency factors are defined with
respect to the volume-mean radius a, of the volume element. The other lines contain the
expansion coefficients of the normalized scattering matrix of the volume element in generalized
spherical functions in the LP basis. The elements should be in the following succession in the
line: &, as+a;, -5, a;, B°,and f,, where «, o, a5, a;, B, and B, are the
expansion coefficients of the scattering matrix elements a,;(9), a,,(9), a;5(9), a,,(9), a,,(9),
and a,,(3), respectively; and 0<s<max(L). In this file, the scattering matrix in the LP

representation is expanded in the basis of the generalized spherical functions, since the latter is
traditional in the theory of light scattering by small particles and widely used in the radiative
transfer theory [10, 13].

The R™ matrix elements should be in the Input file of the incoherent reflection matrix;

the sequence of the quantities in each of the lines in this file is: 9 (90° <$<180°), RY, RY,
RE RY, RY) and R{Y. The scattering angle step in calculations of this matrix should be small

enough near the backscattering direction for further interpolating to those specified for the R
matrix. The last line should contain the matrix elements for $=180°. The values from this line
are used to solve equation (16) and find the coefficient o. The R” matrix may be computed
with any code available. For example, the code described in a paper [16] produces the diffuse
matrix elements in the format applicable to the present procedure.

To find the reflection matrix R (Eq. (11)), the R matrix elements are interpolated
according to the phase angle values, which were specified in calculations of the coherent
component R in the data_inp.txt file. The obtained elements of the R matrix are written to

the file called REFL_Output file.txt. Its first line contains the heading; and x,, 1/(2k,l,,), o, &,

and Im(m, ) are in the second line. Here, I, = Im(m )(1-<cos$>) is the transport free-path.

The third line contains the diagonal elements of the incoherent matrix R taken from the Input
file of the incoherent reflection matrix, while the same elements, but calculated from the
elements of the coherent matrix R’ with the equations connecting the coherent and incoherent
components at « =0 ($=x), are in the fourth line. Since the latter are determined for the
obtained value of o, they show how correct the approximation works for these matrix elements
and the specified parameters of the medium. In the fifth line, there are values of the left and right
parts of Eq. (16), respectively, under the obtained o . The other lines contain the two elements of

the reflection matrix R ---R ,(«) and R, («)---and the derived quantities: the normalized first
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element R, (a)/R,(0), the linear polarization degree —R,,()/R,;()x100, and the

enhancement factor R;,(a)/RY ().

5. APPLICATION EXAMPLES

In many applications, for example, when analyzing the remote sensing data, there is a need
to simulate numerically the reflectance characteristics of discrete random media rather rapidly. In
this paper, we propose the algorithm and codes for fast computations of the weak localization
characteristics (the opposition effects). This algorithm uses the approximation developed in a
paper [8] for sparse semi-infinite discrete random medium under the normal radiation incidence
onto the medium boundary. The algorithm is based on introducing the recurrent formula (A.4)
into calculations of the matrix of system (3), which substantially diminishes the processing time
as compared to that of direct computations of the matrix elements. For example, to calculate the
coherent reflection matrix for the medium containing randomly oriented bispheres with a size

parameter of monomers x, =2 and the refractive index Mm=1.5+i0.1, the use of formula (A.4)

requires the processing time an order of magnitude smaller than the direct computations. For
larger scatterers, the time saving may be much more effective.

The results of computations with the described codes are presented in Fig. 2. The
enhancement factor and the linear polarization degree for the above described bispheres and
Chebyshev polydisperse particles are shown versus the phase angle in the backscattering domain.
The parameters of Chebyshev particles are: the effective size parameter corresponding to the

equal-volume sphere x, =2.5, the effective variance of the power-law distribution v, =0.05
and m=1.51+i0.0; their shape is specified by r(4)=r,(1-0.1T,(9)), where r, is the radius of
the unperturbed sphere and Tg(%) is the Chebyshev polynomial. The relative particle

concentration & is assumed to be 0.01 for the both media. It is worth noting that, for bispheres,

this value corresponds to the concentration of particles rather than bispheres (see [7]).

10



© 00 N o O B~ W N P

N DN N N DN R P P P PR PR R e
o A WO N P O © 0N OO O WN P O

Ryy/Ry, M -R,1/Ry, [%]

1.8 0
——Bisphere

g — L chebopurt 00 | et n S S n ST S =
x e
| /
] /

14 05 | 7
I ’
!

1.2 -0 fro ! iff bi
L —— Diff bisph
L — — Diff cheb

. \ 'l — = Total bisph

. -15 ;" ----- Total cheb
4
0.8 2.0
0 2 4 6 8 10 0 . 4 6 8 1
o [°] ol

Fig. 2. The enhancement factor (left) and the linear polarization degree (right) for
bispheres and Chebyshev particles (see the text for details) in dependence on the phase angle in
the backscattering domain. The quantities obtained from the total reflection matrix elements and

the diffuse (incoherent) contribution are shown for polarization.

6. CONCLUDING REMARKS

Let us analyze the inaccuracy of the proposed method. First, errors may be caused by the
usage of the approximation, where the double-scattering contribution is rigorously accounted for
while the higher-order contributions to the radiation coming from below is calculated under the
assumption of the exponential decrease of the intensity with depth [8]. With increasing the
absorption in the medium, the assumption on the radiation exponentially weakening with depth
becomes closer to the truth and the calculations of the reflection matrix yield more accurate
results. The second source of errors is the use of approximation (10). The weaker the dependence
of the scattering matrix of a volume element on the scattering angle near ¢ =7, the smaller the
inaccuracy caused by this approximation.

Of course, these are only inaccuracies introduced by the approximations assumed when
solving the initial equation [8, 11, 12]. The latter, as the other equations describing the weak
localization effect (see, e.g., [3] and references therein), was itself obtained under some
suppositions. The limits of applicability of these assumptions could be estimated from the
reflectance characteristics of discrete medium samples measured in the laboratory with
completely controlled samples. In particular, this would make it possible to define the limits of
applicability of the far-zone approximation, within which the waves propagating between the
scatterers are assumed to be spherical. Consequently, this would allow us to estimate the highest
concentration of scatterers in the medium appropriate for this approximation. The results of

11
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numerical solution of the vector radiative transfer equation were compared to the reflection
matrix elements of suspensions of submicron latex particles in water measured in the laboratory,
and it was found that the far-zone approximation can be applied to the media with packing
densities smaller than ~5% [17]. This suggests that, for the coherent component of the reflected
radiation, this approximation is also valid up to the same packing densities of particles.
Unfortunately, measurements with completely controlled samples are still lacking, which does
not allow us to determine more precisely the applicability limits of the far-field approximation
and other assumptions of the described algorithm. However, at a qualitative level, it was
successfully tested by the laboratory data for some samples [7, 18]. Consequently, the proposed
algorithm may be used at least to estimate the parameters of the media when interpreting the
remote sensing data, particularly, the data of ground-based observations of the Solar system
bodies [18, 19].
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APPENDIX. RECURRENT RELATION: DERIVATION AND APPLICATION
SCHEME

We derive here a recurrent relation, which is used to calculate the matrix elements, and
describe a scheme of its application.

Let us consider the integral

mn

v/ j f (w)dL, (@)d}(w)sih adw), (A.1)

where f(w) Is an arbitrary integrable function. The following recurrent relation [9] will also be
used
008 @1}, (@) = 8,0 () + iyl (@) + by 2 (@) (A.2)

Imn~ mn

where

12
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A+ -m? Ja+2)° —n? o AP -m?Jie-n?) o __nm
tmn (1+1)(21 +2) P e 121 +2) CTM(+)

Let us multiply (A.1) to a,,, and apply relationship (A.2) to (A.1), namely, sequentially to

a,..d(w) and cosad;, (w). This yields the following recurrent relation for the integral V" :

mn

Vi + (Cimn = Com Vi T BimaV i — BV i — PV =0 (A4)

Relationship (A.4) is multipurpose. It can be applied to some functions that are frequent in
the light scattering theory. For example, it can be applied to the product of two Clebsch—Gordan
coefficients. To demonstrate this, we will use the expansion of the product of two Wigner

functions [9]
L+l
dyn (@)dg, (@) = > CluiCind,n, (@) - (A.5)
k=|L-|

Here, M;=M+m and N, =N +n. Let us apply formula (A.2) to the left part of (A.5) in the
same way as in deriving relationship (A.4) above. Expand the obtained products of two Wigner
functions into series of type (A.5) and introduce

Wik (K) = C{inCiNin- (A.6)

Taking into account the orthogonal property of the Wigner functions [9], we obtain a

recurrent relation analogous to (A.4) for the coefficients W/™" (k) under fixed k. By multiplying

relation (A.6) to an arbitrary function fhﬁlNl , which is independent of the indices L and I, and

summing up the product over all possible k, we obtain a recurrent formula analogous to (A.4)

for the coefficients F/["
I Y kM, KN £ K
mn 1 1
Fiw = ZCLMImCLNIn fMlNl . (A7)
k=|L—1|

In particular, the recurrent relation (A.4) is valid for the coefficients of the translational
addition theorem for spherical vector wave functions (see, e.g., [2, 3, 19, 20])

L+]
Hiin = 2 Clli-nClaiaZi (ko) Diyyo (9, 8.0) - (A.8)
k=|L—1|
Here, g=+1, z,(K,r) is the Bessel or Hankel spherical function, D,l\(,,lo((p, 4,0) is the Wigner

function [9]. The recurrent relation (A.4) for the coefficients of the translational addition theorem
for spherical vector wave functions was obtained earlier in [20] and used in [21] to calculate the
scattering matrix of aggregates.

Relationship (A.4) may be used according to the following procedure. As it appears from

the properties of the Wigner functions [9], the coefficients V7" (as well as coefficients

13
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(A.6)—(A.8)) are zero for L<max(| M |,|N|) or I <max( m|,|n]). Assume that, in the matrix of
the coefficients Vv, the elements of the first nonzero line (I =max( m|,|n[)) and the last

column (L=L_ ) are known. Then the elements of the second line are calculated with formula

mzx

(A.4), and all coefficients V" =0 for this line. Since the matrix of the coefficients Vi is

symmetric relative to the main diagonal, it will suffice to calculate only the elements of the upper

triangular matrix. Analogously, only the elements of the lower triangular matrix of the
coefficients V. may be calculated, if the elements of the first nonzero column of the matrix

L=max(| M |,| N |) and the last line are precalculated.

14
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FIGURE CAPTIONS
Fig. 1. Geometry of scattering by a semi-infinite particulate medium. The incident light
propagates normally to the boundary of the medium (zo = 0). The incidence direction is indicated
by the wave vector ko, o and 9 are the phase and scattering angles, respectively, “P” shows the
direction of observations, and letters “A” and “B” denote the scattered radiation that comes to
some point at a depth z from above and below, respectively.
Fig. 2. The enhancement factor (left) and the linear polarization degree (right) for
bispheres and Chebyshev particles (see the text for details) in dependence on the phase angle in
the backscattering domain. The quantities obtained from the total reflection matrix elements and

the diffuse (incoherent) contribution are shown for polarization.
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