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ABSTRACT 38 

This work focuses on the study and evaluation of the retrievals of aerosol complex refractive 39 

index (m = mr + imi) and single scattering albedo (SSA) from the inversion of multi-wavelength 40 

lidar measurements, particularly of three backscattering coefficients (β) at 355, 532 and 1064 nm 41 

and two extinction coefficients (α) at 355 and 532 nm, typically known as the stand-alone 3β+2α 42 

lidar inversion. The focus is on the well-known regularization technique for spherical particles. It 43 

is well known that constraints in the range of refractive indices allowed in the inversion are 44 

essential, both for the real (mr) and imaginary (mi) parts, due to the under-determined nature of 45 

the problem. Usually these constraints are fixed for a given set of inversions. Using a large 46 

database of AERONET retrievals, correlations between retrieved mr and mi are observed and 47 

those correlations together with results from the GOCART model are used to define optimized, 48 

case-dependent, constraints in the stand-alone 3β+2α lidar inversion. For each inversion 49 

performed, the optimized constraints are computed from the 3β+2α data using a-priori 50 

information of extinction-to-backscattered ratio (LR) and the Angstrom exponent computed with 51 

α at 355 and 532 nm. The stand-alone 3β+2α lidar inversion with optimized, case-dependent, 52 

constraints is applied to airborne NASA LaRC HSRL-2 experimental measurements during 53 

DISCOVER-AQ. The optimized constraints selected from the measured 3β+2α are compared 54 

with the typing classification based on additional multiwavelength depolarization measurements, 55 

showing consistency between aerosol size and absorption range and aerosol typing. Evaluations 56 

of the SSA retrieved by the stand-alone 3β+2α lidar inversion with optimized constraints are 57 

done by comparisons with correlative airborne in-situ measured SSA. The agreement between 58 

both methodologies is satisfactory for most aerosol types as differences are within the 59 

uncertainties of each methodology.  60 



 3 

1.- Introduction 61 

Atmospheric aerosols affect the Earth-Atmosphere radiative system directly by scattering 62 

and absorbing solar radiation, and indirectly by altering the lifetime and development of clouds. 63 

In spite of the large advances in aerosol characterization and their effects, uncertainties still 64 

remain in to the effect of aerosols on global change during the coming century (Boucher et al., 65 

2013). Actually, the latest IPCC model-based aerosol radiative forcing (ARF) estimates state that 66 

radiative forcing due to aerosol–radiation interactions is approximately -0.35 ± 0.5 W/m
2
. 67 

However, although aerosol optical depth (AOD) and aerosol size are relatively well constrained 68 

in ARF calculations, uncertainties in the aerosol absorption properties (McComiskey et al., 2008; 69 

Loeb and Su, 2010) – particularly on their vertical profile (e.g. Zarzycki and Bond, 2010) - 70 

contribute significantly to the overall uncertainty in ARF. These imply a factor of two to four 71 

uncertainty in ARF computations when aerosol absorption is included in large-scale numerical 72 

models (Stier et al., 2013). 73 

 Absorbing aerosols are also important in climate feedback processes because they modify 74 

atmospheric stability in the boundary layer and free troposphere (e.g. Wendisch et al., 2008; 75 

Babu et al., 2011) and modify cloud properties (e.g.Yoshimori and Broccoli, 2008; Allen and 76 

Sherwood, 2010; Koch and Del Genio, 2010; Persad et al., 2012): Together the changes in 77 

atmospheric stability and reduction in surface fluxes affect significantly the fraction of surface-78 

forced clouds and precipitation rates (Feingold et al., 2005; Sakaeda et al., 2011). Cloud cover is 79 

expected to decrease if absorbing aerosols are embedded in the cloud layer (e.g. Koren et al., 80 

2004). Absorbing aerosols embedded in cloud drops enhance their absorption, which can affect 81 

the dissipation of clouds (Stier et al., 2007; Ghan et al., 2012). Therefore, improved 82 
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quantification of aerosol absorption is also a current challenge for a better understanding of the 83 

role of aerosols in cloud formation and development. 84 

Aerosol absorption can be measured by in-situ instrumentation but such instruments do 85 

not provide information about the aerosol vertical structure in the atmosphere unless they are 86 

operated on an aircraft performing vertical profiling flight patterns (e.g. Andrews et al., 2004). 87 

Ground based passive remote sensing, as for example those made within the AERONET network 88 

(Holben et al., 1998), do provide aerosol single scattering albedo (SSA) by inverting sky 89 

radiances and direct solar irradiances (Dubovik and King, 2000; Dubovik et al., 2006). However, 90 

these retrievals of SSA are only possible under certain situations – e.g. large scattering angles 91 

and aerosol loads (Holben et al., 2006) – and only provide column-integrated values. Other 92 

ground-based networks such as EARLINET/ACTRIS (Pappalardo et al., 2014) and MPLNET 93 

(Welton et al., 2002) are providing large amounts of lidar data for studying vertical structure of 94 

aerosols, but the retrieval of aerosol microphysics from lidar requires measurements at several 95 

wavelengths and current limitations in MPLNET and in EARLINET/ACTRIS instruments do not 96 

allow the same capabilities for aerosol microphysical properties vertical profiles characterization 97 

(e.g. Müller et al., 2016). For global coverage, a new generation of passive remote sensors is able 98 

to provide column-integrated SSA. Instruments such as the Ozone Monitoring Instrument (OMI -99 

Torres et al., 2007) or the POLDER/PARASOL polarimeter (Tanré et al., 2011) are current 100 

examples. Other space sensors such as CALIPSO (Winker et al., 2010) implement lidar 101 

measurements that are providing near global coverage of vertically-resolved aerosol optical 102 

properties. CALIPSO measurements were complimented by the CATS system (Yorks et al., 103 

2016) and will be extended by the future EarthCARE mission (Illingworth et al., 2015). 104 

However, all these space lidar systems fail in providing aerosol absorption vertical profiles. 105 
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The retrieval of aerosol absorption from remote sensing measurements usually requires 106 

solving an ill-posed inverse problem. For sun-photometry and space-polarimetry the number of 107 

available measurements is quite large providing more information in the inverse solution of 108 

aerosol size distribution and refractive index.  (e.g. Dubovik and King 2000; Dubovik et al., 109 

2006, 2011). However, for multiwavelength lidar measurements of three backscattering (β) at 110 

355, 532 and 1064 nm and two extinction (α) coefficients at 355 and 532 nm – typically known 111 

as the stand-alone 3β+2α lidar inversion- the number of input data is only five so the problem is 112 

more under-determined than in the case of passive remote sensing (e.g. Veselovskii et al., 2005; 113 

Burton et al., 2016). Several techniques are used for inverting 3β+2α lidar data such as 114 

regularization (Müller et al., 1999a,b; Veselovskii et al., 2002; Böckman et al., 2005) and Linear 115 

Estimation (Veselovskii et al., 2012). Numerous works have been done using these retrievals 116 

(hereafter denoted as stand-alone 3β+2α lidar inversion), but focusing on particle size 117 

distribution (PSD) and their associated bulk parameters such as effective radius (reff) and particle 118 

number (N), surface (S), and volume (V) concentrations. Some examples are for biomass-119 

burning (Alados-Arboledas et al., 2011; Müller et al., 2005, 2011;Veselovskii et al., 2015), 120 

pollution (e.g. Noh et al., 2009; Wandinger et al., 2002; Veselovskii et al., 2013), arctic haze 121 

(Müller et al., 2004) or volcanic aerosol (Navas-Guzman et al., 2013).  122 

However, retrievals of aerosol refractive index and SSA by the stand-alone 3β+2α lidar 123 

inversion are not as successful as retrievals of bulk parameters or PSD. The real part of the 124 

refractive index (mr) can be retrieved with uncertainties of ±0.05 (Müller et al., 1999a,b; 125 

Veselovskii et al., 2002), but only for aerosol cases where the fine mode predominates 126 

(Whiteman et al., 2018). The imaginary part (mi), which is critical for the computation of SSA, 127 

has errors of 100% and even larger depending on the aerosol type (e.g. Veselovskii et al., 2002). 128 
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Preliminary studies (Veselovskii et al., 2005) demonstrated that mi needs to be constrained for 129 

accurate retrievals of refractive index. Many works limit the maximum value of mi allowed in 130 

the inversion to <= 0.01, which is not appropriate for the retrieval of aerosols when the 131 

absorption is high (e.g. Dubovik et al., 2002). Other authors suggest no constraints in mi, but this 132 

results in very high uncertainties in the retrieval of SSA of up to 0.1 (e.g. Baars et al., 2011). To 133 

solve all these limitations in the retrieval of aerosol refractive indices by lidar measurements 134 

other approaches are being developed such as multistatic lidars (e.g. Alexandrov and Mischenko, 135 

2016; Mischenko et al., 2016). 136 

 The objective of this work is to study and develop optimized, case-dependent constraints 137 

for the stand-alone 3β+2α lidar inversion to retrieve aerosol refractive index and SSA focusing 138 

on spherical particles. The large AERONET database of aerosol microphysical properties and the 139 

Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model are used to determine 140 

the optimized constraints. We propose a methodology to compute the optimized constraints for 141 

each inversion using measured 3β+2α and a prioiri assumptions about the relationships between 142 

the extinction-to-backscatter ratio, otherwise known as lidar ratio (LR), at 355 and 532 nm, and 143 

the Angström exponent for extinction for specific aerosol types. The a priori assumptions are 144 

derived from GOCART (Chin et al., 2002). The impact of these optimized constraints is studied 145 

using numerical simulations. The optimized constraints are applied to the inversion of 146 

experimental measurements acquired by the NASA LaRC HSRL-2 airborne lidar system (Hair et 147 

al., 2008) that operated during the NASA Deriving Information on Surface Conditions from 148 

COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field 149 

campaigns. DISCOVER-AQ was held in Baltimore-Washington D.C. (2011), California (2013), 150 

Houston (2013) and Denver (2014). During DISCOVER-AQ there were also flights with in-situ 151 
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instrumentation (e.g. Ziemba et al., 2013) that provided measurements of SSA that are used to 152 

evaluate the results of the constrained retrieval.  153 

 The paper is structured as follows: Section II studies the constraints in the retrieval of 154 

aerosol microphysical properties. Section III is devoted to the computation of optimized, case-155 

dependent constraints in the stand-alone 3β+2α lidar inversion. Section IV presents the results of 156 

applying optimized constraints to stand-alone 3β+2α lidar inversion for HSRL-2 measurements 157 

and an intercomparison of these retrievals with airborne in-situ measurements. Conclusions are 158 

given in section V.  159 

 160 

2.- Study of constraints for the 3β+2α lidar inversion 161 

2.1- Solution of ill-posed problem by regularization: optimized constraints 162 

The extinction and backscattering properties of an ensemble of polydisperse aerosol 163 

particles interacting with radiation are related to the particle volume distribution (v(r)) via 164 

Fredholm integral equations as (Müller et al., 1999a,b; Veselovskii et al., 2002): 165 

𝑔𝑗  𝜆𝑖 =  𝐾𝑗 ,𝑉 𝑚, 𝑟, 𝜆𝑖 𝑣 𝑟 𝑑𝑟
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
   (1) 166 

where „j‟ corresponds either to extinction (α) or backscattering (). Optical data are gj(λi) 167 

at wavelength λi, and Kj,V(m,r,λi) are the volume kernel functions (backscatter or extinction) that 168 

depend on particle radius „r‟ and complex refractive index m = mr + imi at the corresponding 169 

wavelength „λ‟.  170 
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To solve equation 1, the well-known regularization technique (e.g. Müller et al., 1999a,b; 171 

Veselovskii et al., 2002) can be used. The technique as implemented here uses a linear 172 

combination of basis functions (triangular in form) to reconstruct the size distribution and 173 

identifies a group of solutions that provides a realistic estimation of particle parameters. Such 174 

identification can be done by limiting the range over which a solution is sought and by 175 

considering the discrepancy (ρ), defined as the difference between the input optical data g(λ) and 176 

the g'(λ) calculated from the set of solutions. As the inversion problem is underdetermined and 177 

thus many solutions are possible, to stabilize the inversion an averaging procedure is used that 178 

selects a set of solutions in the vicinity of the minimum discrepancy (Veselovskii et al., 2002, 179 

2004). Typically, the average of approximately 1% of the total number of solutions is used as the 180 

best estimate of the particle parameters. In this work, spherical particles are assumed and the Mie 181 

theory (Mie, 1908) is used. Spherical particles typically include a wide set of aerosols such as 182 

pollution, biomass-burning or sea salt (e.g. Dubovik et al., 2002). The study of non-spherical 183 

particles such as dust is possible with the adaptation of AERONET kernel functions (Veselovskii 184 

et al., 2010), but is beyond the scope of this study. 185 

Retrievals of aerosol refractive index by regularization currently claim uncertainties of ± 186 

0.05 for mr and around ±100 % for mi (Müller et al., 1999a,b; Veselovskii et al., 2002, 2004). 187 

For other parameters such as effective radius (reff) and particle volume concentration (V) 188 

uncertainties claimed are around 30% and 25% respectively (e.g. Veselovskii et al., 2002; 189 

Whiteman et al., 2018). But all these previous works constrained the inversion to a maximum 190 

imaginary refractive index (mi,max) of 0.01 which is a limitation in the retrieval of refractive 191 

index and consequently for the retrieval of aerosol absorption properties.  192 
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Limiting the value of refractive index allowed in the inversion, both real and imaginary 193 

parts, improves retrieval results, particularly if the allowed values are close to the real ones. But 194 

ideally the inversion should be able to retrieve refractive index with no limitations, as is the case 195 

for the AERONET inversion methodology. Here, due to the limited information content of the 196 

3β+2α configuration we perform simulations to better understand the impact of limiting the 197 

allowed range of refractive index in the inversion. In the simulations optical data (backscattering 198 

and extinction coefficients for the 3β+2α configuration) are generated for unimodal size 199 

distributions with modal radius (rfine) of 0.075, 0.10, 0.14 and 0.18 μm and width (σ) of 0.4 μm. 200 

Refractive indices used in the simulations vary with mr,truth= 1.35, 1.45, 1.55 and 1.65 and 201 

mi,truth= 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03 and 0.05. The use of these ranges permits 202 

different magnitudes of absorption to be included. The optical data corresponding to the given 203 

size distribution and the various combinations of refractive indices were computed using Mie 204 

theory and then used as input to the inversions. No errors in the optical data are assumed at this 205 

stage. The inversions then provided the retrieved aerosol refractive indices, both real (mr,retrieved) 206 

and imaginary (mi,retrieved), and also aerosol bulk parameters such as effective radius (Reff,retrieved) 207 

and volume concentration (Vretrieved). But the inversions were run in two different ways: one 208 

using traditional constraints that implies mr ranging from 1.35 to 1.65 and mi maximum value 209 

(mi,max) of 0.1. The second consisted of applying tightened, case-dependent, constraints that limit 210 

refractive index variability around the true value, with mr ranging from mr,truth– 0.1 to mr,truth +0.1 211 

and mi,max= 2.5mi,truth. In both approaches, steps in mr are 0.025 and in mi 0.001. The maximum 212 

value of radius of the size distribution allowed in the inversion is 2 μm which is appropriate for 213 

predominance of fine particles (Pérez-Ramírez et al., 2013). Figure 1 summarizes the main 214 

results of all retrievals. It shows the differences versus the imaginary refractive index used for 215 
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the simulations. The data are plotted for the different sets of mr,truth and we represent mean values 216 

and standard deviations for the four different values of rfine. Dashed black lines represent the 217 

uncertainties in the bulk parameters and in the refractive index claimed in the bibliography 218 

(Müller et al., 1999a,b; Veselovskii et al., 2002). 219 

[Insert Figure 1 here] 220 

Figure 1a-b shows the differences between retrieved and truth real refractive index as a 221 

function of mi,truth. Using the traditional constraints, the only cases within the allowed 222 

uncertainties are for mr = 1.55 when mi,truth< 0.01 and for mr = 1.45 when mi,truth> 0.01. However, 223 

a clear improvement is observed when using tightened constraints with all the differences within 224 

the uncertainties. For imaginary refractive index (Figures 1 (c)-(d)), it is clearly observed that 225 

with traditional constraints differences in mi are above uncertainties for low values of mi,truth, 226 

particularly for mr,truth of 1.35 and 1.45. However, when tightened constraints are applied all 227 

mean differences are within the uncertainties, even though we observe slight departures when 228 

standard deviations are included for very small values of mi,truth. The improvement in mi retrieval 229 

is clear when tightened, case-dependent, constraints are applied and can be clearly observed as 230 

uncertainties are reduced to ~50%. The use of tightened constraints is also critical to reduce the 231 

standard deviations of the retrieval and the variability of the differences with mr,truth.  232 

Figure 1 (e)-(f) shows the differences in effective radius and again an improvement is 233 

observed in the retrievals using tightened constraints, particularly for mi,truth> 0.01 and for 234 

mr,truth=1.35 and 1.65. But here the improvement is not so critical as for refractive index and we 235 

remember that the retrieval of effective radius was constrained to rmax = 2 μm which is suggested 236 
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as appropriate when dealing only with fine mode particles. Similar results are observed for 237 

volume concentration (Figure 1 (g)-(h)). 238 

The overall conclusion from Figure 1 is that if the real and imaginary refractive indices 239 

can be constrained tightly, a significant improvement in the retrieval of the aerosol refractive 240 

index from the 3β+2α lidar inversion is obtained. Particularly, when mr is constrained to within 241 

mr,truth ± 0.1 and mi is constrained to mi,max= 2.5mi,truth, then retrievals are within the allowed 242 

uncertainties. We also repeated the simulations with a larger permitted range of values for both 243 

mr and mi. Specifically mr was permitted to range over mr,truth ± 0.15 and mi varied either up to 244 

mi,max = 5mi,truth or mi,max = 7.5mi,truth In all of these tests we  observed that the tighten constraints 245 

produced better retrievals . Therefore, the simulations presented here indicate that the tighten 246 

constraints of mr within mr,truth ± 0.1 and mi ranging up to mi,max= 2.5mi,truth produce significantly 247 

improved inversion results while allowing a range of physical results to occur. But because we 248 

do not know generally the input aerosol refractive index from experimental measurements we 249 

need to develop a proxy such that we can establish tightened constraints. To develop that proxy, 250 

we now study the AERONET database of retrievals.     251 

2.2- Study of AERONET retrieved refractive indices and single scattering albedo in support 252 

of the stand-alone 3β+2α lidar inversion. 253 

The AERONET inversion algorithm provides only column-integrated values but the large 254 

number of measurements of good accuracy increases the information content of the inverse 255 

solution which minimizes the differences between input and computed radiances by the forward 256 

model using the retrieved aerosol size distribution and refractive indices (Dubovik and King, 257 

2000). AERONET assumes constraints in smoothing the retrievals and in assuming that complex 258 
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refractive index is the same for all particles (Dubovik et al., 2000, 2006). However, AERONET 259 

is considerably less restrictive in the range of refractive indexes allowed in the inversions than in 260 

the lidar inversion technique. AERONET also assumes limits on the ranges of retrieved 261 

parameters but again is less restrictive than the tightened constraints discussed in the previous 262 

sections. 263 

For the cases of pollution and biomass-burning, which have mostly fine mode 264 

predominance for which the spherical particle assumption is reasonable, several worldwide 265 

AERONET stations are selected and we use only retrievals whose retrieved sphericity parameter 266 

is larger than 70 %. The stations selected are reported in Table 1 and they are representative of 267 

different polluted areas in Asia, America and Europe. Also, stations typically affected by 268 

biomass-burning aerosol are included. The large number of stations selected allows the inclusion 269 

of sites with very different aerosol fine mode characteristics and we believe they are reasonably 270 

representative of the many types of fine-mode aerosol present in the atmosphere. 271 

   [Insert Table 1 here] 272 

Table 1 shows the main statistical parameters of the retrieved refractive index and SSA 273 

(mean, standard deviation and maximum and minimum value) at the reference wavelength of 274 

532 nm – typical of lidar retrievals – determined from a linear interpolation of retrieved values at 275 

440 and 670 nm. Measured aerosol optical depths (AOD) and Ångström parameter (computed 276 

from AOD measurements in the range 440-870 nm), and retrieved effective radius (reff) are also 277 

included – note that these parameters are only given for the cases when SSA is retrieved, which 278 

requires that AOD(440nm) > 0.4 (Holben et al., 2006). Table 1 data cover biomass burning and 279 
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pollution in various mixtures, and allow robust representation of aerosol absorption including 280 

cases with a large range of refractive index and SSA. 281 

Table 1 reveals spatial variability in aerosol absorption properties, with higher absorption 282 

observed in Asia and Latin America than in Europe and North America. Carbonaceous species 283 

are highly absorbing and their variability could be the reason for the observed differences in 284 

absorption at polluted sites (e.g. Eck et al., 2010). Generally mean values of mr are mostly in the 285 

range of 1.4-1.5 with standard deviation of ~ 0.15. These values are typical of polluted and 286 

biomass-burning aerosols (e.g. Dubovik et al., 2002; Reid et al., 2005). Minimum values are 287 

~1.33 with maxima ~1.6. Values below 1.40 are rare for these aerosol types and can be due to  288 

the uncertainties in the AERONET inversions ( ± 0.03 or even larger for low AODs (Dubovik et 289 

al., 2000)). Nevertheless, aerosols with strong hygroscopic growth characteristics can possess mr 290 

below 1.40 (e.g. Veselovskii et al., 2009 for the Washington D.C. area). The very high values of 291 

mr can be explained by the large presence of carbonaceous particles. All ofthese results indicate a 292 

large variability in the scattering properties of these aerosol particles. For mi, mean values are 293 

observed mostly in the range of 0.005 – 0.025 with more variability in the standard deviation 294 

than for mr. Minimum values are very close to zero while the maxima reach values above 0.07. 295 

The predominance of fine mode particles is supported by the large Ångström exponents (all 296 

mean values are larger than 1.4) and low reff (all mean values are less than 0.33 μm). The link of 297 

mi to absorption is clear as high mi values correspond to low SSA – e.g. mi close to 0.02 mostly 298 

yields SSA in the range of 0.85 – 0.90. Nevertheless, there is not a one-to-one relationship 299 

between mi and SSA because SSA is also sensitive to the size of particles and the real refractive 300 

index. 301 
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Figure 2 presents color density plots of AERONET retrieved real refractive index 302 

(mr,AERONET) versus imaginary refractive index (mi,AERONET). Retrieved parameters are given 303 

again at 532 nm. Data used are all of those described in Table 1, with a total of 15,445 retrievals 304 

being analyzed. Figure 2 indicates a general increase in mr,AERONET as mi,AERONET increases with 305 

significant variability. Nevertheless, some general relationships can be drawn.  For the 306 

predominately fine mode particle types represented here, when mi,AERONET is less than 0.01, 90% 307 

of the mr,AERONET are less than 1.5. For medium absorbing cases (e.g. 0.01 < mi< 0.04), 90% of 308 

the values of mr are above 1.40 and below 1.55. For cases with mi> 0.04, 85% of the values of mr 309 

are above 1.5.  These general relationships are enough to improve the constraints on the lidar 310 

retrieval similar to section 2.1, assuming we are able to infer the aerosol type and absorption 311 

regime.  We note that the relationships found are limited by AERONET inversion uncertainties 312 

and no further conclusions about the relationships of mr versus mi from the data of Figure 2 can 313 

be obtained.  314 

    [Insert Figure 2 here] 315 

2.3-Optimization of the 3β+2α lidar inversion 316 

 Aerosol models can be used to roughly correlate aerosol refractive index to different 317 

aerosol categories. We do so here using the Goddard Chemistry, Aerosol, Radiation, and 318 

Transport (GOCART) model. GOCART provides simulations of major tropospheric aerosols - 319 

sulfate, dust, black carbon, organic carbon, and sea-salt. GOCART assumes aerosol to be in an 320 

external mixture. In GOCART, sulfate and carbonaceous aerosols are all assumed to be in the 321 

fine mode. Sea salt and dust are both represented by a series of five size bins (0.03 – 10 μm dry 322 

radius for sea salt), allowing for simulation of both the fine and coarse fractions of each. Sea salt, 323 
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sulfate and carbonaceous species are carried as bulk mass tracers with additional partitioning 324 

between hydrophobic and hydrophilic modes. Table 2 summarizes the main properties of the 325 

aerosol species assumed as spherical particles in GOCART. Note that dust is assumed to be non-326 

spherical and therefore not included in our analyses here. Detailed descriptions of the model are 327 

in (Chin et al., 2000, 2002, 2004; Ginoux et al., 2001).  328 

    [Insert Table 2 here]  329 

The GOCART aerosol model is used in this analysis to study the coherence of the 330 

relationship found in the previous section between mr and mi using the AERONET almucantar 331 

retrievals and consequently to determine optimized constraints on both aerosol size and 332 

absorption in the retrievals. For cases with fine mode predominance, relationships between mr 333 

and mi in GOCART agree with that observed in Figure 2 from AERONET almucantar 334 

inversions. For fine mode particles GOCART suggests large variability in absorption levels: low 335 

absorbing particles (e.g. mi < 0.01) are mainly associated with sulphates and/or highly hydrated 336 

carbonaceous species and typically have mr below 1.5, which agrees with observed in Figure 2 337 

for mi,AERONET< 0.01. High absorption (e.g. mi > 0.04) is assumed in GOCART to be only 338 

associated with cases possessing a significant amount of black carbon which implies mr > 1.5 as 339 

indicated by Figure 2 as well.  Considering medium absorbing cases (e.g. 0.01 < mi< 0.04) with a 340 

fine mode predominance, in GOCART are found either a mixture of absorbing carbonaceous 341 

species and sulfates, or just carbonaceous species partly affected by hygroscopic growth. For 342 

these medium absorbing cases in GOCART, mr is found to have mean values between 1.425-343 

1.525, in good agreement with Figure 2 where a mean value of 1.47 was found for this interval 344 

of mi and 90% of the values of mr are above 1.40. Finally, we note that GOCART assumes a size 345 

distribution whose width does not change with relative humidity, which is a strong assumption 346 
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but not critical in the objective of determining optimized constraints in the stand-alone 3β+2α 347 

lidar inversion.  348 

GOCART is also used to understand the constraints in refractive index for coarse mode 349 

predominance and their mixtures with other fine-mode particles. Actually, for the cases of coarse 350 

mode predominance only sea salt particles are included in our analysis using GOCART (dust is 351 

excluded because is assumed non-spherical). Sea salt is non-absorbing (see Table 2) and we can 352 

assume mi,max= 0.001 for the retrievals. Also, for coarse mode we need to allow large variability 353 

in mr due to the large variability of this parameter for sea salt particles. For mixtures of both fine 354 

and coarse, however, GOCART indicates more variability in mi: Mixtures of sulphate and/or 355 

hydrated particles with sea salt typically possess mi below 0.01, while when we include dry 356 

carbonaceous particles in the mixtures GOCART allows cases with mi above 0.01. In both cases 357 

of mixtures, mr is typically below 1.5 according to GOCART. Note that cases with mi above 0.04 358 

are rarely expected because those cases usually are associated with a large presence of 359 

carbonaceous species where the contribution of other species such as sea salt is negligible. As 360 

before, the hypothesis of constant width in aerosol size distribution in GOCART is not critical 361 

for determining optimized constraints for refractive index in the stand-alone 3β+2α lidar 362 

inversion.  363 

Due to the lack of information for independent retrieval of the spectral dependence of 364 

imaginary refractive index, the optimized constraints for spherical particles assume no spectral 365 

dependence in mi. Thus the retrieved aerosol refractive index is given at a reference wavelength 366 

at 532 nm only.Despite this, it should be noted that the main absorbing species in GOCART used 367 

for defining the optimized constraints are carbonaceous species, for which the spectral 368 

dependence of refractive index is relatively mild in GOCART (Chin et al., 2002). AERONET 369 
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retrievals of mi in the fine mode are also assumed to be spectrally independent (Schuster et al., 370 

2016a,b). However, more recent investigations indicate that larger mi values for organic carbon 371 

in the UV region are needed to agree with OMI observations (Buchard et al., 2015). This result is 372 

important for biomass-burning but not for pollution events (Colarco et al., 2017). For all of these 373 

reasons, in the aerosol inversions considered here when spectral dependence in mi is present 374 

additional uncertainties are added to the retrieved parameters. Refractive index in other regions 375 

such as the infrared (e.g. Volz, 1973) can follow very different patterns to those used here, but 376 

retrievals in these spectral regions is beyond the capability of the stand-alone 3β+2α lidar 377 

technique. 378 

But the selection of the range of radii allowed in the inversion must be done carefully as 379 

it can influence the accuracy and sensitivity of the retrievals (e.g. Müller et al., 1999a,b; 380 

Veselovskii et al., 2002). Typically only two modes of aerosol particles are assumed for the 381 

wavelengths used here: fine mode that corresponds to particles of radius typically below 0.5-0.6 382 

μm, and coarse particles for those with larger radii (Dubovik et al., 2002). For fine mode 383 

particles the radii permitted in the inversion are in the range of 0.075 and 2 μm. For coarse mode 384 

predominance, the maximum radius permitted in the inversion is increased to 10 μm and the 385 

minimum radius also increases to ~ 0.2μm. Finally, for a mixture of fine and coarse particles the 386 

inversion is evaluated over the entire range of 0.075 to 10 μm. Therefore, we need to look for a 387 

method that is able to provide optimized constraints both in refractive index and in the range of 388 

radii. 389 

We note that other species such as nitrates are also present in the atmosphere and are 390 

particularly prevalent in polluted regions (e.g. Wang et al., 2010). Nitrates are highly 391 

hygroscopic (e.g. Tang, 1996), low absorbing (e.g. Toon et al., 1994; Richwine et al., 1995; 392 
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Norman et al., 1999), and for our wavelengths of interest (355, 532 and 1064 nm) have real 393 

refractive indices that are similar to sulphates, both from laboratory (e.g. Toon et al., 1994; 394 

Richwine et al., 1995) and in-situ measurements (Zhang et al., 2012). The optical properties for 395 

fine mode sulphate particles are already included in Table 2 so it is not necessary to consider 396 

nitrates in defining optimized constraints. On the other hand, nitrates can also interact with sea 397 

salt and dust and modify the optical properties of coarse particles. But for coarse particles and 398 

their mixtures, we did not find any relationship between mr and mi as for the smaller particles 399 

although, still, we found it beneficial to limit the maximum value of mi as before. Because in 400 

mixtures of fine mode particles low absorbing aerosol is represented by either sulphates, sea salt 401 

or hydrated aerosols it is not necessary to include nitrates. 402 

3.-Optimized constraints for the stand-alone 3β+2α lidar 403 

inversion 404 

3.1- Computation of optimized constraints 405 

To establish the set of constraints for the stand-alone 3β+2α lidar inversion we need first 406 

to determine the range of radii for the inversion, noting that the Angstrom exponent of extinction 407 

(γα) is strongly correlated to particle size (e.g. Dubovik et al., 2002). To understand the 408 

relationship between Angstrom exponent and PSD, computations were made of γα for different 409 

sets of unimodal size distributions with rfine =0.10, 0.14, 0.18, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5 410 

and 2 μm with σM =0.4 μm. Computations for bimodal size distributions are also included with 411 

fine mode at rfine = 0.14 μm and σfine =0.4 μm, coarse mode at rcoarse = 1.5 μm and with  σcoarse 412 

=0.6 μm and Vf/Vc of  2, 1, 0.5, 0.2 and 0.1. Refractive indices used were mr = 1.35, 1.45, 1.55 413 
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and 1.65 and mi = 0.001, 0.005, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075 and 0.1. Figure 3 shows 414 

γα as a function of rfine of the unimodal size distributions used as input. For clarity, only those at 415 

mr =1.35 and mr = 1.65 are shown. Black dots are for bimodal size distributions where the error 416 

bars represent the standard deviation associated with mr variability. 417 

   [Insert Figure 3 here] 418 

From Figure 3 all data for γα>1.25 are associated with a large predominance of the fine 419 

mode (reff< 0.3 um), independently of mi values. However not all cases dominated by fine mode 420 

have such large values of the γα.  Some cases dominated by fine mode particles, specifically 421 

those with mi> 0.03, have low to intermediate values of γα.  Therefore, only high values of γα 422 

(>1.25) correspond unambiguously to the specific size category of fine mode predominance. 423 

Other cases require more information and further analysis to categorize. We also note that this 424 

analysis is for the γα computed using 355 and 532 nm used in the 3β+2α lidar configuration. 425 

The extinction-to-backscatter ratio (lidar ratio, or LR) is studied here because it is a 426 

parameter related both to particle size and refractive index. Computations of LR at 355 and 532 427 

nm were done assuming Gaussian and unimodal aerosol size distributions, which can be 428 

representative of a PSD consisting of only fine mode particles  (e.g. Dubovik et al., 2002). The 429 

computations were done for different sets of rfine of 0.075, 0.10, 0.14 and 0.18 μm – guaranteeing 430 

only fine mode particles - and mi of 0.001, 0.005, 0.01, 0.025, 0.05 and 0.075. The width of the 431 

size distribution (σ) is fixed in all computations to σ = 0.4 μm. Figure 4 shows the spectral 432 

dependence of LR: continuous lines represent fixed rfine and variable mi, while dashed lines imply 433 

fixed mi and variable rfine. Initially, we selected four representative values of mr that cover most 434 
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aerosol particles, 1.35, 1.45, 1.55 and 1.65, but for simplicity only results for mr = 1.45 (red 435 

lines) and mr = 1.65 (black lines) are shown. Data used to build Figure 4 are given in Table 3. 436 

From the plots of Figure 4 the limiting value of the imaginary refractive index used in the 437 

inversion can be estimated (mi‟) by linear interpolation, but this selection depends on the 438 

assumed mr and therefore more analyses are needed for an appropriate estimation of imaginary 439 

refractive index. We remark that additional computations were done for other widths of the size 440 

distribution (graphs not shown for brevity), σ = 0.2 and 0.6 μm representing lower and higher 441 

typical values for fine mode predominant distributions, and we observe the same patterns as in 442 

the plots of Figure 4, with only slightly broader plots for σ = 0.2 μm and slightly narrower plots 443 

for σ = 0.6 μm. Therefore the assumption of size distribution width can lead to small differences 444 

in the computation of mi using the graphical method of Figure 4, but given that the graphical 445 

method is designed to provide optimized constraints on the inversion these differences in σ do 446 

not significantly influence the 3β+2α inversion results.   447 

    [Insert Figure 4 here] 448 

    [Insert Table 3 here] 449 

Figure 5 shows the dependence of the ratio of LR for 355 and 532 nm values 450 

(LR(355)/LR(532) - hereafter LRratio) as a function of γα. In these plots mi is now fixed and 451 

representative plots for low (e.g. mi =0.005) and medium absorption (e.g. mi =0.025) are shown, 452 

respectively. The plots are computed again for the same sets of rfine (0.075, 0.10, 0.14 and 0.18 453 

μm) and fixed σ = 0.4 μm  but now varying the different values of mr: 1.35 (green lines), 1.45 454 

(red lines), 1.55 (blue lines) and 1.65 (black lines). Data for Figure 5 are given in Table 4. Figure 455 

5 clearly reveals relationships between LRratio and γα, and suggests that such graphs can be used 456 
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as proxy to estimate the limiting value of real refractive index (mr') by linear interpolation. Such 457 

estimated value is used to verify the ranges of mi‟ that were previously determined in Figure 4 458 

but not as a final retrieved value 459 

    [Insert Figure 5 here] 460 

    [Insert Table 4 here] 461 

Using the measured 3β+2α values and Figures 4 and 5, the step-by-step graphical method for 462 

determining a coarse estimation of refractive index mi‟ is as follows:  463 

1. We determine typical values of mr
(k)

 covering the different ranges observed in the 464 

bibliography. Taking into account the uncertainties of mr in the lidar retrievals of ± 0.05 465 

we have selected mr
(1)

 = 1.35, mr
(2)

 = 1.45, mr
(3)

 = 1.55 and mr
(4)

 =1.65 as representative.  466 

The superscript „k‟ corresponds to each of the four assumed mr as input. 467 

2. From the measured 3β+2α the corresponding LR(355 nm) and LR(532 nm) is computed 468 

and using the graphical method of Figure 4 we determine each value of mi
'(k) 

. 469 

3. We calculate γα from the measured extinction coefficients and using mi
'(k) 

obtained in step 470 

2 we compute the four graphs LR(355 nm)/LR(532 nm) versus γα (graphical method of 471 

Figure 5). For each of these plots we interpolate and obtain an estimated value of real 472 

refractive index, denoted mr
‟(k) 

.  For each „k‟ value, If the difference mr
(k)

 – mr
‟(k)

 is larger 473 

than ±0.05 then the corresponding mi
‟(k)

 is rejected. The reason behind the rejection is 474 

that the measured LRs and γα do not correspond with a size distribution and refractive 475 

index under the hypotheses used to build both Figures 4 and 5. But there could be cases 476 

where only some ´k´ values are rejected while others fulfill the hypothesis of size 477 
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distributions and refractive index of Figures 4 and 5 – e.g. for mr
(1)

 = 1.35 the estimated 478 

mi
'(1) 

might be rejected while for  mr
(3)

 = 1.55 the estimated mi
'(3) 

 is valid.  479 

4. The final value of mi‟ is computed as the average of the mi
‟
(k) values computed without 480 

rejection. The estimated mi‟ is used to compute mi,max= 2.5mi‟ (section 2.1) and also 481 

using the relationships found in Figure 2 are used to estimate mr‟, which serves to define 482 

the range of allowed mr in the inversion as mr‟ ± 0.1. 483 

5. Considering now Figure 3, γα < 1.25 could correspond either to fine mode predominance 484 

with strong absorption (e.g. mi> 0.03) or size distribution with mixture of fine and coarse 485 

particles. But the graphical method of Figures 4 and 5 is based on the assumption of fine 486 

mode predominance, sofrom measured 3β+2α with γα<1.25, if the four mi
k
 were rejected 487 

in step 3, these cannot correspond to a predominance of fine mode and therefore must 488 

correspond either with a predominance of coarse mode particles or with a mixture of fine 489 

and coarse modes. 490 

For these cases, according to the GOCART background (section 2.2), spherical coarse 491 

particles correspond with sea salt particles having low refractive index. In the AERONET 492 

retrievals a residual coarse mode is observed in biomass-burning or polluted cases affected by 493 

hygroscopic growth or other aging process.  The particles that fall in the area of separation 494 

between fine and coarse mode could induce an artifact in the retrieval and explain the residual 495 

coarse mode in biomass-burning. In any case, with the limitations assumed here of the same 496 

refractive index for both modes we can assume that in the mixture of particles no very high 497 

values of mi are observed because such cases corresponds to a large contribution of dry 498 

carbonaceous particles and therefore of fine particles. Under these assumptions simulations were 499 
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done for bimodal size distributions (rfine = 0.14 μm, σfine = 0.4 μm, rcoarse = 1.5μm, σcoarse = 0.6 500 

μm), where the ratio of volumes between both modes varies from 2 to 0.1. The same set of 501 

refractive indices as in Figure 4 are assumed but with mi up to 0.04. Figure 6 shows the spectral 502 

dependence of LR for mr = 1.55, which can be assumed as illustrative of a mixture of particles 503 

where it is possible to have large mi (e.g. dry carbonaceous and sea salt typically do possess mr 504 

between 1.50 and 1.60 – Table 2). The data to build Figure 6 are given in Table 5 and again 505 

Figure 6 allows a direct coarse estimation of aerosol imaginary refractive index.  506 

    [Insert Figure 6 here] 507 

    [Insert Table 5 here] 508 

There are other possible mixtures of particles with different values of mr – e.g. cases with 509 

large hygroscopicity or with important contribution of sulphate particles (Table 2). But according 510 

to GOCART these cases possess mi below 0.01, and therefore we limited the computations to mi 511 

= 0.01. In Figure 6 we also include the plot for mr = 1.35 as representative of alternative cases, 512 

and we observe that all the data of these new plot fall in the region corresponding to mi< 0.01 for 513 

the plot computed for mr = 1.55, and therefore we conclude that the plot for mr = 1.55 can be 514 

used as representative of most mixtures.  515 

The graphical method of Figure 5 for mr = 1.55 is used to compute mi‟ when the aerosol 516 

size distribution is suggested as a mixture of fine and coarse modes in step 5, and we can 517 

therefore compute mi,max= 2.5mi‟ which is later used in the 3β+2α inversion. However, for 518 

mixtures, the relationships between mr and mi from AERONET retrievals (Figure 2) are not 519 

representative and due to the large variability observed in GOCART for mixtures we do not 520 

assume any limitations in the range of mr allowed in the retrievals. These issues, together with 521 
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the larger range of radius allowed in the inversion, induce larger errors in the retrievals when a 522 

mixture of particles predominates, but agrees with the largest uncertainties associated with these 523 

types of particles generally found for the retrievals of aerosol microphysical properties (e.g. 524 

Perez-Ramirez et al., 2015). 525 

3.2.- Impact of the optimized constraints in the retrievals of single scattering albedo 526 

The impact of the optimized constraints in the retrievals of aerosol single scattering 527 

albedo (SSA) by the stand-alone 3β+2α lidar is studied here through different simulations: the 528 

same hypotheses of the input size distribution as in Figure 1 are used – unimodal size distribution 529 

with rfine = 0.075, 0.10, 0.14, and 0.18 μm and with σ = 0.4 μm. Refractive indices used in the 530 

simulations vary with mr,truth = 1.35, 1.45, 1.55 and 1.65 and mi,truth = 0.00, 0.001, 0.005, 0.01, 531 

0.025, 0.05, 0.075 and 0.1. The computation of single scattering albedo on the particle size 532 

distribution and refractive index and is thus wavelength dependent. Even though we assume a 533 

flat spectral dependence of the refractive index, it is nonetheless valuable to study the optimized 534 

inversion for retrieval of SSA at different wavelengths. 535 

Figure 7 shows the differences in SSA between retrieved (SSAretrieved) and modeled 536 

(SSAtruth) values of SSA as a function of mi,truth. Again, the differences are presented for the 537 

traditional constraints with mi,max = 0.1 and where all ranges of mr are allowed, and for optimized 538 

constraints in the retrievals. Results are shown for the four different values of mr used in the 539 

simulations. Shaded areas in the plots of Figure 7 are the uncertainties expected, which are these 540 

assumed for AERONET. Actually, AERONET uncertainties claimed for SSA are approximately 541 

±0.02 (e.g. AERONET retrievals in Dubovik et al., (2000)). This uncertainty in SSA for low 542 

absorbing aerosol (e.g. SSA > 0.9 and mi typically below 0.01) implies approximately 20% 543 
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uncertainty in the absorption coefficient. For lower SSA (and consequently larger mi) 20% 544 

uncertainties in the absorption coefficient allows larger uncertainties in SSA. Therefore, we 545 

allowed these larger uncertainties but keeping the 20% uncertainty in the consequently retrieved 546 

absorption coefficient. This effect explains the different shaded areas of Figure 7. 547 

    [Insert Figure 7 here] 548 

Figure 7 clearly reveals that optimized constraints are able to reduce the differences 549 

between model and retrieved SSA. Optimized constraints are particularly critical in the retrieval 550 

of SSA for mi< 0.01. Actually, the optimized constraints are also needed for reducing 551 

uncertainties in larger mi as shown by the improved retrieved values for mr = 1.35 and mr = 1.45. 552 

Note though that when the optimized constraints are applied, the differences in SSA fall within 553 

the acceptable uncertainties for 355 and 532 nm in all ranges of absorption, while for 1064 nm 554 

this does not happen for low absorption that illustrates the difficulty of retrieving very small 555 

values of SSA .  556 

 For the cases involving a mixture of modes simulations were again done to study the 557 

impact of optimized constraints. Now, a bimodal size distribution is used for computing the input 558 

3β+2α optical data, with fine mode at rm,fine = 0.14 μm and  σfine = 0.4 μm, and coarse mode at 559 

rm,coarse = 1.5 μm and with  σcoarse =0.6 μm. The ratio of fine and coarse mode volumes (Vf/Vc) 560 

takes values of 2, 1, 0.5, 0.2 and 0.1. The same ranges of refractive index as in Figure 7 are used 561 

– although we skipped mi,truth = 0.075 and 0.1 because according to GOCART such refractive 562 

indices are very rare for mixtures of fine and coarse mode. The under-determined problem 563 

requires us, as previously stated, to assume the same refractive indices for both fine and coarse 564 

modes, which is also assumed in the current operational AERONET algorithm (Dubovik and 565 
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King, 2000). Figure 8 shows the dependence of the differences between retrieved and model 566 

SSA as function of imaginary refractive index. Because the differences are computed for all the 567 

different values of mr and mi, we represent in Figure 8 absolute values of these differences with 568 

the error bars showing the standard deviations associated with the different input mr in the 569 

simulations. Also, for clarity we show differences when no limitations in the range of mr and 570 

with mi,max = 0.1 (labeled as „traditional constraints‟ in the plot). For the inversions with 571 

optimized constraints we show two cases for clarity, one for cases when mi,model< 0.01 (labeled as 572 

„low absorption‟) and the other with mi,model> 0.01 (labeled as „medium absorption‟).  573 

Figure 8 reveals again that optimized constraints are critical for the retrieval of SSA in 574 

the cases of mixtures of particles, both for low and medium absorbing particles. However, now 575 

important results are observed with wavelengths and with the contribution of each mode: for 355 576 

nm, SSA retrievals fail as the coarse mode becomes more relevant, which is clearly seen for 577 

Vf/Vc< 1, indicating a critical limitation of the retrieval. Actually, it is observed that for Vf/Vc< 1 578 

the optimized constraints do not produce significant improvements in the retrievals. However, 579 

for 1064 nm, now retrievals of SSA are possible and optimized constraints are only critical for 580 

cases with mi< 0.01.  581 

At 1064 nm we note that the use of optimized constraints are not as critical as for the 582 

other wavelengths, although the deviations are always ~0.04 when no constraints are used and 583 

therefore above the uncertainties mainly for low absorbing cases. Nevertheless, the large 584 

standard deviations observed suggest to always use optimized constraints. We also remark that 585 

the degradation of the retrieval with Vf/Vc for optimized constraints is not as critical as for 355 586 

nm, although differences are only below the allowed uncertainties for Vf/Vc< 1.0.  587 
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For 532 nm, an intermediate result between those of the previous wavelengths is 588 

observed. The improved capabilities of the inversion for retrieving SSA at 1064 nm versus 355 589 

or 532 nm for coarse mode predominant cases is expected as the interaction of light with big 590 

particles becomes more effective at 1064 nm, while the opposite occurs at 355 nm. 591 

 592 

    [Insert Figure 8 here] 593 

 594 

The conclusion from all these simulations is that optimized constraints are critical for the 595 

stand-alone 3β+2α lidar inversion for retrieving SSA. But also there are limitations relating to 596 

the dominant particle size. For fine mode particle predominance, such as for fresh biomass 597 

burning or pollution cases, reliable retrievals are only possible in the ultraviolet and visible 598 

regions. As the coarse mode increases, retrieved SSA at 1064 nm becomes possible while 599 

retrievals lose their capabilities in the ultraviolet region. Actually, for mixtures of particles SSA 600 

retrievals at all wavelengths are only possible when the contribution of fine particles is 601 

significant (Vf/Vc< 1), which for real aerosol can happen for aged cases of smoke and pollution 602 

that possess a residual coarse mode (Dubovik et al., 2002).  603 

4.- Experimental Results 604 

4.1- Instrumentation and Methodology used.  605 

During DISCOVER-AQ the NASA Langley second-generation airborne HSRL-2 system 606 

was deployed from the NASA LaRC King Air B200 aircraft on California, Texas and Colorado 607 

field campaigns, and obtained over 300 science flight hours. The typical flight altitude of the 608 
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B200 during lidar operations was 9 km. The system uses the High Spectral Resolution Lidar 609 

technique (HSRL - Shipley et al., 1983) to independently measure aerosol extinction and 610 

backscatter at 355 and 532nm and the standard backscatter technique (Klett 1981, 1985: Fernald, 611 

1984) to measure aerosol backscatter at 1064nm. Preliminary work with DISCOVER-AQ data 612 

indicated the capabilities of HSRL-2 to evaluate hybrid-retrievals (e.g. Sawamura et al., 2014) 613 

and bulk parameters of the stand-alone 3β+2α lidar inversion (Sawamura et al., 2017), and here 614 

HSRL-2 measurements are used to evaluate SSA retrievals. The system also measures linear 615 

depolarization ratio () at all three wavelengths (Burton et al., 2015). HSRL-2 is a follow-on to 616 

the successful airborne HSRL-1 instrument (Hair et al., 2008), which has made measurements at 617 

532 and 1064 nm since 2006 (Rogers et al., 2009). The novelty of HSRL-2 is the capability to 618 

measure independent extinction and backscattering at 355 nm (Burton et al., 2018). The system 619 

is able to acquire measurements at 0.5 s temporal and at 7.5 m vertical resolutions. Aerosol 620 

backscatter and depolarization products are averaged for 10 s (yielding a horizontally resolution 621 

of  ∼ 1 km at nominal aircraft speed) and aerosol extinction products are averaged for 60 s (∼ 6 622 

km). The optical data used here are available on the DISCOVER-AQ data archive at http://www-623 

air. larc.nasa.gov/missions/discover-aq/discover-aq.html. 624 

For aerosol typing using aerosol intensive parameters including spectral , lidar ratio, and 625 

backscatter Angstrom exponent, the algorithm used is described in Burton et al., (2012, 2013, 626 

2014) and is able to separate between: ice (specifically small diameter arctic ice fog particles that 627 

are not separately cleared as cloud in the HSRL algorithms) (1), dusty mix aerosol (2), maritime 628 

aerosol (3), urban/pollution aerosol (4), smoke (5), fresh smoke (6), polluted maritime aerosol 629 

(7), and pure dust (8).  Since not every set of measurements can be unambiguously typed to one 630 

specific class, the code (9) indicates points that are unclassified because they are consistent with 631 
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more than one class. We note that aerosol classification is presented as qualitative and the 632 

accuracy can be affected by a variety of common circumstances such as aerosol which is not 633 

consistent with the set of training cases used (e.g. differences in „urban‟ aerosol between western 634 

and eastern US – Burton et al., 2012, 2014). Mistyping for classes that have similar values in the 635 

observables used for classification can also be the cause of inconsistencies in aerosol typing (e.g. 636 

smoke of forest or agricultural are sometimes hard to separate from urban aerosol – Burton et al., 637 

2012, 2014). 638 

 The NASA P-3B aircraft acquired in-situ measurements of aerosol properties during the 639 

DISCOVER-AQ field campaigns. Sampling was done through an isokinetic, low-turbulence inlet 640 

which transmits particles smaller than 5 µm diameter with greater than 50% efficiency 641 

(McNaughton et al., 2007). A limitation of typical in-situ instrumentation is that it dries the 642 

particle and therefore, the measured values are not representative of those in the real atmosphere. 643 

To circumvent this limitation, during the DISCOVER-AQ campaign, both dry and humidified 644 

scattering coefficients (450, 550, and 700 nm wavelengths) were measured with a pair of 645 

integrating nephelometers (Model 3563, TSI, Inc., Shoreview, MN, USA) (Pilat and Charlson, 646 

1966; Clarke et al., 2002). The measurements were corrected for truncation errors following 647 

Anderson and Ogren (1998). One nephelometer operated at dry relative humidity (RHdry∼ 10%), 648 

while the other operated at high relative humidity (RHwet∼ 80-85%). Combining the 649 

measurements from both instruments permits calculation of the aerosol hygroscopicity parameter 650 

(χ), which is related to the ratio between extinction coefficients at RH = 80 % and at RH = 10%. 651 

Computation of scattering coefficients at ambient conditions is done following Ziemba et al., 652 

(2013). The scattering Ångström exponents are used to obtain scattering coefficients at 532 nm. 653 

Dry aerosol absorption coefficient (470, 532, and 660 nm wavelengths) is obtained from a 654 
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Particle Soot Absorption Photometer (PSAP; Radiance Research, Shoreline, WA, USA), whose 655 

measurements are corrected for filter artifacts following Virkkula (2010). Hygroscopic growth 656 

effects on absorption coefficients were neglected. The final aerosol extinction coefficient at 657 

ambient temperature is given as the sum of hydrated scattering and absorption coefficients, and 658 

through the ratio of hydrated scattering and extinction coefficients SSA at ambient conditions is 659 

computed. The P-3B data used are publicly available on http://www-air.larc.nasa.gov/missions/ 660 

discover-aq/ discover-aq.html. 661 

Co-incident data of HSRL-2 and P-3B were used with the limitation of maximum 15 km 662 

distance between both airplanes. For the match-up, HSRL-2 data were averaged over 75 m 663 

altitudes and 1.5 minutes temporal (∼ 15 km horizontal equivalent) resolution. The P-3B flew 664 

spiral patterns with diameters of 6-10 km and an average vertical resolution of 5 m. For the 665 

stand-alone 3β+2α lidar inversion we imposed a maximum value in depolarization of 5%, 666 

consistent with spherical particles, as all our analyses presented here are based on Mie theory. 667 

The total numbers of correlative spirals were approximately of 90, 150 and 70 for the California, 668 

Texas and Colorado field campaigns, respectively. The total number of correlative points for 669 

SSA intercomparisons was 1270, including situations of fine mode predominance and mixture of 670 

modes, with cases of mi estimated varying between 0.001 and 0.03. No cases of very high 671 

absorption (e.g. mi> 0.05) were registered.  672 

4.2- Experimental measurements and retrievals of single scattering albedo vertical-profiles  673 

 Figure 9 shows the flight tracks of the NASA B200 airplane (in which the HSRL-2 was 674 

installed) for three different days during DISCOVER-AQ in California (2013), Colorado (2014) 675 

and Texas. Each day is representative of different aerosol conditions. The flights tracks can be 676 
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found at the DISCOVER-AQ website (https://www-air.larc.nasa.gov/missions/discover-677 

aq/discover-aq.html). 678 

    [Insert Figure 9 here] 679 

4.2.1. – San Joaquin Valley: Fine mode and low absorbing aerosol study case 680 

Measurements of aerosol vertical-profiles of α(532) on 30th January 2013 over the San 681 

Joaquin Valley are given in Figure 10. Vertical white lines indicate correlative spirals by the P-682 

3B airplane. For this day, backward trajectories were computed by the HYSPLIT model (Stein et 683 

al., 2015) and revealed that air masses at altitudes of 1500 and 3500 m. a.g.l. had their origin on 684 

the west coast of North America and over the Pacific, and were thus generally very clean (graphs 685 

not shown for clarity). For lower altitudes at 500 m a.g.l., the backward-trajectories revealed the 686 

presence of local air-masses over the San Joaquin valley. Figure 10a shows no aerosol above the 687 

altitude of 1500 m a.g.l., which is consistent with the air-mass patterns and indicates very low 688 

planetary boundary layer (PBL) with the presence of local aerosol and pollution. Within the 689 

PBL, large relative humidity was registered during most of the measurements (>70%), and mean 690 

aerosol hygroscopicity parameter χ of ~ 1.5 obtained by in-situ P-3B instrumentation revealed a 691 

large presence of hydrated particles.  692 

Figure 10b shows the results of the aerosol typing using the HSRL-2 aerosol intensive 693 

parameters. For the aerosol in the planetary boundary layer no data are classified as dust or dusty 694 

mixture consistent with the assumption of spherical particles. Figure10b reveals that most of the 695 

aerosol within the PBL corresponds to urban aerosol which agrees with the analyses of backward 696 

trajectories mentioned previously. Urban aerosol is more predominant before 20 UTC. Between 697 

18:30 and 19:30 UTC fresh smoke is observed. While the data in this category are probably not 698 
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always well described by the label “fresh smoke”, the difference in typing nevertheless indicates 699 

a change in aerosol optical properties (e.g. Burton et al., 2012, 2013). Between 21 and 24 UTC a 700 

presence of marine-polluted aerosol is also observed. Above the PBL are observed some dusty 701 

mixtures that possess very low extinction.  702 

All the extinction and backscatter data of Figure 10a within the PBL were used as input 703 

to the procedure for computing the optimized constraints of section 3.1. The estimated particle 704 

size (fine mode predominance or mixture of modes) and imaginary refractive indexes are given 705 

in Figures 10c and 10d, respectively. Particle type is predominantly fine mode that is consistent 706 

with the classification of pollution and fresh smoke from the previous typing classification. The 707 

estimated mi is typically below 0.01 with some spikes near the top of the planetary boundary 708 

layer (mi,estimated 0.015). Such low values of estimated mi are consistent with the presence of fine 709 

mode particles from pollution and fresh smoke affected by hygroscopic growth (e.g. Dubovik et 710 

al., 2002). 711 

     [Insert Figure 10 here] 712 

 An example of vertical profiles of aerosol optical and microphysical properties is given in 713 

Figure 11 for the 30
th

 January 2013 at 21:54 UTC (GMT-8). Optimized constraints were 714 

computed and for all data of the profile fine mode aerosol were present with estimated mi below 715 

0.01, and therefore the inversions were run under using optimized constraints. Retrieved values 716 

of reff (between 0.10 – 0.15 μm) are typical of fine mode predominance, and V shows a decrease 717 

with altitude that agrees with the vertical structure of the extinction measurements. Retrieved 718 

values of mr are approximately 1.40 – 1.475, typical of pollution and hygroscopic aerosol 719 

(Veselovskii et al., 2009). The corresponding vertical profiles of SSA obtained by inversion of 720 

HSRL-2 lidar measurements and by correlative in-situ airborne measurements are also given in 721 
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Figure 11. Retrieved and measured values of SSA are above 0.96 and no vertical structures are 722 

observed by any method. Differences in SSA between both methodologies are within the 723 

uncertainties.  724 

     [Insert Figure 11 here] 725 

 726 

4.2.2. – Colorado: Fine mode and medium absorbing aerosol study case 727 

An example of results from DISCOVER-AQ Colorado is given in Figure 12 which shows 728 

aerosol vertical profiles of α(532) on 10
th

 August 2014. Different layers are observed with 729 

aerosol up to 6 km a.s.l. The PBL is at approximately 3200 m a.s.l.. The analyses of backward-730 

trajectories (graphs not shown for simplicity) reveal that the lower levels below PBL are affected 731 

by local air masses that are frequently quite dry for this location. However, the higher levels are 732 

affected by air masses with origin in the southeast of the U.S. where several fires were active. 733 

Injections of biomass-burning particles in the free troposphere in the South of the US have been 734 

observed during the SEACRS field campaign (Reid et al., 2017). Generally southern air masses 735 

often contain a high amount of water vapor but the high altitude at which these air masses were 736 

transported implied a low amount of water vapor.  Actually, the P-3B measurements indicated 737 

that hygroscopic growth hardly affected aerosol in these layers, with the increase in size being 738 

less than 5 %.  739 

     [Insert Figure 12 here] 740 

 HSRL-2 measurements of  indicated that most values for Figure 12 data were below 741 

0.05 guaranteeing again a predominance of spherical particles. The aerosol typing algorithm was 742 

again applied (Figure 12b), clearly revealing two different aerosol types: In the PBL urban 743 

pollution aerosol is observed while above the PBL smoke is observed. Such patterns agree 744 
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previous comments concerning backward trajectories. The algorithm of section 3.1 classified 745 

most of the data as fine mode predominance (Figure 12c) and estimated mi between 0.015 and 746 

0.0075 (Figure 12d), in spite of some spikes indicating mixture of particles and suggesting larger 747 

mi in the higher altitudes. These classifications agree with smoke properties that possess fine 748 

mode predominance and relatively large imaginary refractive indices (e.g. Dubovik et al., 2002). 749 

The mixture of fresh smoke with urban pollution usually possesses large imaginary refractive 750 

indices as well (e.g. Eck et al., 2003; Eck et al., 2010). 751 

 An example of the aerosol microphysical properties retrieved on 10
th

 August 2014 is 752 

given in Figure 13 for data acquired at 15:45 UTC when correlative spirals by P-3B were 753 

available. Atmospheric relative humidity measured by the aircraft with in-situ instruments 754 

ranged from 55-65%, which implies that aerosols were generally non-hydrated. The 3β+2α lidar 755 

inversion used optimized constraints. Effective radii retrieved were approximately 0.15-0.22 μm, 756 

which are typical of pollution and smoke (Dubovik et al., 2002) and indicates fine mode 757 

predominance. Actually, these slightly larger values of effective radius compared with these of 758 

Figure 11, although within the fine mode, suggest they are close to a mixture and explains the 759 

difficulty of the algorithm for selecting the constraints to separate between fine and mixtures and 760 

therefore the spikes observed in Figure 12c. The profile of V follows a pattern very similar to the 761 

extinction profiles, which is expected as both parameters depend on particle concentrations. The 762 

retrieved values of mr close to 1.55 are again typical of dry pollution and fresh smoke. The 763 

retrieved mi are approximately 0.0075-0.015, which are in the range expected for this type of 764 

particles. Retrievals and in-situ measurements of SSA are given with values again of medium 765 

absorbing aerosol (~0.92) and differences are within the uncertainties of the method. These 766 

retrievals and in-situ measurements suggest relatively significant absorption by these transported 767 
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smoke particles when they become dry. Unfortunately, only four data were available for 768 

intercomparison because the P-3B airplane did not fly at lower altitudes.  769 

 770 

     [Insert Figure 13 here] 771 

4.2.3. – Houston region: Mixture of particle sizes and medium absorbing aerosol study case 772 

 Figure 14a shows an example of aerosol vertical profiles of α(532) on the 26th September 773 

2013 from DISCOVER-AQ Texas in 2013. High PBL is observed with aerosol up to 774 

approximately 2300 m a.s.l.. Backward-trajectories were computed again for this day (graphs not 775 

shown for simplicity) and revealed air masses with origin in the Midwest of the US that were 776 

affected by biomass burning events during the previous days. Measurements by P-3B using the 777 

tandem of nephelometers reveal aerosol hygroscopic growth with mean χ of ~1.3. However, the 778 

dry air-masses for this day with low relative humidity (~35 – 55 %) did not support aerosol 779 

hygroscopic growth in the real atmosphere. Long-range transport of biomass-burning aerosols 780 

usually possesses a residual coarse mode and considerable absorption (e.g. Dubovik et al., 2002), 781 

and considering the small growth by higroscopicity, these transported particles retained 782 

considerable absorption (Pérez-Ramírez et al., 2017). 783 

 Again, the presence of spherical particles is mostly indicated by HSRL-2 linear 784 

depolarization measurements with values below 0.05, although with some values close to 0.1 that 785 

are ignored in the retrievals consistent with the assumption of spherical particles. Figure 14b 786 

shows the results of the aerosol typing algorithm. Generally, variability of aerosol types is 787 

observed and includes dusty, smoke and polluted maritime aerosols. An overview of all data 788 

suggests that mixtures of both coarse and fine mode are predominant as both sea salt and some 789 

dust are present in the atmosphere. The algorithm of section 3.1 indicates mostly the 790 
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predominance of a mixture of particles (Figure 14c) with an estimated refractive index between 791 

0.01-0.02 mostly in the lowest region of the atmosphere (Figure 14d). These types of particles 792 

and the range of mi estimated agree with the mixtures suggested by the aerosol typing. Some 793 

spikes near the top of the boundary layer are observed with fine mode predominance and 794 

estimated mi larger than 0.02 that agrees with fresh smoke properties (e.g. Eck et al., 2003) that 795 

is also indicated by the aerosol typing. 796 

 797 

     [Insert Figure 14 here] 798 

 Another example of retrieved aerosol properties by the stand-alone 3β+2α lidar inversion 799 

with optimized constraints is given in Figure 15 for 26th September 2013 at 20:40 UTC. The 800 

retrieved values of reff between 0.35-0.45 µm are consistent with a mixture of different modes. 801 

Retrieved values of mi between 0.01 - 0.02 and of mr around 1.55 are also consistent with the 802 

mixtures of particles previously mentioned. It is remarkable that the inversions retrieve SSA of 803 

up to 0.88 which are confirmed by the correlative in-situ measurements. The larger error bars are 804 

due to the significant uncertainties in SSA for large particles and large mi (e.g. ± 0.04). 805 

 806 

     [Insert Figure 15 here] 807 

 808 

4.2.4. – Overview of lidar vs in-situ instrument on aircraft SSA comparisons  809 

 An overview of all SSA intercomparisons between lidar retrieved (SSALIDAR) and 810 

measured by in-situ airplane (SSAIN-SITU) can be seen in Figure 16. We represent frequency 811 

histograms of the absolute differences SSALIDAR– SSAIN-SITU. Plots are given for four different 812 

aerosol conditions registered during DISCOVER-AQ: fine mode predominance and a mixture of 813 
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modes, and separating for estimated mi above and below 0.01. During California 2013 all data 814 

were classified and evaluated as fine mode predominance and estimated mi below 0.01, 815 

explained by the air-mass patterns typical in the region with origins over the north Pacific at high 816 

altitudes and stagnant regimes in San Joaquin valley at low altitudes favoring particles from 817 

pollution. For Texas 2013 more variable aerosol conditions were observed, depending on the air-818 

mass pattern and aerosol origin, although the most predominant type is fine mode predominance 819 

and estimated mi above 0.01 with 64.6% of measurements, followed by mixture of modes and 820 

estimated mi above 0.01 with 24.5% of measurements. For the Colorado 2014 campaign 821 

different aerosol types were observed depending on air-mass origins, with the most frequent type 822 

being fine mode predominance with an estimated mi above 0.01 (60% of data), followed by fine 823 

mode predominance with an estimated mi below 0.01 (20% of data), while cases of mixtures of 824 

modes were less frequent with 10.8 % of data with an estimated mi below 0.01 and 8.8% of data 825 

with an estimated mi above 0.01. All the data used have linear depolarization measurements 826 

below 5%, which indicates essentially spherical particles. A total of 1271 data were used for 827 

intercomparisons: fine mode and estimated mi below 0.01 was the most frequent with 598 cases 828 

and mean SSA of 0.97 ± 0.01, ranging from 0.92 to 0.99. Fine mode and estimated mi above 0.01 829 

is the next highest in frequency, with 502 cases and mean SSA of 0.91 ± 0.03 and ranging from 830 

0.80 to 0.97. Mixture of both fine and coarse modes were the least frequent cases, with a total of 831 

37 cases for estimated mi below 0.01 (SSA of 0.97 ± 0.01 and ranging between 0.93 and 0.99) 832 

and 134 cases for estimated mi above 0.01 (SSA of 0.90 ± 0.03 and ranging between 0.83 and 833 

0.96).  834 

     [Insert Figure 16 here] 835 

 836 
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Results from Figure 16 indicate that mean SSA differences are zero for fine mode 837 

predominance (for any value of estimated mi) and mixture of modes for estimated mi above 0.01. 838 

The standard deviations differ among the different cases, but taking into account that the 839 

inversion constraints approach assumes similar uncertainties in SSA than these from AERONET 840 

inversions the standard deviations are within the uncertainties (±0.02 for estimated mi< 0.01 and 841 

±0.04 for estimated mi > 0.01, approximately). For the case of mixture of modes and estimated 842 

mi< 0.01 the retrieved SSA systematically overestimates the measured values by 0.02, although 843 

the standard deviations are approximately 0.02, thus are within the uncertainty of the method. 844 

The difficulty of the inversion to retrieve SSA in the visible range for mixtures of aerosol can 845 

explain such differences, although the low number of data available for such cases encourages 846 

further evaluations. 847 

 848 

5.- Summary, Discussion and Conclusions 849 

The analyses presented in this work have indicated the need for optimized, case-850 

dependent, constraints in the retrievals of aerosol complex refractive index (m = mr + imi) and 851 

single scattering albedo (SSA) from vertical profiles from lidar measurements of three 852 

backscattering coefficients (β) at 355, 532 and 1064 and two extinctions (α) at 355 and 532 nm, 853 

typically known as the stand-alone 3β+2α lidar inversion. Improved constraints are needed due 854 

to the under-determination of the ill-posed problem, and particularly are critical for the range of 855 

mr and maximum value of the imaginary refractive index allowed in the inversions. Our 856 

simulations have indicated that given a refractive index for simulating optical data of mtruth = 857 

mr,truth + imi,truth, the retrievals  are improved when the permitted mr is within ±0.1mr,truth and 858 
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maximum mi is 2.5mi,truth. The analyses of AERONET retrievals for stations widely affected by 859 

pollution and biomass-burning particles (typically fine mode predominance and spherical 860 

particles) suggested dependency between mr and mi. The use of these dependences between mr 861 

and mi serves to delimit the range of mr in the inversion if an estimation of mi is known. The 862 

correlation between mr and mi obtained from AERONET database is consistent with the aerosol 863 

module of the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model. This 864 

relationship has allowed the definition of optimized constraints: When fine mode predominates, 865 

the optimized constraints set rmax = 2μm and any value for mi is possible because fine particles in 866 

GOCART. For a mixture of fine and coarse modes the optimized inversion assumes different 867 

mixtures of the species assumed in GOCART which has suggested mi be typically below 0.04 868 

and highly variable in value. However, constraints in the range of inversions have not been 869 

possible and the optimized constraints sets rmax = 10 μm.  The optimized inversion has assumed 870 

that cases of only coarse mode predominance are assumed as a particular case of mixture with 871 

fine mode negligible. Dust particles are excluded in our study as we are dealing only with 872 

spherical particles. Retrievals of aerosol microphysical properties for non-spherical particles 873 

require further analyses that were beyond the scope of this work. 874 

The optimization of the stand stand-alone 3β+2α lidar inversion transfers 875 

AERONET/GOCART assumptions to the lidar inversion, and therefore any uncertainties in 876 

AERONET/GOCART are carried along too. Nevertheless, the approach of optimized constraints 877 

is a reasonable tradeoff since AERONET retrievals possess much higher information content 878 

with respect to column-effective aerosol properties and the use of the GOCART model 879 

constrains the possible aerosol types. Future improvements in AERONET retrievals or in 880 
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GOCART model refinement can be transferred to this optimized constraint technique in the 881 

future as well. 882 

The computation of the optimized constraints from 3β+2α measurements is possible 883 

through the analyses of the Angstrom exponent of extinction (γα) and spectral extinction-to-884 

backscattering lidar ratios (LR) using a-priori information derived from GOCART. Although no 885 

additional measurements are required, the use of optimized constraints has revealed a better 886 

optimization of the stand-alone 3β+2α lidar inversion. Actually, such optimization allows 887 

retrievals of complex refractive index within the uncertainties claimed in the bibliography and 888 

even reduces these uncertainties in mi to ±50%. Optimized constraints are also critical for the 889 

retrievals of single scattering albedo (SSA). However, limitations have been found and when fine 890 

mode predominates SSA retrievals are only feasible at 355 and 532 nm, while as the coarse 891 

mode contribution increases SSA retrievals at 1064 become feasible. But we comment that the 892 

use of optimized constraints implies that aerosol properties follow the relationship in refractive 893 

index indicated from the AERONET retrievals and when aerosol size follows the representation 894 

of bimodal size distribution indicated in GOCART. Also, we recall that the under-determination 895 

of the 3β+2α ill-posed problem does not allow retrieval of the spectral dependence of mi and, 896 

therefore the methodology proposed provides an effective size distribution with the same 897 

refractive index for both modes. 898 

The Deriving Information on Surface Conditions from COlumn and VERtically Resolved 899 

Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns held in Texas (2013), 900 

California (2014) and Colorado (2014) have provided a unique dataset for the evaluation of the 901 

SSA retrievals using stand-alone 3β+2α lidar inversion with optimized constraints. Airborne 902 

HSRL-2 and in-situ measurements were provided by NASA Langley Research Center providing 903 
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more than 1500 correlative spirals under different aerosol conditions. The optimized constraints 904 

were compared with the aerosol typing algorithm using aerosol depolarization measurements (δ), 905 

and generally very good agreement was found. The evaluation of SSA using in-situ 906 

measurements as reference at the wavelength of 532 nm have revealed very good agreement 907 

between both techniques with the differences being within the standard deviations associated 908 

with each technology. Actually, mean differences were nearly zero, while standard deviations 909 

were approximately 0.02 when mi< 0.01 and 0.04 when mi > 0.01. Limitations were found for 910 

cases of mixture of particles and mi< 0.01 which have been explained by the presence of coarse 911 

particles which SSA retrievals are only feasible at 1064 nm. Overall, the stand-alone 3β+2α lidar 912 

inversion with constraints has been demonstrated as a powerful tool to provide SSA retrievals 913 

with high temporal resolution in spite of technique limitations. 914 

To date it has not been possible to integrate linear depolarization (δ) measurements into 915 

the microphysical inversion. Nonetheless such measurements by HSRL-2 system during 916 

DISCOVER-AQ have been essential for evaluating the optimized constraints. Very good 917 

agreement between the aerosol typing algorithm using aerosol intensive parameters and the 918 

optimized constraints has been observed. Further work is being carried out in using 919 

depolarization to separate dust (no spherical particles) from the rest of the aerosol particles that 920 

are assumed as spherical, and therefore to study the real capabilities of the stand-alone lidar 921 

inversion for retrieving dust microphysical properties and SSA. Evaluations of SSA provided by 922 

global models versus HSRL-2 retrievals are being done for NASA field campaigns such as 923 

DISCOVER-AQ and ORACLES. 924 

 925 
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Figure	 1:	 Differences	 between	 retrieved	 and	 modeled	 aerosol	 parameters	 as	 a	
function	 of	 imaginary	 refractive	 index	 for	 inversions	 with	 no	 limit	 in	 the	 real	
refractive	index	and	maximum	imaginary	refractive	index	of	0.1,	and	for	inversions	
when	 tightened	 constraints	 are	 applied.	 Vertical	 lines	 are	 standard	 deviations	
because	inversions	are	done	for	different	sets	of	rfine.	(a)	–	(b)	Differences	between	
retrieved	 (mr,retrieved)	 and	 modeled	 (mr,model)	 real	 refractive	 index,	 (c)	 –	 (d)	
Differences	 between	 retrieved	 (mi,retrieved)	 and	 modeled	 (mi,model)	 imaginary	
refractive	 (e)	 –	 (f)	 Differences	 between	 retrieved	 (Reff,retrieved)	 and	 modeled	
(Reff,model)	effective	radius	and	(g)-(h)	Differences	between	retrieved	(Vretrieved)	and	
modeled	 (Vmodel)	 volume	 concentration.	 Dashed	 black	 lines	 are	 the	 uncertainties	
reported	in	the	bibliography	for	the	retrievals	of	aerosol	microphysical	properties	
(dotted	 lines	 in	 the	absolute	differences	 in	 imaginary	refractive	 index	are	 for	 the	
assumption	of	reduced	uncertainties	in	mi	to	±50%).		
	

	
	



	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	2:	Color	density	plots	of	real	refractive	index	as	a	function	of	the	imaginary	
index.	Data	corresponds	to	all	AERONET	Level	2.0	retrievals	described	in	Table	1,	
with	a	total	number	of	15392.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	

	
	
	
	
	
	
	

	
	

	
	
	
	
	
	

	
	
Figure	3:	Extinction	Angstrom	exponent	between	355	and	532	nm	(γα(355-532))	
versus	the	effective	radius	of	selected	size	distributions.	Computations	are	shown	
for	unimodal	size	distributions	with	rM	=	0.10,	0.14,	0.18,	0.25,	0.3,	0.4,	0.5,	0.6,	0.8,	
1.0,	 1.5	 and	 2	 μm	with	 σM	 =0.4	 μm.	 The	 values	 of	 the	 real	 part	 of	 the	 refractive	
index	are		1.35,	1.45,	1.55	and	1.65	while	the	imaginary	part	is	one	of	0.001,	0.005,	
0.01,	0.025,	0.05	and	0.1.	Also,	bimodal	size	distributions	are	used	with	the	same	
set	of	refractive	indexes.	
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Figure	 4:	 Spectral	 dependences	 of	 extinction-to-backscatterlidar	 ratios	 (LR)	 for	
different	unimodal	size	distributions	of	different	modal	radius	(rfine)	=	0.075,	0.10,	
0.14	and	0.18	μ	and	imaginary	refractive	indexes	(mi)	of	0.001,	0.005,	0.01,	0.025,	
0.05	and	0.075.	Continuous	lines	represent	fixed	rfine	and	variable	mi,	while	dashed	
lines	imply	fixed	mi	and	variable	rfine.	Data	are	shown	for	mr	=	1.55	(red	lines)	and	
for	mr	=	1.65	(black	lines)	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	 5:	Ratio	of	 the	extinction-to-backscatter	 lidar	 ratios	 (LR(355)/LR(532)) as	
function	 of	 the	 Angstrom	 exponent	 of	 extinction	 (γα(355-532))	 for	 different	
unimodal	size	distributions,	rM	=	0.075,	0.10,	0.14,	and	0.18	μm	and	mr	=	1.35,	1.45,	
1.55	and	1.65.	The	width	is	fixed	with	σM	=0.4	μm.	Plots	are	shown	for	mi	=	0.005	
and	0.025.	Dashed	lines	represent	size	distributions	with	fixed	rM	and	variable	mr,	
while	continuous	color	lines	represent	size	distributions	with	fixed	mr	and	variable	
rM.	
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Figure	 6:Spectral	 dependences	 of	 extinction-to-backscatter	 lidar	 ratios	 (LR)	 for	
different	bimodal	size	distributions	with	different	ratios	between	fine	and	coarse	
volumes	(Vf/Vc)	and	imaginary	refractive	 indexes	(mi)	of	0.001,	0.005,	0.01,	0.02,	
0.03	and	0.04.	Data	are	shown	for	mr	=	1.55	(Black	lines),	and	in	the	small	square	is	
also	represented	for	mr=	1.35.	Dashed	lines	represent	size	distributions	with	fixed	
mi	 and	 variable	 Vf/Vc,	 while	 continuous	 lines	 represent	 size	 distributions	 with	
fixed	Vf/Vc	and	variable	mi.	
	
	
	
	
	



	
	

	
	
	
Figure	 7:	 Differences	 between	 retrieved	 (SSAretrieved)	 and	 truth	 (SSAtruth)	 single	
scattering	 albedo	 as	 a	 function	 of	 imaginary	 refractive	 index.	 The	 left	 panel	
presents	 the	 results	 when	 traditional	 constraints	 are	 applied	 in	 the	 stand-alone	
3β+2α	 lidar	 inversion,	 while	 right	 panel	 is	 representative	 when	 the	 optimized	
constraints	are	applied	
	
	
	
	



 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Absolute value of differences between retrieved and true values of 
aerosol single scattering albedo (SSA) as a function of the ratio between volumes 
of fine and coarse mode (Vf/Vc) for (a) λ = 355 nm (b) λ = 532 nm and (c) λ = 1064 
nm. Results are shown for cases when traditional constraints are applied in the 
inversion (mi,max = 0.1 and no limitations in mr) and for cases when optimized 
constraints are applied for limiting low (mi < 0.01) and medium absorption (mi > 
0.01) cases. Vertical bars are the standard deviations of averaging the values of the 
different mr,truth and mi,truth. 



		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	9:	Flight	tracks	fof	B200	NASA	Airplane	for	the	three	different	days	used	as	
examples	during	Discover-AQ(a)	30th	January	2013	in	California	(b)	10th	August	
2014	in	Colarado	and	(c)	26th	September	2014	in	Texas.		



	
	
	
	
 
	
	
	
	

	
	
Figure	10:	HSRL-2	airborne	measurements	during	DISCOVER-AQ	in	California	on	
30th	January	2013.	(a)Extinction	coefficient	at	532	nm	and	(b)	Aerosol	 typing	ID	
where	0	is	no	classification	attempted	because	data	values	are	out	of	range,	1	=	ice,	
2	 =	 dusty	 mix	 aerosol,	 3	 =	 maritime	 aerosol,	 4	 =	 urban/pollution	 aerosol,	 5	 =	
smoke,	 6	 =	 fresh	 smoke,	 7	 =	 polluted	 maritime	 aerosol,	 8	 =	 pure	 dust,	 9	 is	
unclassified	due	to	the	measured	properties	being	consistent	with	more	than	one	
class.	 (c)	 Predominant	 type	 of	 particles	 from	 the	 algorithm	 for	 optimizing	
constraints,	1	=	fine	mode	predominance	and	2	=	mixture	of	fine	and	coarse	mode	
(d)	 estimated	 imaginary	 refractive	 index	 from	 the	 algorithm	 for	 optimizing	
constraints.	
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Figure	 11:	Vertical	profiles	of	aerosol	optical	and	microphysical	properties	 form	
airborne	HSRL-2	measurements	on	30th	 January	2013	at	21:54	UTC.	Correlative	
data	 of	 single	 scattering	 albedo	 (SSA)	 measured	 by	 in-situ	 instrumentation	
onboard	P-3B	airplane	are	also	shown.	Error	bars	are	the	uncertainties	associated	
with	 each	 3β+2α	 measurements	 while	 for	 SSA	 are	 the	 uncertainties	 associated	
with	low	absorption	(±0.02).	
	
	



	
	
	
Figure	12:	HSRL-2	airborne	measurements	during	DISCOVER-AQ	in	Colorado	on	
10th	August	2014.	 (a)Extinction	 coefficient	 at	532	nm	and	 (b)	Aerosol	 typing	 ID	
where	0	is	no	classification	attempted	because	data	values	are	out	of	range,	1	=	ice,	
2	 =	 dusty	 mix	 aerosol,	 3	 =	 maritime	 aerosol,	 4	 =	 urban/pollution	 aerosol,	 5	 =	
smoke,	 6	 =	 fresh	 smoke,	 7	 =	 polluted	 maritime	 aerosol,	 8	 =	 pure	 dust,	 9	 is	
unclassified	due	to	the	measured	properties	being	consistent	with	more	than	one	
class.	 (c)	 Predominant	 type	 of	 particles	 from	 the	 algorithm	 for	 optimizing	
constraints,	1	=	fine	mode	predominance	and	2	=	mixture	of	fine	and	coarse	mode	
(d)	 estimated	 imaginary	 refractive	 index	 from	 the	 algorithm	 for	 optimizing	
constraints.	
	
	
	
	

a) 

c) 

b) 

d) 



	
Figure	 13:	 Vertical	 profiles	 of	 retrieved	 aerosol	 microphysical	 properties	 from	
airborne	HSRL-2	measurements	 on	 10th	 August	 2014	 at	 15:30	 UTC.	 Correlative	
data	 of	 single	 scattering	 albedo	 (SSA)	 measured	 by	 in-situ	 instrumentation	
onboard	P-3B	airplane	are	also	shown.	Error	bars	are	the	uncertainties	associated	
with	 each	 3β+2α	 measurements	 while	 for	 SSA	 are	 the	 uncertainties	 associated	
with	medium	absorption	(±0.03).	
	
	
	
	
	
	



	
	
	
	
	
	

	

	
	
	
	
Figure	14:	HSRL-2	airborne	measurements	during	DISCOVER-AQ	n	Houston	area	
on	 26th	 September	 2013.	 (a)Extinction	 coefficient	 at	 532	 nm	 and	 (b)	 Aerosol	
typing	 ID	where	 0	 is	 no	 classification	 attempted	 because	 data	 values	 are	 out	 of	
range,	 1	 =	 ice,	 2	 =	 dusty	mix	 aerosol,	 3	 =	maritime	 aerosol,	 4	 =	 urban/pollution	
aerosol,	5	=	smoke,	6	=	fresh	smoke,	7	=	polluted	maritime	aerosol,	8	=	pure	dust,	9	
is	 unclassified	 due	 to	 the	measured	 properties	 being	 consistent	with	more	 than	
one	 class.	 (c)	 Predominant	 type	 of	 particles	 from	 the	 algorithm	 for	 optimizing	
constraints,	1	=	fine	mode	predominance	and	2	=	mixture	of	fine	and	coarse	mode	
(d)	 estimated	 imaginary	 refractive	 index	 from	 the	 algorithm	 for	 optimizing	
constraints.	
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Figure	 15:	 Vertical	 profiles	 of	 retrieved	 aerosol	 microphysical	 properties	 from	
airborne	 HSRL-2	 measurements	 on	 26th	 September	 2013	 at	 20:40	 UTC.	
Correlative	 data	 of	 single	 scattering	 albedo	 (SSA)	 measured	 by	 in-situ	
instrumentation	 onboard	 P-3B	 airplane	 are	 also	 shown.	 Error	 bars	 are	 the	
uncertainties	 associated	 with	 each	 3β+2α	 measurements	 while	 for	 SSA	 are	 the	
uncertainties	associated	with	medium	absorption	(±0.03).	



	
Figure	16:	Frequency	of	occurrence	of	the	differences	in	single	scattering	albedo	
(SSA)	between	 the	 values	 retrieved	by	 the	 stand-alone	 lidar	 inversion	 and	 these	
measured	 by	 in-situ	 measurements	 during	 DISCOVER-AQ	 field	 campaigns	 in	
California	(2013),	Texas	(2014)	and	Colorado	(2014).	Results	are	plotted	for	 fine	
mode	predominance	and	mixture	of	mode	cases,	and	also	differentiating	between	
low	(mi	<	0.01)	and	medium	aerosol	absorption	(0.01	<	mi	<	0.04).	The	numbers	of	
available	 measurements	 for	 intercomparsions	 for	 each	 case	 are	 given	 in	 within	
brackets.	
	
	



 Retrieved mr at 532 nm Retrieved mi at 532 nm Retrieved SSA at 532 nm Other aerosol parameters 

Site Type N Mean Min. Max. Mean Min. Max. Mean Min. Max. AOD(440) Alpha reff (μm) 
Alta Floresta

a BB 673 1.47 ±0.05 1.35 1.60 0.010 ±0.005 0.001 0.045 0.92 ±0.03 0.80 0.99 1.15 ±0.64 1.88 ±0.17 0.21 ±0.04 

Belterra
b BB 103 1.45 ±0.05 1.35 1.59 0.009 ±0.005 0.001 0.034 0.90 ±0.04 0.74 0.98 0.65 ±0.25 1.56 ±0.26 0.29 ±0.01 

Bondville
b BB/P 450 1.41 ±0.05 1.33 1.48 0.006 ±0.004 0.001 0.025 0.96 ±0.03 0.97 1.00 0.62 ±0.22 1.77 ±0.20 0.21 ±0.04 

Bratss Lake
b BB 112 1.48 ±0.04 1.37 1.55 0.006 ±0.002 0.001 0.018 0.94 ±0.02 0.89 1.00 0.60 ±0.17 1.81 ±0.22 0.23 ±0.05 

Buenos Aires
a P 62 1.44 ±0.05 1.34 1.56 0.013 ±0.005 0.005 0.031 0.87 ±0.05 0.71 0.93 0.65 ±0.27 1.82 ±0.14 0.22 ±0.04 

CART site
b BB 167 1.42 ±0.04 1.35 1.51 0.005 ±0.004 0.001 0.026 0.95 ±0.04 0.80 0.99 0.52 ±0.14 1.74 ±0.15 0.26 ±0.04 

Chiang Mai
e BB/P 1987 1.46 ±0.05 1.35 1.60 0.020 ±0.009 0.003 0.057 0.92 ±0.03 0.80 0.99 0.93 ±0.49 1.61 ±0.16 0.23 ±0.05 

Cuiaba
a BB 555 1.48 ±0.04 1.37 1.60 0.016 ±0.005 0.001 0.049 0.86 ±0.05 0.70 0.99 0.95 ±0.51 1.78 ±0.13 0.23 ±0.04 

GSFC
b P 1107 1.42 ±0.04 1.33 1.58 0.005 ±0.003 0.001 0.048 0.95 ±0.02 0.73 1.00 0.66 ±0.25 1.82 ±0.20 0.23 ±0.04 

Hong Kong
e P/BB 178 1.44 ±0.03 1.34 1.51 0.014 ±0.009 0.004 0.070 0.89 ±0.04 0.72 0.97 0.82 ±0.35 1.41 ±0.15 0.27 ±0.04 

Ilorin
d BB 53 1.49 ±0.06 1.35 1.60 0.018 ±0.009 0.001 0.043 0.82 ±0.06 0.72 0.98 0.72 ±0.23 1.29 ±0.30 0.33 ±0.14 

Ispra
d P 505 1.41 ±0.05 1.33 1.58 0.010 ±0.006 0.001 0.039 0.92 ±0.04 0.75 0.99 0.67 ±0.26 1.54 ±0.23 0.27 ±0.07 

Ji Parana
a BB 491 1.48 ±0.05 1.34 1.60 0.011 ±0.004 0.001 0.027 0.92 ±0.02 0.84 0.99 1.15 ±0.64 1.12 ±0.60 0.20 ±0.03 

Mbita
c BB 101 1.44 ±0.06 1.35 1.59 0.011 ±0.005 0.002 0.029 0.88 ±0.04 0.74 0.97 0.55 ±0.14 1.54 ±0.20 0.32 ±0.11 

Mexico City
b P/BB 491 1.42 ±0.06 1.33 1.60 0.013 ±0.006 0.001 0.042 0.89 ±0.04 0.76 0.99 0.64 ±0.21 1.68 ±0.15 0.26 ±0.05 

Mongu
c BB 1893 1.50 ±0.05 1.34 1.60 0.024 ±0.008 0.001 0.058 0.85 ±0.03 0.71 0.99 0.67 ±0.25 1.88 ±0.11 0.20 ±0.03 

Moscow
d P/BB 305 1.45 ±0.06 1.33 1.60 0.013 ±0.009 0.007 0.053 0.90 ±0.05 0.73 0.99 0.74 ±0.48 1.69 ±0.14 0.24 ±0.04 

Mukdahan
e BB 1022 1.45 ±0.04 1.35 1.60 0.013 ±0.006 0.001 0.056 0.90 ±0.04 0.78 1.00 0.78 ±0.30 1.55 ±0.16 0.25 ±0.05 

Paris
d P 113 1.39 ±0.04 1.33 1.51 0.008 ±0.004 0.001 0.022 0.94 ±0.03 0.78 0.99 0.56 ±0.13 1.58 ±0.19 0.23 ±0.04 

Pimai BB/P 598 1.43 ±0.05 1.34 1.60 0.013 ±0.005 0.001 0.030 0.90 ±0.03 0.81 1.00 0.77 ±0.30 1.52 ±0.16 0.28 ±0.08 

Rio Branco
a BB 422 1.47 ±0.04 1.36 1.59 0.015 ±0.006 0.001 0.043 0.90 ±0.03 0.79 1.00 0.91 ±0.50 1.87 ±0.12 0.21 ±0.03 

Santa Cruz
a BB/P 174 1.48 ±0.04 1.36 1.59 0.013 ±0.008 0.003 0.067 0.90 ±0.05 0.69 0.97 1.10±0.57 1.78 ±0.12 0.22 ±0.04 

Shouxian
e P/BB 223 1.46 ±0.06 1.34 1.60 0.012 ±0.006 0.001 0.042 0.90 ±0.04 0.77 0.99 0.85 ±0.34 1.21 ±0.25 0.33 ±0.13 

Silpakorn
e BB/P 1750 1.46 ±0.04 1.35 1.60 0.015 ±0.006 0.001 0.042 0.88 ±0.04 0.73 0.88 0.76 ±0.27 1.52 ±0.17 0.27 ±0.06 

Singapore
e BB/P 184 1.41 ±0.04 1.34 1.59 0.007 ±0.003 0.001 0.021 0.95 ±0.03 0.85 1.00 0.71 ±0.36 1.50 ±0.22 0.27 ±0.09 

Taihu
e P/BB 621 1.42±0.05 1.34 1.55 0.012 ±0.006 0.001 0.048 0.90 ±0.04 0.75 0.99 0.93 ±0.40 1.42 ±0.17 0.27 ±0.05 

Ubon Ratchathni
e BB/P 787 1.45 ±0.04 1.35 1.58 0.011 ±0.005 0.001 0.035 0.91 ±0.03 0.80 0.91 0.94 ±0.37 1.63 ±0.13 0.23 ±0.04 

Yakutsk
c BB/P 98 1.48 ±0.05 1.36 1.59 0.007 ±0.006 0.001 0.036 0.95 ±0.03 0.82 0.96 0.81±0.44 1.84 ±0.25 0.20 ±0.06 

Zambezi
d BB 220 1.49 ±0.05 1.36 1.59 0.024 ±0.006 0.006 0.041 0.85 ±0.03 0.78 0.93 0.87 ±0.36 1.89 ±0.14 0.18 ±0.03 

 



Table 1: Mean values, standard deviations, maximum and minimum values of retrieved real refractive index (mi), imaginary refractive index (mr) and single 

scattering albedo (SSA) from AERONET Level 2.0 almucantar inversions. Reference wavelength is 532 nm and data are computed for linear interpolations of 

retrieved values at 440 and 670 nm. For data that fullfill conditions for single scattering albedo conditions, mean and standard deviations of aerosol optical 

depth (AOD), Angstrom parameter (α(440-870)) and effective radius (reff) are also given. Retrievals are limited to those with sphericity parameter larger than 

70% consistent with the use of Mie functions in the inversion. The sites selected are affected by biomass burning (BB) and/or pollution (P) aerosol. The sites 

are representative of different locations: a) South America, b) North America, d) Africa, d) Europe, e) Asia. 

 



 

 
 reff 

(μm) 

σ 

(μm) 
mr,355 mr,532 mr,1064 mi,355 mi,532 mi,1064 

Sulphate 
Dry 

Humid 

0.157 

0.257 
2.03 

1.45 

1.37 

1.43 

1.36 

1.42 

1.35 

1E-8 

7E-9 

1E-8 

4E-9 

3E-6 

8E-6 

Organic 

Carbon 

Dry 

Humid 
0.088 

0.126 
2.20 

1.53 

1.41 

1.53 

1.40 

1.52 

1.39 

0.0050  

0.0017 

0.0056  

0.0019 

0.0164 

0.0055 

Black 

Carbon 

Dry 

Humid 
0.039 

0.047 
2.00 

1.75 

1.58 

1.75 

1.58 

1.76 

1.58 

0.4645  

0.2756 

0.4436  

0.2632 

0.4426 

0.2626 

Sea Salt 

Dry 

Humid 

0.078 

0.126 
2.03 

1.51 

1.39 

1.50 

1.38 

1.47 

1.36 

3E-7 

8E-8 

1E-8 

4E-9 

2E-4 

6E-5 

Dry 

Humid 

0.266 

0.438 
2.03 

1.51 

1.38 

1.50 

1.37 

1.47 

1.36 

3E-7 

8E-8 

1E-8 

4E-9 

2E-4 

5E-5 

Dry 

Humid 

1.072 

1.818 
2.03 

1.51 

1.38 

1.50 

1.37 

1.47 

1.36 

3E-7 

7E-8 

1E-8 

4E-9 

2E-4 

5E-5 

Dry 

Humid 

2.551 

4.388 
2.03 

1.51 

1.38 

1.50 

1.37 

1.47 

1.36 

3E-7 

6E-8 

1E-8 

4E-9 

2E-4 

5E-5 

Dry 

Humid 

7.339 

12.96 
2.03 

1.51 

1.37 

1.50 

1.36 

1.47 

1.35 

3E-7 

6E-8 

1E-8 

4E-9 

2E-4 

4E-5 

Table 2: Size distribution and refractive index properties of the different aerosol species 

included in GOCART that can be assumed as spherical particles. All species are assumed 

hygroscopic and we present values at dry (RH = 0 %) and humid conditions (80%). The width of 

the distribution is assumed to not vary as a function of relative humidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
mi 

rf = 0.075 μm rf = 0.10 μm rf = 0.14 μm rf = 0.18 μm 

 LR355 LR532 LR355 LR532 LR355 LR532 LR355 LR532 
m

r 
=

 1
.3

5
 

0 54.0 27.0 77.9 44.4 94.5 72.8 100.6 88.6 

0.001 54.8 27.6 79.1 45.1 96.4 73.9 103.1 90.3 

0.005 57.9 29.8 84.2 47.8 104.5 78.4 113.6 96.9 

0.01 61.9 32.6 90.8 51.2 115.1 84.2 127.7 105.6 

0.025 74.1 40.9 11.3 61.5 150.1 102.3 176.0 133.7 

0.05 94.8 54.9 147.3 78.9 216.7 133.7 273.8 184.9 

0.075 114.8 68.5 183.0 95.7 287.0 164.5 381.6 237.4 

0.1 133.2 81.0 215.9 11.22 353.3 192.8 482.5 286.5 

m
r 

=
 1

.4
5
 

0 53.1 28.2 68.5 45.0 68.5 66.0 59.0 70.9 

0.001 53.7 28.6 69.6 45.5 70.1 67.0 60.7 72.2 

0.005 56.2 30.1 73.9 47.5 76.5 70.8 67.9 77.9 

0.01 59.4 31.9 79.5 50.0 85.1 75.7 77.8 85.2 

0.025 68.9 37.5 97.2 57.6 114.5 91.1 113.4 109.4 

0.05 84.9 46.8 128.2 70.4 173.0 117.6 194.1 154.7 

0.075 100.3 55.9 159.0 82.7 238.0 143.6 294.1 202.1 

0.1 114.5 64.7 187.4 94.2 300.8 167.4 395.2 246.8 

m
r 

=
 1

.5
5
 

0 52.7 29.8 59.0 46.1 44.3 59.3 29.0 53.0 

0.001 53.3 30.1 60.0 46.5 45.4 60.2 29.9 54.2 

0.005 55.6 31.2 64.2 48.3 50.2 64.0 33.9 59.0 

0.01 58.6 32.6 69.5 50.5 56.7 68.7 39.3 65.4 

0.025 67.5 36.9 86.7 57.3 79.7 83.8 60.1 86.9 

0.05 82.2 43.9 117.7 68.2 130.4 110.2 112.8 130.3 

0.075 96.0 50.8 149.0 78.6 193.8 136.0 190.8 179.1 

0.1 108.4 57.4 177.7 88.1 261.0 159.4 286.6 226.9 

m
r 

=
 1

.6
5
 

0 50.9 31.7 46.8 46.7 26.9 49.6 15.3 36.1 

0.001 51.5 32.0 47.7 47.1 27.6 50.5 15.8 37.0 

0.005 53.9 32.9 51.3 48.9 30.6 54.0 17.8 40.5 

0.01 56.9 34.1 56.0 51.2 34.6 58.5 20.7 45.1 

0.025 66.1 37.7 71.8 57.9 49.3 73.1 31.4 61.5 

0.05 81.3 43.6 102.1 68.6 83.7 99.9 58.8 97.0 

0.075 95.3 49.2 135.0 78.4 131.8 127.6 102.1 141.5 

0.1 107.6 54.5 166.7 87.1 190.7 153.3 162.6 190.5 

 

Table 3:Extinction-to-backscattering ratio (LR) at 355 and 532 nm for bimodal size distribution 

with different sets of refractive indexes m = mr + imi and different sets of modal radiuses rM of 

0.075, 0.10, 0.14 and 0.18 μm (fine mode predominance size distribution). The width of the 

mode is fixed to σM =0.4 μm 



 

mr 

rf = 0.075 μm rf = 0.10 μm rf = 0.14 μm rf = 0.18 μm 

 γα(355-

532) 

𝐿𝑅355
𝐿𝑅532

 
γα(355-

532) 

𝐿𝑅355
𝐿𝑅532

 
γα(355-

532) 

𝐿𝑅355
𝐿𝑅532

 
γα(355-

532) 

𝐿𝑅355
𝐿𝑅532

 
m

i =
 0

.0
0

5
 1.35 2.59 1.95 2.29 1.76 1.86 1.33 1.48 1.17 

1.45 2.58 1.87 2.18 1.56 1.61 1.08 1.14 0.87 

1.55 2.53 1.78 2.03 1.33 1.34 0.79 0.80 0.57 

1.65 2.45 1.64 1.84 1.05 1.07 0.57 0.49 0.44 

m
i =

 0
.0

2
5
 1.35 2.24 1.81 2.04 1.81 1.69 1.47 1.35 1.31 

1.45 2.34 1.84 2.01 1.69 1.50 1.26 1.06 1.04 

1.55 2.35 1.83 1.90 1.51 1.27 0.95 0.76 0.69 

1.65 2.31 1.75 1.75 1.24 1.02 0.67 0.47 0.51 

m
i =

 0
.0

5
 1.35 1.95 1.72 1.81 1.87 1.51 1.62 1.21 1.48 

1.45 2.01 1.81 1.83 1.82 1.37 1.47 0.97 1.26 

1.55 2.16 1.87 1.76 1.72 1.18 1.18 0.70 0.87 

1.65 2.16 1.86 1.65 1.49 0.96 0.84 0.44 0.60 

m
i =

 0
.0

7
5
 1.35 1.75 1.68 1.63 1.91 1.35 1.75 1.09 1.61 

1.45 1.92 1.79 1.67 1.92 1.26 1.66 0.89 1.46 

1.55 2.00 1.89 1.64 1.90 1.10 1.42 0.66 1.07 

1.65 2.02 1.94 1.55 1.72 0.90 1.03 0.42 0.72 

Table 4:Angstrom exponent of extinction (γα) and ratio between extinction-to-backscattering 

ratio (LR) at 355 and 532 nm for unimodal size distribution with different sets of refractive 

indexes m = mr + imi and different sets of modal radiuses rM of 0.075, 0.10, 0.14 and 0.18 μm 

(fine mode predominance size distribution). The width of the mode is fixed to σM =0.4 μm. 

 

 

 

 

           

 

 

 

 

 

 

 

 



        

 

 

 

 

 

 

 

 

 

 Vf/Vc = 2 Vf/Vc = 1 Vf/Vc = 0.5 Vf/Vc = 0.2 Vf/Vc = 0.1 

mi LR355 LR532 LR355 LR532 LR355 LR532 LR355 LR532 LR355 LR532 

0 32.4 29.0 26.5 21.1 20.6 15.8 14.6 11.0 11.9 9.3 

0.005 41.8 37.4 36.6 28.6 30.6 21.6 23.6 16.0 20.1 13.7 

0.01 49.8 44.8 45.2 35.7 39.5 27.9 32.1 21.1 28.1 18.3 

0.025 76.1 67.8 73.3 59.3 69.4 50.7 63.3 41.7 59.2 37.5 

0.05 131.9 106.6 133.1 104.1 135.2 100.9 139.0 96.4 142.0 93.8 

 

Table 5:Extinction-to-backscattering ratio (LR) at 355 and 532 nm for bimodal size distribution 

with fine mode at rfine = 0.14 μm and σfine = 0.4 μm and coarse mode with rcoarse= 1.5 μm and 

σcoarse = 0.6 μm. The real part of refractive index  (mr) is fixed to 1.55 while imaginary part (mi) 

is variable. 

 

 

 

 

 

 

 


