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Summary

In recent years, electric discharges have been found to be prolific sources of high-energy radiation
[2, 252, 267]. In particular, terrestrial gamma ray flashes are observed in correlation to lightning
activity [725] and bursts of X-rays are measured in experiments with laboratory sparks [517]. The
gamma/X-ray photons are produced from Bremsstrahlung (braking radiation) of fast electrons
scattering from atomic nuclei present in the vicinity of the discharge. The fast electrons may
themselves either be spawned by cosmic radiation or accelerated in very intense and localised
electric fields in the discharge.

The latter mechanism (acceleration) is the one studied in this thesis and denominated as
“thermal electron runaway”. In the current state of knowledge, it poses many challenges to our
understanding of discharges. For instance, the fluence of X-rays (number of photons traversing
a unit area) surpasses the one predicted by current models of thermal runaway in discharges.
Concretely, the probability of accelerating a thermal electron to high energies, where it radiates
through bremsstrahlung, is found to be too low at typical electric fields encountered at the head
of streamers (self-sustained ionisation waves). Conversely, the plausibility of very high electric
fields which enable thermal runaway is uncertain.

From the modelling perspective, the abundance of thermal runaway electrons has been found
to depend strongly on the model chosen to represent electron scattering with molecules [169,
218, 677]. In particular, in a comparative study [811], we showed that various models of elastic
scattering give significantly different distributions of high-energy electrons.

Hence, we identify two necessities precluding a sound study of thermal runaway:

1. Find a physical environment, composed of the electric field and the state of air, that fosters
the conditions which enable thermal runaway. Then, in this environment, be able to model
events of extreme rarity, down to arbitrarily low probabilities.

2. Possess a highly reliable and accurate modelling of electron-molecule collisions, consistent
throughout a broad energy range: from zero to several MeV.

The first necessity is answered by the first part of the thesis where we investigate the abun-
dance of high-energy electrons obtained in Monte Carlo simulations under various conditions of
the electric field, the air composition and temperature. In a second article [813], we adapted the
Monte Carlo importance sampling methodology into a “compaction” algorithm which enhances
the statistics of high-energy electrons to an arbitrarily low probability of occurrence, however,
at the cost of deteriorating the resolution of low-energy electrons.

The second necessity is addressed in the second part of the thesis, where an almost complete
set of electron-molecule cross sections has been assembled independently from the databases that
are currently in use. The assembly combined an exhaustive gathering (up to 2022) of experi-
mental cross sections, accurate quantum mechanical calculations and simple analytical represen-
tations. The modelling of elastic scattering is based on our third article [812] for calculating
differential cross sections of electrons scattering elastically from diatomic molecules.
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viii SUMMARY

Furthermore, this thesis also contains a third part which supplements the first two parts
with a thorough documentation of the process for constructing the new cross section database.
It provides an overview of techniques for fitting experimental data and comparisons of various
electron-molecule cross section databases currently in use.

So far, most of the literature has focussed on plausible mechanisms which lead to formation
of intense electric fields in ionisation fronts. In this thesis, we turned toward a less frequented
perspective by considering the change in chemical composition of air due to the discharge activity
preceding thermal runaway. Contrary to the wont applied to dissertations in the sciences, this
thesis is an original work which does not include text extracted from the publications written
during the doctoral program. It is therefore not to be regarded as a reformulation of the content
of these articles [811–813], but as the prime continuation thereof.

With the wherewithal that we developed – the compaction algorithm and the new set of
cross sections – we have probed preliminarily the phenomenon of electron thermal runaway in
hitherto understudied territories; low electric fields and varying gaseous compositions. As an
open conclusion, we fancy that preconditioning of the gaseous medium by streamer coronas is
relevant to unveil some of the mysteries shrouding our current understanding of thermal runaway.

Publications of the present author
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Resumen

Desde hace poco se sabe que los rayos de tormentas en la Tierra son fuentes prolíficas de radiación
de alta energía [2, 252, 267]. En particular, se han observado destellos terrestres de rayos gamma,
con duración de poco más de 1ms asociados a la actividad de rayos de tormenta [725]. Así mismo
se han detectado estallidos de rayos-X emitidos por chispas en laboratorios [517]. Los fotones
gamma o X de estos destellos están producidos por Bremsstrahlung (radiación de frenado) de
electrones rápidos desviados por los núcleos de los atomos presentes cerca de las descargas. Esos
electrones rápidos pueden ser engendrados como productos secundarios de ionización por rayos
cósmicos o bien ser acelerados desde energías más bajas en campos eléctricos en las descargas
muy intensos y localizados.

Este último mecanismo (la aceleración) se conoce cómo runaway térmico y su estudio es el
tema principal de la presente tésis. Actualmente, desconocemos la relación precisa entre estre
proceso y la física de las descargas. Por ejemplo, la fluencia medida de rayos-X (número de fotones
atravesando una superficie unitaria) supera las predicciones de modelos teóricos del runaway
térmico en descargas. La probabilidad de acelerar un electron térmico hasta energías altas en las
cuales empieza a irradiar por bremsstrahlung es demasiado baja en los campos eléctricos cerca
de las cabezas de los dardos (canales de ionización llamados streamers en inglés). Los campos
eléctricos necesarios para el runaway térmico son aún más altos y por tanto poco plausibles.

En los modelos físicos, la abundancia de electrones térmicos en runaway depende mucho de
cómo se describe la dispersión de electrones por moléculas [169, 218, 677]. En particular, en
un estudio comparativo [811], hemos demostrado que varios modelos de dispersión elástica dan
lugar a distribuciones significativamente diferentes de electrones de alta energía.

De ahí, hemos identificado dos necesidades para dar una base sólida al estudio del runaway
térmico:

1. Hallar un entorno físico apropiado, incluyendo el campo eléctrico y el estado del aire. Es
necesario tener la capacidad del modelizar eventos de rareza extrema en este ambiente, con
probabilidades arbitrariamente bajas.

2. Poseer un modelo altamente fiable y preciso de la colisiones de electrones con moléculas
que sea consistente en un rango amplio de energías: desde cero hasta varios MeV.

La primera parte de la tesis da respuesta a la primera necesidad; en ella investigamos la
abundancia de electrones de alta energía obtenidos en simulaciones Monte Carlo bajo varias
condiciones de campo eléctrico y de composición y temperature del aire. En nuestro segundo
artículo [813], adaptamos la técnica del muestreo de importancia (importance sampling) en simu-
laciones de Montecarlo para implementar un algoritmo de compactación que mejora la estadística
de electrones de alta energía a cambio de deteriorar la resolución sobre electrones de baja energía.

La segunda parte de la tesis abarca la segunda necesidad. En esta parte compilamos una
colección casi completa de secciones eficaces de colisión entre electrones y moléculas independiente
de bases de datos actualmente usadas. Empleamos una recopilación exhaustiva hasta 2022 de
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x RESUMEN

secciones eficaces experimentales, cálculos precisos de mecánica cuántica junto a representaciones
analíticas sencillas. El modelado de dispersión elástica está basado en nuestro tercer artículo
[812], en el que calculamos seciones eficaces diferenciales de dispersión elástica de electrones por
moléculas diatómicas.

Además, la tésis contiene también una tercera parte que suplementa las dos primeras y con-
tiene una documentación minuciosa del proceso de construcción de la nueva base de datos de
secciones eficaces. Provee una reseña de técnicas de ajuste de datos experimentales y compara-
ciones entre varias bases de datos de secciones eficaces de colisiones entre electrones y moléculas
actualmente usadas.

Hasta ahora, la mayoría de la literatura se ha centrado en vías plausibles de formación de
campos eléctrico intensos en frentes de ionización. En esta tesis hemos cambiado la perspectiva
hacia el efecto que conlleva un cambio en la composición química del aire debido a la actividad de
descarga que precede el runaway térmico. La tesis extiende y completa los trabajos publicados
anteriormente [811–813].

Con los medios que hemos desarrollado –el algoritmo de compactación y la nueva base de
datos de secciones eficaces– hemos explorado el fenómeno de runaway térmico de electrones en
territorios hasta ahora poco estudiados: en campos eléctricos más bajos y en composiciones
gaseosas variables. Planteamos la hipótesis de que el preacondicionamiento del medio gaseoso
por coronas de dardos es relevante en el proceso de runaway térmico.



Resumo

En lastaj jaroj, elektraj disŝarĝoj estis trovitaj esti produktivaj fontoj de alt-energia radiado
[2, 252, 267]. Aparte, surteraj gamaradiaj ekbriloj estas observitaj en korelacio al fulmagado;
kaj ekestoj de Rentgenradioj estas mezuritaj en eksperimentoj kun laboratoriosparkoj [517]. La
gama/Rentgen-fotonoj estas produktitaj el Bremsstrahlung (bremsa radiado) de rapidaj elek-
tronoj dispersantaj de atomkernoj ĉeestantaj en la najbareco de la disŝarĝo. La rapidaj elek-
tronoj povas esti generitaj aŭ per kosma radiado aŭ akcelitaj en tre intensaj kaj lokalizitaj
elektraj kampoj en la disŝarĝo.

Ĉi-lasta mekanismo (akcelado) estas tiu studita en ĉi tiu tezo kaj nomita “termida elektrona
fuĝo”. En la nuna stato de scio, ĝi prezentas multajn defiojn al nia kompreno de disŝarĝoj.
Ekzemple, la flueco de Rentgenradioj (nombro de fotonoj transirantaj unuareon) superas tiun
antaŭdiritan de nunaj modeloj de termida fuĝo en disŝarĝoj. Konkrete, la probableco de akceli
termikan elektronon al altaj energioj, kie ĝi radias tra bremsstrahlung, estas trovita esti tro
malalta ĉe tipaj elektraj kampoj renkontitaj ĉe la kapo de fluâȷoj (mem-subtenaj jonigaj ondoj).
Inverse, la kredebleco de tre altaj elektraj kampoj, kiuj ebligas termidan fuĝon, estas necerta.

De la modeliga perspektivo, la abundo de termidaj fuĝaj elektronoj dependas forte de la
modelo elektita por reprezenti elektrondisperson disde molekuloj [169, 218, 677]. Aparte, en
kompara studo [811], ni montris ke diversaj modeloj de elasta disperso donas signife malsamajn
distribuojn de alt-energiaj elektronoj.

Tial, ni identigas du necesâȷojn malhelpadas solidan studon de termida fuĝigo:

1. Trovi fizikan medion, kunmetitan de l’ elektra kampo kaj la stato de aero, kiu krei la
kondiĉojn kiuj ebligas termidan fuĝigon. Tiam, en tiu medio, povi modeli okazâȷojn de
ekstrema maloftâȷo, al arbitraj malaltaj probablecoj.

2. Posedi tre fidindan kaj precizan modelon de elektrono-molekulo kolizioj, kohera ĉie energioj:
de nul ĝis pluraj MeV.

La unua neceso estas respondita per la unua parto de la tezo, kie ni esploras la abundon
de alt-energiaj elektronoj akiritaj en Monte Carlo simuladoj sub diversaj kondiĉoj de la elek-
tra kampo, la aera kunmetâȷo kaj temperaturo. En dua artikolo [813], ni adaptis la Monte
Carlo gravecprovâȷmetodaron en "kompaktigan" algoritmon kiu plifortigas la statistikojn de alt-
energiaj elektronoj al arbitre malalta probableco de okazo, aliflanke, je la kosto de plimalbonigado
de la difino de malalt-energiaj elektronoj.

La dua neceso estas traktita en la dua parto de la tezo, kie preskaŭ kompleta aro de elektron-
molekulaj laŭaj sekcioj estis kunvenita sendepende de la datumbazoj nuntempe uzataj. La
asembleo kombinis ĝisfundan kunvenon (ĝis 2022) de eksperimentaj laŭaj sekcioj, precizaj kvan-
tumaj mekanikaj kalkuloj kaj simplaj analitikaj reprezentadoj. La modeligado de elasta disperso
baziĝas sur nia tria artikolo [812] por kalkuli diferencialajn sekciojn de elektronoj dispersantaj
elaste el diatomaj molekuloj.

xi



xii RESUMO

Cetere, ĉi tiu tezo ankaŭ enhavas trian parton, kiu kompletigas la unuajn dua partojn per
ĝisfunda dokumentado de la procezo por konstrui la novan laŭan sekcian datumbazon. Ĝi disponi-
gas superrigardon de teknikoj por konvenado de eksperimentaj datumoj kaj komparoj de diversaj
elektron-molekulaj laŭaj sekciaj datumbazoj nuntempe uzataj.

Ĝis nun, la plej granda parto de la literaturo temis kredindajn mekanismojn, kiuj kondukas
al formado de intensaj elektraj kampoj en jonigaj frontoj. En tiu tezo, ni turnis nin al malpli
vizitata perspektivo konsiderante la ŝanĝon en la kemia kunmetâȷo de aero pro la disŝarĝa agado
antaŭ termida fuĝo. Kontraŭe al la kutimo aplikita al disertacioj en la sciencoj, ĉi tiu tezo estas
tute originala verko sendependa de la artikoloj publikigitaj ĝis nun dum la doktora programo.
Tial ĝi ne devas esti rigardata kiel reformulado de la laboro realigita en tiuj artikoloj [811–813],
sed kiel la ĉefa daŭrigo de ĝi.

Kun la rimedoj, kiujn ni ellaboris – la kompakta algoritmo kaj la nova aro de laŭaj sekcioj
– ni sondis antaŭtempe la fenomenon de elektrona termida fuĝo en ĝis nun nesufiĉe studitaj
teritorioj; malaltaj elektraj kampoj kaj ŝanĝadaj gasaj kunmetâȷoj. Aperta konklude, ni imagas,
ke antaŭkondiĉigo de la gasa medio per fluâȷaj coronoj estas temrilata por malkaŝi iujn el la
misteroj, kiuj kovras nian nunan komprenon pri termida fuĝado.



Preface: how to read this thesis?

The research conducted in this thesis was originally motivated by helping to understand the
mechanism, known as electron thermal runaway, whereby high-energy electrons are being pro-
duced from the acceleration of free electrons in electric discharges in the atmosphere.

As often happens in scientific investigation, during the process of obtaining results, we realised
that the data upon which our modelling relied were outdated and required thorough revision.
After a careful consideration, we took the decision to undertake the revision ourselves despite
the risks involved of not succeeding.

The creation of a new database entailed the extension of the thesis to its present length∗.
In exchange, this enabled us (i) to establish more steady foundations for the investigation of
electron thermal runaway in discharges and (ii) to improve the applicability of simple models to
the representation of electron-molecule collisions useful for modelling weakly ionised plasmas.

Structure of the thesis

The present thesis is structured into three parts each composed of six chapters.

• Part I investigates the main objective of the thesis about electron thermal runaway in
atmospheric gases.

• Part II sets the foundations for revising the cross sections for collisions between electrons
and molecules.

• Part III gathers and complements the research in part II in order to provide data required
as input to part I.

The first two parts follow a parallel structure of 6 chapters.

i) Context. The first chapters are an introduction into the topic and motivation in relation to
the thesis.

I. chapter 1 is a phenomenological introduction to electric discharges, including high-
energy processes, occurring in the atmosphere.

II. chapter 7 introduces basic notions of electron scattering with molecules, how they are
measured and calculated.

ii) Model. The second chapters introduce the theoretical background used to construct the
physical model.

∗For an efficient browsing through the hyperlinks embedded in the electronic version of the thesis, please check
your .pdf reader’s navigation shortcuts. For many readers, the shortcut is Alt + ←, → to quickly switch back
and forth.

xiii
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I. chapter 2 explains how electrons are modelled in weakly ionised plasmas, particularly
in the framework of Monte Carlo simulations.

II. chapter 8 presents the modelling of electron scattering off molecules from the quantum
mechanical perspective based on the optical potential approach.

iii) Numeric. The third chapters present the numerical methods required to implement the
physical models.

I. chapter 3 regroups the methods used by Monte Carlo simulations of electron swarms.

II. chapter 9 explains how to calculate differential cross sections from an optical potential.

iv) Critique. The fourth chapters contain information about difficulties encountered in the
construction and implementation of the models used.

I. chapter 4 is a collection of points that require attention when modelling electron
swarms in gases from the Monte Carlo approach and how to assess the validity of the
simulations.

II. chapter 10 is an extended discussion and comparison of approximations and semi-
empirical models used to calculate electron-molecule cross sections in the optical po-
tential approach.

v) Results. The fifth chapters present the results obtained from the application of the model
and its numerical implementation after it has been examined in the preceding chapter.

I. chapter 5 presents Monte Carlo simulations of electrons in gases and a specific empha-
sis on the production of high-energy electrons through thermal runaway acceleration.

II. chapter 11 assembles the necessary information (theoretical, experimental) in order to
produce concrete electron-molecule cross sections classified according to their reaction
channel.

vi) Discussion. The sixth and last chapters provide an overview of the work done, highlight the
main points found in the results chapters and propose perspectives for future investigation.

I. chapter 6 connects and comments the results obtained for electron thermal runaway
in relation to the context described in the first chapter.

II. chapter 12 summarises the results obtained of electron-molecule cross sections for each
atmospheric species: N2, O2, NO, Ar, O and N.

The structure of the third part is different.

Appendices. The first two chapters are appendices to the work done in chapter 11.

• chapter 13 is a detailed presentation of how we fitted analytical expressions to exper-
imental data.

• chapter 14 is a collection of analytical formulae obtained in the first Born approxima-
tion for representing elastic scattering of electrons from molecules at high energies.

Database. The next two chapters present the newly constructed database of cross sections.

• chapter 15 explains how the database was created from the information in chapter 11
and how to use it.
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• chapter 16 compares the new database to other existing databases hosted on lxcat
and to experimental data.

Comments. The last two chapters are comments of the author about the thesis.

• chapter 17 is a comment on the importance of having an international language for
science.

• chapter 18 is a personal comment about the challenges and issues encountered during
the thesis, concluded by acknowledgements.

Readers that are interested in the new material can refer to the lists in the conclusion sections
6.3 and 12.2, or directly consult:

• the particle compaction methodology that we developed in section 3.3.2,

• the elastic differential cross sections which we obtained in section 11.1,

• the analytical impact excitation cross sections in section 11.4.2 and the ensuing sections,

• the binary-encounter-dipole model for impact ionisation which we improved in section 11.5.3,

• the revised database in chapter 15,

• and of course, the chapter about results of electron swarms and runaway electrons in
chapter 5.

Finally, users of the new database can directly skip to section 15.2, where the table 15.1
presents an overview of how the database was constructed.

Before plunging into the reading, in the following sections, the readers can acquaint them-
selves with the notation and abbreviations that we use throughout the thesis. An overview
specific to the atomic system of units is given at the end of chapter 7.
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Notation

The mathematical symbols typewritten in this thesis try to follow the guidelines of the revised
standard ISO 80000-2 [432]. In particular the usage of italic versus roman font is reminded
below:

Italic font is reserved for:

✓ physical variables or constants (e.g. x, y, z for space coordinates or c, h̵, e for speed of light
in vacuum, Planck’s reduced constant or the elementary charge)

✓ subscripts which relate either to a continuous or discrete variable/quantity. Thus the
molecular polarisability may be written as αR signifying its parametric dependence on the
interatomic distance R of molecular hydrogen H2. The spatial components of a vector
px, py, pz to denote the projections in each of the x⃗, y⃗, z⃗ directions. All indexes i, n,m that
count objects in a sum or that designate elements (Aij) in a tensor/matrix shall be written
in italic as well.

Roman upright font is used for a wide range of cases:

✓ International units: meters m, nano-seconds ns, kelvins K, Rydbergs Ryd, etc.

✓ Abbreviations of chemical elements and excited states

✓ Mathematical constants: notably Euler’s constant – e – root of the natural logarithm, and
the imaginary number – i.

✓ Mathematical operators, in particular the differential dx instead of carelessly dx; and
named functions : ‘sin’ for sine, ‘ln’ for natural logarithm and ‘Jn(r)’ for Bessel’s function
of the first kind and of degree n.

✓ subscripts of variables or a quantities that refer to an abbreviation, to a concept or a notion.
As an example, the energy in the relative frame is typewritten εr not ��εr , or the ionisation
cross section is σi not ��σi .

This prescription was transgressed in the particular case of the velocity – v. I chose to
preserve a consistent typewriting between the velocity as a vector, its norm and components.
Thus, if v represents the velocity (vector) of a particle:

∥v∥ = v but not : ��HH= v ,

v ⋅E = vE but not : ���XXX= vE .

This is because the ‘italic’ font for v looks too much like an ‘upsilon’ υ. I decided to reserve
v = 0,1.. only for the vibrational excitation quantum of diatomic molecules.
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Next, I reserve some special meaning to accents:

q̂ : a unit vector → ∥q̂∥ = 1

â : a unit complex number → ∣â∣ = 1

ś(x) : a cumulative integral (can be normalised) → ś(x) =
∫
x
x0

dσ
dx dx

(∫
x1
x0

dσ
dx dx)

with x ∈ [x0, x1]

s̄: an average or a magnitude factor# → s̄(x) =
∫
y1
y0
s(x, y)f(y)dy

∫
y1
y0
f(y)dy

⟨s⟩: an average over a discrete set or continuous space → ⟨s⟩ =
1

N

N

∑
i=1
si

ṡ(x): a reference, an accurate estimation of a quantity
s̃(x): an approximation, correction, perturbation, fluctuation e.g. : s̃(x) could be ṡ(x) − s̄

Abbreviations

Part I
Acronyms

∗ EEDF : electron energy distribution func-
tion

∗ MC : Monte Carlo

– PIC : particle-in-cell

∗ RREA : relativistic runaway electron
avalanche

∗ TEB : terrestrial electron beam

∗ TGF : terrestrial gamma-ray flash

∗ VLF : very low frequency

Indexes

◻ ‘a’ or ‘att’ : attachment

◻ ‘b’ : binary

◻ ‘c’ : critical

◻ ‘c’ : collision (index)

◻ ‘d’ : drift

◻ ‘e’ : electron

Part II
Acronyms

∗ a.u. : atomic units

∗ BED : binary encounter dipole (model)

∗ CS : cross section

– DCS : differential cross section

– SDCS : singly differential CS

– DDCS : doubly differential CS

– TDCS : triply differential CS

– ICS : integral cross section

– MTCS : momentum-transfer CS

∗ DFT : density functional theory

– KDF : kinetic density formulation

∗ EELS : electron energy loss spectrum

∗ FCF : Franck-Condon factor

∗ FEG : free electron gas

∗ HF : Hartree-Fock (variational method)

∗ MERT : modified effective range theory

#This could either be a constant or a function if the average is performed on a sub-dimensional space of a
multi-variable function
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◻ ‘exc’ : excitation

– ‘diss’ : dissociation

– ‘el’ or ‘e’ : elastic

– ‘Ae’ : inelastic

– ‘elt’ : electronic

– ‘rot’ : rotational

– ‘vib’ : vibrational

◻ ‘g’ : gas

◻ ‘i’ or ‘ion’ : ionisation

◻ ‘k’ : breakdown

◻ ‘m’ : momentum transfer or measurement

◻ ‘r’ : runaway

◻ ‘s’ : super-electron (or streamer)

◻ ‘th’ : threshold

◻ ‘tot’ : total

◻ ′ (prime) : centre-of-mass frame

◻ ‘+’ : posterior to a collision

◻ ‘-’ : prior to a collision

◻ ‘0’ : initial (also before a collision)

◻ ‘1’ : primary (in impact ionisation)

◻ ‘2’ : secondary (in impact ionisation)

◻ ‘*’ : target (compaction)

◻ ‘∞’ : nominal/stationary (compaction)

∗ MPSA : molecular phase shift analysis

∗ OS : oscillator strength

– OOS : optical oscillator strength

– DOS : dipole oscillator strength

– GOS : generalised oscillator
strength

∗ O2 spectrum :

– HPC : Herzberg pseudo-continuum

– SR : Schumann-Runge (continuum)

– LB : longest band

– 2B : second band

∗ PCI : post-collision interaction (after
ionisation)

∗ PWBA : plane-wave (or first) Born ap-
proximation

– IAM : independent atom model

– SR : screened Rutherford (differen-
tial cross section)

∗ RBEBa : relativistic binary encounter
Bethe

∗ SC : semi-classical

– SCF : semi-classical Fermi (free
electron gas)

Indexes

• ‘d’ : dipole

• ‘r’ : relative (centre of mass)

• ‘re’ : residual elastic

• ‘rm’ : residual momentum transfer

• ‘rd’ : residual dissociation
aalso RBEQ = RBEB with a Q parameter
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Glossary

Part I Part II
Einstein coefficient (Anm) ◁ A scattering length
electric acceleration (eE/me) a atomic radius in exp(−r/a)

▷ a0 : atomic Bohr radius
angle between electric and magnetic fields

Townsend’s first ionisation coeff. : αi ◁

α ≈ 0.00729735 : fine structure constant
▷ αd : molecular dipole polarisability

(“magnetic field”) magnetic flux density B binding energy in an atomic orbital (Bo)
impact parameter b ...

magneto-electrostatic drift velocity : βd ◁ β e− velocity in relativistic units β = v/c
speed of light ≡ 299792458m/s c = 1/α a.u. ≈ 137.036a.u.

∥ E ∶ D∥

⊥ E ∶ D⊥
} swarm diffusion coeff. D static dipole moment

d forbiddance degree in σ ∝ 1/εd

duration ∆t or distance ∆r ▷ ∆ ◁ energy difference ∆E
small timestep (δt), energy interval (δε) ▷ δ ◻ δℓ : phase shift bound to the ℓ wave

electric field E ...
elementary charge e ≡ 1.602176634 × 10−19C = 1a.u.

Euler’s number e ≈ 2.718282
excitation energy E energy of a system, a state

electron kinetic energy ε ...
average friction force F generalised oscillator strength

energy distr. func. ∶ fε
velocity distr. ∶ fv

phase space ∶ f(r,v, t)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

distribution f optical oscillator strength
scattering amplitude

azimuthal angle in the plane ⊥ E ϕ atomic orbital wavefunction
... ▷ ϕB : Coulomb interference term

azimuthal angle φ rotating the scattering plane
index for a gas species ◻ g degeneracy degree of a state

Lorentz relativistic factor γ = 1/
√
1 − (v/c)2

Γ resonance width (energy)
H Hamiltonian operator

predissociation ratio : ηpd ◁ η screening parameter η = 1/(2ka)2

angle between velocity and electric field χ polar angle from the internuclear axis
... I ionisation potential
... J quantum number for rotational excitation

scaling energy in the first Born approx. K reactance matrix
Boltzmann’s constant : kB ◁ k electron wave number

L ▷ L : orbital angular momentum operator
L e−-molecule total angular momentum

distance travelled by an electron l harmonic degree of a molecular potential
ℓ e− angular momentum quantum number

electron mean free path : λ̄ ◁ λ decay rate in Yukawa/Slater potentials
Coulomb logarithm : Λc ◁ Λ projection of L on the internuclear axis

electron’s mass m angular momentum projection on the z-axis
electron’s mass ▷ me ≈ 9.10938 × 10

−31 kg
mass of a molecule/atom M projection of rotational angular momentum
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M z-projection of total angular momentum
cosine of scattering angle cos θ

electron mobility : µe ◁
µ e− reduced mass µ =meM/(M +me)

number of electrons in a swarm : Ne ◁ N number of electrons in a molecule/orbital
electron ∶ ne

gas ∶ ngas
} density n principal quantum number in an orbital

◻ index for degree or order
total collision : νtot

electron avalanche : νe
runaway production : νr

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

rate ν

electron kinetic momentum p ...
kinetic momentum of a molecule (or ion) P Legendre polynomial

probability P ...
heating rate Q static quadrupole moment

q momentum transfer in a collision
R internuclear separation

electron position r radial position
ρ electronic density in atoms

source term in kinetic equation S scattering matrix
S e−molecule spin

(unbiased) standard deviation s electron spin projection on the z-axis
cross section σ ...
temperature T transition matrix

time t ...
relaxation : τ
mean free : τ̄

average runaway : τr

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

time τ resonance lifetime

electron scattering angle θ ...

e− kinetic energy in a bound orbital U ...
⎧⎪⎪
⎨
⎪⎪⎩

reduced potential : U(x) = 2V (x/k)/k2

evolution operator (unitary)
u radial function (partial wave)

electron velocity v ≡ k in atomic units
... v vibrational quantum number

molecule velocity V atomic/molecular potential
super-electron statistical weight w a weight factor w < 1

instance from a random uniform variable x position-spin coordinate x = (r, s)
a ratio ξ a variable in a series

... Z atomic charge number
ionisation degree : ζi ◁ ζ dimensionless variable used in integrals

Ψ total electron-molecule wavefunction
ψ electron scattering wavefunction

... ω vibrational/rotational angular frequency

... Ω solid angle of scattering
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Electron swarms in electrified gases

1





NOTATION 3

Prologue

Like most scientific research conducted nowadays, it is hard, at first glance, to figure out the
purpose behind a study such as “electron swarms in electrified gases”. Although we are fortu-
nate to live in a technologically developed environment to start unfurling words to defend our
cause — such as laser, discharge lamps/tubes, plasma air purifiers, chemical reaction catalysers;
plasma needles, bullets, beams for biomedical treatments, microelectronic ashing and etching,
arc discharge prevention in electronic/electrical equipments; and then, of course, the delight of
measuring gas properties derived from swarm experiments that give cross-sections, excitation,
ionisation and transport coefficients; — still, in almost any application, the connection with
the present study is far from obvious, even for specialists. This leaves us with the last, oldest
and unrelenting purpose of science: to study natural phenomena, such as lightning. Therefore,
it should not be surprising that despite all the possible industrial applications aforementioned,
this thesis has been fundamentally motivated with the aim to help understanding some of the
numerous mysteries about the sensational characteristics of lightning.

There are many ways in which an investigation about phenomena related to lightning could
be made. With the bountiful means of the present time, we would typically combine observations
with many different instruments positioned at various viewpoints: through electric field mills or
antennas positioned on the ground surface just below or hundreds to thousands of kilometers
from the thunderstorm activity; with local balloon and in-situ probe measurements, planes flying
nearby, above or venturing inside thunderclouds; or even from very distant places such as satellites
or monitors located on the ISS comfortably watching the spectacular scene from space.

Next, we would conduct experiments from small sparks in glass tubes, electrodes in labo-
ratories to outdoor majestic discharges with massive power-voltage generators, or going as far
as bridging the gap with the natural scale of lightning through rocket-triggered strikes that
take advantage of the great potential difference present in thunderstorms. Then, launch numer-
ous simulations each more sophisticated than previous ones, starting from individual electron
swarms (of which this thesis covers a small part), fluid models of streamers, adding leaders,
then deriving electromagnetic emission activity from electric currents, black-body radiation of
heated air, molecular de-excitation, electron bremsstrahlung emission, sometimes just focussing
on high-energy particles, othertimes on thermal ones, looking how this radiation provokes tran-
sient luminous events elsewhere in the atmosphere, etc. In other words, much has already been
done, and much more is yet to be done, as always; not least in assembling the research into a
comprehensive (and hopefully comprehensible) scientific field.

Faced with this impressive, indeed staggering amount of investigation, I would nonetheless
like first to turn towards somewhere we typically look less frequently for cognitive insight about
lightning : namely cultures [265]. In a world where we have access to unrivalled, accurate and
reliable information from measurements and simulations, looking at how humans regard lightning
through their cultural background seems naive. As it turns out, this is actually a very good start;
for naiveness in science is often well rewarded.

It is needless to remind what tight link lightning and thunder has to religions and deities.
Both were personified as the deeds of a supernatural being. While lightning strikes were almost
invariably thought of a fiery projectile: slingshot, stone, axe, bolt; hurled to the ground or into
the air, the rumbling and clashing of thunder had diverse interpretations. In northern Europe
and Indian, thunder could be the rolling of a heavenly chariot ridden by the god of lightning. In
Asia, it rather was the beating of drums, while in some American and African cultures it was
the flapping of the wings of a giant Thunderbird whose eyes blinked to launch strokes.

The overwhelming power of thunderstorms compelled many cultures to regard gods of light-
ning also as sovereigns over all atmospheric phenomena including rain and wind. They ranked
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among the highest positions in the vast majority of pantheons and sometimes, as in Greco-Roman
mythology, the god of lightning (Zeus/Jupiter fig. 0.1) was considered the supreme leader that
dispensed justice upon the world. The belief that storms, rains and strikes were wilful divine
feats, inevitably led to attempts of attracting the god’s favour. Rituals, offerings and often
sacrifices were conducted to attract good rains in regions where harvests were at the mercy of
droughts, such as in Mayan and Inca cultures. Sometimes, lightning was associated also with
fertility, as in Shintoism and native American religions. The Incas even characterised intra-
cloud as male lightning and cloud to ground as female, thinking the latter could somehow affect
pregnancy.

Figure 0.1: Statue of Jupiter holding
a thunderbolt at the Musée du Louvre
in Paris. [265, p.20]

The destructive capabilities of lightning strikes in-
spired fear and awe toward gods. As the only natural
force that can be channelled into singular destinations
(rocks, trees, buildings, tall pointy objects, and also peo-
ple), it shouldn’t come as a surprise that lightning was
long believed to emerge from divine will of punishment
or as ominous signs to mortals.

Places struck by lightning were invariably thought
as chosen or targeted by the gods. The implications of
a strike were diverse. Etruscans would interpret ani-
mals and humans struck as sanctified and they would
bury them on the spot. Occasionally, shrines would
be erected on spots stuck by lightning. The physical
damage after a strike was almost universally imputed
to divine projectiles whose remains – “thunderbolts” or
“thunderstones” – possessed magical protective powers.
As a consequence, many fossils, crystals and prehistor-
ically carved stone tools were misidentified as thunder-
bolts and carried as amulets, mounted on rooftops or
door lintels, or used in rituals to ward off lightning
strikes; believing that the gods had no apparent reason
to strike the same spot twice.

The dilemma of recognising both the destructive and
beneficial power of lightning was deformed by Christian
religious crisis into a witchcraft paranoia that, notwith-
standing our technologically advanced society, still per-
sists today in some rural regions of the globe. From the
fifteenth to the early eighteenth centuries, damage by
lightning or storms was almost systematically imputed
to some dark plotting of mortals along with the devil to
take abuse of divine powers.

In modern times, although our interpretations of
lightning changed drastically, our nature remains un-
changed and our beliefs recycled. It is thus not unusual to be tempted by the zeitgeist thinking
that lightning could or should be harvested in some way to help us overcome the foretold energy
crisis. In connection with lightning hazards, fortunately no one will be accused of wizardry,
tortured and burned; though damage to buildings and electrical equipment can be imputed to
inadequate engineering design. More than ever, lightning (or simply electric discharges) is pic-
tured as a spark of fertility through experimental evidence of laboratory-triggered snow [471],
rain provoked from clouds, and speculations that lightning activity might have played a role in
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life formation [647]. Belief in superpowers is not necessarily shaken either, simply restated. A
person witnessing and surviving a lightning strike hitting in the vicinity of a few meters where no
other pointy or conductive object could have scientifically justified its landing, will be strongly
tempted to ascribe such fortune to a sort of divine intervention, or simply luck. There is always
room for new beliefs or postulates to emerge and the puzzling phenomenon of ball lightning is,
in this respect, one of the most fertile fields. An extensive discussion of the folklore and myths
inspired by lightning and thunder can be found in Sibley [850], a somewhat shorter introduction
to its cultural aspect is given in Elsom [265].

Regardless of its hundreds of actual and potential technological applications, it should be
pointless to justify the use in studying lightning from a natural point of view. Whereas techno-
logical achievements magnify the illusion of our omnipotence and can at times promote distrust
by pushing afar the boundaries of fatality, a natural perspective to science restores the primal
interest we have about lightning : why there, why then, how thus ?

It is unfortunately not the aim nor even the capacity of this thesis to answer these questions.
However, despite not giving clear answers, we strive to provide new or updated tools to help
in elucidating one of the numerous mysteries about lightning : namely its relationship to high-
energy radiation.





Chapter 1

Context

An extremely insightful experience a scientist can make without equipment, budget and prelim-
inary research is to ask a random person on the street: how do electrons relate with lightning?

Depending on whether we feel too complacent about the wealthy and rigorous vocabulary
we are wont to employ, we would either see the person as utterly untaught or on the contrary,
realise how often knowledge can be overridden by our intuition and way of expressing ourselves.

In reality, such a benign question might equally stun one speechless, as if being asked what role
does water play in life. For that reason, without falling to the temptation of wielding equations
to glue our reasoning, we will first slowly descend in conceptualisation, from thunderstorms to
lightning, through discharges, to swarms and individual electrons. Hoping on the way, that we can
grasp the great scales of magnitude over which electrical phenomena unfold in the atmosphere.
This chapter should prepare us to frame better the research of this thesis centred on electron
swarms.

1.1 Lightning in nature

From a global perspective, lightning is now recognised as part of an immense power generator
to the global electric circuit in which the Earth can be seen as a conductive sphere coated by an
insulating positively-charged layer of atmosphere that steadily recovers its conductivity above 60
km of altitude at the base of the lower-ionosphere. At such heights, the conductivity is mostly
due to the presence of free electrons seeded (directly or through ionisation) by perpetual cosmic
and solar radiation. For this reason, this conductive layer is referred to as the “electrosphere”,
sustaining a positive potential difference to the ground of 300 kV.

This fact uncovers a new fictional futuristic scenario for an electrified world with appliance
cords hanging here and there from the sky. Nonetheless, in our modest realistic scenario, it
instructs us to continue learning about atmospheric electricity.

Naturally, this potential difference causes electrons to leak continuously from Earth into the
atmosphere. Thunderstorms complete the cycle by replenishing electrons to the ground. We
start describing the basic meteorological mechanisms driving thunderstorms.

1.1.1 Thunderstorms

Clouds form as the ground, heated by the sun, supplies and warms moist parcels of air, rising
into the atmosphere as their thermal expansion lowers their local air density. In normal weather
conditions, the moisture in parcels condensates as the temperature drops at higher altitudes and
forms suspended water droplets that compose cumuli, i.e. regular clouds. Depending on the

7



8 CHAPTER 1. CONTEXT

temperature profile of the atmosphere and the humidity of the air, the updraft can be stronger
and further lift the air parcel several kilometers above the cloud base altitude usually between 700
to 1 km above sea level. This leads to the creation of cumulonimbi or thunderclouds which can
tower up to 18 km in height. At some point in altitude, known as the tropopause, the atmospheric
temperature goes through a minimum before rising again. This stops the mechanism (buoyancy)
by which warm parcels ascend and they spread horizontally instead, giving to thunderclouds
their typical anvil shape. An example of a temperature profile with a tropopause at 16 km is
displayed in figure 1.1.

Along the ascent, as the local temperature cools below the freezing point depending on
pressure, the water contained in the air can adopt a great variety of forms. Some droplets
can crystallise while others remain liquid: they become known as supercooled water droplets .
Tiny ice crystals can grow in size as supercooled droplets and other ice crystals aggregate
to create heavier particles known as graupel . The various water particles populating clouds
are generically named hydrometeors. Through the competitive force of gravity and updraft,
a velocity differential is created among particles varying in size which then collide. Whereas
smaller ice crystals are carried by the updraft and soar, heavier graupel fall slowly or at best
remain in suspension where the updraft is still strong enough. Their collisions result in a charge
exchange reaction whose effectiveness and sign is conditioned by the ambient temperature.

The overall charge structure of a thundercloud is therefore layered according to its temper-
ature profile (which depends on the latitude, season, orography, climate, etc.). It is most often
modelled as a tripole with a main upper positive charge region between 6 to 14 km and -20
to -40°C, a main negative charge in the middle between 2 to 7 km around -10°C and a lower
positive layer at the cloud base and above 0°C. As a response to the electric field, layers of
screening charges form in the more conductive regions of the surrounding environment. Thus,
the cloud boundaries can be shrouded with a screening layer, essentially negative at the top.
Additionally, the ground below the thunderstorm reflects the tripolar structure by accumulating
negative, positive and again negative charges in roughly concentric regions right below to far
from the thundercloud base. The right of figure 1.1 illustrates the basic electric structure of a
thunderstorm in relation to the altitude and temperature.

The charge accumulated in the main regions can range from a few tens to over a hundred
Coulombs (∼10�100C). Their separation up to several kilometers leads to potential differences
typically around 10�100MV and once reported up to a GV [386]. From ground to cloud top,
the electric field profile varies and changes in direction each time a layer of opposite charge is
crossed [631].

At ground level, an accumulation of charges in tall structures (trees, buildings, etc.) enhances
the local electric field. This enhancement, if intense enough, may lead to the formation of a special
kind of discharge called ‘corona’, the physics of which are introduced later in section 1.2.2. The
current generated by the corona redistributes charges in the vicinity of the field-enhancing object
until this field becomes screened. The charges filling this volume form a corona ‘space charge’.
They are represented around the miniature tree and house on the bottom right of figure 1.1.
Finally, the effect of this corona is to screen the field measured at ground to a range of 1�10 kV/m
[866]. In absence of corona charges (such as on plane surfaces like desert plains or lakes), the
electric field can reach up to a hundred kV/m [933].

Maximum fields inside clouds are between 100�300 kV/m [764, p.83:table 3.2]. Further ele-
vation of this field can occur in areas of higher charge concentration and especially through the
enhancement at the tip of ice crystals. Initiation of electric discharges is likely to emerge and
attach at those tips when the local field enhancement is close to the electric breakdown threshold
of air. One can see how this threshold varies with altitude on the scaled axis in the middle of
figure 1.1.
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Figure 1.1: Formation and structure of thunderclouds according to the temperature profile of the
troposphere calculated with the nrmlsise-00 atmosphere model. The tropopause corresponds
to the first minimum in the temperature profile. Convection stalls at the tropopause, but there
may be a slight overshoot marking the top of the thundercloud.

Thunderstorms develop through various phases. The formation phase is characterised by
a strong updraft carrying moist parcels of air and benefiting great birds such as hawks and
eagles gliding, soaring and most probably being thuswise at the origin of the Thunderbird myth
[265, Chapter 1 §The Americas]. As the cloud swells, graupel is generated and the charge
separation mechanism takes place, giving way to occasional breakdowns laying out a soft rumbling
of thunder. At some point the supply of warm air depletes, the updraft weakens and heavier
particles start to engender a downdraft which permeates the core of the cumulonimbus, stifle
the remainder of the updraft and provoke the outburst of downpour. More turbulence agitates
the cloud’s core and fosters electrical activity. In case of a simple unicellular storm, there is no
adjacent cell or region that can resupply the cloud with water droplets and crystals. After a few
hours, the thundercloud subsides, dissipates and clears the sky.

Although the mechanism described so far is generic to many thunderstorms, these can adopt
very complex structures and present many variants. The convection can be either induced by
orography (i.e. by mountains, hills), or by cold air fronts. A storm can comprise multiple cells
or supercells with coexisting regions of intense updrafts and downdrafts, it can also be linked
to cyclones. Broader information about the physics and variety of thunderclouds can be found
in Cotton et al. [195]. Nevertheless, we suggest Cooray [189] for its insightful explanation of
thunderstorm structures. Quantitative information and detailed referencing has been gathered
in Rakov and Uman [764, Chapter 3, p.67-93]. Of course, lightning is not exclusive to hydro-
clouds and occurs in volcanic or nuclear plumes, sandstorms and other planetary atmospheres
with different chemical compositions. We now turn ourselves to the observed characteristics of
discharges in thunderstorms in the next section.
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1.1.2 Lightning Discharge

So far, we have depicted thunderstorms as a sort of gigantic machines that separate and unevenly
distribute charges over vast volumes in the troposphere and over the ground. The overall result
is that the space is permeated by an increased electric field. Generally, any mechanism which
restores fully or partially the charge balance between regions of opposite polarities can be called
a “discharge”. Therefore, this applies to any electric current, insofar as it depletes a charge
imbalance, weak as it may be. We have already seen above that the corona is a kind of discharge
whose effect is to slowly dissipate the regions of accumulated charges in objects on the ground.

However, we most often associate the term “discharge” with a more spectacular phenomenon
such as lightning. In this case, the discharge is accompanied by breakdown. This term might
seem obscure and ambiguous as it could point toward various aspects which “break down”:

1. Breakdown of resistivity: air transformed into a (weakly ionised) plasma channel ceases to
be an electric isolator.

2. Breakdown of the medium∗: air blazes, molecules dissociate, atoms ionise.

3. Breakdown of the electric field: the charges are transported in a fraction of a second and
rapidly screen the field much faster than the charging of clouds.

In this section, we present the basic mechanism by which this “triple breakdown” occurs.

Electron avalanche. The initiation of breakdown is a stochastic process that triggers under
certain conditions: when the electric field is above a certain threshold over a certain volume for
a certain period and with a source of free electrons. Apart from local build-ups of free charges
created by background (natural and cosmic) radiation [795], those conditions are best met at the
tip of hydrometeors [745] where charges accumulate both through migration and polarisation of
the material [741]. At standard ground atmospheric conditions†, the conventional breakdown
threshold of dry air is at 3 MV/m. As the air becomes rarer at higher altitudes, this threshold
decreases as shown on figure 1.1-right by numbers scaled on a vertical axis. Free electrons in the
vicinity of threshold fields start ionising the surrounding air whereby they multiply and create
local avalanches converging toward the hydrometeor tip [777]. The availability of electrons in air
is strongly hampered by the ability of oxygen molecules to detain them and form negative ions.
This process is known as electron attachment. Thus, an electron may not travel long distances
in air while staying free and the inception of an avalanche is subject to the local production of
electrons within the enhanced field region of the hydrometeor.

Avalanche to streamer. Under more specific conditions, which are actually still subject to
active research, the initial avalanches can expand by carrying an accumulation of charges which
sweeps forward, leaving behind a channel of weakly ionised air known as a streamer [606, 704,
Chapter II]. This corresponds to the first stage of breakdown: the resistivity of air drops several
orders of magnitude from ∼1014�1010 Ωm down to 103�10Ωm [762, p.343] due to the presence
of free electrons inside the channel which carry the electric current as they drift in the field. A
streamer’s growth is conditioned by the external electric field [299] and the composition of air
which may eventually be preionised or preconditioned to have metastable species. Together, the

∗This is not considered as being encompassed by the traditional terminology of breakdown. Nonetheless, we
propose it here as a useful additional classification to refer to different stages of a lightning discharge.

†There are many “standards” (and they changed throughout history). Ours adopts 15 ○C and 1013.25 hPa,
see later section 2.1.1.
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electric field and gas composition affect the production and depletion balance of free electrons
in the streamer channel [356]. In virgin air, free electrons may be produced from ionisation
in a number of different ways: from high-energy radiation to radioactive decay. Nonetheless,
streamers, once formed, do not depend on external sources of free electrons. They are self-
sustainable discharges that ionise air ahead and may propagate until they slow down to a halt
after then enter regions where the electric field is below a certain critical threshold [733].

Streamer to leader. During the evolution of a streamer, the air in the weakly ionisation
channel is gradually heated by the electric current. Initially, the channel’s conductivity, although
much higher than virgin air, is still relatively mild, and therefore Ohmic heating is fostered until
the second stage of breakdown occurs at higher temperatures: the breakdown of air. At this state,
the molecules in air are mostly (oxygen) or partly (nitrogen) dissociated into atoms and a small
but non-negligible fraction (>10−3) of ions is present [762, p.344]. Whereas streamers’ conductiv-
ity at ambient temperatures is hindered by collisions with diatomic molecules∗ and attachment to
oxygen, the present sharp rise in conductivity beyond several thousand kelvins (≳1500�2000K[11,
311, p.1343, §3.3]) is due to an increase of availability of free electrons and maybe even their mo-
bility [376, fig.3]. The resistivity of this plasma could be between 10−2�10−4 Ωm. This evolution
stage is known as a leader : it leads a corona of streamers (or streamer zone) attached at its tip,
to ionise the air ahead and allow for further propagation.

By now, the initial hydrometeor should have vaporised through the intense heating induced by
the electric current of ∼ 100 A. Core temperatures attain 6000 K or higher [11, 311, §4, fig. 13].
At the other end of the leader, the channel propagates in the opposite direction feeding new
charges into it. The leader becomes bidirectional, curiously like the thunderbolts held by Zeus,
Jupiter or Sumerian gods of lightning as in figure 0.1. Both ends are of opposite polarity and
assimilate pools of opposite charges as they propagate. Furthermore, the structure of leaders
can become complex as new branches can emerge, and old branches can die or revive again,
depending on the competitive demand in electric current necessary to maintain a channel alive.
Initially a submetric stem, leaders can extend over several kilometres in total length. An image
of a leader during a lightning strike can be seen on the upper-right side of figure 1.2.

The polarity of a leader/streamer’s tip determines the direction of the electric field ahead
(outward or inward). Positive (negative) tips attract (repel) electrons, creating avalanches inward
(outward) through impact ionisation of air molecules. In both cases, the channel propagates
faster than the electrons drift and, in a metaphor of snowploughing, accumulates a dense region
of charges at the front [733]. Typical velocities of streamers are around ∼ 106 m/s [517, §3.1] and
depend on their size [109, fig. 7b], on the gas density and on the external field [578]. In order to
propagate further, streamers require that the external electric field be above a certain threshold
[299]. This is known as the stability field† [109, §3.3] which is about 5 kV/cm for positive [733,
§1] and 10�12 kV/cm for negative streamers [704, §3.5] in air at atmospheric pressure.

Leader propagation can be notably different from streamers. Negative leaders can proceed
through rapid (< µs) expansions called steps, repeatedly interrupted over 5�80 µs. Steps can span
gaps as wide as ∼ 0.5�100 meters. A similar phenomenon was also observed for positive leaders
in laboratory sparks [341, 536] as discontinuous current pulses, when the air absolute humidity
is high (∼ 10g/m3) [582] or during the initial development phase for slowly rising voltages at the
electrode (≲ 5kV/µs) [340].

∗The actual picture is more complex. What distinguishes a leader from a streamer is a much larger density
(over 1000×) of free electron in the channel. In air, this is marked even more by the occurrence of attachment
which significantly depletes free electrons in the wake of a streamer.

†This concept is nonetheless hard to define since the electric field is rarely homogeneous and it is not straight-
forward to differentiate what is the “unperturbed” field if the streamer were not present.
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Figure 1.2:
Photograph
of a light-
ning strike in
Waterloo (Bel-
gium). The
luminosity and
structure of a
return stroke
on the left may
be compared
to a branched
leader emerg-
ing from the
cloud base on
the right.

Most of the time however, positive leaders propagate continuously and the nature of their pulsed
propagation is thought to be radically different from the stepping observed in negative leaders,
which is reflected in a different terminology for those pulses, namely: restrikes [536, 582], pulse-
wise propagation [341].

The average propagation speed of leaders is an order of magnitude slower ∼105m/s than
streamers, with a somewhat faster (slower [70]) tendency for negative (positive) types [536].
Nevertheless, external conditions and the development stage of leaders can greatly affect their
progression rate which can be slow to ∼104m/s [536, p.5:§4] or peak around 106m/s [341].

Leader touchdown. Ultimately, the conductive channel of the leader clears out a route for the
charges to flow between two separate regions of different electric potential. When this potential
difference is evened, the third stage of breakdown has been accomplished: the breakdown of the
electric field.

The path traced by a leader can go, for instance, from the main negative layer to the main
positive layer of the same cloud (intra-cloud), between layers of different neighbouring clouds
(inter-cloud); it could stop outside the cloud in a patch of air (cloud-to-air) as on the right side
of fig. 1.2, or make its way completely to the ground (cloud-to-ground) as seen on the left side
of figure 1.2.

In this latter case, the leader connects to the ground at one or several attachment points.
The attachment process is complex because the ground reacts to the nearing presence of a
highly enhanced field carried at the tip of the leader. Very often, streamers emerge from the
ground at local points of higher charge density. If a tall conductive pointy object stands erect
nearby, an upward leader springs from its tip and rushes to the encounter of the descending
leader [796]. When the connection between the counter-propagating leaders establishes through
their streamer zones, a surge of current known as the return stroke, runs through the channel
upward at about ∼ 108m/s, a significant fraction of the speed of light. This peak of current at
some tens of kA, ignites the channel blazing at 30000K [500, 722, fig. 6d], and produces the
flash visible to the eye. The same channel can flare up several times by subsequent surges of
current. Each subsequent stroke is preceded by the retracing of the channel by dart leaders
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that rush steadily at higher speeds ∼ 107m/s, unless they are stepped, in which case they pace
slower ∼ 106m/s. Between consecutive strokes, the channel can be kept active by a continuous,
eventually fluctuating, current of a few ∼ 100A for a typical interval of 1�100ms. When no more
charges can be fed into the channel, it finally dissipates.

1.1.3 Repercussions

The traces left behind by a flash are many and profound. Most obvious to us is the acoustic
shockwave from the sudden expansion of the superheated channel which produces thunder in
a concerto of rumbling, roaring and booming notes. Next, the currents in the channels emit
radio-waves that can be measured at far distances from the storm. Some special frequencies are
selected through resonance in the gap formed between the surface of the Earth and the ionosphere.
They constitute Schumann resonances that perennially permeate the globe. Furthermore, the
excitation, dissociation and ionisation of air prepare the molecules for various chemical reactions
to take place. New species are created, notably traces of CO, NO, NO2, ozone O3 and their ions
can be detected after a flash occurred.

In case of cloud-to-ground strokes, severe physical damage can result from intense electric
heating at the attachment point. Notably, the humidity contained within a material can instantly
vaporise and produce a spectacular explosion of tree trunks and parts of a wall or roof. Dry
burnable materials can be set ablaze whereas dry sandy grounds are fused together and produce
tubular structures known as fulgurites, literally “lightning-rocks”. Those should probably be the
scientific equivalent of the mythical thunderbolt.

After the flash is over, a massive amount of charge, several tens of Coulombs, has been dis-
placed over a large hecto- or kilo-metric distance in just a fraction of a second. The total effect is
measured as a charge moment change of most often several hundreds [447] but sometimes reach-
ing up to some thousands of C × km [59]. This sudden change in electric configuration induces
a response from charges contained in the upper parts of thunderclouds. A whole range of events
were identified in connection with large charge moment changes (≳ 1000C×km) [409, figs. 4&6]
such as sprites, jets and halos; each with their own phenomenology and typology. Additionally,
the electromagnetic pulses produced by current surges induce an expanding glowing ring in the
ionosphere known as an elve. All those phenomena are regrouped under the terminology of
transient luminous events.

Finally, the implications of lightning extend also to the range of high-energy physics.
Recently, it was found that:

1. leader steps are accompanied by X-ray bursts [252];

2. strong beams of gamma rays known as terrestrial gamma-ray flashes (TGF) were detected
from space [291], onboard planes [857] and on ground [239] in connection to intense lightning
activity;

3. the gamma rays produce photo-nuclear reactions in the atmosphere leading to emissions
of fast neutrons from nitrogen nuclei [267].

The common root to those high-energy events is the production of gamma photons through
bremsstrahlung radiation of very fast electrons deviated by atomic nuclei. The acceleration
mechanism capable of turning slow ambient electrons into high-energy ones is called thermal
runaway. Its conditions of occurrence are not well understood and constitute the main drive for
this thesis.
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1.2 Discharges in laboratories

Electric discharges produced experimentally differ mainly from natural lightning both in scale
and through their initial charge distribution fixing the electric field. Instead of spreading over
large areas as in thunderclouds, charges in laboratory experiments are densely accumulated on
conductive surfaces called electrodes. They are shaped as a spike, a sphere or a plane; and
eventually some combination, like an array of spikes on a conductive plate. The negatively
(positively) charged electrode, releasing (capturing) electrons is called the cathode (anode). The
nomenclature is due to Faraday in 1834 [271], on the suggestion of W. Whewell in analogy to
hydraulic flow: the higher (άνoδoς) and lower (κάθoδoς) paths from and to which the electric
current (going opposite of the electrons) flows in the medium between electrodes. Just as near the
tip of hydrometeors, the electric field is greatly enhanced around sharp contours of the electrodes’
surface. A historical introduction to the realm of laboratory discharges can be found in the first
chapter of Hirsh and Oskam [404].

1.2.1 Discharge typology

A rich variety of distinct discharge types is revealed through different configurations of the ex-
perimental conditions. One can change: the electrode shape, its material type, the gas filling the
chamber (composition, pressure, temperature), the gap length between the electrodes, the resis-
tance of the external circuit, the voltage applied and its rise temporal steepness and eventually
frequency.

Figure 1.3: A diffuse glow
discharge in air at 25 hPa
from a positively charged
electrode at the top given a
pulse of 14.6 kV with 15 ns
rise time and 10 µs decay
time. The photograph ex-
tracted from Nijdam et al.
[703, fig. 5], was exposed for
about 2 µs.

If the voltage is low (not much more than a few hundred volts)
and electrodes are relatively flat, the gap would only hold a very
weak current of slowly drifting ions and electrons sparsely pro-
duced by natural radioactive decay and cosmic ray ionisation. As
the voltage rises and by stimulating the cathode to emit elec-
trons, a (dark) Townsend discharge unravels by an acute increase
of current. At low pressures (a few hPa=mbar) and sufficiently
large gaps, the discharge starts glowing diffusely and more or less
uniformly in the gap as in photograph 1.3. This is used in low
pressure gas discharge lamps for street and office lighting. Rais-
ing the pressure and shortening the gap gives way to small and
bright arc discharges flushing a peak of current (about 1 A) in
an instant (some tens of ms). At high pressures, high voltages
and large gaps, a corona of dim filaments (fig. 1.4b) may form
in high-electric field regions from convex electrode contours. The
occurrence of corona streamers is due to a high concentration of
charges at the electrode. This effect can be enhanced by taking
pointy instead of plate or spherical electrodes. The corona pro-
duces free electrons and ions that sustain a current between the
distanced electrodes as can be fancied from photographs 1.4b&c.
At this point, only a slight increase of voltage or reduction of the
gap length may trigger a spark from the sustained corona dis-
charge (fig. 1.4d). Here, we excluded the very broad domain of
pulsed and oscillating-field discharges. We redirect the reader to-
ward Raizer [762] for a seminal description of discharge typology.
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(a) Diffuse Corona (b) Streamer Corona

(c) Pre-arc corona

(d) Spark

Figure 1.4: Photographs of 1ms exposure of corona and spark discharges between spherical
electrodes (and a plate electrode on the left of fig. b) separated by a gap of 4 cm in a laboratory
experiment at the Instituto de Astrofísica de Andalucía in Granada. Courtesy: Oscar Van del
Velde (2019) from Kieu [501, p.6:fig.1.5]

1.2.2 Sparks and coronas

Of all the types of discharges introduced, it is the latter two: spark and corona discharges,
that present most likeness to natural lightning. Powerful long sparks produced in laboratory
or outdoors display identical leader structures ended by a streamer zone (or streamer corona),
progressing through steps or continuously according to their polarity. Also, it is not improbable
that coronas form at the tip of hydrometeors [745] when the electric field reaches its maximum
value before lightning initiation occurs. Therefore, considerable insight about the mechanism
behind lightning initiation can be gained from studying laboratory sparks [652].
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Coronas may be of two types: diffuse and filamentary as seen by comparing figure 1.4a and
b. A diffuse corona is a volume discharge in which the electrons converge to (positive) or diverge
from (negative) the electrode. If filamentary, the corona is composed of many streamers that
emerge from the connection point near the electrode and expand further until they vanish or
merge into a leader. Of important note, one must mind the integration time used in photographs
of coronas. Longer exposure times blur together light emissions at different times. Therefore,
it is not certain whether the diffuse image of corona in figure 1.4a, unlike the glow discharge at
25 hPa in figure 1.3, was (or not) composed of many streamers which emitted light at different
moments and positions so as to give a uniform glow over 1ms.

We have seen previously in section 1.1.1, that one effect of the electric current generated in
corona discharges is to disperse an initially high concentrated region of charges over a greater
volume and thereby to reduce the potential drop at the electrode (or charged object) to which
the locally enhanced electric field is related. The repeated exposure to corona discharges can
cause the gas to reach temperatures of about ∼1000K [311, 404, p.248, §3.2]. More insightful
information about coronas can be found in the reference book Goldman and Goldman [339].

Experiments [109, 341, 582] show that coronas emerge under lower electric fields at the anode
(+) than at the cathode (−). Physically, this is explained [575] by electrons converging toward
higher electric fields near the tip; whereas electrons around cathodes diverge (move away) from
the high-field region. From this reasoning, we may infer that the electrodes on the left (right)
of figures 1.4 are anodes (cathodes). Similarly, one may suppose that in thunderclouds, positive
streamers emerge before negative ones. This would imply that for downward negative cloud-to-
ground lightning, it is actually the positive end that forms first; pointing upwards (downwards)
at the base (top) of the main negative charge layer.

The inception time of coronas and sparks depends on the availability of free electrons to start
the initial avalanches near the electrode and on the formation time of the streamer (usually much
shorter). Free electrons may either be ejected from ionisation by cosmic rays or be detached
from negative oxygen ions. The presence of electronegative species to which electrons may
attach greatly affects the time lag, formation and properties of streamers. The implications of
attachment and subsequent formation of negative oxygen ions in air are far-reaching. As will be
introduced in the forthcoming sections, it is suspected [621] that leader stepping and therefore
X-ray bursts are some consequences of attachment to oxygen.

A general introduction to spark discharges and the streamer initiation mechanism subjected
to a stochastic inception time can be found in Loeb and Meek [606]. An excellent recent review
of streamer physics is given by Nijdam et al. [704].

1.2.3 Stepping

A major insight on negative leader stepping was gained from high-resolution images of sparks
in laboratories. Each step is characterised by a sudden extension of the radiant leader channel
followed by burst of streamer corona at the newly formed tip, as nicely photographed in 1.6b. As
seen in the previous section, the corona is a complex system of streamers through which electric
current flows and a global space charge is deposited in the volume ahead of the leader tip.
Each individual streamer propagates until it reaches a region where the electric field emanating
from the leader head is screened by the corona space charge to the point where it is below the
threshold to sustain further streamer propagation. Even though streamers eventually subside,
in their passage they leave behind charge carriers that precondition the air [39] for fostering
subsequent breakdown.
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BeadStem ?
Figure 1.5: Photographic 50 ns ex-
posure image of beads (blue circle)
‘sowed’ by negative streamers and
evolving later into space stems (violet
circle) from which positive streamers
emerge. Extracted from Kochkin et al.
[518, fig. 10:(a)–right and (b)–left].

In particular, small glowing patches spontaneously
appear in the wake of negative streamers. Their ori-
gin is still under debate. In photographs of laboratory
discharges [518, fig. 10], they are observed as small iso-
lated round weakly shining dots left behind bright neg-
ative streamer heads circled in blue on the right of fig-
ure 1.5. Theoretically, their emergence was proposed
[621] as resulting from a disruption of the conductiv-
ity in the streamer channel reinforced by instability of
electron attachment to oxygen, conducing to a region
of enhanced electric field and glow through molecular
de-excitation. Those small dots are sometimes named
‘beads’ [520, §6] but are possibly another manifestation
of the structures that are sometimes called space stems
[69, 311, 583, 621]. Formation of beads is not exclu-
sive to negative streamers, similar glowing structures
have been observed in sprites after the passage of posi-
tive streamers. The connection remains, however, quite
mysterious as the ambient air density is much lower
at sprite altitudes (∼50�80 km and starting at ∼ 70 km
[737, fig. 4]).

Local and regularly spaced disruptions in conductiv-
ity are suspected to form a succession of beads left by
the passage of a streamer head. This suggests that the ideal model of a negative streamer as a
uniformly-stretched weakly conductive channel of electrons is too simple and does not take into
account the limitations imposed by electron attachment to oxygen molecules. Instead, a quick
degradation of the conductivity in the channel takes place as electrons deplete [520, §5.1].

What distinguishes a bead from a space stem is uncertain [45, §1]; the same dilemma might
be given to a botanist about when to call a germ ‘a sprout’, or when to call a sprout ‘a stem’
(to keep the analogy) and whether the sprout and the germ are words of distinct etymologies for
the same concept. Intuitively, we may designate by ‘bead’ the round shiny balls that the name
suggest. When a bead ‘grows’ (if it grows and does not vanish) it may be called a space stem as
described in the next paragraph.

The evolution of a space stem is a mysterious and presently actively discussed phenomenon.
On photographs, space stems seem to give birth to a series of small interrupted streamer corona
expansions of both polarities and follow the trail of the negative corona [340]. A glimpse was
caught in figure 1.6c where the negative (positive) streamers point downward (upward). Those
bipolar systems of counter-propagating coronas are called pilot (systems) [311, 520].

The growth pattern of pilots is rather atypical in the realm of discharges. In a first stage,
positive streamers emerge almost perpendicularly from the sides of the glowing stem and then
curb toward the positive electrode along the electric field lines, avoiding the path previously
traced by the passed negative streamer. This ‘Ψ’ shape can be noticed on the left photograph
of figure 1.5 where lateral positive streamers emerge from space stems of which one is circled in
violet [520]. After a while, it seems, from the structure on photograph 1.6c., that a central corona
of positive streamers forms connected to the space stem and propagates toward the electrode
while new negative streamers emerge from the opposite end of the space stem. The system may
now be called a pilot composed of two coronas of opposite polarities and direction of propagation.
The relationship, if any, between the first generation of (lateral) ‘Ψ’ positive streamers (1.5-left)
and the central positive streamer corona (1.6c) is undetermined and poses another intrigue.
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10m

a. b. c.

Figure 1.6: Different scales involved in negative leader stepping. (a) : Photograph from Biagi et
al. [69] of space leader glowing bead ahead of a natural lightning leader channel. (b) Photograph
from Kostinskiy et al. [536] of a streamer corona burst after a step in a negative lab discharge.
(c) : Photograph from Kochkin et al. [518] of pilot systems emerging from local space stems in
the wake of a negative streamer corona burst.

As it grows and stretches, the channel between the positive and negative coronas is disrupted
(or so it looks on the photographs) and the system eventually wanes out. Nevertheless, a new
space stem emerges from the previous point where the negative corona subsided and the process
may thuswise repeat several times [311, §3.6.1]. It would not be inadequate, that being said, to
adopt the Phenix as the totemic animal of negative leaders in lightning.

There may be several space stems launching new pilot systems in the area swept by a negative
streamer corona. The current generated by the pilots flows into the space stem and gradually
heats the region subtended between the coronas to about a thousand kelvins [581]. The critical
temperature for the streamer to leader transition is situated between 1000�2000K when the
release of attached electron to oxygen anions induces a surge of current [311, §3.3]. If this
current is maintained long enough to support the continuation toward leader formation, maybe
through the connection of several aligned pilot systems, the heated space stem may eventually
reach temperatures comparable to leader cores; it is then called a space leader [583]. Those latter
were observed in fast-camera pictures of triggered downward negative lightning leaders [69]. As
opposed to space stems which look like faintly glowing dots that follow the trail of negative
streamer coronas [340], space leaders grow bidirectionally into elongated streaks and glare with
the same brightness as the main channel in figure 1.6a. Gradually, the interstitial region between
the main and space leader channels shrinks. The systems of opposite streamers emanating from
the main and space leader tips interpenetrate and are sometimes observed [518] or thought to
collide into each other [190]. Their embrace is concluded by a sudden elongation of the leader
accompanied by a bright burst of corona streamers [68, p.8161-2].
In brief: another step has been taken.
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In summary we present the following cycle in negative leader progression:
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Most interestingly, X-rays were observed in correlation to the corona burst concluding the
step in long spark, just as in natural lightning. Furthermore, even beams of fast neutrons were
reported in laboratory experiments [6]. In the next section, we explore this intriguing high-energy
facet of discharges.

1.3 High-energy radiations

The energy of elementarily-charged particles in electric fields is most commonly described in
electron-volts (eV) which is simply the energy that an elementary charge e = 1.602 × 10−19C
gains from a potential difference of one volt. The domain of “high energies” is always relative
to the phenomenon studied. When mentioning X-rays and gamma-ray photons in relation to
lightning activity, we will consider the range between 10 keV and 100 MeV as the high-energy
domain of lightning radiation. For practical purposes, the traditional terminology qualifies “soft”
for less and “hard” for more energetic photons in the domain defined previously.

Although high-energy photons can be produced in various ways, their primary origin in
discharges is acknowledged as bremsstrahlung (braking radiation) from fast electrons scattering
off atomic nuclei or (to a lesser extent∗) electrons [528]. Actually, any charged particle deviated
by an electromagnetic field induces an electromagnetic perturbation that can propagate as a
real photon†. However, “bremsstrahlung” in the rest of this thesis will exclusively refer to the
electron-nucleus context. How many “fast” electrons can be obtained in a given electric field will
be briefly introduced in the next section before turning into the primary concern of this thesis.

It must be noted that the historical classification of X- and gamma rays is not based on
energy but on their mechanism of emission. While X-rays are associated with electron processes
such as bremsstrahlung and de-excitation of higher energy states to core orbitals in heavy atoms;
gamma rays were the third type (after alpha and beta) of radiation from radioactive decay (i.e.
atomic nuclei). Although it is certainly true within this context, that gamma rays tend to be

∗This is because radiations from binary electron collisions arise from the quadrupole moment as opposed to
the dipole moment in electron-nucleus collisions

†When it comes to observers in different frames which are not bound by a Lorentz transformation, radiation
is subject to the reference frame considered. This was a long-lived stimulating paradox [783] and still perplexing
nowadays.
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more energetic than X-rays from atomic deexcitations; a “bremsstrahlung-ray”, which should
pertain to the definition of an X-ray, can perfectly span over gamma energy ranges. In lightning
research, there is not (yet) a consensus for strict terminology, and many authors tacitly adopt the
conventional boundary of 50 keV. Nevertheless, there is a growing trend [250, §2.4] to separate
gamma rays - as photons that emanate inside the thundercloud, from X-rays - as linked to
stepping of long-sparks and lightning leaders reaching ground levels.

In the rest of this section, we will follow this tentative line of distinction between gamma-
ray (thundercloud) and X-ray (leader) emissions in connection to lightning activity. Below, we
present some of their characteristics and mention other forms of high-energy radiation in a third
subsection. At last, we will end this section by covering the hypothesised production of fast
electrons that prefigure gamma-ray emissions.

1.3.1 Gamma-rays

Once emitted by bremsstrahlung, gamma rays interact with molecules as they propagate through
air in the following four ways:

• Coherent Rayleigh scattering : deviation without loss of energy;

• Incoherent Compton scattering : with the ejection of an electron formerly bound to an
atom/molecule, whereupon another photon is re-emitted with a different wavelength;

• Photo-absorption∗ : upon ionising or (super)exciting a molecule, the photon is fully ab-
sorbed;

• Pair production : production of an electron-positron pair† under the influence of the electric
field of a nucleus.

We redirect the reader to Hertel and Schulz [400] for an introduction to these interactions.
The combination of those processes implies that the original gamma rays get strongly attenuated
as they propagate through thick layers of the atmosphere; they deviate from their original trajec-
tory and thus can occasionally be detected at larger angles (from their supposed location source);
and most importantly, they leave behind traces of their interaction with matter: production of
more electrons, positrons and other species. The graphs in figure 1.7 give an idea of the relative
importance of each interaction according to its cross section with nitrogen atoms‡ along photon
energy. As we will clarify below, a careful consideration [724] of those effects is instrumental in
interpreting measurements of gamma rays emanating from thunderstorms.

To-date, there are two classes of events identifying gamma-ray emissions from thunderstorms.
The first (historically [735]) is the gamma-ray glow which lasts long from seconds [521] to several
minutes [179, 935], whereas the second is the terrestrial gamma-ray flash (TGF) which usually
lasts less than a millisecond. Those two classes are also very well distinguished by clear evidence
showing glows often appearing as terminated by lightning [255, 521, 636, 949] whereas TGFs
relate simultaneously to discharges taking place in thunderclouds.

∗Abbreviation to the full term: “photo-electric absorption”. Sometimes it would seem that the term “photo-
ionisation” is used as a synonym of “photo-absorption”. We deprecate this usage for two reasons: (1) A high-
energy photon can be fully absorbed but only lead to an excitation (inner core electrons of heavy elements) and
(2) Compton scattering also ionises (but a photon is remitted).

†Muon pairs could be produced too if the photon energy were high enough (≳200 MeV), usually only the case
for cosmic rays.

‡At energies >keV, one can assume that the photon cross section with a molecule is simply the sum of the
cross-sections with each atom in the molecule. More will be disclosed in the second part of this thesis.
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Figure 1.7: Gamma-ray interaction with nitrogen atoms‡ : cross-sections for Rayleigh, Compton
scattering, Photo-electric absorption and pair production from the EPDL [744].

Gamma-ray Glows. The conditions for gamma-ray glowing are thought to be quite straight-
forward [256, 637]: electric fields high enough and over sufficiently long distances (several hundred
of meters) [934, 935] to permit self-sustained avalanches [47] of fast electrons seeded by cosmic
rays [369]. However, if the field is close to the breakdown threshold, a discharge can set off;
and thereby abate the ambient electric field through screening by the space charge effectively
displaced [255]. Prior to the abatement, the electric field is locally boosted by the charge accumu-
lated at the leader tip. As a result, depending on the geometry of the glowing region with respect
to the leader propagation, glows can intensify both in particle flux [636] (number of counts per
second) and in hardness [947] (larger fraction of higher-energy counts) before an abrupt stop.
In one case, a glow was seen to give way to a TGF before a lightning flash quelled the electric
field [971]. Furthermore, it appears that the amount of charges displaced inside the cloud by the
electric current of a glow is non-negligible compared to that of lightning [484], suggesting that
glows and lightning flashes are rivalling mechanisms of electric discharge.

Terrestrial Gamma-ray Flashes. On the other hand, the mechanism(s) by which Terrestrial
Gamma-ray Flashes are produced, constitute a fervently discussed field of research. Known in
short as TGF, they are reputed to be the latest discovery, only thirty years ago [291], of high-
energy phenomena in connection to lightning. They are observed from space [78, 639, 695, 858,
919], on airborne detectors [99, 857] and from ground [1, 246, 385] as very intense but short
spurts of gamma rays beamed in a relatively narrow cone. Their characteristics described below
are illustrated in figure 1.8.
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Time

The duration of a single TGF is typically [725] < 1ms: mostly between a few tens to about
500 µs [628, figure 5]. However, a burst can sometimes be composed of multiple pulses with a
separation time of a few milliseconds [292, 628, figure 8, table 2]. Photon detection requires
a certain reading time during which the detector cannot process new information. This lapse
of insensitivity is referred to as deadtime. In some cases, short <500 µs double-pulsed TGF can
emerge as an artifact from the detector’s deadtime causing paralysis [335, figure 5].

Multi-pulsed TGF are more frequently observed from ground as shorter pulses [2] < 10 µs
separated by a few hundred µs, or even < 2 µs over a total of 16 µs [943]. It is probable that
actual TGF durations are shorter than observed on average due to significant delaying by scat-
tering in the atmosphere [162]. Sometimes, pulses emitted from the same thunderstorm region
separated by several seconds (≳ 10 s) would rather be considered as two separate consecutive
TGF [874, table 1]. They suggest that TGFs are capable of significantly discharging a cloud
region which needs some time to recharge. Other temporal characteristics can be retrieved from
their lightcurve displaying the photon counts along their time of arrival. A majority (about 2/3)
of pulses have asymmetrical [297] time profiles. Their rise time can be very short ≲ 50 µs [292,
630] while fall times are usually longer. Also, harder photons tend to arrive before softer ones
[692]. Asymmetry is compatible with the Compton scattering [162]; both softening and delaying
photons as they make their way out of the atmosphere [354].

Spectrum

One of the most distinctive feature of TGFs is their spectral hardness [627, figure 2]. It presents
an inverse power-law in energy [859, figure 2-right] in accordance with photon distribution from
bremsstrahlung [515, Table I] and a steeper decrease beyond 10 MeV explained by the exponential
cut-off energy about 7 MeV for relativistic runaway spectra [245, §8] which will be described
below. Deviations from power-law spectrum can be explained with photo-absorption effects
below 50 keV and softening of harder photons by Compton scattering above 1 MeV [245, sec.3].

The maximal gamma-ray energy observed kept breaking records for a decade [627, 859, 918].
For a while, it had been thought that TGFs reach up to 100 MeV [918]. It was later shown
[629, figure 5] that this had been an instrumental artifact known as pile-up, where two (or more)
photons enter and deposit their energy into the detector within the same “reading time” and
so are confusedly counted as one harder photon. Nevertheless, the upper energy limit [627]
could possibly lie around 40 MeV. This is a quite challenging energy since, under an electrostatic
assumption, a free electron would need to traverse from the main negative layer to cloud top
in a massively charged thundercloud to reach such an energy. On top of that, it should remain
unscathed by the dangers of losing energy through collisions with molecules. A mechanism
known as relativistic feedback presented later 1.4.4 could explain this energy by seeding high-
energy electrons at the foot of the high electric field region.

Fluence

At spacecraft altitudes, on average each cm2 will be traversed by 1 gamma-ray during a TGF
event [110, 630, §2.3] (the definition of fluence). The flux density, expressing the count rate per
second per unit surface, estimated to peak [110] at several thousand photons/(s.cm2) leaves not
enough time for the detectors to recover (deadtime) and thus is often difficult to derive. Fluences
on ground are highly dependent on the relative detector location to the TGF beam [2] and can
be as high as almost a million photons [970] passing in a cm2 !
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In total, a TGF can produce around 1015 [630] to 1018 [970] photons in the brightest cases.
However, this number is more meaningful when a lower energy threshold is fixed and depends on
how losses by absorption and pair production are taken into account. The detection efficiency
also plays a significant role in the fluence estimation. The detector’s deadtime is responsible
for a loss of photon counts [354] when their flux is too high. Correction of this effect implies
that there could exist fainter TGFs comprising 1014 or even 1012 photons, suggesting a higher
occurrence of 35 TGFs/min [723].

Geometry

Temporal, spectral and flux properties of TGFs are obviously affected by the geometry between
the source origin, its orientation and the point of observation. As a result of more absorption
and scattering, TGFs observed at larger angles from their source present a softer spectrum [724],
fainter, flatter and longer light-curves [391]. Combining the source geolocation and spectra of
observed TGFs, the average beaming half-angle of a TGF was estimated to lie between 30°and
40°, with 20°being the maximal deviation of the electric field from the vertical [334].

Production Altitude

Localising the origin of TGF in altitude accurately is a complicated process which requires Monte
Carlo modelling of gamma-ray propagation in the atmosphere or timing analysis with concurrent
radio-waves detected on ground.

Initially it was thought that TGFs must emerge from high altitudes [291] because of strong
atmospheric gamma-ray absorption rate below 30 km or so [692, 859], and thereby related to
sprites [423]. This presumed that after an intra-cloud discharge neutralises the main charge
layers, the electric field above the cloud becomes strongly enhanced and pointing downward due
to the negative screening layer over cloud tops. As a result, a breakdown occurs launching the
sprite discharge [54]. At the same time, the electric field above cloud tops (∼20�25 km) may
exceed the runaway breakdown threshold and avalanches of fast electrons would be the final kick
for a TGF to spring upward [576, 787, fig.7, fig.8.c].

Later, Monte Carlo simulations of gamma-ray generated by runaway electron avalanches and
their propagation through the atmosphere [152, 245] situated the initial guess to lower altitudes
of 15-21 km. Depending on the height of the tropopause at a given region, this would correspond
to the upper part of, or some kilometres above thunderclouds.

In the recent past years, it became gradually more and more surmised that TGF may well be
produced at even lower altitudes [2], say, within the large inter-charge region of maximal electric
fields [970]; and that the TGFs seen from space may constitute just a minor portion of a whole.
The controversy about initial guesses could partly be imputed to deadtime corrections of the
detector [335] and also to underestimation of TGF intensities.

Observations from ground revealed that the upward TGF had a twin: the downward TGF.
At first, the ground detection of gamma rays from lightning activity did not venture to mention
any link with TGF [118], or this link was very timidly [239, §13] laid. Nonetheless, it was clear
that those events comprised much harder spectra than “x-ray” bursts observed in correlation to
lightning leaders [252]. With time, similarities in temporal characteristics, spectral hardness and
concurrence with radio-emissions led to recognise that gamma-ray burst from ground and TGFs
from space were part of the same family. A decade later, TGFs had conquered unpresumed
regions in the inner depths of thunderclouds [1] below the main negative charge layer [970], to
be accepted as part of their cradle.
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Radio Signature

As a powerful discharge resulting from acceleration and multiplication of relativistic electrons, a
TGF fills the space with many free charges whose migration in the ambient field generate strong
electric currents. As mentioned before, any non-uniformly moving charge stirs electromagnetic
radiation. Thus, any discharge process; breakdown initiation, leader activity, return strokes and a
large portion of TGF, are all found in simultaneity with radio-waves [188, 615] known as sferics, a
contraction for “atmospheric waves”. Those are very low frequency (VLF) electromagnetic pulses
between 3�30 kHz (100�10 km-long wavelengths) that can last about one millisecond [202, §1.].
They can reach very far distances as they propagate in the waveguide delimited by the conductive
layers: ground and ionosphere. Shorter TGF pulses should in principle produce higher current
peaks [248], and so present a greater association rate with sferics. The time analysis of TGF
and sferics led to a significant progress in understanding their connection to lightning discharges
[619].

Relation to lightning

Finally, one of the greatest enigmas of TGF is their connection with lightning. After TGFs had
been known to develop in high electric field regions inside [829] thunderclouds, it was natural to
ask what role would they play in relation to discharges: as an auxiliary [610] or as an antagonist
[484], or simply as a witness?

Due to limitations imposed by timing accuracy, a causality relationship between discharges
and TGF is a difficult to ascertain observationally. Initially, some sferics were found to emanate
from intra-cloud discharges that were delayed from lightning a few milliseconds after the TGF
[875, table 2, ]; whereas in other cases, positive cloud-to-ground discharges seem to appear within
1 ms before [202]. Later, with improved timing analysis and calibration, it was found that sferics
and TGF are simultaneous events to within ∼1ms [336] without any systematic delay of one over
the other [626, figure 3].

Notwithstanding, on longer timescales, there is a resurgence of lightning activity observed
about half a second after the occurrence of a TGF [592, §4.2]. Much evidence points also toward
a link between TGF and early [610, 829, 854] or late [20, 754] leader development. In the former
case, the TGF seems to occur simultaneously with leader steps [56, 610] implying a possible
connection to the streamer-to-leader transition (see figure 1.9). In the latter case the TGF is
observed at the outset of a significant leader step detected by the radio-pulse of its current surge.
In rocket-triggered lightning events, TGF were observed when the leader unleashed itself just
after vaporising the trailing wire [239, figure 4]. When it comes to the return stroke, observations
are again ambiguous, with TGF clearly starting some hundreds of microseconds before [592, 754]
and after [943, figure 3] the stroke onset.

On the one hand, the concept that the avalanche generated by TGF could actually foment
breakdown due to an intense region of ionisation is not ill-founded [369]. On the other hand, the
evidence that TGF are related to leader stepping is overwhelming [1, 56, 696] and supported by
possible scenarios [246].

Moreover, the possibility that some TGFs be not related with lightning discharges remains
open, both theoretically [248] and observationally [860, §3.4-(figure 9)]. The timing analysis
of TGF with sferics is a delicate process that relies on the clock and geolocation accuracy of
all instruments involved; the correct deconvolution of signals originating from the same source
dispersed and delayed over an array of detectors; and the synchronicity constraints imposed by
the user. Any time or spatial imprecision will smear the clues about the order in which the events
occurred. As a result, despite the high association rates seen in some studies [619, 829], it is
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not always possible to find a match in sferics [628, §5.6.1] or light flash for every TGF detected.
In principle, a TGF is a glow with considerably more runaway avalanching and terminated by
a sharp screening of the electric field by the discharge. Why does a thundercloud region yield
glows instead of a series of pulsed TGFs is a still a difficult subject.

For now, we may reasonably suppose that TGFs can at least emerge from two regions of
intense electric fields: between the main negative and upper (lower) positive layers for upward
(downward) types. Additionally, since the atmosphere is opaque to gamma rays [239], and that
TGF beam in a relatively narrow cone, there is a high chance that only the brightest TGFs
are actually detected from space [619], which would imply that the phenomenon is commoner
[112, 723] than observations lead to think [859]. We may also speculate that TGF have a special
relationship with leaders that lift the electric field above the runaway threshold and also that
could sooner or later yield seed electrons provoking a relativistic avalanche, if the ambient field
is high and long-lasting and spatially extended enough. The pulsed characteristic of TGF is an
indication that their playground is repeatedly confiscated through an efficient screening of the
electric field by the charges displaced in the process of the discharge [246].

A recent monitor specifically aimed at observing TGF and transient luminous events in rela-
tion to lightning named the Atmosphe-Space Interactions Monitor [695] improved considerably
the TGF statistics [592] through finer temporal and spatial resolutions of its detector, a higher
detection efficiency and most importantly: a synchronous observation in the UV and visible
domain [696]. If all of the possible TGF-lightning scenarios come to be correct, then many new
members are expected to enliven the typology of TGF in the next years [619].

To sum up, it is difficult to determine a clear relationship (causal or concurrent) between a
discharge and a terrestrial gamma ray flash. If thunderstorms were a theatre play, TGF would be
susceptible to literally pop up at any act, provoking a frenzy among spectators and infuriating
the playwrights. To spark further the atmosphere, in the next subsection we shortly expose
some additional effects of gamma-ray and X-rays in discharges that attest to the great amount
of energy released in bursts.

1.3.2 Collateral radiation

On a causality scale, runaway electrons may be viewed as the first high-energy particles yielded
by discharges and their bremsstrahlung photons are secondary products. In this subsection, we
consider the third effect of a runaway discharge which is radiation induced by those photons.
There are essentially three tertiary radiation types that are generated in the torrentuous wake
of gamma rays in a TGF:

• Electrons ejected in almost any gamma-ray interaction with molecules : Compton scatter-
ing and photo-absorbing ionisation and pair production.

• Positrons produced exclusively by pair-production, most of which will annihilate back to
release two 511 keV photons.

• Neutrons through photo-nuclear reactions∗ with nitrogen [308] nuclei which are accompa-
nied by a beta-electron.

Electrons produced by gamma rays may potentially have a significantly different impact than
ordinary bulk runaways. At elevated altitudes, the air molecules rarefy so that the motion of
charged particles is gradually less dominated by collisions and become governed more under

∗Protons predicted by another open channel of this reaction were not observed in natural or laboratory
discharges
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the influence of electric and geomagnetic fields. If a gamma-ray escapes the cloud and sows
an energetic electron/positron in the upper atmosphere, the latter can evade toward satellite
altitudes. Such electrons (possibly including positrons [111]) form terrestrial electron beams
(TEB) which follow geomagnetic lines [249] and eventually become trapped in the magnetosphere
bouncing back and forth by mirroring near the poles [806]. This reflective signal made them
considerably easier to distinguish from TGF by satellite detectors [111].

During two flight campaigns inside thunderclouds [251, 516], important numbers of positrons
were detected from their annihilation peak at 511 keV. They appeared in connection with electric
discharges triggered by the aircraft body [516, figure 8]. Only photons above 2×511 keV ≈ 1 MeV
can produce electron-positron pairs (fig. 1.7). Additionally, the production efficiency is higher for
heavier nuclei [392, §20.1 p.195(7)]. Thus, one could imagine that the positrons were produced by
gamma-ray beams impinging on the aircraft shell, generated themselves from runaway electrons
produced by the attached discharges. Although positronic emissions were observed in natural
lightning [267] supposedly from downward-directed positron beams [951], the absence of similar
reported results in laboratory sparks makes the phenomenon intriguing.

Another fascinating discovery was the observation of neutron beams in relation to lightning
[174] and even, reportedly, in laboratory sparks [6]! At first, it was mistakenly thought that
neutrons came out as products of deuterium fission in the hot plasma channel of a return stroke
[825]. It was shown [33] however, that the neutron yield would be much more likely [49] related
to runaway electrons through photo-absorption of their bremsstrahlung gamma rays by nitrogen
nuclei [267], in which case they are baptised photoneutrons. Detection of neutron enhancements
at ground is of phenomenal significance. First, most photoneutrons thermalise through multiple
collisions with air molecules and are captured by nuclei whereupon a nuclear reaction triggers
[267, Extended-data figure 4]. Thus, detecting just a few tens of neutrons in a short period
can indicate a very consequential number [153], some 1012 of neutrons at the production source
of thundercloud altitudes [48]. Second, the threshold for this photonuclear reaction is about
10 MeV, and its cross-section represents a minor ∼ 5% of the total gamma-ray interactions.
Generation of neutrons requires therefore a high flux of energetic photons. Third, various works
report detection of fast neutrons (>10 MeV) [876], intense neutron fluxes [362] and neutron pulses
before the formation of a leader in laboratory discharges [5]. This spurred a debate about the
plausibility of photonuclear reactions as a unique source of neutrons [174, footnote 4] and raised
many doubts [37] about the credibility [34] of the neutron detection instruments. Neutron beams
related to discharges currently feature as the most puzzling topic in this domain.

An extensive review of high-energy radiations in electric discharges was conducted in Babich
[32], where more details of observations, experiments and models are available. Before we zoom
onto mechanisms of electron runaway in gases, we propose now to leave the TGF be and turn
toward the subject of X-rays bursts which may have a relationship to neutron production in
lightning.

1.3.3 X-rays

As opposed to TGF, X-ray bursts are unambiguously identified to correlate both temporally and
spatially with negative leader steps [241] or dart-leader tips [244]. On a few occasions, X-rays
were detected from positive natural leaders [994, Flash B] and positive laboratory sparks [243].

The typical scales of X-ray burst in natural and triggered lightning are reduced compared to
TGFs. They are briefer ≲ µs [240], and less energetic ≲ 1MeV [659].

In laboratory sparks, the duration of a burst can be as short as a few nanoseconds [518, 519,
fig. 3-right-bottom]. The voltage of the setup is typically [242, 517] above 1 MV. Prompter
voltage rise times and higher peaks promote the occurrence of bursts [625]. Surprisingly, X-rays
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were also detected for lower voltages [203] of 100 kV and shorter gaps [242] ∼10 cm. In lab
sparks, an individual X-ray burst comprises about ∼ 104 photons [519, 698] emitted in roughly
all directions although recent experiments with rings of detector arrays reveal a more structured
multi-beamed pattern [7, figs 7–9], pointing toward a link with runaways from streamers. Though
hard, the spectrum of X-ray bursts seems softer than TGF, with an exponential decrease at a
characteristic energy of roughly 200 keV [518, 519] as opposed to an inverse power law.

As expected, leaders of triggered and natural lightning can present more intense and energetic
bursts than lab sparks [244]. Their emission pattern seems to vary between diffuse (roughly
isotropic) and compact (beamed) modes [808].

The most favourable conditions to X-ray bursting are primarily sought at the encounter of
negative and positive streamers [191] just at the culmination of a leader step. Indeed those two
tips of opposite polarities can be regarded as mobile electrodes closing into each other, strongly
enhancing the field in the middle gap. The electrons ahead of the negative streamer are subject
to intensifying fields and as the threshold for thermal runaway is crossed, they rush out spurting
bremsstrahlung X-rays after they reach high-energies around 1 MeV. Two doubts press against
this scenario: is the threshold crossed? If it is, does it last long enough to allow enough electrons
to accelerate toward beyond the runaway energy threshold of the ambient field domain∗? So far,
simulations have been mostly sceptical [44, 170, 422, 531, 579].

Meanwhile, observations have been providing more evidence that thermal runaway not only
occurs in sparks but also in a rich diversity of laboratory experiments not associated [203, 827]
with streamer collisions and stepping. X-rays in various energy ranges were routinely observed
in helium chambers [301, 707], streamer corona [826] and diffuse corona [828] discharges from
pulsed voltages [827]. Also, since the efficiency of bremsstrahlung increases proportionally to
the square of the material atomic number (Z2) [515, Table I], it must be kept in mind that the
anode or any metal plate in general are bountiful sources of X-ray emissions [203].

Notwithstanding, regardless of whether the X-ray origin lies in the gap or at the anode, their
presence attests that electron thermal runaway is much more ubiquitous than one could initially
imagine. Perhaps most perplexing is the fact that the energy gain of runaway electrons in gases
can exceed the total potential difference [913] (see also [548, p.215]). This observation was not
due to pile-up effects in detectors corresponding to the addition of simultaneous X-ray deposited
energies within the detector time resolution. This implies that space charge effects in avalanches
[913, 990], streamer tips [171, 243, §34] and ionisation fronts [612, 957] play a role in the runaway
mechanism. Understanding in each case (diffuse corona, streamer tip, pilot encounters) what
conditions permit this phenomenal electron acceleration in spite of the overall friction force by the
gas is a challenging issue [170]. An overview of mechanisms able to generate runaway electrons
in gas discharges is available in Lagarkov and Rutkevich [548], which stresses the importance
of forming an ionisation wave where the electric field peaks at its highest point due to high
concentration of space charges at the ionisation front. The hypothesised production of runaways
in discharges is represented on figure 1.9. We may summarise them into three categories:

(a) SAEB: supershort avalanche electron beams in very brief and steep voltage pulses (∼ 2ns
with a 0.5ns rise time of an amplitude of a few hundred kV) on cathodes lead presumably to
a local enhancement of the electric field beyond the thermal runaway threshold [913]. The
runaway electrons generated would not only produce X-rays in the gap and at the anode,
but also preionise the surrounding air which explain the formation of a diffuse discharge
[826]. To our knowledge, this scenario has never been tested theoretically.

∗The minimum of the electron average friction curve in air 1.10 is slightly above 1MeV. In principle, runaways
seeded at lower energies could thus reach the MeV domain provided that the ambient field is above the absolute
runaway threshold field.
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(b) Streamer encounters: the electric field in the gap between oppositely charged streamers
is locally enhanced beyond the thermal runaway threshold. This hypothesis modelled by
numerous independent researchers has not given convincing results [44, 531, 579].

(c) Ionisation waves: an ionisation wave propagates much faster (≳2×107m/s) than a streamer
front. It is self-sustained by preionisation of the air by very fast runaway electron ahead of
the wave and by a high concentration of electrons in the head which leads to an enhance-
ment of the electric beyond the thermal runaway threshold. This might be called “surfing”
in the image that fast electrons keep up with or ahead of the ionisation wave, as opposed
to streamer heads which propagate faster than the electrons in the head because it hosts
no runaways. This scenario was proposed in Babich et al. [36] and Luque [612] and seems
theoretically plausible [38, 39], but requires further investigation.

We will come back to the potential role of ionisation waves in the next section. We now
finally move to the electron runaway mechanisms at the root of high-energy radiation, operating
ubiquitously behind the scenes.
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1.4 Fast Electrons

Ordinary electrons roving freely in gases have low sub-eV energies much below excitation and
ionisation thresholds of molecules. In case a moderate electric field is applied, some electrons may
gain more energy reaching at best a few eVs. Even under fields above conventional breakdown at
3 MV/m in standard conditions, most electrons barely accumulate several tens of eV before they
lose it by impact ionisation of molecules. Their fate glooms far below the bewildering domain of
MeV fast runaway electrons producing bremsstrahlung photons discussed above.

It is thus not unreasonable to categorise electrons according to the effects they may induce
in their medium. We distinguish at least three “classes” of electrons:

• Bulk (∼ eV) : those electrons form the vast majority of the total electron population present
in a gas with a mean energy situated in the eV range that increases with the electric field
(cf. fig. 4.13-bottom).

• Runaway (≳ 100 keV): those energetic electrons above hundreds of keV, may gain energy
from acceleration in the electric field which exceeds the average energy loss rate from
collisions with the gas particles.

• Intermediate (∼10 eV–10 keV): there is a very large range of energies over which electrons
are neither part of the bulk, nor can they run away. Nonetheless, this region is populated
with electrons that actively ionise the gas and foster avalanche multiplication.

A useful illustration of this separation is represented in the next chapter’s figure 2.1 at the
beginning of section 2.2.1, showing also the corresponding electron velocities. The boundaries
between these categories are loose and are affected by the intensity of the electric field. Physically,
the dual separation (bulk vs. runaway) from which an “intermediate” class emerges, can be
best grasped looking at figure 1.10 showing the average friction force acting upon an electron
propagating in a gas [786, figure 1]. This force, strongly dependent on the kinetic energy,
represents the average energy loss rate through inelastic collisions per unit of trajectory length.
It only slightly differs from the stopping power that expresses the loss rate in terms of penetration
depth in a medium; disregarding the tortuous deviations an electron can take as it collides with
atoms and molecules. Obviously, a denser gas offers proportionally more resistance to electron
motion. For this reason, to compare electric to friction forces scalable in density, it is customary
to divide the external electric field E by the gas particle number density n to give a reduced
electric field : E/n traditionally measured in Townsends (Td=10−21Vm2).

From a mechanically deterministic perspective, an electron in a field surpassing (scanting)
its average friction ought to gain (lose) energy. The shape of the friction curve in air presents a
global maximum around 150 eV mainly due to losses through impact ionisation and a secondary
peak below at 2�4 eV due to vibrational excitation of nitrogen molecules. The broad bump
between 15 eV–10 keV can be considered as delineating the intermediary region between ordinary
(bulk) and energetic (runaway) electrons. All electrons to the right, whose friction is below the
horizontal bar of the given electric field are deterministically bound to accelerate up to higher
energies beyond MeV to become runaways and start radiating bremsstrahlung photons. For the
rest, the friction prevents electric acceleration and hampers electron motion in the gas. Three
special field values have been set out in figure 1.10. Starting from the lowest:

∎ Runaway Threshold : 200✠ kV/m equiv. 7.8Td
Corresponds to the minimum field capable of sustaining a runaway electron (close to 1
MeV) in air [250, §2.2.1 eq-2.1]. Below that threshold, no runaway can occur, all electrons
would thermalise after several collisions.
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Figure 1.10: Average friction force acting upon electrons depending on their kinetic energy, due
to their inelastic collisions with air molecules. Computed with the database created in this thesis
(see part II) in standard dry air atmospheric conditions (see next chapter 2.1).

∎ Conventional Breakdown : 3✠ MV/m equiv. 118Td
At this special value, free electrons in air are capable of acquiring enough energy to ionise
molecules just so to compensate for their loss through attachment to oxygen [761]. It is not
a coincidence that this value happen to be just above the secondary peak between 2�4 eV,
enabling thus a few electrons to accelerate into the middle dale at some tens of eV beyond
the ionisation energy threshold around ∼ 1Ryd ≃ 13.606 eV.

∎ Critical Threshold∗ : 30✠ MV/m equiv. 1180Td
This field, if attained, would rapidly flush all free electrons into the runaway regime. This
process would also generate an exponential avalanche of new electrons from ionisation and
an intense beam of bremsstrahlung X-rays. Such a high field would not be able to sustain
itself for long as it would be quickly screened by the massive charge displacement instigated.

Interestingly, those three thresholds form a trio; each separated by an order of magnitude
which makes them easy to memorise: ∼(0.3,3,30) MV/m in standard air or ∼(10,100,1000) Td.
Their exact value is not fixed. For instance, the minimum of the present dynamic friction
curve✠ is actually at 0.2MV/m, but because of the dispersion effect of scattering from electron-
molecule collisions, the true runaway threshold is estimated at ∼282 kV/m [40, 236, 579, p.3,
p.613(“δ = 1.3”), appendix C.], hence the 0.3MV/m value in the trio.

∗Of interest, this field is known as the Dreicer field when applied to fully ionised gases [230, eq.(20)]. We
ought not to adopt the same name in the present situation where the gas is weakly ionised where the premises for
the theory [231] do not hold.

✠At standard atmospheric conditions temperature 15 ○C and pressure of 1013.25 hPa.
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Conventional breakdown might be determined experimentally from laboratory experiments
[762, §7.2.5], though it inevitably presents a certain sensitivity range to the electrode shape
and gap length. Formally, it can be defined as the field in which the net ionisation by electron
impact is exactly zero. Some electrons ionise molecules whereas other attach to oxygen, keeping
the overall balance of free electrons constant.

A more precise value, for each of the thresholds defined, can be estimated by simulations.
The runaway threshold is the minimal field at which a high energy electron can sustain itself. At
conventional breakdown, the swarm’s growth annihilates because ionisation compensates attach-
ment. Interestingly, the conventional breakdown intersects the friction force at about 16 eV, close
to the ionisation threshold of nitrogen molecules (15.6 eV). The critical runaway threshold is per-
haps the hardest to determine due to the stochastic nature of electron acceleration in electrified
gases. In principle, there is always a non-zero probability that after a finite (although indefinitely
long) period of time, an electron might flip into the runaway regime. Thus, one must constrain
better the concept of thermal runaway: impose time limits and probability thresholds. This
issue will be explored later in chapter 5.3. In any case, the influence of elastic scattering raises
the actual value of the thresholds due to additional energy lost by dispersion of electrons [169,
811]. Furthermore, the thresholds conjectured from simulations using different cross-sections
databases also present some differences that could be used to estimate the uncertainty of these
thresholds.

Without further delay, we describe below the four basic mechanisms capable of supplying
fast electrons as a requisite for intense bursts of bremsstrahlung radiation.

1.4.1 Thermal Runaway

When no source of energetic electrons is at disposal, thermal runaway [368, 371] is the only
possibility to obtain so-called “seed” electrons to start a runaway multiplication. One could define
that a seed corresponds to an electron at an energy beyond the runaway threshold determined
by the “ambient” electric field. We could attempt to categorise studies upholding this thermal
seeding mechanism in the four following strategies.

Near-critical electric fields are sought at leader heads [163, 677], streamer tips [161, 170,
171, 587], inter-streamer gaps [44, 422, 531, 579], ionisation fronts [39, 192], and even supershort
avalanches [913]. Their existence in a small region for a sufficient period of time would permit
to accelerate electrons beyond the runaway threshold.

Stochastic acceleration holds that if the field be high enough [43, table 3], though not
critical, the chances that some electrons can reach the runaway regime are greater [218] if: the
field be long-lasting (≫ns), and/or the available electrons be plentiful (≫ 109).

Pre-conditioning of the surrounding air includes many effects that each make a modest
contribution to facilitate thermal runaway. Since the corona is composed of thousands of stream-
ers repeatedly waning and re-flaring at the leader/electrode tip, it is not unreasonable to suppose
that the air swept by the corona have its conditions altered by: a neutral plasma of free ion and
electron charges [421], a non-equilibrium excitation temperature [852] or even a lower density due
to thermal expansion [530]. The pre-ionised channel would enable an enhancement of the electric
field [36] while the thermally excited and expanded gas would decrease the average friction force.

Inter-electron Coulomb collisions[379] could occur in very localised dense regions of
electrons such as at in ionisation fronts. In this case, electrons would be able to transfer energy
amongst themselves which would affect their spectral (energy) distribution [376] and thus the
probability that an electron become∗ runaway.

∗Readers disturbed by the missing ‘s’ may consult chapter 17.1 about the almost extinct use of subjunctive
in English.
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The compartmentalisation defined above results from an observation of strategies adopted in
studies devoted to thermal runaway. Their importance decreases in order of presentation and the
hypothesis that Coulomb collisions could bring a contribution to runaway generation has been
suggested [579, p.6499&Appendix B] but, to our knowledge, has not been tested yet in Monte
Carlo simulations of discharges in air. Nonetheless, in the light that experimental observations
show a manifold of discharge types capable of producing runaway electrons [244, 520, 826, 828,
913], it is not improbable that the recipe for runaway in each situation lies in a carefully chosen
conjunction of the effects presented.

Presently, thermal runaway is the only viable mechanism explaining X-ray bursts from leader
stepping [164] and hard corona streamer emissions. Furthermore, due to its ubiquitous mani-
festation in discharges, it also qualifies as a promising candidate for TGFs related to leader
activity [161], especially those with the hardest spectra [163]. The other mechanisms of run-
away avalanche presented below require very extended regions (some hundreds of meters) with
an electric field sustained above the runaway threshold in order to yield a significant amount of
runaway electrons.

1.4.2 Runaway Avalanche

The three main sources of free electrons in the atmosphere are radioactive decay of Radon
(Rn222) [660], cosmic background comprising both solar and extrasolar ionisation [952], and
so-called extensive air showers [795] of secondary electrons and other particles provoked by sin-
gular extremely energetic > 1015 eV cosmic rays. The supply of fast ∼ MeV electrons depends
strongly on the altitude and can present accentuated variations due cosmic weather conditions
and geographical location. At ground level, radon decay [290] releases 5–7 (0.1 at 10 km) fast
0.1–1 MeV electrons/(m3.s) [660, figure 3]. Cosmic background [952, figure 1] produces in total
∼ 2 × 106 ( 40 × 106 at 10 km) electrons/(m3.s) of which only a tiny fraction (∼ 3 in a million) is
in the MeV range or above. In contrast, the electron densities induced by air showers are highly
inhomogeneous spatially and temporally [795], and can peak to 109 /m3 in the shower core at
thundercloud altitudes. Notwithstanding, only a minor fraction of those electrons exceed the
runaway threshold set by the field inside a thundercloud.

The first suggestion that fast electrons∗ might accelerate in high electric fields of thunder-
clouds and produce X-ray radiation and secondary electrons, was made by Wilson [986]. Deeper
implications arise if some of the secondaries have energies beyond the runaway threshold. In
this case, the electrons produced by impact ionisation are divided into two sub-populations:
runaways that feed the avalanche and bulk that quickly thermalise as they cause more ionisa-
tion [646, figure 5]. The separation line between both populations corresponds to the runaway
threshold which lies close to 1MeV and decreases for higher fields according to the braking force
(fig. 1.10). The currents carried by the bulk thermal charges emit radio-waves and lead to a
gradual screening of the field [364]. This form of discharge is known as runaway breakdown (RB)
[365]. Its peculiarity is distinguished by the dependence of the thermal bulk on the runaway
few. The field does not enable non-runaway electrons to multiply, they can only be seeded by
runaways. In the long-term, the space charge of the bulk attenuates the ambient field below
the runaway threshold and the avalanche subsides on its own. Long-lasting gamma-ray glows
in thunderclouds [369] could be attributed to an equilibrium between runaway breakdown and
cloud electrification [236, §10].

∗They were usually referred to as β particles but without specific relation to a radioactive decay.
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1.4.3 Relativistic Runaway Avalanche

In principle, there is no unanimous distinction between Runaway Breakdown (RB) and its re-
baptised name of Relativistic Runaway Electron Avalanche (RREA) discussed in the present
subsection. The former (RB), was proposed by Gurevich et al. [365] as a responsible mechanism
for inducing a lightning discharge and thus a breakdown of the electric field [369, 370]. The
model of RB was mostly supported by kinetic theory based on the Boltzmann equation [789]
(see sec. 2.3.2).

Later, Monte Carlo (MC) simulations of the relativistic runaway avalanche process were
implemented [42], in which the individual erratic motions of runaway electrons could be tracked.
Such a stochastic description of RREA brought a considerable improvement over kinetic models
[41, 576] and insight into the relationship between runaways and bulk electrons [247]. We discuss
those characteristics below.

The spectral distribution of runaway electron energies in an avalanche is almost independent
of the electric field [250, figures 3-4] and fits well with an exponential distribution of characteristic
(and average) energy at 7.3 MeV [786, table 9]. It can be interpreted as the average energy gained
by a runaway per avalanche length traversed. The shape of the spectrum changes abruptly below
the runaway energy threshold where it roughly follows a power-law [247, figure 3] due to the
gradual energy degradation of sub-runaway electrons from the dynamic friction force.

At any given time, the total length of an avalanche is the distance ∆l from its source (starting
point) to the front line∗ (leading edge) beyond which virtually no ionisation has yet occurred.
Its measure in terms of the characteristic e-folding (Euler’s exponential constant) length λ yields
the amplification factor used to approximate the number of electrons exp(∆l/λ) at the front.
Together with the temporal exponential growth scale τ , the avalanche propagation speed vav =
λ/τ is determined to be loosely constant at 90% of the speed of light [184, figure 1-bottom].
Indeed, the avalanche length λ and characteristic time τ are found to decrease correspondingly
at higher fields and air densities [40].

To this day, there is an ongoing discussion about the relationship of relativistic avalanches
with lightning activity. There are two conflicting views whether the avalanche may lead to
breakdown of the electric field or not. We present two opposite scenarios.

1. Inception of Breakdown : As the avalanche extends, more electrons accumulate at its
front; to the point where space charge effects start to dominate over the ambient electric
field. Beyond a certain electron density threshold, charge displacement by conductivity
dominates over the attachment to oxygen and the electrons can form a cold patch of
plasma. As a response to the ambient electric field, the patch polarises and raises the field
at its boundary [369]. When it reaches the breakdown threshold, the patch may foster
the formation of a streamer [864]. This mechanism would suggest runaway avalanches
as precursors to lightning breakdown [646]. Whether the electron bulk produced by the
relativistic avalanches may introduce a significant breakdown of conductivity and spur the
formation of a streamer in a region of locally enhanced electric field, poses an intriguing
question [35, 795].

2. No Breakdown : Monte Carlo simulations do not endorse the assumption that the dis-
placement of the bulk space charges produced, lead to a breakdown (significant screening)
of the electric field. To the contrary of previous claims [364], the bulk electrons produced
in RREA, seeded and sustained by cosmic-ray background or even an extensive air shower,
would not be sufficient for causing a breakdown of the high-field region [247, §52-56]. The

∗Actually a surface over a solid angle in 3D
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terminology of “runaway breakdown” was thus argued as being inappropriate [245, 247].
Furthermore, the lateral spreading of an avalanche [237, §4] would not allow the densities
at the leading edge to reach the critical value for streamer formation [247, §51]. Obser-
vations of TGFs actually point toward an opposite relationship, where gamma-ray bursts
from avalanches emerge after lightning breakdown has been initiated [610, 829].

In search of conciliation, due to the polyvalence implied by the word “breakdown” (see pre-
vious section 1.1.2), we could conceptually distinguish relativistic runaway electron avalanches
(RREA) from “ordinary” runaway avalanches (RA) in the previous subsection (1.4.2) when space
charge densities at the leading edge of the avalanche are high enough to cause a significant change
in conductivity (breakdown of conductivity).

After all, depending on the spatial extension and intensity of the electric field, one could
perhaps differentiate micro runaway avalanches that employ thunderclouds as an X-ray converter
and amplifier of fast electrons seeded by cosmic rays or radioactive decay; and more intense RREA
that could potentially provide enough free charges for the formation of a streamer if the electric
field were enhanced enough.

Independently of lightning initiation, the original idea of runaway breakdown was that the
space charges produced would be sufficient to cause screening and therefore breakdown of the
electric field. Monte Carlo simulations showed that the amplification through avalanching is not
intense enough to reach this situation [245]. This mechanism requires a further ingredient which
is disclosed in the next section.

1.4.4 Relativistic Runaway Avalanche with feedback

The major problem of an electron avalanche is that it always flows opposite to the electric field
but cannot flow backward where the potential (for avalanching) is highest. This means that it
can only build up as far as the high-field regions extend. This limitation changes radically with
the introduction of a feedback mechanism [236] capable of injecting seeds back at the starting
point of the high-field region.

Such seeding may be executed by gamma rays or positrons [363] that can retrograde along
the electric field to the avalanche top and produce energetic ionisation. An essential requirement
for feedback is that the high electric field region have a wide lateral extent to be able to capture
the gamma-ray or positron as it scatters whilst retrograding [236].

The role of feedback may be understood as to enhance the multiplication rate of a RREA
within the same avalanche length. Thus, feedback allows RREA to produce stronger fluxes of
runaways over a given region of high electric fields. In a certain sense, the effect of feedback is to
“fold” an extended avalanche over a smaller region. To this picture, one must however consider
also that feedback widens the lateral spreading of the avalanche and produces a significant amount
of space charges that screen the electric field.

With this supplementary feedback, the idea of runaway avalanches fostering conventional
breakdown can be restated. The accumulation of space charges at the bottom of an avalanche
does not lead to formation of a plasma seed any more. Instead, the electric field may be enhanced
beyond the conventional breakdown and conduce to a large scale discharge [237]. This scenario
operating over milli-seconds [237, §14] could correspond to the build-up of gamma-ray glows
[947] before lightning occurs [237, §18], but not to TGFs.

The TGF time scale of a few tens of micro-seconds is best reproduced when combining the
RREA with feedback in the presence of leader channels [246]. The high potential difference
between the charge layers is gradually spatially compacted as the leader progresses. When
the electric field breaches runaway threshold, a RREA with feedback triggers and instigates a
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discharge lowering the field ahead of the leader. The number of electron runaways produced thus
can reach ∼ 1017 [238, §V.A], about the right amount to reproduce the fluence of a bright TGF
[245]. This process can repeat several times and produce multipulsed TGF if the leader traverses
a long distance within the cloud [246, §6.2 figure 9].

Because the feedback empowers runaway avalanches to accomplish breakdown of the electric
field, it was proposed [238] to be named more compactly “relativistic breakdown”.

Altogether

The four mechanisms described above (thermal, avalanche, relativistic runaway, feedback avalanche)
reflect but a conceptual compartmentalisation of discharge mechanisms involving fast electrons.
They emerge from the understandable necessity to grasp the physical phenomena at play. With
time, much progress was put forth in recent years to incorporate each of those mechanisms into
a coherent orchestration.

Nevertheless, still today, the causality of runaway to discharges is blurry. In small sparks,
runaway definitely depends on the field enhancement from streamer tips. Additionally, it is
thought that they aid streamer propagation [828, §VI]. In thunderclouds, it seems that runaway
processes emerge spontaneously without assistance from a lightning discharge, yet their posterior
occurrence to leader formation is well established observationally based on correlation with TGFs
which are thought to be generated by RREA with feedback.

Comprehensively, it is not excluded that TGF and X-ray bursts reflect two extreme situations
[860] of the relationship between the leader potential and the ambient electric field [164]. Lower
and limited fields would only permit X-rays, leaving full-fledged TGFs for higher and vaster fields.
Nonetheless, the war between theories of runaway is not over: does avalanching remain restricted
to the vicinity of the streamer zone [162, 164] or does it flush ahead in the vast high field regions of
the thundercloud [246, 248]? In other words, would X-rays be the signal related to seed runaways,
whereas TGF would correspond to those seeds amplified with considerable multiplication with
(brighter) or without (fainter) feedback? Furthermore, the contrast between a multi-pulsed
TGF on a “silent” background versus a minute-long sustained high-energy radiation of gamma-
ray, electrons, positrons and neutrons [174, 948, 951] poses a challenge. Why would runaway
maintain a steady relation to its nurturing electric field in glows without provoking a brutal
discharge, meanwhile it stammers as intense interrupted bursts when correlated with lightning?
Finally, the possibility that TGFs present a harder high-energy tail than yielded by the 7.3MeV
exponential spectra of RREA, remains an open question [629]. Acceleration of electrons coupled
with the leader advancement constitutes a tempting place for investigation.

1.5 Motivation

One can realise how relatively recent the discovery of gamma rays produced in thunderclouds
is, by comparing the state of the art of discharge typologies and their technological applications
against the hazy relationships between runaway mechanisms and discharges. Moreover, one
can acknowledge the poor understanding we have of gamma ray flashes when we are unable to
agree how to relay a beautiful story of their emergence. On an even greater scope, studying the
connection between high-energy radiations and discharges is a great piece to the puzzle of the
phenomenon of Lightning [367].

By now, we hope that the motivation of elucidating the fundamental mechanisms behind
high-energy radiation from discharges is self-justified. If not, we ought mention that radiation
doses to aircraft passengers near thunderstorms can be a topic to worry about [730].
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Throughout this chapter we showed how high-energy processes in lightning are enrooted
in electron runaway bremsstrahlung radiation. Similarly, breakdown initiation stems from free
thermal electrons. Thus, we have two families of electron avalanching mechanisms, one at high
energies (runaway) and another at low energies (thermal) which play a fundamental role in
electric discharges in nature. Yet, the relationship between both is poorly understood.

In order to draw a coherent picture, we take the challenge to model the stochastic behaviour
of electrons in atmospheric gases regardless of their energy. Therefore, electrons will be the main
protagonists of this thesis.

We would like to point out that the branch of runaway electrons in electrified gases has been
studied extensively :

• Thermal Runaway (TR) : for leaders [162, 368, 677], for streamers [44, 161, 170, 171, 587]
for ionisation fronts [39, 192]

• Runaway Avalanche (RA) : [365, 369, 370, 787]

• Relativistic Runaway Electron Avalanche (RREA) : [42, 184, 576, 786]

• Relativistic Runaway Avalanche with feedback (RREA+) : [46, 236, 238, 246]

Because relativistic runaway avalanches have a longer history than thermal runaway, their
parameters and characteristics have been studied in detail at different altitudes and configurations
of the electric and magnetic fields [40, 184, 236, 576]. So far, the support for thermal runaway
does not tally to the advanced models of RREA.

Therefore, it might seem hard at first to find new paths for further research, except by
building in complexity over previous models like those of Köhn [529] and Li [585]. Such was not
the trajectory opted in this thesis, however. Instead, it was deemed reasonable to undertake an
intensive approach to thermal runaway modelling.

A Monte Carlo approach represents a very efficient and appropriate methodology capable
of tackling the stochastic nature of thermal runaway. Previous models [368, 677] had almost
taken for granted that the pathway from thermal to relativistic energies was well paved with
electric fields over the critical threshold. Nevertheless, as we shall see, there are many holes
in a complete characterisation of electron processes in gases at intermediate energies situated
between the thermal bulk and the runaway regime.

Very recently (toward the end of this thesis), some studies [43, 86, 482] showed more diligence
toward correctly simulating the stochastic process of electrons in electrified gases. This bespeaks
how timely a renewed study of runaway by Monte Carlo method is today.

Together with these recent works, this thesis will aim to improve our understanding and
capabilities of reproducing the thermal electron runaway process based on the stochastic method
of Monte Carlo particle simulations.

As an important side note, we must emphasise that electron (or even ion) runaway is of high
concern in fusion plasmas such as in tokamaks [104]. As a result, this issue is studied intensively
by the fusion plasma community. Unfortunately, results taken from that field of research are
inapplicable in the present situation of electron runaway in discharges within atmospheric gases.
The reason for this is that fully ionised plasmas in fusion reactors are fundamentally different
from weakly ionised plasmas in discharges in air because of the absence (or insignificant presence)
of Coulombic electron-ion collisions in the latter case. Actually, even in weakly ionised plasmas,
it is not certain that the streamer–leader hierarchy, stepping and runaway mechanisms observed
in nitrogen-oxygen mixture discharges are concepts applicable to discharges in pure monatomic
gases where the mechanisms of ionisation are different and no attachment occurs.
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This makes the study of electron runaway in natural discharges a highly desirable field of
investigation. It might help understanding furthermore the emergence of runaway mechanisms
in the intermediate range of partially ionised plasmas.

1.5.1 Questions and Goals

Asking simple questions may help us set off in our research journey. As was hinted in the
introduction, it seems that thermal runaway occurs under specific conditions: elevated electric
fields, sustained long enough, extending far enough and supplied with many free electrons.

Then, questions spring up spontaneously: what is quantitatively “elevated”, “long” (time),
“far” (space) and “many”? Or together: after how long, how many initially thermal electrons will
eventually become runaways and what distance will they have traversed if the electric field is
thus high?

The Monte Carlo study of runaway electrons in discharges opened wide an impressive agora
for discussions about the role they play in lightning, streamer propagation, leader stepping, TGF,
X-ray bursts, etc. The phenomenal trait of runaway production and avalanching is its singular
dependence upon a particle. If the conditions are right, only one electron (or any adequately
energetic ionising particle) might suffice to “trigger the spark” (or formally, provoke an avalanche
potentially leading to breakdown).

For a century, a “radius ex machina”∗ had to be summoned each time to start the show.
This cosmic romanticism, however, could not survive to the foreboding neutron beams allegedly
observed to gush out in laboratory sparks. The purpose of this thesis is to elaborate a fertile
model to seek out the electron in situ through thermal runaway.

1.5.2 Structure of part I

In the next chapter (2) we will lay out the fundamentals of electron motion in electric fields
frequently interrupted by collisions with molecules. From tracking individual electrons we will
gradually move to a more macroscopic description of swarms. Mainly focused on Monte Carlo
representations, we will introduce a methodology for noise reduction in the electron energy
spectrum that will be vital for an accurate tracking of thermal runaway. We will also give a few
notions in kinetic and fluid descriptions, often used in swarm dynamics.

After laying down the theory, the details of numerical implementation will be covered in
chapter 3, structured according to our code’s architecture. Considered an essential part of
scientific success, a whole chapter (4) will be devoted to analyse contagious mistakes occurring
in the field, as well as avowing those perpetrated throughout the thesis.

After this safety check, results of our simulations will fill chapter 5 which will be divided
into analysing the bulk properties of swarms in electrified gases (sec. 5.2), then the statistics of
runaway (or high-energy) electrons (sec. 5.3) and finally explore particular situations which may
related to thermal runaway (sec. 5.4). The results will be then overviewed in the last chapter 6,
which will also include the conclusions and perspectives for future work of this first part.

∗The latin expression Deus ex machina dates back to theatre plays when the protagonist encountered him or
herself in such utter hopelessness, that the “hand of God” was invoked to intervene to save the tragedy. The term
ex machina means ‘coming out a crane’ (the machine hoisting decor elements on the stage). In this analogy, we
satirise the role of cosmic rays (‘radius’ in latin) as if they were sent by the hand of God from the universe-machine
so that we could have a terrestrial gamma ray flash on Earth. The point here in this thesis is that we do not
necessarily need any cosmic intervention to have high-energy radiation from thunderstorms. With the mechanism
of thermal runaway, ‘indigenous’ electrons (in situ) may be converted to high-energy ones through acceleration
in the intense electric fields from discharges on Earth.



Chapter 2

Physical Models

In the previous introductory chapter, we described the meteorological context in which lightning
strikes. Among the many mysteries related to lightning, we brought to the reader’s attention
the mechanism whereby X-rays and gamma rays are emitted in correlation to leader activity
as bremsstrahlung radiation from energetic electrons. Though the electrons may be initially
seeded by cosmic rays, we would like to explore the possibility of thermal runaway: that is the
acceleration of low energy electrons up to relativistic energies in the MeV region from intense
electric fields due to local enhancements in streamer channels.

This chapter presents the physical background used to model thermal electron runaway
in a uniform gas under an electric field. We adopt a microscopic approach over short
timescales, of a few nanoseconds at most, and study the prompt response of electrons to
the local conditions of the environment.

Of major importance, will be to understand how the microscopic scales of electrons, as studied
presently, fit into the macroscopic world of discharges as presented in the previous chapter. The
structure of this chapter consists of three sections:

2.1 : a brief characterisation of the model of the gaseous medium

2.2 : dynamics of an individual electron in an electro-magnetic field [2.2.1], when colliding
with a gas molecule [2.2.2] and its average motion in gases [2.2.3].

2.3 : the behaviour of electrons when considered as a swarm (ensemble) from a discrete [2.3.1],
kinetic [2.3.2] and fluid [2.3.3] perspective.

Before plunging into the equations, the reader might wish to get familiar with our nomenclature
and notation convention on page xvi. In particular, unit vectors are noted with a “hat” : ∥v̂∥ = 1.

2.1 Gases

From the long introduction presented in the former chapter, we remember that the conditions of
the gas medium vary significantly at different stages of a discharge. Initially at ambient pressure
and temperature, the air in a leader channel heats beyond 5000K which entails an expansion
shockwave from the sudden increase in pressure, as well as a change in composition from chemical
reactions.

39



40 CHAPTER 2. PHYSICAL MODELS

It is therefore interesting to consider how may electron thermal runaway be affected under
different conditions of the gas in a discharge channel. Some studies already explored the effects
of density fluctuations from heating [530] and preionisation of air [38, 39, tab. 1, §3] from former
streamers. Presently, we wish to understand how does the temperature and chemical composition
of the gas at a given electric field affect the behaviour of an electron swarm.

As we will see later, the electric fields required required to accelerate electrons in gases to
relativistic energies are very high (> 10MV/m). Since such fields may not sustain themselves
for long periods of time, we may reasonably suppose that thermal runaway in discharges is a
fast (shorter than a few tens of microseconds) transient phenomenon that unfolds only when
certain conditions are met. Therefore, as a fundamental working hypothesis, we will assume that
during a thermal runaway event, the state of the surrounding gas is not changed by the electron
discharge. This does not prevent the gas to have spatial inhomogeneities such as a temperature
gradient or variations in composition. However, those inhomogeneities are not expected to change
with time throughout the acceleration process leading to runaway. As a consequence, we start
describing the stationary model of the ambient gas that will form the basis of our studies.

2.1.1 Macroscopic state

By default, the simulation space is supposed to be uniformly filled by the gas at a number
density ngas and temperature Tgas obeying the law of perfect gases giving the pressure p through
Boltzmann’s constant kB:

p = ngaskBTgas (2.1)

Ambient conditions of air at ground are determined by the U. S. Standard Atmosphere [950]:

Air composition:

N2 : 78.08 %
O2 : 20.95 %
Ar : 0.97 %

Thermodynamic state:
p0 ≡ 1atm = 101325Pa , (2.2)
T0 ≡ 15℃ = 288.15K , (2.3)

n0 ≅ 2.547 × 10
25m−3 . (2.4)

The air density profile nair along the altitude h decays exponentially on a scale of about 7 km:

nair(h) = n0e
−h/7km . (2.5)

The chemical composition changes drastically at elevated temperatures such as those encoun-
tered in hot ionised channels. Assuming thermal equilibrium and a constant particle density, we
reproduce in table 2.1 the ratios of the most frequent species created from nitrogen and oxygen.
The data were reported in Hilsenrath and Klein’s tables [402]; the first two rows at 1500&2000K
come from Lemmon et al. [580, table 11].

It is absolutely not clear how to characterise the state of a very quickly (in tens of microsec-
onds) heated strip of gas in an electric discharge. We took the liberty to assume that dilution
from the thermal expansion is somewhat compensated by the duplication of gas particles through
dissociation so that the gas particle density ngas remains constant during the heating process.
This guess comes from the fact that the timescales of thermal expansion (≳ µs) [776, fig.2] are
somewhat similar to the time during which the air is heated in discharges ≲ µs. This assumption
is a prerequisite to the characterisation of the chemical composition compiled in table 2.1.

Nevertheless, assuming a constant particle density might not be a good approximation [530]
and could require adjustment when modelling gas expansion in (space-)leader cores [532]. The
streamer-to-leader transition study of da Silva and Pasko [204, figure 10] predicts an abrupt
drop of the gas density by roughly one order of magnitude coincident with a steep increase in
the temperature in about 0.2 µs from ambient initial conditions in a streamer traversed by a
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Table 2.1: Chemical species in hot air extracted from Hilsenrath and Klein [402] in function
of temperature T at constant particle (atom or molecule) density n0 ≈ 2.687m

−3 (Loschmidt’s
number). The first two rows at 1500&2000K come from Lemmon et al. [580, table 11]. The
ratios do not sum exactly to 1 due to residual species (mostly CO, CO2 and NO2) and round-off
errors. A 0.000 value implies that the unshown next digit would be between 1 and 5.

T (K) N2 O2 Ar NO N O N+ O+

1500 0.780 0.209 0.009 0.002
2000 0.777 0.206 0.009 0.008
2500 0.768 0.196 0.009 0.024 0.002
3000 0.752 0.178 0.009 0.046 0.014
3500 0.727 0.145 0.009 0.067 0.051
4000 0.695 0.098 0.009 0.079 0.000 0.117
4500 0.666 0.055 0.008 0.078 0.002 0.191
5000 0.646 0.026 0.008 0.068 0.006 0.246
5500 0.631 0.012 0.008 0.055 0.016 0.278
6000 0.612 0.006 0.008 0.044 0.036 0.294
6500 0.582 0.003 0.008 0.035 0.072 0.299
7000 0.538 0.002 0.007 0.030 0.126 0.298
7500 0.477 0.001 0.007 0.023 0.165 0.291
8000 0.404 0.001 0.007 0.018 0.288 0.280
8500 0.327 0.000 0.006 0.013 0.384 0.267 0.000 0.000
9000 0.251 0.000 0.006 0.011 0.475 0.260 0.000 0.000
9500 0.184 0.000 0.006 0.008 0.556 0.241 0.001 0.000
10000 0.130 0.000 0.005 0.006 0.620 0.231 0.002 0.000
10500 0.090 0.000 0.005 0.005 0.667 0.223 0.004 0.001
11000 0.061 0.005 0.004 0.698 0.218 0.005 0.001
11500 0.041 0.005 0.003 0.717 0.213 0.008 0.001
12000 0.028 0.005 0.002 0.727 0.210 0.012 0.002
12500 0.019 0.005 0.002 0.729 0.206 0.016 0.003
13000 0.013 0.005 0.001 0.726 0.203 0.021 0.003
13500 0.010 0.005 0.001 0.719 0.200 0.028 0.004
14000 0.007 0.004 0.001 0.708 0.197 0.035 0.006
14500 0.005 0.004 0.001 0.694 0.193 0.044 0.007
15000 0.004 0.004 0.000 0.677 0.189 0.054 0.009

constant electric current at 1A. This is accompanied by a screening of the electric field when
the streamer becomes part of the leader core.

Since thermal runaway is most prone to occur just before the electric field drops, the gas
density may be assumed not to have changed significantly while the gas heating already breaches
a few thousand Kelvins. Thermal runaway might dwell at the ideal crossing point where the gas
is hot and slightly diluted, while the electric field remains still unscreened. If one is, however,
interested in studying thermal runaway in a preheated channel, then the air composition needs
to be checked in equilibrium at a density nhot of a factor of 10 lower than the ambient n0.

In any case, considering a change in chemical composition at all, represents a first step to
differentiate electron acceleration in hot air from ambient conditions.



42 CHAPTER 2. PHYSICAL MODELS

2.1.2 Microscopic state

At the molecular level, the distribution of energies in equilibrium conditions follows the Maxwell-
Boltzmann statistics reviewed in appendix B. At a given gas temperature Tgas, the probability
fε(εk)dεk that a molecule or atom finds itself at a kinetic energy between εk and εk + dεk is
given by:

fε(εk) =
2/
√
π

(kBTgas)3/2
√
εke
−

εk
kBTgas . (2.6)

This can also be expressed in terms of the speed V of a molecule of mass M :

fv(V ) = (
M

2πkBTgas
)

3/2

4πV 2e
−
MV 2

2kBTgas . (2.7)

fv and fε are known as the Maxwell distributions of speeds and kinetic energies.
Diatomic molecules such as molecular nitrogen and oxygen have also rotational and vibra-

tional degrees of freedom. As opposed to kinetic distributions which are continuous, the energy
levels εi of excited states in the framework of quantum mechanics follow discrete distributions
fexc described by the Boltzmann statistics succinctly recalled in appendix B.2.

fexc(εi) =
gexc(εi)e

−εi/kBTexc

∑∞i=0 gexc(εi)e
−εi/kBTexc

. (2.8)

The subscript ‘exc’ stands for the mode of excitation considered (‘rot’ or ‘vib’) and gexc is
the degeneracy of the discrete level indexed by i. Energy distributions such as fε or frot and
fvib are commonly referred to as spectra, in relation to the electromagnetic radiation emitted
by such distributions. The temperature of a spectrum determines the brightness of the emitted
radiation.

Energy transfers between molecules occur during collisions. From a general perspective,
the average energy transferred through a collision from vibrational, rotational and translational
(kinetic) degrees of freedom is not equal [150, Chapters 1-3]. The transfer of energy between
two vibrational modes is typically larger than between a vibrational and a rotational mode
or a translational energy [150, §3.1]. Therefore, the time (or number of collisions) needed to
thermalise (converge to the Maxwell-Boltzmann distribution) an isolated system of vibrational
excitations is shorter than the full thermalisation of a vibrational system with a rotational or
translational system which is about ∼ms for diatomic molecules. Since the timescale of electron
thermal runaway may be much shorter (depending on the electric field) than the thermalisation
time of the gas, it is not inconceivable that, within this short time interval, different temperatures
Texc be associated to populations of vibrational Tvib and rotational Trot modes of excitations.

Rotational levels of excitation are indexed by i ≡ J and are most commonly approximated by
the rigid rotator model. Their energies εJ at a temperature Texc ≡ Trot are populated as (2.8)
with [399, §3.3.2-3] :

εJ = Brot(J + 1)J , (2.9)

grot(εJ) = gs[(−)
J](2J + 1) , (2.10)

where (−)J determines the parity (− odd ; + even) of the level J . Rotational constants Brot

for typical diatomic molecules are given in table 2.2. The degree of degeneracy grot comes from
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Table 2.2: Diatomic molecular constants for interatomic separation R rotational Brot, vibrational
h̵ωvib excitations, electronic excitation threshold Eth, dissociation Ediss and ionisation Eion energies
[499]. The nuclear spin degeneracy (gs) for rotational states is shown on the bottom row.

N2 O2 H2 NO
R (nm) 0.11 0.12 0.074 0.115

Brot (meV) 0.2477 0.1783 7.544 0.2073
h̵ωvib (eV) 0.2924 0.1959 0.5457 0.2361
Eth (eV) 6.17 0.977 6.9 4.747
Ediss (eV) 9.76 5.116 4.48 6.534
Eion (eV) 15.58 12.07 15.43 9.26

gs(J even : odd) 6 : 3 0 : 1 1 : 3 1 : 1

quantum theory of angular momenta and expresses the 2J + 1 different projections that a linear
rotator can take on a given axis. More information about rotational excitations is to be found
in chapter 11.2.

When applied to concrete molecules, additional considerations must be taken into account
depending on the molecular wave-function parity. Skipping the details of such discussion, the
degeneracy for odd and even J is given for each diatomic molecule on table 2.2 and also found
in [305, read § between eq.8-9 on p. 1624]. For all heteronuclear molecules gs(J) ≡ 1 because no
indistinguishability criterion is imposed between the nuclei.

Vibrational levels of excitation are indexed by i ≡ v and for low v ⪅ 10, are approximated by
the harmonic oscillator model. Their energies εv at a temperature of Texc ≡ Tvib are populated
as (2.8) with [399, §3.3.5] :

εv = h̵ωvib(v + 1/2) , (2.11)
gvib(εv) = 1 . (2.12)

For diatomic molecules, vibrational modes are non-degenerate; their degeneracy is inde-
pendent of v in combined rotational+vibrational (=“rovibrational”) spectra. The vibrational
frequency ωvib is obtained from the harmonic oscillator model.

The geometric series in the Boltzmann distribution (2.8) for the harmonic oscillator model
(2.11) can be summed to give a straightforward expression :

fvib(εv) ≊ exp(−vh̵ωvib/kBTvib)(1 − exp(−h̵ωvib/kBTvib)) . (2.13)

Electronic levels of excitation could in principle also be attributed a Boltzmann distribution at
a certain temperature. Nevertheless, electronic excitation thresholds Eth often lie considerably
higher than rovibrational levels as can be seen on table 2.2. Only from very high temperatures
≳ 30000 K, would those states be thermally populated if the molecules were not all dissociated
long before then as seen in the previous section (table 2.1). The situation is different for atoms,
for which vibration, rotation and dissociation do not exist. There, some states may be metastable
with a long lifetime (e.g. close to a minute for Argon [283, §1]) and therefore, the gas can retain
memory of having incurred intense discharges in the recent past. In atmospheres dominated by
atoms (He, Ar, etc.), taking into account subspecies of excited metastable states could make
sense even beyond the notion of thermal equilibrium.
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An overview of the more involved nomenclature of electronically excited states is available in
the appendix C at the end of the second part.

Super-excited states corresponds to any – electronic, vibrational (rarely rotational) – modes of
excitation whose energies lie above the dissociation or ionisation threshold of the molecule. They
are important to take into account because they might decay into a dissociation or ionisation
event (or both!) and thereby contribute to those channels when analysing electron-molecule
collisions [834, p.284]. Their decay time affects the chemical evolution of the heated gas in
non-equilibrium.

2.1.3 Thermal Equilibrium

Of fundamental importance to the Boltzmann statistics (2.8) is the assumption of thermal equi-
librium. As a general thermodynamic rule, all energy exchange processes, considered as a whole,
contribute toward bringing the medium into equilibrium. The pertinent question is to know how
long does it take to bring a disturbed population back into equilibrium, and whether it takes
longer than the perturbation to emerge.

The time necessary for a pack of molecules in disequilibrium to reach the temperature of an
ambient gas is know as the relaxation time τ , widely covered in Capitelli et al. [150]. Translational
and rotational relaxation time from to inter-molecule collisions in air is within the sub-nanosecond
to a few nanoseconds range at ambient temperatures [155] and atmospheric pressure. It is thus
safe to assume that those populations are in thermal equilibrium.

However, vibrational and some electronic states may take several tens of microseconds to
relax in atmospheric conditions [76, 296], so that equilibrium might be a more questionable issue
depending on the circumstances.

One can consider that within a certain time-lapse in the first few micro-seconds of a dis-
charge [203, fig. 10], vibrational excitations form an internal energy reservoir at a temperature
Tvib ≠ Tgas, separate from translational and rotational excitations. Beyond non-stationary as-
pects, such differences can also arise as spatial inhomogeneities [57, fig. 4].

At the microscopic level, not all collisions are equally effective at transferring energy between
various channels. While collisions between an atom and a molecule can only exchange vibrational
for translational energy (V-T process), molecules between themselves can also exchange a vibra-
tional quantum (V-V process). Furthermore, collisions with highly excited vibrating molecules
can induce chemical reactions.

Thus, Boltzmann statistics, which are based on weak interaction between particles, can also
inadequately describe non-equilibrium vibrational distribution functions which are subject to
selective efficient energy exchange processes [609, fig. 2&5].

Of concrete interest, some chemical processes in the atmosphere can create durable departure
from the Boltzmann distribution. For example, the stratosphere can typically withhold vibra-
tionally excited oxygen populations as high as v = 20 due to photolysis of ozone [738, fig. 4].
Moreover, though fundamentally different than high-pressure discharges, radio-frequency modu-
lated and continuous discharges in low-pressure plasma simulations [485, figure 2&5] show that
non-Maxwellian vibrational temperatures can surpass 10000K while the gas ambient tempera-
ture remains fairly low ∼ 500K.

It is thus not inconceivable to have locally disturbed oxygen vibrational distributions in the
early stages of an electron avalanche.
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When it comes to conversion of energy from electronically excited molecules, the situation is
even more complex. It depends also on their vibrational sublevel of excitation and the nature of
the inter-molecular interaction. Due to a higher potential energy available in the collision process,
some excited states present higher probabilities in provoking an exchange of electronic energy,
deexcitation or a chemical reaction depending on the collision partner. In general, depopulation
of an excited species through collision is known as quenching and is described in kinetic models
through reaction rates.

State-specific dynamics Rate coefficients kr for electronic deexcitation through collisions
between various molecules can be found in Capitelli et al. [150, Chapter 9.2]. They are expressed
in cm3/s for binary collisions. To obtain the quenching rate Q of a certain species, e.g. N2(B 3Πg)
through collisions with O2(X - ground state):

N2(B) +O2(X)→ N2(X) + 2O

we simply multiply by the density of oxygen nO2 ≃ 0.21n0:

Q(N2(B)) = krnO2 .

This gives the fractional number of deexcited nitrogen molecules per second in air. The
decrease rate 1/Q of excited species is thus exponential and this gives an estimate of the heating
rate of the gas from quenching (for that particular case).

The full description of a gas’ composition involves coupled equations of species densities with
source and sink terms. The evolution of the gas composition (distinguishing also excited species)
depends on the balance between mechanisms which populate and depopulate a particular species
m through reaction rate coefficients kgim and kgmj with another species g:

dnm
dt
=∑

g

ng
⎛

⎝
∑
i

kgimni −∑
j

kgmjnm
⎞

⎠
−Amnm + . . . . (2.14)

The interpretation of this balance equation (2.14) is to consider all possible sources terms
coming from “cascading” deexcitations i→m mediated by collisions with any species g and com-
pare against all sink terms which bring m → j to a lower state. We also include the decay from
spontaneous emission Amnm seen in the next paragraph. Eventually, one could also consider
higher order effects such as three-body collisions∗. The number of terms involved can sometimes
be quite large depending on the richness of the discharge medium. When temperatures rise,
many new species are created and can participate in the chemical bloom.

An example of such evolution is given in Flitti and Pancheshnyi [296, figures 2&3] in N2-O2

with a sustained electric field and in Šimek and Bonaventura [852, figures 4-5, 9–10] for a pulsed
1.3ms train discharge.

The maximal order of deexcitation rate coefficients [150, p.159-160:tables 9.3-4] of N2 and O2

is around ∼ 10−10 cm3/s. Under standard atmospheric conditions, this would give a (minimal)
order for the relaxation time of electronic species of τ = 1/(∑g,j k

g
mjng) ∼ 0.4 ns. In practice, the

heating rate from deexcitation of electronic states has a steady value around 28% shortly after
the onset of the discharge [759]. It then increases sharply after ∼10 µs to over 50% [296, fig. 7].
Nevertheless, a non-negligible part of that energy can also go into vibrational channels of the
diatomic ground states instead of directly heating the gas. Those are thus overestimates [204,
fig. 9].

∗Involving a formation of a ‘dimer’ see p. 432
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Additionally, some metastable excited states (e.g. N2 A 3Σ+u, a 1Πg) can maintain them-
selves for longer periods [852, fig. 4-5 right] due to feeding from higher deexcitations.

Radiative relaxation Relaxation is most of the time systematically assimilated to collisional
processes. Radiative deexcitation plays nonetheless a very important role [150, §9.1], particularly
in atmospheric glows [466, 620]. Excited states m may decay to lower states n by spontaneous
emission given by the Einstein rate coefficient Amnv′v′′ , which also depends on the vibrational levels
v′ and v′′. Some high lying, typically optically allowed Rydberg states in nitrogen, have high
emission rates ≳ 108 s−1 which give lifetimes of a few nanoseconds, much faster than collisional
quenching.

Overall, radiative transfers would also tend to thermalise if the medium could be considered
as a black body. In discharges, this is hardly the case; the plasma channels are usually thin (op-
tically) and radiation either escapes or sows free electrons outside the channel. This mechanism
is of special importance in front of streamers and particularly positive ones.

Chemical Composition Another fundamental aspect to take into account is the air chemical
composition dependence on the temperature. Oxygen molecules beyond ≳ 2000K will start
dissociating through inter-molecular collisions (either with N2 or O2) and become fully dissociated
[52, §2.1.1] around 5000K, whereas nitrogen will persist mainly in molecular [52, §2.3] form up
to 8000K and vanish beyond 12000K. The relaxation time for dissociation of N2 at 10000K
and 20000K at ground density is about 150 and 2 ns [954]; whereas oxygen would dissociate in
∼ 300,30 and 3 ns at 5000,7000 and 9000K respectively [417, figure 1]. We may thus reasonably
expect that the chemical composition of air in a hot ionised channel > 4000K lies close to
the one given by thermal equilibrium conditions, especially since there is additionally a direct
contribution to the dissociation rate from electron-molecule collisions.

In conjunction with temperature effects, quenching rates rise neatly in presence of reactive
species such as O and O3. Their appearance at intermediate temperatures bring a swift change
in the chemical evolution of the streamer during its maturing development stage.

Non-equilibrium All of the present discussion strongly undermines the assumption of ther-
mal equilibrium of excited (vibrational and electronic) species in the description of Boltzmann
statistics. To derive the distribution of states at a certain time during a discharge, a kinetic
model comprising both electron and gas processes would be necessary [203, 609, 852]. Generally
speaking, the channel in the early stage of a leader at temperatures below 5000K is far away from
a local thermal equilibrium condition, but this disequilibrium is gradually smeared as chemical
processes operate at faster rates at higher temperatures [311, §3.5.4].

What can be retained from here, is that the state of the gas in discharges may be very distinct
from the ambient conditions. Also, if one wants to model a time segment over which the gaseous
medium could be considered in a thermodynamically steady state (whether in equilibrium or
not), the duration must be inferior to the microsecond. Up to several tens of nanoseconds, we
may assume that the state of the gas is dominated by electron impact processes and fast radiative
emissions.

Whether within this time-frame the heating caused by an electron avalanche is capable of
provoking meaningful local departures from equilibrium in the gas is an open question to be
discussed along the way in this thesis. The critical quantity in this aspect is the peak reached
by the exponentially-growing electron density.
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2.2 Electron Dynamics

2.2.1 Acceleration in Electric Fields

The motion of an electron of elementary charge −e ≊ −1.602 × 10−19C, in uniform and static
electromagnetic (E,B) vacuum is given by its relativistic momentum p change [446, §12.3]:

dp

dt
= −e(E + v ×B) . (2.15)

The momentum is relativistically bound to the electron mass m ≊ 9.11×10−31kg and velocity
v as: p = mvγ, through the relativistic (Lorentz) factor γ. Together with the kinetic energy ε,
the relativistic linkage [available in 398, §1.2.1] between the quantities’ norms is weaved in the
universal metric set by the speed of light c :

γ = 1 +
ε

mc2
=
√
1 + (p/mc)2 =

1
√
1 − v2/c2

=
ε̊

mc2
, (2.16a)

ε =mc2(γ − 1) = ε̊ −mc2 , (2.16b)

p =mvγ =mc
√
γ2 − 1 =

1

c

√
ε2 + 2mc2ε =

√
(ε̊/c)2 − (mc)2 , (2.16c)

v/c ≡ β =

√

1 −
1

γ2
=

cp

mc2 + ε
=
cp

ε̊
. (2.16d)

The rest mass of the electron mc2 ≊ 511keV outlines the separation between the relativistic
and classical regimes. Added to the kinetic energy, the total energy is written as ε̊ =mc2 + ε.

A scaled chart is given in figure 2.1 to help navigate in electron kinetics. We can see that
even when travelling at one tenth of the speed of light around 2.5 keV, relativistic effects are
moderate. Additionally, we anticipate the categorisation of electrons in electrified gases (p. 218).
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Figure 2.1: Electron kinetics scales. On the upper part we display the qualitative classification
of electrons used in this first part of the thesis, reflected on figure 6.6. On the lower part, we
give the order of magnitude of the propagation speed of various ionisation waves in air.
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The propagation velocities of various plasmic front waves cannot be directly compared with
electrons moving in gases, nonetheless, they give an idea of the energy order of magnitude
required for an electron to travel with the wave.

The fundamental equation for conservation of energy is obtained by projecting (2.15) on the
momentum p and switching to γ with (2.16c).

p ⋅
dp

dt
=
1

2

d(p ⋅ p)

dt
=
(mc)2

2

dγ2

dt
= (mc)2γ

dγ

dt
. (2.17)

Together with the right side of (2.15) and replacing p = mγv, the energy progression rate
reads:

mc2
dγ

dt
= −eE ⋅ v . (2.18)

Taking α as the angle between the electric and magnetic fields (see frames on 2.2&2.3), the
motion of the electron is critically determined by the ratio of the perpendicular electric field to
the magnetic field:

βd =
E ×B

cB2
=
E

cB
sinαβ̂d , (2.19)

which defines a dimensionless drift velocity βd = vd/c with respect to the speed of light.

x

y

zE
B

βd

αvµ

v χ
ϕ

Figure 2.2: Reference frame chosen to
describe the motion of an electron in
a uniform electromagnetic field (E, B)
when B is absent or weak (cB ≪ E).
The electric field E ∥ ẑ and the drift
velocity βd ∥ ŷ (2.19). Thus, the resid-
ual magnetic field perpendicular to E
is oriented along B⊥ ∥ x̂.

If the magnetic field is weak so that βd ≥ 1, the
electron is merely deviated but not trapped. Then,
the motion can be described in spherical coordinates as
represented in figure 2.2. The z-axis is aligned with
the electric field E = E ẑ, the y-axis ŷ ∥ E × B is
perpendicular to both electric and magnetic fields, so
that the x-axis collects the residual magnetic compo-
nent B = B(cosαẑ + sinαx̂). Then, the electron is fully
located with µ = cosχ from the polar angle χ and the
azimuthal angle ϕ in the (x, y) plane. The vectorial
equation (2.15) translates into [40, eq. (5)]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp

dt
= −eEµ , (2.20a)

dµ

dt
= −eE(1 − µ2)/p − eB ⋅ (ẑ × v)/p (2.20b)

= −eE(1 − µ2)/p +
eB

mγ
sinα

√
1 − µ2 sinϕ

dϕ

dt
=

eB

p
√
1 − µ2

((x̂ × v) sinϕ − (ŷ × v) cosϕ)

=
eB

mγ
(cosα − sinα

µ
√
1 − µ2

cosϕ) ; (2.20c)

after having projected along the electron’s direction (2.20a), along the electric field (2.20b) and
at last (2.20c): perpendicularly to both (− sinϕ x̂ + cosϕ ŷ). The differential equation in µ has
two singularity points µ = ±1 when v ∥ ẑ. The first derivative becomes zero but not the second.
This only results from the behaviour of the cosine projection. Those singularities disappear in
the fully angular description of the motion.
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As expected, one can better see that:

• The momentum gained by the electron depends exclusively on its direction µ with respect
to the electric field.

• The magnetic field, when not parallel to the electric field, plays a distracting role, deviating
the electron from its otherwise uniform electric acceleration.
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v
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Figure 2.3: Reference frame in a
uniform electromagnetic field (E, B)
when B is strong (cB > E). The mag-
netic field B ∥ ẑ and the drift veloc-
ity βd ∥ ŷ (2.19). Thus, the resid-
ual electric pulling force on an electron
perpendicular to B is oriented along
−eE⊥ ∥ x̂.

The trajectory of the electron is qualitatively dif-
ferent when βd < 1; it traces cycloids at the (Larmor)
gyration frequency Ω = −eB/m. In this regime, the
most suitable reference frame would adopt cartesian co-
ordinates as represented in figure 2.3 with B ∥ ẑ and
βd ∥ ŷ, which conveniently aligns the perpendicular elec-
tric force −eE⊥ ∥ x̂ for the negatively charged electrons.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvxγ

dt
= eE⊥/m +Ωvy , (2.21a)

dvyγ

dt
= −Ωvx , (2.21b)

dvzγ

dt
= −eE∥ . (2.21c)

The sign of the gyration frequency Ω orientates the
rotation as (counter-)clockwise for (negative) positive
charges in the xy plane. The physical meaning borne
by vd = cβd, is a drift velocity along ŷ, which can be no-
ticed after having replaced vy(t) = ṽy(t)+ vd in (2.21a).
In the non-relativistic case as treated for instance in
Bittencourt [73, §5.1 eq.-5.14], the motion can be an-
alytically solved and comprises a uniform acceleration
−eE ⋅B/B to which a cycloid is superposed.

For relativistic particles, no analytical solution has been given yet for arbitrary field orien-
tations. Nonetheless, some useful relations as given in Parks [736, eq. 2.50] can be obtained
between the velocities, Lorentz factor and the particle displacement ∆r by integrating (2.21a)
and (2.18).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vxγ =
eE⊥
m

∆t +Ω∆y + vx0γ0 , (2.22a)

vyγ = −Ω∆x + vy0γ0 , (2.22b)

vzγ =
−eE∥
m

∆t , (2.22c)

γ =
−eE ⋅∆r

mc2
+ γ0 =

−e

mc2
(E⊥∆x +E∥∆z) + γ0 . (2.22d)

Those four equations can be combined to give a constraint on the trajectory :

(eE⊥∆x + eE∥∆z)
2 − 1 = (

eE⊥
m

∆t +Ω∆y + vx0γ0)
2 + (−Ω∆x + vy0γ0)

2(
−eE∥
m

∆t)2 . (2.23)
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For E ∥ B, the acceleration is uniform and reaches asymptotically the speed of light while the
effective gyration frequency Ω/γ in the horizontal plane decreases. The Larmor radius rc = v⊥γ/Ω
is a constant of motion due to the conservation of the perpendicular momentum [213, eq. 16].

In the other E ⊥ B special case, the cycloid motion breaks down into a slow arc [909, eq. 23]
at βd = 1 or a straight line [909, eq. 21] for βd > 1 given by ∆y =∆x/

√
β2d − 1.

In the general case, the motion can be computed numerically and an analytical determina-
tion of the asymptotic velocity was obtained recently [688]. As the particle accelerates in the
parallel direction, the cycloid motion slows and shrinks gradually. The drift now comprises also
a component along x̂ ∥ −eE⊥ even when βd < 1 [688, §A].

In relation to our interest in runaway electrons, except when E ⊥ B with E < cB, all config-
urations are capable in principle of thermal runaway acceleration. This poses a great challenge
on plasma magnetic confinement [93] in fusion reactors [94]. Thermal runaway in that context
constitutes a threat to the equipment and must be mitigated with an adequate non-uniform
configuration of the magnetic field [92].

For the sake of simplicity, we presented results in uniformly static fields. The trajectory in
non-uniform and variable fields can be obtained by joining together segments on smaller scales
where local homogeneity and stability is assumed. To illustrate the relation between temporal
and energy scales, we simulated how much time would be required to accelerate an electron of
negligible energy up to 1 MeV for different magnetic inclinations as a function of the electric
field. The magnetic field was set to 1mT, corresponding approximately to the field generated
by a current of 1 kA at 5 cm from an infinite straight wire. Such order of magnitude should be
easily produced from currents in electric discharges.

Under low electric fields where vd < c, the acceleration time needed to reach an energy ε is
nothing more than the time for a uniform acceleration of the electric field E∥ along B :

∆t(0→ ε) ≈
1

ceE∥

√
ε2 + 2εmc2 . (2.24)

For static initial conditions, the periodic kinetic energy gain variation due to the cycloid
motion in the xy plane can be derived from the Larmor radius at the cycloid apex when vy = 2vd.
Using the effective gyration frequency one has :

rcΩ/γ = 2vd⇔ rc =
2E⊥mγ

eB2
=
2E sinαmγ

eB2
. (2.25)

This implies a kinetic energy variation of rc eE⊥ = 2mv2dγ. Since at the apex:

γ = 1/
√

1 − (v2d + v
2
z)/c

2 ,

we can infer that as vd approaches c, this variation is non-negligible compared to the gain from
E∥ and increases with sin2 α. The contribution to the acceleration in the xy plane is observed
in figure 2.4 as wobbles that intensify with E⊥ = E sinα.

As predicted, a change of behaviour takes place at E sinα = cB where the motion of the
electron is virtually unaffected by the presence and orientation of the magnetic field. Differences
in time lapses that could span an order of magnitude before, are rapidly erased at higher electric
fields.

For our application of thermal runaway in gases, the effect of magnetic deviation is mitigated
by the frequent electron collisions with molecules. Additionally, the electric field necessary for
thermal runaway must greatly surpass the breakdown threshold at 3 MV/m in standard air,
which at any rate is far beyond the region where typical magnetic fields possess influence.
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Figure 2.4: Time lapses required for an electron to be accelerated up to 1 MeV in uniform and
static electromagnetic fields oriented relatively by an angle α.

Nevertheless, this threshold decreases exponentially with altitude at a characteristic height of
7 km. In the thesis by Lehtinen [577], it is shown that electron runaway beams at high altitudes
above about 35 km start following geomagnetic lines instead of proceeding along the electric field
[576, §4.2]. Runaway avalanching can be impeded above 40 km in the magnetic equator regions
[366, 576] where the geomagnetic field is nearly perpendicular to the vertical electric fields above
thunderclouds. Similarly, if one considers the possibility of thermal runaway at higher altitudes
in relation to sprites for instance, the magnetic field could potentially interfere [366].

In the next section, we will see how the very simplistic trajectory of electrons in uniform
fields in vacuum changes completely in the presence of a filling gas.

2.2.2 Collisions with Gas Molecules

In the presence of a gas, the electron’s flight described above is repeatedly interrupted by collisions
with the constituent molecules. For neutral molecules, the interaction potential is localised in a
few Bohr atomic radii and the spatio-temporal scales of flight and collisions are well separated.
An electron around 1 meV flies at 18 km/s which makes a collision in a potential of nanometric
range last for only 1 nm / 18 km/s ≈ 0.05 ps, a negligible amount compared to the corresponding
200 ps of mean flight time in standard air.

Collisions in a neutral gas of uniform density Ngas can thus be modelled as independent
instantaneous stochastic processes following a Poisson distribution at the collision frequency ν :

ν(ε′) = Ngasv
′σ(ε′) . (2.26)

The cross-section σ reflects the probability that a particle randomly located over a unit area
interact with a target of area σ. It has a strong dependence on the kinetic energy ε′ of the
collision. Rigorously, the velocity v′ should be taken as the relative speed between the colliding
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Figure 2.5: A fanciful representation of an electron’s collisional peripeteia in air. The grey shaded
circular area represent the collision cross section with atoms and molecules which are statistically
averaged over the molecular orientation (or more rigorously over their rotational state). The cross
section σ is obtained from the integral of the differential cross section dσ/dΩ which stochastically
characterises the scattering distribution of the electron by the gas. Together, the gas density
ngas and cross section σ help to define the mean free path λ̄ of the electron, or equivalently its
mean flight time τ̄ according to its velocity v. The polar angle χ is defined between the electric
field E and the electron velocity v.

particles (which is why we include the prime). Nevertheless, the mass ratio and the thermal
disequilibrium of electrons impinging on molecules allow us to neglect the speed of the gas so
that one can take ε′ = ε and v′ = v. A quantitative justification is given further below.

The mean time between collisions τ̄ , or mean flight time, is defined as the inverse of the
collision frequency : τ̄(ε) ≡ 1/ν(ε). A representation of an electron colliding on molecules in
standard air is illustrated in 2.5

The number K of collisions incurred by an electron during an interval ∆t is a Poisson variable
of mean value ν∆t, following a probability distribution :

P(K = k,∆t) =
(ν∆t)k

k!
e−ν∆t . (2.27)

The distribution of time intervals between successive collisions is the time for which no
collision occurred (K = 0), and follows a negative exponential :
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P(∆t) ≡ P(K = 0,∆t) = e−ν∆t . (2.28)

In the presence of an electric field, the collision frequency changes as the electrons are ac-
celerated. Then, the average number of collisions ν∆t in (2.27-2.28) should be replaced by the
integral ∫

∆t
0 Ngasv

′(t)σ(ε′(t))dt.
The total collision cross-section σ in a gas of g constituents with abundance ratios xg is the

weighted sum of all individual collision types :

σ =∑
g
∑
c

xgσg,c with ∑
g

xg = 1 . (2.29)

An electron in/elastically colliding with a molecule or an atom will alter/preserve its initial
internal state. Collision types c are classified according to the final state of target molecule:

◦ Elastic (σe)
⎧⎪⎪
⎨
⎪⎪⎩

−Non-radiative(σel)

−Bremsstrahlung(σbr)

• Inelastic (σ
Ce
)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Impact Excitation (σexc)

−Superelastic (σsup)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Rotational(σrot)
Vibrational(σvib)
Electronic(σelt)

−Impact Ionisation (σion)

−Attachment (σatt)

Elastic collisions conserve the total kinetic energy of the colliding (and outgoing) particles.
It may seem unusual to classify Bremsstrahlung as elastic. There are three good reasons for this
choice. First, as a massless particle, a photon’s energy is only kinetic. Second, from a purely
conceptual point of view, all elastic collisions should actually be viewed as Bremsstrahlung
because any deviation suffered by a charged particle must be accompanied by the emission of
an electromagnetic wave [822]. Notwithstanding, the latter’s wavelength might be so large that
the energy lost through radiation is negligible compared to the electron kinetic energy. In this
case, the collision is considered as non-radiative. Third, the cross-section of radiative processes is
much lower than that of non-radiative ones, so including them both under elastic collisions will
not significantly affect the total elastic cross-section. For this reason, in the rest of this thesis,
“elastic collisions” will implicitly refer to the non-radiative type.

Inelastic collisions imply a change on the target state before and after the event. This
change may either result in a (de-)excitation (from) to a higher target energy-state, or in the
creation/annihilation of an ion. Excitations of atoms can only involve electronic orbitals, whereas
molecules additionally possess rotational and vibrational levels, and any combination of all three
kinds. Impact de-excitations transfer energy from an initially excited state to the free electron.
From this perspective, they are known as superelastic collisions.

Ionisations are accompanied by the release of a secondary electron from the target’s elec-
tronic shell. Conversely, the attachment implies that the originally free electron settles around
a neutral target with an elevated electronic affinity such as oxygen. The inverse process of im-
pact ionisation, whereby an electron neutralises of a positive ion upon encounter, is known as
recombination and will not be considered here.
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Electron Scattering

At the outcome of any collision except attachment, the electron veers suddenly. This devi-
ation is commonly referred to as scattering, underlining the dispersion particles experience as
they traverse a medium of unstructured matter such as gases. The outgoing direction follows
a stochastic distribution given by the (angular) differential cross section dσ/dΩ(θ,φ) into the
element of solid angle dΩ around the orientation determined by polar (θ) and azimuthal (φ)
angles. An illustration is given in the upper left corner of 2.5.

For collisions involving emission of a secondary particle such as an electron or a photon,
the differential cross section can comprise additional degrees of freedom on the energy ε2 of the
secondary particle and its direction of emission Ω2. This leads to the notion of doubly and triply
differential cross sections. The cross section σ used to determine the collision frequency (2.26)
is obtained from the differential cross section through the integral:

σ ≡ ∫
ε/2

0
∫

2π

0
∫

π

0

dσ

dΩ2 dε2
sin θ dθ dφ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡dΩ2

dε2 . (2.30)

Electron scattering constitutes a whole topic on its own and will be covered in the second
part of this thesis starting from page 239. In the rest of this chapter we shall assume that the
outcome for all degrees of freedom in a collision are given. Practical sampling techniques are
exposed in the next chapter, section 3.2.3. Below, we characterise for each collision type how
incoming and outgoing electron velocities relate to initial and final target states.

Elastic Collisions

The momenta of an electron p and a non-relativistic molecule P before (p−,P−) and after
(p+,P+) an idealised non-radiative elastic collision are bound by the conservation laws of to-
tal energy E̊ and momentum Π. For a schematic representation, please refer to figure A.1 in
appendix A on page 227.

Π = p +P =mγv +MV , (2.31)

E̊ =mc2
√
1 + (p/mc)2 +Mc2

√
1 + (P /Mc)2 . (2.32)

We introduced the mass M and velocity V of the molecule. Collision kinematics are reviewed
in the appendix A and are conveniently treated in the relative frame of the centre of mass∗ drifting
at a speed V = c2Π/E̊ .

In a properly elastic collision, the electron’s kinetic energy ε′ in the centre-of-mass frame is
conserved : ε′− = ε′+. Lorentz transformations between the fixed and relative frames forth and
back help to establish the electron momentum p+ and kinetic energy ε+ after the collision :

ε+ =
e′

1 − (Vc cos θ+)
2

⎛
⎜
⎝
1 + cos θ+

V

c

¿
Á
ÁÀ1 − (1 − (

V

c
cos θ+)2)

(mc2)2

(e′)2

⎞
⎟
⎠
−mc2 , (2.33)

p+ =
e′/c

1 − (Vc cos θ+)
2

⎛
⎜
⎝
cos θ+

V

c
+

¿
Á
ÁÀ1 − (1 − (

V

c
cos θ+)2)

(mc2)2

(e′)2

⎞
⎟
⎠
. (2.34)

∗In this chapter, all quantities noted with a prime ′ are defined in the relative (centre of mass) frame
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Figure 2.6: Relative energy loss for an electron initially at ε− = 1 eV colliding elastically in
a hot N2 gas at 10000K. The curves were obtained by first integrating over the Maxwellian
distribution of molecular velocity norms. Then the loss must also be averaged over the cone for
which θ is fixed (cf. appendix A fig. A.2).

The quantity e′ is equal to the relative total energy ε′+mc2 obtained with a forward Lorentz
transform from the fixed frame :

e′ = ε− +mc
2 −V ⋅ p− , (2.35)

= ε− +mc
2 − cos θ−

V

c

√
ε2− + 2mc2ε− . (2.36)

The angles θ± are formed by the electron momenta after and before the collision with respect
to the total momentum Π : cos θ± = p̂± ⋅Π̂. Due to the axial symmetry of the scattering problem,
for each pair θ+, θ−, there is a continuum of deflection angles θ seen on figure A.3 presented in
the appendix A.

In a gas at equilibrium, the molecules’ velocities V follow an isotropic distribution given by
the Maxwell statistics reviewed in appendix B.1. As a result, we shall be interested in the average
outcome of an elastic collision in a gas at a given temperature T . When the gas temperatures
are low and the electron energies are high, the majority of the momentum is carried by the
electron which implies that θ− ≊ 0 ⇒ θ ≊ θ+. We show in figure 2.6 the relative energy loss
1− ε+/ε− as a function of θ− for an electron scattering off nitrogen at a temperature of 10000K.
Different values of θ− are obtained by varying the relative orientation of the molecule’s velocity
with respect to the electron’s initial direction.

As expected, the maximum exchange of momentum occurs at opposite scattering θ = 180○.
Then, trends change at θ = 90○. In forward scattering θ < 90○, the zone sin θ− > sin θ (flat zone)
is characterised by a lessened average loss of energy because cos θ+ spreads both over negative
and positive values (beyond and beneath π/2). To the contrary, in backscattering mode θ > 90○,
losses of energy are reduced in the sin θ− < sin θ zone. This is because θ+ avoids the region around
θ+ = 180○ where momentum exchange is heavier.
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When the usual approximations are applied (V ≊ 0, γ ≊ 1 and m ≪ M), noting that V ≊
mv/M , the equation (2.33) reduces to the simpler forms :

V ≊ 0

γ ≊ 1
}⇒ ε+ ≊ε− (1 − 2

mM

(m +M)2
(1 − cos θ+

√

1 − (
m

M
sin θ+)2 −

m

M
sin2 θ+)) , (2.37)

m≪M ⇒ ≈ε− (1 − 2
m

M
(1 − cos θ+)) . (2.38)

The first equation (2.37) is equivalent to a non-relativistic treatment of a collision with
a stationary target as given for instance in [589, eq. 3.2.18]. The second equation (2.38) is
obtained when m ≪ M is additionally assumed. This latter form (2.38) corresponds actually
to the previous form (2.37) when the angle θ+ is replaced by θ′+ in the relative centre of mass
frame. Nonetheless, as seen from (A.9), m≪M ⇒ V ε̊′/c2p′ ≈ m/M which makes the difference
θ − θ′ imperceptible from (A.13). This is why (2.38) is the most widespread formula for electron
energy losses due to elastic collisions [88, 677, 953, p.2174, eq.12, §44:eq.43, ].

The role of gas temperature can be understood by comparing figures 2.7a and 2.7b. It
increases the quantity of kinetic energy possibly exchanged in elastic collisions. Also, it reinforces
the symmetry of energy losses and gains which depend on the electron initial energy. For nitrogen
molecules the mass ratio m/M ⪅ 2 × 10−5. In thermal equilibrium at 300K, the speed of bulk
electrons would be ∼ 225 times the one of molecules and the maximal energy loss in frontal or
parallel collisions wouldn’t exceed 0.5% as seen on figure 2.7a.

A comparison of the exact and approximate treatments of elastic collisions can be made when
averaging losses over the velocity distribution in the gas. This would correspond to averaging
over θ− in figures 2.6 or 2.7a. The result is given in figure 2.8a for a deck of gas temperatures
attainable in spark discharges. One can see that the most limitative approximation is to assume
V = 0 in (2.37) since even at ambient temperatures a deformation is observed compared to the
basic formula (2.38) corresponding to the curve at 0K. The overall temperature effect is to reduce
(increase) energy losses below (beyond) 90°of scattering. For low-energy electrons, elastic energy
losses in hotter gases is gradually reduced until energy can be gained from forward scattering
when the average gas energy is higher than the electron energy.

On the other hand, temperature effects become increasingly negligible for higher-energy elec-
trons, as expected. There, the least applicable approximation is the non-relativistic assumption.
Figure 2.8b shows that recoil losses from fast electrons become very important and can even
surpass inelastic losses in a single impact excitation. For instance, a MeV electron scattered
beyond 60○ can transfer 100 eV to a molecule. Nonetheless, such an event is highly improbable
and would most likely be accompanied by bremsstrahlung emission of an energetic photon for
which scattering is more important. [716, §IV]

Radiative losses In the radiative case, the total momentum after the interaction is shared
between three bodies: the electron, the emitted photon and an atomic nucleus via the reception
of a so-called virtual photon. This latter photon acts as an intermediary for momentum exchange
between the electron and the nucleus. Its “virtual” character denotes the fact that it cannot be
spotted but operates behind the scenes.

As a massless particle, a photon’s energy εγ and momentum εγ are directly proportional :

εγ ≡ h̵ω = ch̵k ≡ cpγ , (2.39)

and linked respectively to the angular frequency ω and the wave-number k. After replacing
those values into the equation (A.30) for ternary collisions, the kinetic energy of an electron
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(a) Relative energy loss for an electron initially at ε− = 1, 100 and 1000 eV colliding elastically in N2 gas
at 300K and as a function of the scattering angle θ at various incident angles θ−.
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(b) Relative energy loss for an electron initially at ε− = 1, 100 and 1000 eV colliding elastically in N2 gas
at 6000K and as a function of the scattering angle θ at various incident angles θ−.

Figure 2.7: The effect of higher temperatures is to broaden and symmetrise the gains in frontal
(θ− = 180○) collisions to the losses in rear (θ− = 0deg) collisions. The curves were obtained by first
integrating over the Maxwellian distribution of molecular velocity norms. Then the loss must
also be averaged over the cone for which θ is fixed at a determined θ− (cf. appendix A fig. A.2).
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(b) Relative energy loss for a set of electron energies from ε− =100 keV to 10MeV. Relativistic effects
start to be meaningful above 100 keV, at the same threshold where temperature effects are negligible.
Below 10 keV, the approximation (2.38) is indistinguishable from the accurate formula (2.33) at 0K.

Figure 2.8: Relative kinetic energy losses in elastic scattering averaged over any molecular ori-
entation and speed distribution set by the temperature. Temperature effects dominate at low
energies, they are gradually compacted until only relativistic effects become appreciable. The
virtual zero K temperature is however somewhat different in shape than all other temperatures.
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after radiating a bremsstrahlung photon is given by (2.33) with e′ this time interpreted as:

e′ =
√
(mc2)2 + (cp′+)2

√
1 − V2/c2 , (2.40)

The relative electron momentum in the centre of mass reference frame is given by:

p
′

+
=
Ẽ ′0
√
(2h̵ω′mc2 cos θ′)2 + ((Ẽ ′0)2 − (M̃ +m)2c4)((Ẽ ′0)2 − (M̃ −m)2c4) − h̵ω′ cos θ′((Ẽ ′0)2 − (M̃2 −m2)c4)

2c((Ẽ ′0)2 − (h̵ω′ cos θ′)2)
(2.41)

The tilde notation affects quantities that are modified by the photon :

M̃ ≡
√
(Mc2)2 + (h̵ω)2 , (2.42)

Ẽ ′0 ≡ E
′
0 − h̵ω =

√
E̊2 − (cΠ)2 − h̵ω , (2.43)

θ̃′∠(p′+, h̵k) . (2.44)

We recall that E ′0 corresponds to the rest energy of the electron-molecule system. In practice,
the energy losses due to recoil in Bremsstrahlung are negligible compared to the energy of the
emitted photon. Only super-relativistic electrons > 50 MeV with deflections above 60○ can present
an additional loss over 1% of the photon energy [716]. This picture might be very different for
electron-electron bremsstrahlung which however is of minor importance.

Overall, effective radiation events apply only to relativistic electrons > MeV, are rare, when
they occur, photons of smaller energies are most often emitted, preferentially in the forward
direction; so that one can ignore the deflection suffered by the electron let alone its energy lost
by recoil. Thus, the energy of the electron after a radiative collision is simply:

ε+ ≃ ε− − h̵ω . (2.45)

Excitation

A collision with (de-)excitation of the target molecule involves a loss (gain) of energy ∆E on
account of the electron. The kinetic energy after such collision is given rigorously by taking:

e′ =
(E ′0)

2 + (mc2)2 − (Mc2 +∆E)2

2E
= ε− +mc

2 −V ⋅ p− −∆E
Mc2

E
(1 +

∆E

2Mc2
) , (2.46)

and inserting it in (2.33). However in practice, the energy losses due to scattering in inelastic
collisions is indisputably negligible compared to excitation thresholds except for lowest rotational
levels which lie around 0.2 meV for most diatomic molecules. One can thus set :

ε+ ≃ ε− −∆E . (2.47)

The residual loss of energy ε− − (ε+ +∆E) that we qualify as “inelastic scattering” is non-zero
at θ = 0○ due to the necessity of momentum conservation. For this reason, even if marginal, it is
nonetheless overall greater than elastic losses. This can be seen on figure 2.9 which compares the
energy losses due to inelastic scattering relative to elastic ones: Inelastic(ε−−ε+−∆E)/Elastic(ε−−
ε+), for an illustrative excitation of 5 eV at ambient temperature.

Of greater interest is the effect of temperature on inelastic collisions. Usually, at low tem-
peratures, the excited states of the gas described earlier in section 2.1.2 are scarcely populated
compared to the ground state. One can then assume that electron energy losses predominate.
However, when the temperatures rise, the contribution of superelastic collisions from excited
states for low-energy electrons are expected not to be negligible and ought to be taken into
account. As a consequence, the average energy loss in collisions should decrease for electrons
whose energies are close to the average energy of the gas.
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Figure 2.9: Relative inelastic over elastic scattering energy loss : Inelastic(ε− − ε+ −
∆E)/Elastic(ε− − ε+), for ∆E = 5 eV at 300K. The curves gradually increase in initial en-
ergy ε− = 7, 10, 15, 30, 100, 1000, 10000 eV.

Rotational Excitations We test this hypothesis on the rotational excitation levels of N2

defined earlier by (2.9). During a collision at an energy ε and deflected by an angle θ, if we know
the excitation probability P(Ji → Jf ; ε, θ) from an initial state J = Ji to a final state at J = Jf ,
we may determine the average energy lost ∆Erot(ε, θ) in rotational excitations:

∆Erot(ε, θ) =
∞
∑
Ji,Jf

B(Jf(Jf + 1) − Ji(Ji + 1))P(Ji → Jf ; ε, θ)
(2Ji + 1) exp(−BJi(Ji + 1)/kBTrot)

Z(Trot)
,

(2.48)
The fraction on the right hand side of (2.48) represents the population ratio of rotationally

excited molecules at J = Ji at a temperature of Trot. The partition function Z(Trot) is a nor-
malising constant defined in appendix B.2. It is equal to the denominator in (2.8). As explained
at the beginning of this chapter in section 2.1.2, the rotational constant B gives the energy
associated with the state J : BJ(J + 1).

The details of how to obtain all the transition probabilities P(Ji → Jf) are presented in the
second part section 11.2. For simplicity and elegance, we use the spectator model presented in
the second part section 11.2.3 on page 415. Unfortunately, this model is not valid at low energies
around ∼ eV as well observed on figure 11.15. Conversely, the first Born approximation applied
to a linear rigid rotor as defined in section 11.2.1 gives transitions ∆J = ±2 which are valid
only at sub-eV energies. In order to preserve a consistent way of representing rotational losses,
we normalised the set of transition probabilities in (2.48) with more accurately computed cross
sections σ0→J [digitised from 546, figure 7a], and used the angular distribution of the spectator
model, notwithstanding its inaccuracy. The combination is expressed by (11.35).

The resulting average loss in N2 can be observed in figure 2.10 for 0.5 eV to 2 eV electrons
at various gas (rotational) temperatures. Contrary to elastic scattering, the average energy
exchanged in rotational excitations is either a loss or a gain over all angles of scattering. The
transition between both regimes can be easily determined from the principle of equipartition of
energy [547, §9.2, p.241]. An electron will be considered rotationally subthermal if its energy
ε < 2kBTrot2 is less than the energy stored in the rotational degrees of freedom (∼ 2) of the gas.
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Figure 2.10: Average kinetic energy loss ∆Erot in a low-energy electron-N2 vibrationally elastic
collision at various gas temperatures, calculated with (2.48) in the spectator model (11.35). The
average includes rotationally elastic Ji = Jf collisions.

For an electron of ε = 1 eV, this transition happens at Trot ≃ 12000K, as can be seen by the
straight line on the middle graph of figure 2.10. As expected from the magnitude of the rotational
constant B, the absolute average losses per collision lie in the ∼ meV range.

At higher energies, an interesting phenomenon known as a “rotational rainbow” [535] unlocks
larger transitions ∆J ≳ 6 during a backscattering event. The 3D projection on figure 2.11 shows
the average energy loss for each transition ∆J incurred by electrons of higher energies according
to the angle they scattered off molecular nitrogen. One can see that the peak loss moves toward
larger ∆J as a result of a higher probability as the energy and angle increase. Note that the
effect of temperature enables a larger energy exchange for a fixed ∆J as can be seen from
(J +∆J)(J +∆J + 1) − J(J + 1) =∆J(2(J +∆J) + 1) when higher J states are populated.

Overall, elastic losses approximated by (2.38) which scale relative to the initial energy ε−, can
be compared to purely rotational losses from (2.48), which vary less in magnitude, as a function
of ε− and θ as shown on figure 2.12. The graph can be decomposed into zones where electrons
gain or lose energy on average in collisions. The crest at low-energies coincides with the 2Πg
resonance [820, §III.A.5, p.548] in electron-nitrogen rotational excitation located around 2.4 eV
[105]. Rotational gain/losses dominate at low energies and become gradually negligible compared
to pure scattering losses at higher energies. Also, although both (elastic and rotational) losses are
null at θ = 0○, their slopes can be quite different. In the spectator model (11.30), the probability
of rotational excitations in forward scattering is much smaller than elastic scattering.

In homonuclear diatomic molecules (or molecules without a permanent dipole), rotational
excitations take place as a result of quadrupole interaction. Ridenti et al. [774] showed that
very good agreement with experimental swarm parameters at low electric fields can be obtained
with isotropic quadrupole DCS calculated in the first Born approximation (see section 11.2.1
eq. 11.21b). The situation is radically different when the molecule is polar, (i.e. has a permanent
dipole) as NO, CO, water, etc. In this case, the rotational cross sections are much larger in
magnitude and present a prominent shape in the forward direction. The effect of anisotropic
scattering from dipole-induced rotational excitations in CO was shown by Vialetto et al. [961]
to be important at low electric fields.
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Vibrational Excitations The vibrational threshold for nitrogen lies close to ∼ 0.29 eV but is
about two-thirds lower for oxygen at ∼ 0.195 eV. The dominant mode of excitation is through
2Πg resonance scattering in the region between 1�4 eV for N2 and 0.2�1 eV for O2. If we adapt
the energy loss in (2.48) to a vibrationally populated gas at Tvib we get:

∆Evib(ε, θ) =
∞
∑
vi,vf

∆EvP(vi → vf ; θ, ε)
exp(−Ei/kBTvib)

Z(Tvib)
. (2.49)

We use the shorthand notation ∆Ev ≡ h̵ωvib(vf − vi) and Ei ≡ h̵ωvib(v +
1
2). The advantage

when handling a set of vibrational excitations is that, when vi is not too high (< 10), the energy
loss among excitations for a fixed ∆v differs only by a few percent. This means that instead
of having to specify collisions as vi → vf , we can regroup the energy losses due to collisions
corresponding to a certain ∆v.

Nonetheless, unlike for rotational transitions, there exists not any straightforward way to
compute P(vi → vf). Instead, one can use a fundamental relation in scattering known as detailed
balancing (7.6) to associate a transition vi → vj to its reciprocal vi ← vf . In case of vibrational
excitations, it is given by:

σvi←vf (ε) =
ε +∆Ev

ε
σvi→vf (ε +∆Ev) (2.50)

Then, the balance between losses and gains in vibrational excitations reads:

∆Evib(ε, θ) =
∞
∑
vi<vf

∆EvP(vi → vf , θ, ε)
exp(−Ei/kBTvib)

Z(Tvib)

× (1 −
ε +∆Ev

ε

σij(ε +∆Ev)

σij(ε)
exp(−

∆Ev
kBTvib

)) . (2.51)

Gain from superelastic vibrational collisions is promoted when ε < kBTvib and kBTvib ≫∆Ev
but also if σij(ε + ∆Ev) > σij(ε). This latter case occurs at the foot of a resonance region
distanced by ∆Ev from the first peak. When the temperatures are high enough to populate
the first vibrational level (Tvib ≳ 3400K in N2 ; 2300K in O2), one can expect under-resonant
electrons to get an overall energy boost from superelastic collisions.

The peculiarity about resonant scattering is that its angular distribution shape is fairly
independent of the energy and the vibrational transition, and adopts the symmetry set by the
decaying negative-ion temporarily formed (see fig. 11.23). This is why we can assume as a first
approximation that the pattern of the energy transferred in resonant collisions is independent of
the scattering angle, so that the vibrational loss analysis is only displayed as a function of energy
unlike in rotational and elastic scattering.

We use the set of vibrational cross sections computed by Laporta et al. [552, 554] to test
this hypothesis. They are the most recent available set in good agreement with experimental
data. Using formula (2.51) in the range 0�15 eV at various temperatures, the average losses are
displayed on figure (2.13) for N2 and O2.

The resonant nature of vibrational scattering is very prominent through the spikes in the
energy losses between 0 and 4 eV. The electronic structure of a diatomic molecule can lead to
significant differences as seen between O2 and N2. The strong electron-O2 affinity intuitively
explains the sharp spikes at low energies. Increasing the vibrational temperature activates su-
perelastic collisions from vibrationally excited states. As a result, the resonant structure is
attenuated because resonant peaks in cross sections with vibrationally excited states are shifted
to different positions, and therefore they compensate each other when averaged.
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Figure 2.13: Vibrational losses of electrons in N2 and O2 at various temperatures.

Furthermore, increasing the vibrational temperature of N2 enhances the contrast between
regions of average gain and losses which are shifted toward higher energies. The trend is more
complex in O2. The difference around 10 eV in O2 (which has a broad bump) and N2 (which is
flat) is due to the omission of core-excited resonances in the cross section set of N2 [554]. For
more information about resonant scattering, readers may consult section 11.3 of part II.

Electronic Excitations: Compared to the relative coherence of rotational and vibrational
excitations, the realm of collisions with electronic excitations is unruly. We convey this in the
tabbing below:

Excitations Rotational Vibrational Electronic
Coherent law for transition probabilities ✓ (eq. 11.24) × ×
Coherent law for excitation thresholds ✓ (eq. 2.9) ✓ (eq. 2.11) ×(tab. 11.6–11.11)

Thus, there is no straightforward way to compute a set of electronic excitation energy levels
nor to derive the transition probabilities from states A→ B from the ground excitations X → A
and X → B. The electronic excitation energy thresholds for diatomic molecules and atoms are
gathered in separate tables 11.6,11.7,11.8,11.9,11.10,11.11 in chapter 11 of part II.

In any case, as explained at the beginning of this subsection, electronic states would require
unrealistic temperatures to present decent populations of excited levels. Nonetheless, how tem-
peratures may significantly affect the energy loss rate is through the change in the gas’ chemical
composition. Molecule dissociation can occur through various processes: direct dissociation,
dissociative attachment, and predissociation from various super-excited vibrational or electronic
states [834, p.4&67]. The dependence of the average energy loss on the temperature through
chemical composition of a gas is shown in a later chapter 5 in figure 5.11.
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Ionisation

The characteristics of an ionising collision present their own complexity due to the many sub-
processes involved. Most often, the term “ionisation” is implicitly associated to the simplest case
of non-dissociative, non-exciting, single ionisation event where part of the impacting electron’s
energy is yielded to knock away one shell electron from the molecule with an ionisation threshold
at ∆Eion. In reality, ionisations regroup a class of large energy loss events that can also leave the
ionised molecule in a dissociated and/or excited state. In the extreme but not inexistent situation
where two shell electrons are ejected, known as a double ionisation, the energy redistribution
among the scattered particles is difficult to describe theoretically and experimental data is absent.

Notwithstanding, if the ejection angles of the fragments are known, just as in the elastic
radiative collision, one can derive rigorously the outgoing electron’s energy and momentum with
(A.30). From the ternary collisions covered in the appendix A.1, we label the secondary electron’s
energy-momentum in the centre of mass frame as (ε′2,p

′
2) :

p′+ = [Ě ′0

√
(2cp′2mc

2 cos θ̌′)2 + ((Ě ′0)
2 − (M̌ +m)2c4)((Ě ′0)

2 − (M̌ −m)2c4)

− cp′2 cos θ̌
′((Ě ′0)

2 − (M̌2 −m2)c4)]
1/2c

(Ě ′0)
2 − (cp′2 cos θ̌

′)2
.

The cusp notation relates quantities affected by the secondary ejected electron :

Ě ′0 ≡ E
′
0 − (mc

2 + ε′2) , (2.52)

M̌ ≡
√
(Mc2 +∆Eion)2 + (cp′2)

2 , (2.53)

θ̌′∠(p′+,p
′
2) . (2.54)

Again, like for bremsstrahlung, the recoil losses for non ultra-relativistic electrons are negli-
gible and one can be content with merely subtracting the kinetic energy of the secondary ε2 and
the ionisation threshold ∆Eion :

ε+ ≃ ε− − ε2 −∆Eion . (2.55)

The threshold ∆Eion and secondary energies ε2 may be sampled from partial and differential
ionisation cross sections given by the RBEQ* model (11.119–11.120) presented in section 11.5.4.
Sampling techniques in Monte Carlo simulations are explained in sections 3.2.2 and 3.2.3.

Rarely, the angular scattering distributions θ1, θ2 of the ejected electrons is known. Although
measurements of doubly differential cross sections are gradually more resolved and accurate, there
is still a vacuum in the literature about accurate and comprehensive databases of those angular
distributions. Some information is disclosed in the second part on page 492.

Presently, Monte Carlo simulations recur to rudimentary approximations that lead to a de-
terministic scattering in ionisation events from the binary encounter model (see 11.5.2). In this
model, it is assumed that the electron collides only with a bound electron and thus no recoil
is communicated to the molecule. Although energy losses due to recoil are indeed negligible,
it is physically rather crude to account for the ionisation threshold ∆Eion without taking into
consideration the recoil momentum Pi of the ion. In other words, the momentum after an ioni-
sation event must be shared between both electrons and the ion in order to amount to the total
momentum Π:

Π ≡ p+ + p2 +Pi ⇒

⎧⎪⎪
⎨
⎪⎪⎩

0 = p+ sin θ+ + p2 sin θ2 + Pi sin θi ,

Π = p+ cos θ+ + p2 cos θ2 + Pi cos θi .
(2.56)
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The secondary electron is then ejected at an angle θ2 determined by :

cos θ2 =
(Π − Pi cos θi)

2 − p2+ + p
2
2 − Pi sin θi(Pi sin θi + 2p+ sin θ+)

2(Π − Pi cos θi)p2
. (2.57)

From this point, we can derive four levels of approximations:

a) We may assume that the ion suffers little deviation from the direction Π̂ of the total
momentum, implying that cos θi = 1.

cos θ2 =
(Π − Pi)

2 − p2+ + p
2
2

2(Π − Pi)p2
. (2.58)

The value of Pi can be fixed from the most stringent requirement that when p2 = 0 the
momentum conservation relies only on Pi and p+ which are both aligned along Π:

Pi = Π − p+⇔ (Π − Pi) =
√
(E −∆Eion)2 + 2mc2(E −∆Eion) . (2.59)

The energy E is the total energy of the collision which, in addition to ε−, may include the
kinetic energies of the initially bound electron U and of the molecule.

b) If we assume that the bound electron is initially at rest in its orbital U ≃ 0, then the total
momentum and energy are only carried by the incident electron before the collision: Π = p−
and E = ε−. Using the energy conservation (2.55) and replacing in (2.59) and (2.58) we
obtain the relativistic ε− ≳mc2 and near threshold ε− ≃∆Eion expressions:

cos θ+ =

¿
Á
ÁÀε+((ε− −∆Eion) + 2mc

2)

(ε− −∆Eion)(ε+ + 2mc2)
(2.60)

cos θ2 =

¿
Á
ÁÀε2((ε− −∆Eion) + 2mc

2)

(ε− −∆Eion)(ε2 + 2mc2)
(2.61)

c) At high incident energies ε− ≫ ∆Eion we may neglect the energy loss of the primary due
to the ionisation threshold. Actually, this also tacitly implies ε2 ≫ ∆Eion which of course
is not necessarily verified. Nonetheless, we obtain the following simple pair of equations
[160, 576, eq(19a), eq(3-4)] :

cos θ+ =

¿
Á
ÁÀε+(ε− + 2mc

2)

ε−(ε+ + 2mc2)
, (2.62)

cos θ2 =

¿
Á
ÁÀε2(ε− + 2mc2)

ε−(ε2 + 2mc2)
. (2.63)
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d) Furtherless∗, in the non-relativistic limit, the electrons are ejected perpendicularly giving
p2− = p

2
++p

2
2 = (p+ cos θ++p2 cos θ2)

2 as implemented in Boeuf and Marode [88, eq(22), with
the square root omission presently corrected], and thus :

cos θ+ =

√
ε+

ε+ + ε2
, (2.64)

cos θ2 =

√
ε2

ε+ + ε2
. (2.65)

The assumption that little momentum is transferred to the parent molecule is experimentally
verified in triply differential cross sections (TDCS) at high incident energies ε−⋙ ∆Eion, small
primary scattering angles θ+ < 10○ and not low secondary energies ε2 > ∆Eion [810]. A lobe is
observed more or less perpendicularly or at least obliquely tilted to the scattered direction of
the primary electron (see fig. 11.49 p. 495). Theoretically, this assumption is supported by the
so-called “Bethe-ridge” of the differential dipole oscillator strength density when the secondary
electron energy ε2 is not too low. More information can be found in the second part of the thesis
in section 11.5.3.

In practice, none of those approximations apply as ε− ≃ ∆Eion because there, the whole
impulse approximation fails. Also, whenever ε2 is small, the angular distribution of secondary
electrons is virtually isotropic (see fig. 11.47) and cannot be assumed to be preferential in one
particular direction θ2.

In the computations of this thesis, we decided to model the emission of secondary electrons
stochastically according to a hybrid model between the deterministic binary encounter (2.58)
and an isotropic distribution at low ε2:

cos θ2 =
ε2

ε2 +∆Eion

¿
Á
ÁÀε2((ε− −∆Eion) + 2mc

2)

(ε− −∆Eion)(ε2 + 2mc2)
+

∆Eion
ε2 +∆Eion

(1 − 2x) . (2.66)

where x ∈ [0,1] is a sample from a uniformly distributed random variable (see also eq.11.132 on
page 494).

In principle, instead of appealing to the weighted formula (2.66), one could stochastically
sample the initial momentum po of the bound electron in the orbital o from an isotropic distri-
bution with a radius po = 2mU/h̵2 where U is the average kinetic energy on the orbital o (given in
part II 11.5.4 table 11.12 on page 490). This would determine the total momentum Π = p− +po
with p− − po ≤ Π ≤ p− + po, to be used in (2.58). We did not opt for this alternative because the
binary model is invalid at low ε2 and an isotropic distribution as seen experimentally cannot be
explained by the inclusion of initial momentum from the bound orbitals. One would need to
understand better how interaction between both electrons and the ion core perturbs the ideal
situation of a binary encounter.

For more information, the interested reader may want to consult section 11.5.4 of part II,
and figures 11.47–11.49 where experimental data show a significant contribution of large angle
scattering compared to the punctual angle corresponding to a simple binary electron collision.
Whether a proper modelling of the angular distribution of secondary electron from ionisation
has a statistically observable impact on transport parameters and thermal runaway, is unknown
and could be tested in the future.

∗We are regressing toward a cruder approximation, we are thus not going furthermore but rather ‘furtherless’
in accuracy.
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Figure 2.14: Dissociative
attachment in oxygen is
sensitive to the (vibra-
tional) temperature. The
cross sections predicted by
Laporta et al. [558] of an
electron attaching to a vi-
brationally excited O2(v

′)
have a lower threshold and
a higher peak as the aver-
age vibrational level v′ in-
creases along with the tem-
perature.
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Attachment

At last, we finish this preliminary tour of electron-molecule collisions with the electron attach-
ment on oxygen which has a positive electron affinity. This constitutes another example of
resonant processes. At first, it may be thought that attachment offers the delight of not having
to bother discussing any electron scattering outcome. In reality, the post-traumatic consequences
ensuing the withdrawal of an electron’s liberty are not to be taken lightly.

Due to the restrictions imposed by energy-momentum conservation laws, “pure” attachment
cannot take place; it is rather the consequence of a resonant collision process that leads to stable
attachment to oxygen. As the e-O2 compound is created, it vibrates at a certain level for which
two different scenarios lead to long-term attachment :

Dissociative Attachment happens when the electron energy is high enough ≳ 4 eV to excite
an elevated vibrational level beyond the dissociation limit of the O−2(

2Πu) anion. In that
case, the compound encounters itself in a repulsive bond state and dissociates with one of
the two oxygen atoms keeping the electron attached [820, p.472, §VI.B]. This enables the
initial momentum to be carried by the fragments scattered apart.

Three-body attachment consists in a formation of a metastable electron-molecule compound
which then becomes a stable anion after colliding with a third body. It occurs at lower en-
ergies when the electron excites long-living O−2(

2Πg) vibrational states that, when colliding
with another molecule, deexcite to a lower stable level [820, p.472, §VI.A.5]. Stable means
that it cannot spontaneously autodetach because its energy is below the neutral oxygen
ground state as represented in figure 11.18 of section 11.3.4.

Note that those two processes correspond to two distinct energy regions and resonances :
lowest-energies – 2Πg for three-body; and ≳ 4 eV – 2Πu for dissociation. Since attachment and
resonant vibrational excitations are so tightly linked, dissociative attachment is facilitated with
increasing temperatures [393]. This is seen on the set of cross sections displayed in figure 2.14
from [558]. We provide additional information on attachment in section 11.3.4 of part II.
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2.2.3 Average Motion

The motion of electrons in gases, as sketched in 2.5, may be very chaotic at low energies because
of the frequent collisions that interrupt the electromagnetic acceleration and drastically change
the electron’s momentum. Nevertheless, the individual effect of each collision decreases at higher
electron energies above the keV domain. It is therefore very useful to describe somehow the overall
combined effect of many collisions on the electron’s trajectory through the average friction (or
braking) force as described in Raizer [762, §2.1.1:p.8–11].

We remind the basic notions related to the average motion of an electron in a gas:

◻ λ̄ : the “mean free path”, an average distance that an electron traverses between two
collision events;

λ̄ ≡ 1/(σngas) . (2.67)

◻ τ̄ : the “mean free time”, the average timespan between two collisions;

τ̄ ≡ λ̄/v . (2.68)

◻ ν : the “collision frequency”, or inverse of the mean free time: ν ≡ 1/τ̄ ;

ν ≡ ngasσv . (2.69)

◻ ⟨cos θ⟩ : the “mean scattering cosine”, the average cosine of the electron’s outgoing velocity
after a scattering event defined as:

⟨cos θ⟩ ≡
2π

σ
∫

π

0

dσ

dΩ
cos θ sin θ dθ . (2.70)

As we will see below (2.81&2.84), the presence of anisotropy, such as an external electric field,
slightly distorts the definition of the collisional parameters. This is because (i) the velocity v of
the electron changes during its flight time but also (ii) the cross section σ(ε), who may sharply
depend on the electron’s kinetic energy ε.

Average Friction Force

In high-energy particle physics, the energy lost per unit length −dε/dl due to collisions by a
fast particle traversing a medium of atomic density nat, is known as the stopping power : Scol,
[see for instance 60, p.4, eq(2.1)]. Roughly speaking, for fast electrons, this energy is lost by
knocking atomic electrons off their shells.

Scol ≡ ∫
ε/2

0
WnatZ

dσ
�e

dW
dW (2.71)

The product natZ represents the density of atomic electrons of the medium and dσ
�e
/dW is

the cross section corresponding to a loss of kinetic energy W . The integration goes up to half
of the initial kinetic energy due to the indistinguishability of the two electrons emerging from
a collision. The convention is to identify the electron possessing the higher kinetic energy as
the original one. The equation (2.71) can be conveniently separated into large and small energy
losses. When the energy lost by the fast electron is appreciably higher than the shell electron’s
atomic binding energy, as in light atoms and non-core orbitals, the collision can be described by
Møller scattering between two free electrons (see part II section 8.5.5 eq. 8.148).
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Smaller losses on the other hand are incorporated via the Bethe theory [67] (reminded in 11.5.1)
which introduces a mean excitation energy [427, p.333, eq(4.62)] I0 (11.96) given in table 2.3.
Then, the stopping power adopts its well-known formula in the high-energy approximation [66,
p.254]:

Scol = ZNat
2πr2emc

2

β2
[ln(

ε2(γ + 1)

I20
) +

1

γ2
(1 +

(γ − 1)2

8
) − (1 −

1

γ2
−
2

γ
) ln 2 − δ] (2.72)

The classical electron radius is defined as re ≡ e2/4πϵ0mc2. The additional correction δ is
called density effect [60, p.5] due to the medium polarisation and is actually negligible in gases
for electrons up to 40MeV, as can be seen in tables 12.3 and 12.4 in Berger et al. [60].

Gas N2 O2 Air
I0 (eV) 82 95 85.7

Table 2.3: Mean ionisation energy loss I0 in the stopping power
(2.72) for different gases.

For less fast (but not slow) electrons, the energy loss rate can be calculated in more detail by
distinguishing each inelastic collision involved in a gas of ngas number density. During a period
∆t longer than the inter-collision mean time τ̄ = 1/ngasσv, the overall energy lost in inelastic
processes with cross sections σi and thresholds ∆εi can be idealised as a uniform loss rate:

⟨∆ε⟩

∆t
=∑

i

∆εi
τ̄i
= FD ⋅ v (2.73)

∆t/τ̄i gives the average number of collisions of type i during ∆t. We introduced the notion
of dynamic friction force FD for which a vast terminology of equivalent terms exists: “drag”,
“slowing-down”, “dynamic friction”, “braking” force were used in different studies for the same
concept. If one assumes that the friction FD is antiparallel to the speed v, then its norm is:

FD =∑
i

∆εi
τ̄iv
=∑

i

∆εiσi . (2.74)

Alternatively, the concept of an average drag force could also be defined according to the
rate of momentum change ∆p = p+ − p− :

FB ≡
⟨∆p⟩

∆t
= −∑

i

(1 − ⟨
p+
p−

cos θ⟩
i

)
p−
τ̄i

(2.75)

Here, the averaging ⟨p⟩ over the momentum change must be understood as fixing p−, while
varying p+ according to the scattering distribution dσi/dΩ of the collision process i. Assuming
azimuthal symmetry, this implies averaging over the quantity −(p− − p+ cos θ): i.e. the paral-
lel momentum loss. Away from excitation thresholds, one may neglect variation of p+ with θ
and thus perform averaging only on the cosine. Furthermore, under the high electron energy
approximation ε− ≫∆εi, one can additionally write:

⟨cos θ⟩
p+
p−
= ⟨cos θ⟩

√
ε2+ + 2mc2ε+

cp−
≃ ⟨cos θ⟩ (1 −

∆εi
(vp)−

) . (2.76)

Replacing back into (2.75), the average braking force would be :

FB ≃ −∑
i

ngasσi(vp)− (1 − ⟨cos θ⟩i

√

1 −
2∆εi
(vp)−

) ≊ −v̂∑
i

ngasσi((1 − ⟨cos θ⟩i)(vp)− + ⟨cos θ⟩i∆εi)

(2.77)
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We now understand that the concept of dynamic friction is ill-defined unless the average
deviation cosine ⟨cos θ⟩i ≃ 1. Only then, do the definitions (2.77) and (2.73) coincide. Otherwise,
in addition to the stopping power, the idealised friction force should also include the “scattering
power” (1 − ⟨cos θ⟩)p/τ̄ . If the average deviation is null (isotropic) or negative (backscattering),
the “scattering force” from (2.77) would be superior to the loss of the entire kinetic energy ε− over
the mean free path λ̄. This expresses the fact that low-energy collisions can dominate electron
kinematic conditions.

Furthermore, the incorporation of attachment collisions to the friction force poses another
difficulty. An electron having attached, not only loses all of its kinetic energy but also becomes
inactive. Nonetheless, in anticipation of swarm dynamics introduced in the next section, if we
considered an electronic gas carrying a total momentum, the attachment collisions would remove,
one at a time, momenta carried by individual electrons at the attachment frequency νatt. If we
know that an electron of initial kinetic energy ε will, on average, attach after having propagated
a certain time τ̄att, then we may conceive that it is braked by an “attachment force” at a rate of
ε/τ̄att(ε).

The concept of force as an additive vector that represents a change of momentum per unit time
is undeniably very hard to reconcile with the stochastic occurrence of collisions. Nevertheless,
when collisions are modelled as an average friction or braking force, they enable a dialectical
debate on which of the electric or frictional force takes over on average. This was used to
determine a criteria for electron runaway: electrons which, on average, are more accelerated by
the electric field than braked through collisions.

A. For relativistic runaway, scattering in the high-energy domain is characterised by small
relative energy losses and small angular diffusion. This enables a sound comparison between the
stopping power and electric force as represented for instance in Gurevich et al. [365, figure 1] or
Lehtinen et al. [576, figure 1] and used in subsequent works [40, 236].

Recently, Lehtinen and Østgaard [579, p.6950:§C1] introduced a new notion of “effective
friction force” Feff which does not operate on the average level of a single electron, but on the
average angular equilibrium distribution of an electron swarm. This effective friction balances
an imaginary mono-energetic electron swarm distribution maintained in equilibrium at a certain
momentum p by a fixed electric field Eeq [579, Appendix C]:

Feff ≡ eEeq ∶
dp

dt
= 0 = eEeqM(p,E) − ∣FD∣ , (2.78)

where M(p,E) =
1

tanh(ξ)
−
1

ξ
with ξ =

2eE

νmp
. (2.79)

M(p,E) is the average cosine deviation of the electron swarm with respect to the opposite
direction of the electric field and νm = σmvngas is the momentum-transfer collision frequency.
The quantity νmp is called the parallel momentum loss rate from elastic collisions.

B. When interested in thermal runaway, the collisional term in kinetic equations at high-
energies [788, p.6-eq(7)] qualified as a drag force, was extended to much lower energies and used
for illustrative purposes in Bakhov et al. [50] and Dwyer et al. [250, figure 1] to represent the
barrier imposed by collisions to electron acceleration. Later, Moss et al. [677, eq(1)-figure 2]
plotted the dynamic friction in the full energy range down to below 1 eV. Nevertheless, it was
pointed out in Diniz et al. [218], that thermal runaway cannot be properly viewed in this picture
due to several issues, notably the scattering power which plays a major role below several tens
of eV, and the highly stochastic process of collisions.
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Figure 2.15: Different concepts underlying the same idea of representing the effect of electron-
molecule collisions through a “force”.

Putting things together, we take the liberty of distinguishing five “collisional force” concepts,
which we represent in figure 2.15 for electrons in standard air (see page 40):

∗ FD : “dynamic friction” force from its definition (2.73) which coincides with (2.77) when
⟨cos θ⟩ ≃ 1;

∗ Scol : “stopping power” in the high-energy approximation (2.72) of FD;

∗ νmp : “elastic (parallel) momentum loss” is the amount of momentum lost in elastic colli-
sions from the average deviation incurred in a scattering event through ⟨cos θ⟩;

∗ Feff : “effective friction” from Lehtinen and Østgaard [579, p.6950:§C1] (2.78). It represents
the effective friction which balances an electron swarm distribution in (angular dispersion)
equilibrium at a certain energy and a fixed electric field.

∗ FB : “braking force” or occasionally called “scattering force” from (2.75–2.76). It approxi-
mately amounts to the dynamic friction plus the elastic momentum loss: FB ≊ FD+pνm. It
is nonetheless slightly higher as it includes attachment losses ε−/τ̄att and accounts for addi-
tional momentum loss in inelastic collisions from the deviation through the average cosine
⟨cos θ⟩. At non-relativistic energies, this force is significantly “stronger” than the dynamic
friction, following the semantic intuition that “braking” is more drastic than “friction”;

These concepts will be useful when we try (later in sec. 5.3) to determine the runaway energy
threshold of fast electrons according to the electric field.
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For more information about average frictions and scattering at high energies, an overview of
fast electron and photon interactions with gas atoms and molecules for Monte Carlo codes can
be found in Salvat and Fernández-Varea [802]. In the next subsection, we study furthermore the
balance of electron energy between two collisions.

Average energy loss

Another way to preserve the idea of comparing electric acceleration to the average effect of
collision on electron propagation is to abandon the perspective of forces and shift toward the
more tangible concept of energy gains between collisions contrasted with energy losses in a single
collision event. Not only does this approach place us in the continuity of the whole material
covered in the last section, but it also enables a more pertinent comparison in the regimes where
a collision is threateningly capable of erasing the entire efforts of electric pull during electron
free flight.

Electron trajectories in uniform fields between collisions can be seen as mean free path λ̄-long
parabola segments. The energy gain ∆+ε between two collisions of an electron with an arbitrary
initial velocity v0, accelerated in a uniform field E is (less than +eEλ̄ and greater than −eEλ̄):

∆+ε = ∫
λ̄

0
−eE ⋅ dx ⋚ ±eEλ̄ , (2.80a)

= ∫
τ̄

0
−eE ⋅ vdt = (−eE ⋅ v0τ̄ +

(eE)2

m

τ̄2

2
) . (2.80b)

The infinitesimal segment dx = vdt follows the electron’s displacement. The mean distance
λ̄ or equivalently the mean duration τ̄ between collisions are bound by the curvilinear integral
of the electron’s free motion:

λ̄ ≡ ∫
τ̄

0
∥v∥dt (2.81)

λ̄ = ∫
τ̄

0
∥v0

≡a
¬

−
eE

m
t∥dt = ∫

τ̄

0

√

v20 − 2 cosχ
eE

m
v0t + (

eEt

m
)
2

dt ,

λ̄ =
1

2a
[(aτ̄ − v0 cosχ)∥v0 + aτ̄∥ + v

2
0 cosχ + v

2
0 sin

2 χ ln(
(aτ̄ − v0 cosχ) + ∥v0 + aτ̄∥

v0(1 − cosχ)
)] .

(2.81a)

where we defined the electron acceleration from the electric pull a = −eE/m and the angle cosχ =
v̂0 ⋅ Ê. When the electron’s initial velocity is (anti-)aligned with the electric field (−)v0 ∥ E,
replacing cosχ = ∓1 in (2.81a), we get an equivalence with (2.80).

The mean distance and times between collisions are formally defined as the path length or
time for which on average one collision should occur throughout the integral of the trajectory:

∫
τ̄

0
nairσtot(ε(t))vdt = 1 . (2.82)

The total collisional cross section σtot depends on the energy ε which varies along the path. In
absence of an electric field, the velocity v is a constant of motion, in which case we would obtain
the trivial relations:

τ̄nairσtotv = τ̄ νtot = τ̄vλ̄ = 1 , (2.83)

which are those of the mean free path and time introduced earlier (2.67–2.68).
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Due to the anisotropicity introduced by the presence of the electric fields, it follows that λ̄
(and τ̄) actually depend on the initial condition v0 of the electron and thus differ from the mean
free path and time. Nevertheless, for a dense enough gas, the electron’s energy should not vary
much during a mean free flight.

To measure this effect, we refer to the very useful notion of reduced electric field : E/nair.
Indeed (2.80) implies that the average gain ∆+ε ∝ Eλ̄ while (2.82) expects that λ̄ ∝ 1/nair so
that E/nair becomes a scalable measure of the average acceleration of electrons in gases. The
unit of the reduced electric field is the Townsend Td ≡ 10−21 Vm2.

When E/nair becomes high, the mean distance λ̄ might either be slightly extended or short-
ened depending on the behaviour of σtot(ε) as a function of the electron energy ε. We can
analyse this effect by taking the first order linear dependence defining σ′tot as the slope: σtot(ε0+
∆ε) = σtot(ε0) + σ

′
tot(ε0)∆ε + o(∆ε). Replacing this cross section and the instant velocity

v = ∥v0 − eEt/m∥ in the equation (2.82) for the mean duration between collisions, we obtain
a typical integral encountered in multidimensional motion paths :

∫
τ̄

0
nair

≃σtot(ε)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

[σtot + σ
′
tot (−eE ⋅ v0t +

(eEt)2

2m
)]

=v
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ√

v20 − 2
eE

m
⋅ v0t + (

eEt

m
)
2

dt = 1 . (2.84)

⇔ 1 = ngasσtotλ̄ + ngas
σ′totε0
8a
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8
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+ ngas
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[∥v0 + aτ̄∥(aτ̄ − v0 cosχ) (
3

2
sin2 χ + 2

aτ̄

v0
(
aτ̄
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+v20 cosχ
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2
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2 χ
(1 + 3 cos2 χ)

2
ln(
∥v0 + aτ̄∥ + v0 cosχ − aτ̄

v0(1 + cosχ)
)] . (2.85)

This last equation represents the implicit definition of the mean duration τ̄ and distance λ̄.
If the cross section may be assumed locally constant around ε0: i.e. σ′tot ≃ 0, then the mean
distance between collisions equals the mean free path λ̄ = 1/(nairσtot). The mean duration τ̄ ,
however, still depends slightly on the electron’s parabolic trajectory through the implicit equation
(2.81a). The dependence of the cross section on the electron’s energy, further complicates the
determination of the mean inter-collision parameters. Although one could try to solve (2.85) to
determine τ̄ , this dreadful task can be circumvented in practice with a stochastic sampling of the
collision event known as the “null collision method” [538] presented in chapter 3 about numerical
algorithms.

Putting aside the issue of representing the average motion of a single electron, we now switch
to the task of representing the average motion of a great ensemble of electrons where statistical
averaging enables us to ascribe collective characteristics.
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2.3 Swarm Dynamics

When considering a large ensemble of electrons, the motion of each individual electron becomes
less relevant than the collective behaviour of the swarm as a whole. This section describes three
different perspectives for modelling an electron swarm which are ordered in increasing abstraction
coarseness of the properties pertaining to individual electrons.

2.3.1 Super-particles

The number of physical electrons in a patch of plasma exceeds by far the storage capabilities
in a simulation. A one-to-one correspondence between a physical and a simulated electron is
unrealisable. Therefore, one needs to devise some kind of agglomerating scheme for the repre-
sentation of a very large number of particles. The philosophy of a Monte Carlo code is not to
represent each single physical particle but a sample of their population which would accurately
reflect their statistical properties.

For instance, to sample a real swarm of 1012 electrons, one can simply select and simulate
100000 and attribute to each of them a statistical weight of w = 107. Each simulated electron
represents a number w of actual electrons. To distinguish between both, one calls an electron in
the simulation a “super-electron”.

We define therefrom the following quantities:

• Ne : the actual number of physically represented electrons, or “real” electrons,

• Ns : the number of sampled electrons or “super”-electrons featuring in the swarm simulation,

• wn : the statistical weight of the nth super-electron.

They are bound by a conservation law:

Ne ≡
Ns

∑
n=1

wn . (2.86)

We can furthermore keep track of some average quantities of the swarm such as:

Average kinetic energy ε̄ ≡
1

Ne

Ns

∑
n=1

wnεn , (2.87)

Centre of mass r̄ ≡
1

Ne

Ns

∑
n=1

wnrn , (2.88)

Spatial spread variance r 2○ − (r̄) 2○ =
1

Ne

Ns

∑
n=1

wn(rn − r̄)
2○ (2.89)

Flux velocity v̄ ≡
1

Ne

Ns

∑
n=1

wnvn . (2.90)

Position-velocity correlation r⊗ v ≡
1

Ne

Ns

∑
n=1

wnrn ⊗ vn . (2.91)
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The dyadic (or outer) product between two vectors u = (ux, uy, uz) and q = (qx, qy, qz)
produces a (3×3) matrix:

u⊗ q =
⎛
⎜
⎝

uxqx uxqy uxqz
uyqx uyqy uyqz
uzqx uzqy uzqz

⎞
⎟
⎠
. (2.92)

From there, we took the liberty in (2.89) of inaugurating the shorthand notation u 2○ ≡ u ⊗ u,
which is probably the most understandably natural way to abridge that expression.

As we will see later in section 3.3.3:

− from the linear variables r̄ (2.88) and v̄ (2.90), one can estimate the bulk and flux drift
velocity (and mobility) of the swarm;

∎ from quadratic variables r 2○ (2.89) and r⊗ v (2.91), one can estimate bulk and flux diffusion
tensors respectively.

Then, from the collision rates νc(εn) of each electron n, one can estimate the average reaction
rate ν̄c of the swarm on a specific process c whose cross section is σc:

ν̄c =
1

Ne

Ns

∑
n=1

wn

≡νc(εn)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ngasσc(εn)vn . (2.93)

The growth, avalanche or net multiplication rate ν̄e of the swarm is given by the balance
between the ionisation νi and attachment νa rates:

ν̄e ≡ ν̄i − ν̄a =
ngas

Ne

Ns

∑
n=1

wnvn(σi(εn) − σa(εn)) . (2.94)

At a time t = 0 with a total real number Ne,0, one can therefore expect the swarm to grow
instantaneously as:

Ne(t) ≃ Ne,0e
ν̄et , (2.95)

not to be confused with the growth rate of the super-electrons, of rather numerical interest:

ν̄s =
ngas

Ns

Ns

∑
n=1

��HHwnvn(σi(εn) − σa(εn)) , (2.96)

where we highlighted the difference with (2.94) which consists in disregarding the super-electron
weight wn. When unconstrained, the number of super-electrons electrons is similarly expected
to grow as Ns(t) ≃ Ns,0 exp(tν̄s), an issue to be kept in mind and which we will tackle in the
next chapter 3.

In addition to the instantaneous average position moments r̄ and r 2○, one can also calculate
their time derivatives from (2.88) and (2.89). One must however be extra cautious of the fact
that the total Ne(t) also increases (2.94) and the complication posed by the statistical weights
wn(t) and super-electron Ns(t) number which also vary with time. The overall effect is:

dr̄

dt
=

1

Ne

Ns

∑
n=1

vn
¬
drn
dt

wn+
dNs

dt
∑
i>Ns

ritwi
Ne
+

1

Ne

Ns

∑
n=1

rn

?
¬
dwn
dt
−

ν̄e
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
dlnNe

dt

1

Ne

Ns

∑
n=1

rnwn = v̄+νer−ν̄er̄ . (2.97)

One must somehow include both dwn/dt and the contribution of dNs/dt to the sum. Sepa-
rately, they cannot be known until one decides how to manage the number of super-electrons Ns

which is the theme of subsection 3.3.2. Nevertheless, together, they must equal the combined
production-rate-and-position overall correlation (νer) of the newly generated electrons.
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In particular if we decide to maintain Ns constant (we are free to do so), then dNs/dt = 0
and we may calculate the derivative of wn in the following way:

dwn(t)

dt
= νe(εn)wn . (2.98)

In physical terms, we are considering a number of wn (real) electrons all at the same energy εn
and same position rn. We wish to calculate how many new electrons (of any energy) emerge at
the position rn. This is given by the growth rate of one (super-)electron νe(εn) = νi(εn)− νa(εn)
multiplied by wn (because there are wn real electrons that have collided and spawned new elec-
trons). As a result, we obtain that the derivative of the centre of mass with time – the bulk
drift – is not exactly the flux velocity v̄ because of the variable number Ne of electrons in the
swarm. This is anticipates the discussion in subsection 2.3.3 about bulk and flux coefficients,
whose numerical calculation is assigned to section 3.3.3.

As rendered evident here, the methodology of super-particles is very handy and requires no
special effort for estimating a swarm’s properties. Nevertheless, its accuracy is limited by the
allocated number Ns of super-electrons and their representativeness wn. The average quantities
introduced here must not be understood as the exact properties of the electron swarm, but as
estimates thereof. In statistical terms, ā is a sample from a random variable whose real average
ȧ is unknown. However, if we can assume that the samples āk are independent from each other,
then their distribution obeys the central limit theorem. Therefrom, we may constrain ȧ into a
confidence interval through an average value ⟨a⟩ over many Nm (“m” for “measurement”) such
samples āk:

⟨a⟩ =
1

Nm

Nm

∑
k=1

āk . (2.99)

The precision of ⟨a⟩ is deteriorated by three aspects:

⊳ Quality : First, if the sampling of the super-electrons in ā is very uneven, meaning that there is
a large disparity in the statistical weights wn, the accuracy of the average swarm properties
is reduced since there is a smaller number of super-electrons (in a sample āk) whose weight
wn is significant. There are two ways to improve the quality of a sample āk:

i. set all weights wn = Ne/Ns equal: but this disables the possibility of enhancing electron
statistics in specific regions of the spectrum;

ii. increase the number of super-electrons Ns featuring in a sample (i.e. in the swarm);
and thus we shall do.

⊲ Quantity : Second, the size Nm of the sample limits the precision one can attain for ⟨a⟩. The
standard error ã on ⟨a⟩ scales as:

ã ≃
sa
√
Nm

, (2.100)

which depends on the standard deviation sa of the variable a, itself estimated as:

s2a = var[a] ≃
1

Nm − 1

Nm

∑
k=1
(āk − ⟨a⟩)

2 . (2.101)

The notation var[a] signifies the variance of the quantity a. For the readers curiously
peeping at the (Nm − 1) denominator, the answer to why “. . . /N is a biased whereas
. . . /(N−1) is an unbiased estimator of the variance var[a]” lies in Kendall [486, chapter 17].
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▽ Correlation : Third, if the samples āk are taken from the same simulation and that their time
interval is too small, they cannot be rightfully considered as independent measurements.
Having correlated samples does not only deteriorate the precision but it also blurs the
estimate of the uncertainty because it obliterates∗ the assumptions of the central limit
theorem.

In order to reduce the contamination from correlation, the sampling should be significantly
less frequent than the “memory retention” time of the system, which depends on the reduced
electric field E/ngas in the gas. 1000 samples within 1 ps are not worth 1000 samples over
1 ns. One can strive against correlation either by:

(a) Performing multiple independent simulations,

(b) Sampling measurements of a same simulation at random times with a minimal time
separation to be determined.

Taking the precautions mentioned above, if we admit that ā is a sample from a distribution
obeying a normal (Gaussian) of mean value ȧ and variance ṡa, then we know from inference
statistics [486, chapter 20] that:

the random variable
⟨a⟩ − ȧ

sa/
√
Nm

follows Student’s t distribution of Nm − 1 degrees of freedom.

This enables us to establish a confidence interval over the value of ȧ:

ȧ ∈ [⟨a⟩ − ãpNm−1; ⟨a⟩ + ãpNm−1] with 95% of probability.

The value pNm−1 represents the 97.5% percentile† of Student’s t distribution with Nm−1 degrees
of freedom (Nm samples). The exact value of pNm−1 depends on Nm of course but its dependence
weakens very fast as Nm increases. As an example:

For Nm ∈ [100; 1000000] ∶ pNm−1 ∈ [1.984; 1.96] ≃ 2 .

Therefore, our confidence intervals will be based on the timeless “2σ” rule for normal distributions.
Dealing with super-particles is an easy task. However, if one craves a “clean” statistical char-

acterisation of a swarm, lots of such super-particles are needed to sample the swarm distribution.
When “lots” means “too many”, one might change perspective and try to characterise the statisti-
cal distribution governing the swarm population directly instead of conjecturing it from samples
thereof. Ironically, we might say that if one does not wish to mingle with statistical inference
(as we have to with particle-based swarms), then one should ‘embed’ the statistics directly into
the physical model from the start. This leads us to the next subsection.

∗“oblitterare” – “erase the letters” in Latin. Its current use in English is, unfortunately, a forlorn euphemism.
†The correspondence between the confidence of 95% and the 97.5% percentile of the t distribution is a classic

examination question in an undergraduate statistical course. It is because the interval is double-sided so that one
combines the certainties that ȧ ≤ upper boundary and ȧ ≥ lower boundary, thus having to leave out 2.5% on both
sides.



2.3. SWARM DYNAMICS 79

2.3.2 Kinetic Equations

When the number Ne of physical electrons is very high, say >106, one could attempt to charac-
terise the electron swarm as a continuous distribution in configuration r and velocity v space.
Such description is known as the kinetic theory. Since our electrons are indistinguishable, we
may define an:

Electron distribution function in position-velocity space ∶ f(r,v; t) ,

representing the number of electrons per unit volume in this 6-dimensional position-velocity
space at a time t. Thus, f(r,v; t)d3rd3v gives the overall number of electrons located within
the infinitesimal volume d3rd3v.

In the most general case, the kinetic description of a plasma involves all the species (electrons,
neutral molecules, ions) composing the plasma. Then, one ought to define also distributions fα
for the other species α (molecules and ions) present in the plasma. Nevertheless, we rewind to
our assumptions exposed in section 2.1: namely, that the gas is static and homogeneous; i.e. the
molecules do not budge and their population does not change. This model is a classic in plasma
physics and is known as the Lorentz gas [816, chapter 6:p.134] in which:

I. m≪mα : electron mass negligible compared to molecules and ions

II. ne ≪ ngas : electron density much smaller than gas molecules density

In this idealisation, one needs to track the evolution of the electron distribution f(r,v; t) in
time which obeys a conservation law from the displacement of the electrons, due to their velocity
and acceleration imposed by the electric field E, and from their collisions with the molecules
[378a, eq.(1)]:

∂f

∂t
+ v ⋅ (∇f) −

eE

m
⋅ (∇vf) = C[f] (2.102)

This equation is known as the Boltzmann equation (for a Lorentz electron gas) and constitutes
the central part of the kinetic theory of plasmas. The crux of the Boltzmann equation lies in
the collisional term C[f] which regroups all the alterations incurred by the distribution f due to
electron-molecule collisions. Depending on the assumptions and approximations taken on C[f],
the Boltzmann equation may take a variety of different names.

A. For instance, if one discards collisions altogether (C[f] = 0), (2.102) becomes the Vlasov
equation [55, p.32:eq.(2.3)] which describes collision-less plasmas, afar from the situation
in which our electrons in air lie.

B. Alternatively, one can include the effect of binary collisions between electrons and individual
atoms and molecules. This is what we have been doing hitherto in section 2.2.2, where we
distinguished various processes c (elastic, inelastic), each characterised by their differential
cross section dσc/dΩ. Remaining faithful to our previous assumptions, we neglect the
relative motion of the gas molecules compared to electrons. The binary collision term Cb

for electrons with still (motionless) molecules is [73, §21.2:p.593:eq.(2.12)]:

Cb[f] = ngas∑
c

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫ v′
dσ′c
dΩ
(v′ → v)f(r,v′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entrance flux

d3v′ − ∫ v
dσc
dΩ
(v → v′′)f(r,v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exit flux

d3v′′

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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It is a balance of fluxes between the incoming electrons originating from various v′ velocities
and ending up in v through a collision, and the outgoing electrons which are exiting the v
cell after colliding.

The binary collision term may be developed further for elastic scattering by assuming
that electron velocity distributions are not correlated with the scattering distributions.
Exploiting symmetry properties from the detailed balancing between direct and reverse
scattering we have [73, §21.4:p.609:eq.(4.8)]:

Cb,e[f] = ngas∫ [f(r,v
′; t) − f(r,v; t)]v

dσe
dΩ

dΩ . (2.103)

The same symmetry argument applied to inelastic scattering would involve the distribution
of excited states j of molecules nj so as to include direct i → j collisions but also reverse
superelastic collisions from a state j to i (i.e. [f(vj)nj vi/vj − f(vi)ni]viσi).

C. In weakly or partially ionised plasma, one should complement binary collisions with long-
range Coulomb collisions of electrons among themselves or with ions.

First, one must define the Debye shielding λD as the limiting distance for Coulomb interac-
tions between charged particles in a quasi-neutral plasma. That is, a charged particle only
interacts with other (charged) particles that lie within a sphere of λD [73, p.8:eq.(2.3)]:

λD =

√
ϵ0kBT

nee2
, (2.104)

where ϵ0 is the vacuum electric permittivity, kB Boltzmann’s constant, Te the temperature
of the plasma∗ (electrons in this case but not of the neutral gas Te ≠ Tgas) and ne the
electron density.

From the Debye length, one can retrieve the renowned Coulomb logarithm lnΛc as [55,
816, chapter 1:p.12–4:eqs.(1.12–20), eq.(6.3.26)]:

Λc ≡
λD
bπ

2

=
4πµ⟨←→v 2⟩

√
ϵ30kBTe√

nee3z
(2.105)

This term corresponds to the ratio between the Debye length λD and the impact parameter
of Coulombic collisions whose deviation corresponds to an angle of 90○ [55, 816, eq.(1.13),
eq.(6.3.17)]. Its value depends on the properties of the colliding charged particles, through
the reduced mass µ, the (square average of the) relative collision velocity ⟨←→v 2⟩ and the
charge number z. Therefore [73, p.585:eq.(8.14)]:

∗For a non-Maxwellian electron distribution, which is always our case, one should interpret kBTe as equalling
two-thirds of the electrons’ average kinetic energy as an ad hoc adjustment.
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For e-ion collisions ∶

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

µ ≈m

⟨←→v ⟩ ≈ ⟨v⟩ =

√
8kBTe
πm

(ions are ∼immobile)

z = Zi (usually just 1)

For e-e- collisions ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ =
m

2

⟨←→v ⟩ ≈
3kBTe
m/2

z = 1

for a Maxwellian electron distribution at a temperature of Te. Most likely, the average
ionisation degree Zi of the ions (for weakly ionised plasma) is only Zi ≃ 1.

With the assumptions above, the momentum-transfer cross section between electrons and
ions is defined with the Coulomb logarithm as [73, 590, §20.8:p.585:eq.(8.10–3), p.683:eq.(18.1.20)]:

σm,i = 4π (
Zie

2

4πϵ0mv2
)

2

lnΛc . (2.106)

Consideration of long-range Coulomb collisions restricted to the Debye sphere leads to the
Fokker-Planck collision term [55, 533, p.304:eq.(4), chapter 13.2:p.385:eq.(13.20)]:

Cc[f] = −nion∇v ⋅ (f(r,v; t)V +
nion
2
∇v(f(r,v; t)D)) . (2.107)

The vector V represents an average velocity change per unit time from Coulomb collisions
while the tensorD is a diffusion tensor (velocity rate change correlation per unit time). For
electrons, both depend on the Coulomb logarithm lnΛc (2.105) and the relative collision
velocity ←→v as [73, p.615:eq.(5.15)]:

V =
Z2e4

4πϵ0

lnΛc

mµ←→v
←̂→v (2.108)

D =
Z2e4

4πϵ0

1

m2←→v
(lnΛcδij − (ln(Λc) − 1)δizδjz) (2.109)

The velocity change rate V is aligned with the direction of the relative inter-particle collision
velocity ←→v . The diffusion tensor is expressed in the reference frame where the z axis is
aligned with ←→v .

Those approximations depend on an accurate knowledge of the electron distribution function
f which ... is at the heart of our preoccupations. In other words, if no further approximations
are made, Boltzmann’s equation (2.102) is deterringly integro-differential.

Two-term approximation

The treatment of the Boltzmann equation (2.102) can be considerably simplified if one makes
reasonable assumptions on the electron distribution f(r,v). Without any external electric field,
the solution of the Boltzmann equation is well known to converge to a Maxwellian distribution
in velocity space (see section B.1) and a gradually flattening distribution in configuration space
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whose exact shape depends on the initial conditions [73, chapter 7]. In presence of an electric
field, the Maxwell distribution should be deformed to reflect the anisotropy.

For a relatively “weak” electric field E, the distribution can be approximated by a truncation
of a Legendre expansion in the angle χ between the electron’s velocity v and E (as sketched in
2.3)[73, 414, p.45:eq.(2.5), §21.4.1:eq.(4.1)]:

f(r,v; t) = P0(cosχ)f0(r,v; t) + P1(cosχ)f1(r,v; t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Two term approx.

+P2(cosχ)f2(r,v; t) + . . . (2.110)

Due to symmetry, the dependence in the azimuthal angle ϕ disappears. The restriction to the
two first terms is known as the two-term approximation comprising:

• f0 : the isotropic distribution component (P0 = 1)

▸ cosχf1 : the anisotropic perturbation (P1 = cosχ)

Under this approximation, the various binary electron-neutral and Coulomb collision terms
may be calculated by integrating over χ with the postulated simple angular distribution in
velocities. Putting the terms together, we get two coupled equations governing the evolution of
f0 and f1 after projecting (2.102) on P0 and P1 respectively and integrating over cosχ and ϕ
[590, p.682:eqs.(18.1.14&11)]:

∂f0
∂t
+
v

3

∂f1
∂z
−
eE

m

1

3v2
∂(v2f1)

∂v
= Cen

0 +C
ei
0 +C

ee
0 (2.111a)

∂f1
∂t
+ v

∂f0
∂z
−
eE

m

∂f0
∂v
= Cen

1 +C
ei
1 +C

ee
1 (2.111b)

The collision terms are now separated into electron collisions with neutral molecules (Cen),
with ions (Cei) and with other electrons (Cee) [590, p.682–3:eqs.(18.1.11–23)]:

Isotropic :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e-neutrals: Cen
0

e-ions: Cei
0

⎫⎪⎪
⎬
⎪⎪⎭

=
m

Mg

1

v2
∂

∂v
[v3νm,g (f0 +

eTg

mv

∂f0
∂v
)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scattering

−∑
c∈g
(νcf0 − ν

′
cf
′
0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Inelastic collisions

inter-e−: Cee
0 =σeev

2 ∂

∂v
[H(v)f0 +

v

3
G(v)

∂f0
∂v
]

(2.112a)

(2.112b)

Anisotropic :

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

e-neutrals : Cen
1

e-ions : Cei
1

⎫⎪⎪
⎬
⎪⎪⎭

= − νm,gf1 see comment in Huxley [414, p.47]

inter-e− : Cee
1 = . . . see Hagelaar [376, eq.(19)]

(2.113a)

(2.113b)

In (2.112a), we use the shorthand f ′0 ≡ f0(r,v
′; t) at the velocity v′ corresponding to the energy

ε′ = ε+∆Ec from the inelastic collision c with excitation threshold Ec. The collision frequency ν′c
of superelastic collisions may be related to the inelastic process: νc′ = ncv′σ′c(v′) = νc nc/ng v/v′,
but requires the knowledge of the density of excited states nc at the energy Ec.

The electron collision terms with neutral molecules and ions have the same structure: the
first term corresponds to the effect of scattering in elastic (and inelastic) collisions whereas the
second term regroups the outgoing and incoming flux from inelastic collisions. If excited species
were present, one would additionally have superelastic terms which would resemble (2.51).
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The distinction between ions (g=‘i’) and neutral (g=‘n’) is conveyed in the parameters: mass
Mg, momentum transfer rate νm,g and temperature Tg. The most important difference lies in
the momentum transfer rate νm,g which is obtained from the density ng of the particles (neutral
or ion) and the momentum-transfer cross section:

νm,g = ngvσm,g (2.114)

The momentum transfer cross section between electrons and ions σm,i has been given above
in (2.106), whereas the one with neutrals is obtained from measurements or quantum calculations
as treated in the second part chapter 11.1.

The electron-neutral/ion collision term for the anisotropic part Cen/i
1 (2.113a) has a simpler

form which depends on the momentum transfer rate νm. In principle, this should include also
the momentum transferred due to inelastic collisions through the formally correct cross section
(7.7). In practice, as commented by Huxley [414, p.(47)], momentum losses are predominantly
due to elastic collisions so one usually calculates νm only from these.

Electron-electron interactions depend on the inter-electron momentum-transfer cross section
σee obtained also from (2.106) with the appropriate value for the Coulomb logarithm (2.105).
The terms in the bracket of (2.112b) are known as the Rosenbluth et al. potentials given by [590,
eqs.(18.1.22–3)]:

H(v) = 4π∫
v

0
f0(r,v

′; t)v′2 dv′ , (2.115)

G(v) = 4π (
1

v2
∫

v

0
f0(r,v

′; t)v′4 dv′ + v∫
∞

v
f0(r,v

′; t)v′ dv′) , (2.116)

which result from a more elaborate treatment [785] of the Fokker-Planck collision term given
above in (2.107).

The inter-electron collision term Cee
1 for the anisotropic distribution part is a more cumber-

some expression which is given in Hagelaar [376, eq.(19)] and references therein.
The relative importance of the isotropic and anisotropic collision terms in (2.112–2.113)

depend on the densities of the colliding particles. Thus, one defines the degree of ionisation as
the ratio between the densities of ions nion and the gas molecules ngas (neutrals and ions alike)
[816, p.394:eq.(12.6.4)]:

ζi ≡
nion
ngas

. (2.117)

One can equivalently define a ‘degree of ionisation’ from the electron density ne. However,
because strong charge separations entail intense electric fields which tend to be quickly screened
by the free electrons, the densities of ions nion and of electrons ne are comparable in magnitude.
Therefore, one often assumes the quasi-neutral approximation ne ≊ nion. This is why, the term
‘degree of ionisation’ is often used ambivalently to denote either ne/ngas [e.g. 816, p.149:eq.(6.2.3)]
or nion/ngas [816, p.394:eq.(12.6.4)].

Gases are considered to be weakly ionised when the degrees of ionisation are lower than
ζi < 10

−6 [376, fig.3]. Still, in monatomic gases (noble gases in particular), Coulomb collisions are
important at low electric fields because there are essentially no inelastic losses of electrons at low
energies with neutral atoms (no rotational or vibrational excitations). Therefore, some authors
consider that the limit ζi < 10−8 defines very weakly ionised gases, where Coulomb collision bear
no importance irrespective of the electric field [816, §6.2:eq.(6.2.7)].
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Stationary Electron Energy Spectrum

Boltzmann’s equation (2.102) expresses the evolution of a swarm in space and velocity distribu-
tion. As we know, electrons react very swiftly to changes in the electric field E and one might
take a further step in simplification by separating the spatial and kinetic dependence of the
distribution, that is [378a, eq.(8)]:

f0,1(r,v; t) =
1

4π
f0,1v (v;E/ngas)ne(r, t) . (2.118)

The variation of the kinetic distribution fv in space and time is implicit through the electric
field E(r, t). This implies that one disregards the relaxation of the kinetic distribution to a
stationary shape fv which depends only on the local reduced electric field E/ngas. One only
considers the non-stationary evolution of the swarm through its density ne varying in space
(drift and diffusion) and time (exponential growth).

The kinetic distribution is normalised so as to verify [378a, eq.(4)]:

∫
∞

0
f0(r,v, t)4πv

2 dv = ne(r, t) ⇒∫ f0v(v)v
2 dv = 1 . (2.119)

Most of the time, instead of considering the kinetic distribution (in v), one prefers to work
with the electron kinetic energy ε:

fv(v)v
2 dv = fv(v(ε))ε

2

m

dv

dε
dε = fv(v(ε))

1

2
(
2

m
)

3
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EEDF : ≡fε(ε)

√
εdε . (2.120)

From there, one defines the electron energy distribution function (EEDF) f0ε ≡ fε which only
refers to the isotropic part, so that the index ‘0’ will be implicit in the notation. The ratio f1/f0
is known as the anisotropy. According to (2.119), the EEDF verifies the following normalisation:

∫ f0v(v)v
2 dv = ∫ f0ε (ε)

√
εdε = 1 . (2.121)

Hence, the combined isotropic distribution function f0(r, ε, t) can be written as [378a, eq.(8)]:

f0(r, ε, t) =
2

4π
(
m

2
)

3
2

ne(r, t)f
0
ε (ε) . (2.122)

In absence of electric fields, the stationary energy distribution of electrons in a gas or plasma
at a temperature Tgas is the well-known Maxwellian which is reminded in appendix B.1 (B.13).

In presence of an electric field, the stationary distribution depends on the relative importance
of electron-molecule and electron-electron collisions through the parameter [548, p.42:eq.(2.1.28)]:

ζ̄ ≡ ∫
∞

0

∆E

ε

σtot(ε)

σee(ε)
fε(ε)

√
εdε , (2.123)

which compares the average energy loss ∆E in an electron-neutral collision of cross section σtot to
the effect of electron-electron collisions through σee. An EEDF fε must be assumed to estimate
this parameter and can be taken roughly as a Maxwellian at the mean energy ε̄ of the swarm.
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There are essentially two analytical approximations to the EEDF in a weakly ionised plasma
dominated by electron-neutral collisions:

Davydov. At moderate but not high electric fields 1Td < E < 100Td, the electron-neutral
collisions dominate and the distribution is in non-equilibrium. This is because the temper-
ature of the gas Tgas is much lower than the average energy of electrons∗ and also because
electrons practically do not exchange energy among themselves. In these conditions, the
isotropic term f0 is given by the Davydov distribution [548, p.44:eq.(2.1.35)]:

f̃0(ε) = C exp(−∫
ε

0

dε′

kBTgas + (2e2/3δεm)(E2/νtot(ε′))
) , (2.124)

where C is just a normalising coefficient. The parameter δε represents the average relative
energy loss of an electron in a collision and depends on the gas composition. When the gas
is monatomic, one can assume that most energy losses come from elastic collisions and thus
that δε = 2m/M from the relative energy loss in an elastic collision of isotropic scattering
with M being the mass of a gas molecule (see eq.2.38 on p. 56 when ⟨cos θ⟩ = 0).

Druyvesteyn. Most often, the temperature of the gas Tgas is negligible compared to the energy
gained by electrons from the electric field between two collisions. Thus, one can neglect
the kBTgas term in (2.124). Additionally, if one takes the (horribly rough) approximation
that the total cross section is constant σtot(ε) = cst.; then, the collision frequency is simply
proportional to the velocity: νtot ∝

√
ε. Then, the integral in (2.124) can be calculated

and one obtains the Druyvesteyn distribution [762, p.97:eq.(5.39)]:

f̃0(ε) = C exp(−3δε
ε2

(eEλ̄)2
) , (2.125)

where λ̄ = 1/ngasσtot is the mean free path, so that eEλ̄ is traditionally interpreted as the
mean energy gained by electrons between two collisions (as discussed on p. 73). What is
important to remember is that the tail of the Druyvesteyn distribution decreases faster
∼ exp(−ε2) than a typical Maxwellian ∼ exp(−ε). This implies that there are relatively
less high-energy electrons in non-equilibrium weakly ionised plasmas at moderate electric
fields (than if they were thermalised at the temperature Te = 2ε̄/(3kB) corresponding to
their average kinetic energy).

In general, EEDF may not be expressed analytically, and must be either calculated from
the two-term kinetic approximation or through Monte Carlo simulations as done presently. In
section 3.3.1, we explain how we calculate the EEDF of our simulated electron swarms. The
EEDF is the connection point between our simulations and the kinetic approach. From the EEDF
and the set of collision cross sections of electrons with the gas molecules, one can, under the two-
term approximation, calculate all other relevant transport coefficients (mobility, diffusion, growth
rate) which are given in the next subsection 2.3.3. Thus, an agreement in EEDF between the
kinetic and the super-particle approach is key to the validation of our model which we undertake
in section 4.3.3.

The two term approximation (2.110) enables us to integrate Boltzmann’s equation in velocity
angular space and obtain (2.111). With the stationary spectrum (2.118), the velocity distribution
of the swarm is known and “frozen”. So one might leave it aside altogether and integrate the
distribution over the velocity space and only treat the electron density in configuration space
and track its evolution in time. This leads us to the next subsection.

∗If that were not the case, then there would be a conflict with the assumption that the plasma is weakly
ionised from the Boltzmann-Saha equation.
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2.3.3 Fluid Equations

The kinetic approach to an electron swarm strives to describe the evolution of gas distribution
both in configuration space and velocity. The fluid approach is obtained from Boltzmann’s
equation through the integration of the distribution in velocity space [234, §2.2] leaving the
continuity equation for the density ne(r, t) [587, eqs.(1–2)]:

∂ne
∂t
−∇ ⋅

⎛
⎜
⎝
ne µ̇eE
±
≡−v̇

+Ḋe ⋅ ∇ne
⎞
⎟
⎠
= S , (2.126)

evolving according to a source term S and transport parameters: the electron mobility µ̇e and
diffusion tensor Ḋe. The product of the mobility and the electric field defines an average flux
velocity of the electron swarm:

v̇ ≡ −µ̇eE , (2.127)

oriented opposite to the electric field in virtue of electrons’ negative charge. One should note
that this velocity is not the average drift velocity vd at which the swarm progresses in the gas.
This is because new electrons may emerge (or electrons may disappear) from the source (or sink)
term S which is calculated from the balance between the production and destruction rate of
electrons from ionisation and attachment respectively:

S =
y

ngasv(σion(v) − σatt(v))f(r,v, t)d
3v ≡ νene , (2.128)

where in the last term, we express the source S simply as an exponential growth rate νe of the
electron swarm of local density ne.

Due to the non-conservative total number of electrons, one should distinguish between flux
and bulk transport coefficients:

○ Flux coefficients – noted with a dot “ ȧ” : emerge from the immediate transport properties
determined by the swarm’s velocity distribution f(r,v, t) at a position r and time t;

● Bulk coefficients : represent the average transport properties of the swarm when taken as
a whole and accounting for non-conservative collisions: ionisation and attachment.

This dual distinction is a well-known classic in the plasma community and more information
can be found in Petrović et al.’s review [747, §4.1–4.5]. In particular, Li et al. [588, §2.2.1:eq.(25)]
recommends not to use bulk coefficients in fluid equation (2.126) to approximate non-local effects
due to the source term. A discussion of the extension of fluid models to include non-local effects
is given in Li [585, §4.2:p.57–69].

In a steady-state configuration such as a Townsend discharge, the local density ne(r) depends
only on the space coordinate. Then, one can define Townsend’s (first) ionisation coefficient αi

[606, 640, p.52–66, p.2–7], expressing the spatial growth of the swarm due to ionisation, as [378a,
eq.(16)]:

αi ≡ −
1

ne
Ê ⋅ (∇ne) . (2.129)

Simple expressions may be derived to calculate flux coefficients with the following assump-
tions:

• Low anisotropy: at low to moderate electric fields (below conventional breakdown), the
velocity distribution can be approximated by the two-term expansion (2.118) with a small
anisotropy f1/f0 ≪ 1.
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• Local equilibrium: fv(v, t) relaxes faster than the swarm density ne(r, t) drifts and diffuses
over spatial scales of inhomogeneities in the medium (electric field, gas density, tempera-
ture, composition).

• Steady-state: the swarm drifts and diffuses but the density ne(r) remains stationary from
the steady production of electrons through ionisation.

Then, the mobility µ0, the (isotropic or lateral) diffusion D0, source S0 and ionisation αi coeffi-
cients are obtained from the isotropic velocity distribution f0 [590, p.685:eq.(18.1.28–9)]:

µ0 = −
4πe

3mnengas
∫
∞

0

1

σm

∂f0(v)

∂v
v2 dv (2.130)

D0 =
4π

3nengas
∫
∞

0

v

σm
f0v

2 dv (2.131)

S0 = 4πnengas∫
∞

0
v(σion(v) − σatt(v))f0v

2 dv = neν0 (2.132)

αi =
µ0E

2D0
(1 −

√

1 −
4D0ν̄e
(µ0E)2

) ≈
ν0
µ0E

=
ν0
v0

(2.133)

For non steady-state regimes, such as the temporal exponential growth of swarms, one may
add a correction term to the momentum transfer cross section σm which accounts for the cre-
ation of new electrons as proposed by Hagelaar and Pitchford [378a, eqs.(11–2)]. When the
(isotropic) diffusion D0 and multiplication rates ν0 are much smaller than the drift velocity v0,
the Townsend’s ionisation coefficient αi may be very simply estimated as the ratio between ν0
and v0.

For the expression giving the longitudinal D∥ diffusion coefficient (along the direction of the
electric field E), one can consult Huxley [414, eq.(50b)].

In general, one does not need to rely on the two-term approximation nor the stationary spec-
trum assumption to obtain transport parameters of mobility and diffusion. Those, as used in
(2.126), can be estimated in regimes beyond the validity of those approximations from Monte
Carlo simulations such as described in Li et al. [588, §2.1.3]. The underlying assumption, nonethe-
less, is the local equilibrium with the electric field E(t, r) (and gas characteristics) at a given
time and position (t, r).

For instance, electrons in a gas at reduced electric fields near conventional breakdown (∼
100Td) reach a stable velocity distribution in a matter of ≲ 10ps (see our relaxation time
chart 5.6). One can generally assume in a discharge that the electron kinetic distribution at
any instant and position (t, r) conforms to the local electric field. From there, the transport
parameters µe(E),De(E) are made functions of the electric field.

This enables a very computationally efficient coupling of Monte Carlo particle codes with
fluid simulations as the former yield the transport parameters as input to the fluid equation
(2.126), which are then used to derive the field E from Poisson’s equation of the electronic ne
and ionic ni densities∗ [588, eq.(23)]:

∇ ⋅E =
−ene + eni

ϵ0
. (2.134)

∗Note that in this case, the ionic density comprises the ionisation degree of each ion, so for instance doubly
charged ions would be counted twice in ni.
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Notwithstanding, the place where large inhomogeneities are concentrated on small spatial
scales is at the streamer head or ionisation fronts. There, non-local effects may be important
[686]. This occurs when electrons of higher energies, generated in a region of high electric
field, escape the region and penetrate neighbouring zones where the electric field is screened.
In these zones, the electron distribution in velocity is not in equilibrium with the local electric
field and one needs to include corrections due to such non-local displacement [586]. For greater
accuracy, it is rather necessary to describe the full kinetic electron distribution and recur to
Monte Carlo simulation of high-energy electrons to unveil the physics at play [281, 587]. The
latter requirement, namely modelling the high-energy tail of electron swarms, is at the core
preoccupation of the first part of this thesis. Further discussion of modelling low-temperature
plasmas in the fluid approach can be found in Robson et al. [781].

In the next chapter 3, we explain how our particle code is implemented numerically and how
to retrieve EEDF and swarm parameters from the simulation results.



Chapter 3

Numerical Modelling

After having presented several aspects of the physical model used to describe electron swarms in
electrified gases, the present chapter regroups the various methodologies used to implement this
model numerically.

The structure of the code is as follows. We store the electron swarm information into a
structured array of Ns rows with the following entries:

• Initial conditions

– t0 : initial time of creation
– r0 : initial location of creation (useful to locate positive ions)
– ε0 : initial kinetic energy (useful to runaway statistics)

• Current conditions

– t : current time
– δtf : free flight time (till next null/collision event)
– r : current position
– v̂ : velocity direction (unit vector)
– Kinetic variables

∗ ε : current energy
∗ v : velocity (norm)
∗ p : momentum (norm)
∗ γ : Lorentz factor (2.16a)

– w : super-electron statistical weight
– A boolean value indicating whether the electron is destroyed or alive

The array is passed to routines who perform operations such as propagation in an electric
field (3.1), collisions (3.2) and scattering (3.2.3), or calculation of collective swarm properties
(3.3). These tasks are explained in the ensuing sections.

The swarm simulation is orchestrated by a minimal time-step δt which we recommend to
take as the inverse of the maximal collision frequency:

δt ≡
1

νmax
where νmax ≡max

ε
(σtot(ε)vngas) . (3.1)

89
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3.1 Electron Motion

The free motion of an electron in an electromagnetic field has been exposed in section 2.2. In
the context of thermal runaway, we only focused on the acceleration in an electric field E ∥ ẑ
aligned with the z axis in gases at atmospheric pressure.

We consider an electron whose initial position is r0 and momentum p0 forms an angle cosχ0 =

p0 ⋅E/(p0E) with the direction of the electric field. After a time interval ∆t, the electron state
is described by:

p = −eE∆t + p0 , (3.2a)

r = r0 +
−Ê

eE
mc2(γ − γ0)

+
p̂⊥c

eE
ln
⎛

⎝

−p0 cosχ0 + eE∆t +
√
(mcγ0)2 + (eE∆t)2 − 2p0eE∆t cosχ0

mcγ0 − p0 cosχ0

⎞

⎠
. (3.2b)

The vector p⊥ is the component of p0 which is perpendicular to E: i.e. p⊥ = (p0−p0Ê cosχ0).
In practice, the time interval ∆t is sampled from the mean collision time from the null collision

method as described in the next section 3.2.1 (3.3).

3.2 Sampling of Collisions

The collisions are modelled as stochastic processes regardless of the electron energy. That is,
we do not approximate high-energy scattering and collisions through a continuous friction force
(2.72).

Every collision is described by a discrete set (or continuous distribution) of possible outcomes
to which a probability (or probability density) is associated. Every time we need to sample the
outcome of a collision event from a certain probability density distribution p(ζ) of a quantity ζ,
we sample the value of a random variable X, uniformly distributed between 0 and 1. Instances
of X will be denoted by x with 0 ≤ x ≤ 1.

3.2.1 Null collision

From the discussion in section 2.2.3 page 73, we realise that one cannot simply use the total
collision frequency νtot(ε) = σtot(ε)ngasv, to sample the next collision occurrence of an electron
whose current energy is ε. This is because (i) the electron velocity v varies during the flight time
due to acceleration by the electric field and (ii) the cross section σtot(ε) varies with energy (and
may promptly vary near resonances).

Nevertheless, one can perform a stochastically equivalent method to the sampling of an
electron’s collision with the so-called “null-collision” technique proposed by Lin and Bardsley
[591] and further developed by Koura [537] and Koura [538]. Since the total cross section σtot
of electron interaction with the gas molecules is known, one can find the maximal total collision
frequency νmax of that electron within the gas in (3.1). Thus, one knows the maximal rate at
which an electron may collide on average with a molecule. This maximal rate gives a baseline
for sampling randomly collisions of any smaller rate.
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The null collision technique proceeds as follows:

1. Sample (with x) a mean free flight δtf from a Poisson process at a νmax probability rate
per unit time:

δtf = −
ln(1 − x)

νmax
. (3.3)

2. Let the electron propagate by this free time δtf in the equation of motion (3.2). The
electron is now at a new energy ε′.

3. Sample (with another x′) whether a physical collision ought to take place at the energy ε′

from the total cross section:

xcoll ≡
σtot(ε

′)v′

νmax

⎧⎪⎪
⎨
⎪⎪⎩

xcoll ≤ x
′ A physical collision is sampled→ proceed to step 4

xcoll > x
′ A “null collision” event→ return to step 1

(3.4)

4. In the case x′ < xcoll = σtot(ε′)v′/νmax, then recycle the randomly sampled x′ through:

x′′ ≡
x′

xcoll
, (3.5)

and use x′′ to select which collision has occurred with algorithm 3.2.2.

These steps are repeated as many times as necessary until the mean free time δtf sampled
from (3.3) exceeds the minimal timestep δt from (3.1) at the current time of the simulation as:
t + δtf > Ntδt where t is the current time of the electron and Nt the current clock (counted in
minimal timesteps δt) of the simulation. Therefore, the particular choice of δt has no physical
influence on the simulation.

The null collision technique fills the space of collision processes with an imaginary “null
collision” whose presence accounts for the variation of the true collision frequency νtot(ε) of
an electron at any energy ε. For a clearer introduction, there are numerous useful graphical
explanations of this methodology available in the literature [588, 677, fig. 6, fig. 1].

From the x′′ value of step 4, we now proceed to the selection of the collision type which is
explained in the next subsection.

3.2.2 Discrete

We consider a discrete set of processes si with i = 1..Nc. Each process si has an occurrence
probability pi(ε) which depends on the electron energy.

We define the cumulative sum Ći of probabilities:

Ći(ε) ≡
i

∑
k=1

pk(ε) and Ć0 ≡ 0 . (3.6)

From a randomly sampled instance x′′, the process si that shall be selected verifies:

i ∶ Ći−1 < x
′′ ≤ Ći (3.7)

Since, most of the time, the processes are not uniformly distributed pi(ε) ≠ pj(ε) for i ≠ j,
there is no straightforward way to select the process si than through an iteration loop over i.
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Figure 3.1: Relative proportion all of electron-molecule collision cross sections in ambient air
according to importance of collision type and abundance of species.

This iteration is applied concretely to select which collision event c occurs when an electron is
bound to collide after having successfully undergone the test (3.4) step 3 of the null collision
method. The probabilities are the ratios pc(ε) = σc(ε)/σtot(ε) for the collision c.

In order to be efficient, the collisions with most important cross sections and most abundant
species are ordered first in the iteration list. The relative importance of cross sections can be
visualised on figure 3.1 where the coloured areas represent the proportion of each collision process
to the total cross section in ambient air. From bottom to top, the cross sections types have been
ordered so as to have the most important ones at the bottom (first in the list).

Our ordering algorithm sets the priority in the following way:

1. Elastic

2. Ionisation

3. Attachment

4. Vibrational (v = 0→ 1,2, . . . )

5. Electronic including Dissociation (Eth ascending)

6. Bremsstrahlung

E < Ek

Evidently, at low electric fields E below the conventional breakdown Ek ≃ 3MV/m, there is no
or little ionisation since the average electron kinetic energy is in the eV range. Then, it makes
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no sense to put the ionisation cross section second in place. In this case (E < Ek), the ionisation
events are moved to the penultimate place of the list (before Bremsstrahlung).

Another application of the discrete sampling (3.6–3.7) is when selecting different levels of
partial ionisation due to a particular subshell (of binding energy Bi) of an atom/molecule; or
when selecting a vibronic transition 0→ v′ from the same electronic level.

For ionisation, we compute the cross sections σi for each subshell i according to (11.120) from
the model developed in the second part section 11.5.

For excitations, we use Franck-Condon (or transition probability∗) factors which are assumed
independent of the electron energy (see appendix D.2 and references throughout 11.4).

3.2.3 Continuous

The generalisation of the previous situation to a continuous distribution of processes is not diffi-
cult. The probability distribution of the processes labelled by a continuous variable ζ constrained
to the interval [ζ0, ζ1], is noted as (ζ; ε), which depends usually on the electron energy.

We define the (normalised) cumulative integral Ć(ζ; ε) by :

Ć(ζ; ε) ≡ ∫
ζ

ζ0
p(ζ; ε)dζ for ζ ∈ [ζ0, ζ1] with Ć(ζ1; ε) = 1 (3.8)

The selection of ζ in a random event sampled at x consists in reversing the integral equation:

x = Ć(ζ; ε) = ∫
ζ

ζ0
p(ζ; ε)dζ (3.9)

Naively, this would require each time to find the root of Ć(ζ)−x = 0. Fortunately, this costly
method can be avoided by resorting to either of three more practical solutions to revert (3.9).

A) A simple, yet accurate analytical expression can be found for Ć(ζ; ε) and then reversed to
express R(x; ε) = ζ.

B) The function R(x; ε) can be approximated by an analytical expression, typically a polyno-
mial.

C) The last resort is to store R(x; (ε)) on a uniformly sampled grid (with a scaling transfor-
mation T (ε) on the energy ε if need be). Then, a linear interpolation on a uniform grid
can be as fast (or faster) than an analytical expression. The main drawback is memory
consumption though it did not pose any problem for our purposes.

Thus, we concretely used the solution C) for three different applications:

I. Scattering: when sampling the angle θ (standing for ζ) of a differential cross section dσ/dΩ:

x =
∫

θ

0

dσ

dΩ
(θ; ε) sin θ dθ

∫
π

0

dσ

dΩ
(θ; ε) sin θ dθ

(3.10)

Due to the axial symmetry in scattering events, the azimuthal angle φ is sampled uniformly
as φ = 2πx.

∗Careful that a Franck-Condon factor is given through the approximation underlying (D.5), whereas a tran-
sition probability PXa′(0→ v′) can be estimated experimentally. Thus their values are not necessarily equal.
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At energies above 10 keV, we indulged in using the analytical reverse formula of a screened
Rutherford expression (11.4) whose shape we fitted in order to reproduce the average
scattering cosine ⟨cos θ⟩ of our computed DCS in the high energy Born approximation
from section 11.1.4. Thus:

cos θ(ε > 10keV) = 1 − x
2η̄

1 − x + η̄
with η̄ =

1

(2kā)2
, (3.11)

where ā is to be picked from the first row of table 11.4, but not without reading sec-
tion 11.1.4 so as to understand the implications and premises.

II. Excitation continuum: sometimes, the energy E lost by an electron in an excitation is
distributed continuously over a segment [E0,E1], (E stands for ζ). This is the case of the
Schumann-Runge continuum and Herzberg pseudo-continuum of molecular oxygen.

The cumulative integral of the generic probability distribution given in (11.66) is:

ĆM(E) = ∫
E

E0
(ζ − E0)

s(ζ − E1)
2 dζ , (3.12)

= (E − E0)
s+1 (

(E − E0)

s + 3
(E − 2E1) − 2

(E1 − E0)

s + 2
+
(E1 − E0)

2

s + 1
) ⋅
(s + 3)(s + 2)(s + 1)

2(E1 − E0)s+3
.

The difficulty in reversing this equation forced us to use a uniform sampling in the cumu-
lative space.

Note that when the electron’s kinetic energy lies below the maximal excitation energy loss
ε < E , one has to restrict the integral to ζ < ε. Then, the uniformly sampled variable X
must be rescaled down to Ć(ε). This is explained again in the next chapter section 4.1.1

III. Ionisation: requires sampling on the secondary electron’s kinetic energy ε2. This time, the
technical difficulty is that one must sample in a region of two-dimensional space ε0×ε2 of the
incident and ejected kinetic energies, which is not a rectangle product since ε2 ≤ (ε0−B)/2.
We circumvented this problem by defining the ratio of the secondary energy to its maximal
value:

ξε ≡
2ε2

ε0 −B
. (3.13)

Thence, we generated a 5000 ×1000 matrixMε0,ξε of [ε0, ξε] values for the initial energy of
the electron prior to ionisation ε0 ∈ [I, εmax] and normalised secondary energies ξε ∈ [0,1].
The values in ε0 were logarithmically spaced whereas a transformation ξε = (10x−1)/9 was
used from a uniformly distributed variable x ∈ [0,1] so as to have an enhanced resolution
at small ξε which are more probable at higher energies.
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Given the matrix Mε0,ξε , we computed the cumulative integral ĆRBEQ* of the RBEQ*
model which is:

ĆRBEQ*(ε0, ξε) ≡ ∫
ε2

0

dσRBEQ*

dε′
dε′ , where ε2 = ξε

(ε0 −B)

2
; (3.14)

=
4πa20α

2N

β̃2
[
Q

2
(ln(

mc2β20γ
2
0

2B
) − β20 +Cd)(1 −

B2

(ε2 +B)2
+

B2

(ε0 − ε2)2
−
B2

ε20
)

+(2 −Q)(1 −
B

ε2 +B
+

1

(ε0 − ε2)
−
B

ε0
+ ε2 (

B

mc2γ̃
)
2

−
(2γ̃ − 1)B

γ̃2(ε0 +B)
ln(
(ε2 +B)ε0
(ε0 − ε2)B

))] .

Whenever we need to sample ε2 for a given ε0, we inverse the interpolated ĆRBEQ*[Mε0,ξε]

matrix and retrieve ε2 from (3.14).

For the secondary electron’s scattering angle cosine cos θ2, as remarked in section 11.5.4 on
pages 492–494, we use equation (2.66). The cosine of the primary electron cos θ1 = cos θ+,
on the other hand, is simply obtained from the conservation of momentum (2.62).

This concludes all the necessary algorithms used for the electron interactions with molecules.
In the next section, we present methods to calculate average collective properties of the electron
swarm and handle the swarm as a whole.
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3.3 Swarm

3.3.1 EEDF

There are plenty of ways one can compute numerically the electron energy distribution function
(EEDF) from (2.120) of a given swarm. One could compute the histogram in velocity norm space
or in energy space and then convert it to the EEDF. After trying various methods we chose the
most efficient one that we use throughout the thesis.

Given the set of kinetic energies εn and weights wn of ourNs super-electrons, we first calculate
the density in energy space h(ε) through a histogram.

The histogram bins’ edge positions bε,i are determined either:

a) according to Knuth’s binning rule [514, eq.(32)], with a fixed bin width δbε = bε,i+1 − bε,i;

b) or through the Bayesian method [807] for a more robust representation [756, figs. (1–2)],
with a variable bin width.

For spectra that extend over several orders of magnitude in energy, we use a constant bin width
on a logarithmic scale in electron energy (δ(ln ε)) instead of in the linear scale.

To obtain the EEDF, we use the differential correspondence:

fε(ε)
√
εdε = g(ε)dε⇔ fε(ε)

d(ε3/2)

3/2
= g(ε)dε , (3.15)

which becomes, in the numerical world where dε becomes a δbε = (bε,i+1 − bε,i), i.e. the interval
between the consecutive bin edges bε,i and bε,i+1:

fε(ε) = g(ε)
δbε

δ(b
3/2
ε )

3

2
= g(ε)

3

2

bε,i+1 − bε,i

(b
3/2
ε,i+1 − b

3/2
ε,i )

where bε,i ≤ ε ≤ bε,i+1 . (3.16)

If, on the other hand, we used a kernel density estimator, we would have simply divided the
kernel density k(ε) by

√
ϵ: i.e. fε(ε) = k(ε)/

√
ε. A major drawback from kernel and Bayesian

blocks, is that their computational time becomes immoderate at the typical number Ns ∼ 5×10
5

of super-electrons that we simulate.
In general, we preferred using the fixed-width Knuth histogram (in linear or most often in

logarithmic scale) because it also enabled us to easily estimate the variance of each bin’s height
hKnuth(ε) through [514, p.5:eq.(47)]:

var[hKnuth(ε)] =
⎛

⎝

Mb

Aε(Ns +
Mb

2 )

⎞

⎠

2
(hKnuth(ε) +

1
2)(Ns − hKnuth(ε) +

(Mb−1)
2 )

Ns +
Mb

2 + 1
, (3.17)

from which one can attribute an uncertainty (
√

var[h]) to the EEDF obtained.
We illustrate the looks of EEDFs of an electron swarm from various numerical methods in

figure 3.2. The kernel density estimator is the most computationally costly.
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Figure 3.2: Calculation of the electron energy spectrum (EEDF) of a swarm (Ns = 5× 10
4) from

various density estimators. We compare fixed bin width histograms from Knuth’s rule [514] and
Freedman and Diaconis’s rule [303] to Bayesian blocks of variable bin widths [807]. Also shown
is the kernel density estimation with an Epanechnikov kernel. When the spectrum extends over
multiple orders of magnitude, it is significantly better to use fixed bins on a logarithmic scale
i.e. ln ε as seen on the bar plot “Knuth(ln ε)” which unveils the high-energy tail up to 10 keV.
All densities were calculated from the astropy.stats module on Python.

From an efficiency-accuracy perspective, the logarithmic Knuth binning histogram (light
blue on figure 3.2) is the most suitable. It is fast and spans the widest range of energies
without deteriorating its accuracy.
Worthy of note, the statistics numpy module used for generating histograms uses a cumu-
lative sum to calculate the number of particles per bin. It is not optimised for the great
disparity of super-particle weights w as present in our spectra. To circumvent the issue of
losing accuracy at the tail of the spectrum sheerly due to numerical round-off error from
the cumulative sum, we:

1. invert the order of binning (starting from the end),

2. use negative energies and bin edges (so as to preserve monotonically increasing bins),

before calling the histogram module routine.

A reliable yet fast calculation of the EEDF is an essential ingredient to the good functioning of
the super-electron spectral enhancement algorithm described in the next section. This algorithm
is itself key to our investigation of thermal runaway.
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3.3.2 Compaction

The reason why we use a Monte Carlo particle code to simulate electron swarms is primarily
because we want to investigate the stochastic process linked to thermal runaway as accurately
as possible. However, there are two issues that we must address:

i. First, above conventional breakdown the number of particles Ns(t) (super-electrons) grows
exponentially;

ii. Second, the fraction of super-electrons pertinent to the phenomenon of thermal runaway,
i.e. at energies above the ionisation peak in the friction force at ∼ 120 eV (fig. 1.10), may
be below our maximal resolution capability (e.g. only 1 electron out of 10−9).

Therefore, we devised a particle management algorithm which we described in detail in
Schmalzried et al. [813]. In this section, we will outline how the algorithm works and what
recent improvements we have brought (“Old”§ versus “New”§).

The “compaction” algorithm has a double-sided goal:

1. Curtailment: discard surplus super-electrons spawned by ionisation from the simu-
lation and maintain their number Ns(t) close to a desired value N∗s (t) and progres-
sively conduce them to a nominal value N∞s (see fig. 3.4):

lim
t→∞

N∗s (t) = N
∞
s ;

2. Spectral enhancement: increase the resolution gs(ε) (number of super-electrons per
energy interval) at higher energies by adhering to a target super-electron density
g∗s (ε, t) in energy space which gradually converges to a nominal distribution g∞s (see
fig. 3.5):

lim
t→∞

g∗s (ε, t) = g
∞
s (ε) ,

so as to highlight the study of thermal runaway from a stochastic perspective.

To maintain physical consistency, the weights w of the super-electrons are adapted ac-
cording to the real spectral electron density ge(ε) [813, eq.(3)]:

gs(ε, t) [∑w(ε, t)] = ge(ε, t) = g
∗
s (ε, t)w

∗(ε, t) , (3.18)

where the sum extends over all super-electrons present in an energy bin of width δε.

Concisely, we may distinguish three quantities which are all subject to vary with time t:

•Physical quantities relate to the represented electrons in swarm (see sec. 2.3.1) and which
should be left intact by the compaction process.

– Ne(t) : the physical number of electrons (2.86);

– ge(ε, t) : the electron density in energy space∗ (blue histogram ∎∎∎ on fig. 3.3-bottom),
related to the EEDF by ge(ε) = fε(ε)

√
ε (3.15).

∗Number of electrons per infinitesimal energy interval.



3.3. SWARM 99

△ Numerical quantities related to the super-electrons present in the simulation as a sample of
the physical electrons.

– Ns(t) : actual number of super-electrons;

– gs(ε, t) : the density of super-electrons in energy space (purple histogram ∎∎∎ on fig. 3.3-
bottom);

– w(t) : the statistical weight borne by each super-electron (may vary for each electron
even at the same energy ε, see blue dots ∴ on fig. 3.3-top).

* Target quantities govern how the super-electrons ought to be managed according to the user
specifications. There are two types:

Instantaneous (∗ short-term)

– N∗s (t) : instantaneous target number
of super-electrons at the time t;

– g∗s (ε, t) : instantaneous target den-
sity (red — curve on fig. 3.3-
bottom). There is no direct definition
of g∗s (ε, t), it is obtained from w∗(ε, t)
through the second equation in (3.18).

– w∗(ε, t) : the statistical weight
that every super-electron of energy ε
should adopt (red — curve on fig. 3.3-
top) in order to reproduce the target
density g∗s (ε, t). It is obtained from
w∞ in the relaxation equation (3.29).

Nominal (∞ long-term)

– N∞s : nominal number of super-
electrons to be hosted in the simula-
tion when the steady-state regime is
reached;

– g∞s (ε, t) : nominal target density
which has an enhanced high-energy
tail as specified in (3.23) (dashed red
- - - on fig. 3.5);

– w∞(ε, t) : distribution of nominal tar-
get weights w∞ which depends on the
physical density ge and g∞s through
(3.18).

The name “compaction” stands for two operations:

(1.) Curtailment: reduction of the overall swarm information to a smaller portion of the super-
electron population,

(2.) Enhancement: the allocation of more memory space to super-electrons of higher energies
and, therefore, higher scarcity.

Below, we consecutively describe those two objectives. At the end, we explain how they are
treated together uniformly in (3.) the compaction step.

1. Curtailment: Ns(t)→ N∞s

Old. In our original method [813], we tried different ways of restricting the number Ns(t) of
electrons, where we would suddenly reduce it to the nominal value N∞s every once in a while. We
determined that the algorithm was optimal when the change from Ns(t) to N∞s was minimal,
and thus that the algorithm ought to be applied continuously (at every elementary timestep
δt 3.1). Nonetheless, there arises a problem at the initiation of the simulation. What if there is
a very large disparity between the initial number of electrons Ns(t = 0) and N∞s ?
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Figure 3.3: Nominal target weights w∞ determined by the nominal density g∞s (3.23) set by
the user. All super-electrons whose actual weights w > w∞(ε) will be split into two, three or
more electrons. All other electrons with w < w∞(ε) will undergo a selection procedure (“Russian
roulette”) based on a probability test which, if successful, will promote their weights w to the
desired value w∞.
The effect of the minimal weight ratio wmin is shown: it puts a minimal threshold to the al-
lowed nominal weight w∞ which otherwise (if wmin = 0) would generate an indefinitely widening
magnitude gap between the commonest and scarcest super-electrons (low and high ends of the
energy spectrum).
The swarm presented is a composite of two snapshots from a simulation in argon (2.8MV/m–
inner ridge) and molecular nitrogen (5MV/m–outer ridge) which is why the weights distribution
appears with two ridges which corresponded to their respective target spectra in their separate
simulations.
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New. Presently, the novelty we bring is to let the target number of super-electrons be a dy-
namical quantity: N∗s (t). In this way, the algorithm will smoothly compact Ns(t) toward N∞s
over several iterations as represented in figure 3.4. This goes in line with our main conclusions
[813, fig.6–7] that abrupt changes are detrimental to the quality of the super-electron statistics;
i.e. they foment high peaks of fluctuation in the average ā quantities presented in section 2.3.1
and used in the next section 3.3.3.

Conformably, we devised a proportional-integral retroaction loop, based on control theory
[302, §4.3.4], acting on the super-electron target number N∗s (t) which, in consequence, follows:

dN∗s (t)

dt
=

Free System
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
ν̄sN

∗
s (t) −

Imposed Control Correction
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ν̄sN
∗
s (t)

⎛
⎜
⎜
⎜
⎜
⎝

1 + 2κrS(N
∗
s (t),N

∞
s )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
proportional

+κ2r ∫
t

t−tm
S (N∗s (t

′),N∞s )dt
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
integral

⎞
⎟
⎟
⎟
⎟
⎠

,

(3.19)

with S(Ns(t),N
∞
s ) = log(

Ns(t)

N∞s
) ∶ the deviation term, (3.20)

and tm =
1

2ν̄sκr
∶ the memory retention time. (3.21)

(by default κr = 3 ∶ the compaction reactivity.) (3.22)

In this way, we emulate the evolution of a system (our ensemble of Ns(t) super-electrons) which
normally grows at a steady exponential rate given by νs (2.96). This system is controlled retroac-
tively by a proportional term and converged by the integral term. It is inspired from the retroac-
tive loops used in automation engineering [302, §4.3] in order to stabilise a property of a system
(Ns(t) in our case). If the system (our simulation) incurs a perturbation, its response in the
immediate moment is to initiate an exponential decay that counters this perturbation.

Conceptually, our application of control is atypical. In control theory, the equation (3.19)
determines the response function of the system to a prompt perturbation (Heaviside function).
Here, our system’s response is virtually immediate because at any time, we can decide to curtail
as many super-electrons as we wish. To prevent such an abrupt behaviour, we compute a desired
theoretical response function N∗s (t) which serves to determine the evolution of Ns(t), which in
turn at the next timestep will predict yet another path for N∗s (t) and so on...

Also, our retroaction in the second term on the right-hand side of (3.19) is heavily non-linear:

• the deviation function S(Ns(t),N
∞
s ) (3.20), instead of a linear difference Ns(t) −N

∞
s ,

• the memory retention time tm (3.21), which in a linear system would be infinite (going as
far as the initial conditions of the system).

The coefficients of the non-linear system have been determined by trial and error so as to yield
a subjectively swift yet gradual convergence to N∞s . We left only one parameter κr freely
determinable by the user which we call the “compaction reactivity” and is set to 3 by default.

The promptness of the response function depends on the instant super-electron multiplication
rate ν̄s(t) (2.96) at the time t; not to be confused with the physical exponential growth rate ν̄e of
the swarm. The system is vulnerable to fluctuations on ν̄s(t). For instance, the response function
calculated by our algorithm would be more abrupt if we instantly added 10000 super-electrons
of MeV, because they would induce an important multiplication of super-electrons. Nonetheless,
the response of the system to initial conditions in disequilibrium (Ns(t = 0) ≠ N

∞
s ) is relatively

smooth. An example of a run with initial conditions Ns(t = 0) = 4/3N
∞
s is shown in figure 3.4.
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Figure 3.4: Gradual curtailment of the exceed-
ing number of super-electrons to the nominal
value of N∞s = 250000. The remaining gap be-
tween N∞s and Ns(t) is due to the continual
production of super-electrons from ionisation.

2. Enhancement : gs(ε, t)→ g∞s (ε)

The EEDF of a typical swarm in an electrified gas will decay at an exponential rate steeper
than a Maxwellian (B.13) but not as steep as a Druyvesteyn distribution (2.125). In numerical
simulations, this would mean that if we wanted to increase the maximally observed energy εmax

of an electron in the swarm by a factor ξ, we would have to increase our number of super-electrons
by an exponential factor exp(ξ).

Ideally, we would like to have a totally different dependence, for instance that increasing εmax

by a factor ξ only requires to increase Ns by a factor ln ξ. This is what motivated us to propose
the following (nominal) target spectrum in [813, eq.(18)]:

g∞s (ε) =
N∞s

εc ln(1 + εq/εc)

1

1 + ε/εc
, (3.23)

where :
⎧⎪⎪
⎨
⎪⎪⎩

Cutoff energy : εc = 15 eV ,

Upper energy εq : ∑
Ns
n=1(εn < εq) = qNs , with 0.92 < q ≤ 1 .

It is a logarithmic distribution with a cutoff energy εc = 15 eV around the ionisation thresholds of
constituent molecules and atoms in air. This spectrum (3.18) emerges naturally from the desire
of having an equal number of super-electrons per logarithmic energy interval from its cumulative
distribution:

ǵ∞s (ε) =
ln(1 + ε/εc)

ln(1 + εq/εc)
, (3.24)

which obviously has to be curbed at lower energies by εc and restricted to an upper boundary εq
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in order to be normalisable. This upper boundary εq is not a fixed quantity but adapts to the
swarm. It is the q quantile of the super-electron distribution in energy.

In specific cases, it may be interesting to have q < 1 which is robust against spectra with large
unoccupied gaps in the energy spectrum. This is useful for the study of concurrent runaway MeV
electrons in coexistence with a bulk thermal population at low electric fields below conventional
breakdown (as in fig. 5.27). Having q < 1 does not imply more freedom on the statistical weights
of the last 1− q fraction of high-energy super-electrons but less strain∗ on the target weights w∞

of high-energy super-electrons, who would otherwise be significantly lower. Visually, the strain
exerted on the weights w corresponds to vertical distance between points lying above the green
curve on the top graph of figure 3.3.

The target weights w∞ are related to the real electron conservation equation by (3.18):

w∞(ε, t) =min(
ge(ε, t)

g∞s (ε)
,w∗min(t)) , where w∗min(t) ≡ Ne(t)wmin (3.25)

What critically restricts the strain is the absolute minimal weight w∗min(t). It expresses the fact
that a super-electron may not represent a smaller number of real electrons than w∗min(t). This
minimal weight depends on the total number of real electrons Ne(t) and the minimal relative
weight wmin. The effect of this minimal weight is conspicuous on figure 3.3 both on the target
weight w∞ (top) as on the spectrum g∞s (bottom) from the green (—) and orangered (—)
curves. While the user is free to fix the (relative) minimal weight wmin at will, this value should
be physically meaningful. For mere illustration, we show in the next chapter section 4.2 what
happens in case one lets wmin = 0.

The minimal threshold wmin affects the target spectrum g∞s (ε, t) through (3.18) and (3.25).
Although it is impossible to predict with exactitude, g∞s (ε, t) will nonetheless decay exponentially
at the same rate as the high-energy tail of the physical spectrum ge(ε, t) of the swarm. This
is because once the statistical weight reaches the constant threshold w∗min, the super-electrons
directly reflect the physical spectrum. This exponential tail is visible on the right side of figure 3.5
and thus explains the orangered broken tail of the target spectrum g∞s on figure 3.3-bottom.

3. Compaction

As we said earlier, curtailment and enhancement performed together constitute a compaction
step. Curtailment consists in removing super-electrons stochastically and raising the weights of
those that permain†. Enhancement is performed by increasing the number of super-electrons at
a certain energy and dividing their weights.

From a given distribution of nominal target weights w∞(ε, t) (3.25), we may estimate:

the desired change in the number of super-electrons =
w(ε, t)

w∞(ε, t)
, (3.26)

For each super-electron of weight w, energy ε and at a time t, there are two possibilities:

1) Curtailment: when w < w∞, this means that these super-electrons are too numerous and
will have to be discarded according to:

the probability of vanishing : P∞(ε) = 1 −
w(ε, t)

w∞(ε, t)
. (3.27)

∗If a super-electron is under “strain”, it will be split into fragments of smaller weights. The stronger the strain,
the more fragments will be produced.

†“Permanere” in Latin: “to continue to be”. Although still present in most Latin languages, English contented
itself with its closest sibling “to remain”. Nevertheless, “to permain” evokes the ability to pass through, endure;
which I thought corresponds astutely to the meaning ascribed here.
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Figure 3.5: The intensity of the compaction depends on the time span given δt. After an infinite
time the super-electron energy density, in tones of violet gs(t)

t→∞
ÐÐ→ g∞s , converges to the desired

spectrum and at the same time Ns(t)
t→∞
ÐÐ→ N∞s . Meanwhile, the physical spectrum, ge(t) in

tones of blue, is preserved on average as it should. The midline separation enables to see,
on a logarithmic scale, the enhancement of the spectrum at higher energies by comparing the
magnitudes of the violet gs (super-electron) to the blue ge (physical electron) curves.

2) Enhancement: when w > w∞, this means that there is scarcity of super-electrons and
an average ratio of (w(ε, t)/w∞(ε, t)) more, will have to be added by splitting existing
super-electrons into two or more and distribute their weights evenly.

Old. In our original method [813, eq.(7)] the target weights w∞(ε) were obtained according
to (3.25) from the nominal spectrum g∞s . The algorithm, written in Python, that instantly
compacts a spectrum gs to g∞s is accessible on https://osf.io/c6wyh. Again, this means
that if the current distribution in super-electrons gs is very different from the nominal g∞s , the
compaction will be very strong: a lot of super-electrons will have to be discarded to make space
for those that are to be added.

New. Just as in the curtailment paragraph on p. 99, Ns(t) gradually converges to N∞s on
figure 3.4, so should the compaction bring the spectrum gs(ε, t) smoothly to g∞s (ε) as illustrated
in figure 3.5. Instead of adopting the perspective of a target spectrum g∗s (ε, t) it is easier to
think at the level of individual super-electrons.

At a given time t, each super-electron at an energy ε, is expected to adopt the nominal weight
w∞(ε, t) determined by equation (3.25). This weight w∞ depends on the physical spectrum
ge(ε, t) which can fluctuate. Nonetheless, we can expect that ge will relax very quickly to a more
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or less stable distribution increasing exponentially but uniformly. Under these conditions (steady
or slowly varying ge), we may imagine that the super-electron will follow an instantaneous target
weight w∗(ε, t + δt) bounded by two conditions on the interval of time considered δt:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lim
δt→0

w∗(ε, t + δt) = w(ε, t) , (3.28a)

lim
δt→∞

w∗(ε, t + δt) = w∞(ε, t) . (3.28b)

Still, we need to decide how fast should w∗(ε, t) converge to w∞(ε). We do this by ascribing a
relaxation time τs to the target weight w∗(ε, t). Taking into account the boundary limits (3.28),
the expected number of super-electrons relaxes as follows:

w∞(ε)

w∗(ε, t + δt)
= 1 − e−δt/τs (1 −

w∞(ε)

w(ε, t)
) . (3.29)

The relaxation time may be chosen as one wishes. It may, but needs not, be equal to the
relaxation time of Ns(t) as in (3.19). Presently, we set it as:

τs =
1

ν̄sκr
, (3.30)

where we remind that the compaction reactivity κr = 3, but can be adjusted to one’s preference.
From w∗, irrespectively of whether w ≶ w∗, we define a generalised ‘probability’ P∗(ε, δt) both

for curtailment and enhancement by replacing w∞ in (3.27) with w∗. The resulting probability
now depends on the regular time interval δt chosen for performing the compaction (we recommend
using 3.1). The compaction algorithm works in the following way.

A compaction step on a time interval δt involves a test based on the vanishing ‘probability’:

P∗(ε, δt) = (1 −
w(ε, t)

w∞(ε)
)(1 − e−

t
τs ) (3.31)

For every super-electron n roll a uniformly distributed random variable xn ∈ [0 ; 1] and
consider the individual generalised probability P∗n ≡ P∗(εn) of vanishing.

▸ Curtailment 1 > P∗n(δt) > 0 :

⎧⎪⎪
⎨
⎪⎪⎩

xn ≤ P
∗
n the super-electron is discarded : wn(t + δt)→ 0

xn > P
∗
n the super-electron permains (survives) : wn(t + δt)→ w∗(εn, t + δt)

▷ Enhancement (splitting) P∗n(δt) < 0, the super-electron is split into :

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

xn ≤ ∣P
∗
n ∣%1 ⌈∣P∗n ∣⌉ fragments : wn(t + δt)→

wn(t)

⌈∣P∗n ∣⌉

xn > ∣P
∗
n ∣%1 ⌊∣P∗n ∣⌋ fragments : wn(t + δt)→

wn(t)

⌊∣P∗n ∣⌋

In the last equations of the frame, ‘a%1’ represents the fractional part of the real number a,
‘⌊a⌋’ the floor and ‘⌈a⌉’ the ceiling.

With this probability P dependent on the time interval δt (chosen as 3.1), we show in figure 3.5
how the enhanced super-electron spectrum gs gradually converges to g∞s (orangered - - -). The
convergence rate is determined by the super-electron relaxation time τs.
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3.3.3 Transport Coefficients

Transport coefficients obtained from swarm Monte Carlo simulations may be used in the fluid
model (2.126) to emulate self-consistency through (2.134). Such codes combining fluid and
particle simulation are called hybrid code, of which the work by Li [585] is a prominent example.

Although we did not undertake this route of investigation, we nonetheless calculate transport
coefficients in order to compare our results with kinetic solvers (sec. 4.3.2) and experimental data
(sec. 4.3.3). The third use of calculating transport parameters is to compare how swarms behave
under different gas conditions (sec. 5.2).

Reflecting what we highlighted on page 86, we distinguish the flux and bulk transport coef-
ficients as derived from our swarm statistics [588, p.1026:eqs.(11–7)]:

Flux coefficients : averages

−µ̇eE = v̇ ≃ ⟨v⟩ ± ṽ (3.32a)

Ḋe ≃ ⟨De⟩ ± D̃e (3.32b)

Flux coefficients : samples

−µ̄eE = v̄ =
1

Ne

Ns

∑
n=1

vnwn (3.33a)

D̄e = r⊗ v − r̄⊗ v̄ (3.33b)

=
1

Ne

Ns

∑
n=1
(rn − r̄)⊗ (vn − v̄)

(3.33c)

Bulk coefficients : averages

−µeE = vd ≃ ⟨
dr̄

dt
⟩ = ⟨v⟩ + ⟨νer − ν̄er̄⟩ (3.34a)

De ≃
1

2
⟨
d⟨r − r̄⟩ 2○

dt
⟩ =

1

2
⟨
dr 2○

dt
⟩ −

1

2
⟨
dr̄ 2○

dt
⟩

(3.34b)

Bulk coefficients : samples

v̄d = v̄ + νer − ν̄er̄ (3.35a)
D̄b = r⊗ v − r̄⊗ v̄ + νer 2○ − ν̄er 2○ (3.35b)

Bulk coefficients : coarse

vd ≃
∆r̄

∆t
(3.36a)

De ≃
∆ (r 2○ − r̄ 2○)

2∆t
(3.36b)

The hazy notation requires some clarification. As a preliminary, one can view a graphical
representation of the various concepts on figure 3.6 for a concrete simulation data in ambient
pure N2 above conventional breakdown.

Then, we remind the following conventions:

• v̄ : the average instantaneous velocity of the swarm from all super-electrons (2.90). There-
from, any overlined property e.g. νer 2○ is given by the average:

νer 2○ ≡
1

Ne

Ns

∑
n=1

νe(εn)r
2○
nwn

• ⟨v⟩ ± ṽ : the mean and standard error over the Nm samples of the average instantaneous
velocity v̄.

• v̇ : the ideal statistical flux velocity of the swarm, corresponds to the mean ⟨v⟩ over an
infinite set of samples from swarm experiments (under identical conditions).

• vd : the bulk drift velocity of the swarm given by the overall displacement of the swarm’s
centre of mass r̄.
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Figure 3.6: Derivation of flux ⟨v⟩±ṽ velocities from the 9948 samples of the average instantaneous
swarm velocities v̄ for a swarm of Ns ∼ 500000 super-electrons in molecular nitrogen. The bulk
velocity vd differs from the flux velocity due to the growth of the swarm.

We have already described the difference between v̄, ⟨v⟩ and v̇ in the previous chapter 2
section 2.3.1. We remind that the 95% confidence interval of v̇ lies within ∼ ±2ṽ: i.e. two
standard errors about the mean ⟨v⟩.

To suppress possible correlation between measurements v̄k, they are sampled at a minimal
time interval of tmin = 4ps. This time was determined by:

tmin = 5/νmin , where νmin = min
ε>εmin

(nairσtot(ε)v) ,

is an estimation of the minimal collision frequency of an average electron in the gas. The energy
εmin ensures that this frequency is not zero (at ε = 0). For simplicity, we set εmin = kBTair3/2,
although this energy could be a monotonically increasing function of the electric field. The
minimal time tmin is a loose estimate of the swarm’s memory retention time of its microstate at
a previous time tmin ago, when the swarm is assumed in a steady state.

The estimation of diffusion tensors relies on the dyadic product (2.92). We see that with this
definition of the dyad, the diffusion tensor is not symmetric.

In the present case, with our reference frame where E ∥ ẑ, symmetry implies that only
diagonal elements of the diffusion tensor are expected to be non-zero; giving only two independent
coefficients: the transversal D⊥ (in any direction ⊥ E) and longitudinal D∥ (in both directions
∥ E). Thus, we may write:

De =
⎛
⎜
⎝

D⊥ 0 0
0 D⊥ 0
0 0 D∥

⎞
⎟
⎠
. (3.37)
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In presence of a magnetic field, the situation is quite different. One can consult Bittencourt [73,
p.645–7] where the diffusion tensor has diagonal and antisymmetrical elements in virtue of the
rotation induced by the magnetic field. In the general case of arbitrarily oriented magnetic and
electric fields, all elements are expected to be non-null.
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Figure 3.7: Steady-state regime (coloured region) de-
tection based on the mean kinetic energy in (3.38),
illustrated for simulations under diverse conditions.
The grey zone is classified as a rapid transient relax-
ation lapse.

Flux coefficients are derived as statisti-
cal averages (2.99) using (3.32–3.33) over
the Nm samples extracted from our sim-
ulation in steady-state regime.

The detection of the regime is quite
straightforward as seen on figure 3.6. We
detect the “flat” region’s onset where:

∣ε̄ −median[ε̄]∣ < iqr[ε̄] . (3.38)

The “iqr” is the interquartile range.
This cheap requirement would not be ro-
bust on every data in general, but was
found to fulfil satisfactorily our purpose
in all our simulations. It mainly works
thanks to the fact that the mean kinetic
energy ε̄ fluctuates little around its mean
(see figure 3.7 on the side) as can the drift
velocity in figure 3.6 for instance.

Bulk coefficients on the right side of
(3.35) are seen to be related to the flux
samples (3.33) on the left, but with the
additional contribution from the relative growth rate of the swarm ν̄e (2.94).

In principle, the derivation of bulk diffusion coefficients from a simulation could stem from
equations (3.34) and (3.35); and performing the averaging over samples ⟨. . .⟩ as in (2.99) just
as we do for flux coefficients. This was however not the method we chose. To begin with,
the fluctuations of ν̄e are more important at lower electric fields because ionisation comes from
electrons of higher energies, whereas bulk properties of diffusion and drift are attributable to
all electrons regardless of their energies. Statistically, this means that our estimation of ν̄e is
deteriorated in quality (see p. 77). With the algorithm of particle weights described in the
previous section 3.3.2, the resolution of the electron high-energy tail is enhanced.

Notwithstanding, the fluctuations over ν̄e, howsoever attenuated, are amplified anyway when
multiplied by the centre of mass’ displacement r̄ as in (3.35). The bulk coefficients would then
be obtained from the subtraction of two quantities νer − ν̄er̄ whose fluctuations are amplified as
time flows. This is why using (3.34) and (3.35) to derive bulk coefficients is deprecated.

Instead, we use the ‘coarse’ method (3.36) based on the average displacement ∆r̄ and spread
∆(r 2○ − r̄2) of the swarm over a lapse of time ∆t. This actually corresponds more closely to the
overall effect of transport parameters which is measured experimentally. Further information
can be found in a dedicated subsection 7.3.1 to swarm experiments in the second part, together
with the references therein.
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Figure 3.8: Linear regression over the steady-state region in a simulation in order to derive the
bulk transversal D⊥ and longitudinal D∥ diffusion coefficients with (3.36), but with (many) more
sample points (Nm = 9868). The notation ∆r2⊥,0 is a shorthand for r2⊥(t0) − r̄2⊥(t0).

To make our estimations less “coarse”, instead of using two points only, we make a linear
regression on the steady state region determined through (3.38). The present method, illustrated
in figure 3.8, is an improvement over Li et al. [588, eqs.(11–16)], which allegedly relies only on
two points and thus informs not about the uncertainty. This improvement is of fundamental
importance since because of our spectrum tail enhancement algorithm (compaction), our bulk
data is contaminated with more noise (see discussion in previous subsection 3.3.2).

The same method is used for estimating the swarm exponential growth rate ν̄e; a linear
regression on the logarithm of the number of electron lnNe:

νe ≃
∆lnNe

∆t
, (3.39)

which is exemplified on figure 3.9 for various electric fields in pure argon.
We note that higher order transport coefficients may also be calculated as done in Kawaguchi

et al. [482, p.10–11:§3.3] which is useful for comparison with leading-edge experimental results
from the same research team [483].

The extraction of transport coefficients concludes the numerical algorithms and methods used
in our simulations. Before moving to the results chapter 5, we dedicate the next chapter 4 to
tackling some issues and important remarks relative to the implementation of our simulations.
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Chapter 4

Scrutiny and Examination

In the process of implementing our model of electron swarms in electrified gases, there are many
hurdles to overcome and issues to handle. Some may be related to the intricacies of the numerical
model whereas others stem from more fundamental questions. Before we present results, we must
be very vigilant of how they were obtained, what assumptions do they rely on and what could
put their relevance under question.

In this chapter, we discuss and regroup specific issues related to modelling and how we
handle them concretely. It is divided into three parts:

• 4.1 : the representation of cross sections and collisions,

• 4.2 : the handling of super-electrons,

• 4.3 : assessment of our model: code together with cross sections.

Here, we first focus on some fundamental physical aspects such as cross section coherence,
collision rate consistency, energy conservation, axial symmetry, etc. Then, we compare transport
swarm parameters with a kinetic solver named bolsig+ and with experimental data of swarm
experiments under ideally uniform conditions. In the next chapter 5 dealing with results, we
will expound further the underlying hypothesis of the model in relation to plasmas in electric
discharges.

4.1 Cross sections

The cross sections (CS) we use are stored in files each specific to a species. Those files are freely
available and will be uploaded to the lxcat server in the near future. We use two formats and
their combination:

• Numerical: two columns, [electron energy ε[i] ; cross section σ[i]].

• Analytical: one row of parameters to be used in either of (11.61–11.64, 11.120) for electronic
excitations or impact ionisation.

• Hybrid: numerical table at low energies to be extrapolated by an analytical formula at
high energies (typically elastic and total cross sections).

111
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Whenever possible, we recommend using a log-log interpolation scheme∗:

σ(ε) = σ[i] exp(log(ε/ε[i])
log(σ[i + 1]/σ[i])

log(ε[i + 1]/ε[i])
) for ε[i] ≤ ε < ε[i + 1] ,

except at threshold of course, when σ[i] = 0, where a linear interpolation is needed.
In the following subsections we discuss the proper handling of cross sections near threshold,

the consistency of a set of cross sections and a few words on the scattering (differential) CS.

4.1.1 Near threshold

The most important rule to verify for a cross section near threshold is that it annihilates at
the very least at its excitation threshold Eth. Failure to comply with this rule will cause some
electrons to exit a collision process with a negative energy and completely ruin the simulation’s
statistics. Although this rule seems very simple and obvious, it can be put in danger as the
description of a process becomes more involved.

In the most rudimentary description, a collision process is simply a double-column table with
the incident electron energy ε[i] mapped to the corresponding cross section σ[i]. In this case,
one just needs to include a sanity check in the code to ensure that:

σ[i ≤ i0] = 0 where ε[i] ≤ Eth ∀i ≤ i0 (4.1)

If the cross section is defined by an analytical fit fσ, the problem amounts to verifying the
identity fσ(ε < Eth) = 0.

As the modelling became more sophisticated, there were three situations in which this rule
had to be enforced by other means: partial excitations from a vibronic band or from ionisation,
rotational excitations and deexcitations.

Partial excitations

To make the code more efficient, some excitations are grouped together under a common cross
section. This is the case of vibronic bands. Some databases on lxcat (Phelps, Biagi) divide the
bands into subgroups with a common threshold as for instance N2(A

3Σ+u ∶ v = 0→ 4; v = 5−9; v =
10− . . . ). Then, the problem poses not itself. In our case, we subsampled the vibronic threshold
in a band from probability ratios (either Franck-Condon-based or experimentally-based). There,
the threshold had to be manually adjusted after sampling in order to lie always below the incident
energy.

The most critical case was the Schumann-Runge continuum (and also the Herzberg pseu-
docontinuum) for O2, whose excitation probability density we represented with an asymmetric
shape (11.66). The energy loss E is distributed continuously between E0 = 6.12 eV and E1 = 9.7 eV.
If an electron has an energy ε such that E0 < ε < E1, the energy loss E must be sampled only up
to ε.

Since the whole cumulative integral (3.12) is normalised on the full [E0 ;E1] range, one must
rescale the instance x sampled from a uniform random variable X. This rescaling is done by
defining a new x′:

x′ = x/ĆM(ε) , (4.2)

with ĆM defined in the previous chapter (3.12). Note that the scaling for energies higher than
the maximal loss E1 < ε, is equal to 1. This new x′ should be used to find from (3.9) the
corresponding loss E0 < E < ε.

∗Unlike some databases on lxcat that were interpolated linearly as can be seen on the “stone skipping” pattern
in figures 16.3,16.7 of chapter 16.
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A similar issue is present with partial ionisation from different subshells. We use the rela-
tivistic binary-encounter dipole model presented in the second part section 11.5. Normally, it is
guaranteed that every partial process annihilates at its Bo binding energy:

σo(ε) = 0 ∀ε ≤ Bo (4.3)

To ensure that this remains true for all ε < Bo a mask must be explicitly set to zero for
all energies below Bo. Then, the sampling of each subshell can be performed according to the
cumulative sum (3.6).

Rotational excitations

If rotational excitations are treated as other excitations with a well defined threshold marking
the onset of their cross section, then there is nothing to worry about.

If, nonetheless, we treat rotational excitations as an inseparable component of elastic, and
inelastic scattering (then forming rovibrational or rovibronic bands), then some additional care
must be taken. We proposed to use the spectator model in order to emulate average energy losses
due to rotational excitations in a scattering event. In this case, the probability of excitation to
a certain rotational level varies according to the angle of scattering θ.

At a fixed (rotational) temperature, one can calculate the average energy loss ∆Erot(ε, θ)
(2.48) at a given angle θ and incident energy ε of the scattered electron. This energy loss should
preferably be expressed as a fractional loss of ε instead of an absolute value. This is because, if
this loss is accidentally subtracted on an electron who suffered an inelastic loss very close to the
excitation threshold, its energy could become negative after subtracting the contribution from
rotational and elastic scattering.

We define thus the general rule when one includes subsequent miniature energy losses:

Losses due to elastic scattering and rotational excitations should be expressed as a fraction
< 1 and be multiplied to the electron’s energy ε+ after the inelastic (vibrational, electronic)
threshold was subtracted.

Failure to do so will provoke the occurrence of very rare events whereupon a negative or zero
kinetic energy is attributed to an electron after an inelastic collision very near threshold. In
practice, those energy losses are so minute compared to the rest that it does not matter much to
include them in the simulation. However, for whatever reason, for example if one is interested in
keeping track of the overall energy lost in different channels and decides to include such losses,
then this precaution should be taken.

Deexcitations

Modelling deexcitations is very convenient thanks to the detailed balance formula, wherefrom
the cross section for the deexcitation between states b > a is given by (see chapter 7 eq.7.6):

dσa←b(ε − (εb − εa), θ) =
ga
gb

dσa→b(ε, θ)
ε

(ε − (εb − εa))
. (4.4)

This equation represents the equilibrium of electron density currents that flow after an event
that changes a molecule from state a to b and vice-versa. The statistical abundance of states
a and b is represented by the factors ga and gb. It expresses the fact that cross sections dσa→b
are typically averaged over the initial ga degenerate states but summed over the gb final states.
Electrons that excited a molecule will leave with a slower speed and this is expressed by the shift
ε − (εb − εa) in the denominator.
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Figure 4.1: Undetected zero-division errors con-
taminating deexcitation cross sections (- - -) de-
rived through (4.4)

In a numerical implementation, we can im-
mediately spot the danger coming from sam-
pled values ε[i] ≃ (εb − εa) ≡ εth. If somehow
numerical errors contaminate ε[i] and εth sep-
arately so that they do not match exactly, then
an unphysically high value will contaminate
the deexcitation cross section at ε = 0. This
is illustrated in figure 4.1, where solid lines
(—) are excitations from which deexcitations
(dashed - - -) are deduced. Only one (out of
50) vibrational deexcitation (v = 1 ← 5) de-
rived through (4.4) got a misrounded thresh-
old value and therefrom an abnormally high
value at the origin.

We recommend to check the narrowest in-
terval δε in the sampled energies and after sub-
traction ε[i] − εth: discard all values situated

closer to zero than half this interval.

4.1.2 Consistency

A set of assembled cross sections must obey at least two principles of consistency:

I. The sum of all cross sections must be equal to the “grand total” scattering cross section :
∑c σc

?
= σtot.

II. The elastic integral and momentum transfer cross sections are bound by the first moment

of the elastic DCS : σm = ∫Ω
dσe
dΩ
(1 − cos(θ))dΩ = σe(1 − ⟨cos θ⟩).

Summed/Total

The first principle corresponds to the first validation standard announced in Itikawa [435]. Nev-
ertheless, Itikawa acknowledges that it can be hard to verify this relation for two reasons:

• At low energies, rapidly changing cross sections from resonant scattering can invalidate the
consistency of the summed/total CS, because of uncertainties in the energy position of the
peaks or simply because of a low resolution of datapoints.

• At high energies, the high uncertainty (∼20–30%) over elastic integral cross sections can
cause a systematic mismatch with the total CS.

To those two difficulties we add a third one:

• Some measured cross sections may have overlapping contributions, that is, the underlying
processes are related. We found two major examples of such overlap:

a) For species with attachment processes (O2 and NO in our case), the three-body at-
tachment cross sections form a proportion of the resonant vibrational excitations. It
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is difficult to determine the “branching ratio” (proportion) which goes into the attach-
ment channel. The attachment cross section σ3b-att should depend on the gas density
ngas, temperature (albeit slightly) and an efficiency ratio ξatt of attachment per inter-
molecule collision. See part II section 11.3.4 and (11.43) for further information.
Presently, we reckon that:

Under identical temperature conditions although variable pressure, the sum of
three-body attachment σ3b-att and vibrational excitation cross sections σvib(0→
v′) of an electron with an electronegative molecule in a gas should remain
constant:

vmax

∑
v′=0

σvib(0→ v′) + σ3b-att ought to be constant

Ideally, resonant vibrational excitations and three-body attachment should be
modelled as one process with a probability rate of decaying based on the lifetime
of the electron-molecule compound and the branching ratio to attachment.

The study of Dujko et al. [235] showed that three-body attachment has a large impact
on swarm transport parameters.

b) For collisions with molecules, one must discount predissociation from the dissociation
cross section. Many high-lying electronic excited states may, after a while, decay into
a repulsive state which subsequently dissociates. This process, known as predissoci-
ation, takes place after the collision and is not considered as a direct dissociation.
Nonetheless, predissociation is accounted both in those high-lying electronic excita-
tions and in the total dissociation cross section into neutral fragments (atoms in our
case).

To avoid counting predissociation events twice in the set of collisions, one has
to subtract the predissociation branching ratio ηc times the corresponding elec-
tronic excitation cross sections σc from the total dissociation cross section σdiss:

Discount predissociation : σdiss − ηcσc .

Such precaution, although advised by Itikawa [439] and Kawaguchi et al. [482, p.51,
p.5], is not necessarily followed in all studies [779, 964, p.1434]. The appendix D in
part II discusses predissociation. Branching ratios ηpd for predissociation of N2 and
O2 can be found in tables 11.6–11.7.

Notwithstanding these issues, given the facts that (i) electronic excitations have a minor con-
tribution to total scattering, (ii) ionisation cross section are usually determined with a certainty
comparable or superior to the total cross section, (iii) vibrational cross sections are negligible out-
side of the resonance region, and (iv) rotational cross sections are mostly mixed with pure elastic
scattering; we can assume that discrepancies are mostly imputable to the definition of the (vi-
brationally) elastic cross sections. As a consequence, we recommend to perform the consistency
check the other way around as:

σtot − ∑
c∈Ce/{rot}

σc
?
= σe + σrot ; (4.5)

by subtracting all inelastic (Ae) except rotational (rot) processes from the total CS σtot, and com-
paring to the elastic CS σe in the database. This seemingly innocuous change of perspective can
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actually reveal itself very useful in practice. Indeed, measurements of total scattering are often
the most abundant and best resolved experimental data there are about a target molecule/atom.
It would be a pity not to benefit from this advantage. Compared to this, elastic CS data from in-
tegrated beam measurements are sparse and not well determined due to extrapolation difficulties
at large and especially at low angles. Moreover, elastic and rotational scattering in particular
are equally important in the resonance region where they are actually very hard to measure
accurately due to a rapidly changing DCS both in energy and angle. Finally, there has been
recently a considerable improvement in matching theoretically calculated vibrational resonant
cross sections to experimental high-resolution measurements (see section 11.3 next part).

Combined together, those reasons advocate for the benefit of deriving elastic cross sections
as the subtracted product of inelastic processes from total scattering. These (vibrationally)
elastic cross section from (4.5) are qualified as residual. They are introduced in the second part,
chapter 11.1.5 in the equation (11.10), and compared in figures 11.14 with various cross-beamed
measurements reported in the literature. A comparison with other databases is given in the
figures of chapter 16. One very important note is that:

Residual elastic cross sections are obtained for N2, O2, NO and Ar from their total cross
section through (11.10) at 300K. This residual cross section is assumed independent of
the temperature (i.e. independent of the initial excited state)!
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Figure 4.2: Vibrationally elastic cross sections
from Laporta et al. [554] are very different de-
pending on the vibrational excitation level v of
the molecule.

This assumption is equivalent to saying
that all vibrationally elastic cross sections for
a given species v → v are equal, something
that is hardly supported by theory as seen in
4.2. A naive workaround would have been to
set the residual elastic cross section only equal
to the ground v = 0 → 0 process and then add
all other v > 0 → v > 0 processes from the-
oretical calculations. We dared not use this
workaround because the theoretical cross sec-
tions we use from Laporta et al.’s database
on lxcat include only the resonant contribu-
tion. One can visit chapter 11.3 in particular
graph 11.19 showing that one may not replace
vibrationally elastic CS by their resonant con-
tribution even in the resonance region!

Momentum/Elastic

Several times already, has it been noted in the
literature [752, p.12:left column] that the in-
tegrated elastic cross section used in Monte
Carlo simulations should correspond to the momentum transfer cross section used in Boltzmann
solvers, according to the differential cross section used to represent scattering. Thus, if one tries
different schemes for the implementation of the elastic differential cross section, the momentum
transfer cross section should be kept as a constant while the elastic cross section should be
adapted as:
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σe =
σm

1 − ⟨cos θ⟩
with ⟨cos θ⟩ ≡

∫
π
0

dσe
dΩ

cos θ sin θ dθ

∫
π
0

dσe
dΩ

sin θ dθ

. (4.6)

It might seem that this second requirement(4.6) clashes with the previous one (4.5) for the
total cross section. Actually, this is not the case, because this time, the requirement acts upon
the average deviation cosine ⟨cos θ⟩ which must be adjusted so as to respect (4.6). This might
be a very useful guidance in checking extrapolated differential cross sections.

However, if one wishes to impose the shape of the DCS, then ⟨cos θ⟩ is defined as well. In
this other case, the total cross section is not required to match the summed cross section and one
must ensure that the momentum cross section σm is kept untouched [588, eqs.(7-10)]. This was
noted by Kunhardt and Tzeng [542] when comparing the effect of the DCS shape on the electron
energy distribution in electrified gases. Various analytical expressions of DCS in the first Born
approximation are gathered in chapter 14 of part III.

The importance of preserving the momentum transfer CS (rather than the integral elastic
CS) becomes greater at higher energies where the scattering is mostly forward peaked. Thus,
even an apparently innocuous change in the DCS shape can severely affect the result and utterly
undermine the comparisons made and even the conclusions drawn therefrom. Unfortunately, this
precaution, although self-evident from a Boltzmann approach, is not necessarily taken in Monte
Carlo simulations [677]. I, the author, must sadly repent myself for having fallen to this trap as
well in Schmalzried and Luque [811].

The momentum transfer cross section is usually given only at lower energies; below either
100 eV (Itikawa) or 1 keV (Phelps). This means that, anyhow, the investigator must ‘invent’
first how to extrapolate σm(ε > 100 eV), and then proceed to a standardised comparison. At
higher energies (>keV), the screened Rutherford expression (11.4) is the predominant DCS shape
used to model elastic scattering. Nevertheless, although a myriad of screening fits were used in
the literature [445, 677, 683, 713, 896], no consensus was made so as to establish a common
momentum transfer cross section. Each time, elastic scattering was invariably defined directly
from the integration of the DCS. This means that great attention should be paid to which elastic
DCS was used when comparing results from Monte Carlo simulations of thermal (or relativistic)
runaway.

In summary there are two options:

A) If one wishes to be as precise as possible, the summed/total and elastic/momentum re-
quirements can help to constrain the shape of the elastic DCS.

1. Construct the total cross section from a solid base of experimental data (see part II
chapter 11.6);

2. Subtract all cross sections from inelastic processes (except rotational) to derive the
vibrationally elastic cross section (11.10);

This is the route we opted for.

B) On the other hand, if a shape is assumed for the DCS from the start (see the different
existing DCS in chapter 14), then, one can only stick to the elastic/momentum requirement.
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Figure 4.3: Resampling of the sum total cross section in a gas causes some very localised mis-
matches with the true sum of the cross section set. One must choose a good compromise between
computational efficiency and exactitude. At high energies, the green curve is superposed with
the blue (exact sum total).

Resampling

When we construct the total cross section for the whole gas, we have to add individual cross
sections from each species and their excited states populated according to Boltzmann statistics
for the given temperature T . The resulting cross section is thus called the “sum total” or “grand
total” cross section σtot. It is of fundamental importance because it is used to calculate the
collision frequency rate νtot at any electron energy ε as used in the null collision method (see
previous chapter section 3.2.1).

In our simulations, this cross section must be called at every time step for an array of many
electron energies. From a time efficiency perspective, it is important to make the computation
of this cross sections as fast as possible so as not to drastically slow down our simulations.

For that matter, we use a resampling algorithm that regenerates an array of regularly-spaced
energies so as to speed-up interpolation methods. The resampled energy space is divided into
three regions delimited by a lower (ε<) and upper (ε>) boundaries:

• ε < ε< : linear grid with δε< interval,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

if atomic nitrogen is present : ε< = 0.5 eV and δε< = 1meV,

if molecular oxygen is present : ε< = 1 eV and δε< = 2.5meV,

else : ε< = 4 eV and δε< = 5meV;

• ε< < ε < ε> : logarithmic grid of 2500 points;
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• ε> < ε : analytical Born-Bethe formula (11.139).

Above the threshold ε> set at 10 keV, we use the analytical Born-Bethe coefficients for the
total cross section summarised in table 11.13. To have regularly spaced energies over multiple
orders of magnitude is very challenging because the resolution required may vary a lot depending
on local resonances (as seen in figure 4.3). Thus, we used a fine linear spacing at low energies
followed by a logarithmic spacing up to 10 keV. The interpolation routine then first checks in
which of the three (linear,logarithmic,analytical) regions we are situated and then interpolates
(or calculates) the cross section.

For computational efficiency, the resampled total cross section ...
σ tot(ε) is the one we truly

use to perform the null-collision test in eq. (3.4) (p. 91). By resampling the total cross
section, one must protect the collision selection algorithm (3.7) so as to treat cases when
the cumulative sum does not amount exactly to 100% of the resampled CS.

Due to sharp resonances and the fact that some cross sections are expressed fully analyti-
cally, the resampled cross section may not exactly amount to the true total from the sum of all
individual collisions as shown in zoomed areas of figure 4.3:

...
σ tot ≠ σtot =∑

c

σc .

This difference is of course too small to affect the average swarm quantities but it does pose a
danger on the handling of collisions. There are two cases to beware. Locally, the resampled cross
section might either exceed or fall short of the sum as can be seen by the ratio of ...

σ tot/σtot in
the grey line on top of figure 4.4.

△
...
σ tot > σtot : This means that we summon the routine for selecting the collision (step 4
on page 91) more frequently than the electron truly collides. This can be very simply
amended. In the selection algorithm (3.6–3.7), if the total sum Ci falls short of the sampled
value of x, then we simply ignore the collision. It is completely equivalent to the null-
collision technique but with occasionally a loss of computational time in the rare case
when x > σtot/

...
σ tot. Thus, the only damage is that every percent of difference represents

on average some computation time lost by calculating cross sections for no avail.

▽
...
σ tot < σtot : This is the situation that, if not minimised, may introduce some bias in
the results. Fortunately, since the probabilities pc(ε) = σc(ε)/

...
σ tot in the cumulative sum

(3.6) are scaled to ...
σ tot, all collisions whose cumulative sum Ci(ε) <

...
σ tot(ε)/σtot(ε), are

sampled without bias. The remaining collisions (above the grey line in fig. 4.4) are sheerly
lost. One should then ensure that the effect of those collisions is benign at the energy
ε considered. In particular, all ionisation collisions should always be positioned below
this line. Otherwise, at high energies, where the analytical (11.139) expression σ̃tot might
slightly differ from the actual sum σtot, the ionisation losses might be underestimated and
this could affect the statistics of runaway electrons!

As seen from the discrepancies in figures 4.3 and 4.4, there is only one way to avert the
risk of biasing collisions at high energies, it is to move the high-energy threshold ε>, where the
analytical expression σ̃tot is used, to even higher energies (100 keV or a few MeV). This is because
at 10 keV, the Bethe approximation to the total inelastic cross section might be accurate to only
a few percent (see discontinuity jump on right middle inset panel of fig. 4.3).
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Figure 4.4: A 2D representation of the cumulative sum Ći(ε) of the set of cross sections for all
collision processes according to the electron energy ε. The grey line on top of the graph display
the ratio of the resampled – used for fast computation – to the exact sum total cross section :
...
σ tot/σtot

4.1.3 Scattering
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Figure 4.5: Illustration of increasingly forward-
peaked scattering at very high electron energies
scattering elastically from nitrogen molecules.

Our code stochastically models the scattering
of electrons throughout the whole energy spec-
trum. At high energies, the DCS becomes very
forward peaked as seen on figure 4.5. Above
10 keV, the sampling of the scattering angle is
done with (3.11). This expression does not ac-
count for the relativistic correction to the DCS
where large angle scattering is significantly at-
tenuated.

Although the difference between the rel-
ativistic expression (which includes the 1 −
β2 sin2 θ/2 factor) and the non-relativistic
DCS appears very small, we did not check
whether the effect is negligible on the prop-
agation of high energy electrons. At high en-
ergies, the elastic collision rate is high whereas
the scattering probability distribution is very peaked at forward angles. Therefore, it is difficult
to realise how a minor difference in the forward scattering could lead to a larger overall scattering
after being repeated many times after many collisions.
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To give an example, the probability that a MeV electron be deviated beyond 60○ in a single
elastic scattering event is 1.5 × 10−5 in the non-relativistic screened Rutherford approximation
whereas it is 1.1 × 10−5 from a more accurate model. This difference persists even at lower
energies. On average, there are 1.36 more high-energy electrons that are scattered beyond 60○

at energies above 10 keV.
We did not check whether this makes a significant difference in the number of runaway

electrons that can sustain themselves in air under a high-enough electric field. Nonetheless, we
must advise the user against potential systematic biases dispersed in our code!

4.2 Super-Electrons

The clock of our simulation advances at a regular interval δt. Let us suppose that it has ticked
Nt times and thus, that the simulation time is currently at Ntδt. Here, we remind the elementary
steps of our code comprised within one loop of the time interval δt:

1. First, we assign the null collision time δtf (3.3) to every super-electron in our swarm.

2. a. We propagate super-electrons in their free motion (3.2) by δtf
b. We collide (or not) super-electrons with the (null-)collision scheme steps 3&4.

Second, we alternate steps a. and b. as many times as they fit within one elementary time
step δt until (Nt + 1) δt < t + δtf .

3. Third, we perform measurements of quantities used to derive average properties of the
swarm (see section 3.3.3).

4. Fourth, we compact our electron swarm according to the spectral enhancement g∗s (ε) that
we chose (see section 3.3.2)

At the end of the loop, the clock of the code, previously at a time Nt δt, has ‘ticked’ (advanced)
of δt and is now at (Nt + 1)δt.

Of the many points that one must worry about when modelling electron swarms with super-
electrons, we will highlight here the three that, in our opinion, are most important regarding
their effect on the statistics of the swarm.

I. wmin > 0 We recall that the compaction algorithm, presented earlier in section 3.3.2, enables
the user to probe the high energy regions of the swarm’s spectrum at the cost of increasing
the statistical noise due to a reduction of super-electrons at lower energies. The unique
parameter that fixes the maximal resolution desired is the minimal weight ratio wmin which
can be as small as one wishes but should never be put to zero if one wishes to preserve the
decency of the results at the end of a simulation. What we mean by “decency” is illustrated
in figure 4.6, whose sole purpose is to show what happens if one allows wmin = 0.

II. Splitting The compaction algorithm is composed of two parts: curtailing and splitting.
When we split a super-electron into two or more fragments there is an extremely important
point to heed:

All N super-electrons that are created after splitting one super-electron, should
preserve the collisional free time δtf that had been assigned to that original super-
electron.
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Figure 4.6: Demonstration of the power of our compaction algorithm when the minimal weight
ratio wmin is set to zero; a deprecated use case. This causes the spectrum resolution to plunge
down to the machine numerical precision limited to 10−323. The results are going to be unpre-
dictable because the resolution (number of super-electrons) at lower energies will not be properly
constrained, and this will considerably amplify the stochastic fluctuations of average quantities.

This seems quite obvious but when one delves into the code, the structure of routines and
calls may cause him or her to forget about the physical meaning of this precaution. In our
case, when we added a super-electron in the simulation, we wonted using the same routine
for (1) adding split super-electrons and (2) spawning secondary electrons from ionisation.
The only change was to adapt the statistical weights w/N in the former case (1).

This fundamental mistake caused us to alter the physical collision rates of the swarm just
because we would resample the random collision time δtf on the split-electrons after it had
already been assigned! At the end of step 2, all super-electrons have an assigned mean free
time δtf that would propagate them ahead of the current simulation time t. If at the end
of the compaction step 4, we reassign a new δtf , we are forcing some electrons to collide
one (or twice, thrice, etc.) more within the interval δt than they should.

As a result, our average kinetic energy of the swarm got affected (lowered) because we were
physically forcing collisions to occur with a higher probability. Such mistake is very far
from obvious and actually very interesting, because it stems from the very implementation
of compaction and collisional dynamics. This mistake was subsequently corrected and is
not present neither in the results of our publications nor in this thesis.

III. Measuring For data analysis, we need to measure average quantities (energy, velocity, posi-
tion, etc.) on a regular basis from which we derive transport coefficients (see section 3.3.3).
This is done at step 3. At this instant, our super-electrons are asynchronous, their times
tn are all different according to the stochastic amount of time (successive δtf) they have
propagated within a time step δt. In order to eliminate bias:
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Before performing a measurement, the super-electrons must all be propagated to the
time of the measurement t by the amount t − tn where tn is the current time of the
nth super-electron.

Failure to do so will under-estimate the average kinetic energy, displacement and velocity of
the swarm. This is because under the influence of an electric field, the velocity distribution
of the electrons is anisotropic so that electrons tend to be more oriented opposite to the
electric field. This means that if we omit to propagate them, their average quantity will
always be slightly lower than it should really be at the time t of the measurement. This
bias worsens as the reduced electric field E/ngas is stronger.

These three mistakes, we committed them, of course. Fortunately, the essential checks that
we describe in the next section 4.3.1 helped us uncover those mistakes and amend them.

4.3 Assessment

The code, whose underlying model we presented in chapter 2 and numerical implementation in
3, will be named Θermiaa in order to enable unequivocal comparison with other sources. A
more proper introduction will be given in the next chapter 5.

Before presenting results, we need to ensure that our model works coherently and as expected.
By “model”, we mean (1) the Monte Carlo code that we developed throughout (the present)
part I and (2) the cross sections that we assembled in (the next) part II. In particular, we
need to verify whether the augmentation of the Monte Carlo simulation with the compaction
algorithm presented in section 3.3.2 does not physically affect the simulation results. We divided
this section into three parts which are aimed at assessing different aspects of the model.

A. Physical: these are simple tests that enable to verify whether the code does not violate
some general physical laws such as symmetry, energy conservation, collision rates and the
convergence to thermal equilibrium.

B. Numerical: this test ensures that our results coincide with calculations from a different
methodology (the kinetic approach) under identical input conditions and cross sections.

C. Experimental: finally, by comparing transport parameters with experimental measure-
ments we will be able to assess the relevance of the cross sections that we assembled.

This structuring helped us identify severe discrepancies and subsequently enabled us to amend
duly the issues encountered.

4.3.1 Checking physical consistency

Once a working implementation of the code is established, various useful checks can be made
to help uncover possible fundamental inconsistencies. Those checks are only based on general
principles and, as opposed to the validation step presented in the next chapter, they do not
require any reference data to be compared with. We selected here four sanity checks as a
preliminary verification of our code based on : isotropicity, energy conservation, collision rates
and thermal equilibrium. Those tests might seem trivial, however, as we implemented a super-
particle management scheme on top of an ordinary Monte Carlo implementation of electrons, we
also have to ensure that this does not introduce artifacts.
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Isotropicity

In absence of electromagnetic fields and in a homogeneous and isotropic medium, the velocity
distribution of electrons ought to be isotropic. This successful check on figure 4.7a is to ensure
that our implementation of scattering is not biased in a certain direction of space due to our
choice of coordinates.

In presence of an electric field E ∥ ẑ, the velocity distribution should be axially symmetric
about ẑ. This is checked in figure 4.7b.

Energy conservation

The electron swarm does not conserve the energy it gets from the electric field because it loses
a large part of it in inelastic collisions with the gas molecules. What is meant by “energy
conservation” is that the kinetic energy of the swarm, the potential energy gained from the field
and all the energy lost in collisions should amount to the initial kinetic energy of the swarm:

Ekin(t) + Epot(t) + Ecoll(t) = Ekin(0) . (4.7)

By default, the initial potential energy is null. We have:

Ekin =
Ns

∑
n=1

wnεn , (4.8)

Epot =
Ns

∑
n=1

wneE ⋅ (rn − rn,0) , (4.9)

Ecoll =
Ns

∑
n=1

wn (∑
i

∆Ei,n) , (4.10)

where ∆Ei,n represents the energy lost in the ith collision of the nth electron. To account for the
energy lost in attachment, one must include the potential lost eE ⋅ (rn − rn,0) and the kinetic
energy lost εn at the time of the attachment event.

Without our compaction algorithm (sec. 3.3.2), this total energy is conserved almost to
the numerical precision of the computing machine (∼ 10−16) as seen by the straight line on
figure 4.8a. Much more interesting is to ensure that the compaction algorithm satisfies the
energy conservation. This, seems to be verified on average from the 8 different runs that we
performed for identical initial conditions in N2 at 5MV/m. Nevertheless, we also see very clearly
that the “memory” of the initial energy deteriorates very fast with time. The ensemble deviation
of the three reservoirs of energy dominates over the initial kinetic energy. This is because each
of the three energy reservoirs in (4.7) increases with time as seen on figure 4.8b. Thus their sum
loses precision (Epot is negative, thus the difference between fluctuating big numbers becomes
very imprecise).

What mostly increases the fluctuations in energy conserved is probably the fact that do not
consider the spatial proximity of super-electrons. We place on equal footing all super-electrons
that are at the same energy irrespective of their location in space. Suppose that two super-
electrons share the same energy ε but one has travelled much farther opposite to the field than
the other. If we remove the one which has travelled farther, the effect on the total potential
energy ∆Epot will be stronger than if we removed the other one. One possible improvement
of the compaction method, could be to include spatial binning as well as the present spectral
binning.
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(a) In absence of any force, the electron velocity distribution is isotropic.
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(b) In presence of an electric field E ∥ ẑ, the electron velocity distribution is axially symmetric about ẑ.

Figure 4.7: Verification of axial and isotropic symmetries of the electron swarm. The distribution
in the polar angle χ (between the velocity and z axis) is corrected by the sinχ factor in spherical
coordinates.
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Figure 4.8: Energy conservation test applied on our compaction algorithm.
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Nevertheless, although the fluctuations rise severely, we still affirm that:

Our compaction algorithm presented in section 3.3.2 conserves on average the total energy
in the simulation and thus does not introduce a bias in the transport parameters and
spectra retrieved from the simulation.

Collision Rate

Isotropicity and energy conservation are very general requirements that do not depend on the
electron collision frequency with the gas. They just show that there is no detectable systemic
bias neither in the orientation nor in the energy of the electron swarm.

Presently, we must show that the electrons collide as it is expected from them; i.e. that the
previsions about collision frequencies match the effective recorded number of collisions per unit
time. This is verified on figure 4.9 for various examples in air, O2, Ar and different collision
types.

We recall that at any instant t, one may predict the average collision frequency ν̄c (per
physical electron in the swarm) of a process labelled by c:

ν̄c =
1

Ne

Ns

∑
n=1

wnvnσc(εn)ngas . (4.11)

One the other hand, we record the number of collisions δNc of each process c during an
elementary time step δt. This number is obviously weighted by the statistical weight wn of the
super-electrons that are selected to collide. We may then compare whether:

δNc(δt) = Nc(t + δt) −Nc(t)
?
≃ ∫

t+δt

t
Ne(t

′)ν̄c(t
′)dt′ . (4.12)

Numerically, this should be verified by defining an effective collision rate νc (per physical
electron) over a time interval ∆t:

νc ≡
∫∆t ν̄c(t

′)Ne(t
′)dt′

∫∆tNe(t′)dt′
≃

∫∆t ν̄c(t
′)Ne(t

′)dt′

(Ne(t +∆t) −Ne(t)) /νe
, (4.13)

which leads to the following relation:

∆Nc = Nc(tj) −Nc(ti) =
νc
νe
(Ne(tj) −Ne(ti)) ≃ ⟨ν̄c⟩(tj − ti)

(Ne(tj) −Ne(ti))

ln(Ne(tj)/Ne(ti))
, (4.14)

between two (not necessarily consecutive) samples i < j of the simulation separated by a total in-
terval ∆t ≡ tj −ti. Here, we used the estimator of the electron multiplication rate νe ≃∆lnNe/∆t
(3.39) which we saw at the end of the previous chapter.

The windowing over a larger time interval ∆t > δt enables to reduce the noise (fluctuation)
observed on the collision frequency when the time step δt is too short: i.e. when νc < 1/δt. Of
course, when there is no growth of the swarm νe ∼ 0 then one should use the limit:

lim
νe→0

νe
Ne(t +∆t) −Ne(t)

= lim
νe→0

νe
Ne(t)(1 + νe∆t − 1)

=
1

Ne(t)∆t
. (4.15)

Reversing (4.14), we may estimate the effective collision rate ⟨ν̄c⟩ over a time interval ∆t:

νc =
(Nc(tj) −Nc(ti))

∆t

ln(Ne(tj)/Ne(ti))

(Ne(tj) −Ne(ti))
(4.16)
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Figure 4.9: Recorded (blue) and predicted (⋆) collision rates sampled from a simulation in pure
molecular nitrogen under 98Td. We may say that they match statistically which confirms the
consistency of our handling of collisions.
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Figure 4.10: Recorded (blue) and predicted (⋆) collision rates sampled from a simulation in pure
molecular oxygen under 471Td. We may say that they match statistically which confirms that
our compaction algorithm does not alter the consistency of the collision frequencies.

The question in (4.12) reduces to νc
?
≃ ν̄c. To be sure that we understand the difference, ν̄c

is calculated from the instantaneous collision rates predicted by the swarm velocity distribution
(4.11), whereas νc (4.13) is the effective collision rate from the recorded collisions that really
occurred within the time interval [ti; tj]. Obviously, if our code works as it should, those two

quantities should be equal on average ν̄c
?
≃ νc. This we check in two figures for a number of

different collisions:

i. fig. 4.9 : at an electric field with slow multiplication without the use of our compaction
algorithm,

ii. fig. 4.10 : at a high electric field and our compaction algorithm activated.

The stars in red ⋆ represent ν̄c whereas νc is the noisy line in blue —. The first figure 4.9
demonstrates that our simple code handles collisions consistently with the predicted frequencies
whereas the second figure 4.10 shows that compaction does not affect the collision statistics.
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Thermalisation

At last, we perform the least relevant test for thermal runaway but the most interesting one from
a physical perspective: whether in the absence of an electromagnetic field, the electron energy
distribution function (EEDF) converges to the Maxwellian distribution. In equilibrium in a gas
at a uniform temperature Tgas the thermalised electron energy distribution should follow the
Maxwell-Boltzmann distribution (B.13) with an average kinetic energy given by:

ε̄ =
3

2
kBTe with Te = Tgas . (4.17)

Here, we must emphasise what temperature Tgas is it that we should consider. At very
low electron energies, the major losses are due to elastic scattering and rotational excitations.
Although, we dedicated some time in chapter 2 to the study of elastic losses, we did not implement
those since their relevance lies quite far from our purpose of studying thermal electron runaway.

On the other hand, we implemented in (2.48 p. 60) the scheme of average rotational losses
∆Erot(ε, θ) sampled from a rectangle grid ε ×θ of the incident electron energy ε and scattering
angle θ. That is, we model an ensemble of rotational transitions J0 → J as a single process with
an average energy loss without straggling.

Since, in absence of electric fields, the electrons may only change energy during a collision,
this average energy loss modelling of rotational excitations is not suitable. Indeed, the electron
swarm will actually converge to a monoenergetic isotropic distribution (a pure sphere in the
velocity space) about the energy at which the energy loss annihilates Erot(ε, θ) = 0. This gradual
shrinkage of the electron energy spectrum is what we obtained in figure 4.11.

As a result, presently, we may neither model thermalisation from elastic nor from rotational
excitations. The only remaining process whereby our electrons may thermalise with molecules
is through their vibrational (de)excitations. We consider a pure N2 gas at a (vibrational) tem-
perature of TN2 = 5000K which corresponds to an average energy of ≃ 0.31 eV from Boltzmann’s
statistics (sec. B.2). At this temperature, the expected average energy of electrons should be
from (4.17) around ∼ 0.646 eV though the spectrum seen on figure 4.12 has an average en-
ergy of ε̄ = 0.584 eV. The shape of the spectrum beyond 0.5 eV seems to follow the theoretical
Maxwellian at 5000K but deviates significantly from this law at lower energy. We surmise, just
as in the previous case at 300K (fig. 4.11), that this must be mainly due to a too crude handling
of rotational excitations through (2.48).

Of the four check tests: isotropicity, energy conservation, collision rate consistency and ther-
malisation; our code only fails the latter. Does it subvert its applicability to the study of thermal
runaway? No, fortunately.

This is because the electric fields required to provoke thermal runaway are very high (≳
10MV/m) which is far beyond the region where the electron energy spectrum is dominated by
rotational and elastic collisions which we model vaguely (from the energy loss perspective). This
shortcoming only limits the applicability of our code for the derivation of transport parameters
at low electric fields. We nonetheless presented this study in order to (1) forewarn the user
against a potential misuse and (2) highlight future improvements on the usefulness of our code.

From this perspective, the Monte Carlo approach beautifully complements the kinetic mod-
elling based on the two-term velocity distribution in the Boltzmann equation (see p. 81). As
the electric field becomes lower, one may approximate elastic scattering as isotropic and account
for thermal effects through the collision terms in (2.112a). Rotational excitations may be ac-
counted for by an adequate balance between inelastic and superelastic cross sections weighted by
the proportion of populated rotational states following a Boltzmann distribution [774, eqs.(3–6)].
Then, the kinetic approach offers a considerably faster and more accurate solution to the velocity
distribution of an electron swarm at low electric fields.
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Figure 4.11: Evolution of the EEDF in pure N2 at 300K in absence of electric field. It shrinks to a
nearly monochromatic isotropic (see fig. 4.7a) sphere due to the crude representation of rotational
excitations as average deterministic energy losses (from eq. 2.48).
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Figure 4.12: Incomplete thermalisation of the electrons in N2 without applied electric field.
Beyond 1 eV the tail of the spectrum seems to follow more or less the exponential tail of a
Gaussian (Maxwellian) distribution at 5000K. Below that, the spectrum is very different. This
is because we only model vibrational (de)excitations with greater accuracy whereas rotational
excitations are modelled very crudely through a deterministic average. Also, thermal effects
on elastic scattering are not taken into account, which is why the low energy spectrum differs
strongly from the expected Maxwellian distribution.
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How low can the electric field be before our results break? We shall see below (fig. 4.3.2–4.17).

4.3.2 Verification from Bolsig+

In the previous section, we performed four checks to assess the sanity of our code. This was
based on purely physical arguments restricted to the ideal of theory. Here, we confront ourselves
with the assessment of our transport parameters, whose calculation is explained in section 3.3.3.
They are compared against Bolsig+ [378]: an independent program based on a two-term kinetic
solvers of the Boltzmann equation (see p. 81) developed by Hagelaar and Pitchford [378a] and
available to download from the LAPLACE laboratory server in Toulouse. This will serve to
validate our code. Comparison with experimental results in the next subsection 4.3.3, on the
other hand, will serve to assess our cross sections.

As we have seen in 2.3.2, the two-term approximation (2.111) in the Boltzmann equation
is valid when the anisotropy of the velocity distribution is small; thus at reduced electric fields
< 100Td, below the conventional breakdown. In this electric field region, a pertinent comparison
with transport parameters from bolsig+ requires to understand the differences between the
kinetic and the present code Θermiaa relying on a Monte Carlo approach.

A. Elastic scattering in bolsig+ is incorporated by the momentum transfer cross section σm.
We thus have two choices:

(1) Either use the momentum transfer cross section σm with isotropic scattering, implying
that the average cosine is null ⟨cos θ⟩ = 0. Thus, that the integral elastic equals the
momentum-transfer cross section σel = σm.
This is done for all simulations using Phelps database (see fig. 4.13).

(2) Or use the integral elastic cross section σel ≠ σm given in the database and use an
anisotropic scattering distribution with an average deviation cosine given by

⟨cos θ⟩ = 1 −
σm
σel

.

This is the case of all simulations using the present database (see fig. 4.14) and ensuring
that the correct σm is given as input to bolsig+. Information about how we construct
our elastic (integral and momentum-transfer) cross sections can be found in part II
section 11.1.5.

B. The effect of the gas temperature on the energy loss in elastic collisions (discussed in
chapter 2 p. 54–56 and conspicuous on fig. 2.7–2.8) has not been implemented in our code.
For a true comparison at very low electric fields (< 0.01Td), the temperature of the gas
must be set to Tgas = 0K in the input parameters. This effect is very small, however.

C. Rotational excitations in Θermiaa are treated as part of elastic scattering whereas in
bolsig+, they feature as separate excitations. For comparison, we made two sets of runs:

• when using the Phelps database, we treated rotational excitations as a separate exci-
tation in the single level approximation for N2 at 20meV as described in the appendix
of Hake and Phelps [381]. Also, in this particular case, we did not include supere-
lastic collisions from rotational excitations, so that one needs to set the excitation
temperature in bolsig+ to zero: (Trot = 0K in figure 4.13).

• when using our own database (“present”), we included simulations without rotational
excitations (labelled “pure elastic” in the figure 4.14 below)
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D. As mentioned previously, we do not model inter-electron interactions, so that this option
must be turned off in bolsig+ to enable validation from comparison.

With these details in mind, we compare below results from two sets of simulations obtained
with two different cross section databases.

Phelps database

In order to get rid of any possible artefact due to the use of our cross sections, we first perform a
test taking as input the widely used cross sections from the Phelps database on lxcat which were
collected by Phelps and Pitchford [749, 750]. A succinct comparison of the various databases
hosted on lxcat is included in chapter 16 of the third part.

From the comparison in figure 4.13, the effect of the excitation temperature starts to build
up below 2Td. This is where the superelastic collisions from the single level at 20meV become
important. As for the effect of the translational temperature (velocity of the gas molecules), it is
negligible even down to 0.01Td. One can see in the study of Pitchford et al. [752, figs. 5&6] con-
ducted on Argon, that electron swarm transport parameters are indeed affected by translational
temperature of gases below about 0.01Td.

The agreement of our calculations with bolsig+ is very good for the (bulk) drift velocity
vd and the average kinetic energy ⟨ε⟩. The (transversal) diffusion coefficient D⊥ (or DT) agrees
well below 10Td but is somewhat lower at higher electric fields. The first point corresponds to
a very low field 100V/m (∼ 0.04Td) and has a large uncertainty because the simulation has not
fully converged to steady-state (requires more than 15 ns).

Present (IAA) database

Next, we show in figure 4.14 calculations made with own set of cross sections (baptised “IAA”,
presented in chapter 15, detailed in chapter 11 and compared in 16). The agreement is good,
except again for the diffusion coefficient at very low and high electric fields. Notably, due to our
compaction algorithm we start seeing important fluctuations of the diffusion beyond 200Td. An
example of such fluctuations in shown in figure 4.16 in argon.

At the low end of electric fields, the effect of our treatment of rotational losses can be seen.
The blue curve — (on the bottom graph of figure 4.14) saturates around 0.283 eV, which is the
energy ε at which the average loss ∆Erot(ε, θ) annihilates. The large uncertainty of the first data
point at 0.004Td is again due to a non-fully converged simulation. The convergence is indeed
very slow when the only energy losses are due to elastic collisions.

At last, we offer in figure 4.15 a comparison of the electron energy distribution function
(EEDF) normalised to unity∗. The overall agreement is good. Differences start arising above
the conventional breakdown. At 314Td, the high-energy tail of the Monte Carlo simulation (en-
hanced by our compaction algorithm to a minimal resolution of wmin = 10

−20) is more prominent
than predicted by bolsig+. This is mainly due to anisotropic scattering†.

There exist other sources with which our calculations could be compared, such as the time-
dependent Boltzmann solver ELENDIF [661]. We did not attempt to conduct an exhaustive
comparison. Instead, in the next subsection, the results with Bolsig+ are also be compared to
experimental transport coefficients.

∗This is by definition of the EEDF in (2.121)
†We remind that in order to make a meaningful comparison, one should use identical momentum-transfer

elastic cross sections σm in both simulations and not integral elastic cross sections σel. See the discussion in
section 4.1 for more information.
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Figure 4.13: Comparison of the bulk drift velocity vd (top), mean energy ⟨ε⟩ (bottom) and bulk
transversal diffusion DT (right) of electrons in molecular nitrogen at various electric fields below
conventional breakdown, derived from Bolsig+ and our calculations (“Θermiaa”) using the
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4.3.3 Validation from Experiments

The purpose of the following comparison is to unveil the validity range of our model and also
of our cross section database whose assembly is amply discussed in part II. It is of fundamental
importance to understand whether the discrepancies are due to (A) the method or (B) the input
data. A proper validation will enlighten the path toward future improvements.

From the previous subsection, we conclude that our simulations agree with the kinetic ap-
proach to Boltzmann’s equation in the range of electric fields between 0.01Td and 200Td. This
validates our method but not our set of cross sections. By comparing transport with experimen-
tal measurements collected and centralised on the lxcat server, we can assess the validity of the
present database of cross sections.

We offer in figures 4.17a,4.17b and 4.17c, a comparison of four main swarm transport pa-
rameters obtained from our simulations with our database against various experimental data
available in numerical format from the databases (of electron swarm parameters) on the lxcat
server.

The parameters are:

1. Mobility : µeE = vd. It is obtained as the ratio between the bulk drift velocity vd and the
electric field. We remind that vd is obtained in our simulation with (3.36a).

2. Diffusion : it is a tensor with two independent components which express the bulk spatial
spread rate of electrons :

∥ Longitudinal : DL ≡D∥ in the direction of the electric field. Depending on the target,
the scatter between experimental data of the longitudinal diffusion does not enable
a sound validation of a set of cross sections (for instance N2 in figure 4.17a-bottom
graph).

⊥ Transversal : DT ≡ D⊥ in the plane perpendicular to the electric field. In the lxcat
server, the transversal diffusion is not given explicitly but may be obtained through
Einstein’s relation (see (7.8)) of a characteristic swarm energy ⟨ε⟩:

D⊥
µe
= C⟨ε⟩ , (4.18)

with a proportionality coefficient C that depends on the EEDF.

Both components are obtained from a linear regression in (3.36b) of the quadratic moment
tensor in space r × r.

3. Townsend’s first ionisation coefficient : αi = νe/vd. It is the ratio of the avalanche rate to
the bulk drift velocity and expresses the spatial growth rate of the electron swarm under
the assumption of a steady-state Townsend discharge.

In each graph, our Monte Carlo results are represented by lozenges (blue ⧫ for N2 golden-
brown ⧫ for O2 and magenta ⧫ for Ar) connected by a dotted line (⋯). Then we include a
multitude of experimental results as scattered points. At last, we include the output (bulk)
parameters of bolsig+ when given as input the Phelps and two versions of our database:

# Complete : as described in the subsections labelled ‘Completion’ to each corresponding
species in chapter 16 in part III.

I Incomplete : raw taken as is from chapter 11 of part II.
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(a) Transport parameters in ambient pure molecular nitrogen.

Figure 4.17: Comparisons of transport coefficients calculated with kinetic solvers (dashed and
solid lines) and our Monte Carlo simulations with Θermiaa (Lozenges connected by dots) against
experimental data. The input cross sections for the Monte Carlo simulations are the same as for
the red dashed line (- - -) of the “Incomplete” database. The present “Complete” database (—)
is compared against the Phelps database (- - -) of lxcat.
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(c) (continued from fig. 4.17) Transport parameters in ambient pure argon.
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¿What does ‘completion’ mean, why is it necessary and how did it spring up?

In the process of assessing our cross sections, we came upon realisation that, alone, our assem-
bled database did not match satisfactorily experimental transport coefficients. We immediately
sought after explanation and quick remedy. We conducted a thorough process-to-process com-
parison of the databases available on lxcat and ours. Some of this comparison is illustrated the
figures of chapter 16. There, we realised that, despite of our profound survey of the literature,
significant differences distinguished our database from others. In particular, for all species, our
total inelastic cross section for electronic excitations was almost systematically lower than any
other of the databases used for computing transport parameters.

A ‘complete’ database comprises a complementary cross section σJ whose sole purpose is
to patch the inelastic losses of electrons from high excitations near the ionisation threshold
which are unaccounted in any of the identified excitations. Also, for diatomic molecules,
it includes state-to-state rotational transitions modelled separately from elastic collisions.

We then realised the relevance and importance of accounting for complementary inelastic
losses from electronic excitations (at high electric fields) and rotational excitations (at low electric
fields). For more information to feed our perplexity, we invite our readers to jump to page 573
where we explain how exactly did we proceed to completion and why we think it is justified.

Because of our late realisation and time restrictions, all our Monte Carlo simulations
were performed using the incomplete cross section set. Differences between the results of
Θermiaa and the dashed red curves on figures 4.17 reflect the accuracy brought by Monte
Carlo simulations compared to the kinetic approach.

Overall, the agreement with experimental data is good for all three gases in the electric field
range where our Monte Carlo code is relevant to the study of thermal runaway. The important
improvements of the completed sets are:

+ N2

1. Below 5Td : the rotational set of cross sections obtained from Kutz and Meyer [546]
with the sudden-impulse approximation 11.2.2 improves considerably the agreement
with the experimentally measured mobility and diffusion.

2. One can note that the effect of the average rotational losses ∆Erot in Monte Carlo
simulations (⋯◆⋯) is strong at low electric fields and approximately follows the more
accurate solution given by the complete set (— dark blue line). This is particularly
seen on the longitudinal diffusion DL.

3. Above 50Td : the incomplete set systematically overestimates the ionisation rate by
a factor between 2 and 4. This overestimation is reduced to less than 10% when
including complementary inelastic losses from electronic excitations.

+ O2

1. Below 1Td : the quadrupole and anisotropic Born approximation used to calculate
rotational losses is inaccurate. The cross sections are too low and do not reflect
resonant scattering that probably characterises electron-oxygen rotational excitations.
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2. From 1Td to 20Td : both our sets of cross sections overestimate the mobility µe and
underestimate the longitudinal diffusion DL. This is mainly due to the first v = 0→ 1
vibrational excitation, too strong in our database compared to Phelps.

3. Above 30Td : the Monte Carlo simulations differ slightly from the kinetic approach
as follows. The mobility µe is about 5% higher, the lateral diffusion DT 7% lower and
longitudinal diffusion DL 8% higher in the Monte Carlo simulations. The differences
highlighted tend to improve the agreement to the experimental results of Jeon and
Nakamura [457] and Naidu and Prasad [687]

4. ηa : the Townsend reduced attachment coefficient (ηa = νa/vd) is overestimated more
than what can be corrected by the completion of the set.

5. αi : the ionisation coefficient is overestimated by a factor of 2 in the incomplete
set, and still by 25% in the complete set. These last 25% can be eliminated if one
uses a more accurate Monte Carlo approach. This is because the inelastic losses in
the Herzberg and Schumann-Runge continua might not be well represented in the
Boltzmann equation.

+ Ar

1. The agreement with experimental data is very good throughout the whole range of
electric fields.

2. Below 0.1Td : The transversal diffusion DT measured by Milloy and Crompton [649]
is better fitted with the Phelps data.

3. From 10Td to 300Td : Monte Carlo results differ markedly from kinetic results and
tend toward the experimental results of Al-Amin and Lucas [25] for the transversal
diffusion.

4. µe and DL : all our results for the mobility and longitudinal diffusion in the 1 100Td
range agree better with experimental data [375, 689] than the Phelps database.

5. αi : calculations with the complete set for the Townsend ionisation coefficient are
accurate within the experimental uncertainty.

Regarding molecular oxygen, the assessment becomes very delicate at intermediate electric
fields below 10Td. This is due to the fact that the transport parameters become significantly
sensitive to the three-body attachment process. The only experiment conducted at the lowest
electric fields is from Nelson and Davis [691] at a pressure of 4 torr (∼5mbar) so as to minimise
the three-body attachment rate. As a result, we adapted the three-body attachement cross sec-
tions present the Phelps database to that pressure.

At last, our calculations for argon are reasonably well in agreement with all experimental
data and databases, where instead of Itikawa, we used the BSR database from purely theoretical
calculations of Zatsarinny [1000]. At low electric fields, we are mostly limited by the very slow
relaxation of electrons in argon. This is because the first excitation in argon is at 11.55 eV. Thus,
all energy losses below that threshold are purely from elastic scattering. Hence, our not fully
converged solution at 4Td has a large uncertainty bar.

Above 400Td, we start having large fluctuations on the diffusion coefficients. This is because
when we use our compaction algorithm to track high-energy electrons, we also increase the
fluctuations of the bulk thermal electrons. This is inevitable since, in order to keep the number
of super-electrons constant, we have to discard a significant fraction of them per time step.
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We show one such instance of the increased fluctuations on the diffusion tensor in figure 4.16.
At this electric field (∼800Td) the super -electron multiplication rate νs = 9 × 1017 s−1, meaning
that, on average within 1 ps, we need to discard almost one million super-electrons, which is
twice the number of super-electrons hosted in the simulations (500000). We may say that the
population of electrons is fully renewed every half picosecond! Thus, it is unsafe to study spatial
correlation effects at very high electric fields with the present methodology. One should either
increase the number of super-electrons in the simulation, or reduce the compaction reactivity κr
(see eq. 3.22–3.30).

To wrap up this last subsection, we deem that our cross section sets, when completed, are
valid for the study of thermal runaway which takes place at high electric fields. In some regions
of the electric field, they yield less accurate transport parameters than obtained with other
databases. Nevertheless, since they are virtually the only cross sections which have not been
adjusted to fit electron transport coefficients in gases, we regard them as an invaluable tool
for future scientific investigation beyond their use in practical plasma calculations. For a more
detailed survey of the most accurate cross section databases currently in use, please refer to
chapter 16 in part III.





Chapter 5

Results

After having explained our physical model in chapter 2, detailed its numerical implementation
in chapter 3 and emphasised some thorny aspects of the code in the previous chapter 4, we are
now ready to issue some results of our simulations.

The underlying motivation of the present research is to confirm or infirm∗ whether ther-
mal effects of the gas in the plasma channel, formed during the evolution of a discharge in
atmospheric gases, have an impact on electron thermal runaway production by those discharges.
Drastic changes in the temperature of the gas entail thermal expansion and changes in chemical
composition such as dissociation into atoms and presence of metastable excited states.

The objectives of this chapter are:

• Study the effect of the gas temperature and composition on the transport parameters
and population of high-energy electrons

• Make a probabilistic characterisation of the electron thermal runaway phenomenon.

• Explore how spatio-temporal scales affect the production of thermal runaway elec-
trons.

In this chapter, after stressing once again the restrictions of our physical model and its under-
lying hypothesis in section 5.1, we present some results of swarm energy distributions (sec. 5.2.1),
transport parameters (sec. 5.2.2) and reaction rates (sec. 5.2.3) under various conditions of elec-
tric field, temperature and gas composition.

Then, we explore thermal runaway statistics (sec. 5.3) such as the eventual energy threshold
for runaway and the runaway rate.

At the end, in section 5.4 we explore two (alternative) scenarios of heated gas conditions
(sec. 5.4.1–5.4.2), a scenario of how swarms evolve when runaway electrons are present initially
(sec. 5.4.3) and runaway electrons ahead of a planar ionisation front (5.4.4).

5.1 Working Hypothesis

In the previous chapter sections, we made two types of comparisons, (1) results based on our cal-
culations and bolsig+ using the same input cross sections (CS) (sec. 4.3.2) and (2) calculations
based on our set of cross sections and experimental data (sec. 4.3.3).

∗Loaned from French “infirmer” (and Latin “infirmāre”) as the natural antonym of “to confirm”, I prefer it to
“reject” because we are never sure...
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1. From the computational perspective, we assessed that our code – Θermiaa – matched
the results of the kinetic approach at fields larger than at least 1Td. In particular, the
compaction algorithm, exposed in section 3.3.2 and tested in 4.3 figure 4.10, preserves the
physical properties of the swarm. Since the investigation on thermal runaway is pertinent
only above 100Td, our code is therefore apt for that purpose.

2. We identified two major shortcomings of our cross section database when comparing with
experimental transport coefficients.

• At low electric fields (<1Td), our deterministic approach to rotational cross sections
from the average rotational loss ∆E(ε, θ) described by equation (2.48), which only
depends on the energy ε and angle of scattering θ, becomes inaccurate. When the
average gain of energy from the electric field between two collisions becomes compa-
rable to the average loss ∆Erot, we ought to model random fluctuations about the
average loss as a noise term. However, this does have any effect on the investigation
of thermal runaway at high electric fields.

• At high electric fields (>100Td), and only for molecular nitrogen, we realised that
simulations with our cross sections systematically overestimate the first Townsend
ionisation coefficient by a non-overlookable factor ranging from 2 to 4 in the worst
case. This was due to an underestimation of inelastic losses from impact excitations.

As a consequence of these shortcomings stemming from our set of cross sections, we sought
to amend them.

First, we would like to emphasise that our set of cross sections has been assembled, in part
II, independently from any other database present in lxcat. It is thus very instructive to check
in which respects do the present cross sections differ with others and how these differences
transpear∗ in the transport coefficients calculated by two-term Boltzmann kinetic solver bol-
sig+ [378]. Such comparison between different databases is conducted in chapter 16 alongside
experimental results.

Second, it should be promulgated that all cross-sections sets assembled from theoretical
and experimental studies require some ad hoc adjustment in order to yield accurate transport
coefficients. The importance of plainly disclosing these ad hoc adjustments has been depreciated
over time. It is indeed rare to find a publication whose methodology is as properly documented
as the section exposing the results. To restore focus, we deemed relevant to gather all the
adjustments we performed in a dedicated chapter 15. We designated these adjustments with the
terminology of “completion” because we realised that the full description of the energy losses of
electrons in a gaseous medium might be incomplete even when one has conducted an exhaustive
examination of inelastic collisions experimentally and theoretically hitherto documented.

Concretely, completion consists in the following changes to the “incomplete” cross section set:

1. “Rotation” : In order to make our cross sections relevant to the two-term Boltzmann
equation, we need to include all state-to-state (J0 → J) rotational cross sections as separate
excitations in the set used by bolsig+. These are calculated with the sudden-impulse
approximation presented in the second part in section 11.2.2.

∗“Transparaître”: verbalised in French in the 16th century from the adjective “transparent”, from Latin ‘trans’
: through + ‘parens’ : to appear. In this context, we mean to say how do differences in the cross sections “appear
through” the transport coefficients.
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2. “Complementary electronic” : Electrons passing through gases at a certain speed have a
probability to lose a certain amount of energy in inelastic collisions. The distribution of
energy losses is called the electron energy loss spectrum (e.g. fig. 11.32). A set of cross
sections is a representation of this spectrum but may not be a complete representation. The
purpose of the “complementary” inelastic cross section is to patch the energy loss spectrum
so as to account for energy losses from high-lying electronic states close to (or beyond) the
ionisation potential, which are not included in the identified set of cross sections.

3. “Effective” : Since the complete database comprises cross sections for rotational excitations,
the purely (rotationally) elastic cross section must be deduced from the vibrationally elastic
cross section by subtracting all rotational processes following the Boltzmann distribution at
the given temperature Tgas of the gas. Thus, we provide a so-called “effective” momentum-
transfer cross sections, used by bolsig+, which is the sum of the vibrationally elastic
momentum-transfer cross section σrm at 300K obtained from the residual integral elastic
cross section σre (which we defined in section 11.1.5 (11.10)):

σrm = σre(1 − ⟨cos θ⟩) ,

and cross sections from all (non-rotational) inelastic processes.

In our Monte Carlo code, we rather use the “Total” cross section σtot for collisions with
electrons and molecules which is the sum of σre (which includes rotational excitations) and
inelastic (non-rotational) CS.

For a more detailed introduction to completion, please refer to page 569 in chapter 15.
The realisation of the necessity to complete our cross sections came at a very late stage in

the thesis. In order not to delay furthermore the fulfilment of the thesis, we did not have time
to rerun our Monte Carlo simulations with our complete database. Thus, once again, we warn
the readers that:

All our results presented in this chapter were performed with Θermiaa Monte Carlo
simulations using the incomplete set of cross sections of the present database.
Therefore, the conclusions drawn from these results must be taken with care. We will
privilege qualitative observations and, at best, use the results to estimate the order of
magnitude of the quantities measured.

In conjunction to what has already been exposed in chapter 2, our model consists of a fixed
medium in which a swarm of uninteracting electrons evolves on a nanosecond timescale.

The medium is characterised by an electric field E pointing in the z direction and a gas (pure
or mixture).

a) E(x, t) = Eẑ: uniform electric field (except in sec. 5.4.4);

b) B = 0: no magnetic field;

c) Tgas: homogeneous temperature of the gas (except in sec. 5.4.1 with Tvib ≫ Tgas);

d) ngas = 2.547 × 1025m−3 : homogeneous particle (molecule or atom) number density;
obtained from p0 = ngaskBT0 at standard atmospheric pressure (see sec.2.1.1; p0 =
1013.25hPa and T0 = 15 ○C)
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Table 5.1: Compositions in percent of air at temperatures selected to mimic different stages
of a discharge. They were extracted from table 2.1 by disregarding ions and normalising the
sum to 100% (neglecting all other minor gas species). The coloured cells highlight the severity
of disregarding ions (and in parenthesis the predicted ion composition percentage at thermal
equilibrium).

Mimicked Temperature N2 O2 Ar NO O (+) N (+)
Environment (K) Percentages (%)

Ambient 300 78.07 20.95 0.98
Space Stem 3000 75.28 17.80 0.93 4.57 1.42
(Space) Leader 5000 64.61 2.65 0.82 6.75 24.58 0.58

10000 13.09 0.01 0.53 0.61 23.29 (0.05) 62.46 (0.16)
Return Stroke 15000 0.40 0.47 0.05 21.08 (1) 78.01 (6)

We performed our simulations on several values of the electric field, ranging between 300 kV/m
(runaway breakeven threshold [579, p.6951]) and 24MV/m, and a few values of the air temper-
ature which could reflect very localised regions encountered at different stages of laboratory
discharges at ground atmospheric pressure. The variation of the air composition reported in
chapter 2.1 is used. Since we have presently no means to model efficiently electron-ion interac-
tions, all atomic ions at high temperatures >8000K had to be replaced by neutral atoms. The
compositions used∗ are given explicitly in table 5.1. Note that even neglection of only 0.01% of
an ionic component can have a great consequence on electron swarm properties [376, figs.(6–9)]
due to the large cross sections from Coulomb interactions with ions (2.106).

In this homogeneous medium, the initial conditions of the electron swarm are:

At t = 0 the simulation is initiated as:

◊ Te(t = 0) = Tgas: Maxwellian distribution (isotropic) in thermal equilibrium with the
gas;

◊ Ne(t = 0) = 1: one seed electron is deposited at r0 = 0;

◊ Ns(t = 0) = 250000: but this seed is stochastically represented by 250000 super-
electrons. This is an arbitrary choice for scaling purposes.

In some simulations, these conditions may vary, for instance, when studying runaway thresh-
olds and seeding directly runaway electrons in section 5.3, we use a logarithmic distribution of
energies between εmin and εmax. Every time our swarm is initiated with such special conditions,
we shall mention it explicitly. For all fields above conventional breakdown (which depends on the
gas’ temperature), the statistics of high-energy super-electrons are enhanced by our compaction
algorithm in section 3.3.2.

Physically, our simulations rely on many assumptions which are scattered through chapter 2.
Objections and concerns are addressed duly in the forthcoming chapter 6. Here, they are plainly
stated for convenience.

∗ Actually, some batch of simulations at high temperatures were conducted at a slightly smaller gas number
density nair and therefore at a different reduced electric field E/nair.
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I) Isopykl♪: simulations at any temperature are conducted assuming that the number
of particles (molecules or atoms) per unit volume is constant. This would mean that
the thermal expansion of the gas compensates the dissociation rate of molecules.
Assuming the perfect gas law is obeyed, this corresponds to a conservation of the
pressure to temperature ratio : pair/kBTair = nair = cst.

II) Local thermodynamic equilibrium: all species populations (vibrational, electronic)
are based on a Boltzmann distribution at the same temperature as the gas.

III) Air composition: conformably to the two previous points, the variation of the chemi-
cal composition of air with temperature assumes (I) an equal number of gas molecules
or atoms per unit volume and (II) chemical reaction equilibrium (dissociation versus
recombination).

IV) Constant gas: despite the reactions induced by the electron swarm on the gas, there
is no variation of the gas temperature, density nor composition (nor excited specie
population) with time.

V) No ions: the model does not account for the coulombic electron-ion interaction.

VI) No inter-electron repulsion: the electrons do not interact between each other, their
diffusion is governed by the external electric field and the collisions with the gas.

VII) Limited superelastic: for vibrational excitations we do include any super/in-elastic
transition from v → v′. For electronic excitations, only the transitions between fine-
structure states of atomic oxygen are fully accounted for. For all other electronic
inelastic processes, we only account for de-excitations to the ground state but not
to another excited state.

VIII) Invariable elastic: the elastic cross section with any excited state of the target
(molecule or atom) is assumed to be equal to the elastic cross section with the
ground state. Thus, the elastic cross section is not affected by temperature.

IX) Instant collisions: no delay in resonant collisions is included.

X) No three-body attachment: only the dissociative attachment to molecular oxygen
and nitric oxide is accounted for. The three-body processes, which are not modelled,
should represent a proportion of the resonant vibrational excitations.

XI) Average rotational excitations: average energy loss ∆Erot through (2.48) as part of
(vibrationally) elastic collisions. Included only at energies below 20 eV and electric
fields below 100Td where their effect is most relevant.

On the last point, we remind that the elastic cross section (normally) includes all processes
that preserve the initial state of the target molecule or atom. In principle, this should exclude
rotational and very low-lying fine-structure degenerate states. In practice, distinguishing purely
elastic from weakly inelastic collisions is unfeasible and it is better to find an alternative. For
more information, please refer again to pages 114–116 of section 4.1.

♪“ισo” + “πυκλoς”: “equally dense” in ancient Greek. This terminology naturally extends the trilogy of
‘isotherm’, ‘isobar’ and ‘isochore’ curves that respectively preserve the temperature, the pressure and the volume
in thermodynamic processes of gases.
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Our model assumptions being now clearly refreshed in the minds of our readers, we may now
proceed to the results of our swarm simulations.

5.2 Swarm Studies

Our main goal is to understand how does electron thermal runaway occur, under which conditions
and what factors may influence it. Electrons that become runaways represent an extremely small
portion of the entire electron swarm. Therefore, as a preamble to the study of runaway electrons,
it may be of interest to describe how does an electron swarm behave in a uniform electric field
under various:

i. gas compositions (at identical temperatures).

ii. (reduced) electric fields E(/ngas),

iii. temperatures of air (which also affect its composition as in table 2.1),

In particular, we would like to characterise how fast does the swarm grow, the overall spatial
extension rate (drift and diffusion) and the heating (or reaction) rate. These quantities depend
on the electron energy spectrum (and the angular velocity distribution). Thus, we first show
how this spectrum is affected in the next subsection. Then, we present transport parameters
and reaction rates.

5.2.1 Spectrum

What we call “spectrum”, is the electron energy distribution function (EEDF) obtained from the
velocity distribution but in energy space. We calculate EEDF from the method presented in
section 3.3.1 based on a histogram using the Knuth fixed-width rule in logarithmic space (ln ε)
of the electron energy ε.

Above 3MV/m, our EEDF is enhanced with the compaction algorithm that we first published
in Schmalzried et al. [813] and which we further improved in sec. 3.3.2. Spectral enhancement may
be appreciated on figure 5.3a by comparing the short and noisy tail of the EEDF at 2.8MV/m
compared to the protracted tail at 5MV/m, whose maximal resolution was limited with the wmin

parameter (see eq. 3.25) down to a ratio of 10−20 high-energy electrons over the total number of
electrons in the swarm. This enhancement enables us to see what happens with the distribution
of high-energy electrons as the temperature, gas composition or electric field changes.

i. Gas. We first show in figure 5.1 the EEDF at 300K and 12MV/m (∼ 470Td) in pure
nitrogen (dark blue ∎∎∎), pure oxygen (light orange ∎∎∎), pure argon (magenta ∎∎∎) and in standard
air (p. 40).

Ar The spectrum in argon has the highest electron density around 10 eV due to its first inelastic
excitation at 11.55 eV.

N2 A salient characteristic in nitrogen is the first drop of the EEDF right at 2 eV corresponding
to the onset of the N−2

2Πg resonant collisions for vibrational excitations (see, for instance,
fig. 11.25–top). Inelastic losses in N2 are important, and the spectrum at high energies is
the lowest.
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Figure 5.1: Steady-state electron energy distribution functions in different atmospheric gases at
ambient temperature and at a high electric field of 12MV/m. The inset shows a zoom of the
upper part in the same energy range.

O2 Vibrational CS in oxygen are very different from nitrogen. They have much sharper, well-
separated peaks located at energies below 1 eV. As a result, the drop in the spectrum at
low electric fields is characterised by a series of undulations as seen in figure 5.2 from 0.1
to 1 eV, each associated to one vibrational resonant peak. In figure 5.1, this drop is not
observed because the electric field is too high, and also because of the noise. On the other
hand, we observe a depletion of electrons in the 5�10 eV segment compared to EEDF in
other gases, due to the dissociative attachment (to be seen on fig. 11.29). In contrast, there
are comparatively more electrons at energies > 15 eV in O2.

Air Qualitatively, the electron spectrum in air looks very much like a weighted averaged between
the spectra in N2 (×4/5) and O2 (×1/5).

A notable characteristic of swarm spectra in molecular gases compared to monatomic gases
is the presence of a tall plateau followed by a sharp drop at energies around the electron-Volt.
This is due to strong resonant vibrational cross sections which act as a barrier to low-energy
electrons being accelerated in the field. This barrier is overcome either by increasing the electric
field (fig. 5.3-inset) or by increasing the (vibrational) temperature of the gas which populates
excited states and enables superelastic collisions from vibrationally excited molecules (illustrated
in section 5.4.1, inset of figure 5.24).
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Figure 5.2: Steady-state
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on the declining edge of the
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ii. Electric field. Second, we see in figure 5.3 how increasing the electric field pushes more
electrons toward higher energies. The “vibrational plateau” shown in the insets becomes less
tall and less steep. Another interesting feature is the apparition of a tail to the electron energy
spectrum. It is noticeable from the kink∗ in the spectrum observed between 1�2 keV.

The observation of this tail supports the distinction of two electron populations which we
introduced long before in section 1.4 and illustrated in figure 2.1: (A) the bulk consisting of
thermal electrons and (B) the runaways which accelerate in the field. Raising the electric field
swells the tail and reduces the kink. This implies a weaker separation between bulk and runaways
because of the electric pulling force’s capacity to overcome electron energy losses in collisions.
A runaway tail of the spectrum appears at lower electric fields in air at higher temperatures
(and constant density) because of the dissociation of molecules into atoms. This diminishes the
average friction force as can be appreciated in figure 5.11.

iii. Air temperature. On figure 5.4, we stacked three graphs where we compare simulations
at different temperatures for three fixed values of the electric field. While at 200Td, the effect
of temperature is rather small, we see that at 400Td (10MV/m), a tail of high-energy electrons
in air can be present only in heated air above about 8000K. This emergence of this tail extends
to all temperatures when the field is above 500Td. The graph at 400Td which is not far from
the range of peak fields calculated on streamer heads [575, fig. 5d], suggests that the emergence
of high energy electrons could also be promoted by an ionisation wave propagation in a strongly
dissociated channel without necessarily needing to raise the electric field by a significant factor.

5.2.2 Transport

An overview of transport parameters in air at different temperatures as a function of the reduced
electric field is displayed in figure 5.5. For an explanation of transport parameters, consult
section 2.3. As expected, electron swarms in hotter air and at stronger electric fields are more
expansive: they move, diffuse and multiply faster, their average energy ⟨ε⟩ is higher.

We draw our attention to the attachment rate coefficient (νa) in the lower-right panel of
figure 5.5. There seems to be an optimal temperature (∼3000K) and electric field (∼200Td) at
which the attachment rate is maximal in air. Under these conditions, the electrons in the 5�10 eV
energy range attach massively to oxygen molecules through resonant dissociative attachment as
observed in figure 11.29 (p. 434) in the second part of the thesis.

∗From Collins: “A kink is a curve or twist in something which is otherwise or normally straight.”
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(b) At 5000K molecular oxygen is almost completely
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Figure 5.3: Electron energy distribution functions calculated with (3.16) in air at three temper-
atures and composition as in tab. 5.1, with increasing electric fields.
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Figure 5.4: Influence of air temperature (and composition) on the electron energy distribution
functions at three different electric fields.
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Figure 5.5: Transport parameters in air at various temperatures which determines its composition
as in table 5.1 and according to the electric field at atmospheric density. Electron swarms are
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Figure 5.6: Relaxation times
are fitted to exponential-like
relaxation curves of the av-
erage kinetic energy ε̄(t) ac-
cording to time. These are
the grey coloured portions seen
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• Under 200Td, the relative proportion of electrons in the 5�10 eV is maximal as seen on
the light-orange curve in the inset of figure 5.3a.

• At 3000K, oxygen is still present to 85% in molecular form. The electron spectrum is
virtually unaffected by the gas temperature (fig. 5.3) but the electrons attach more easily to
vibrationally excited oxygen molecules (cf. fig. 2.14 p. 68). It is the vibrational temperature
of oxygen that plays a role in this case.

Nevertheless, at high temperatures, there is evidence showing that electron detachment (not
taken into account here) becomes important above 1000K [11, §3.3]. Since attachment is en-
hanced by vibrational temperatures Tvib whereas detachment by kinetic temperature Tgas, vi-
brational relaxation is essential for understanding the evolution of conductivity in a heated strip
of air. Benilov and Naidis [57, p.1834:§2] argue that oxygen molecules relax fast vibrationally
and can be assumed to be thermalised (Tvib ≈ Tgas). Still, Laporta et al. [559] found that a
significant departure from the Maxwell-Boltzmann distribution (B.22) persists during the vibra-
tional relaxation of a pure gas of oxygen molecules excited by a swarm of non-thermal electrons.
One should remember thus, that it could be possible that a vibrationally super-heated (but not
thermalised) plasma channel would reinforce the attachment instability which may form in the
wake of a streamer and give birth to space stems [621].

Transport parameters describe the average motion of the electron swarm after it has relaxed
within ∼ 10 ps for electric fields above 50Td in a homogeneous medium as seen on figure 5.6. This
relaxation time is much longer at low electric fields below breakdown and can last a nanosecond
or more. However, the estimation of relaxation times is subject to large uncertainties.

At electric fields above breakdown, the exponential growth of electrons defies the applicability
of our results to the physical modelling of swarms. There are two main aspects that need to be
checked when the number of electrons becomes very high:

× When the density of electrons ne becomes a significant proportion of the gas density ngas,
inter-electronic (and ionic) forces dominate over electron-neutral collisions.

× When the electric field ESC generated between the swarm and the space-charges (electrons
in the swarm and ions left behind) becomes of the order of the external electric field E0,
the electron avalanche transforms into a streamer front [548, p.3].
This condition (ESC = E0) is also known as the Meek criterion [641].
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physical, see text for explanation.
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(b) Coarse estimation of space charge field ESC at
the midpoint between two spherical Gaussian distri-
butions of charges: one for the static ions and one for
the electron swarm. The dashed lines intersect the
space charge field when it equals the external field
E. At this intersection, the Meek criterion [641] is
met.

Figure 5.7: Physical limits of our free swarm simulations in homogeneous conditions.

These two conditions are related. They are juxtaposed on figure 5.7, where we see an ex-
ponential increase for both. At any time of the simulation, we estimate the swarm density by
assuming it is distributed in a Gaussian ellipsoid with two different spreads: the transversal s2⊥
and longitudinal s2∥ variances which are calculated as:

2s2⊥ =
1

Ne

Ns

∑
n=1

wn [(xn − x̄)
2 + (yn − ȳ)

2] (5.1)

s2∥ =
1

Ne

Ns

∑
n=1

wn(zn − z̄)
2 (5.2)

Since the actual distribution is not perfectly Gaussian, we decided to estimate the average
inner density of the swarm as the number of expected electrons in a cylindrical volume determined
by πs2⊥ × s∥. This gives:

ñe = Ne
erf(1/

√
2)(1 − e−0.5)

s∥ πs2⊥
≈ 0.0855

Ne

s∥s2⊥
, (5.3)

where we replaced in the last equation, the numerical value calculated by the error function (erf)
(integral of the axial 1D Gaussian) and the exponential (integral of the radial 2D Gaussian).

What is peculiar in our case, is that because of our use of super-electrons, we may arbitrar-
ily calculate a swarm density for any number Ne of physical electrons, even when they are too
few to make reasonable statistics. Our simulations start with 1 physical electron represented
by Ns = 250000 super-electrons all located at the origin. It is thus logical to see our densities
decrease first on figure 5.7a because of diffusion of our super-electrons before they rise again
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from exponential growth. The aspect of the graph may reflect how real electrons would diffuse
in a gas depending on the initial conditions, but the magnitude is incorrect. One would need to
adapt the scale by a factor of 250000, in which case each super-electron would represent a real
electron, and adjust the spatial scale if necessary, for instance by spreading the real electrons
over a larger volume.

The estimation of the space-charge field can be even more tedious. To preserve a simple
analytical approximation, we model the charge distributions of the fixed positive ions and the
drifting swarm as two Gaussian spheres separated by a distance between the two centroids. We
keep track of the position of positive ions created at each ionisation event and assume that they
are immobile. The centroid of the swarm is the mean of the actual electron positions (r(t)) from
equation (2.88). Denoting by d the distance between ionic and electronic centroids, the peak
space-charge field∗ is calculated at the midpoint d/2:

max
r
ESC(r) = 2

eNe [erf(x) − e
−x22x/

√
π]

4πϵ0(d/2)2
with x =

d/2
√
2(s2∥ + 2s

2
⊥)/3

. (5.4)

This field corresponds to the addition of fields of two decentred oppositely-charged Gaussian
spheres at their midpoint d/2. The value (s2∥ + 2s2⊥)/3 represents the average variance of the
Gaussian over all three dimensions, we neglect its ellipsoidal shape. The expression in squared
brackets is the proportion of particles contained in a 3D Gaussian spherical distribution.

We use very rough estimations just to understand the limits of our modelling of swarms.
When either the electron density becomes a non-negligible fraction of the gas density ne ≃
10−4ngas or when the space-charge field approaches the external field ESC ≃ E, we know that
we have reached the limits of validity of our model. The avalanche-to-streamer transition was
studied more thoroughly in Monte Carlo models by Kunhardt and Tzeng [543].

5.2.3 Reaction Rates
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Figure 5.8: Reaction rates in air at various temperatures
which affect the abundance of the species considered.

Swarm simulations enable us to re-
trieve reaction rates useful as input
to more sophisticated codes to model
for instance the emissions from ex-
cited molecular nitrogen bands and
from atomic oxygen observed espe-
cially in the 777 nm peak. Some ex-
amples of reaction rates are shown
on the side in figure 5.8. However,
these rates may not be directly used
to correlate the emission intensities
in a discharge with the tempera-
ture because many other processes
intervene before radiation is emitted.

∗Actually, the position of the maximum of the electric field generated by two opposite Gaussian charge
distributions is more complex. In each sphere, the field peaks at the radial distance r ≈ 0.9678√2s for a variance
s2. When the spheres are close together, the maximal field is in the midpoint, but at a critical distance, the
maximum splits into two peak images. However, we may assume that the electrons are never separated farther
from the ions than the variance of their Gaussian distribution.
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One has to account for chemical reactions in the gas, cascades, quenching and maybe even supere-
lastic collisions before the radiation by spontaneous emission can estimated from the concerned
excited species. The graph given here is only for illustration.

What we are interested to know, is whether electron swarms may significantly affect the
temperature and chemical composition of the gas on very short timescales.

Heating

Since temperature is of concern to us, we explore in figure 5.9 the heating rates of the vibrational
modes in diatomic molecules and the fast heating [759] through electronic excitations of all
species comprised together. We remind that during the development stage of discharges, the
energy lost by electrons to excitations is stored in separate reservoirs from where thermalisation
takes place on different timescales. Rotational and translational energies are thermalised within
a nanosecond, whereas vibrational energy stays apart over the order of a millisecond.

The energy in electronic states is harder to track. The conversion of the energy from excited
electronic states into translational heat operates on different timescales depending on the state
and the electric field [296, §2.4–5]. For some states, a great part of the energy may be lost by
radiation. Other states, on the other hand, may be metastable over long durations. We did
not perform any such distinction and we simply lump all inelastic losses to electronic excitations
together in the last graph on the lower right corner of 5.9. More information and references on
this issue were given in section 2.1.3.

What is important to notice is that the rate of energy transfer from the electron swarm to
vibrational and electronic/ionic excited states are complementary in two ways:

▷ Transfer to electronically excited states is always a monotonically increasing function of
the electric field and of the temperature of the gas∗

▷ Transfer to vibrationally excited states decreases with the temperature of the gas and there
is an optimal electric field at which it goes through a maximum. In a very short range of
electric fields below breakdown, raising the temperature may also raise energy transfer to
vibrational states by increasing the average kinetic energy of the electrons.

If we wish to convert the rate of energy loss into a heating rate, we must change the perspective
from the electron swarm to the gas medium. If we consider all gas species g and all collisions c
forming a common reservoir R of processes:

Swarm, dissipated power per electron: h̄R = ∑
g,c∈R

1

Ne

Ns

∑
n=1

wnngσg,c(εn)vn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Reaction rate

∆Eg,c , (5.5)

Gas, dissipated power to a molecule: QR = neh̄R/(∑
g∈R

ng) . (5.6)

Obviously, the dissipated power QR depends on the electron density ne which grows exponen-
tially (cf. fig. 5.7a), and on the swarm dynamics, since we assume that the gas is fixed whereas
the swarm drifts in the electric field. To obtain an average temperature rise rate, we may divide
the average energy level in a reservoir by the dissipated power.

∗Until perhaps unearthly temperatures would be reached where superelastic collisions take over.
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Figure 5.9: Dissipated power (energy loss rate) per electrons to different excitation modes in air
at different temperatures and electric fields. The energy loss rates in each species are divided
by the abundance ratio of that species. These are thus to be understood as the average energy
transmitted from one electron to a given species. Physical heating rates are obtained by multi-
plying by the electron density ne and dividing by the density of the gas: ngas = 2.547× 1025m−3.

From figure 5.9, we obtain that an overall magnitude of 2×10−8 J/s power is conceded to the
vibrational modes of N2 or O2. If we let a swarm of relative density ne/ngas = 10−6 pass over a
patch of air for 1 ns, we would obtain an increase of roughly ∆Tvib = 1.5K only. Therefore, we
may remember that heating a gas in a plasma channel requires several µs to reach temperatures
that would transform it into a hot leader core.

Dissociation

Next, we may wish to know what is the dissociation rate of molecules in a discharge channel
and understand whether the swarm can induce a significant change in the chemistry in a short
duration of time.
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Figure 5.10: Reduced production rates of atomic nitrogen and oxygen by electron swarms in var-
ious temperature and electric field conditions. To obtain the characteristic time for dissociation
of a molecular species, one has to divide the electron density ne by half the production rate of
atoms (because most come from diatomic homonuclear molecules).

On figure 5.10, we give directly the production rates of nitrogen and oxygen atoms from all
dissociative processes (direct dissociation, predissociation, attachment but not dissociative ion-
isation). This is a lower boundary for the production of atoms. At different temperatures, the
chemical composition changes and the species can rarefy. Because nitric oxide is easier to break
than N2, there is a small effect induced by the presence of NO when the electric field is weaker and
the temperature around ∼ 4000K. A similar calculation to the one for heating reveals that gases
in the wake of active streamer channels would dissociate over a characteristic time of a few µs also.

This concludes our study of electron swarms in homogeneous gases and electric fields. We
see that electrons quickly relax to steady-state conditions in which the transport and reaction
coefficients are constant. If one wishes to study the effect of electron swarms dynamically, as
in the case of discharges, then, those coefficients may be “plugged” into more complex fluid
simulations ([172, 531, 588, 621, 926] to name a few examples).

In the next section, we move toward a less studied aspect of electron swarms focussing now
not on the bulk population but on the higher end of the energy spectrum: the intermediate and
runaway electrons.
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5.3 Runaway Electron Studies

⊛ ¿ What is a runaway electron ?

We may start from the definition given by:

“ ”
Kunhardt et al. [544, p.444]

An electron is a runaway if it does not circulate through all the energy states available
to it at a given E/ngas, but on average moves towards high-energy states.

Conversely, a thermal electron accelerates, bounces, decelerates so that, on average, its energy
fluctuates around the mean kinetic energy of the swarm in the given conditions.

What supposedly separates both electron populations – runaways from thermals – is the
runaway energy threshold εr(E/ngas) which is the energy beyond which, at a given reduced
electric field E/ngas, all electrons are runaways; i.e. they keep accelerating to higher energies
until they eventually escape the region of high-electric fields and therefore truly “run away”.

The difference in behaviour of thermal electrons from runaway electrons may be clearly seen
by the aspect of the electron energy distribution function at low and high energies respectively.
Such distributions were displayed in section 5.2.1. Nevertheless, there is no clear-cut separation
between both regimes, but rather a continuous distribution of electrons ranging from a few eV
to several MeV.

This separation is blurred by the stochastic nature of the collisions incurred by electrons.
For instance, an electron at 10 keV might lose considerable amounts of energy in a series of
quickly consecutive ionisation events and wind up in the thermal region, whereas another electron
starting only at 1 keV might elude ionisation losses and accelerate up to 100 keV.

Defining a threshold εr that parts the population into two categories is not an easy task.
One must compare how probable those two events are, and decide when they can be considered
negligible. This probabilistic approach is to be addressed in the first subsection 5.3.1.

Admitting that such a threshold εr exists and may be determined from a salient characteristic,
we may then ask:

⊛ ¿ How long does it take for an electron to become runaway ?

Suppose we unleash an initial swarm of 1000 electrons and set a stopwatch till we observe the
first electron that reaches εr. This time corresponds stochastically to the minimal time measured
amongst a set of 1000 experiments with a single electron. It is precisely not an average. Thus,
should we repeat the experiment with a massive swarm of 109 electrons, this delay ought to be
smaller. There is obviously a physical limit to the delay (see figure 2.4), and one would need
an unruly number of electrons to summon such an improbable event. Nevertheless, what we
are interested in, is to know whether there exists an average time delay after which, in a given
electric field, we can expect an initially thermal electron to become a runaway. This is to be
investigated in section 5.3.2.

If this delay can be defined, so we may wish to know:

⊛ ¿ How many runaways can be produced per unit time ?

Again, this question requires to examine the scaling of the problem. It does not make sense
to adopt a single-electron approach since after an electron becomes runaway, the story ends.
Here, instead, we ought to consider the whole electron swarm and count how many electrons per
unit time cross the runaway energy threshold.
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This defines a thermal runaway rate νr. The problem is that secondary electrons from ionisa-
tion are produced continuously, and furthermore, if the runaway threshold is estimated to be at
10 keV for instance, how should one discriminate electrons who toiled all the way from thermal
energies to the runaway threshold from secondary electrons that were produced very near the
threshold or even beyond the threshold. In other words, how should we (or should we at all)
distinguish electrons that became runaway from those that were born runaway (from previous
runaways)? That is the topic of section 5.3.3.

5.3.1 Thresholds

The state toward which an electron evolves is governed by the balance of the continuous electric
pull and the regular but stochastic losses endured in collisions. As we know, at high energies,
most collisions are frequent but “anodyne” in the sense that only small deviations and comparably
small energy losses occur. Altogether, they may be modelled as a pseudo-continuous friction force
or “stopping power” (2.71) whose various declinations we discussed on page 2.2.3. On figure 5.11,
we represent dynamic friction forces calculated in air at four different temperatures. At a given
electric field E the intersection of the friction force with the electric pull ∣eE∣ would give a
definition of the runaway energy threshold.
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Figure 5.11: Dynamic friction forces and parallel momentum loss from elastic colli-
sions in air at different temperatures changing its composition as reported in table 2.1.
“Isopykl” means that the gas particle density is maintained constant (and equal to
2.547 × 1025m−3). The friction and momentum losses are lowered at higher tempera-
ture because (1) the particle density is conserved and (2) the cross section (elastic or
inelastic) of an atom is smaller than that of a diatomic molecule of that atom.

This ideal separation is blurred in reality because of the stochastic nature of electron propa-
gation in gases examined in section 2.2.3 and discussed many times in the literature [218, 579].
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There always persists a probability, albeit small, of a major energy loss or strong angular devia-
tion that would demote an electron from the runaway regime. That event could be a high-energy
bremsstrahlung or impact ionisation emission, but also a backscattering event (after which the
electron starts decelerating). Moreover, even if we could exclude events of very low probability,
the balance of forces from collisions and electric pull depends also on the orientation of the elec-
tron with respect to the electric field. Thus, the runaway threshold, if is exists, would not be
a point at a given electric field and electron energy, but actually a dividing line on a 2D graph
displaying the cosine cosχ with respect to E and the velocity of the electron.

On figure 5.12, we display the average cosine ⟨cosχ⟩ of the direction of electrons and the
electric field E. The coloured zones show one standard deviation of the distribution of cosines
according to the electron’s energy ε. We see clearly that there is a correlation between the
energy and the direction implying that fast electrons that are not anti-aligned with the electric
field quickly decelerate toward lower energies.

A probabilistic study of runaway threshold at a fixed electric field and gas composition
should therefore explore two variables: the initial electron energy ε0 and the initial electron
cosine cosχ0v̂0 ⋅ Ê with respect to the electric field.
We thus performed several batches of simulations changing the initial conditions of the electrons.

Conditions of the medium:

• A fixed electric field E ∥ ẑ varying between 0.3�22MV/m

• Homogeneous air at four different temperatures 300K, 4000K, 8000K and 12000K
and constant particle density of 2.547 × 1025m−3.

Initial conditions of the electrons:

• 500000 fast electrons

• starting with energies ε0 regularly spaced on a logarithmic scale between 100 eV and
2MeV

• initially anti-aligned or aligned with the electric field or distributed isotropically.

We then tracked the energy ε of each electron every 5 ps for a total period between 400 ps
and 700 ps. The electrons of lowest energy from impact ionisation events are automatically
discarded from the simulation, only ‘primary’ electrons are kept.

Then, in relation to runaway, at any time t, we determine two different probabilities for an
electron as a function of its starting energy ε0.

▷ Acceleration probability Pε>ε0(t; ε0) : that an electron be accelerated to an energy ε higher
than ε0 (its initial energy).

▷ Run-to-MeV probability P→MeV(t; ε0) : that an electron be above 1MeV if it started at ε0.

Those probabilities are determined through a windowing technique on the ensemble of 500000
electrons. Over a window of width Nw, we calculated the ratio Pw(ε0) = N[ε > ε0]/Nw for Nw

electrons spread around ε0 by an equal factor (e.g. 1.1, 1.01). In words, this ratio is the number of
electrons whose energy is higher than their respective starting energy divided by all the electrons
considered. For the “run-to-MeV” probability, the criterion is not ε > ε0 but ε > MeV, but the
subsequent analysis is the same.
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Figure 5.12: Distributions of the average cosine cosχ of the electron orientation with the electric
field E at 16MV/m. The coloured zone shows one standard deviation away from the average
value of the cosine. The Ns = 500000 super-electrons were binned into 100 logarithmically spaced
intervals of energy from the lowest to the highest value.

This windowing was made with 25 different windows with Nw varying between 20 and 1000
electrons. Then, we averaged the values obtained for the 25 windows. This last average is the
probability that we show and discuss in all the figures of this section. Probabilities calculated
near the lower and upper boundaries of the energy range probed are strongly deteriorated with
noise because of the restricted number of electrons available in the window. One can see this by
zooming very closely for instance on the midline of figure 5.13b.

We start by showing how the probabilities evolve with time on figures 5.13. Then, we fix the
time close to the end of our simulations and show how the probabilities evolve according to the
electric field in figures 5.15. The curves plotted have characteristic points marked with arrows
which are reported on figures 5.14 (along time) and figures 5.16 (along the electric field).

Acceleration probability : Pε>ε0(ε0, t). The curve of the probability that an electron have
an energy higher than its initial energy is characterised by a bump which shrinks with time
(fig. 5.13–left column). Evidently, when the electrons are initially propagation opposite to the
electric field, they at first gain energy in the immediate time before they incur their first collision
in the gas. Therefore, if we had included a snapshot at ≲0.1 ps after the start, we would see an
almost perfectly straight line at 1, meaning that all electrons are obviously accelerated initially.
At 5 ps after the start of the simulation, we already see that the portion of electrons at lower
energies have already collided enough to lose a significant portion of their initial energy. As time
progresses, the portion of inaccelerated electrons grows as they collide more times.

Below, we characterise the curves, their characteristic points and their evolution with respect
to time, the electric field and the air temperature.
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(a) Varying air temperature (and thereby composition through table 2.1). Electrons start anti-aligned
against the electric field.

Figure 5.13: Starting with 500000 electrons with energies ε0 logarithmically spaced between
0.1�2000 keV, we compute the probability that these electrons have an energy higher than ε0 (left
column) or higher than 1MeV (right column). The arrows show the detection of characteristic
energies: the peak (maximal) probability and the (first) intersection with half of this probability.
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(b) (continued fig. 5.13) Varying the external electric field. Electrons start anti-aligned against the electric
field.
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(c) (continued fig. 5.13) Varying the initial direction of the electrons.
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Peak (ε△) : After a certain time, the bump is characterised by a maximum. The energy
of this maximum is named “peak probability threshold” and noted ε△ (triangle for the
peak). The presence of the maximum is due to the fact that the condition verified is more
stringent when the energy of the electron is higher. At lower energies, the condition is
less stringent but the probability to lose energy in collisions becomes higher. The position
of the maximum is hard to distinguish sometimes because of the stochastic fluctuations
in the simulation. As a result, it is not a good indicator for comparison as displayed on
the bottom rows of figures 5.14–5.16 because of the significant noise, uncertainty on its
position.

Half-Peak (ε△/2) : The (lower) energy at which the probability equals to half of the peak
probability at a given time is defined as the “half-peak probability threshold” and noted
ε△/2. Contrary to the peak threshold ε△, the half-peak threshold increases with time.
After several hundreds of ps, if the electric field is strong enough on the left column of
figure 5.15a, the half-peak probability stagnates both in energy threshold and at a value
nearing 0.5 which goes well with its name.

Electric Field : When the field increases (fig. 5.15), the position of the peak raises and shifts to
lower energies. When the electric field is high enough, there is even a bounce to the peak;
it first lowers and rises back again at later time. This is because initially, electrons may
lose energy stochastically and be decelerated on the short term. However, on the longer
term, some electrons may be accelerated to much higher energies and the probability that
they be decelerated again is much lower. Thus these electrons can be truly considered
as runaways. The corresponding plot on the right column bottom row of figure 5.13b
attests this reasoning: many of the electrons that had started with few tens of keV have
successfully reached the MeV at a later stage.

Temperature : We see on figure 5.13a that the position of the peak probability is also affected
by air temperature but to a lesser degree. The position ε△ of the peak is not important but
the height and position of the half-peak probability are strongly affected by temperature.
The threshold ε△/2 decreases with temperature. Overall, the bump becomes wider and
taller in hotter air.

Time : Under some conditions, the distribution of high-energy electrons seems to stagnate and
converge toward a stable configuration as seen for instance on the densely stacked bumps
of figure 5.13. However, one may not always define a clear runaway boundary when the
high-energy electrons slowly deplete as visible on the mid-graph of figure 5.14a. There is
no upper asymptote to the blue curve at 300K. One has to fix a time limit to the runaway
process.

Critical Field : On the bottom-left graph of figure 5.15a, the upper range of electric fields are
above the critical thermal runaway threshold in air at 12000K. The probability to runaway
is non-zero at the boundary 100 eV which is below the maximum of the friction curve in
fig. 5.11. In that case, no threshold can be determined for runaway, it is just a question of
time that all electrons become runaway. The transition to critical thermal runaway can be
seen by the collapse of the pink curve on the mid-panel of figure 5.16a.

Initial direction : The evolution and shape of the peak is most affected by the initial direc-
tion of the electron. When electrons are generated isotropically or along the electric field
on figure 5.13c, the bump swells and takes a much rounder and less steep shape. The
probabilities shown on the bottom graph are not merely related to acceleration but to
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(a) Varying air temperature (and thereby composition through table 2.1. Electrons start anti-aligned
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Figure 5.14: The three characteristic energy thresholds identified by arrows on figures 5.13a
and 5.13c are plotted along time. Top: run-to-MeV probability (arrows on the right column of
fig. 5.13a). Middle: half-peak probability threshold (arrows on the slopes of the curves on the
left column of fig. 5.13a). Bottom: peak probability threshold (arrows on the maxima of the
curves on the left column of fig. 5.13a).
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the probability that electrons turn 180○ toward the opposite direction of the electric field.
This probability is remarkable since more than half of 100 keV are capable of realigning
themselves with the electric field after 400 ps.

Also, on figure 5.15b, the top of the curves are flatter and the decreasing slope at high
energies is less steep when the electrons are initiated anti-parallel to the electric field. For
isotropically oriented electrons, the curves are steeper. For electrons initiated along the
electric field, the hills are skewed and the slopes at high energies are steepest because the
probability for a 180○ turn is much lower for a MeV electron than for an electron of a few
100 keV.

The fact that runaway threshold depends also on the initial direction of the electron and
not only on its initial velocity can be best grasped on the middle graph of figure 5.16a
where the half-peak threshold is clearly pushed to higher energies for electron not initially
anti-aligned with the electric field.

Run-to-MeV probability. The curve showing the probability that an electron reach a MeV
looks very much like the diffusion of an initially perfect square wall. The analogy is ill however,
because the “transfer” is in the opposite direction: the probability rises if the electron has mi-
grated and passed the border toward the right. The aspect of this curve may be significantly
affected by the electric field and air temperature.

Run-to-MeV ε→MeV : On the right columns of figures 5.13 and 5.15, we identify only one
characteristic point to the curve which is merely the intersection of half of the maximal
probability (usually but not necessarily 1, compare graphs on the right column of 5.15b). It
is clear that when electrons are initiated in the direction opposite to the electric field, they
all accelerate before they collide. However, as they collide with the molecules, some may
be significantly delayed before they are able to reach 1MeV. This is why at low electric
fields, the curves rise very slowly, indicating that many electrons may require a significantly
longer time to reach 1MeV than when accelerated uniformly. More on this will be said in
the next subsection 5.3.2.

Electric Field : At higher electric fields, the probability to accelerate to the MeV regime swells
as seen on all graphs on the right column of figure 5.15. Most interesting is the transition
in the shape of the curve observed along the rows of figure 5.13b. At low electric fields, the
initially vertical wall at 1MeV only slants in a mechanism that we compare to diffusion.
This is a purely stochastic phenomenon: we introduce an artificial sharp boundary that
is smeared with time, a universal phenomenon in nature. Then suddenly, after a while
and at a high enough electric field, appears an inversion of curvature of the slope (right-
bottom reddish curves of figure 5.15a). There is not merely diffusion in the energy space of
electrons, but there is truly a runaway acceleration mechanism: electrons are being pumped
away toward higher energies.

Time : Nonetheless, it is not possible to determine a precise value of the electric field that
“activates” runaway. Rather, the occurrence of runaways is also subject to the question of
time. Some of the curves on figure 5.13a are not fully converged and could change of shape
at a later time. A 500 keV electron aligned opposite to a 2MV/m electric field requires
about 1 ns to reach 1MeV in free flight. This time drops to hundreds of ps at fields above
the conventional breakdown. This is why we see such a great difference in the curves on
the right column of figure 5.15a, especially at 12000K.
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(b) Varying the initial direction of the electrons.

Figure 5.15: Starting with 500000 electrons with energies ε0 logarithmically spaced between
0.1�2000 keV, we compute the probability that these electrons have an energy superior to ε0 (left
column) or superior to one MeV (right column). The arrows show the detection of characteristic
energies: the peak (maximal) probability and the (first) intersection with half of this probability.
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Temperature : One can best appreciate what role does temperature play on the bottom right
graph of figure 5.13a, where we see that runaway propagates as a wave of electrons massively
accelerated almost uniformly starting at lower energies. That truly corresponds to a highly
probable runaway mechanism since a large part of the population does indeed accelerate
to the MeV regime. At lower temperatures, the probability to accelerate to the MeV
is significantly lower and the initially straight slope of the curve slants to the side and
downwards. The difference in runaway can also be observed on the graph showing the
threshold along time on top of figure 5.14a. The threshold at temperatures below 10000K
stagnates and even recedes at 300K, whereas at 12000K it would propagate to lower
energies if we had allowed the simulation to continue.

Initial Direction : From figure 5.15b, we may say that the effect of the initial direction is
to reduce the number of electrons which may accelerate to relativistic energies at a given
electric field. It also pushes the threshold to higher energies as seen on figure 5.16b.
Initiating the electron in a direction different from the opposite of the field requires some
time to readapt to the correct direction. This may be seen on the top graph of figure 5.14b
where the curves first diverge but then recede with similar slopes.

Looking at various graphs of the runaway probability, one could perhaps identify three regimes
of electron acceleration:

• Fast Runaway: flushes electrons to relativistic energies like a wave as seen in fig. 5.13a–
bottom-right.

• Slow Runaway: electrons of high-energy gradually increase over a duration significantly
larger than the delay required in free flight as seen on fig. 5.13b–bottom-right.

• Vanishing Runaway: very few electrons may accelerate to relativistic energies but their
retention time at high energies is long enough to allow them to travel on spatial scales
where the electric field may vary significantly. This could either be the graphs on the right
panels at 200Td and 300K (fig. 5.13b) or at 120Td and 4000K (fig. 5.13a). However,
those electrons are not proper runaways according to the original definition on p. 162.

To sum up, the runaway regime is affected by the electric field of course, but also the air
temperature. The state of runaway should be characterised not only according to the starting
energy of the electrons but also their starting direction and the time duration considered. With
time, the initial conditions of the electron is blurred and one remains with a population of
high-energy electrons which is characterised by the given electric field and air temperature.
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Figure 5.16: The three characteristic energy thresholds identified by arrows on figures 5.15a
and 5.15b are plotted along the intensity of the electric field ∣E∣. Top: run-to-MeV probability
(arrows on the right column of fig. 5.15a). Middle: half-peak probability threshold (arrows on
the slopes of the curves on the left column of fig. 5.15a). Bottom: peak probability threshold
(arrows on the maxima of the curves on the left column of fig. 5.15a).
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Figure 5.17: Proportion of physical electrons above a certain energy threshold εth as a function
of time in a swarm initiated at a Maxwellian distribution of 5000K equal to the temperature of
air and under a homogeneous field of 16MV/m. The dashed curves show the average value of
the converged proportion and the triangles underline the time ∆t̄ at which the curve is detected
to have converged. The criterion of convergence based on the deviation from the median was
the same as in eq. (3.38), fig. 3.7 on p. 108. The first non-zero value of the ratio appears at the
onset time t0.

5.3.2 Delays

In the previous section, we were concerned with identifying an energy boundary to the runaway
regime. We saw that we may indeed identify some very characteristic energy thresholds (ε△/2 and
ε→MeV among possibly many others). Under fixed external conditions, those thresholds depend
sensitively on the initial direction given to the electrons and the time of observation. After a
while, the thresholds may converge or on the contrary they vanish, in which case we consider
that runaway is a vanishing process that cannot replete itself.

Here, we may wish to know, starting with thermal electrons, how long should we wait,
allow the swarm to evolve before we observe runaway electrons. We commence by looking at
figure 5.17 which shows the proportion of electrons which are above a certain energy threshold.
We immediately see that these curves stabilise at a time noted ∆t̄ after a steep rise from the
first non-zero value at a time that we note t0. These times depend on the energy threshold εth,
electric field E and are slightly affected by the air temperature Tair.

We represent these times ∆t̄ and t0 on figure 5.19a as a function of the electric field at two
different temperatures. Overall, the delay time for emergence of high-energy electrons decreases
with the electric field and increases with the energy threshold considered (εth). The decrease of
the delay with air temperature is very small.

Free acceleration (t∅) : The time t∅ required for an electron in vacuum initially at rest to
accelerate in a field E up to an energy εth was given in equation (2.24). This delay is
represented in figure 5.19a by dashed lines neatly stratified according to εth. The average
delay when air is present, can be a factor of 2 to 3 higher.
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Figure 5.18: When multiplying by the exponentially growing number of electrons in the swarm,
the flat curves on fig. 5.17 become also steep exponentials with different slopes depending on
the electric field and time offsets depending on the electron energy threshold considered. The
intersection of the horizontal line at N>1keV = 1 with the curves corresponds to the average time
delay after which a swarm of initially 1 electron produced 1 energetic electron of at least 1 keV.

Onset (t0) : Since our electron swarm is initiated as a Maxwellian at the temperature of the
gas, the onset is generally greater than the free time t∅ (t0 > t∅). This is the case when
the acceleration time from 0 eV to the average initial energy ε̄0 of the swarm is negligible
compared to the total acceleration time t∅.

If the electric field is high enough > 12MV/m, we have checked that, under physically
identical conditions, t0 is independent (within the numerical time step resolution) of the
number Ns of super-electrons allowed in the simulation. This is because of our compaction
algorithm. At each collision time step, multiple copies of super-electrons at the highest
energy are generated. Among those copies, the super-electron which has the highest prob-
ability to accelerate further is that which scatters forward and which does not lose a large
portion of its energy. If the number Ns of super-electrons is not too low, there should
always be enough copies of high-energy electrons so that at least one electron accelerates
to an energy higher than prior to its last collision. Therefore, we think that t0 could repre-
sent the average delay of an accelerating electron in air which never collides at an energy
smaller than when it last collided.

Stabilisation delay (∆t̄) : Physically, it is hard to ascribe a meaning to the “stabilisation
delay” ∆t̄. We interpret it as the delay necessary to stabilise the proportion of electrons
above a threshold εth after being initially released at 0 eV and allowed to multiply in a
gas at a certain electric field. It is not the smallest delay nor an average of individual
delays. The detection algorithm of the stabilisation time ∆t̄ is very sensitive to stochastic
fluctuations of the simulations and so the statistics on figure 5.19a about ∆t̄ are poor.
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1-in 1-out delay (∆t11) : We could now take a different perspective and ask how long should
one wait on average to obtain 1 high-energy electron, if the simulation started with 1
thermal electron. This, we call the 1-in 1-out delay (∆t11) and is obtained at the inter-
section points on figure 5.18 of the horizontal line at N = 1 and the number of electrons
above 1 keV (or any other threshold) which grows exponentially. We remind that, since
we use super-electrons, we are able to represent an arbitrary fraction of real electron, even
a 10−20th of an electron. This number would have to be understood as the physical state
that a real electron, at a given moment, would occupy at a probability of 10−20. Thanks
to this probabilistic scaling, we may indeed calculate an average 1-in 1-out delay for any
energy threshold. This delay is considerably longer than the stabilisation delay as seen by
comparing figure 5.19b with 5.19a.

Most important to realise is that, physically, the highest yellow dashed lines on any of the
figures 5.19 is the delay required for a thermal electron to accelerate up to 1MeV in vacuum. At
any temperature and electric field, this run-to-MeV time is too long no matter the probability
that the electron appears physically; this time exceeds the time by which the Meek criterion is
satisfied; i.e. the time by which the electric field collapses due to screening by the space charges
created by the swarm.

This is already a first argument against thermal runaway in static configuration: the time
required to accelerate a thermal electron to runaway energies is too long compared to the over-
whelming growth of the electron swarm at any given electric field. This is the reason why studies
could not confirm emergence of thermal runaway in the enhanced field at the encounter place
of counter-propagating streamers [422, 531, 579]. This is not due to any flaw of a not enough
enhanced electric field, it is because thermal runaway most likely occurs on ionisation waves
where space is traded for time and thence faster electrons may travel along with the region of
intense electric fields whereas slower electrons remain behind the wave.

We continue our presentation of thermal runaway in the next section where we consider the
production of high-energy electrons which we have already mentioned here.

5.3.3 Production

Characterisation of the production of high-energy electrons in a swarm at a fixed electric field
is a task more difficult than it seems. In the literature, the thermal runaway production is
characterised by a runaway rate νr which gives a flux (number of electrons per unit time) of
electrons becoming runaways. This rate does not include electron avalanching.

Sterile Runaway

There are (at least) two definitions of thermal runaway rates without avalanche that one should
be aware of.

Analytical. We believe the first determination of a runaway rate in a collisional plasma is
attributable to Gurevich [371, eqs.(11–12)]. There, the “runaway rate” is interpreted as the
flux of electrons, whose velocity component vz anti-parallel to the electric field is increased
on average accounting both for electrostatic acceleration and collisions with neutrals, ions
and other electrons. This rate is computed up to the critical velocity vc beyond which
all electrons are assumed to accelerate uniformly in the electric field. Because the effect
of electron scattering was not considered in the model, the calculated runaway rates were
overestimated by about a factor of ∼10.
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(b) Markers connected by solid lines represent the average delay time ∆t11 after which a swarm
initially composed on 1 electron produces 1 high-energy electron above a given energy threshold.
This time is determined from the intersection point of the exponentially rising curves of the
electron population with the horizontal line at y = 1 on figure 5.18.

Figure 5.19: Delays to obtain high-energy electrons in homogeneous swarm simulations starting
at thermal conditions in equilibrium with the gas temperature. The dashed lines correspond to
the delay t∅ of a free electron, initially at rest, accelerating uniformly in the electric field. The
pink zone covers all times in which the swarm has reached Meek’s criterion on figure 5.7b when
the electric field of the space-charges equals the external electric field.
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Stochastic. Later, an attempt to characterise the thermal runaway rate stochastically was
conducted by Bakhov et al. [50] based on the definition of Sizykh [853] in which the runaway
rate is defined as the number of electrons per unit time which reach the runaway energy
threshold εth (corresponding to ‘vc’ of [371]). This definition was used in subsequent
studies of thermal runaway [43, 218]. The stochastic nature of thermal runaway was first
explored by Bakhov et al. [50] who considered that even beyond εth, there might be a loss
of runaways due to angular scattering (not accounted by the dynamic friction force which
determines εth). Thus, they mapped the rate at which electrons reach an energy threshold
situated between 150�8000 eV [50, fig.4]. Then, they determined, in the electric field range
explored 24�40MV/m in N2, that beyond 4 keV, the runaway rate did very weakly vary
with the energy threshold. This means that there is almost no loss of energetic electrons
due to stochastic collisions once they reach 4 keV (for fields above 24MV/m).

In the two definitions above, it is assumed that runaway is a leaking mechanism of thermal
electrons contained in a reservoir of an initial number N0 of electrons which decreases exponen-
tially, at the rate by which runaway electrons Nr(t) are produced [50, eqs.(9–10)]:

dNr

dt
= −

dNe

dt
= νrNe and Ne(0) = N0 (5.7)

Nr(t) = N0 (1 − e
−νr(t−t0)) (∀ t ≥ t0) . (5.8)

This way of counting runaways is statistically equivalent to the sum ofN0 independent Poisson
random variables each of a constant probability rate (of having run away) per unit time noted
by νr. This process requires an “activation” time t0 which is related to the physical time needed
for an electron to accelerate to the runaway threshold and which we determined in the previous
section. We remind that 1−exp(−ν(t−t0)) for a Poisson variable of probability rate ν represents
the overall probability that, after a time (t − t0), the (runaway) event have occurred. Thus, if
this experiment is repeated N0 times (the number of electrons), we ought to obtain the equation
(5.8) mentioned above.

The production of secondary electrons from ionisation is completely omitted in this picture.
As a result, for future reference, we suggest that this type of runaway rate be qualified as
“sterile” runaway in relation to the fact that there are no offspring runaway electrons taken into
consideration.

Although there already exist several studies that investigated sterile runaway rates in air
[43, 50, 218, 677], we were unfortunately unable to reproduce those results. The runaway rates
we obtained were greatly (3 orders of magnitude) below previously calculated ones. One can
compare our estimates on figure 5.20 with [43, 50, fig. 7, fig. 5]. Those estimates were calculated,
however, with a different approach explained in the following subsection.

Fertile Runaway

Presently, we offer an alternative characterisation of the production of runaway electrons which
differs from the previous ones in two aspects. First, it includes all secondary electrons produced
by ionisation. Second, it is conducted at electric fields below 24MV/m which were previously
investigated only by Diniz et al. [218]. We stress that the study of thermal runaway at sub-
critical electric fields is possibilitated by our very strong compaction algorithm of section 3.3.2
which enables the swarm to hold a super-electron resolution spanning arbitrarily many orders of
magnitude.
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Figure 5.20: Production rate of electrons accelerated above 1 keV at different air temperatures.
The rate νr is derived in the fertile runaway model (5.9) from the ratio νr/νe represented by
dashed lines in figure 5.17.

If we superpose to the previous sterile runaway model above, the exponential growth of the
swarm as a whole, we obtain the “fertile” runaway model composed of two electrons reservoirs:

Bulk :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

dNe(t)

dt
= νeNe(t)

Ne(0) = N0

⇒ Ne(t) = N0e
νet (5.9a)

Runaways :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

dNr(t)

dt
= νrNe(t)

Nr(t) = 0 ∀ t ≤ t0

⇒ Nr(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

νr
νe
N0 (e

νe(t−t0) − 1) ∀ t ≥ t0

0 ∀ t < t0
(5.9b)

In accordance to what we determined in sec. 5.3.2 and displayed on figure 5.17, after an
onset delay t0, there is a very fast transient uprise (1− exp(−νet)) of the relative number Nr/Ne.
There, we see that in the “fertile” model, it is the exponential growth rate νe of the swarm which
governs the runaway production rate (this would be the ‘fertile’ runaway rate). On the other
hand, the sterile runaway rate νr determines the proportion of runaways compared to the bulk.

Thus, we provide an alternative way to calculate sterile runaway rates through the ratio νr/νe
which may be seen by the dashed lines represented on figure 5.17. The derived values of νr for
electrons above 1 keV is represented on figure 5.20 at different temperatures of air. There, we
see that the runaway production rate can be raised by several orders of magnitude in hot air
> 5000K and that the electric field threshold for production is lowered.

The fertile model is, however, an idealisation of a swarm evolving in a uniform field without
taking into account the space-charge field produced by the exponentially growing swarm. In the
next section, we discuss the limitations imposed on the production of high-energy electrons by
the screening of the external field.
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Figure 5.21: Estimation of the number of electrons produced above a certain energy threshold in
uniform electric fields at different temperatures of air within the time before which the external
field is screened by the peak field generated by the swarm as seen on figure 5.7b.

Constrained Runaway

From the previous sections 5.3.2 about runaway delays, we know already that the production of
high-energy electrons in uniform fields is subject to many objections. We name three.

1. The first is that acceleration of an electron in gases is a stochastic phenomenon and thus
the time required to produce a certain number of electrons may fluctuate depending on
the particular circumstances. We may only describe an average time t0 + τr, after which a
certain number of electrons is expected to emerge (see fig. 5.19a).

2. The second is that, by the time > t0 that an electron reaches an energy considered high,
the electric conditions will surely have evolved significantly as a result of the swarm’s
exponential growth and drift-diffusion (see fig. 5.19b).

3. The third, is that the very presence of high-energy electrons could introduce a change to
the behaviour of the swarm because of the avalanche of lower energy electrons it leaves in
its wake. Thus, after a swarm has “acquired” a high-energy population, it keeps growing
exponentially at rate νe maintaining its spectral proportions fairly constant (see figure 5.17).

As the swarm grows, the electric field ESC, generated between the ionic and electronic space
charges, screens the external field E. To illustrate the restriction due to this screening, we
calculate the number of high energy electrons produced above an energy εth within the time by
which Meek’s criterion (ESC = E) [641] is reached on figure 5.7b.

We plot this estimate on figure 5.21 with coloured circles representing the imposed air tem-
perature (colour) and amount (size) of the electrons produced above a certain energy threshold
(ordinate) at a given uniform electric field (abscissa). The prospects of thermal runaway at
uniform fields below 20MV/m are very low. Not a single electron of 1 keV would be produced in
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ambient air. At 5000K (oxygen is almost fully dissociated), only 5 make it to 1 keV at 22MV/m.
At higher temperatures, a few hundred electrons are accelerated to more than 10 keV but not
up to 50 keV.

As a result, to the three objections above, we add a fourth stating

4. Thermal runaway occurs in conditions of strongly inhomogeneous electric fields with con-
strained spatio-temporal dimensions. Those conditions correspond best to the ones found
ahead of ionisation fronts.

The notions of sterile and fertile thermal runaway rates may be interpreted as two extremes
of a phenomenon that probably lies somewhere in between.

— In a sterile setup, the region of enhanced electric field can be imagined to be so localised
around each individual electron that the offspring electrons have no influence on the out-
come. They merely attach back after they emerge.

— A fertile setup is the complete opposite, where a swarm has an infinite amount of space to
grow and produce fast electrons along with its exponential growth.

In an intermediate scenario, we may suppose that the spatial inhomogeneities of the electric field
restrict the exponential growth of electrons and thus that the runaway electrons are produced at
an intermediate rate between the sterile (νr) and the fertile (νe) rates. What is certain, is that
one needs to know more about the spatial scales over which thermal runaway comes about, in
order to be able to compare with spatial scales of ionisation fronts.

Spatial Scales

In preparation of understanding how the spatial extent and temporal evolution of the electric
field ahead of a front affects the generation of runaway electrons, we may try to characterise
how does the spatial evolution of high energy electrons differ from bulk electrons. For electrons
generated at the origin, we consider two spatial extents:

• −r∥(ε) = r ⋅ Ê : the longitudinal distance of an electron of energy ε opposite to the z axis
aligned with the electric field.

• r⊥(ε) = ∥r + Êr∥∥ : the transversal distance of an electron from the z axis.

From there, we define averages based on all electrons whose energy is higher than εth:

r̄∥(εth) =
1

N>εth

Ns

∑
n∶εn>εth

wnr∥(εn) , (5.10a)

r̄⊥(εth) =
1

N>εth

Ns

∑
n∶εn>εth

wnr⊥(εn) ; (5.10b)

with N>εth representing the number of electrons above the energy threshold εth.
These total distances are plotted on figure 5.22a. The curves look like straight lines and we

may associate therefore a longitudinal and a transversal drift to high-energy electrons. This is
analogous to the bulk drift velocity vd for bulk electrons. The coloured zones show the span in
one standard deviation of from the average. We see that for higher electric fields, the electrons
travel faster in the longitudinal distance (the curves are steeper), whereas the radial drift remains
significantly smaller than the axial drift and the radial expansion shrinks at higher electric fields.
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Figure 5.22: Comparison of total and local distances travelled by high energy electrons. Top
graphs : in the longitudinal (axial) direction opposite to the electric field. Bottom graphs : in
the transversal (radial) direction perpendicular to the field (bottom graph).

Since the electrons in the swarm are continuously renewed as the avalanche progresses, we
may also characterise the average distance that a high-energy electron travelled from its spawning
place. We note this by ∆r ≡ r−r0 and again, take the average values of the longitudinal (axial ∥)
and transversal (radial ⊥) components. This time we see on figure 5.22b that the local distances
take constant average values. These represent the average (axial and radial) distance that an
energetic electron traverses in the swarm since its creation. It may be interpreted as the distance
needed in air to accelerate to a given energy threshold εth. For comparison, we plotted by long
dashed lines, the distance crossed by an electron accelerated from 0 eV to εth = 2keV in vacuum
at each given electric field. There is about a factor of three of difference. This factor is reduced
when the energy threshold considered is higher and when the electric field is increased. Contrary
to the drift velocities, ∆r is relatively unaffected by air temperature.

Finally, in preparation of studying electron swarms in a dynamic setup instead of a static one,
we represent the drift velocity (the slope of the axial curve on top of figure 5.22a) of electrons
above 1keV on figure 5.23. We see that those electrons drift faster than the bulk and thus that
they may stay ahead of ionisation fronts in a fashion that is analogue to “surfing” on a wave.

In brief, we may conclude that spatial inhomogeneities, in the electric field or in air, are
factors that have a high influence on thermal runaway. The electric field mostly affects the spatial
scales, whereas air temperature may significantly lower the threshold to runaway and enhance
the high-energy spectrum. The effect of the ionisation degree and electron-electron interaction
may also play a role, though we have no means to assess its importance. We also surmise that
the only viable region for fostering thermal runaway is located ahead of ionisation fronts, such
as streamers, and we will try to explore this mechanism in the very last subsection 5.4.4.
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Figure 5.23: Average axial drifts (slopes obtained from figure 5.22a but at εth = 1keV) according
to the electric field and air temperature. Dashed lines represent the drift velocities of the swarm
bulk. Energetic electrons may propagate about twice faster ahead of the bulk.

5.4 Cases studies

In this last section, we explore deviations from the premises given at the beginning in section 5.1.

5.4.1 Vibrationally Superhot gas

In section 5.2.3, we saw that temporal scales of the dissipated power into vibrational excitations
in discharge channels are separated by more or less 3 orders of magnitude from the temporal
scales of thermalisation of the vibrational modes of excitation. This implies that the early stage
of a discharge may be characterised by an overall cold strip of air that has nonetheless been
super-heated vibrationally.

Hitherto, we have studied the effect of air temperature on the whole, taking into account its
change in composition due to dissociation of molecules. Here, we may be interested in knowing
what role does the vibrational temperature Tvib play by itself in the physics of the swarm. In
figure 5.24 we plot the electron energy spectrum at two different electric fields for three vibrational
temperatures.

On the upper graph, in the inset in particular, we see that electrons in a vibrationally-hot
air can overcome the vibrational barrier of N2 situated between 2�4 eV at relatively low electric
fields near breakdown. This creates an enhancement of electrons at energies up to 10 eV but has
very little effect on the high-energy part of the spectrum.
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Figure 5.24: Two instances of vibrationally heated pure N2 gas at three different temperatures
maintaining the temperature at 300K and changing Tvib only.

However, at high electric fields about 3 to 4 times the conventional breakdown field, the effect
of vibrational temperature is practically irrelevant. There, the electron spectral distribution
mostly results from the strong electric field rather than the vibrational temperature of the gas.

As a result, we conclude that if vibrational temperature has an effect on the development
of discharges: its effect plays a role at low electric fields, thus in the wake of streamers but not
in ionisation fronts and it promotes the energisation of thermal electrons into the 5�10 eV zone
which is where attachment to oxygen molecules takes place. So that vibrationally super-heated
N2 molecules in air, in addition to O2 molecules, can further endorse the attachment instability
which was proposed as the mechanism behind the formation of the space stem [613].
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Figure 5.25: Comparison of the electron energy distribution functions obtained in air under
10MV/m assuming different scenarios of the thermal expansion due to heating of air. Isopykl
maintains the particles density to nair = 2.547 × 1025m−3 whereas isochore heating to 5000K
would cram atoms from dissociated molecules into a density of nair = 2.914m−3 thus lowering
significantly the value of the corresponding reduced electric field.

5.4.2 Isochore Heated Air

In all the results presented so far, we assumed that the change in gas composition due to tem-
perature was accompanied by a small amount of thermal expansion so that on average, the total
number of gas particles per unit volume (ngas) was kept constant. This we called the ‘isopykl’
expansion which means “same density” in Ancient Greek.

We may wish to model the extreme case where the gas has been super-heated intensely with-
out allowing for thermal expansion to take place. This heating is known as ‘isochore’ implying
that the volume occupied by a cell of the gas remains constant but the number of atoms inside
this fixed volume increases due to dissociation. In figure 5.25, we observe that thermal expansion
is key to reducing the average friction force in air and permitting thus the emergence of a run-
away tail (red bar plot ∎∎∎). Dissociation of atoms alone does not promote thermal runaway. On
the contrary, it would inhibit it because the cross section of a molecule is generally (outside of
resonances) inferior to the sum of cross sections of its constituent atoms. As a result, high-energy
electrons would be rarer in an isochore heated gas (green bar plot ∎∎∎ on figure 5.25) compared to
the ambient gas (blue bar plot ∎∎∎).

Obviously, this situation is completely incoherent physically because the air composition
taken in table 2.1 assumes (1) thermal equilibrium in the gas, and (2) that the air density is kept
equal to the ambient air. This is one of the primary reasons why we postulated the “isopykl”
hypothesis, in order to be able to make calculations and have an idea about thermal effects on
electron swarms. It is evident that if one wishes to study rigorously the thermal effects of gases
in discharges, then an ab initio model of gas heating would be needed, something totally beyond
our current means.
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We may conclude that thermal expansion brought about by heating of the gas is the main
“thermal” effect on electron swarms. Change in chemical composition when the reduced electric
field is maintained constant plays also a very large role on the shape of the EEDF, in particular
the abatement of the vibrational barrier and the emergence of a high-energy tail due to reduced
friction force. However, those effects should not be regarded as independent. When combined
together, the total effect on electron swarms has far-reaching consequences even for generation
of high-energy electrons.

Here, we completely omitted the presence of ionic species which appear in non-negligible
proportions at high-energies. From the current observations, we surmise that their presence also
has a strong impact on electron swarms.

5.4.3 Runaway–Thermal coexistence

We saw in the previous section, that generation of high-energy electrons from thermal runaway
is in principle possible even at sub-critical electric field, but is mostly overwhelmed by the bulk
of the swarm which grows at an exponential rate and whose presence would quickly alter the
distribution of the electric field nearby.

In the spectra of section 5.2.1, we observed a change of shape in the high-energy part of
the spectrum, which may be influenced either by air temperature (and composition) (fig. 5.4)
or the intensity of the electric field (fig. 5.3). The change is characterised by the apparition
of an inflexion point in the exponentially decaying portion of the spectrum at high energies.
This attaches a high-energy ‘tail’ to the spectrum which decays again exponentially at its ex-
treme. We identified this behaviour with a different kind of electron population: runaways which
transit over large distances in the energy spectrum, as opposed to the bulk of the spectrum com-
posed of electrons nearing the thermal energy (determined by the magnitude of the electric field).

In this section, we wish to explore what determines the emergence of the high-energy tail.

⊛ ¿ why do some swarms at given conditions have a tail of runaways and others not ?

To answer this question, we reverse our approach: instead of starting with thermal electrons, we
initiate our simulations with a patch of relativistic electrons distributed evenly on a logarithmic
scale between 0.5�2MeV and we let the swarm evolve (keeping active however our compaction
algorithm of section 3.3.2 which filters super-electrons according to their energy).

The situation is illustrated on figure 5.26a with snapshots of the spectrum taken at different
times. We observe that the distribution of electrons slowly stagnates toward a solution which is
different from a swarm initiated with thermal electrons in the same electric and gaseous condi-
tions. The difference is the presence/absence of the high-energy tail. This is another argument
to the fact that electrons in gases may be classified (at least) into two different populations.

The convergence is not absolute as attests the slowly decaying proportion of high-energy
electrons on figure 5.26b. Nevertheless, the high-energy electrons persist on long enough times
(several nanoseconds) to consider that the solution is different from the one starting with thermal
electrons. The persistence of relativistic electrons comes from the fact that the electric field is
above the runaway avalanche threshold which is around 300 kV/m≃ 12Td [40, p.613(“δ = 1.3”)].
Nevertheless, runaway avalanche characteristic times are much longer than those of the bulk.
At 60Td the runaway avalanche characteristic time is about 50 ns [42, tab. 3 at δ = 5], which
is significantly larger than the growth time of the bulk produced in impact ionisation by the
runaway electrons.
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Figure 5.26: Evolution of a swarm which started with relativistic electrons.



192 CHAPTER 5. RESULTS

10 1 100 101 102 103 104 105 106

Electron Kinetic Energy (eV)

10 13

10 11

10 9

10 7

10 5

10 3

10 1

EE
DF

 (n
or

m
al

ise
d)

 (1
/e

V¹
)

/2
MeV

1 MV/m | 39 Td
T = 300 K

from Thermal
from MeV after 0.7 ns (no avalanche)
from MeV after 3 ns (avalanche)(a)

10 1 100 101 102 103 104 105 106

Electron Kinetic Energy (eV)

10 15

10 12

10 9

10 6

10 3

EE
DF

 (n
or

m
al

ise
d)

 (1
/e

V¹
)

/2
MeV

2.5 MV/m | 98 Td
T = 300 K

from Thermal
from MeV after 0.7 ns (no avalanche)
from MeV after 3 ns (avalanche)(b)

10 1 100 101 102 103 104 105 106

Electron Kinetic Energy (eV)

10 24

10 20

10 16

10 12

10 8

10 4

EE
DF

 (n
or

m
al

ise
d)

 (1
/e

V¹
)

/2 MeV

16 MV/m | 628 TdT = 300 K

from Thermal
from MeV after 0.7 ns (no avalanche)
from MeV after 1.5 ns (avalanche)

(c)

Figure 5.27: Spectra from three different simulations under identical electric and air temperature
conditions. Blue swarms are initiated as Maxwellian distributions at 300K, orange swarms are
initiated with electrons between 0.5�2MeV whereas red swarms between 0.1�2000 keV. In the
red swarms, secondary electrons from ionisation are discarded (no avalanche) whereas they are
added to the simulation in the orange swarms (avalanche). The arrows show characteristic
points in the distribution of high-energy electrons as identified on the top row of fig. 5.15a at the
corresponding electric field, also reported by the blue curve in fig. 5.16a.
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On figure 5.27, spectra from three simulations are shown at different electric fields. When
comparing the EEDF, one should remember that it is the aspect that matters (the proportions),
not the absolute value (since the EEDF are normalised so that their integral equals 1).

Bulk electrons. At electric fields below conventional breakdown around 3MV/m≃120Td, the
bulk of the swarm may not reproduce self-sufficiently. Its growth relies on the tail of high-
energy electrons which seed electrons at lower energies. The comparison of the orange with the
red spectra on figure 5.27a enables to assess the effect of secondary electrons from ionisation.
We see that the part of the spectrum below 30 eV is practically identical in shape for all three
simulations. Thus, this region of the graph is dominated by fast electron “thermalisation” in the
electric and gaseous conditions imposed by the medium. Those are bulk electrons.

Transient electrons. Then, the region of the spectrum between 50�4000 eV, on the two
first figures 5.27, is where simulations differ most in aspect. This region is absent in the blue
simulations which started with electrons at 300K. Partially, the fault is imputable to the fact
that we do not use our enhancement algorithm. But even if it were activated, the shape of the
EEDF would still differ significantly in this region. When electrons from secondary ionisation are
included (orange ∎∎∎), a “bridge” of high-energy electrons forms. These slowly degrade in energy
before falling into the bulk. We call these the “transient” electrons because they cannot maintain
themselves at their energy. Few of these electrons eventually accelerate and become runaways,
but most of them decelerate faster and faster until they become thermal electrons.

The transience of these electrons is attested by the noisiness of the red simulation visible
on figure 5.27b at these energies between 100 eV and 1 keV. These simulations come from those
described in sec. 5.3.1; all super-electrons have equals statistical weights and the particle filtering
is only the selection of the highest-energy electron at the outcome of each ionisation event. Thus,
having noise in that portion (0.1�1 keV) of the graph is not imputable to a low super-electron
number but to an impermanence of electrons. We interpret that the fluctuations come from a
quicker rearrangement of electrons in the 0.1�1 keV energy space.

Another good indicator are the arrows pointing at the half-peak ε△/2 and peak ε△/2 thresholds
that we defined in section 5.3.1 and indicated clearly on all figures 5.13–5.15. These two thresh-
olds delineate the proportion of electrons which may sustain themselves at an energy higher than
at their initiation. It is supposed to represent the state of runaway defined earlier in section 5.3.
At low electric fields, those thresholds are relatively high; between 10�100 keV. Electrons below
these thresholds may not maintain their state, and transit toward the bulk.

Runaway electrons. At higher electric fields, the dividing line between energetic electrons
and the bulk is even more prominent since there are holes (absence of electrons) in the spectrum
of the red simulation (as in fig. 5.27b–5.27c) which does not include electron production from
ionisation. Therefore, we know that transient electrons in this region are mostly produced by
secondary ionisation and that they must vanish soon because their fate is disputed between the
collisional energy loss and the electric pull.

Starting from about 4�6 keV the spectra of the orange simulation with avalanche is similar
in shape to the red simulation without avalanche. This means that the dominant mechanism
determining the electron distribution at high energies between 5�2000 keV is not avalanching
but acceleration. These electrons truly represent runaways. These are attested by the half-peak
threshold ε△/2 which denotes electrons that are capable of accelerating toward higher energies.

The state of runaway is clearly affected by the strength of the electric field. Most conspicuous
is the tearing of the spectrum into two halves at 630Td between the bulk and the runaway in the
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red swarm on figure 5.27c. There, the edge of the high-energy part of the spectrum practically
coincides with the half-peak threshold ε△/2. Also, we see that the run-to-MeV threshold ε→MeV

(probability that electrons accelerate to 1MeV) has inverted its place with the peak probability
threshold ε△.

Thermal runaway. The separation between runaways and bulk electrons might be clear on
figure 5.27c on the red swarm but not so on the blue and orange which have actually merged to
a common solution. At such a high electric field, the number of electrons produced in secondary
ionisation is overwhelming and thus the shape of the spectrum changes significantly. The tail is
shorter and more connected to the bulk compared to the spectra at lower electric field (figs. 5.27a–
5.27b). The connectedness between the bulk and the runaway tail bespeaks the presence of
thermal runaway: now the transient electrons transit in both directions in the spectrum, some
ascend toward higher energies whereas others descend into the bulk. These transfers are balanced
altogether with the production of secondary electrons from avalanche (νe). The argument in
favour of thermal runaway is that, if there were not a significant runaway rate (νr) by which
electrons are transferred from the bulk to the tail of the spectrum, then the EEDF would merely
look like the abysmally decaying shape seen on figure 5.28 at advanced times (red hill).

This latter graph actually illustrates perfectly the issue of thermal runaway: it is a strife
between two timescales:

▽ The growth (multiplication or avalanche) rate νe ≡ 1/τe of the swarm bulk

△ The runaway rate νr ≡ 1/τr of thermal electrons toward higher energies

When τe ⋘ τr (a vanishing ratio < 1012) there is virtually no thermal runaway, it is not
probable enough and the presence of energetic electrons is merely a stochastic consequence: the
greater the number of electrons, the higher the chances to have a few high-energy electrons.

When τe ≪ τr (a ratio > 1012) then, the EEDF does not take a typical “stochastic” shape. On
the one hand, some electrons – bulk – “spend” their time equally in all states that are energetically
available to them. On the other hand, there start to appear other electrons – runaways – which
“spend” their time only in some regions of the EEDF, namely in the high-energy tail. Therefore,
the two phenomena somehow reach a balance: runaway electrons are small in number but they
remain runaways and do not fall into the bulk. Their growth is governed by the transfer of
bulk electrons into runaways; i.e. the thermal runaway rate νr. Bulk electrons, however, grow
exponentially at the rate νe, but the more they are, the more convert to runaway proportionally.
In the end, the balance obtained, represented by the fertile model (5.9) on p. 183, leads to the
converged simulations on figure 5.27c from two opposite initial conditions.

In “usual” conditions, the avalanche time is always much smaller in magnitude than the
characteristic runaway time: τe ≪ τr. But these scales may be brought nearer equality in extreme
conditions: at very high reduced electric fields. Then, the electrons accelerate systematically to
high energies while ionising the gas in their wake. Therefore, the definition of the critical runaway
field Ecr/ngas should be when τe = τr.

Drowned runaway. At low electric fields, we may say that our swarm is bistable.

A. It may sustain a bulk maintained by a population of high-energy runaway electrons.

B. But if the high-energy electrons disappear altogether, the bulk swarm adopts a stable
configuration with no energetic electrons.



5.4. CASES STUDIES 195

10 1 100 101 102 103 104 105 106

Electron Kinetic Energy (eV)

10 26

10 22

10 18

10 14

10 10

10 6

10 2

EE
DF

 (n
or

m
al

ise
d)

 (1
/e

V¹
)

300 K

8 MV/m | 314 Td

Swarm initiated with relativistic electrons

Time
0.1 ns
0.25 ns
0.5 ns
0.75 ns
1.0 ns
1.3 ns
1.5 ns
1.7 ns
1.8 ns

Figure 5.28: Above conventional breakdown, the exponential growth of the swarm bulk outnum-
bers the high-energy electrons present at the beginning of the simulation. Due to the maximal
super-electron resolution limit wmin set by our compaction algorithm, when the high-energy
super-electrons reach statistical weights w < wmin below the limit, they have to be discarded
from the simulation until they vanish altogether.

Conversely, at high electric fields, the solution – in homogeneous conditions – is unique and
independent of the initial conditions.

We may therefore wonder, ‘? at what fields do both solutions converge?

The answer is not simple. As the electric field strengthens, the avalanche rate of the bulk
increases significantly whereas the runaway avalanche rate (the rate at which high-energy elec-
trons multiply themselves) varies much less and the thermal runaway rate stays vanishingly
small (νr ⋘ νe). The challenge in our simulation is that the spectral enhancement algorithm
that we use cannot withstand an abysmally growing difference in the magnitude of the number
of bulk electrons compared to the slowly growing runaway electrons. The latter are very quickly
outnumbered by the former and the algorithm ends up having to discard energetic electrons.
This is exactly what happens in figure 5.28. The high-energy electrons could perfectly main-
tain themselves in the field, but since we strive to model the swarm as a whole, their statistical
weights become vanishingly small compared to the bulk electrons and this part of the spectrum
sinks indefinitely. It is not until thermal runaway takes over, at even stronger electric fields
≳ 12MV/m, that a tail of high-energy electrons may reappear in the spectrum as observed at the
very beginning, in figure 5.3. The exact definition of the threshold would have to be determined.

Thus, once again, we may restate what we already deduced in the previous runaway sec-
tion: thermal runaway and the subsequent production of high-energy electrons must be studied
in relation to spatio-temporal restrictions on the regions of high electric fields such as those
encountered ahead of ionisation fronts [548, chapter 3]. This we do so in the next last section.
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5.4.4 Planar Front Surfing

The modelling of ionisation fronts is a complex topic. An introduction to the theory of ionisation
waves may be found in Lagarkov and Rutkevich [chapter 3 of 548]. In the past, thermal runaway
had already been successfully applied to realistic models of streamers [39, 161, 171] and streamer
coronas emerging from a hot leader tip [36, 532]. All simulations showed very prospective results
and it is openly known that thermal runaway is possible to trigger ahead of streamer ionisation
fronts. What is however less known, is that one has to set up the stage with great heed in
order to produce such results. There are too many parameters that have to be changed and set,
and the Monte Carlo modelling of electrons is separate from the fluid part in such a way that
it is hard to track energetic electrons while keeping all other bulk electrons in the simulation.
Finally, the modelling of electron collision cross sections from low to high energies needs revision.

Here we use our Monte Carlo code Θermiaa on a simplified version of the analytical model
of a streamer as parameterised by Lehtinen [575]. The model consists of a cylindrical streamer
of length Ls with a hemispherical front of radius as. At a given external electric field E0 and
streamer length Ls, the analytical model predicts that the radius as and instant velocity of prop-
agation Vs are determined by the optimal configuration in which the velocity of propagation is
maximal [575, fig. 4]. As the streamer grows in length, its velocity and radius increase accordingly
[575, fig. 5]. For facility, the model we implemented is considerably simplified:

• The electric field is one-dimensional pointing toward and varying along the z-axis.

• We selected two values of the external electric field E0 = 2.5MV/m and 5MV/m.

• The propagation velocity opposite to z is constant and calculated for a 12 cm-long
streamer. At 2.5MV/m Vs ≈ 18.5m/µs while at 5MV/m: Vs ≈ 90m/µs

The model simulates a swarm swept by a planar (infinitely transversal) wave.

In brief, we consider that transversal dimensions of the streamer are infinite and we only
model the electron swarm in relation to the axial and temporal variation of the electric field.
With this model, we want to test two hypothesis each reflected by particular initial conditions
of the swarm:

1. Thermal runaway : can an ionisation front generate thermal runaway electrons which
subsequently accelerate in the field?

▷ In this first case, we initiate an electron swarm of 200000 super-electrons at r = 0, and
set the time clock 1 ns before the arrival of the wave front. The variation of the electric
field at z = 0 over time is represented by the red curve on figure 5.29.

2. Runaway surfing : how fast must electrons be in order to surf ahead of the ionisation front?

▷ In this second case, we initiate 200000 super-electrons distributed logarithmically be-
tween 100 eV–2MeV

No thermal runaway. A first simulation at 2.5MV/m is represented on figure 5.29. There,
we see that electrons were passed by the wave and receded behind. The velocity units of the
front are directly comparable to the ones displayed in figure 5.23. We note that even electrons
of 1 keV are not able to keep up with the ionisation wave.
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Figure 5.29: Evolution of a swarm initiated 1 ns before the arrival of a planar wave front in an
external electric field of 2.5MV/m. The red curve shows the evolution of the electric field at a
fixed position at z = 0. Since the front advances at a speed Vs ≈ 18.5mm/ns opposite to the z
direction, the time profile is the reverse of the field spatial variation in the z dimension. The
purple curve shows the evolution of the field at the centroid of the swarm which shifts opposite to
z but not fast enough compared to the velocity of the front. When the peak of the front reaches
the average position of the swarm, the mean kinetic energy ⟨ε⟩ in green reaches is maximal
value and the electron growth saturates (blue curve). In the wake of the front after about 1 ns,
the electric field is significantly screened below the value of the external field and the swarm’s
high-energy electron population subsides (teal blue curve representing electrons above 100 eV).

This, we confirm on the bottom graph of figure 5.30a. The small proportion of electrons of
energy higher than 1 keV is quickly overpassed by the ionisation front and vanishes altogether
with all electrons above 100 eV about 50 ps after the arrival of the front. On the top graph
(fig. 5.30a), looking at the field value at the average position of electrons higher than a certain
energy threshold, we see that the high-energy electrons travelled for a while, staying in the
high-field region immediately ahead of the front but could not maintain themselves.

Thermal runaway. Directly next to this figure on 5.30b, we show that for intenser fronts, if
the field at the peak is high enough, MeV electrons may be generated. These are fast enough
to keep up with the propagation of the front and stay ahead. Their presence seeds electrons
ahead of the front which occasionally may induce local avalanche surges. These are observed as
sudden peaks popping up in the black curve showing the number of electrons above 100 eV on
the bottom of figure 5.30b.

This surfing mechanism is fragile however as shown by the on the top graph of figure 5.30b
showing the electric field at the centroid position of electrons above a certain energy threshold.
Electrons of 10 keV were first generated as the front arrived. A few of them luckily accelerated
to over 100 keV. Nevertheless, even the 100 keV were caught up by the front, only those that
would make it to the MeV maintain themselves at a stable distance at about 5 cm ahead of the
front. This, we derived from the stability of the average electric field seen by electrons above
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Figure 5.30: Evolution in time of two swarms passed by a planar front in two different external
electric field. Top graphs: Average electric field E(⟨z>⟩, t) seen by electrons above an energy
threshold εth. Bottom graphs: number of electrons Ne[ε > εth] above an energy threshold εth.

1MeV. The coloured zones show more or less the axial spread of electrons of a certain energy
group. We thus see that some of the MeV electrons were also delayed and caught behind the
ionisation front from the coloured triangular zone in pale yellow on top of figure 5.30b.

The production of >MeV does not stabilise as implied in figure 5.30b. This is a simulation
artifact due to the compaction algorithm constantly discarding low-energy electrons. This
algorithm is unaware of the position of electrons with respect to the ionisation front.
This is why, after the simulation has been initiated, there are not enough super-electrons
represented at the head of the front to continue the modelling of thermal runaway.
Physically, the front must be bulging in electrons, so that there is no reason that MeV
electrons be produced at one specific time and not somewhen else.

Runaway surfing. In the previous section, we studied the possibility of electron swarms below
conventional breakdown maintained by the avalanche provoked by runaway electrons. The same
is applicable here. In figure 5.31 we let MeV electrons ahead of the front under 2.5MV/m (already
simulated in figure 5.30a). We see that if MeV electrons were present ahead of the front they
could subsequently sustain themselves in the high-field region ahead of the front and provoke
avalanches of lower energy electrons which perpetually feed into the front. The situation stabilises
at a certain distance ahead of the front, between 5�12 cm where the average propagation speed
of electrons above 1MeV is equal to that of the front.

The stratification of coloured zones in the centre of the top graph of figure 5.31 reveals the
spatial structure of the runaway avalanche. The fastest (furthest ahead) electrons are >MeV.
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Figure 5.31: Population of high energy electrons surfing on a planar ionisation front in an external
field of 2.5MV/m. Circles joined by dots show the electric field at the average position of an
energy-group (all electrons higher than an energy εth). Coloured zone spans the electric fields
at the positions of the electrons, one standard deviation ahead of the mean position in their
respective energy-groups (midline stratification). MeV electrons are present in the simulation
from the start as opposed to figure 5.30a where only thermal electrons are present initially.

The present results are preliminary and more would have to be said when:

• the external electric field varies according to the one given by a leader tip and its corona;

• the variation of the electric field in the transversal plane is considered;

• the variation of the front propagation speed with its length is included;

• the state of the gas ahead of the channel is preionised or preheated.

Nevertheless, we believe that very simple studies as we endeavoured presently, enable us to
understand some basic mechanisms that may be applied universally to situations more realisti-
cally found in natural discharges. This last section concludes our microscopic study of thermal
runaway in atmospheric gases. In the next chapter, we will summarise the main points and
present our perspectives on future investigation.





Chapter 6

Discussion

The present chapter gathers coherently the information scattered throughout the first part of
the thesis related to the emergence of high-energy electrons from swarms in electrified gases.

6.1 Recapitulation

The context framing the research

At the very beginning of the thesis, we stressed the importance of studying natural phenomena.
In the prologue (p. 3), we reminded that lightning is deeply embedded in all cultures as an
archetype of might, wherefore it is almost impossible to ward off the common presumption that
any scientific study related to lightning must be for harvesting the energy wielded in thunder-
storms. Undeniably, the phenomena related to lightning, which we put into context in chapter 1,
are many and fascinating. The lightning discharge is characterised by the formation of a conduc-
tive plasma channel called the “leader” whose propagation at the head is promoted by a corona
of filamentary weakly-ionised plasma channels known as “streamers”. Streamer heads consist in
an ionisation wave front in which electrons either propagate toward the front (positive streamer)
or with but most of them slower than the front (negative streamer). A negative leader head is
composed of a corona of negative streamers (and oppositely).

A feature of negative leaders distinctive from positive ones, is that their propagation is in-
termittent with stops followed by sudden elongations of the leader channel called “steps”. The
accomplishment of a step is characterised by a bright burst of a streamer corona at the end of
the newly formed tip and accompanied by a burst of X-rays lasting little less than a µs. This
burst is not to be confused with a terrestrial gamma-ray flash, also related to negative leader
activity but much harder and intenser, which is mostly observed from satellites orbiting Earth
and lasting up to a ms.

Both X-rays and gamma-ray flashes are bremsstrahlung signatures of relativistic electrons
maintained in regions of electric fields above 0.5MV/m encountered in the vicinity of leader
tips. While gamma ray flashes are most likely due to relativistic avalanches fed back over vast
regions extending hundreds of meters ahead of leader tips [246], X-ray bursts must come from free
electrons that have accelerated from thermal energies of a few eVs to very high energies above
100 keV. This acceleration mechanism is named “electron thermal runaway” but its intricate
relation to the streamer corona of leaders is presently unknown, despite being actively studied
[36, 164, 532].

201
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Understanding which electric and gaseous conditions foster the emergence of thermal runaway
electrons, has been our primary objective. As implied by the subtitle of this thesis, we decided
to abstract away the very complex multi-scale structure of lightning discharges and focus on the
emergence of thermal runaway from a microscopic point of view: electrons accelerated by an
electric field while being intermittently braked through collisions with air molecules.

Construction of a model

When the molecules are neutral, the spatial and temporal scales of electron propagation and
deviation through collisions are very well separated (by at least three orders of magnitude) so
that one can model angular deviations and losses of kinetic energy through differential cross
sections. This separation reflects the structure of the thesis into three parts:

I. The present first part dealt with electron propagation and acceleration in electrified gases.

II. The second part is only concerned by the determination of (differential) cross sections.

III. The third part complements the second part and links it to the first by analysing the
relationship between a set of electron-molecule cross sections and electron swarm transport
coefficients in a gas.

Another separation of temporal scales occurs between the evolution of the electron swarm
(subnanosecond scale) and changes in the state of the gaseous medium (on the microsecond
scale). This motivated the research of electron swarm properties in different conditions deter-
mined by the temperature of air which affects both its chemical composition and density.

A visual partition of the temporal scales of different processes involved in electric discharges
is gaseous media is represented in figure 6.1. We can see that all electronic processes are very fast
lasting typically < 1ns. Gaseous processes on the other hand are not as fast, unfolding on the
> µs scale, except for rotational and translation relaxation which is of the order of the mean free
time between inter-molecule collisions ∼ ns. Between these two timescales lies the time required
for thermal electrons to runaway between ≳ 10ns up to a few ∼ 100ns.

We took advantage of this timescale separation in chapter 2, where we distinguished the
modelling of the gaseous medium (sec. 2.1) from the propagation of individual electrons (sec. 2.2)
and the dynamics of the electron swarm as a whole (sec. 2.3).

In chapter 3, we presented how to implement this model numerically into a Monte Carlo code
which follows the trace of each electron individually and which samples the outcome of collisions
from (differential) cross sections (sec. 3.2).

The average motion of electrons in a gas, described in sec. 2.2.3, depends strongly on the
electron energy.

• At low energies < 10 eV, it is erratic because of the many collisions with molecules that
scatter electrons almost isotropically. Because the energy of an electron varies between two
collisions, so does its collision frequency. Numerically, the stochastic modelling of collisions
can be handled by the null collision sampling (sec. 3.2.1).

• At high energies > 1keV, the motion is slowed and deviated by a series of many consecutive
discrete collisions characterised with small relative energy losses and small angular devia-
tions. These may be approximately modelled by an average friction force (p. 69), though
we did not take this route in the thesis to preserve coherence.
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Figure 6.1: Different physical times scales of phenomena related to lightning discharges (to
the right) and kinetics of electrons and molecules (to the left). The characteristic times for
gas heating, avalanche growth and swarm relaxation all depend on the gas density which equals
nair = 2.547×10

25m−3. Gas heating scales also to the relative electron density which was assumed
to be ζi = 10−6 as typically encountered in streamer channels. The acceleration time is calculated
in free flight. When taking into account delay from collisions, it is about a factor two longer,
but is dispersed over large duration intervals. The probability that an electron accelerate to one
MeV under 12MV/m is completely negligible.
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In both cases, high or low energies, the balance between electric acceleration and stochastic
collisions of electrons with the gas molecules may be embodied in the ratio of the electric field
E to the number density of molecules per unit volume nair, which scales the collision frequency
at a determined electron energy. This ratio is known as the reduced electric field E/nair and
measured in Td units (Townsends).

Electron swarms in electrified gases relax very quickly (fig. 6.1), in less than 10 ps for fields
stronger than 1MV/m at atmospheric density. This is why, information relevant to the macro-
scopic modelling of discharges may be encompassed in transport/reaction coefficients (sec. 3.3.3)
[150, §8.2] and more generally in the electron energy distribution function (sec. 3.3.1) and angular
distribution; all of which are functions of the local reduced electric field E(r, t)/nair at a certain
position in space r and time t.

A scaling law may be established between reduced electron swarm properties and the reduced
electric field. Maintaining E/nair constant:

• ∝ nair, E : all reaction rates (νc), avalanche rates (νe) scale proportionally to the gas
density and electric field.

• ∝ 1/nair, 1/E : all characteristic times τ (inverse rates, acceleration, relaxation – all
coloured curves on fig. 6.1) and transport parameters (mobility and diffusion) scale inversely
to the gas density and electric field.

At electric fields above the conventional breakdown, because of the exponential growth of the
swarm, electrons of higher energies are always outnumbered by lower-energy electrons. To be able
to represent many electrons on greatly differing abundance magnitudes, we use super-electrons
with statistical weights. These weights are managed by a “compaction” algorithm presented in
section 3.3.2 which liberates memory space occupied by low-energy electrons, by increasing their
statistical weights. This allows the simulation to foster high-energy super-electrons of very low
weights. Sometimes the weights may be below unity; in which case they represent a probabil-
ity of being present in a situation with a physical electron density correspondingly scaled upward.

Caveats of the numerical implementation of cross sections (sec. 4.1) and super-electrons
(sec. 4.2) were presented in chapter 4 before the whole code – baptised Θermiaa – was assessed
(sec. 4.3) through tests aiming at:

✓ the physical consistency (sec. 4.3.1);

✓ comparison with results from a 2-term Boltzmann kinetic solver (p. 81) known as bolsig+
(sec. 4.3.2);

✓ validation of calculated transport coefficients with swarm experiments (sec. 4.3.3).

A great hurdle to the validation of the modelling of electron-molecule collisions is that cross
sections may be adjusted to yield macroscopically coherent transport coefficients, yet misrepre-
sent electron-molecule collisions at the microscopic level. This is known as the non-uniqueness
problem and addressed in swarm experiments designed to derive cross sections [690, 748]. We
tackled this problem the other way around. We did not adjust any of the cross sections measured
experimentally based on transport parameters but completed the set with inelastic processes as
explained in the third part chapter 15 p. 569, thus not mixing known with unknown data.
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Results obtained from the model

In the penultimate chapter 5 of this part, we analysed the behaviour of electron swarms in
gases under various homogeneous electric fields and in air at five different temperatures. The
motivation was to understand, on a microscopic level, how would free electrons respond to local
conditions possibly encountered at different stages of a spark or lightning discharge. The research
was structured in the following way:

Hypothesis 5.1 In a preliminary section, the conditions of the simulations and the hypothesis
underlying the research were exposed in a framed list on p. 149. We highlight:

• Most simulations are conducted in homogeneous and static electric and gas conditions.

• Local thermal equilibrium determines the chemical composition of air from table 2.1
and distribution of metastable excited species (from Maxwell-Boltzmann statistics in
sec. 2.1.2).

• The presence of ions and inter-electron interactions are completely disregarded.

The results were subsequently analysed in light of the limitations imposed by these hypoth-
esis. What mostly restricts the application of thermal runaway in homogeneous external
electric fields is that the electric conditions of the medium are rapidly overwhelmed by the
exponential growth of swarms.

Bulk 5.2 First, we analysed swarms from their bulk properties:

5.2.1 The influence on the electron energy distribution function of the electric field, gas
species, and temperature of air was analysed. As expected, a larger proportion of
high-energy electrons is promoted by stronger electric fields, higher temperatures and
monatomic gases with high excitation thresholds.

5.2.2 Transport parameters in air at various temperatures as a function of the reduced
electric field reveal that increasing both the electric field and temperature enhances
electron transport: they drift faster, diffuse more and multiply quicker.

5.2.3 The dissipated power and dissociation rates were compared as a function of the electric
field and at different temperatures. Because vibrational excitations are mostly reso-
nant processes, there exists an electric field at which the dissipated power is maximal.
For other excitations, the dissipated power is a monotonically increasing function of
the electric field.

Runaway 5.3 Second, we focussed on the small population of electrons at energies higher than
the bulk.

5.3.1 We undertook a probabilistic approach to the determination of the runaway energy
threshold as a function of the reduced electric field and at different air temperatures.
We found that the probability that high-energy electrons permain∗ at a given electric
field have very characteristic curves depending on the initial kinetic energy given to
the electron and its orientation relative to the electric field.

5.3.2 Then, we estimated the average delays before an energetic electron emerges from a
swarm which initially was at thermal equilibrium with the ambient gas. We identified
two different delays:

∗“permanere” see footnote on p. 103
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1. t0: the minimal delay time related to the time necessary for a low-energy electron
to accelerate to an energy εth while being delayed in collisions.

2. ∆t11: the average time necessary for a swarm initially composed of 1 physical
electron to yield 1 energetic electron, taking into account the exponential growth
of the swarm.

5.3.3 Finally, we discussed a bit how to define the production rate of thermal runaway
electrons. There, we proposed to distinguish two extreme ‘modes’ of production:

a) Sterile runaway (p. 180): that is the ‘classical’ definition of thermal runaway rate
used in the literature. It assumes that thermal runaway is a draining mechanism
of electrons initially at thermal energies and without production of secondary
electrons (thus sterile). The runaway process is described by a Poisson vari-
able characterised by a probability rate νr and a delay t0 (the same as identified
above). Two possibilities are overlooked by this view: high-energy electrons can
(1) backscatter (2) be produced as secondary electrons from ionisation.

b) Fertile runaway (p. 182): this is the other extreme view modelled in this thesis
whereby electrons have an infinitely free space to grow. High-energy electrons
represent a stable proportion of the whole population due to the exponential
growth of the swarm. Therefore, the production rate in fertile runaway is identical
to the avalanche rate νe of the whole swarm.

c) Spatial restrictions (p. 185): sterile and fertile runaway production are two imag-
inary extremes of a more realistic situation where regions of high electric fields
enabling thermal runaway are limited spatially and temporally. Then, the produc-
tion of high-energy electrons should depend on the space available to accelerate,
on the propagation speed of the high-field region and on the nearby presence of
high-energy electrons capable of seeding electrons also at intermediate to high en-
ergies. There, we explored how electrons at high energies drift at different speeds
and that electrons above a certain kinetic energy may be characterised by the
average distance they travelled in the direction of the electric field (from their
initial position). This enables us to frame the space needed to produce electrons
above a certain energy threshold according to the conditions of air and the electric
field as represented in figure 6.5.

Specific Cases 5.4 The study of thermal runaway under homogeneous electric and gaseous
conditions are severely challenged by the evolution of electron swarms under electric fields
high enough to enable thermal runaway. Therefore, we explored the effect of deviations
from homogeneous and equilibrium conditions.

5.4.1 From fig. 6.1, vibrational relaxation is slower (∼ms) than gas heating rates by electrons
in discharges (∼µs). Therefore, we studied electron swarms in a vibrationally super-hot
gas composed of molecular nitrogen. At low electric fields < 120Td the principal effect
of vibrational temperature is to shift electrons trapped below 2 eV, at the foot of the
vibrational N−2

2Πg shape resonance barrier, toward higher energies between 4�12 eV.
This effect is smeared at electric fields > 250Td which enable electrons to overcome
the vibrational barrier regardless of the vibrational temperature. In any case, raising
the vibrational temperature bears no consequence on high energy electrons.

5.4.2 The expansion of the gas due to pressure change is somewhat slower than its dissoci-
ation rate. It should expand on scales larger than a µs [776, fig.2]. The extreme case
where the gas is assumed to have been heated and dissociated without having had
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time to expand is known as “isochore” heating. We checked that thermal runaway
is actually inhibited in isochore heated air, so that thermodynamic expansion of the
discharge channel is instrumental in promoting thermal runaway influenced by air’s
thermo-chemical state.

5.4.3 Electrons at very high energies may in principle sustain themselves and create runaway
avalanches at fields above the break-even threshold ∼0.3MV/m. On the other hand,
the production of high energy electrons through thermal runaway becomes possible
only above ∼12MV/m. Therefore, we observe a transition between electron swarms
where high-energy electrons seed low-energy electrons below 4MV/m and where the
exponential growth of bulk electrons and their acceleration to higher energies over-
whelm the distribution of high-energy electrons above 12MV/m.

5.4.4 In discharges, high electric fields are encountered at the head of ionisation waves
propagating at speeds between 106�107m/s. We performed two very simple tests on
analytical models of planar (1D) fronts:
1. Runaway Surfing: in principle, relativistic > MeV electrons are capable of sus-

taining themselves ahead of diverse ionisation fronts in a fashion analogical to
surfing on a wave.

2. Thermal Runaway: should the peak electric field on the wavefront be high enough,
the ionisation front can produce and emit high-energy electrons continuously as
it propagates.

Hitherto, we have recounted the main structure of the results and our observations. In the
next section, we offer concrete questions about electron swarms to which we provide an answer
from our results.

6.2 Questions

6.2.1 About the swarm

Relaxation

Electrons in an electrified gas converge very quickly to a nonequilibrium but stationary distri-
bution which has a tail decaying steeper than a Maxwellian. If the deviation (∆) from their
equilibrium distribution is important, the reaction of electrons is non-linear (with respect to
∆). After a short interval, the response follows a typical exponential relaxation (fig. 3.7) of a
characteristic (relaxation) time τ roughly inversely proportional to the electric field (fig. 5.6). In
ambient air electrons relax in about:

• Below < 100kV/m: τ ≳ ns

• Between 0.1�1MV/m: τ < 100ps

• Above 3MV/m : τ < 10ps

Relaxation depends also on the gas composition. In monatomic gases, relaxation at electric
fields < 1MV/m can be five times slower than in molecular gases. This is because electron-
atom collisions at low energies < 1 eV are practically entirely elastic, except when there is a fine
structure splitting of the ground state. For molecules, vibrational and particularly rotational
cross sections constitute significant losses at low energies.

Except near the head of ionisation waves [586, 686], electron transport and reaction rates can
be modelled through the local equilibrium approximation to the reduced electric field E/nair.
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Multiplication

When the reduced electric field is above a threshold known as the conventional breakdown field
Ek, electrons multiply at an exponential rate νe with a characteristic time τe = 1/νe. The
importance of attachment to electronegative molecules compared to ionisation determines the
breakdown threshold.

In absence of attachment, the number of electrons can only increase with time. In this
case, the avalanche rate depends on a (reduced) characteristic field Ec such that, at low fields:
νe ∼ Ecngas exp(−Ecngas/E) [762, §4.1.5:p.56]. In atomic gases, the characteristic avalanche field
is lower due to absence of rotational and vibrational excitations.

Characteristic Ec

Ar : Ec ≃ 150Td,

N2 : Ec ≃ 770Td,

Breakdown Ek

O2 : Ek ≃ 125Td,

Air : Ek ≃ 110Td.
In air, when the temperature increases, the breakdown threshold first rises slightly and then

suddenly decreases sharply. This is because dissociative attachment to oxygen molecules is
enhanced but at the same time, the energy lost in vibrational excitations decreases principally
due to dissociation of molecules and partly due to superelastic collisions. If we do not consider
detachment, at 3000K Ek ≃ 120Td, but at 5000K, Ek ≃ 60Td. In reality, detachment is very
important at high temperatures, so these values hold only at low densities of air (detachment is
due to collisions of O− with other atoms/molecules)

In absence of attachment, the avalanche rate is a monotonically increasing function of the
electric field. In presence of dissociative attachment, there is a range of electric fields in which
the attachment is more important than ionisation. This is because dissociative attachment is
a resonant process which happens near the dissociation threshold of the anion which is always
inferior to the ionisation potential of the molecule. This means that the avalanche rate passes
through a negative minimum at a value Ea of the electric field:

O2 : Ea ∼ 70Td, Air : Ea ∼ 80Td.

The presence of this minimum implies the existence of an attachment instability which is
currently the most plausible mechanism at the origin of the creation of a space stem in the wake
of streamers. The attachment instability is actually a doubly non-linear mechanism:

i. as the local electric field inside the space stem rises between 10Td to 80Td, because of
the accumulation of space charges, so does the attachment increase and the growth rate
decrease.

ii. as the vibrational temperature of oxygen molecules increase through many electron exci-
tations, the attachment cross section becomes even more important.

This instability vanishes quickly, however, when the electric field surpasses 120Td or when the
temperature of air exceeds 1000K because of detachment [11, §3.3].

Above conventional breakdown, the electron swarms in air multiply at very fast rates. Com-
bined with the displacement and diffusion of the swarm, we may infer the time lapse tas for the
creation of a streamer front from an electron avalanche in a local electric field.

At 200Td : τe ≃ 300ps tas > 5ns,
At 300Td : τe ≃ 60ps tas ∼ 0.8ns,
At 400Td : τe ≃ 25ps tas ≃ 0.4ns,
At 500Td : τe ≃ 12ps tas ≃ 0.2ns.
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Thus, discharges in air should display two very distinct behaviours:

▲ If the applied external electric field rises steeply and above 120Td, a cold streamer wave
front should be formed, upon which it would propagate.

▲ If the applied external electric field varies smoothly and is maintained below ∼120Td, free
electrons heat and deplete oxygen molecules present in the channel.

Heating and dissociation are discussed below.

Heating

When electrons collide with molecules, they deposit an energy which is stored in a particular
mode of excitation. Some modes decay instantaneously and their energy is converted into other
forms. Other modes are generated faster than they decay and this creates an accumulation of
energy into reservoirs that are gradually levelled as time progresses [852, fig.4]. The subsistence∗

of excited states is set by the balance of flows between generation (inflow) and destruction
(outflow). A large population of excited states is explained either by important generation or
slow decay/quenching.

An ensemble of subsisting excited states does not imply that they are thermalised (following a
Maxwellian distribution at a determined temperature) unless there is a preferential redistribution
of stored energy to some states over others. This is the case of vibrational modes of excitation of
N2 which relax faster internally (transfer between different vibrational level v, v′) than through
conversion to translational or rotational modes [150, §7] which takes place in roughly ∼ms [57].
In case of O2, energy transfers from vibrational to translational modes are more efficient so that
the separation of temperatures is less certain [685, p.2650].

On the other hand, electronically excited molecular and atomic states are more chemically
reactive (the activation energy is reduced because the bonding is smaller). Also, if they are not
metastable, they may quickly decay through spontaneous emission. Thus, energy in electronic
excitations converts quickly (< µs) into other forms [150, §9.2].

As a consequence, we made a crude distinction between dissipated power into vibrational
excitations and all other forms of energy transfer which we consider to be ‘fast’ (< µs). Dissipated
power of electron swarms, represented in figure 5.9, is very dependent on the electric field. Since
vibrational excitations by electrons are mainly resonant, they are important only around specific
electron energies. Average vibrational dissipated power (per electron) is thus optimal at a definite
electric field Evib. In ambient air, the optimum is at:

N2 : Evib ≃ 100Td,

O2 : Evib ≃ 400Td.

The difference is explained by the large resonance bump in O2 around 10 eV mainly from the
O−2

4Σ−u resonance [552, p.7] whereas most of N2 vibrational excitation takes place in the N−2
2Πg

2�4 eV resonance†.

∗Originally a Latin loan-translation from Ancient Greek ‘hypostasis’ (ύπóστασις) which is the underlying
foundation supporting the being. Here, I mean the capability of persisting over a prolonged duration.

†There is also another resonant structure seen at 20 eV but it is modelled only for the v = 0 → 1 transition.
We think this would not significantly change the statistics about dissipated power to vibrational excitation of N2.
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Note that the dissipated power to vibrational excitations here is immediate (< ns). On longer
timescales (∼ µs), it becomes influenced by gas kinetics [149]. For illustration, we can estimate
the total energy dissipated into vibrational excitations after the passage of an ionisation front.
Assuming a ds = 1mm thick wave at 400Td, of relative electron density ne/nair = 10−5 and
propagating at Vs = 106m/s, the average vibrational energy ∆Evib received by a molecule would
be (this is an estimate for the upper boundary):

N2 : ∆Evib ∼ 0.85meV≪ 290meV ≈ Ev=1,

O2 : ∆Evib ∼ 0.33meV≪ 200meV ≈ Ev=1.

So streamer fronts are indeed ineffective to the heating of air because the ‘exposure time’ to
heating is about ds/Vs ≃ 1ns

On the other hand, the non-vibrational dissipation (everything other than direct vibrational
excitations) rises by two orders of magnitude between 40�100Td. In the wake of a streamer,
the relative electron density may stay around ne/nair ≃ 10−7�10−6 [621, fig.1]. Assuming that
the formation of a space stem implies an electric field about ∼80Td, the heating would be
around ∼ 30�300K/µs. We assumed the simple thermodynamic relationship for isochore heating
Ēair = 5/2kBTgas between the average energy and the temperature of a diatomic gas.

This heating rate is somewhat too low to explain the quick transition from space stem to space
leader [68, 311]. The same was concluded by Malagón-Romero and Luque [621] who suggest that
subsequent streamers propagating in preionised channels and pilot systems (counter-propagating
streamers) may play a significant role in stem heating.

Dissociation

Electrons dissociate molecules in collisions at energies above the dissociation threshold which
is around 9.76 eV for N2 and 5.116 eV for O2. Dissociation may be direct or indirect involving
a transition probability of an excited state to a repulsive bond state. The latter is known as
predissociation and has a branching ratio depending on its transition probability rate. Also,
ionisation from core orbitals very often leads to dissociation of the molecule.

In ambient air, the threshold field for dissociation Ediss is around:

N2 : Ediss ≃ 25Td,

O2 : Ediss ≃ 15Td.

Similarly to heating, we may estimate the (upper boundary to) dissociation induced by the
passage of a streamer front (ds = 1mm, Vs = 106m/s, Epeak/nair = 400Td, ne/nair = 10−5):

• ∼ 0.1% N2 molecules dissociated and

• ∼ 0.18% O2 molecules dissociated.

In a space stem in the wake of a streamer (E/nair = 80Td, ne/nair = 10−7) we may calculate
the characteristic time τdiss = 1/νdiss of dissociation by electron excitations:

• For N2 : τdiss = 12ms,

• For O2 : τdiss = 0.85ms.

Thus, molecular dissociation of N2 is mostly dominated by raising the temperature of the
gas while for O2 there should be a small contribution due to collisions with electrons depending
on the density of electrons in the space stem.
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6.2.2 About thermal runaway

In the previous section, we estimated the changes of the gas’ state induced by electron swarms
on streamer fronts and in space stems. Here, we focus on the generation of high-energy electrons
from thermal runaway acceleration in intense electric fields.

Runaway threshold

At high energies > 1keV, electron-molecule interactions are characterised mostly by small relative
energy losses and small angular deviations. In a single collision:

• Ionisation: at 1keV in N2 the probability of an energy loss > 100 eV is of 6%.

• Scattering: at 1keV in N2 the probability of a deviation > 30○ is of 10%.

Therefore, energy losses and scattering can be roughly represented by an average braking force
FB acting on the electron. The dynamic friction force, due to inelastic losses only, is noted FD.

a) In a deterministic perspective, the runaway energy threshold εr at a certain electric field is
given by the energy at which the friction force is equal in magnitude to the electric force:
FB(εr) = eE on figure 2.15.

b) In a stochastic approach, the runaway threshold is rather defined as a characteristic energy
ε△/2 (on figures 5.15) at which the probability that an electron remain at an energy higher
than its initial energy ε0, varies most steeply with respect to ε0. We called it the “half-peak
(probability) threshold” (middle panel of figure 5.16a and 5.14a).

This characteristic energy ε△/2(t) varies with time but transits to a slow stabilisation be-
tween 12�40Td which would correspond to the probabilistic electric field threshold of runaway
acceleration.

The stabilised value of the half-peak threshold ε△/2(t > 300ps) is shown in figure 6.2 according
to the reduced electric field and at four different temperatures of air.

These threshold values of ε△/2 are situated between those predicted by the braking FB and
dynamic friction FD forces. They agree quite well with the predictions from the ‘effective friction’
Feff defined by Lehtinen and Østgaard [579, eq.(C1)].

In ambient air, the characteristic half-peak threshold is located at:

• ε△/2 ≃ 125keV at 40Td (1MV/m),

• ε△/2 ≃ 80keV at 60Td (1.5MV/m),

• ε△/2 ≃ 45keV at 100Td (2.5MV/m),

• ε△/2 ≃ 17keV at 200Td (5MV/m),

• ε△/2 ≃ 9keV at 300Td (7.5MV/m).
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Figure 6.2: Probabilistic estimation of the runaway threshold from Monte Carlo simulations
(⋯ ∎ ⋯ filled squares linked by dotted lines) and from deterministic calculations based on the
average dynamic friction forces from inelastic and scattering. These are defined on p. 72. The
values are the average of characteristic energies ε△/2(t) between 300�700 ps. The values at 12Td
(the break even field) were not converged.

Delays : how long?

The delay time before the production of a runaway electron may be characterised by an onset
t0 and a characteristic time τr which is the inverse of the (sterile) runaway rate νr.

The onset t0 is physically bounded by the infimum t∅ for the acceleration of a thermal electron
in vacuum (without collisions). While the probability that an electron scatter only elastically
at forward angles during its acceleration in a gas is vanishingly small, we think that a value for
t0 ≠ t∅ can be defined based on the very definition of a runaway electron (sec. 5.3): i.e. that
on average it keeps accelerating.

Starting with a swarm at 0 eV, we let electrons accelerate and collide. After each collision,
we retain only those super-electrons whose energy is larger than at their previous collision. The
super-electrons are duplicated and their statistical weights divided. We repeat this process until
all electrons have breached a given energy εth threshold. The average of the times at which
each electron breached the threshold (weighted by the statistical weights when breaching) is the
definition we propose for the minimal onset t0.

We would have had to make special simulations to estimate t0 with precision. Nonetheless,
we represent the ratio t0/t∅ in figure 6.3 from the values of t0 determined as in fig. 5.17. Despite
the noise due to stochastic fluctuations in the acceleration process (and initial energy ≠ 0 eV),
the ratio t0/t∅ appears as a decreasing function of the electric field and an increasing function
of the energy threshold εth when εth > 1keV.
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Figure 6.3: Ratio of the minimal onset time t0 for a thermal electron to accelerate up to a
given energy (x-axis) in ambient air, compared to the acceleration time in vacuum starting from
0 eV. At low thresholds ∼ 100 eV, the noise comes partly from the non-zero initial electrons
energy following a Maxwellian distribution at 300K. This is also why the ratio is below 1 at
high electric fields (the acceleration time from 0 eV to the highest initial kinetic energy is non-
negligible on the timescale of the full acceleration to the energy threshold).

The minimal delay t0 can, in principle, be defined at any electric field, even when the proba-
bility associated to thermal runaway is vanishingly small. Still, looking at the dark blue curve at
471Td on figure 6.3, we can tentatively define a threshold electric field for thermal runaway as
the field at which t0 = 2t∅. This field depends on the energy threshold εth we are considering, but
one can take εth = ε△/2 for a more rigorous definition. Currently, we estimate that the threshold
field for thermal runaway in ambient air is above 12MV/m or 470Td.

In addition to t0, we defined a 1-in 1-out delay ∆t11 which corresponds to the average time
that one high-energy electron be produced from one thermal seed electron in a high electric
field. In fig. 5.19b, we compared this time ∆t11 to the time for the formation of a streamer front
in a spatially-unlimited uniform electric field. At low electric fields, ∆t11 exceeds the streamer
formation time, but for any threshold εth there exists a reduced field high enough at which ∆t11
is shorter than the streamer formation time.

Distances : how far?

Under an electric field E in vacuum, the distance l∅ travelled by an electron accelerated uniformly
from 0 eV to εth is directly given by l∅ = εth/eE.

In a gas, the electron loses a certain energy on its way due to inelastic collisions and its
energy ε at a certain position r cannot be deduced from a conservation law. We consider the
distance −∆r∥ = (r(t) − r0) ⋅ Ê that an electron (initially at position r0 and energy ε0) travels
opposite to the electric field to a posterior time t at a position r(t) and energy ε(t).
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Figure 6.4: Fraction of energy lost by electrons to the gas compared to the total energy they
received from their displacement in the electric field. The strange undulation is due to the
presence of electrons generated at supra-thermal initial energies ε0, which subsequently lose this
starting energy and never recover ε(t) < ε0. At higher energies, most electrons have accelerated
from low energies which is why their loss fraction is comparatively lower.

Then, the fraction ξε of energy lost by the electron in inelastic collisions can be deduced from:

ξε ≡ 1 −
ε(t) − ε0
−eE∆r∥

. (6.1)

This loss ratio, shown in figure 6.4, does not seem to be a straightforward monotonic function
neither of the electric field nor of the actual energy ε(t). This can be explained as follows: at
higher electric fields, some electrons may be generated from impact ionisation at high initial
energies ε0 > 20 eV. These electrons can subsequently drift in the electric field but lose energy
in inelastic collisions such that their current energy ε(t) < ε0. This will cause the “loss fraction”
1− (ε(t)− ε0)/(−eE∆r∥) to be larger than 1. This means that electrons produced by secondary
ionisation at supra-thermal energies lose more energy than they started with.

The fact that electrons become more and more accelerated as the electric field increases
can be observed as a significant decrease in the proportion of energy lost by electrons between
10�100 eV. The presence of a maximum in the curves around ∼ 1keV, which shifts toward
lower energies as the electric field increases, is another manifestation of the presence of thermal
runaway. This maximum appears at fields above 12MV/m.

Conversely, from the average energy loss ratio ξε, one can reverse (6.1) to derive ∆r∥ ∝ 1/E.
From figure 6.5, one can see that this relation is more or less applicable, with a certain scatter
determined by the spread in ε0.

We may thus remember, as a general rule, that if we want to produce ≳ keV electrons in air
from thermal runaway, we will need approximately twice the length if these electrons were to be
produced in vacuum. That is:
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How far do fast electrons travel from their spawning place?

Figure 6.5: Average distance travelled by high-energy electrons anti-parallel (left) and perpen-
dicular (right) to a homogeneous electric field in air at various temperatures. The coloured zones
represent the dispersion in distances (minimal to maximal). The dashed grey lines show the
distance that would be travelled by an electron accelerated in vacuum starting from 0 eV. The
influence of the air temperature is almost insignificant compared to the electric field.

• At 12MV/m : acceleration over a length of > 0.16mm,

• At 15MV/m : acceleration over a length of > 0.13mm,

• At 20MV/m : acceleration over a length of > 0.1mm,

• and so on...

Production : how many?

The answer to the question of how many high-energy electrons may be produced in a discharge is
the hardest. There have been many attempts to estimate the thermal runaway flux [39, 161, 532];
all with a sophisticated model of a leader channel and one streamer or a corona. Delay times
and distances may be estimated because they constrain the spatio-temporal scales of runaway
production by comparison to acceleration in vacuum. However, the runaway production itself
relies heavily on the modelling of the electric field on an ionisation wave.

The models of sterile and fertile runaway provide two simple but extreme estimations to the
actual production rate on an ionisation wave which depends on:

▷ The seeding of electrons ahead of the wavefront.

▷ The avalanche rate in the inhomogeneous and propagating electric field.
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▷ The capability of accelerating while keeping up with the propagation of the wave.

▷ The transversal loss of high-energy electrons who scattered away from the wave.

We think therefore, that the actual runaway production rate from an ionisation wave cannot
be simply plugged in from known rates in uniform fields without accounting for spatial-temporal
dependence. Rates would have to be calculated from known wave profiles.

In light of the characteristics of electron acceleration in gases under uniform electric fields,
we may estimate what requirements must a wave front satisfy to produce and maintain runaway
electrons above a threshold εth:

• The peak field should reach above 500Td.

• The condition on the peak field can be significantly relaxed if one considers waves in a
preheated channel above 5000K.

• The average velocity of the thermal runaway acceleration Vr may be estimated as follows:

– τr = 1/νr is the characteristic time for runaway production.
– t0 + τr is the average delay for runaway production.
– ξεth/eE is a multiple (ξ > 1) of the distance travelled by an electron accelerated from

0 eV to εth in vacuum. Over a wide range of energies, the value may be approximated
by ξ ≈ 2 as an estimation of the average axial length ∆r∥ required accelerate an
electron up to εth.

– Vr(εth) =
ξεth

eE(t0 + τr)
is the average propagation speed of the accelerated electrons.

• On the nanosecond timescale of thermal runaway, the propagation speed Vs of the ionisation
wave can be considered to be steady.

• During the acceleration, the electron is first caught up by the front Vr < Vs.

• At a certain energy εtr there should be an equivalence : Vr(εtr) = Vs.

• The necessary thickness ls of the region of high electric field above > 500Td can be estimated
from:

ls > ∫
ttr

0
(Vs − Vr(t))dt .

• The dependence of Vr on t = t0 + τr is determined by:

Vr(t) =
ξεth
eEt

,

where

– ξ(εth) is a function of εth.
– εth(t) has to be tabulated by reversing the correspondence of t(εth) = t0(εth)+τr(εth).

• Electrons that reach an energy εth such that Vr(εth) > Vs may be considered as thermal
runaways which are subsequently capable of surfing on the streamer front.

These estimates could be used as handy guidelines for determining the prior likelihood of
generating thermal runaway electrons on a wavefront. They rely on very general parameters (t0,
τr, ξ) that describe the average bulk acceleration of electrons in uniform fields. These parameters
could be tabulated for electric fields down to 500Td.

We leave this endeavour for the upcoming section of perspectives and move to conclusions.
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6.3 Conclusions

In the history of mankind, the study of discharges brought a radical change. It opened a door to
high-energy physics through the discovery, in 1895, of X-rays emitted as the bremsstrahlung of
electrons accelerated in a vacuum tube under an applied electric field. To radiate X-rays, electrons
must be accelerated to very high energies of several hundreds of keV before they eventually collide
with atomic nuclei. The possibility of accelerating a very low-energy electron initially at ambient
temperature to the relativistic domain, despite the energy lost sporadically in collisions with gas
molecules, is known as electron thermal runaway.

When the gas is denser, the collisions are more frequent and therefore the losses as well.
The relative importance of the electric force over the collisions with the gas is measured by the
reduced electric field E/ngas. Below a critical threshold of E/ngas, electrons lose the ability to
accelerate from low to relativistic energies. Nonetheless, since the average energy loss in collisions
decreases for electrons at high non-relativistic energies, there is still a possibility to accelerate
electrons initially at high energies > keV toward relativistic energies. This is known, by contrast,
as relativistic runaway and was proposed in 1925 by Wilson [986] as an acceleration mechanism
in intense electric fields extended over large distances inside thunderclouds.

Today, we know that electron thermal runaway does not only occur in laboratory experiments,
but exists also on Earth as a natural phenomenon associated to lightning discharges. Lightning
propagates by forming bright hot conductive plasma channels known as leaders. Negative leaders
are capable of producing bursts of X-rays and intense gamma-ray flashes observed from space.

Emergence of thermal runaway electrons during the leader propagation implies the presence
of intense electric fields above the critical runaway threshold. The most plausible occurrence of
these fields is at the head of self-sustained ionisation front waves known as streamers. Although
the plausibility of thermal runaway at such critical fields has been supported in many sophisti-
cated models of streamers [39, 161, 532], the link between the origin of these streamers and the
production of thermal runaway electrons producing bright bursts of X-rays is poorly understood.
In particular, the relation, if any, between thermal runaway and the transition of a streamer
initially at ambient temperature to a leader core at thousands of Kelvins is unknown.

In order to grasp better the constraints on thermal runaway, we decided to conduct a study
at the microscopic level of electron swarms in uniform and homogeneous gases. This enabled us
to reduce the number of parameters and broaden our understanding.

At the heart of our research, we developed a code for the study of electron thermal runaway
in atmospheric gases named Θermiaa as an acronym for THermal Electron Runaway Monte
carlo code from the Instituto de Astrofísica de Andalucía. Θermiaa relies on two indispensable
tools:

1. An algorithm enabling to enhance the statistics of high-energy electrons published in [813]
and improved in section 3.3.2.

2. A complete and updated set of electron-molecule cross sections from 0 eV to > 100MeV
presented in chapter 15

We summarise below the main points of our findings.
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Figure 6.6: Separation of electron populations based on characteristics of the electron energy
distribution function, the maximal point of the dynamic friction force maxFD(ε) and the electric
field.

• Electrons in electrified gases may be categorised into three populations illustrated on fig-
ure 6.6:

A. Bulk : low-energy electrons at a mean energy ⟨ε⟩ which constitute the vast majority
> 99.9% of the swarm and determine the transport parameters and reaction rates.
Part of the bulk are:

– sub-thermal electrons which are two standard deviations below the ⟨ε⟩.
– thermal electrons within two standard deviations of ⟨ε⟩.
– supra-thermal electrons which govern the avalanche rate and are in the steeply

decaying portion of the energy spectrum.

B. Intermediate : high-energy electrons which cannot subsist in their state and form two
subgroups:

– Descending electrons decay fast toward the bulk because they straddle the max-
imal energy loss rates in collisions with molecules. They are either seeded by
impact ionisation from runaway electrons or decelerated electrons from higher
energies.

– Transient electrons decay slower toward the bulk. A small portion can maintain
themselves sufficiently long to be able to accelerate to higher energies and become
runaways.
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C. Runaways : electrons at high enough energies, above a threshold ε△/2, able to accel-
erate to the relativistic domain with a significant probability. We distinguish:

– Ascending electrons are the counter part of descending electrons, they move away
toward relativistic energies but cannot surf on ionisation waves.

– Relativistic electrons are the main producers of runaway avalanches, Bremsstrahlung
radiation and are capable of surfing on ionisation waves.

The definition of the runaway threshold ε△/2 is based on a brisk change in the prob-
ability of an electron to accelerate to higher energies.

• What mainly keeps electrons at low-energies (< 2 eV) in air, is the barrier created by
prominent resonant scattering between 2�4 eV with N2 molecules. This barrier can be (i)
overcome by raising the electric field above 300Td or (ii) lowered by raising the temperature
of air (in particular the vibrational temperature of nitrogen).

• Beyond the vibrational barrier of N2 lies the resonant dissociative attachment to O2 between
5�9 eV. This creates a depression in the multiplication rate of electrons in fields between
30�100Td. The mechanism whereby increasing the electric field decreases the growth rate
of the swarm is known as the attachment instability. This instability is greatly reinforced
by increasing the vibrational temperature of oxygen molecules in air.

• Above 10 eV, the energy spectrum of the swarm has a typical shape for many different
gas compositions of a decaying exponential-like slope steeper than a Maxwellian but much
milder than the Druyvesteyn distribution (∝ exp(−ε2)), with a characteristic energy above
the ionisation potential of the gas.

Specific to the production of high-energy electrons through thermal runaway in uniform fields,
we found that:

• Thermal runaway to an energy threshold εth can be characterised by three parameters:

a) The onset delay t0 is the minimal time required by a thermal electron to accelerate
up to εth.

b) The runaway rate νr = 1/τr is the probability per unit time of generating an electron
above εth modelled as Poisson process.

c) The avalanche growth rate νe.

• In ambient air between fields 120�470Td, the swarm grows exponentially but the field is
not strong enough to produce thermal runaway electrons. This corresponds to the situation
when t0 →∞ or t0νe ≪ 1.

• Around 500Td (13MV/m at atmospheric pressure), a transition happens in the high-energy
part of the spectrum: an inflexion point appears and a high-energy tail forms with a slope
much less steeper than the decaying slope of supra-thermal electrons. We interpret this as
the emergence of thermal runaway due to a gradual acceleration of electrons toward higher
energies. We propose to call this field Etr, the threshold field for thermal runaway. This
corresponds to the situation when t0 ≲ 2t∅ where t∅ is the acceleration time in vacuum.

• As the field increases, the ratio νr/νe increases and so does the production of thermal
runaway electrons. There must exist a critical field at which νr/νe = 1 which we propose to
be the formal definition of the critical field for thermal runaway Ecr.
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• The air temperature which includes: (1) the change in gas composition, (2) the population
of excited states and (3) thermal expansion; altogether has a significant influence on the
production of thermal runaway at temperatures above 5000K in a model assuming thermal
equilibrium. The most significant effects come from (i) the dissociation of molecules into
atoms and (ii) the expansion of the gas density which significantly lowers the average
friction force of electrons at a constant reduced electric field.

Ionisation fronts. On the one hand, in discharges at atmospheric pressure, thermal runaway
always competes with the exponential growth of the swarm. At electric fields where thermal
runaway can take place, the screening of the field by the space charge generated by the swarm
is always faster than the average production rate of runaway electrons. A steady production of
runaway electrons therefore requires a mechanism filtering high energy electrons from the bulk.
Such mechanism most probably occurs on ionisation fronts which naturally select electrons at
higher energies capable of keeping up with the propagation speed of the front and abandon low-
energy electrons behind where the external electric field is screened by the space charge of the
front.

On the other hand, since the field in the vicinity ahead of the ionisation front in air is always
superior to the break-even field of relativistic runaway, an ionisation front is, in principle, capable
of nurturing and maintaining a relativistic runaway avalanche pacing ahead at the same aver-
age speed. Additionally, some ionisation fronts are capable of accelerating low-energy electrons
seeded ahead of the avalanche and thereby produce a steady output rate of thermal runaway.

Overall, the preliminary study of thermal runaway in uniform electric fields might seem
irrelevant, especially since numerical modelling of streamer fronts is well developed nowadays.
In this thesis, we strived to demonstrate that, to the contrary, general considerations can be
deduced and applied to understand better under which conditions does thermal runaway emerge.

6.4 Perspectives

Our research has led us to construct a good overview, not only of what is known, but also to
what we should look for. From the theoretical perspective, there are three paths of investigation
specific to Monte Carlo simulations that we propose to follow to help us enlighten further our
understanding about electron swarms and runaway in discharges.

1. Swarms

Three-body attachment : Categorisation of electron-molecule interactions into separate pro-
cesses may mislead us into treating three-body attachment and resonant vibrational ex-
citations to molecular oxygen as if they were unrelated. To the contrary, these are very
interrelated and the sum of their cross sections (including resonant elastic collisions) should
amount to the vibrational excitation in the limit of zero molecular density. Attachment con-
siderably increases the duration over which an electron is captured by an oxygen molecule.
Nevertheless, the lifetime of O−2

2Πg (and NO− 3Σ−) compounds are very significant com-
pared to the mean free time of thermal electrons in gases. Since, three-body attachment
dominates transport in O2 at low electric fields [235, §3.3], we expect that the effect of
low-energy resonant collisions on electron transport should be significant (fig. 16.10).

Implementing a delay due to the lifetime τ− of resonant compounds in Monte Carlo simu-
lations should be an easy task and therefore is our first suggestion.
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Transport and reaction : Fluid models for macroscopic discharges rely on tabulated or empir-
ically fitted transport and reaction coefficients of electron swarms in determined conditions
of the reduced electric field and gas composition.

With the newly presented set of cross section, it would be desirable to release an updated set
of transport and reaction coefficients to improve the accuracy of fluid models, in particular
in regions of intense electric fields. Most interesting would be to characterise transport for a
large variety of gas compositions and temperatures which are in demand in the community
investigating discharges in weakly ionised plasmas.

Coulomb interaction : the particle-in-cell (PIC) method enables to model self-consistently the
electrostatic influence of space charges on electrons in Monte Carlo simulations. Similarly,
one could attempt to model the electron interaction with ions and other electrons at the
microscopic level by making use of the Coulomb logarithm 2.105 for momentum-transfer
cross sections.

Long-range collisions affect especially electron transport at high energies and thus are
important for the modelling of thermal runaway.

Excited states : the interaction of electrons with excited molecular states is very different
from the ground state. When a large proportion of excited vibrational states exist, the
barrier in the N−2

2Πg is lowered and electron transport is significantly affected. Similarly,
metastable states of electronic excitations may accumulate in discharges. The interaction
with metastable states does not only enable superelastic collisions but also lowers signifi-
cantly the ionisation potential of the molecule. Electron transport in gases with metastable
excited states is poorly known and needs to be investigated.

2. Super-electron management

Bulk-Runaway separation : The compaction algorithm we devised to enhance high-energy
electron statistics is useful to study thermal runaway but is not infallible. When the thermal
runaway rate νr is nil or vanishingly small compared to the swarm bulk avalanche rate νe,
the statistical weights of high-energy electrons drop below the resolution limit wmin, upon
which they are discarded from the simulation (fig. 5.28).

If one wishes to preserve the representation of runaways independently of the bulk’s growth,
then there should be a separation between the treatment of bulk and runaway super-
electrons with a facilitated transfer between both groups.

Spatial dependence : Our compaction algorithm is currently not suited for thermal runaway
on ionisation fronts because it filters super-electrons only based on their energy and not on
their position r. The idea of filtering super-electrons was to enhance the statistics of super-
electrons which are most likely to become thermal runaways. In homogeneous electric fields,
there is no need to consider spatial dependence. On ionisation fronts, however, electrons
ahead of the front have a much greater likelihood of becoming runaways than those behind.

Successful investigation of thermal runaway in inhomogeneous electric fields will require
to filter electrons based on an abstract quantity Pr which measures an electron’s thermal
runaway likelihood relying on criteria such as:

• The energy ε of the electron,

• The direction cosχ with respect to the electric field,

• The value of the electric field E(r) at the electron’s position,
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• The temporal derivative of the electric field dE/dt at the electron’s position (negative
derivative means the electron is already behind the front).

• The state of the gas (temperature, composition, density) at the electron’s position if
gaseous inhomogeneities are modelled.

Failure to properly model super-electrons where they are relevant for thermal runaway can
severely belie runaway statistics in inhomogeneous conditions (fig. 5.30b).

3. Thermal runaway

Longer timescales : There exist nowadays very accurate models of non-equilibrium plasma
kinetics in discharges [148, 852]. These may efficiently track the evolution of chemical and
excited species on longer durations > µs, where the state of the gas may evolve considerably.
It would be desirable to model gas heating by the discharges and track the evolution
of excited species, especially vibrational thermalisation. From there, it would be very
interesting to plug-in Monte Carlo codes on top of these kinetic models and observe how
the high-energy tail becomes affected as the discharge develops and the state of the gas
changes.

Statistics on fronts : this thesis performed statistical studies on high-energy and accelerated
electrons in uniform electric fields. By now, many accurate fluid models of streamers exist
[38, 161, 171, 531, 579, 621]. To start determining what characteristics of the streamer
front (radius, velocity, peak field, thickness) promote generation of high-energy electrons,
it would be desirable to determine:

• Surfing thresholds: which electrons can surf ahead of the wave and what determines
this threshold?

• Thermal runaway thresholds: which streamer profiles produce thermal runaway elec-
trons?

• Runaway rates: how different are the runaway rates on a front from sterile runaway
in homogeneous fields?

• Stratification: how does the average energy spectrum evolve according to the position
ahead of the front ?

• Self-consistency: (how) do high-energy electrons surfing ahead of streamer fronts affect
their propagation?

Continuous runaway Dart leaders propagating in the former channel heated up by a return
stroke are known to be continuous sources of X-rays. Using the information we know about
the air temperature and composition in hot channels of return strokes, we could also study
the continuous production of thermal runaway electrons in hot air.

There are endless scenarios that one could set up to study the phenomenon of thermal run-
away, from upward negative leaders to supershort avalanches in ns-pulsed laboratory discharges.
The objective is not to list them all, but to have the necessary tools ready for use when a new
idea sparks up.
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Figure 6.7: Hypothetical scenario of the development of a negative leader step through the
emergence of a space leader in the corona streamer zone. The subsequent production of thermal
runaway electrons after formation of the space leader is hypothesised under three different sce-
narios.

6.4.1 A hypothetical scenario

In this last subsection, from the knowledge we gleaned so far and the intuition we slowly nour-
ished, we propose a new hypothetical scenario that would explain the X-ray bursts correlated to
leader stepping in lightning and laboratory sparks.

We rewind to page 19 where we summarised the cycle of the stepping mechanism of a negative
leader. From there, and experimental results on the study of leader steps, we reconstruct a
plausible scenario behind the emergence of the space leader in the following steps schematised
on figure 6.7:

1. Streamer corona: The streamers in the corona of a leader propagate outward in the en-
hanced electric field region at the tip of the leader.

2. Fading streamer: The electric field in the wake of a streamer wanes below conventional
breakdown and the propagation of electrons in the streamer channel is hampered. Zones of
lower conductivity are formed and the space charge distributes unevenly in the old channel.

3. Space stem: At the boundaries of the regions of lower conductivity the current decreases
and a space charge starts to accumulate.
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◂ (−) Closest to the leader tip (inner edge), an anionic space charge is formed due to
important attachment to oxygen molecules.

▸ (+) Farther from the leader tip (outer edge), the electron density depletes slowly as
they drift, leaving behind a space charge of positive ions.

In the region of lower conductivity between the two anionic and cationic space charges, the
background electric field is enhanced E0 < Es. This enhancement provokes a rise in the
attachment rate due to the attachment instability in air between 40�80Td. This region of
separated space charges, reinforced by instability, is what constitutes the space stem [621]
which is thought to correspond to the glowing spots in laboratory experiments in the wake
of negative streamers [520].

4. Lateral positive streamers: from the lateral sides at the positive outer edge of the space
stem, avoiding the negative space charge on the inner edge, positive streamers emerge from
the enhancement of the background electric field.

5. Frontal negative streamers: the lateral positive streamers transported away part of the
positive space charge that was on the outer edge of the stem. This imbalance raises the
electric field at the concentration of electrons that had left the space stem and liberated a
positive space charge. On that side opposite to the leader tip, a negative streamer starts
and continues in the preionised channel left behind by the original streamer (which had
emerged from the leader).

6. Pilot system: the ensemble of space stem, lateral positive streamers and straight negative
streamers form a pilot system of counter-propagating streamers. The region of enhanced
field delineating the space stem is displaced due to the transportation of space charge
carried by streamers. This causes the pilot system to slowly drift away from the main
leader channel [340] (and maybe to lengthen).

7. Heating: multiple pilot systems connect into each other and feed current into their space
stems which subsequently heat up. The rise of the temperature facilitates furthermore the
deposition of both negative and positive ions due to the lowered threshold to dissociative
attachment of O2. The instability grows because the process retroacts on itself.

8. Space leader: when the space stem reaches a critical temperature, electrons trapped on
oxygen atoms on the inner edge of the space stem are released and further accelerate the
detachment process. This sudden release of electrons boost the conductivity of the space
stem which has become a space leader. The polarity at the boundaries of the space leader
reverses [36, fig. 1] because the increase of conductivity screens the formerly enhanced
electric field in the space stem. There are now two regions of enhanced electric field beyond
the boundaries of the space leader where the temperature and electron density decrease
abruptly and so the conductivity.

There is a missing spot for the sudden emergence of thermal runaway and the resulting X-
ray burst. We support the idea that thermal runaway occurs as a surfing mechanism on an
ionisation wave. However, we do not know where the ionisation wave originates and toward
where it propagates. We may imagine three different scenarios:

A. Preionisation: when the streamer coronas of the main and space leader connect, a surge
of current arises as the potential of the main leader is transferred toward the tip of the
space leader. When the current surge reaches the (outer) tip of the space leader, it flushes
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into preionised channels of higher conductivity left by the negative space-leader corona.
As proposed by Babich et al. [39], ionisation waves which subsequently propagate in the
preionised channel of a previous streamer have a more concentrated electron density at the
tip and therefore a high peak field. These ionisation waves may steadily produce thermal
runaway electrons.

B. Warm runaway: the ionisation wave emerges where the electric field is maximal, at the
place of encounter of oppositely charged streamer coronas. The electrons of the negative
corona propagate into preionised channels of the positive corona. When the ionisation wave
reaches toward the space leader, there is sudden surge of current due to the important
detachment of the oxygen anions located at the cold edge just outside the space leader.
The electric field peaks and some electrons are accelerated into the runaway regime due to
the decreased friction force of the gas in the hot channel.

C. Surge and accumulation: the ionisation waves, wherever they emerge, if they emerge do
not have the conditions fostering thermal runaway. The intense current communicating
between the main and the space leaders heat the gap in the middle extremely fast < µs.
The charge accumulated in the main leader and the streamer zone is transferred to the
space leader, as so the potential. At the outer edge of the space leader, there is a sudden
drop of conductivity. Due to the surge of current coming from the main leader and its
streamer zone, there is a sudden accumulation of negative space charge at the edge of the
space leader. The accumulation is intense enough so that the critical field for thermal
runaway is breached. A significant number of electrons make it in the runaway regime and
keep accelerating in the field of the leader which is not yet screened by a streamer corona.
Finally, a new bright streamer corona burst coincides with an X-ray burst from thermal
runaway electrons.

There are and have been many propositions to the origin of thermal runaway related to leader
stepping. From our study, we think that thermal runaway is closely related to the formation of a
space leader and the significant inhomogeneities of the gas temperature and plasma conductivity.
However, our current understanding of ionisation waves and their relation to the space leader is
too poor to support a particular mechanism of generation of thermal runaway electrons.

The beauty of it all is that it is not until the plasma community is able to join forces and the
efforts of many research teams into the construction of a comprehensive model, that the intricacy
behind leader stepping, streamer coronas, heating of space stems, development of space leaders,
ionisation waves in hot air and thermal electron runaway; that this intricacy will be unveiled.

And hopefully,

that the credits

to these joint efforts

will bear the name



of a collaboration...



Appendix A

Collision Kinematics

In a fixed reference frame, two particles of masses m1 and m2 collide with velocities v1 and
v2 as schematised on the top panel of figure A.1. General kinematic relations can be found in
any textbook treating with particle scattering such as Berestetskii et al. [58, §66]. Here we are
specifically interested in binding the outgoing (E+i ,p+i ) to the incoming (E−i ,p−i ) energy-momentum
vectors of the particles i = 1,2, as it was done by Blaton [84].

The collision system obeys the conservation laws of the total momentum Π and energy E :

Π = p±1 + p
±
2 = (m1γ1v1)

± + (m2γ2v2)
± (A.1)

E = E±1 + E
±
2 = (m1c

2γ1)
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2γ2)
± (A.2)

= (m1c
2
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Figure A.1: Binary collision kinematics

Elastic collisions conserve the particle rest
masses m+i = m

−
i , whereas in inelastic colli-

sions, the internal excitation energy ∆Ei of
(one or both) of the particles can be assimi-
lated to a change of its rest mass:

m+i c
2 −m−i c

2 =∆Ei .

The problem of relating p+i to p−i through
their angles of scattering θ±i , is most easily
solved in the system’s centre of mass frame
where both particles are observed to collide
frontally with equally opposite relative mo-
menta p′1 = −p

′
2 as seen on the bottom panel

of figure A.1.
In the fixed frame, the centre of mass

cruises at a steady velocity V determined by
the total energy and momentum [84, eq. 1.6]:

V =
c2Π

E
(A.4)

Γ = 1/
√
1 − (V/c)2 (A.5)
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A Lorentz transformation from the fixed frame to the one cruising at V gives the relative
energies E ′i and momenta p′i :

E ′i = Γ(Ei − pi ⋅V) (A.6)

p′i = pi + (Γ − 1)
V ⋅ pi
V2
V − Γ

V

c2
Ei (A.7)

The rest energy of the cruising system can be defined as E ′0 =
√
E2 − (cΠ)2. With this energy,

the norm of the relative momentum p′ can be calculated as the sum of total energies in the centre
of mass frame:

E ′0 = E
′±
1 + E
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√
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2)2 + (cp′±)2 (A.8)
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Differential scattering cross sections are usually measured in the laboratory frame whereas
theoretical calculations often take the centre of mass frame and then convert to the fixed frame.
With the inverse Lorentz transformation, one can establish geometrical relations by projecting
p and p′ on V , introducing the angles θ±i and θ′±i as seen on figure A.1 :

E±i = Γ(E
′±
i +V ⋅ p

′±
i ) (A.10)

(p cos θ)±i = Γ(p
′± cos θ′±i + E

′±
i

V

c2
) (A.11)

p±i sin θ
±
i = p

′± sin θ′±i (A.12)

Combining (A.11) and (A.12), one finds angular relations between both frames:
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The outgoing energy-momenta can be determined [84, eq. 2.5] by combining the angular
relations with (A.11):
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The energy in the relative frame E
′+
i can be determined by:

Elastic→ E ′+i = E
′−
i = Γ(E

−
i −V ⋅ p−) (A.17)

Inelastic→ E ′+i =
√
(m+i c

2)2 + (cp′+i )
2 ≠ E ′−i (A.18)

The relative momentum after the inelastic collision must be calculated with (A.9) where the
rest masses m+i c

2 accordingly comprise the excitation energies ∆Ei of the inelastic process.
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Figure A.2: Azimuthal angle φ determining the
rotation of the scattering plane (p+, Π) from
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mentum Π. The possible values of the scatter-
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different directions p+ around the initial mo-
mentum p−.

Finally, the angle that we are most interested in is the angle of deviation between the original
and scattered directions cos θi = p̂−i ⋅ p̂

+
i . Considering the axial symmetry of the collisional system

around Π, θi can be defined with the help of the uniformly distributed azimuthal angle φ which
determines the rotation of the scattering plane (p+, Π) with respect to the original plane (p−,
Π) as represented on figure A.2:

cos θi = cos θ
+
i cos θ

−
i + sin θ

+
i sin θ

−
i cosφ (A.19)

cos θ+i =
cos θ−i cos θi ± sin θ

−
i sinφ

√
sin2 θi − sin

2 θ−i sin
2φ

cos2 θ−i + sin
2 θ−i cos

2φ
(A.20)

The volume spanned by the three angles θ, θ+ and θ− as φ varies can be seen on fig. A.3.
This angular correspondence has two distinct and one special cases :

• When sin θi < sin θ
−
i , two independent solutions exist for each φ. They correspond to the

wider and narrower angles θ+i seen on figure A.2. In that case, φ must be restricted to :

sinφ <
sin θi
sin θ−i

< 1 (A.21)

• If sin θi > sin θ−i , φ covers the whole perimeter and since cosφ = cos−φ, the two branches
(φ ≷ 0) actually mirror each other so that for φ ∈ [0, π], only one branch (whichever) can
be retained. Taking the negative branch (θ < 0) will systematically match the wider angle
at φ = 0.

• The special case of sin θ−i = sin θi gives way to :

cos θ+i =
cos θi cos θ

−
i ± sin

2 θi cos
2φ

cos2 θi + sin
2 θi cos2φ

(A.22)

where one branch degenerates into a single value at ±1 for θi = θ−i and θi = π−θ−i respectively.
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Figure A.3: Correspondence between angles θ−, θ+ and θ

As a closure note, binary collisions are a generic framework for collisions involving an arbitrary
number of particles. One can always formally group the energy-momentum vectors of several
particles together to form a system with a particular rest massM0 obeying:

M0c
2 =
√
(∑
i

Ei)2 − c2(∑
i

pi)2 (A.23)

If one particle can be isolated and have its outgoing direction fixed, then the recoil energy
given to the system can be determined as well.

A.1 Ternary Outcome

In the particular case of interest when a binary collision results in the emission of three particles
such as electron-nuclei bremsstrahlung or impact ionisation, one can adapt the results above to
a ternary outcome. The conservation laws of energy and momentum now include the third body
(E+3 ,p

+
3) which is supposed to be known beforehand. Since this body 3 was part of body 2 before

the collision, the quantity p−2 embodies the momentum carried when they formed a whole.

E = E−1 + E
−
2 = E

+
1 + E

+
2 + E

+
3 (A.24)

Π = p−1 + p
−
2 = p

+
1 + p

+
2 + p

+
3 (A.25)

The kinematic connection before and after the collision is again made through the energy-
momentum expressed in the centre of mass rest frame E ′0 :

E ′0 = E
′−
1 + E

′−
2 = E

′+
1 + E

′+
2 + E

′+
3 (A.26)

p
′−
1 + p

′−
2 = 0 = p

′+
1 + p

′+
2 + p

′+
3 (A.27)
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Just as in (A.8), the 4-vector invariant of the second particle can be used to replace the
expression for p

′+
2 in (A.26) by introducing the angle θ′13 ≡ ∠(p

′+
1 ,p

′+
3 ) formed between particle

1 and 3 directions in the centre of mass frame.

(p′+2 )
2 = (p′+1 )

2 + (p′+3 )
2 + 2 cos θ′13p

′+
1 p
′+
3 (A.28)

To temporarily alleviate the heavy notation, all quantities are expressed in the relativistic
unit system c ≡ 1 and the + exponent is implicit. We denote the energy shared between particles
1 and 2 as E ′12 ≡ E

′
0 − E

′
3. Then we obtain a second degree equation in p

′+
1 :

⇒ E ′12 ≡ (E
′
0 − E

′
3) =
√
m2

1 + p
2
1 +
√
m2

2 + p
2
2

⇔ [(E ′12)
2 − (m2

1 + p
′2
1 +m

2
2 + p

′2
2 )]

2
= 4(m2

1 + p
′2
1 )(m

2
2 + p

2
2)

⇔ (E ′12)
2 [(E ′12)

2 − 2(m2
1 + p

′2
1 +m

2
2 + p

′2
2 )] + (m

2
2 −m

2
1 + p′22 − p

′2
1

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=p′23 +2 cos θ

′

13p
′

1p
′

3

)2 = 0

⇔
1

2
(E ′12)

2 [(E ′12)
2 − 2(m2

1 + p
′2
1 +m

2
2 + p

′2
2 )] + (m

2
2 −m

2
1 + p

′2
3 )

2

− 2p′1p
′
3 cos θ

′
13 [(E

′
12)

2 − (m2
2 −m

2
1 + p

′2
3 )

2] + 2p′21 (p
′2
3 cos2 θ′13 − (E

′
12)

2) = 0

We can regroup m2 and p′3 into an effective mass m23 ≡
√
m2

2 + p
′2
3 . Finally, we can extract

the relative momentum of the first particle p
′+
1 after collision :

p
′+
1 = [E

′
12

√
(2p′3m1 cos θ′13)

2 + ((E ′12)
2 − (m23 +m1)2)((E ′12)

2 − (m23 −m1)2)

−p′3 cos θ
′
13((E

′
12)

2 − (m2
23 −m

2
1))]

1/2

(E ′12)
2 − (p′3 cos θ

′
13)

2
(A.29)

or with the full notation restored :

p
′+
1 =

⎧⎪⎪
⎨
⎪⎪⎩

(E ′0 − E
′+
3 ) [(2p

′+
3 m

+
1 cos θ

′
13)

2

+((E ′0 − E
′+
3 )

2 − (
√
(m+2)

2 + (p
′+
3 )

2 +m+1)
2)((E ′0 − E

′+
3 )

2 − (
√
(m+2)

2 + (p
′+
3 )

2 −m+1)
2)]

1/2

− p
′+
3 cos θ′13 ((E

′
0 − E

′+
3 )

2 − ((m+2)
2 + (p

′+
3 )

2 − (m+1)
2))

⎫⎪⎪
⎬
⎪⎪⎭

1/2

(E ′0 − E
′+
3 )

2 − (p
′+
3 cos θ′13)

2
(A.30)

With this, the formulae (A.15-A.16) can be used to determine the energy-momentum of
particle 1 after the collision with the relative energy E

′+
1 =
√
(m+1c

2)2 + (cp
′+
1 )

2. We remark that
setting p′3 ≡ 0 ≡ E

′
3 in (A.29) reduces back to (A.7) in the simpler case of binary collision.





Appendix B

Maxwell-Boltzmann Statistics

We consider a system comprised of many individual particles, those could be electrons or
molecules alike. Those particles can populate a set of energy levels. Under conditions where the
state of the whole system is stable, the population distribution over those levels is fixed through
equilibrium and corresponds statistically to the most probable configuration. It is known as
the Maxwell-Boltzmann distribution in a classical description of weakly interacting particles.
Below we give separate treatments for the continuum space of kinetic energies corresponding
to the Maxwell distribution and the discrete space of energy levels leading to the Boltzmann
distribution.

B.1 Continuous : Maxwell distribution

Let a system of N particles in a stationary state be determined by its total energy E . Each
particle i may occupy an individual state s corresponding to an energy ε(si) with an associated
probability p(si). Since the energy of the system determines its state, we may assume that those
probabilities depend on si only through the individual state energy ε(si). Our objective is to
determine a general formula for p(εi(si)), which reflects the principle of maximum entropy.

As a starting point, we may suppose that the system is momentarily in the configuration
determined by the states si Its total energy E is simply the sum of energies of all occupied states:

E =
N

∑
i=1
ε(si) (B.1)

The probability that the system takes this specific configuration is given by :

P =
N

∏
i=1
p(ε(si)) (B.2)

If this configuration corresponds to a state of maximal entropy, then its probability must be
stationary (and maximal). An adjacent configuration after a tiny perturbation that preserve the
system’s state is applied, should have the same probability P of occurrence. The energy shifts
δεi endured by each particle during the perturbation should preserve the total energy (B.1) :

δE ≡ 0 =
N

∑
i=1
δεi (B.3)

The crux in the derivation of p(ε(si)) lies in considering the logarithm of the combined
probability P, to enable the separation of the individual perturbations δεi applied. Since the
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logarithm is a monotonically increasing function, if f(x) has a maximum at xm, so must ln(f(x))
have. Thus, the logarithmic shift in probability is expressed as :

δ(logP) ≡ log(
N

∏
i=1
p(ε(si) + δεi)) − log(

N

∏
i=1
p(ε(si))) (B.4)

=
N

∑
i=0

dlog(p(ε(si))

dε(si)
δεi + o(δεi) (B.5)

Replacing the perturbations (B.3) in (B.5) and imposing that δP ≡ 0 in a stationary config-
uration :

δ(logP) ≡ 0 =
N

∑
i=2
(
dlog(p(ε(si)))

dε(si)
−
dlog(p(ε(s1)))

dε1
) δεi + o(δεi) (B.6)

There is only one straightforward solution valid for any arbitrary δεi perturbation conserving
E which consists in :

dlog(p(ε(si)))

dε(si)
= −K ⇒ p(ε(si)) = C exp(−Kε(si)) (B.7)

The constant K is related to the temperature of the system K = kBT through Boltzmann’s
constant kB ≈ 1.380648 × 10−23 J/K. The normalisation factor C is determined by the integral
over all available states S : 1 = ∫S p(ε(s))ds. If we regroup all states that relate energies in the
range ε→ ε + dε into the density g(ε), we can integrate as follows :

1 = ∫ p(ε)g(ε)dε (B.8)

Concretely, in the simplest classical case where particle states s = (x,v), are represented by
their spatial x and velocity v coordinates, if the only relevant energy is kinetic: ε = mv2/2 for
particles of mass m, then:

p(ε(s)) = C exp(
mv2

2kBT
) (B.9)

g(ε)dε = ∫
ε+dε

ε
dv = 4πv2 dv (B.10)

g(ε) = 4π
2

m
ε
d
√
2ε/m

dε
=
4
√
2π

m
3
2

√
ε (B.11)

The normalisation requirement reads :

1 = ∫
∞

0
C

8π

m
3
2

√
ε exp(−ε/kBT )dε = C

4
√
2π

m
3
2

√
π

2
(kBT )

3
2

⇒ C = (
m

2πkBT
)
3/2

(B.12)

Ultimately, we find the Maxwell distribution of velocities f(ε)dv = p(ε)g(ε)dε:

p(ε(v))g(ε) =
2/
√
π

(kBT )3/2
√
ε exp(−

ε

kBT
) (B.13)

f(v) = (
m

2πkBT
)
3/2

4πv2 exp(−
mv2

2kBT
) (B.14)
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This distribution can be derived in more rigorous terms taking into account the phase-space
described by the system, with eventually the use of generalised coordinates. Such derivations
can be found in Jeans [the Chapter X of 455, especially §210-212]. The basic ingredients needed
for this distribution are :

1. Conservation of a property (energy) – eq. (B.1)

2. Transformation of a product probability into a sum (logarithm) – eq. (B.5)

3. Principle of equipartition : the energy is equally shared between different degrees of free-
dom, or equivalently, the occurrence probability p is identical for all states s that correspond
to the same energy ε, thus – p(s) = p(ε(s))

We recommend also to look into Bittencourt [the chapter 7 of 73, sections 1.3-1.4] which
takes a totally different perspective, yet involves the three ingredients mentioned above. The
important aspect is that no particle interaction that can structure the system was taken into
account when deriving the Maxwell distribution.

B.1.1 General Maxwell distribution

In the more generalised case where the field of velocities present a first degree anisotropy given
by the drift velocity v0, and in the presence of a potential V (x), the energy ε′ of a particle in
the relative frame drifting at v0, takes the form:

ε′ =
m(v − v0)

2

2
+ V (x) (B.15)

The generalised Maxwell distribution becomes:

f(v,x) = Cx (
m

2πkBT
)

3
2

exp(−
m(v − v0)

2/2 + V (x)

kBT
) (B.16)

The potential V can be defined to an arbitrary constant level which simply multiplies the
distribution by a constant factor. Its effect is swept away through the normalisation coefficient
Cx when integrating over the volume Ω occupied by the system in configuration space:

1

Cx
= ∫

Ω
e
−V (x)
kBT d3x (B.17)

For a potential defined by a homogeneous field of force V ≡ −F ⋅ x, considering the subspace
perpendicular to the field uniform, if the parallel coordinate stretches from x0 to x1 :

Cx =
F

kBT

1

eFx1/kBT − eFx0/kBT
(B.18)
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B.1.2 Properties of the Maxwell distribution

Three characteristic values for the distribution of speeds (B.14) are reminded here, they can be
found in [73, §7.4].

The most probable speed : vp =

√
2kBT

m
(B.19)

The mean speed : v̄ =

√
8kBT

πm
(B.20)

The mean kinetic energy : ε̄ =
3kBT

2
(B.21)

B.2 Discrete : Boltzmann distribution

When the energy levels accessible to the particles in the system are distributed discretely, the
demonstration takes on a slightly different path, paved with sums instead of integrals and count-
able degrees of energy degeneracy instead of density of states. In the end, the result is similar;
the probability p(εi) that a particle occupies any of the gi degenerate states of energy εi is given
by :

p(εi) =
gie
−εi/kBT

∑∞i=0 gie
−εi/kBT

. (B.22)

The denominator Z ≡ ∑∞i=0 gie
−εi/kBT is known as the partition function. Many useful ther-

modynamic quantities can be derived from it. In this thesis, our primary use of the Boltzmann
statistics will aim at molecular rotational and vibrational excitation populations.



Part II

Electron scattering by molecules
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Perilogue

Let us imagine that this afternoon is a bright sunny day. A beam of light gushes-in through the
windows and we are immediately tempted to go outside, just to wander a bit, both our body as
our thoughts along. As soon as we step out of our main office building and go right into the park
that every decent scientific complex should possess in its vicinity, our attention gets dispersed.

We see various objects around us, maybe some birds are chirping, perched up on high branches
in the surrounding trees. Others are cheerfully splattering in the large fountain where some
children toss small coins while others fling puffs of bread crumbs to feed the birds. Some cats
are sunbathing on a quiet spot on the rim of a limestone wall bordering a kiosk. Occasionally, a
generous soul comes in timidly to steal a few strokes. A blossoming magnolia tree protected by
a circle of low freshly trimmed hedges coronates a small hilly lawn.

In such conditions, freedom is an abstraction of the mind that finds no practical realisation of
itself. We might persist to keep strolling about, until soon we surrender to the delightful empty
and clean bench from where one can pause for a while, let time flow on a different pace and
contemplate.

The scenery that unfolds before us is of no strangeness to our eyes. We may be bemused by
the peculiar feeling of familiarity that emerges from resting in the park; a place that we might
have visited for the very first time, yet whose alleys and structure we recognise. We can expect
where to find a pond, a bridge, a fountain, a paddock of flowers and the space well enclosed by
trees which procure a universal feeling of protection and security.

We may start wondering: what would have this park looked like before, when it still belonged
to untrodden wilderness? Probably a dangerous but surely bewildering jungle. Swampy grounds,
covered cliffs and precipices, open cracks with springs rushing out into streams and merging into
rivers, rotting tree trunks overgrown by lavish vegetation. In such a place, every little detail
would look new to us. We could probably run in circles without noticing we are looking at
the same tree, or conversely we could think we passed here before and be unable to see the
differences.

We might spend our entire lifetime trying to get our way through this wilderness, or we might
decide to make it more passable, akin to our cognition and perception. One typical place to start
is to clear off the space, take away some samples and bring them to our world. At home, we
may cast a closer inspection onto what we found. Undistracted by the fuzzy wild environment,
we have better control and certainty over what we are observing.

This routine is so embedded in our scientific approach that it sounds ridiculously obvious to
mention it. Nevertheless, we are constantly reminded to question it. In the first part of this
thesis, we discovered how much of what makes the reality of lightning was discarded in order
to focus on the details of thermal electron runaway under perfect and uniform conditions of the
gaseous medium and the electric field. This second part will be no exception to this reductive
practice. Armed with the approximation machete, we will have to trim down much of the lush
vegetation growing in the realm of quantum mechanical approach to electron-molecule collisions.
At the outcome of this second expedition, we are expected to have chopped enough logs to feed
into the fire that sustains the first part of this thesis: namely, we need a complete set of cross
sections.

Notwithstanding, the role of science is not to isolate us from immaculate reality, but to
develop tools and idioms to apprehend it. In order not to disregard this deontological aspect of
science, we shall also make an additional effort on our way. We will try to learn the names of
the plants we see and discern more than a jungle of leaves and wood in this allegory to the realm
of quantum physics. Though there are numerous textbooks on this matter, I believe it wrong to
be exempted from the task of assembling the material used into a coherent ensemble.
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It is in this sense that we may slowly recover from our raving thoughts and slide back into
our self sitting there on the bench, somewhere in the park on a nice afternoon. The park is
by no means a replacement to the wilder reality into which we project our scientific endeavour.
Rather, it should be perceived as the meeting place between our ignorance and our knowledge.
Where, from the place we sit or stand, we can observe them with a critical point of view; always
bearing in mind that what we see, has been made to be observable, and keeping our imagination
open to what might be out there that has not yet found its place in our park...



Chapter 7

Context

As we saw in the first part of this thesis, all interactions of electrons with the constituent molecules
of air may be modelled with effective cross sections for collisions of several types. Those cross
sections are related to the probability of interaction. Because the temporal and spatial scales
of electron-molecule collisions are usually very small compared to the scales involved in the
propagation of electrons in gases between collisions, it is very convenient to separate the electron
motion into two very distinct modes:

I. Propagation in an electromagnetic field

II. Local interaction with a molecule

While the propagation involves a finite displacement in space ∆r and time ∆t, the local
interaction is supposed to happen at a definite position r and a particular instant t. This sharp
distinction justifies the structure chosen for this thesis into part I dealing with electron transport
and part II only concerned with localised collisions isolated from all other external influences.

In this chapter, we introduce the concept of cross sections for electrons scattering from
molecules; how they are defined, measured and calculated.

Of course, this dual view – electron propagation interrupted by localised collisions – has its
own limitations and one of the challenges in plasma physics is to overcome them when treating
long-term and long-range interactions such as resonances and collisions with ions. In the latter
case, one needs to include interactions with multiple charged bodies (ions or electrons) present
within the sphere defined by the Debye radius (2.104).

Let us imagine an electron roving at 1 eV near a molecule of nitrogen in gas at a density
of 2.5 × 1025 molecules per cubic metre, with a fairly high background external field of 5MV/m
as could be attained in a discharge streamer channel at atmospheric pressure. The radius rint
delimiting the (spherical) region of interaction must be much smaller than either the (i) half the
mean free path of the electron in the gas, (ii) the distance at which the external electric field is
higher that the electrostatic field generated by the molecule. Those conditions delimit the range
at which the electron is affected by (i) another molecule and (ii) the collective field generated by
or imposed to the medium. Taking the total interaction cross section to be 10−19m2 at 1 eV, and

approximating the molecular field (attractive) as created by an induced dipole Emol =
e

4πϵ0

4αd

2r5

with a polarisability of αd ≃ 2 × 10−30m3 (see section 8.2.3), a numerical examination of both
conditions give:
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i. rint⋘
1

2

1

2.5 × 1025m3 × 10−19m2
= 200nm

ii. Emol ≫ 5MV/m ⇒ rint ≪
5

¿
Á
ÁÀ4 × 2 × 10−30m3 × 5.3 × 10−11m × 13.6 eV/e

5 × 106V/m
≈ 1nm

The numerical values introduced in the second condition come from the atomic Bohr ra-
dius and the Rydberg energy (in electron-Volts). The unit system and the details about the
electrostatic potentials will be introduced later in sections 7.5 and 8.2.3.

We see that density effects in gases can be utterly neglected, as the molecules are very far
apart. Thus the collisions may be considered as separated and unrelated events. Only at high
relativistic energies (≳ 100MeV) does the density effect [279] play a role due to simultaneous
long-range interaction of the electron with the polarised molecules/atoms of the gas. This is
because scattering at very high energies is mainly affected by long-range forces.

On the other hand, the effect of an applied uniform external electric field is stronger on low
energy electrons especially in the high field regions present at the front of electron ionisation
waves in discharges where the density of ions and electrons may be significant. The presence of
an external electric field slightly modifies the outgoing flux distribution of the scattered electron
and thereby the differential cross section. This mainly affects the scattering at forward angles
(< 10○), which may be enhanced or inhibited depending on the orientation of the electric field
with respect to the direction of the incident electron. Supposing an ionisation fraction of one
thousandth, a rough estimation shows that this enhancement/inhibition is small ≲ 5%, but grows
slightly with the incident energy.

More problematic is the situation in which an electron collides with ions in a non-weakly
ionised plasma (ionisation fraction > 10−3). There, the separation between propagation and
collision is smeared. One needs to define an effective finite radius within which the collision
takes place and treat the rest of the motion through the Coulomb interaction with multiple ions.
In the kinetic treatment of plasmas, this leads to the Landau collision integral which accounts
for collisions of weak but unscreened Coulomb interactions [816, §6.3.2]. This limiting case was
touched upon already in part I on several occasions (p. 80). It is widely known that properly
modelling Coulomb collisions in partially or fully ionised plasmas poses a challenge which lies
just at the edge of the scope of this thesis aimed at electrons propagating in weakly ionised gases.

Looking now at the temporal scale, our electron at 1 eV should traverse an overall length
of ∼2 nm, representing the region of interaction with the molecule, in about 2 × 10−15 s; a very
short time interval. Nevertheless, it may happen that this electron be delayed further because of
trapping mechanisms in the attractive potential of the molecule. This is known as a resonance
and occurs at particular values of the incident energy which typically lie in the range of a few eV
or less. Resonances can introduce delays about 10 times longer than the value of an ‘ordinary’
collision time. However, very narrow resonances, particularly with oxygen molecules might trap
the electron for 0.1 ns! Longer delays become affected by collisions between molecules in the gas,
after which the electron may become attached to the molecule for even longer periods. This will
be discussed in section 11.3.

Recognising that the microscopic spatial and temporal scales of collisions can present some
overlap over larger scales, we shall nonetheless adopt the traditional approach in which collisions
are considered isolated from external factors. In all practical situations, time delays can be
simply added to the flight time of the collision and the effect of long-range external interactions
can be incorporated as a corrective parameter affecting scattering at small angles.
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7.1 Motivation

In the previous part, we realised how important it is to possess a reliable and consistent set of
cross sections for representing electron-molecule interactions when modelling thermal runaway:
a phenomenon that traces the acceleration of electrons from sub-eV energies to beyond hundreds
of keVs. So far, this requirement is not met in the available databases hosted on lxcat, an online
server with a wealth of data on electron and ion interactions with gaseous molecules. This is
because most applications of weakly ionised plasmas are interested in the bulk behaviour of the
electron swarms: its transport parameters and reaction coefficients to be plugged in a simulation
over a greater scale involving, for instance, chemical reactions.

Undeniably, thermal runaway is also of concern to the plasma fusion community. Nonetheless,
the context is still very different for at least three reasons: (i) fusion plasma are fully (or almost)
ionised so that neutral ground species are virtually vacant; (ii) the gases involved are mainly
hydrogen (its isotopes) and helium, so the focus is different than with atmospheric gases; and
(iii) the perspective is totally different since the purpose there is to reduce risks of thermal
runaway with appropriate use of magnetic confinement and reduction of electric fields in the
fusion chamber. Although better acquaintance with the fusion community would surely enrich
the knowledge in our community of atmospheric electricity, it cannot be denied that our focuses
and the state of plasmatic matter are entirely different.

It became thus a secondary objective of this thesis to bring about an updated set of electron-
molecule cross sections for the use in Monte Carlo simulations of electron swarms in electrified
gases. Gradually, this ‘secondary’ objective grew in importance to the point that it may have
curbed the original objective of this thesis about understanding thermal runaway in atmospheric
discharges.

7.1.1 Questions and Goals

There are many questions that arise when one delves into the world of microscopic electron-
molecule scattering. Notably, the progress of our current understanding of electron-molecule
interactions from the second half of the past century to this day has been so intense, that
there is a great barrier of knowledge, language (scientific jargon) and culture between the world
of quantum mechanics computations and the weakly-ionised plasma physics community. By
‘culture’, we mean that it is utterly not uncommon to find a model considered ‘inaccurate’ by
the quantum community, but used nonetheless in simulations of electron swarms.

• The degree of precision one requires is arbitrary and even the accuracy of a model is
subjective. The plane wave Born approximation considered invalid still at 5 keV by a
quantum physicist does not discourage an electron swarm physicist to adjust a formula
based on the crudest atomic model and use it from 500 eV, 100 eV or even 15 eV.

• Differing perspectives emerge and give rise to a different use of language and terminology.
R-matrix, S-matrix, T -matrix, adiabatic nuclei body-fixed-frame, lab-fixed-frame, angular-
momentum coupling, close coupling, resonant scattering, dπ-wave, Fano profile, binary-
encounter, Franck-Condon factors, generalised dipole oscillator strength, etc. Those terms
may be totally abstruse for a part-I physicist while being susceptible of popping out any
time in a casual conversation between part-II physicists.

• The tools used for analysis and decomposition of cross sections are also different. A semi-
empirical fit to experimental data might be constructed partly with off-diagonal T -matrix
elements (in the body-fixed frame angular-momentum coupling) calculated in the first
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Born approximation while leaving the first few diagonal elements as free parameters and
completing all high order diagonal elements from their value given by the mean effective
range theory. A data scientist would probably prefer to use a simple least square fit
from Legendre polynomials and find a tricky way (cost functions or reduce/constrain the
parameter space) to get around extrapolation problems.

To refer to those differences, we think it is appropriate to speak of ‘scientific culture’ beyond
a simple difference in perspectives.

The questions addressed in this part concern the significance of microscopic phenomena on
the macroscopic world. We should ask ourselves such things as: when should we pay attention
to resonances? Can narrow resonances, for example, be disregarded? When can we use simple
approximations such as the handy analytical first Born approximation?

In general, the question that best summarises this part is:

What level of inaccuracy can we afford ourselves when modelling electron-molecule in-
teraction on a broad scale? How far can we push this accuracy before we fall out of
scope?

This question is unfortunately unanswerable if there is no prior consensus of what fraction
(percentage) can be considered negligible, and what lies beyond the scope of this thesis.

For the first instance, we decided that 5% would be an acceptable level of uncertainty on
the differential and integral cross sections produced. This decision is not completely arbitrary
because it reflects the overall precision with which cross sections are known experimentally (see
next section 7.3).

For the second instance, we imposed a hard limit of not dealing with target wavefunctions∗.
This immediately set us apart from the Hartree-Fock description of the target wavefunction, vari-
ational methods, close-coupling, and many more top-edge methodologies that require a superior
amount of time to be mastered – let alone be improved – than was available for this thesis.

Without any surprises, those two restrictions that we set upon ourselves lie on conflictual
grounds. It was obviously not possible – in all instances – to get a 5% level of accuracy yet
discarding such a consequential part of the active field of research in the realm of quantum
computations for electron scattering. Nonetheless, our goal was still met:

The goal behind this second part is double sided:

1. Create and assemble an updated set of electron-molecule cross sections to be used
in swarm simulations.

2. Make less vertiginous the growing abyss of knowledge between the makers and the
users of cross sections.

7.1.2 Structure of Part II

Following a similar arrangement as the one chosen for the first part, we separated the second
part in six chapters (7 to 12) and three appendices. The first chapter is a general introduction
in the physics of electron scattering.

In the second chapter 8, we present the theoretical methodology used for computing cross
section. The domain is too vast and we exploit only a minor part for our purposes. From general

∗That could be considered heresy in the community of quantum physics computations.
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considerations, we gradually zoom onto the approach that we adopted: modelling the scattering
through an approximate local interaction potential.

The algorithms used to implement and solve the equations exposed in chapter 8, are described
in the following chapter 9.

Chapter 10 is an attempt to tackle the difficulties encountered when trying to model a phe-
nomenon whose complexity is beyond the reckoning of one’s scientific background (or culture)∗.

Notwithstanding the many doubts that will be cast in chapter 10, we will apply in chapter 11
simple yet reasonably accurate models for calculating cross sections of elastic and inelastic elec-
tron collisions with molecules. Differential cross sections are only obtained for (vibrationally)
elastic scattering. Due to the simplicity of the approach taken, we had to recur to several semi-
empirical adjustments or fits to obtain the level of agreement desired. In the case of vibrational
cross sections, we believe there is no straightforward way to calculate cross sections due to their
predominantly resonant nature. When data from more sophisticated models were available, we
blended the published results of other works with our own fits or calculations in the vacant en-
ergy regions. The outcome of our investigation has been put together on files stored on a freely
accessible repository.

Finally, in the last chapter 12, we summarise our efforts and propose various ways in which
our work could be further improved.

In the rest of this chapter, we introduce how scattering of electrons by molecules is treated,
measured and estimated in classical mechanics. A preamble to the adequate treatment in the
framework of quantum mechanics is given at the end of the chapter in preparation of the following
chapter on theoretical calculations.

7.2 Basics of Scattering

If a beam of electrons passes through a dilute gas, in addition to a transmitted current in the
forward direction, electrons will spread diffusely over all directions. The distribution most often
presents some non-uniformities. More electrons might be observed at certain angles of deviation
and they will come out around certain energies. One may of course not predict deterministically
the outcome of each individual collision. However, when treated as an ensemble, the electrons
that collided obey a certain statistical distribution in their angle of deviation and energy lost.

The idea underlying scattering is to determine the probability with which an electron initially
beamed in a forward direction at a determined velocity, will be deviated into a certain solid angle
Ω and at a certain energy ε.

Let us suppose, as depicted in sketch 7.1, that an initially collimated beam of electrons
carrying a current of Iin over a surface S, passes through a dilute gas at a density of ngas. If we
place an electron collector at a certain angle, covering a solid angle of δΩ, the current Iout of
electrons detected may be related to Iin through the proportionality :

Iout = IinngasVcoll δΩ . (7.1)

The coefficient Vcoll represents the effective volume of interaction between the electron beam
and the gas per solid angle, so that the product ngasVcoll δΩ represents an effective fraction of
collisions with molecules that would send the electrons into the solid angle δΩ. The effective
volume Vcoll may be alternatively seen as a fraction of the physical volume V = S ⋅ l, where l
corresponds to the length that the beam traverses in the gas. Technically, this effective volume

∗Probably the mishap of every scientist.
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Figure 7.1: Conceptual definition of the scattering cross section for collisions between electrons
and molecules.

could also be affected by the velocity of the molecules. However, in practice, molecules at ambient
temperature are much slower (at least 30 times) than even meV electrons.

We may define an effective cross section δσ = S Vcoll δΩ/V which defines the overall fractional
area over the full beam section S (see close-up circle on the centre right of 7.1). We may write
[147, §1.3:p.8]:

Iout =
Iin
S
S ⋅ l ngas ⋅

δσ

δΩ
δΩ . (7.2)

The ratio Iin/S represents the density current of electrons and its multiplication by δσ gives
the number of collisions per unit time between the electrons impinging on one molecule placed
in their path. Then, if one considers ngas S ⋅ l molecules and counts the electrons over the solid
angle δΩ, one gets the total current Iout collected into δΩ. For an infinitesimal solid angle, one
may define the limit:

Differential Scattering Cross Section :
dσ

dΩ
(Ω) = lim

δΩ→0

δσ

δΩ
(ε,Ω) , (7.3)

which gives the effective collision cross section for all events that scatter electrons at an energy
ε into the direction defined by Ω = (θ,φ). The polar angle θ = ∠(I⃗in, I⃗out) is the angle formed
between the incident I⃗in and deviated I⃗out stream of electrons. The azimuthal angle φ describes
a rotation of the scattering plane where I⃗in and I⃗out both lie, with respect to a reference plane.
In an anisotropic medium, a preferential direction of molecular alignment would introduce a
dependence of the differential cross section on the azimuthal angle φ. In the present situation,
we assume that the orientations of gas molecules are isotropic and thus there is no dependence
on φ. This assumption could be disrupted, for instance, in a highly polar gas (water molecules)
under a high electric field.

If we are interested in calculating the total flux of electrons that endured a collision with a
molecule in the gas, we may integrate the differential cross section over the entire unit sphere of
infinitesimal solid angle element dΩ = sin θ dθ dφ, giving then the:

Integral Cross Section : σ ≡ ∫
2π

0
∫

π

0

dσ

dΩ
(θ,φ) sin θ dθ dφ = 2π∫

π

0

dσ

dΩ
(θ) sin θ dθ . (7.4)
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There are four fundamental assumptions that must be verified in order to validate the defi-
nition of a cross section dσc/dΩ associated to a collision c through (7.2):

1. The electrons from the beam do not interact among themselves.

2. Each electron interacts at most with one molecule and is unaffected by any other molecule
or external force.

3. The dimensions of the interaction volume V are tiny compared to the distance at which
the electrons are collected.

4. The states of the molecules and of the electrons (kinetic energy) are perfectly defined.

Under these conditions, a close correspondence may be established between the idealised
(differential) scattering cross section in (7.3) and the one derived from experiments based on
(7.2). Some conditions may be relaxed, as will be seen in the next section 7.3; at the cost of
requiring additional corrections to the measurements performed.

As we know already, an electron may also change the state (from i to f) of the molecule
through a transfer of its kinetic energy during the collision. At the most basic level we may
distinguish:

• Elastic collisions : in which the state of the molecule does not change (i = f) and thus, the
total kinetic energy in the collision is conserved.

• Inelastic collisions : in which the initial and final states of the molecule differ (i ≠ f) and
a conversion of kinetic energy from or into other forms has taken place.

After an inelastic collision, the molecule may come out excited, dissociated or as an ion
through ionisation (positive) or attachment (negative). The outcome of a collision is known as
channel. A channel is open if the energy of the electron ε is sufficient to enable the reaction
(excitation, dissociation, ionisation), otherwise it is closed.

To each channel c = i → f , we may therefore associate a cross section σc(i → f, εi → εf) that
relates the kinetic energy loss of the electron εf − εi with the transition of the initial i to the
final state f of the molecule.

In many cases, the molecules in a gas are distributed over a continuum [i′, i′′] or a discrete set
of initial states {i0..in} spaced in energy. Also, they may be excited into a continuum [f ′, f ′′] or
a discrete set of final states {f0..fm}. Those might be the different rovibrational bands (discrete)
of an electronic excitation, or the kinetic energy distribution after dissociation (continuum). In
those cases, a cross section of a certain kind of collision might actually be the average over many
initial states k and a summation over many final states j:

σc =
1

Ni

n

∑
k=0

m

∑
j=0
∫

i′′

i′
∫

f ′′

f ′
gk,i(xi)

d2σ(ik → fj)

dxi dxf
dxi dxf . (7.5)

The cross section for a continuum of transitions from initial to final states is expressed as a
differential over the continuous variables xi and xf . The averaging over initial states comes
through the normalisation toNi = ∑k ∫ gk,i(xi)dxi, where gk,i(xi) describes the overall frequency
of occurrence of the state k, xi.

As an example, “elastic collisions” should in principle include only the process whereby an
electron loses a very small amount of kinetic energy only due kinematic relations of binary
collisions without altering the internal energy state of the molecule (see previous appendix A
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for more information). However in practice, we should remember that ‘elastic’ cross sections
comprise also all open channels for rotational excitations and possibly transitions between almost
degenerate states in the fine structure of an atom/molecule. This is because the excitation
thresholds to those processes are often much smaller than the energy resolution in the experiment
so that pure elastic scattering may not be discriminated against those weakly inelastic collisions.

Cross sections for a specific collision resulting in transition between states i and f involve
the output/input flux ratio. In virtue of flux conservation, one may therefore relate the cross
sections between a direct i→ f and its reverse i← f process through a relation known as detailed
balance [834, p.11:eq.(15)]:

εigi
dσi→f

dΩ
(εi) = εfgf

dσi←f

dΩ
(εf) . (7.6)

The factors gi and gf represent the degeneracy of the states i and f respectively: i.e. how
many definite channels are comprehended under the labels “i” and “f ”. As mentioned above,
those can be different spin or rotational projections of the target. The presence of the energies
associated to the initial εi and final εf states of the collision stems actually from a quadratic
dependence of the outgoing vf and incoming vi electron velocities. This is because both the
flux and the frequency of the collision are proportional to the velocities of the colliding particles.
Instead of invoking the frequency, a more formal and correct way to interpret this proportionality,
is to think in terms of density ratios in the continuum space of collision energies of the electron-
molecule system. This is better demystified in Rodberg et al. [782, p.276:eq.(2.46)].

Knowing the total flux of electrons that is deviated does not necessarily inform us about the
degree of deviation incurred. For this, one considers the average momentum loss of electrons in
a collision.

M

p f

pi

q

θ

Figure 7.2: Momentum
transfer q from an electron
to a molecule M in a colli-
sion.

For a given process c, let us suppose that electrons colliding
with an initial kinetic momentum pi, emerge with a final momen-
tum pf(θ) which, by law of momentum conservation, depends on
the angle of scattering. The momentum transferred∗ in the col-
lision is defined as q = pi − pf , forming a triangle as represented
in 7.2. By azimuthal symmetry of the differential cross section
(see eq. 7.4 and § above), the average momentum transferred
to the gas after many collisions will be parallel to the incident
beam direction p̂i. The rate of (parallel) momentum transfer
from the electron beam to the gas is conveyed by [834, Chap-
ter 1:p.6:eq.(10)]:

Momentum Transfer Cross Section :

σm = ∫
dσ

dΩ
(Ω)

q ⋅ p̂i
pi

dΩ = 2π∫
π

0

dσ

dΩ
(θ) (1 −

pf

pi
cos θ) sin θ dθ . (7.7)

The rate of momentum transfer per time and thickness traversed in a gas of density ngas by
an electron flux Iin each carrying a momentum pi, is Iin ngas lσm pi. As before, one can define

∗As often encountered in dual concepts, the formal definition of the momentum transfer q varies with the
author. Whereas Canto and Hussein [147] and Taylor [922, p.147:fig. 9.1, p.159] choose “q = pf −pi”, Inokuti [427,
p.298:§2.1] defines “h̵K = pi −pf ” in his notation. Since literally “the momentum transferred from the electron to
the molecule” is by conservation, the momentum “lost” by the electron, we shall always follow the latter definition:
the momentum transferred is given by the initial minus final momentum. We will make repetitive emphasis on
this convention throughout this thesis to avoid confusions.
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a momentum transfer rate from a specific process (usually elastic scattering) or from various
inelastic collisions. When modelling electron swarms, one should distinguish the elastic from the
effective momentum transfer cross section which includes momentum loss from all open channels.
It is common to find the factor pf /pi replaced by 1, for electrons colliding with molecules when
the inelastic losses are negligible. We keep the distinction here in order to preserve the original
meaning of momentum transfer [198, eq.(32)] instead of an average deviation.

For a further introduction of scattering and electron-molecule collisions, we recommend the
first chapters of Shimamura and Takayanagi [834] and Canto and Hussein [147]. In order to grasp
a better understanding of how to relate the conceptual notion of a cross section to its tangible
value in reality, we describe in the next section how cross sections are derived from experiments.

7.3 Experimental Methods

The objective of the present section is to acquaint ourselves with the many diverse ways by which
cross sections are measured experimentally. Although not a review, it is important to understand
the limitations that apply to different techniques of measurement. Since the phenomenon of
thermal runaway spans a wide range of electron energies from sub-eV to some hundreds of
keVs, it is only natural that the data gathered must come from different experimental setups
for which the uncertainties may differ significantly. In this regard, we will try to emphasise the
assumptions underlying each type of experiment, which delimit their region of validity. We will
see how different techniques beautifully complement each other and may be assembled together
to produce a coherent overview of electron-molecule interactions over a broad range of energies.

A classification of experimental methods aiming to estimating electron-molecule cross section
is uneasy. Although the experimental determination of a cross section requires basically that
electrons impinge on target molecules and interact, there are many ways in which this can be
performed. One could divide the types of experiments as:

A. Swarm experiments,

B. Optical measurements,

C. Static gas,

D. Cross-beam.

Nevertheless, this classification of experimental methods is somewhat ambiguous because
optical measurements can also be conducted under static gas or crossed-beamed configurations.
Perhaps a more representative classification should be displayed in a table rather than a list:

Gas
Detection Photons Gas Electrons Swarm

Static Optical (static) Ion collection Attenuation Swarm
Beamed Optical (beamed) Beam analysis Cross-beamed ×

This maps how the gas is introduced in the collision chamber versus what kind of signal is
measured. Another classification could take the more pragmatic perspective of what quantity
is derived: total, momentum, integral or differential cross section. Also, one could specify if a
timing analysis is performed on the detection (e.g. time-of-flight or coincidence) and if there is
spectrometry involved in the particles detected (e.g. for energy loss spectra).

Admitting the diversity of experiments that can be performed to probe electron interaction
with molecules, for practical purposes we divide the present section into the four categories
introduced above.
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7.3.1 Swarm Experiments

This type of experiment bears a very special meaning in this thesis as it binds together the themes
represented by the two first parts of this thesis: electron swarms in electrified gases together with
electron scattering by molecules. It is the oldest of the experimental techniques unveiling electron
interactions with molecules. By measuring some macroscopic transport parameters of electrons
in given conditions of reduced electric field E/Ngas and gas temperature Tgas, one can roughly
probe the overall effect of electron-molecule collisions in equilibrium conditions. A very good and
well referenced overview of the experimental approach to electron swarms is given by Crompton
[199], of which we highlight the most basic aspects here.

In the realm of scattering experiments, swarm experiments are an outlier because they operate
under completely opposite experimental conditions compared to other techniques. An electric
(or also magnetic) field is imposed and must fill the chamber as uniformly as possible. The
velocity distribution of the electron swarm must reach a steady state as it propagates through
the gas which implies that many collisions have taken place instead of only one as described in
the schematics 7.1 of the previous section. The electrons are not produced at a definite energy
like by electron guns, but they must be ‘gated’ appropriately when performing timing analyses.

There are mainly four transport parameters that are measured experimentally:

1. The drift velocity vd = µeE [m/s], to which the electron mobility µe is related;

2. The lateral (transversal) diffusion coefficient DT or D⊥ [m2/s] which describes the electron
diffusion in the direction perpendicular to the electric field;

3. The longitudinal diffusion coefficient DL or D∥ [m2/s] in the direction of the electric field;

4. The Townsend first ionisation coefficient αi [1/m] = (νi − νa)/vd which expresses the mul-
tiplication rate of electrons per unit length traversed in the direction of the electric field
through impact ionisation. It is related to drift velocity and the net multiplication rate
(νi − νa) (per time) balancing ionisation νi against attachment νa.

The two first transport coefficients are most used for deriving cross sections whereas the
Townsend coefficient serves to test the validity of a given set of cross sections. Drift velocities
are measured in drift tubes where the duration between release and capture of a batch of electrons
is measured after it propagates in the tube uniformly filled with gas. Lateral diffusion on the
other hand may be measured in steady state conditions from the current collected at a certain
radial distance from the positive electrode. The experimental accuracy for measurements of
longitudinal diffusion is not as good as for drift and lateral diffusion. By varying the electric
field, the spread and average energy of the electrons change and affect the transport parameters so
that a weak dependence of the coefficients with the “overall” electron energy may be established.

An important relation (“Einstein relation”) to the average electron energy ⟨ε⟩ in the swarm
is given by the ratio of the lateral diffusion on the mobility [199, p.108:eq.(16)]:

DTe

µe
=
DTEe

vd
= C⟨ε⟩ . (7.8)

The proportionality coefficient C depends only on the shape of the electron energy (or ve-
locity) distribution. For instance, a Maxwellian distribution yields C⟨ε⟩ = kBT [748, p.129], thus
C = 2/3. Division by the elementary charge e gives the value DT/vd in electron-Volts. This
relation is useful to estimate the average energy of an electron in the swarm and therefore to
understand which energy region of the cross sections is probed in the experiment.
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The derivation of cross sections from transport parameters measured at various electric fields
is far from straightforward. It is an iterative process that relies on an initial guess of the cross
sections to use as an input in Boltzmann’s equation for electrons in a gas under an electric
field. The solution to this equation yields the electron distribution in velocity space from which
transport coefficients can be derived and then compared to the experimental data. This procedure
requires a very good understanding of the effect of the microscopic cross sections on macroscopic
transport properties of the electron swarm in order to guide the adjustment of estimated cross
sections and yield a trustful value.

Reliable theoretical estimation of cross section is a keystone in analysing swarm experiments.
The assistance of the mean effective range theory for parametrising the elastic cross section at low
energies is a perfect example of how cross sections may be very accurately derived from swarm
experiments (<2%) when their energy dependence is well constrained. This is much better than
measurements based on integration of the differential scattering cross sections. The advent of
advanced data analysis and optimisation techniques such as with machine learning algorithms
can potentially bring much improvement in the connection between cross sections and swarm
measurements.

There are two major factors that restrict the range of applicability of deriving cross sections
from swarm experiments:

1. There must be no or very few open inelastic channels at the energies probed by the distri-
bution of electrons in the gas;

2. The cross sections must vary little in the energy range mainly covered by the swarm
distribution in energy space.

Under theses assumptions, the dependence of the drift velocity and lateral diffusion on the
momentum-transfer cross section can be found to approximately scale as∗ [199, p.115]:

lowest E/N not low E/N
vd ∝ 1/σm vd ∝ 1/

√
σm

DT/µe ⊧ σm DT/µe ∝ 1/σm

The definition of what electric field is “low” and “not low” depends on the departure of the
average kinetic energy ⟨ε⟩ of the swarm compared to the thermal energy of the gas 3kBTgas/2 as
described by Maxwellian statistics (see appendix B of part I).

The most suitable region for estimating cross sections from swarm experiments is thus at
low energies far from pronounced resonances and below the threshold for inelastic scattering.
The most successful application was to the lightest noble gases: helium and neon. Their first
excitation level lies around ∼ 20 eV and 17 eV respectively. This enables to probe the effect
of elastic scattering alone throughout the whole 10meV–12 eV energy range. The lower bound
comes from the restriction upon the electric field to avoid contamination of the swarm by bound-
ary effects around the electrodes. At lower electric fields (<0.1Td), contact potential drops and
surface charge layers spoil the uniformity and accuracy requirement of the electric field [199,
p.132]. At higher electric fields (> 10Td), the derivation of swarm parameters is less accurate.
For heavier noble gases, the elastic cross section goes through a Ramsauer-Townsend minimum†

[634, p.113–8:§2.31–2] (see section 8.4.1 and 10.1.5 eq.10.17a) and rises rapidly thereafter, which
complicates the estimation of the cross section in that region.

∗The symbol ‘ ⊧’ is used statistics to denote that two random variables are independent. Here, I borrowed it
to mean that a parameter is independent from another (analytically, not probabilistically).

†Caused by annihilation of the phase shift from the s-wave at a non-zero low electron energy.
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For molecules, the necessity to include rotational excitations significantly complicates the
derivation of cross sections. The least problematic case is given by hydrogen due to the higher
energies of rotational excitation. The presence of open inelastic channels blurs the uniqueness
between a given set of cross sections and measured transport parameters. A non-negligible
adjustment of cross sections can result in an overall change of calculated transport parameters
that stays within the experimental uncertainty. Then, additional criteria are needed in order
to determine whether a cross section is truthful or not. Notwithstanding those difficulties,
cross sections for momentum transfer and rotational excitations of H2 and N2 were derived
from numerous swarm experiments [266, 305], which served as a basis for constructing cross
section databases at lower energies. Additionally, swarm analyses may also enable a derivation
of attachment rates and reaction rates that help to derive inelastic cross sections related to those
processes. A review of cross sections derived from swarm and beam experiments is given by
Buckman and Brunger [131] and reveals a good overall agreement for a variety of noble gases
and light diatomic molecules.

The merit of swarm experiments extends farther beyond the possibility to derive cross sec-
tions: they represent a starting point for the assessment of constructed sets of cross sections
[23, 24, 435]. Townsend’s first ionisation coefficient αi exposed above is not used for deriving
cross sections∗ but is an important indicator for testing whether a set of inelastic cross sections,
ionisation in particular are consistent with the exponential multiplication of electrons in gases
under high electric fields.

A more detailed review of swarm experiments and measurements of swarm transport param-
eters is available in Hunter and Christophorou [411] and a succinct review is given by Phelps
[748] for the subsequent derivation of cross sections. We now move to measurements of optical
emissions in relation to electronic excitations of molecules.

7.3.2 Optical Emissions

A competing way to determine electron collision cross sections for electronic excitations is through
optical emissions. If a beam of electrons is passed through a gas, the molecules that have
been excited will de-excite either through spontaneous emission or inelastic collision with other
particles. As explained in Trajmar and Nickel [940, p.84-6], if we measure the rate of photons
that match a certain transition in the spectrum of the molecule, we may infer the deexcitation
rate of molecules corresponding to that transition, and thereby their line excitation cross section
through electron impact.

A

B

C

0

νA

νB

γAB

γBC

Because of photon emission/absorption, the mechanism populating an ex-
cited level of a molecule is not exclusive to electron impact excitations. Indeed,
as represented in the scheme beside, a state B could also be reached from a
radiative deexcitation producing a photon γAB from a higher-lying state A that
was also produced by electron impact excitation at a rate νA, or itself com-
ing from a deexcitation of an even higher state. The populating mechanisms
A → B + γAB are called cascade contributions. Similarly, the state B may de-
excitate radiatively to any optically reachable state C below, so that all the
photons corresponding to these possible transitions are indicators or the pres-
ence of B. In order to trace the original presence of the species B from electron
impact excitations, one must include all B → C branches and remove all A→ B
cascades [319, p.457:§II.A.4].

∗A two-term approximation to Boltzmann’s equation ceases to be accurate at the high electric fields (≳ 100Td)
required to enable electron impact ionisation. A more accurate method is needed to calculate the electron velocity
distribution under such anisotropic conditions.



7.3. EXPERIMENTAL METHODS 253

Concretely, the electron beam of density flux Je “pumps” up molecules at an initial state i in
a gas of density ni, to a multitude of excited states. Among the multiple deexcitations (due to
spontaneous emission) that occur in the gas from those excited molecules, one can define a line
excitation cross section QBC for the deexcitation process B → C. This cross section QBC is in
direct relation [940, p.86] with the measured photon flux ΦBC through:

QBC = η
ΦBC
JeniV

(7.9)

The volume interaction between electrons and molecules in state i is idealised as V . The
correction factor η accounts for the detection efficiency of photons and the geometry of the
problem [284, §II.D], since photons are measured only in a solid-angular element ∆Ω. If the
emission of photons is polarised, (i.e. anisotropic), then the correction for the photon flux is
more elaborate [942, p.436]. Thus Qjl is the ratio of an emitted flux of photons ΦBC (per unit
time) to JeniV : the flux density of excitations of the niV gas molecules, induced by an electron
beam of flux density Je (per unit time per unit area).

We quote the very astute physical interpretation of QBC :

“ ”
Filippelli et al. [284, p.6:§C]

Physically, QBC is the number of B → C photons/second emitted per unit beam length,
per unit electron flux, and per unit target gas density.

The direct excitation cross section Qd
B of the state B can be derived when all relevant deex-

citations QBC and QAB cross sections are known [319, eqs.(30-31)]:

Qd
B = ∑

C<B
QBC

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
apparent

− ∑
A>B

QAB

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cascade

, (7.10)

where the first term on the right without the cascade (second term) is called the apparent
excitation cross section to state B. In practice, one does fortunately not need to measure all
B → C photon fluxes if the branching ratio ζBC for one of the lower C states is known through
the Einstein coefficients for spontaneous emission [940, eq.(3)].

There are a few additional phenomena that may distort the presently idealised derivation
of cross sections from optical measurements. They may be summarised as [284, 942, §II.A,
§3.2:p.437]:

1. Collisional quenching∗: if the inter-molecule collision rate is high (dense or hot gases), a
non-negligible portion of an an excited specie B may be removed through inelastic non-
radiative collisions which leave no visible trace a thus induce a systematic underestimation
[178, p.373–4].

2. Slow decay: if the lifetime τij of the emission monitored i → j is too long, even in sparse
gases, the molecules might travel away from the interaction region and complexify the
geometry linked to the detection of optical fluxes.

3. Radiation trapping: this bridges the gap between slow decay and collisional quenching.
If the density of the gas is high and if the transition to the ground state is intense, then

∗In addition to quenching through collisions, if the excited state is above the dissociation or ionisation thresh-
old, the target may predissociate or autoionise without emitting radiation.
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the absorption rate of the emitted photons might be non-negligible. Photons that are
reabsorbed then re-emitted (up to several times) might lose their way to the detector for
three reasons, the first two are from collisional quenching (increased risk) and displacement
from the interaction region (problem equivalent to slow decay). The third comes from the
fact that every time the photon is absorbed, the excited molecule might decide to deexcite
through a different transition. All those three issues reduce the detection rate of the
photons monitored.

4. Subsequent electron excitations: this is the sibling of collisional quenching but through
electrons. It is always the least problematic point, since the probability that other electrons
interact with previously excited species in the target is low when the gas density and
electron beam fluxes are low.

5. Unsteady gas state: if the renewal of the gas in the collision chamber is slow, the mea-
surements should not be performed for a period long enough to permit an accumulation
of metastable states in the gas. For this, it is usually better to use a gas beam instead of
static gas chamber.

Overall, the derivation of cross sections from photon detection yields results with larger
uncertainties than direct measurement of electron or produced species. A comprehensive review
of the optical methods for measuring cross sections is given by Filippelli et al. [284].

We now move to direct detection methods of electrons or ion products.

7.3.3 Static Gas

When the collision chamber in an experiment is filled uniformly with a gas, the electron beam
interacts throughout the whole path it traverses before entering the detector. The derivation
of cross sections requires a careful characterisation of the interaction volume idealised as the
product of the area of the beam S and the path length l. There are essentially three types of
beam experiments in a static gas chamber:

• Beam transmission

• Absolute cross sections

• Ion collection

Beam transmission

Historically, the earliest beam experiments consisted of measuring the transmitted flux of elec-
trons that straightly traversed the chamber [28, 765]. The scattering probability per unit length
of an electron traversing an infinitesimally thick dl patch of gas is given by the product ngasσtot dl,
with the total scattering cross section σtot. Thence, the attenuation of an electron beam of cur-
rent Iin over a total length l is straightforwardly given by the Beer-Lambert law [942, eq.(13)]:

Iout = Iin exp(−ngasσtotl) , (7.11)

which can be interpreted also as the probability that no (scattering) event occur for a Poisson
process with a parameter λ = ngasσtotl.

The simplicity of this picture is, like in any experiment, torn by imperfections in the conditions
[942, p.431:eq.(9)].
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• Angular resolution: The detector is not a point, its distance from the end of the interaction
volume and angular acceptance δΩ imposes a limit on the discrimination between slightly
scattered and unscattered electrons. A finite angular resolution implies that the attenuation
in (7.11) is measured for an effective cross section σeff < σtot which is always slightly inferior
to the total cross section.

• Detector response: the detection efficiency may vary significantly with the electron energy
and the energy resolution (of the detector).

• Multiple-scattering: If the gas is dense, an electron might have a chance to scatter multiple
times in the interaction volume. This is not necessarily a problem unless a scattered electron
scatters back again into the direction of the beam. Its interaction with the medium will be
concealed unless the energy resolution of the experiment allows to discriminate electrons
that lost energy.

• Background signal: beyond multiple scattering, stray electrons reflected from the walls
and guided by residual electric/magnetic fields might contaminate the detector with a
background noise.

• The electron beam is not mono-energetic, its spectral width reduces the resolution of res-
onant peaks as, for instance, in the experiments of Kennerly [488] and Szmytkowski et al.
[900].

• The initial divergence in the electron beam transforms the cylindrical interaction volume
into a cone. An electron scattered withinside the cone will thus still be detected.

• Any spatial inhomogeneity in the gas and temporal fluctuations in the electron beam will
induce uncertainty in the measurement.

These imperfections can be addressed by transforming the simple formula (7.11) into a line
integral along the path described by the position x of the electron in the volume interaction as
[942, p.431:eq.(9)]:

Iout = ∫
dJin
dε0
(ε0) exp

⎛
⎜
⎝
−
x

Ωout(x)

ngasS(x, ε0)
dσtot
dΩ
(ε0)d

3xdΩ
⎞
⎟
⎠
dε0 , (7.12)

when the beam is characterised by an energy distribution dJin/dε0 and a geometrical distribution
S(x, ε0), and the angular volume Ωout(x) corresponds to all the directions that the electron may
take from point x that will not lead into the detector.

Those issues can be circumvented with the time-of-flight technique which correlates the time
distribution and energy of electrons emitted and detected one at a time [942, p.433-4:§3.1.3].
Measurements of total cross sections based on the timing technique give the highest accuracy.

Absolute Scattering

The beam attenuation method in a static gas chamber can also be used for measuring scattering
into a certain solid angle. In that case, the detector is placed not directly opposite facing the
incident beam but moved at a certain angle θ. A double slit system enables to delimit the overlap
volume S × l whence electrons that are scattered can enter into the detector as schematised in
figure 7.3.
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Figure 7.3: Experimental setup for absolute electron elastic scattering in gases based on
Bromberg [113, fig. 1].

The flow of electrons entering the detector is given by an integral over the whole overlap
volume S × l and over a certain solid angle volume δχ(x, s) around θ of the DCS which de-
pends on the position (x, s) of the electron in the overlap volume [113, 942, p.3914–5:eq.(4),
p.458:§4.2:eq.(31)]:

Iout =
x

l,S

∫
δχ(x,s)

Jin(s)e
−xσtotngas

dσ

dΩ
(χ)ngase

−bσtotngas dχdxds (7.13)

The coordinate s is two dimensional and should be chosen suitably according to the geometry
of the beam’s transverse section S. The first exponential represents the attenuation of the
electron beam from the source to the longitudinal coordinate x at which it is scattered. The
second is the attenuation on the way into the detector of path length b(x, s) which can be found
from a geometrical relationship to the coordinates in the volume. At last, the integral over
δχ(x, s) represents all the directions that lead straight into the detector when scattered from a
position at (x, s). To be more precise, one should also account (i) for the possibility of multiple
collisions that fortuitously scatter into the detector and (ii) for the energy distribution in the
beam as given by (7.12) above.

The uncertainties on the measurements stem basically from the limitations already exposed
for the beam transmission above. The advantage of this technique is that a stable and uniform
distribution of the gas is attainable in the chamber. Beam attenuation can be measured by
varying the pressure inside the chamber and extrapolating a semi-logarithmic curve [113, fig. 8].
Working under lower pressures reduces the probability of contamination by multiple scattering.
Additionally, a spectral filter can be used to reduce the signal of stray electrons and those who
endured collisions of a different energy loss that on the process monitored. Signals are less
contaminated by background noise when operating at higher energies (> 100 eV) where electrons
are less vulnerable to larger scattering rates and deviation from electromagnetic fields. Direct
normalisation of the cross section can then be performed directly by considering the geometry
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of the problem as input to (7.13) and the instrumental characteristics (beam width and density
distribution, detector response and acceptance angle).

Under well-determined experimental conditions, this method enables to measure absolute
differential cross sections at high electron energies (> 200 eV) [113] with great accuracy ≲ 4%
[114]. The absolute measurements of Bromberg [113–116] served as a normalisation reference
for many posterior works [206, 397, 453]. Those latter experiments did not need to measure the
absolute value of the cross section, just the relative variation with angle. Normalisation enables
one to use gas beams instead of static gas chamber which are better suited for electron scattering
at low and intermediate energies from 1�100 eV. This will be described after the next subsection,
which treats measuring accurate ionisation cross sections.

Ion collection

When measuring cross sections for total ionisation, the chamber is equipped with parallel plate
electrodes around the interaction volume that collect the ions produced by electron impact. As
opposed to transmission beam experiments, the measurement of ionisation is conducted under
extremely low pressures. To give an idea, total scattering experiments operate with pressures
around a few mTorr [489, 708, 900], whereas total ionisation experiments maintain the pressure
below 1mTorr [814] between 50�100 µTorr [768] or as low as 3 µTorr [888]. Under these condi-
tions, the ionisation cross section may be found by the following ratio between the electron Ie
and the ion Ii currents [319, eq.(27)]:

σion =
Ii
Ie

1

ngasl
. (7.14)

This relies on the assumptions that:

• All ions from the interaction volume are effectively collected, and only these ions,

• Secondary electrons produced by ionisation do not provoke more ionisation (at least inside
the interaction volume whence the ions will be collected),

• A steady pressure and reliable estimation in the chamber (more difficult at lower pressures)

With a mass spectrometer, the experiment may further discriminate ions with a different
charge-to-mass ratio thanks the acceleration of the ions and a time-of-flight analysis [888]. This
allows to estimate partial ionisation cross sections of singly ionised molecules AB+, singly ionised
atoms A+ and B+ and multiply ionised products. When multiple ionisation is non-negligible, one
may additionally be interested in distinguishing [596, p.2] the (i) counting cross section which
simply counts the number of ions regardless of their charge, and the (ii) gross total ∑ i ⋅σi which
weighs each partial cross section σi by the charge i of the ions produced.

Owing to the relative simplicity of experimental conditions, ionisation cross sections are
among the best known measurements in scattering experiments with uncertainties as low as
3�5%.

7.3.4 Crossed Beams

Not all gases are well behaved as inert ones. The static gas chamber cannot be used for corrosive,
ionic, free radical and metastable excited targets. Furthermore, electrons at lower energies scatter
more and become stray electrons which contaminate the signal measured by the detector. Instead,
the gas can be injected (and prepared) through a nozzle to form a beam crossing electrons at
right angles as sketched in 7.4.
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Figure 7.4: Experimental setup for cross-beam measurements of DCS relative to a reference.

Due to the necessity to properly control the characteristics of the target beam formed, this
technique is more recent. It elegantly bridges the gap between very low-energy swarm exper-
iments and high-energy static gas beam measurements. The normalisation procedure of the
cross-beam configuration is further complicated by the non-uniform density distribution and
geometry of the target beam. This is why most of cross-beam experiments measure relative
differential cross sections that are scaled to an absolute reference with the relative flow technique
of Srivastava et al. [872].

Using the same experimental apparatus and maintaining the conditions identical, one first
measures DCS with a reference gas whose absolute DCS value is known accurately (typically
helium [771]). Then, one performs the measurements just by replacing the reference by the
target gas in the beam. The ratio of an unknown DCS to a reference DCS* can then be related
to the ratios of measured electron and gas flow intensities [834, p.467:eq.(44)]:

DCS(ε, θ)

DCS∗(ε, θ)
=
Iout(ε, θ)

I∗out(ε, θ)

I∗gas
√
M∗

Igas
√
M

. (7.15)

It is a proportionality based on the flow rate of the target Igas and reference I∗gas gases and their
respective molecular masses M and M∗. Qualitatively, the molecular masses scale the average
velocities (v̄gas =

√
3kBTgas/M) at a fixed temperature Tgas. Then, the target density in the

beam scales inversely to the factor Igas
√
M .

There are several assumptions underlying the relative flow relationship (7.15) [700, §2]:

• Electron beam: the electron beam current is identical and unaffected by changing the gas.

• Background: the noise from stray electrons is identical for both gases.

• Detection efficiency: the detector’s response function, angular and energy resolution may
all depend strongly on the energy of the electron to be detected. Thus one needs to ensure
that the energy characteristics of the scattered electron beam are kept constant.
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• Gas stream: the flow regime of both gases based on the Knudsen number (mean free path
divided by nozzle length L or diameter D) must be similar so that the molecules’ density
distribution in the beam may be scaled with the simple law in (7.15).

• Path correction: the angular dependence of the DCS for the reference and target gases
may differ locally, which entails that the DCS ratio in (7.15) actually varies slightly over
the acceptance solid angle δΩ. This is, however, a very minor effect except near resonances
[942, p.466].

The sensitivity of the detector’s efficiency with electron energy implies that normalisation of
cross sections from inelastic processes must be conducted in two steps. The first is the analysis of
electron energy loss spectra and therefrom, calculation of ratios of excitation peaks on the elastic
peak which is located at virtually zero energy. The second, is the normalisation of the elastic
cross section from the relative flow technique. On a few occasions [460], a shortcut (bypassing
the determination of elastic scattering) was used to normalise inelastic DCS directly to inelastic
DCS with close energy thresholds of other atoms (He, Ne).

Measurements are limited to a certain angular range, usually from a few degrees up to no more
than 160○. At smaller angles, the unaffected beam interferes with forward scattering; whereas
backscattering measurement is hindered by the incident beam. It is worthwhile mentioning the
recently developed magnetic angle changing technique by Zubek et al. [1014], which enables to
separate the electrons backscattered from the incident beam and thus probe the full range of
large angles up to 180○ [644, 1015]. Two pairs of solenoids generate a localised magnetic field in
the interaction region which curb the trajectory of the electrons passing through [see figure 3 of
19]. For more information, one can consult King [510].

The instrumental accuracy of cross-beamed experiments was greatly improved over time,
notably through the work of Allan [17, 18] who largely focussed on the instrumentation.

Energy resolution is typically around ∼ 50meV [488, 841] at intermediate to low energies,
but can be significantly worse (higher energy spread) at high and sub-eV energies. A resolution
of 10meV in the most accurate experiments [13, 344, 473] enabled to discriminate rotational
excitations in N2 in addition to H2 [594, 873]. Experiments with higher resolutions (below
10meV) at low energies (<eV) are underway [406]. At high energies, the resolution is relative to
the incident electron energy [e.g. 0.3% at 1 keV 396, p.65].

Angular resolutions are usually in the range 1�4○ [731, table 1] at intermediate energies,
but are significantly better at higher energies to be able to resolve scattering at forward angles
[232, 453]. A good resolution is important when considering DCS with very sharp features such
as critical minima in noble gases [651, fig. 3]. Apart from instrumental limitations, angular
resolution is also limited by the necessity of maintaining a good signal-to-noise ratio. At high
electron energies above 1 keV, the DCS is difficult to probe beyond 60○ due to the very low signal
of the scattered beam [e.g. 453]. Also, in doubly differential cross sections (from ionisation events)
the angular acceptance can be as large as 10○ [721], deteriorating significantly the precision of
the data reported.

Because of these numerous aforementioned complications (and many not mentioned), experi-
mental data from cross-beamed configurations have typically the worst uncertainties which roam
around ∼ 12 ∓ 5% [684, 838, 894, p.1231, p.2, p.926]. Sometimes they go up to 20�30% [700,
871, 981, p.2160, p.1877, p.336] near minima and are often more optimistic than the disagree-
ment between experimental values [check 288, figs. 1–2 and p.4403]. Due to the further necessity
to rely on spectral deconvolution of peaks and ratios to elastic scattering, inelastic DCS from
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crossed-beam are usually uncertain to 25�30% [158, 351, 492, 898, p.1022, p.1387:table I, p.3797,
p.11] and rarely better known than 20% [897, p.2].

Normalisation is of course not restricted to the cross-beamed experiments. In the next two
sections, we try to summarise the overall guidelines for calibrating the DCS measurements from
a reference: (i) normalisation to an absolute scale, (ii) calibration of the energy of the electron
beam, and the angle of scattering.

7.3.5 Normalisation

The measured signals in scattering experiments are count rates per unit time in a detector located
at a certain angular position and covering a certain area equivalent to a solid angle. Ideally, the
ratio of the deflected electron flux and the incident density flux is supposed to yield the absolute
DCS as seen from the seminal equation (7.2) of scattering defined as a stochastic phenomenon.
Notwithstanding, there are many issues that deform the ideal picture of scattering such as:

• Estimation of the beam fluxes

• Overlap interaction volume

• Background noise

• Limited resolution (angular, energetic)

• Detector response

• Gas state (pressure, temperature, beam shape)

• For data that need post-processing: spectral fitting and deconvolution introduce more
uncertainty

• Other errors (human, operational, statistical, etc.)

It is not always feasible to properly characterise those sources of experimental discrepancy
or uncertainty. To spare some strain on the experimentalists whose job is toilsome enough, an
alleviating procedure is to conduct all measurements based on a well-known reference such as
scattering by helium [693, 771]. Prior knowledge about this reference and an assured linear
scalability of the operational conditions enables one to recur to normalisation (discussed already
in the previous section eq.7.15).

Before accurate reference values were available from other gases, an alternative to normalisa-
tion was to derive absolute value for elastic scattering from accurate measurements of total CS
[593, 938, 972]. This presented the disadvantage of having to rely on accurate determination of
the proportion of all other inelastic processes at a given energy.

With time, more accurate and resolved elastic DCS became available, so that some older
datasets were renormalised in subsequent reviews [see for instance 941, p.239:table 4-bottom and
p.267:table 26].

In cross sections for excitation processes, most experiments measure inelastic-to-elastic ra-
tios from integrals of peaks observed in an energy-loss spectrum as given for illustration in
figure 11.32a. The proper identification of all processes contributing to an excitation in molec-
ular gases is further complicated by the presence of multiple vibronic levels (see appendix D)
forming a series of peaks that may drown under the noise level or may be superposed with bands
pertaining to other transitions. To each vibronic excitation a, v → a′, v′ corresponds a peak cen-
tred on the average energy εa′v′ −εav and broadened by temperature, rotational sublevels and the
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energy-time uncertainty of the level. Some very close lying transitions have overlapping peaks,
in which case a decomposition must be done to identify the contribution proper to each process.
A good example is the X(v = 0 → 5) vibrational excitation of O2 with X → a 1∆g between
0.9�1 eV [599, p.397:fig. 1].

When comparing inelastic DCS from molecules, it is fundamental to examine how many bands
could be identified and included in different works [for instance see 1012, table 1 and §3.3–4].
Furthermore, some works [492, 624, table II, table I] can use predicted Franck-Condon factors to
account for all higher vibronic levels drowned in the background noise. Once the absolute value
of the elastic cross section is determined, the inelastic DCS is put to absolute value from the
ratio to the elastic peak. This entails that uncertainties of measuring inelastic DCS are usually
a few percent (∼5%) larger than elastic ones.

Normalisation can be applied at 3 different levels, the asterisk ∗ represents a reference point
(fixed). One measures the scattering signal S(ε, θ) of the unknown gas and compares it to the
signal S∗(ε, θ) measured with the reference gas.

1.
dσ

dΩ
(ε, θ) =

dσ∗

dΩ
(ε, θ)Rdσ(ε, θ) where Rdσ ≡

S(ε, θ)

S∗(ε, θ)
, The most meticulous one is

to normalise each DCS measurement performed at a certain angle θ to the corresponding
value at the same angle θ (and same energy ε) of a reference dσ∗/dΩ. This is common for
inelastic DCS from electronic excitation in crossed-beam experiments based on energy loss
spectra as, for instance, in Brunger and Teubner [122], Cartwright et al. [158], and Khakoo
et al. [491] etc. For clarity, some references may thus report tables of ratios Rdσ(ε, θ)
of differential cross sections [870, 872, tables I, II] (most often to helium or molecular
nitrogen).

2.
dσ

dΩ
(ε, θ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dσ∗

dΩ
(ε, θ∗)Rdσ(ε, θ

∗)S(ε, θ) where Rdσ ≡
S(ε, θ∗)

S∗(ε, θ∗)

σ∗(ε)Rσ(ε)S(ε, θ) where Rσ ≡
∫ S(ε, θ)dΩ

∫ S∗(ε, θ)dΩ

At a higher level, one can keep DCS shapes S(ε, θ) intact and normalise them at each
energy ε. A connection point must be chosen for normalisation. This could be a value
at a specific angle θ∗ which can be at smaller ∼30○ when the scattering is forward peaked
at higher energies or more traditionally at 90○, which is a trusted range with minimal
signal contamination. This procedure is more common when measuring relative elastic
DCS such as in Daimon et al. [206], Kambara and Kuchitsu [475], and Wakiya [972]. Then
the calibration depends on the ratio Rdσ(ε, θ

∗) of the signals from the unknown S and
reference gas S∗ at θ∗.

Another possibility, in order to avoid depending on the uncertainty of one point θ∗ only,
is to normalise to the integrated DCS σ∗(ε) at the energy ε.

3.
dσ

dΩ
(ε, θ) = σ∗(ε∗)Rσ(ε

∗)S(ε, θ) where Rσ ≡
∫ S(ε

∗, θ)dΩ

∫ S∗(ε∗, θ)dΩ

At the coarsest level, all measurements can be carried systematically in the same exper-
imental conditions, varying only the energy of the electron beam and the angle of the
detector. Then, a reference is chosen at a specific energy ε∗ for normalising all measured
values. This would never be done for DCS but only for techniques measuring ICS as in
optical emissions or detection of excited species like in Mason and Newell [633] and Zubek
[1012, table 1, figure 3]. If the measurements are consistent throughout the whole energy
range, these uniquely normalised sets are most easy to handle in updating reviews.
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Normalisation for unstable atomic targets such as oxygen and nitrogen presents additional
difficulties. Atoms are generated through dissociation of molecules most of the time by microwave
discharges. One needs to characterise the relative ratios of species produced by the discharge. In
addition to the dissociation fraction of atoms/molecules, it is also important to keep notice to the
presence of metastable states of atoms and molecules, and eventual ions. The dissociation fraction
ηD may be estimated by comparing the scattering signal from a known molecular excitation ∗
when the discharge is on (I∗on) and off (I∗off), respectively [476, p.2653:eq.(3)]:

I∗on = (1 − ηD)I
∗
off ⇔ ηD = 1 −

I∗on
I∗off

(7.16)

This fraction does not give directly the density ratio of atoms A to parent (homonuclear
diatomic) molecules A2 because it depends also on the velocity distribution which, assuming
thermal equilibrium, gives [476, p.2664:appendix eq.(A.8)]:

nA
nA2

=

√
2ηD

(1 − ηD)
, (7.17)

There are other ways to measure the atom/molecule ratio [939, p.77–9], such as mass-
spectrometry of the target beam [984], or energy-loss spectra at forward angle scattering and
high electron energies with the help of known optical oscillator strengths [226].

Once this ratio nA/nA2 is known, then the DCS measurements of a well distinguished inelastic
process from an atom may be normalised to the DCS of a well resolved inelastic process from
a molecule. More information about dissociated mixed atomic-molecular beams can be found
in the review of Johnson et al. [462, p.594–7] and references therein. Elastic DCS contain the
superposition of both atomic and molecular collisions. To derive atomic DCS, one must subtract
the contribution from molecular DCS [984].

7.3.6 Calibration

It is beyond the scope of this chapter to discuss the lengthy procedures involved in calibrating
an instrument. Here, we simply ought to mention how DCS are calibrated on the two variables:
electron energy ε and scattering angle θ.

Angular calibration is usually the least problematic. The most common procedure is to record
the signal measured over a small angular range in the forward direction. This should give, for
unpolarised beams, a symmetric profile whose centre determines the position of 0○. Typically,
systematic uncertainties in angular position are around ∼ 1�2○ [644, p.3]. This should be also
taken into account, in addition to the value of DCS, when comparing experimental data.

The most widespread method of calibrating the emitted energy in the electron beam is by
means of very narrow, conspicuous and peculiar features in the transmission flux. One can for
example use widely known resonances of noble gases such as Ar− (2P 3/2). Instead of having to
rely on a reference gas, a more straightforward way is to directly use features present in the
molecule studied [512, §3.2], such as the N−2 (R

2Σ+g ) resonance at 11.497 eV [407].
Some discrepancies may also be solved by revisiting the calibration on the incident energy

instead of indicting the cross section’s normalisation. Nevertheless, when no prominent feature
is seen, it is more difficult to determine the systematic shift in energy position.

Regrettably, we may not consecrate more time to the experimental world of determination
of cross sections in order to focus our attention on their calculation from quantum theory. Our
objective was to catch a glimpse of the reality behind the rows and columns of numbers that we
will use as guidelines to assess our efforts in computing our own cross sections. The rest of this
chapter will be a preparation to the theoretical framework for computing DCS.
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Figure 7.5: Classical Rutherford elastic scattering at θ of an electron by an atomic nucleus at an
impact parameter b.

7.4 Classical and Quantum Approaches

In the first part of this thesis chapter 2.2, we considered electrons classically: as point-like ele-
mentary charges that are swayed by electromagnetic fields and instantly bouncing off molecules.
While motion is deterministic, the outcome of collisions is stochastic so one might wonder where
does this stochasticity emerge from.

In this section we expose the connection point between classical and quantum mechanics
in scattering processes through the impact parameter b.

We exemplify this with the most widespread case of Coulomb or Rutherford scattering: a
collision between an electron and a point-like atomic nucleus.

7.4.1 Classical Rutherford Scattering

An electron (of charge −e and mass me) coming at an initial speed of v from an infinite distance
passes near an atomic nucleus of charge +Ze and mass Mn. The shortest distance between the
straight asymptotic trajectory of the incident electron and the nucleus is known as the impact
parameter and designated as b. The situation is sketched in 7.5.

The full motion of the electron in a Coulomb field may be resolved analytically∗. It is a
hyperbolic curve with an exiting asymptote at a deflection angle of θ ∈ [0, π]. The full symmetry
of the trajectory is due to the spherical symmetry of the potential. For time-independent poten-
tials, the asymptotic symmetry is a consequence of the conservation of the angular momentum
L [147, p.15:eq.(1.34)]:

L = b ×mev . (7.18)

The correspondence between b and θ is univocally determined through [697, p.126:eq.(5.15)]:

tan(θ/2) = −
Ze2

4πϵ0mev2b
(7.19)

∗Technically, it should be described in the relative centre of mass frame with a reduced mass µe ≈ me. We
omit it here since we neglect the of lightness of the electron compared to the heaviness of atomic nuclei.
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The negative sign comes from the attractiveness of the Coulomb potential which deflects electron
‘inward’ instead of ‘outward’ for repulsive potentials. Relation (7.19) enables us to further
establish a differential relationship between db and dθ. This binds all electrons inciding∗ into an
infinitesimally thick annulus between b and db, to a zonal stripe between θ and θ + dθ.

db

dθ
= −

Ze2

4πϵ0mev2
−1

2 sin2(θ/2)
. (7.20)

From there, we can express the differential cross section as the ratio between the area of the
annulus and the solid angle covered by the zonal stripe [147, p.17:eqs.(1.45–6)]:

dσRutherford

dΩ
≡

bdb2π

sin θ dθ2π
= (

Ze2

4πϵ0mev2
)

2
1

4 sin4 θ2
(7.21)

We recognise the fundamental (non-relativistic) Rutherford differential cross section [697, p.126:§5.3]
which scales inversely to the fourth power of momentum transfer q = 2p sin θ/2, where p =mev is
the kinetic momentum of the incident electron.

The infinite range of the Coulomb potential implies that there is no maximal finite value for
the impact parameter for which the deflection angle is at 0○. Thus, the momentum-transfer cross
section is theoretically infinite, which is unwieldy for representing the interaction of electrons with
ions. In reality, there is always a spatial scale over which the Coulomb field is screened by the
presence of other charges. For ions in a plasma, it would correspond to the Debye length. This
upper bound for the impact parameter bmax is equivalent to a lower bound on the angle of
scattering θmin and gives rise to the well-known Coulomb logarithm in plasma physics (p. 80).

The foundational importance of this long-range Coulomb scattering brings us again at the
crossroads between the first and second parts of this thesis, but also at the meeting point of
classical against quantum mechanics. It is indeed a remarkable property of the Coulomb potential
that the cross section in classical mechanics is the same as in the exact quantum approach and
also under the first Born approximation [474]. We all have heard nonetheless of the limitations
of classical mechanics, notably the failure to encompass the Heisenberg principle of uncertainty:
an electron cannot be both known to dash at a velocity v and at a perpendicular distance b.

For more insight and examples about the classical scattering of a particle in a potential, the
reader may find a wealth of information in practically any textbook about scattering, notably
Canto and Hussein [147, p.14–22] or Newton [697, p.127–132]. In the following section, we briefly
expose the framework that describes scattering in the quantum mechanical approach.

7.4.2 Quantum Plane Wave Scattering

In the formalism of quantum mechanics, the state of an electron is described not by a set of values
for each parameter (position, velocity), but by a vector state ∣ψ⟩ from which those parameters
(and their probabilities) can be extracted with operators. A decent introduction to this formalism
can be found in dedicated textbooks such as [797, chapter 1] for a standard introduction or [823]
for a more philosophical insight.

Here, the objective is to highlight the basic concepts that underlie the quantum description
of scattering and relate the differential cross sections as defined in an idealised experiment (7.3
and 7.2), to a mathematical object (7.28) exposed below in this subsection.

∗‘Inc̆ıdĕre’ in Latin : ‘to fall into’, it existed in older English but meant ‘to cut into’ or ‘incise’ because of the
palatalisation of ‘d’ to ‘s’. In spoken English, it interferes with the homophonic ‘inside’, but we could resurrect
its use in written English; ‘impinge’ is fine on a few occasions, but sounds too funny in general.
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1. Uncertainty. Elementary notions of quantum mechanics reveal to us that particles – elec-
trons in our case – are wave packets propagating at a group velocity vg corresponding to the
classical velocity but with a certain spread both in position and momentum spaces. The most
rigorous way to model scattering microscopically is to take the conceptually elegant but mathe-
matically hefty approach of time-dependent wave-packet propagation. Nonetheless, in the end,
since we yearn to obtain a statistical description of electron-molecule scattering, instead of treat-
ing individual particles flowing one at a time, we may consider the mathematical limit at which
the wave packet becomes so extended in space that it represents a continuous monochromatic
beam of electrons of infinite (spatial) width that diffuses in the field generated by one molecule.

The presently adopted quantum mechanical approach consists in a time-independent scat-
tering of a plane wave (the electron beam) in an interaction potential (a molecule).

The notation for a plane wave of wavector k is ∣k⟩, representing a pseudo-state vector∗

in a Hilbert space. Mathematically, in r coordinate space, it is represented as an imaginary
exponential:

⟨r∣k⟩ =
1

(2π)3/2
exp(−ik ⋅ r) . (7.22)

The wavelength λ of a plane wave is simply related to k by λ = 2π/k. The normalisation factor
1/(2π)3/2 comes from the requirement of orthonormality [922, §1-b:p.9]:

⟨k′∣k⟩ =
1

(2π)3
∫ exp(i(k′ − k) ⋅ r)d3r = δ3(k

′ − k) , (7.23)

where δ3(x) is the Dirac peak in 3D space which is the product of δ(x1)δ(x2)δ(x3) in a canonical
coordinate space of the three-dimensional variable x.

The representation of a beam of electrons by a plane wave is evidently a mathematical
idealisation that provides a convenient basis (plane-waves) from which an actual physical state is
constructed. For a light introduction into this question, please consult Canto and Hussein [147,
§1.6]. For a more comprehensive explanation, one can read Newton [chapters 6&7 of 697]. The
most mathematically rigorous justification is elaborated in Taylor [922, chapter 3-e].

2. Discreteness. Another fundamental aspect of quantum physics is the one behind its et-
ymology: the quantification of states. Formally, an electron’s property (e.g. momentum or
position) may not take any value distributed over a continuum, but may only take determined
values (there can be a countable infinity). In the approach we shall take, the foremost one is
the quantification applied to the angular momentum (7.18). The set of accessible values to the
square of the angular momentum L2 of a particle is composed of multiples of Plank’s reduced
constant h̵ [956, §5.1.2:p.130]:

Eigenvalues of : L2 are h̵2ℓ(ℓ + 1) with ℓ ∈ N0

L2Yℓm = h̵
2ℓ(ℓ + 1)Yℓm (7.24)

LzYℓm = h̵mYℓm (7.25)

The eigenfunctions in the space representation of the operator L2 are the well-known spherical
harmonics Yℓm with m being the projection quantum of the angular momentum on the z axis of
a specified coordinate frame.

∗It is not normalisable, but relates to the Dirac peak (7.23) instead.
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Naively, this quantification would also imply that an electron, modelled as an infinitely wide
plane wave, may only incide on a molecule at determined values of the classical impact parameter
with the correspondence: b =

√
ℓ(ℓ + 1)h̵/mev. We see that very slow electrons v → 0 impact

the molecule either frontally ℓ = 0 implying b = 0; or very far away ℓ > 0 ⇒ b → ∞. On the
contrary, the available set of classical impact parameters densifies in space for faster electrons.
Fast electrons may pass near molecules at many different distances, a situation which closely
resembles the classical picture; whereas slow electrons may only be seen to pass at few distances.
This can be related to the fact that electrons, as wave packets, spread over vaster regions of
space when they are slower (longer wavelengths λ) than faster∗.

One must however beware of simple analogies, since the impact parameter is not an observable
quantity, while the angular momentum is [427, p.335:§ below eq.(4.74)]. They can aid our
intuition but are unhelpful for drawing conclusions. In the next chapter, we will see how a
plane wave elegantly decomposes into a sum of spherical waves, each with a determined angular
momentum.

3. Indistinguishability. Unlike in classical mechanics where one could in principle identify
the tracks of identically-looking particles and thereby distinguish them, in quantum mechanics,
the observer is blind to the intricacy of what exactly occurs in a microscopic interaction between
identical particles. In electron scattering, one can never be sure whether the electron that is
scattered is the ‘original’ one that had incided on the molecule, or whether it has been ejected
from an orbital and replaced. This leads to one of the most bemusing phenomena related to
quantum physics: the Pauli principle [739] for electrons states that electrons in a system cannot
occupy the same state. A consequence of this principle is that the total wavefunction of the
electronic system must be antisymmetrical when two electrons are swapped in their respective
states [398, §3.1.2].

In electron scattering, this means for example that the Mott cross section for the scattering
of two electrons (presented in section 8.141) is markedly different from the classical Rutherford
scattering between two charges seen previously in (7.21); which leads us to the next point.

4. Interference. The spectacular undulatory nature of matter was revealed in many experi-
ments of which Davisson and Germer [212] is a prominent example of electron diffraction patterns
in a crystal. If examined to the root, interferences in electron scattering arise from the principle
of uncertainty in momentum and configuration space and from Pauli’s exclusion principle. When
we observe an electron, whichever, in a faraway direction at a determined position, we attempt,
though unpurposefully, to simultaneously characterise its momentum and position which cannot
be pinpointed together. Interferences emerge whenever:

i. A system is in a state A composed of various contributions identified as separate,†

ii. This system is observed in another state B which is not perpendicular to A (whose pro-
jection is non zero),

∗Taylor [922, §3-d] offers a more rigorous analogy of the impact parameters between classical and quantum
perspectives. A wave packet, which originally is centred at b = 0, can be offset to any distance b ≠ 0, provided that
the spatial spread of the packet is much larger that the size of the target. Then, the cross section in the quantum
perspective is also an average over incident packets situated on a continuum of impact parameters 0 ≤ b <∞. In
our naive picture, it is rather better to say that the scattering at higher energies involves the partial waves of
more angular quanta ℓ than at low energies. In inelastic collisions, the impact parameter b is connected to the
inverse of the perpendicular momentum transfer in the collision [427].

†From a conceptual effort of our perception of reality, such as: “a diatomic molecule is a mixture of contribu-
tions coming from atom 1 and from atom 2”
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iii. The phases and amplitudes of the separate contributions to A when projected on B are
not anticorrelated so as to annihilate when summed together,

under those conditions, the probability given by the squared modulus of the amplitude has mixed
terms which we identify as “interferences”.

As an example, when scattering, our electron beam is in an obscure state given by ∣ψ⟩ which
can be expressed as a superposition of the incident plane wave ∣k⟩ with a scattered beam ∣ψs⟩.
The latter itself can be considered a superposition of different waves, such as radial waves,
each associated with a spherical harmonic of a particular angular quantum ℓ and projection
m on a determined axis: ∣ψs⟩ = ∑ℓm cℓm∣ψℓm⟩ (partial wave 8.4). Alternatively, it could be
the superposition of waves scattered from different positions of the atoms in a molecule ∣ψs⟩ =

∑A eik0⋅RA ∣ψA⟩ (independent atom approximation 8.5.3).
Suppose that we now have a detector able to measure electrons at a certain position r in

the direction determined by the outgoing momentum k̂′ = Ω of energy h̵2k′2/2me. We remember
that the probability density of detecting an electron from the scattered wave at r is given by the
square modulus of the projection:

∣⟨r∣ψs⟩∣
2 = (∑

ℓ′m′
c∗ℓ′m′⟨ψℓ′m′ ∣r⟩)(∑

ℓm

cℓm⟨r∣ψℓm⟩)

=∑
ℓm

∣cℓm∣
2∣⟨r∣ψℓm⟩∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pure Waves

+ ∑∑
(ℓm)≠(ℓ′m′)

c∗ℓ′m′cℓm⟨ψℓ′m′ ∣r⟩⟨r∣ψℓ,Λ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Interferences

. (7.26)

In addition to the sum of amplitude probabilities of ‘pure’ spherical waves, there are cross terms
which do not necessarily annihilate and that can make a positive (constructive) or negative
(destructive) contribution to the total probability of observing an electron at a given position r.
In classical mechanics, the probability of collecting an outcome from two independent phenomena
would be the sum of individual probabilities. In quantum mechanics, the way electrons scatter (in
different spherical harmonic patterns for the present purpose of illustration) cannot be considered
independently. This is what is commonly meant as “interference”.

There are however some very interesting cases where only a few or just a single spherical wave
participates in the scattering of electrons. This is the case for example of resonant scattering
of electrons with nitrogen molecules. Much is to be said about resonances. We defer this task
to a later chapter’s section 11.3. For the time being, we could profanely say that resonances
act as a “filter” that scatter electrons at a determined state (energy, angular momentum and
projection); while ignoring other electrons. As a result, we can find a surprisingly almost perfectly
symmetrical distribution of electrons at 2 eV that excited N2 vibrationally (see figure 11.23-top),
which matches very closely the spherical distribution of an electron wave with ℓ = 2 and m = 1
(in the reference frame where the z axis is aligned with the interatomic axis).

Interferences hide in every corner of the differential cross section observed. Nevertheless,
they are most conspicuous when observed one at a time. A splendid example of interference
between two waves (identified as separate) can be seen at high-energy scattering (> 500 eV) of
diatomic molecules. At those energies, the electron’s wavelength is just about (or below) half
the interatomic separation. This implies, from the undulatory perspective, that one can roughly
apply the coherent superposition of the waves scattered individually from each atom. This is the
independent atom approximation presented in 8.5.3. As a result (with the isotropic averaging
over the molecule’s orientation), a nice cardinal sinusoidal (sinc) pattern appears, for instance,
on the differential cross sections of N2 at 800 eV and O2 at 500 eV, as shown on the graphs 11.12.
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Differential Cross Section

The question at the centre of our preoccupations is how to extract a quantity corresponding
to the idea behind a differential cross section as in (7.2) and in the limit (7.3) considering the
ratios of incident and scattered fluxes into the Ω direction. This information is obtained from
the scattered wave ∣ψs⟩ (whatever its decomposition) when observed at very long distances from
the scattering region (r →∞), the spherically expanding wavefunction takes a generic form [147,
p.23:eq.(1.60)]:

lim
r→∞
⟨r∣ψs⟩ =

eik
′r

r
fk→k′(Ω) , (7.27)

where fk→k′(Ω) is known as the scattering amplitude, and conveys all the dependence of the
electron’s state on the angle of observation Ω between the incident k and outgoing k′ vectors of
electron kinetic momenta.

In the most popular formalism of scattering from a quantum perspective, the wavefunctions
∣ψ⟩ = ∣k⟩ + ∣ψs⟩ all represent stationary states: a continuous flow of an electron beam which is
partly transmitted and partly scattered. If one calculates the flow rates (current probability
densities) of the incident and scattered waves [147, §1.5:p.23–4:eq.(1.67–8)], using (7.27), one
obtains the fundamental formula for the differential cross section [551, p.32:eq.(6)]:

dσ

dΩ
(k→ k′) =

k′

k
∣fk→k′(Ω)∣

2 . (7.28)

The ratio k′/k comes from the eventual differences of outgoing and incoming flux when the
collision is inelastic.

This relation may also be obtained in the wave packet time-dependent formalism [147, §1.6.2].
The incident and emerging waves are described as a continuous distribution ϕ(k′′) = ⟨k′′∣ϕ⟩ in
the momentum space of plane waves ∣k′′⟩. In this framework, the impact parameter b plays a role
of dephasing of the plane waves in the direction perpendicular to the incident k. The integration
over the two-dimensional subspace of possible impact parameters leads to the definition of the
cross section. For a proper introduction to the formalism of scattering in quantum mechanical
perspective we recommend consulting Taylor [922, chapters 3, 10].

Cross Section

Once the differential cross section is obtained, one can in principle perform the integral (7.4) in
order to derive the cross section. Nevertheless, there is an important direct relationship between
the cross section σ and the imaginary part (‘I’) of the scattering amplitude fk→k′ which is known
as the optical theorem [147, p.119–120:§4.2.1]:

σ = −
4π

k
I{fk→k(θ = 0

○)} . (7.29)

This is a useful relationship to save computational time when the treatment is known to be
exact, or to check the consistency between the scattering amplitude and the cross section if the
treatment is approximative.

In the next chapter, we will see how can the scattering amplitude fk→k′ be obtained from
a decomposition of the scattered wave into partial spherical harmonic waves. Before so, in the
next section, we present the atomic unit system which will be used throughout this part.
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7.5 Atomic Units

In the microscopic world of quantum physics, a proper choice of units can significantly help by
clearing away prepended magnitude factors of electric charge, mass, momentum, energy, etc.,
that are present in habitual formulae.

As an example, the electric potential V of a nucleus of Ze charge is expressed in the Système
International (SI) units by:

V (r) =
Ze

4πϵ0r
(7.30)

The elementary e charge together with the vacuum electric permittivity ϵ0, are constant
factors that could be properly set as a reference value from which all subsequent quantities scale
accordingly.

The traditional units of atomic physics (atomic units: ‘a.u.’) are based on four pillar quan-
tities:

elementary charge : e = 1.602176634 × 10−19C = 1a.u.

vacuum permittivity∗ : ϵ0 = 8.8541878128(13) × 10
−12F/m =

1

4π
a.u.

Planck’s constant : h = 2πh̵ = 6.62607015 × 10−34 J s = 2π a.u.

electron mass : me = 9.1093837015(28) × 10
−31 kg = 1a.u.

Due to the choice of standards, some quantities are known to a certain degree of precision
expressed in parenthesis in units of the last digit. However, since 2019, the SI fixed some
fundamental constants to an exact numerical value from which all other units can be derived.
This is the case, among others, of the elementary charge e, Planck’s constant h and the speed of
light c below.

From thereon, one may define other units based on the atomic system used.
Units of length :

Bohr’s atomic radius : a0 ≡
4πϵ0h̵

2

e2me
≊ 52.917721pm = 1a.u. (7.31)

Electron’s classical radius : re ≡
e2

4πϵ0mec2
≊ 5.3251 × 10−5 a.u. (7.32)

Electron’s Compton wavelength : λe ≡
h

mec
≊ 2.42631pm ≊ 0.04585a.u. (7.33)

Energy units :

Hartree : Eh ≡
h̵2

mea20
= 2Ryd ≈ 27.2114 eV = 1a.u. (7.34)

Rydberg : Ryd ≡ (
e2

4πϵ0
)

2
me

2h̵2
≈ 13.6057 eV =

1

2
a.u. (7.35)

electron-Volt : eV ≈ 0.03675a.u. ≈ 1.60218 × 10−19 J (7.36)

∗The kinetic energy of electrons will be noted ε everywhere, sometimes with a subscript ε0 as well. The risk
of confusion with the vacuum permittivity ϵ0 is low, because the latter will (almost) always be accompanied by
its 4π factor.
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Velocity :

Speed of light : c =
e2

4πϵ0 h̵α
=
1

α
a.u. ≊ 137.036a.u. (7.37)

Thus the connection point between formulae expressed in relativistic units (where c = 1 r.u.
and thus e2 = α r.u.) is made through the fine-structure constant α:

α =
e2

4πϵ0 h̵c
=

re
λe/2π

≈
1

137.036
, (7.38)

which also binds the electron’s classical radius to its Compton wavelength.
We remark that quantities of electron momentum p, wavenumber k and velocity v have equal

numerical values in the atomic system of units for non-relativistic energies (the Lorentz factor
γ ≊ 1):

p = h̵k =mevγ . (7.39)

We will not consider finer effects such as the interaction between an electron’s spin and the
magnetic field of an atomic or molecular target. We nonetheless remind the value of Bohr’s
magneton µB:

µB =
eh̵

2me
=
1

2
a.u. ≈ 5.7884 × 10−5 eV/T . (7.40)

An overview of constants and units in atomic and nuclear physics is available in every text-
book, e.g. Berestetskii et al. [58, p.xiv–xv].



Chapter 8

Theory of Scattering and Models

In the previous chapter, we introduced the basic concepts about the scattering of electrons from
molecules in a gas, how the differential cross section is defined, what assumptions it relies upon,
the ways it is measured experimentally and also how it can be connected to theory. In this
chapter, we present the necessary tools and introduce our own fits to the Hartree-Fock solution
of atomic electron densities to compute differential cross sections of elastically scattered electrons
in the quantum approach.

The differential cross sections for elastic scattering in this thesis are calculated from a
one-electron optical potential with angular-momentum coupling in the adiabatic nuclei
approximation of diatomic molecules. We present here the arsenal of equations, culminat-
ing in (8.106,8.129 and 8.137), underlying this approach.

8.1 General approach

In the most general albeit non-relativistic and non-magnetic coupling case, the scattering of a
steady one-electron beam about a molecule of N electrons is represented by a state-vector ∣Ψ⟩
of the whole system of total energy E which satisfies Schrödinger’s stationary (and timeless)
equation H ∣Ψ⟩ = E ∣Ψ⟩, explicitly in configuration space as [325, p.357:§3:eq.(1)]:

⎡
⎢
⎢
⎢
⎢
⎣
∑
A

−h̵2

2MA
△A

+ ∑
A≠A′

e2ZAZA′

4πϵ0∣RA −RA′ ∣
+
N

∑
i=0

−h̵2

2me
△i
+∑

A

N

∑
i=0

−e2ZA
4πϵ0∣ri − rA∣2

+∑
i≠j

e2

4πϵ0∣ri − rj ∣

⎤
⎥
⎥
⎥
⎥
⎦

×

Ψ(x0, . . . , xN ;RA . . . ) = EΨ(x0, . . . , xN ;RA . . . ) (8.1)

The first two terms on the left are the kinetic energy and Coulomb repulsion operators of the
atomic nuclei A,A′, the next term is the electron-nuclei attraction, and the last two terms are the
electron kinetic energy and inter-electron repulsion operators. The total energy of the electron-
molecule system is E . The spatial coordinate of electron j is rj and of nucleus A of atomic
number ZA is RA. The notation xj is a shorthand for the pair (rj , sj) comprising the space
coordinate and the spin coordinate sj . Formally, those coordinates emerge from the projection
of an electron’s state on the punctual pseudo-state ∣r⟩ and on the spin alignment state ∣s⟩ along
the z axis.

In what follows, we reserve the index ‘0’ for the scattering electron and adopt a concise
notation for the coordinates of all bound electrons xm = (x1 . . . xj . . . xN). Since we are presently
only interested in representing monatomic or diatomic molecules, we define the internuclear
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separation vector R ≡ RA −RA′ . Writing the restructured equation (8.1) now in atomic units
(see sec. 7.5), we can identify three terms [as in 156, p.14:eq.(2.12)]:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−△0

2
´¹¹¹¹¸¹¹¹¹¹¶

Free electron

+
N

∑
j=1

−ZA
∣r0 −RA∣

+
−ZA′

∣r0 −RA′ ∣
+

N

∑
j=1

1

∣r0 − rj ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

electron-molecule Interaction

+ Hm
°

Molecule

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ψ(x0, xm,R) = EΨ(x0, xm,R) ,

(8.2)
which correspond to the free kinetic energy operator of the scattering electron, the electron-
molecule interaction potential energy and the internal Hamiltonian of the molecule Hm compris-
ing Coulombic forces and kinetic operators of the bound electrons and the nuclei.

At the outset, the scattering of an electron does not look very different from the state function
of a negative ion. The difference lies in the asymptotic initial and final conditions of the system
that we must impose when the electron is far away from the target as r0 → ∞. The total
wavefunction is therefore asymptotically the superposition of the (unique) initial i and (various)
final f states of the scattering electron and the molecule [100, 551, eq.(3–4), eq.(2.9)]:

lim
r0→∞

Ψ(r0, s0, xm,R) = exp(ik0 ⋅ r0)Φi(s0, xm,R) +∑
f

exp(ikfr0)

r0
ff←i(Ω)Φf(s0, xm,R) . (8.3)

The electron’s incident pseudo-state exp(ik0 ⋅r0) is a plane wave (7.22), noted ∣k0⟩ in the vectorial
pseudo-basis, whereas its final scattering function leaving the molecule in a state ∣Φf ⟩, is a radially
expanding exp(ikfr0)/r0 spherical wave, except if it attaches into a bound state. In the latter
case, the wavenumber kf would be positive imaginary, giving an exponentially vanishing wave.

The incident k0 and outgoing kf kinetic momenta of the free electron are bound by the
energy conservation law:

h̵2k20
2me

+ Ei =
h̵2k2f

2me
+ Ef . (8.4)

The solid angle Ω = (θ,φ) is formed by k0 and kf in the centre of mass reference frame with a
fixed axis parallel to k0. The angular dependence of the spherical wave is encompassed by the
scattering amplitude ff←i(Ω) from which the differential cross sections to each process i→ f can
be calculated [551, eq.(6)]:

dσf←i

dΩ
(Ω) =

kf

k0
∣ff←i(Ω)∣

2 . (8.5)

We have to remember that the labels i and f apply to the state of the whole system. The
medium could be composed of molecules in different initial states ∣Φi⟩, such as nearly degenerate
fine-structure states as for atomic oxygen or different rotational states J0,M0 of molecules. In
that case, since the free electron prior to scattering is uncoupled to the state of the molecule, one
can always separate the problem into different systems i and later perform an averaging of the
differential cross section (DCS) over the i initial states. This is useful for rotational magnetic
sublevels of projection M or spin projections Ms.

On the other hand, after the interaction has taken place, the electron’s outgoing wave is
coupled to the final state of the molecule ∣Φf ⟩. Each state ∣Φf ⟩ is built from eigenstates of the
isolated molecule’s Hamiltonian Hm (8.6a) but includes coupling with the scattering electron’s
spin s0 [as in 325, p.378:eq.(64–5)]. This is made in order to define states of determined total
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spin S of the electron-molecule system which is conserved during the collision. The ensemble of
final states f include all states energetically accessible to the system of energy E , i.e. those for
which the outgoing wavenumber kf from (8.4) is real and positive. They form the set of channels
open to the collision. If one cannot discriminate between different eventual outcomes f , then the
differential cross section must be summed over the states f . We will return to this in (8.101).

Due to the asymptotic structure of this system (8.3), we may suppose∗ that the total electron-
molecule state ∣Ψ⟩ can be decomposed into a sum of one-electron scattering states† ∣ψα⟩, each
coupled to a particular eigenstate α of the target ∣Φα⟩ [551, eq.(10)]:

∣Ψ⟩ = A∑α
∣ψα⟩∣Φα⟩ ; (8.6)

where Hm∣Φα⟩ = Eα∣Φα⟩ , (8.6a)

with the usual orthonormality ⟨Φα∣Φα′⟩ =
x

Φ∗α(xm,R)Φα′(xm,R)dxm dR = δαα′ . (8.6b)

The eigenstates ∣Φα⟩ form an orthonormal set (8.6b), whereas the scattering states ∣ψα⟩ are
normalised according to the outgoing flux in the channel f [147, p.396:eq.(9.62–3)].

According to the Pauli principle, the total wavector ∣Ψ⟩ must be antisymmetrical with respect
to exchange of any pair of electrons (and nuclei if they are identical fermions). This is ensured
by the antisymmetrisation operator A. Assuming that the molecular wavectors ∣Φα⟩ are already
antisymmetrised between the bound electrons, the effect of the operator A is to antisymmetrise
the total wavector by taking all possible permutations of the indexes 0 and j on the scattering
and bound electronic coordinates and forming a total state:

A∣ψ(x0)⟩∣Φα(xm)⟩ =
1

√
N + 1

⎛

⎝
∣ψ(x0)⟩∣Φα(xm)⟩ −

N

∑
j

∣ψ(xj)⟩∣Φα(xm0←j)⟩
⎞

⎠
. (8.7)

The antisymmetrised total wavefunction is normalised through the denominator
√
N + 1. A

concrete example of what Φ(xm) looks like, is given by the Slater determinant in (8.16). In the
notation above, we specify in parenthesis the electron to which each wavefunction is associated.
The letterm is a shorthand for internal (molecular) coordinates. The operationm0←j corresponds
to the replacement of the coordinates xj = (rj , sj) of the bound electron j by those of the
scattering electron x0 = (r0, s0) labelled by 0:

xm0←j ≡ (x1, x2 . . . xj
0

. . . xN) . (8.8)

If we inject (8.6) back into (8.2) and take individual projections on the molecular states ⟨Φα∣,
we obtain a coupled set of integrodifferential equations (one for each α) [551, p.33:eq.(11)]:

−
1

2
△ψα(x0) + Vαα(x0)ψα(x0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Direct Static

+ ⨋ Wαα(x0, x
′)ψα(x

′)d3x′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Exchange Static

+ ∑
α′≠α

Vαα′(x0)ψα′(x0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Direct Coupled

+ ∑
α′≠α
⨋ Wαα′(x0, x

′)ψα′(x
′)d3x′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Exchange Coupled

= (E − Eα)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡k2α/2

ψα(x0) (8.9)

∗The assumption underlying (8.6) overlooks the more general case comprising a global correlation between
the scattering electron’s position and all other bound electrons [325, p.377:§4.2:eq.(63)].

†We follow the nomenclature of Lane [551, p.33:§A] who names ψα(x0) a “scattering function” because it only
describes an outgoing scattering wave as opposed to a wavefunction which ought to describe an electron’s state.
This semantic distinction is not always stressed in other references.
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The meaning of the integrals ⨋ . . .dx′ on the generalised coordinate x′ = (r′, s′) of a bound
electron♠ is an integration over the continuous variable r′ together with a sum on the discrete
binary s′ = ±1/2 coordinate. Technically, the orientation of an electron’s spin is a vector in a 2D
Hilbert space. In practice, when we consider an ensemble of electrons, what we need to know is
how the spins of all electrons couple together or with their respective orbital angular momenta.
Thus, we can just consider the binary discrete variable s′, associated to either ±1/2 of a bound
electron’s spin projection on the z axis of the given reference frame. To fully account for the
different possibilities of spin combinations with spatial occupied orbitals, one appeals to linear
combinations of Slater determinants and thus the ‘integral’ involving spin should be understood
as the sum over the configurations which compose the state α in the obscure wavefunction
Φα(xm). For more insight, we redirect the reader to Hertel and Schulz [section 7.3 of 398].

1. Vαα: In the equation (8.9), we may identify the first term to the diagonal component α = α′

of the direct potential perceived by the scattering electron in the channel α:

Vαα′(x0) = −∫ [
ZA

∣r0 −RA∣
+

ZA′

∣r0 −RA′ ∣
]ναα′(R)d

3R + ∫
ραα′(r

′)

∣r0 − r′∣
d3r′ (8.10)

With the reference frame staying fixed at the centre of mass, the position RA of each nucleus
can be unambiguously determined from the internuclear separation R. The average nuclear
ναα′ and electronic ραα′ cross probability densities between states α and α′ are defined as:

ναα′(R) = ∫ Φ∗α(xm,R)Φα′(xm,R)dxm , (8.11)

ραα′(r
′) = ∫ Φ∗α(xm,R)Φα′(xm,R)dxm/{j} d

3R . (8.12)

Their diagonal elements α = α′ intervene in the direct terms whereas cross-densities between
α ≠ α′ enable coupling. The notation xm/{j} signifies all internal molecular generalised
coordinates except those of the electron j ♠.

2. Wαα: The second term in (8.9) is known as the exchange static potential of the state α and
is nonlocal meaning that it possesses non-diagonal matrix elements in configuration space
⟨x∣Wαα∣x

′⟩ which are not null. The exchange kernel Wαα′ is defined as [100, eq.(2.8)]:

Wαα′(x0, x
′) = −

∫ Φ
∗
α(xm)Φα′(xm0←j)dxm/{j}

∣r0 − r′∣
, (8.13)

Most often, a Hartree-Fock description of the target state ∣Φα⟩ is adopted (i.e. linear
combination of Slater determinants (8.16) of singly occupied orbitals ϕα,j for the state
α). In that case, the integral in the numerator of (8.13) would decompose into a sum of
products of single-electron orbitals♭: ∑j ϕ∗α′,j(x

′)ϕα,j(x0) [551, p.47:eq.(110)].

♠Note that since the molecular states Φα are antisymmetrised (8.16), it matters not which electron’s coor-
dinates (1,2,.. j or N) are left out in the integral of (8.12). An easy way to see this is to remember that both
Φ∗α and Φα′ are antisymmetrical with respect to the permutation of two electrons’ coordinates. This is why we
abandoned the j subscript and write a primed x′

Cj
. The same situation applies to the ground state density (8.15)

of the next section 8.2 used in density functional theory.
♭When α′ ≠ α, we would also have to restrict the sum to only those orbitals ϕα′,j which differ from ϕα,j .

Otherwise the integral over the other bound electrons would be nil in virtue of the orthonormality of bound
orbitals.
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3. Vαα′ and Wαα′: The third and fourth terms represent couplings to other molecular states and
can be rightfully considered as a crux in scattering theory. They represent the reaction of
the molecule due to the perturbation caused by the intruding electron.

Under the Born-Oppenheimer approximation in which the electronic states are separated
and independent from the nuclear motion, the orthogonality of the electronic parts of Φα′
and Φα implies that ναα′ is zero [551, §II.B]:

Born-Oppenheimer approx. : ναα′(R) ≃ 0 for α ≠ α′ . (8.14)

It is thus not unusual that coupling in (8.10) is only made with electronic states through
the cross probability density ραα′ (8.12)

Those terms Vαα′ and Wαα′ enable transitions i→ f between different initial i and final f
states. The probability of a particular transition is directly related to the importance of
the coupled terms for α = i and α′ = f .

This is readily exploited in the Born approximation (sec. 8.5.1) for inelastic scattering
(11.44) leading to the generalised oscillator strength that will be presented in a later sec-
tion 11.4.1 of chapter 11. Similarly, the transition between different vibronic bands in the
triple combo of Born-Oppenheimer, Born and impulse approximations is represented by
Franck-Condon factors (see appendix D.2 eq.(D.4)).

When the incident energy k20/2 of the electron is insufficient (i.e. k20/2 < Eb − Ei) to permit
a transition i→ b, the channel is closed but the couplings still exist! These excited states
b are called “virtual excitations”. They arise during the process of scattering but cannot
be observed at the outcome. Nonetheless, their existence is very noticeable in Feshbach
resonant scattering, presented in section 11.3.1. Mathematically, the scattering functions
ψb,i(r0) associated to the energetically disallowed transitions b ↚ i vanish asymptotically
(faster than 1/r0) at large distances r0 →∞ (due to kb ∈ iR+ in eq. 8.3).

Open or not, the presence of α′ ≠ i ∧ α′ ≠ f states can significantly affect the scattering
cross section of an electron. Coupling terms to electronically excited states can overall be
represented by correlation-polarisation potentials presented in section 8.2.3 and reviewed
in 10.3.3.

4. Finally, the remaining terms reduce to simple real numbers: Eα = ⟨Φα∣Hm∣Φα⟩ is the energy
of the state α. The attentive reader will have noticed that the exchange terms in (8.9):

⟨Φα′ ∣ . . . ∣ψα(xj)Φα(xm0←j)⟩ from△0
/2, E and Hm vanish.

This stems from the orthogonality of the scattering state ∣ψα(x0)⟩ to any bound one-
electron orbital ∣ϕj(x0)⟩ (if it were hypothetically occupied by the scattering electron).
This may be justified in two different ways. Lane [551, p.47:§ above eq.(113)] reminds
us that the total wavefunction ∣Ψ⟩ remains unmodified if ∣ϕj(x0)⟩ is added to ∣ψα(x0)⟩.
Because this means that two columns in the Slater determinant (8.7) would be identical
and thus this additional term would annihilate anyway. This argument applies, however,
only to occupied orbitals of the α state. A more general argument can be borrowed from
the orthogonality theorem of Taylor [922, chapter 2:p.32] which reasons in the following
way: if the scattering function ψα(x0) is asymptotically unbound to the target, this means
that after a sufficiently long time t→∞, the evolution operator U(t) ≡ e−iHt will separate
all bound orbitals from the (physical) scattering orbital (which is a wavepacket); implying
thereby that their overlap integral is zero. Since, by unitarity of U(t), if this overlap
converges to zero for t→∞, then it must be zero at all times t.
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While it remains true that the space to which ∣ψα⟩ belongs is perpendicular to the space of
bound states, this does not, however, mean that the scattering electron could not settle into
a bound orbital ∣ϕα′,j⟩ coupled to an excited state ∣Φα′⟩ of the target! This possibility leads
to the realm of resonant scattering which, from a physical perspective, is in total opposition
of the “usual” direct scattering in which it is assumed that the interaction of the collision
is very short and a number of useful adiabatic approximations can be applied. Resonances
are ubiquitous in electron scattering with molecules, but we reserve only a small space
to them in section 11.3 of chapter 11. Much insight can be gained from Shimamura and
Takayanagi [834, chapter 3] and some applications in Čarský and Čurík [156].

Returning now back to the general Schrödinger equation (8.9) for the scattering electron,
we formally have an infinite system of coupled equations: one for each target state α. The
truncation to Nα equations corresponds to what is known as the close coupling approximation
[147, chapter 9.1]. As a differential system of second order, it admits 2Nα linearly independent
solutions {ψαn(r)}Nα , n = 1..2Nα. They can be adequately used to construct the unique solution
to the boundary condition of the scattering system. The regularity of the scattering function at
the origin ψα(r = 0) = 0, disqualifies the Nα solutions irregular at the origin [551, p.42]. The
second boundary condition corresponds to the asymptotic limit (8.3) already introduced above,
when the scattering electron is observed at a position r0 → ∞ which is much greater than the
molecule’s region of influence [100, 551, eq.(3–4), eq.(2.9)].

The apparent simplicity of the association between final scattering states ψf,i(r) and target
states Φf(s0, xm,R) conceals an underlying complexity of coupled states. While it seems ob-
vious that the solution to the boundary condition (8.3) is actually the vector of Nα scattering
functions {ψf,i}Nα associated to the Nα possible final states f and starting from the initial state
i, we have to remember that the idea behind a “final” or “initial” state applies to the whole
electron-molecule system ∣Ψ⟩. In particular, the free electron’s spin (projection) s and angular
momentum ℓ couples with the targets’ (S,L) to form a total spin S [e.g. 551, eq.(25)] and angu-
lar momentum L [e.g. 442, eq.(8–9)]. As a result, each final scattering state ψf,i(r) corresponds
actually to a superposition of spherical harmonic waves of determined angular momenta, each
coupled to various target wave function of determined momentum but different projections∗. The
decomposition of incoming and outgoing free electron plane waves into spherical harmonic waves
is known as the partial wave decomposition [147, §9.3] which will be described in a forthcoming
section 8.4.

The objective of this introduction, was to show how, by starting from the Schrödinger equa-
tion of the total electron-molecule system (8.1), one can tackle the problem through a one-electron
system of equations (8.9) with an interaction potential operator Vαα′ +Wαα′ that couples various
components of the electron wave-vector (comprising many individual scalar scattering functions
ψα(x0)). This does not, however, make the problem any less formidable. A very good and widely
accessible introduction and overview of the complexity involved in electron-molecule scattering
computations was written by Morrison [667].

As was forewarned in the introduction (perilogue) to this part, here is where we have to
depart from the elegant formalism of Schrödinger’s equation describing the electron-molecule
interaction as a whole, and start building our way for the practical purpose of this part. A first
step will consist in reducing the terms of the interaction potential with the molecule (8.9) into a
manipulable and local scalar function whose gradient classically represents a force acting on our
scattering electron. That is the purpose of the next section.

∗This angular and spin coupling causes Clebsch-Gordan coefficients to run all over the formulae in electron-
molecule scattering.
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8.2 Potential Scattering

One of the great hurdles in electron-molecule scattering is the proper description of the interac-
tion. In particular, in addition to the electrostatic potential of the molecule from the positions
(rm, R) of its constituent electrons and nuclei, one must also account for (i) the indistinguisha-
bility of the free and bound electrons and (ii) the distortion of the electronic cloud in the field
of the scattering electron.

(i) The former (exchange) leads to an integro-differential equation (as 8.9) where we require
the knowledge of the whole scattering wavefunction ψ(r′, s) in order to evaluate the effect
of electron exchange at one point r and for an electrons whose spin’s projection is s.

(ii) The latter (distortion) couples one scattering wavefunction ψα to many other wavefunctions
ψα′≠α associated to different excitation states α′ of the molecule.

Considerable simplification can be obtained by seeking an approximate local exchange poten-
tial and an average perturbation potential that mimic the effect of the formally exact interaction.
This is done through a so-called optical potential. The effect of exchange and distortion is to add
an attractive correction to the whole potential. This correction can be interpreted as a lessened
Coulombic repulsion caused by a reduced overlap between the wavefunctions of the scattering
electron and the bound electrons. In addition to this, distortion also comprises an imaginary neg-
ative potential which emulates the loss of electron flux into different (inelastic) reaction channels
when they are open (above the energy threshold of excitation). An introduction and overview
of the construction of such optical potential∗ is given in [100, p.232-241].

A benchmark program for calculating differential cross sections (DCS) from isolated atoms
and their arrangement in molecules or solids is elsepa [803]. This program also models electron
scattering with an optical potential and we used it to check and compare our results. In the
rest of this thesis, we will often display results obtained from elsepa as a way to illustrate the
sensitivity of the DCS on the model chosen and eventually highlight the improvement that we
bring forth.

In this section, we only describe the potential model as we use it to calculate elastic cross
sections given in chapter 11.1. For an overview of existing semi-empirical optical potential
models, refer to section 10.3.

From now on, we drop the ‘0’ subscript for the position r
�0

and the spin projection s
�0

of the
scattering electron, and reserve the ‘0’ only for asymptotic initial quantities such as the incident
energy ε0, wavector k0 and velocity v0, or also the ground state ∣Φ0⟩ of the molecule. We remind
the convenient notation of the generalised space–spin coordinate x ≡ (r, s).

The construction of the optical potential relies mostly on the description of the target through
the average electron density ρ(r′). According to the density functional theory [408], all static
properties of the target (charge moments, multipoles, ...) may be derived from this density ρ(r′)
if it corresponds to the density derived from the “true” ground state ∣Φ0⟩ of the target [416,
p.594:eq.(6.1)]:

ρ(r′) ≡ ∑
s′=± 1

2

∫ Φ∗0(x
′, x2, . . . xN)Φ0(x

′, x2, . . . xN)dx2 . . .dxN . (8.15)

∗The optical potential originated in nuclear physics [see footnote 5 of 922, p.385], in this thesis, we only cite
references particular to electron-molecule scattering.
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This is independent from the index of the coordinate x′ left out of the integration since real
states must be antisymmetrised according to Pauli’s principle (see eq. 8.16 below). Potentials
that are exclusively based on this average density ρ(r′) are called density functionals.

Still, the problem is not bypassed because one requires the knowledge of ∣Φ0⟩. One then relies
on an approximation of this wavefunction of which the most fundamental is the Hartree-Fock-
Slater model made from an antisymmetrised product – Slater determinant – of individual one-
electron orbitals ∣ϕj⟩ and their spin-state ∣χj⟩ in a system of N electrons [398, p.504:eq.(10.28)]:

⟨x1⋯xN ∣Φ0⟩ ≃
1
√
N !

RRRRRRRRRRRRRRRRRRR

ϕ1(r1)χ1(s1) ϕ2(r1)χ2(s1) ⋯ ϕN(r1)χN(s1)
ϕ1(r2)χ1(s2) ϕ2(r2)χ2(s2) ⋯ ϕN(r2)χN(s2)

⋮ ⋮ ⋱ ⋮

ϕ1(rN)χ1(sN) ϕ2(rN)χ2(sN) ⋯ ϕN(rN)χN(sN)

RRRRRRRRRRRRRRRRRRR

(8.16)

The spin functions χj(sj) of the electron j are either in one of ∣ ↑⟩ or ∣ ↓⟩ spin projection states.
The various possible combinations of orbitals and spin-states imply that there exist different
Slater determinants (8.16) in open-shell systems, i.e. when one or more spatial orbitals ϕj(r)
are only occupied by one electron. A linear combination of Slater determinants is called a
configuration interaction model [398, §10.2.3].

The obtention of an atom’s or molecule’s wavefunction through the Hartree-Fock variational
approach (or more advanced approaches) lies completely outside the scope of this thesis. Atomic
densities have been described, improved and updated over several decades. They are made
available through analytical representations [196, 443, 522, 726, 800] best fitting numerical re-
sults [183] from freely distributed programs. The representation of diatomic densities is more
complicated due to the breakdown of spherical symmetry of electrons about more than one nu-
cleus. Although there exist tabulations and 2D analytical representations of molecules [e.g. 293,
eq.(1)], we could not find both well-established and “easy-to-implement”∗ standards as in the
case of atoms. Thus, we decided to restrict our modelling of molecules to the sheer overlapping
of atomic densities without correlation effects. The closest amelioration within our reach for N2

and O2 would have been the correction to the independent atom densities given by Fink and
Bonham [285, p.111–116:eq.(31–9) and p.119:table 1], which time restrictions did unfortunately
not allow us to explore.

Overall, we have decided to privilege analytical representations over numerical tabulations,
as they greatly facilitate and expedite the calculation of potentials, plane wave Born amplitudes
and transformation in space. In practice, use of analytical expressions liberate us from annoying
issues of numerical nature at boundary conditions and singularity points. Thus we modelled
both atomic and molecular densities from a presently re-fitted expression of Slater-type 1s-orbital
terms as in Pacios [726, eq.(1)]:

ρ1s(r) =
Z

4π

nρ

∑
i=1
γi
λ3i
2

exp(−λir) (8.17)

The normalisation of the density and weighting coefficients γi is chosen so that they verify:

∫
∞

0
ρ1s(r)4πr

2 dr = Z ⇒
nρ

∑
i=1
γi = 1 , (8.18)

from the total volume integral of the electron charge.
The parameters γi and λi are found in table 8.1 of the next subsection for the static potential.

There, we describe more in detail the fitting procedure and the resulting analytical expression
∗Here, we stumble onto an anthropological problem in scientific investigation: the investment in time.
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of the static potential. For nitrogen and oxygen, we distinguish the density to be used when
in molecular form and when in isolated atomic form which is taken from Pacios [726]. In the
following subsections, we succinctly present the static, exchange, correlation-polarisation and
absorption models used to construct our optical potential.

8.2.1 Static

The static potential Vs perceived by an electron from a distribution of charges ϱs is obtained
through Poisson’s equation (in atomic units) [755, p.8:eq.(2)–but with a change of sign due to
the negative elementary charge of the electron]:

△Vs(r) = −(−e)
ϱs(r)

ϵ0
= 4πϱs(r)a.u. , (8.19)

which transforms into the integral equation [726, eq.(4)]:

Vs(r) = −∫
ϱs(r

′)

∣r − r′∣
d3r′ . (8.20)

For a central distribution of charges ϱs(r), all but the isotropic terms from the Legendre
expansion of 1/∣r − r′∣ annihilate when integrated over the angular variables, leaving only the
radial integral [799, eq.(1)]:

Vs(r) = −
1

r
∫

r

0
ϱs(r

′)4πr′2 dr′ − ∫
∞

r

1

r′
ϱs(r

′)4πr′2 dr′ . (8.21)

Atoms

In the case of an atomic target, the charge distribution ϱs, assumed to be central, is simply the
punctual nuclear charge +Ze surrounded by the electronic density ρ described above: ϱs(r) =
+Zeδr(r) − eρ(r). The “radial” Dirac δr peak is defined so as to properly amount to 1 when
integrated over a spherical volume.

We distinguish three special cases of electronic distributions: the Yukawa, the exponential
(or Slater 1s) and the general Slater ns [927, eq.(21.1&2)]. Injection into (8.21) gives the generic
static potentials:

Yukawa : ρY = CY
e−λr

r
⇒ VY(r) = −Z

e−λr

r
≡ Vn=0s(r) (8.22a)

Exponential : ρX = CXe
−λr ⇒ VX(r) = −Z(1 +

λr

2
)
e−λr

r
≡ Vn=1s(r) (8.22b)

Slater ns ∶ ρns = Cnr
n e
−λr

r
⇒ Vns(r) = −Z (

n

∑
i=0
(λr)i

n + 1 − i

(n + 1)i!
)
e−λr

r
(8.22c)

The coefficients CY ≡ C0, CX ≡ C1 and Cn = Z(n + 1)!/(4πλ
n+2) are normalisation factors so

that the volume integral of the densities is unity.
Ideally, the general Slater distribution ρn and static potential Vn give the most accurate

average description of atoms. On the downside, it is mathematically more cumbersome when
expanding into spherical harmonics of diatomic potentials. For practical purposes, most analyti-
cal potentials reported in the literature were approximated by a sum of Yukawa terms [196, 443,
800]. Despite its simplicity, the greatest disadvantage of the Yukawa potential is that it is bound
to physically unrealistic density distributions (8.22a) because of the singularity at the origin.
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Table 8.1: Weighting coefficients γi and exponents λi for the presently concise atomic densities
and static potentials based on a sum of Slater 1s orbitals. Equivalently, on may define the atomic
decaying radii ai = 1/λi. They were fitted on top of the results from the Hartree-Fock calculations
of Koga [522]. The smallest exponents in the last columns were imposed as λmin =

√
8I [522,

eq.(10f)] from ionisation potentials I of homonuclear diatomic molecules and noble gas atoms.

Atom
(Z)

γi= 1 2 3 4 5
λi=

N‡
(2) (7) 0.3268 −0.2569 0.6556 0.2744

13.03 5.434 2.678 2.141

N¶ (7) 0.2820 −0.1910 0.9090
13.84 4.656 2.453

O‡
(2) (8) 0.2397 −0.03890 0.7987 0.0005580†

15.99 6.783 2.442 1.884

O¶ (8) 0.2500 −0.1150 0.8650
15.84 6.439 2.710

Ne (10) 0.2295 −0.1523 0.7819 0.1409
19.90 9.791 3.706 2.522

Ar (18) 0.08310 2.850 -5∗ 2.710 0.3568
36∗ 5.688 4.489 3.653 2.153

‡ Only used for diatomic molecules.
¶ Taken from Pacios [726, p.415:table II].
† The abnormally low value is due to the imposition of λ4 =

√
8IO2 , which is IO2 = 12.07 eV.

* Those values were constrained to obtain the fit for argon.

In the present work, we decided to follow the philosophy of Pacios [726]. We use a simple
exponential distribution ρX ≡ ρ1s and the resulting potential VX to represent atomic targets.
Its advantage is that ρ1s may correspond to a physically valid distribution while still being
mathematically simple to decompose in harmonics for diatomic potentials. The full expression
derived from (8.17) is given by:

V1s(r) = −Z
nρ

∑
i=1
γi(1 +

λir

2
)
e−λir

r
(8.23)

The weights γi and exponents λi are the same as mentioned earlier and are summarised in
table 8.1. For atomic nitrogen and oxygen, we use directly the 3-term fit of Pacios [726] whereas
for neon and argon we decided to refit the static potential with one more term. In the fitting
process, we had the choice to fit either the electronic density ρ or the numerically-computed
static potential Vs. For atoms, the density can be accurately described by Koga’s [522] analytical
fits while for molecules, we expected the density to be distorted from the chemical bond. As a
consequence, it would not make sense to try to obtain accurate fits of densities. Thus, we decided
fit the parameters in table 8.1 in order to reproduce the static potential of atoms obtained from
the density of Koga [522].

We applied constraints to the weighting coefficients to verify the conservation of charge:
∑i γi = 1. We also constrained the exponents λi in a monotonically decreasing series as 2Z >
λ1 > ⋅ ⋅ ⋅ > λnρ =

√
8I. The upper boundary 2Z comes from Kato’s cusp condition [480] and the

last exponent λnρ was imposed to correspond to the ionisation potential I, from the asymptotic
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Figure 8.1: Comparison of the present model static potential (—) (8.23) with parameters re-
ported in table 8.1, to the one calculated by elsepa (- - -) for four atoms. For N and O, the fit
is from Pacios [726] for which the asymptotic decay rate λ3 has not been constrained according
to the ionisation potential.

behaviour of bound orbitals [382, eq.(32)]. For N and O as constituent atoms in molecules, this
ionisation potential I was taken from N2 (15.58 eV) and O2 (12.07 eV) respectively. Since we did
not attempt to obtain fits directly from Hartree-Fock molecular potentials, we did not consider
it worth distinguishing the static potential of N (O) when in N2 (O2) or NO. We nonetheless
constructed the present fit in table 8.1 in order to have a different model to study the sensitivity
of the DCS on the static potential. This sensitivity is illustrated in figure 10.9 of section 10.3.1
on page 353.

A comparison of the static atomic potentials obtained is available on figure 8.1 (multiplied
by r to remove the singularity at the origin), where the dashed lines (- - -) show the potentials
calculated by elsepa [803]. The main differences arise at larger distances r > 2a0, and are due
to the smallest exponent λnρ .

The intention of the present fit in table 8.1 was to have (i) a compact, mathematically
manipulable and reasonably accurate analytical expression; (ii) a constrained asymptotic
tail ∝

√
8I and (iii) a model to compare with and check the sensitivity of DCS on the

model used. When it comes to diatomic molecules, the limitations of the independent
atom model are far more restrictive than the model used for the atomic potential.
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Diatomic Molecules

As mentioned before, to represent the potential of diatomic molecules, we first superpose the
densities of the constituent atoms located at RA = +R/2 and RA′ = −R/2 as in sketch 8.2.
This corresponds to the independent atom model (IAM) applied to the description of the target
molecule. There exist analytical corrections to the IAM that account for the chemical bonding of
N2 and O2 as given in Fink and Bonham [285, p.119:table 1.]. We have not explored this option
due to limitations both in time and information, since the exact atomic potentials to which
the corrections are proposed are not disclosed. Instead, we corrected the IAM with a simple
analytical expression for the asymptotic potential due to permanent multipoles of the molecule.

z
+R/2

ZA

−R/2

ZA′

M

r

χ

Figure 8.2: Representation of a diatomic
molecule according to the independent atom
model superposing the unperturbed densities of
its constituent atoms A and A′.

For any distribution of charge ρ(r), the nth

multipole is a tensor of rank n with 2n+1 inde-
pendent components given by [398, eq.(F.7)]:

Qnm =

√
4π

√
2n + 1

∫ Ynm(χ,φ)ρ(r)r
n d3r .

(8.24)
The function Ynm(χ,φ) is the spherical

harmonic of degree n and projection m on the
z-axis defining the polar angle χ and around
which the azimuthal angle φ revolves. From
the axial symmetry of diatomic molecules,
there is only one independent component for
each multipole. In the frame where the z
axis is aligned with the principal interatomic
axis (fig. 8.2), only the m = 0 components
are non-zero and we may replace in (8.24)

Yn0(χ) =
√
(2n + 1)/(4π)Pn(χ) [956, p.133:§5.2:eq.(1)], where Pn is the Legendre polynomial

of degree n. The components Qn0 are unambiguously referred to as the multipole moments. The
dipole D and quadrupole Q moments, in particular, are defined as:

D ≡ Q10 =
x

r cosχρ(r)r2 dr sinχdχ2π , (8.25)

Q ≡ Q20 =
x

r2
(3 cos2 χ − 1)

2
ρ(r)r2 dr sinχdχ2π . (8.26)

with χ being the angle between the running point r and the z axis (see fig. 8.2). The static
potential produced by the nth multipole Mn behaves asymptotically as [908, p.150]:

Vn,∞(r) ∼
Mn

rn+1
Pn(χ) . (8.27)

This stems from the Legendre expansion of (1/∣r − r′∣ = ∑n rn</rn+1> Pn) in (8.20), the addition
theorem of Legendre polynomials [219, eq.(14.18.2)] and the definition of multipoles (8.24).

To eliminate the unphysical singularity at r = 0 of multipole static potentials (8.27), one can
introduce cutoff radii rd, rq [197, 945, p.496:§3, p.3252:§III.B]. For finite (3D-integrable) charge
distributions ρ(r′) regular at the origin, the static potential from the nth multipole from (8.20)
annihilates as ∼ rn. Therefrom, we decided to use the following analytical expressions for dipole
and quadrupole potentials:



8.2. POTENTIAL SCATTERING 283

Vd(r) = −D
r

r3 + r3d
cosχ , (8.28)

Vq(r) = −Q
r2

r5 + r5q

3 cos2 χ − 1

2
. (8.29)

Tentatively, we set the cutoff radii to two-thirds of the internuclear equilibrium separation R:
rd = rq = (2/3)R. We did not attempt to adjust this value to obtain better agreement with
experimental data. Values in atomic units of quadrupoles Q and NO dipole D are reported in
table 8.3.

Altogether, we construct the static potential of diatomic molecules in the following way: two
decentred unperturbed atomic potentials and the adapted multipole potentials.

Vs(r,R) = VA,1s(∣r −
R

2
∣) + VA′,1s(∣r +

R

2
∣) + Vd(r) + Vq(r) . (8.30)

The coordinate system proper to the diatomic molecule is represented in sketch 8.2, where χ is
the angle between r and R. In this frame, the molecular potential can be decomposed into a sum
of harmonics: Vs(r,R) = ∑∞l=0 Vl(r)Pl(cosχ) [906, p.222:eq.(4.3)]. This will be very useful in the
single-centre expansion of the scattering equation from which partial waves emerge (sec. 8.4).
The harmonic Vl of degree l of the potential (8.30) can be obtained numerically as the projection:

Vl(r) =
2l + 1

2
∫

π

0
Vs(r)Pl(cosχ) sinχdχ . (8.31)

If Vs(r) results from shifted central potentials V1s(∣r ±R/2∣) as in (8.30), then one can use the
addition theorem of the function represented by V1s. For instance, the addition theorem of
a shifted Yukawa potential is well known from the decomposition of modified spherical Bessel
functions of the first ιl and second κl kinds [3, 618, p.107 or p.445:eq.(10.2.35)]:

e−λ∣r−
R
2
∣

∣r − R
2 ∣
= λ

∞
∑
l=0
(2l + 1)ιl(λr<)κl(λr>)Pl(cosχ) , (8.32)

where we can immediately recognise the harmonic components Vl. The radii r≶ are the lesser
(r<) and greater (r>) of the two radii ∣r∣ and ∣R/2∣. The two kinds of modified spherical Bessel
functions are defined as [3, 219, §10.2, eqs.(10.47.7–9) and (10.52.5–6)]:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

first kind : ιl(x) =
√

π

2x
Il+1/2(x) = (−i)

l jl(ix) ∼
ex

2x
(8.33)

second† kind : κl(x) =
√

π

2x
Kl+1/2(x) =

π

2
(−)l+1

√
π

2x
(Il+1/2(x) − I−l−1/2(x)) ∼

π

2

e−x

x
(8.34)

They are derived from the modified Bessel function Il+1/2 and Kl+1/2 or the spherical Bessel
function jl which will be reminded later on page 301. Given their opposite asymptotic trends
∼ exp(±r)/r at r → ∞, it is easy to remember which of the lesser/greater radii r≶ goes as
argument to ιl/κl.

The addition theorem for Slater-type functions was unravelled in Weniger and Steinborn [979,
p.(4.31–2)]. It becomes more involved and the individual harmonic components Vl are obtained
from a sum of modified spherical Bessel functions ιl and κl. For instance, the harmonic expansion
of a negative exponential function is:

†In older textbooks [3, p.443], it is rather called of the “third” kind.
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e−∣r−
R
2
∣ =
∞
∑
l=0
(−)l

2

π
(2l + 1) (λr>ιl(λr<)κl−1(λr>) − λr<ιl+1(λr<)κl(λr>))Pl(cosχ) (8.35)

the term for l = 0 ∶ e−λr> (
sinh(λr<)

λr<
(1 +

1

λr>
) −

cosh(λr<)

λr>
) (8.36)

Thus, if we apply both exponential (8.35) and Yukawa (8.32) decompositions to the static
potential VX = λ

2 e
−λr + e−λr/r, we obtain∗:

VX(∣r −
R

2
∣) = −Z

nρ

∑
i=1
γi
∞
∑
l=0
VX,lPl(cosχ) , (8.37)

with VX,l =
2

π
λ(2l + 1) [ιl(λr<)κl(λr>) +

(−)l

2
(λr>ιl(λr<)κl−1(λr>) − λr<ιl+1(λr<)κl(λr>))] ,

(8.38)

and VX,0 =
λ

2
e−λr> (

sinh(λr<)

λr<
(1 +

3

λr>
) −

cosh(λr<)

λr>
) (8.39)

The oppositely shifted ±R/2 potentials VA and VA′ have supplementary polar angles (see
sketch 8.2) meaning that χ for atom A is replaced by π−χ for atom A′ and thus cosχ is replaced
by − cosχ. As expected from the symmetry of Legendre polynomials Pl(− cosχ) = (−1)lPl(cosχ),
homonuclear molecules A = A′ only have even l non-zero harmonics. The harmonics of the
potential may be observed on figure 8.3. There, we see that the nuclear singularity requires a
sufficiently high harmonic degree to be represented with fair accuracy.

8.2.2 Exchange

As seen above in (8.9), the indistinguishability of electrons entails a non-local interaction poten-
tial ∫ Wαα(x,xj)ψα(xj)dxj . Here, we note x = (r, s) the position r and spin s of the scattering
electron. First, we note that exchange terms are non-null only between electron states of identi-
cal spin projection. Then, the exchange term coupling the spatial orbitals of two (spin-aligned)
electrons may be approximated by a local interaction through an expansion in rj about the point
r. This expansion may be applied on the scattering wavefunction ψα(rj) [as in 775, eq.(6)], the
bound orbital ϕj(rj) in the exchange kernel (8.13), or to both [following 309].

This approximation is known as the SemiClassical (SC) exchange potential. Succinctly, the
expansion in rj leads to a exp((rj − r) ⋅ ∇j) term, which, when integrated over the exchange
kernel, transforms into a term inversely proportional to the Laplacian; i.e. the energy of the
electron(s) [100, p.235:eqs. (3.17–8)]. We retained two versions of the SC model; the original one
where the expansion applies to ψα only [775, eq.(8)]:

Vex,SC(r) =
1

2
(ε0 − Vs(r)) −

√
(ε0 − Vs(r))2 + 4πρ(r) ; (8.40)

and the modified one which also expands the bound orbital [325, eq.(9) and (18)] leading to:

Vex,SCF(r) =
1

2
(ε0 − Vs(r) +

3

10
(3π2ρ(r)2/3) −

1

2

√

((ε0 − Vs(r) +
3

10
(3π2ρ(r)2/3))

2

+ 4πρ(r) .

(8.41)
∗Note that the γi and λi parameters to be used in (8.38–8.39) are to be found in table 8.1 in the rows with

the N, O atoms marked with a ‡ superscript.
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The inclusion of the
3

10
(3π2ρ(r)2/3) term stems from the approximation of the bound electron’s

kinetic energy as given by the free electron gas model (see E.3) for why we labelled it “SCF”:
semi-classical free-[electron-gas]).

Strictly speaking, these equations (8.40 and 8.41) are valid for targets with no singly occupied
orbitals. For N, O and NO, one would need to differentiate the spin up (∣ ↑⟩) and spin down
(∣ ↓⟩) densities ρ↑, ρ↓ which would give slightly different exchange potentials for the spatial states
associated to spin up and spin down states of the unpolarised scattering electron beam.

The overall effect of the exchange potential (local or not) is to lower the total energy of the
electron-molecule system due to “fermionic repulsion” which reduces the overlap of wavefunctions
for identical spin projection. The exchange potential is therefore negative (attractive).

In a later section 10.3.2, we compare three semi-empirical local exchange potentials for argon
and molecular oxygen. Limited by the inaccuracy of diatomic static potentials modelled by
(8.30), we observed that using the least attractive Vex,SCF (8.41) (least negative of all models
on fig. 10.10) yielded the least disagreeable results for N2, O2 and NO. Regarding Ar, it seems
(from figure 10.11) that another model Vex,FEG (10.39), based on the free electron gas, is best
suited for yielding accurate DCS. For N and O, we had no means of determining which model
would perform best due to lack of experimental data. As a result, we used the original Vex,SC
(8.40) which is an intermediary between Vex,FEG and Vex,SCF. These choices are summarised in
table 8.2.

8.2.3 Distortion

Due to the external electric field generated by the scattering electron, the state of the molecule
or atom is slightly affected. From earlier, we remember that this perturbation may be modelled
through an expansion (8.6) of excited states ∣Φα⟩ to each of which a particular scattering wave-
function ∣ψα⟩ is associated. The close-coupling approximation selects a limited number of such
states, which leads to a system of Nα coupled equations [413]. A simplification step consists
in bypassing the system of coupled equations by finding an approximate polarised wavefunction
[925] which represents a state of virtual excitation induced by the presence of the scattering elec-
tron. Formally, one can encompass the perturbation as an effective potential defined by the total
energy difference of the electron-molecule system with and without distortion of the molecule at
the position x (including spin projection) [674, §II.A:eqs.(1–3)]:

Vpol(x) ≡ ⟨Ψ(xm;x,R)∣H ∣Ψ(xm;x,R)⟩ − ⟨Ψ0(xm;R)∣H0∣Ψ0(xm;R)⟩ (8.42)

The ground-state molecular wavefunction Ψ0(xm;R) is linked to the unperturbed Hamiltonian
H0, with xm being a shorthand notation for all bound electronic coordinates (spatial and spin)
and R is the internuclear separation of diatomic molecules. The semicolon (;) separates the
coordinates that are integrated (xm) from those that are parametric∗ (R and x). In its most
complete form, the total HamiltonianH comprises the kinetic operators of all nuclei and electrons
and the two-particle interaction potentials. As we saw earlier, the obtention of the total system’s
wavefunction Ψ is the crux the whole scattering theory.

There are numerous ways in which one can obtain an approximate effective polarisation po-
tential from (8.42). First, exchange effects may be treated separately into an exchange potential

∗Technically, the polarisation potential could also be integrated over the nuclear separation vector R. Nonethe-
less, in practice this leads to an intractable expression in the scattering electron’s position x because it is usually
assumed on the contrary that the nuclei do not budge while the electron scatters (see section 8.5.2), so that the
averaging is done later on the scattering amplitude [551, eq.(32)] under the adiabatic nuclei approximation in
8.5.2.
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Table 8.2: Overview of the present optical potential model used for our targets.

N2 O2 NO Ar O N
Vs (8.30) V1s (8.23)

Vex,SCF (8.41) Vex,FEG
(10.39)

Vex,SC (8.40)

Vco+pol (8.53) Vcop (8.55)
Vabs,bcFEG (8.58–8.63)
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Figure 8.3: An overview of the optical potential constructed for six targets perceived by an
electron at k0 = 2 a.u. ∼ 50 eV. On the left column: the four parts static, exchange, correlation-
polarisation and absorption represented for atoms. The orchid dotted line is the pure correlation
potential which is in (8.55) superseded by the polarisation long-range potential. On the right
column: the potential harmonics Vl of the full molecular potential. The inset shows the influence
of the long-range quadrupole and dipole potentials. For NO, the orientation is chosen so that z
points from O to N (

←Ð
NO) which is why the odd harmonics are positive.
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which was described in the previous section. One can therefore only focus on perturbation due
to purely Coulombic repulsion and replace x by r. Then, further approximations may be taken,
namely that the coupling to other (inelastic) channels is weak compared to the elastic channel,
that the response of the molecule is adiabatic (instantaneous) [672, 946] or the Born approxima-
tion for estimating the coupled terms [137, 524, eq.(8), eq.(2.24)]. A brief overview of numerical
techniques for finding a tractable expression for the complicated polarisation potential may be
found in Čarský and Čurík [156, chapter 2.3].

In essence, the perturbation potential (8.42) is composed of a real and an imaginary part
[524, 880, eq.(24)]. The latter represents a loss of flux into open reaction channels and forms
the absorption potential described in the last section 8.2.4. The real part represents virtual
excitations, i.e. couplings with closed channels, and may be separated into long- and short-range
components:

• Polarisation acting on long ranges distorts the electronic molecular cloud and thereby
induces multipoles [138].

• Correlation acts on short ranges when the scattering electron penetrates the cloud which
forms a positive “Coulombic hole” around it [742, §II.C].

Below, we briefly describe what those components are and how they are consolidated together.

Polarisation – long range

When the scattering electron is far from the target molecule or atom, its wavefunction does not
overlap. In the ideal case when the electron may be represented by a singly localised point charge,
the distortion of the electronic cloud may be modelled as an expansion of induced multipole
moments. The proportionality coefficient between the induced charge moment and the external
electric field is known as the polarisability α. It depends on the relative orientation of the
molecule and the electric field. In general, the polarisability αn is a tensor of rank n + 1 which
defines an induced multipole of degree n given an electric field E.

For a diatomic molecule, the polarisability tensor has only two independent components: one
for the induced multipole component when the electric field is oriented along the principal axis
α∥ and the other α⊥ perpendicular to that axis. Combined together, the induced dipole D̃ may
be decomposed into an isotropic αd,0 and anisotropic component αd,2 [834, p.19:eq.(25)]:

∣D̃∣

∣E∣
= αd(cosχ) = α∥ cos

2 χ + α⊥ sin
2 χ =

(α∥ + 2α⊥)

3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αd,0

+
2(α∥ − α⊥)

3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αd,2

P2(cosχ) . (8.43)

The angle χ spans between the direction of the electric field E and the z axis (principal molec-
ular axis, see 8.2). The same can be done with higher order multipoles such as the quadrupole
polarisability αq.

At closer distances near the target molecule, dynamic effects perturb the ideal static polari-
sation described above. As the incident velocity of the electron v0 increases and the distance r
decreases, the response of the molecule becomes less adiabatic. Non-adiabaticity can be intro-
duced by considering the higher-order polarisability coefficients which are moments S(µ) of the
dipole (or multipole) oscillator strength distribution of the atomic target [229, p.L701]:
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αd ≡ 2
2S(−2) =∑

n

fd,0→n

(En − E0)2
+∑

i
∫
∞

0

dfd,i

dε2 + Ii

1

(ε2 + Ii)2
dε2 , (8.44a)

βd ≡ 2
3S(−3) =∑

n

fd,0→n

(En − E0)3
+∑

i
∫
∞

0

dfd,i

dε2 + Ii

1

(ε2 + Ii)3
dε2 , (8.44b)

γd ≡ 2
4S(−4) =∑

n

fd,0→n

(En − E0)4
+∑

i
∫
∞

0

dfd,i

dε2 + Ii

1

(ε2 + Ii)4
dε2 . (8.44c)

The S(µ = −2,−3,−4) refer to the standard notation [427, §3.3] of the energy moments of
the dipole (optical) oscillator strength distribution over discrete (excitation) states n (fd,n) and
continuum (ionisation) states i (dfd,i/dε2) with the energy ε2 of the ejected electron and the
ionisation threshold Ii to the ionic state i. More information can be found later in chapter 11
section 11.5 and in the appendix D.1. Please note that the current definitions are adapted to
the atomic units using the hartree energy Eh = 2Ryd and differ slightly from the original ones
[229, 824, eq.(1.10-2), p.L701] due to the absorption of powers of 2 coming from the Rydberg
unit system traditionally used.

Then, the non-adiabatic asymptotic expansion of the long-range polarisation potential of an
atomic target is given by [824, eq.(1.9)]:

V ∞pol ∼ −
αd

2r4
−
αq

2r6
+
3βd
2r6
+
6γdv

2
0

2r6
+O (

1

r7
) . (8.45)

For diatomic molecules, one must include anisotropic effects by considering that the polaris-
abilities vary with χ as explained above (8.43).

As one can see, the multipolar expansion collapses as r → 0 near the singularity regions of
the atomic nuclei. The importance of high-order terms increases very rapidly and to remove the
singular behaviour, it is necessary to use cutoff functions just as for permanent multipoles (8.27).
One may choose to use a different function for each of the orders in (8.45) as in Gianturco et al.
[329], or alternatively, regard the terms in (8.45) as part of a Taylor expansion of an analytical
function as suggested by Onda and Truhlar [719].

We use two different analytical expression for the non-adiabatic polarisation potential with
attenuation at close encounters r → 0.

The first is the Buckingham potential (for atoms):

Vb = −
αd

2(r2 + r2b)
2
. (8.46)

The second is the exponentially damped polarisation (for diatomic molecules):

Vpol,exp = −
αd

2r4
exp(−

r2d
r2
) . (8.47)

In principle, one could calculate all coefficients βd, γd from (8.44b, 8.44c) and find αq from
Dykstra [254] or approximate it through Dalgarno and Lewis [209, §4:eq.(33)]. To match (8.45),
the curbing rb and damping rd would then be related:

r2d = 2r
2
b����������

=
3βd + 6γdv

2
0 − αq

αd
. (8.48)

Nonetheless, there are presently two issues that may arise with this procedure (which is why we
crossed the second equation):
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I. 3βd−αq ≪ αd : in that case the value of rb at v0 ∼ 0 would be too small (rb ≪ a0) resulting
in an improper polarisation potential near the molecule/atom at lower energies.

II. 6γd ≫ αd : then the damping due to dynamic effects at v0 > 1 would be too strong and
this results, to the contrary, in an underestimation of the polarisation potential near the
molecule/atom at higher energies.

A later section 10.3.3 is dedicated to illustrate this problem in figures 10.15 and 10.18b. What
results from this, is that because the importance of higher-order (∼ 1/rn>6) perturbation terms
in (8.45) rises fast with decreasing r, the outer region where only the zeroth 1/r4 and first 1/r6

order terms dominate is restricted to large radii r ≳ 3a0. This impedes one from recurring to
(8.48) as a valid representation of non-adiabatic effects. This problem was already discussed by
Gianturco et al. [329] for noble gases and addressed with correction (cutoff) functions.

There are many studies that endeavoured to map radially the polarisation potential from ab
initio calculations of the perturbed target wavefunction. Models included: an adiabatic approach
with the electron as a static point charge [257, 672], a non-penetrating approximation in the
electronic cloud [332], an estimation of non-local effects through a Gaussian charge distribution
of the scattering electron [276, 277], an inclusion of dynamic effects from the gradients and
Laplacian of the electron’s density [638]. An overview of perturbative methods can be found in
Valone et al. [955], who also proposes semi-empirical approximations based on the local kinetic
energy of the scattering electron (unlike v0 which is asymptotic).

In all studies, the polarisation potential takes the shape of a smoothly damped curve at small
distances. In adiabatic models [638, 672, 674, figs. 1-6, fig. 1], the maximum of the potential
is situated at the origin and resembles the Buckingham potential (8.46); while in non-adiabatic
models, Vpol goes through a maximum in the inner region of the molecule and annihilates at the
origin [276, 332, fig. 1-2, fig. 4], like the shape of (8.47). Morrison et al. [674, eq.(21)] give an
analytical fit to their non-adiabatic potential which basically is a damped modified Buckingham
potential.

In any case, when the electron’s wavefunction significantly overlaps the region occupied by
bound electrons, the interaction is more suitably described by correlation forces rather than the
description given by polarisation of the electronic cloud. We describe those below.

Correlation – short range

As the incident electron penetrates the region occupied by bound electrons, its Coulomb repulsion
causes restructuration of the electronic density in the space surrounding the incident electron
which we now qualify as ‘invading’ electron. The change of total energy of the system due to
the restructuration of the electronic density is commonly known as the correlation energy from
which an effective potential may be derived.

The correlation potential felt by an electron situated inside an electronic cloud, is the per-
turbation to the electrostatic potential generated by the cloud’s fixed charge distribution. The
electrons in the cloud adapt to the presence of the invading electron by forming a ‘positive hole’
around the current position r occupied by that electron. Here, we assume that the formation of
the positive hole is immediate, meaning that the correlation is adiabatic. However, in practice,
the response is non-adiabatic when the invading electron’s velocity is large.

The density functional theory (DFT) consists in giving an estimation of this correlation
potential based on the local electron density ρ(r) at r. A more detailed introduction into DFT
models of correlation is given later in section 10.3.3. Based on the overviews of Gianturco and
Rodriguez-Ruiz [327, 328], we selected the local kinetic density formulation (KDF) of Lee et al.
[567] which stems from the model of Colle and Salvetti [185]. Concisely, this model estimates
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the Hartree-Fock kinetic energy density (which depends on individual electron orbitals) from the
Thomas-Fermi free electron gas model (E.5) [567, §III].

In the Thomas-Fermi model, the local kinetic density of the free electron gas filling the
momentum space can be directly derived from the local density as ∝ (ρ(r))5/3 (see E.5 in
appendix E). To this simple formula, some corrections may be introduced taking into account
the gradient ∇ρ(r) of the density [468, eq.(4)]. Lee et al. [567] expanded the Laplacian of the
second-order Hartree-Fock reduced density matrix in terms of the gradient of the single particle
density, to wit:

△ρ2(r,∆r)∣∆r=0 ≅
3

10
(3π2)2/3(ρ(r))5/3 + [

W (r)

9
+
△ρ(r)

18
] − 2W (r) , (8.49)

where W (r) is a kinetic density functional based on von Weizsäcker [965]:

W (r) =
1

8
(
∣∇ρ(r)∣2

ρ(r)
−△ρ(r)) . (8.50)

After insertion in the expression of the correlation energy Eco and taking the functional
derivative with respect to the density ρ, Lee et al. [567] determined a formula for the corre-
lation potential Vco, which we have condensed here in a more convenient form for numerical
implementation:

Vco,KDF(r) =
−a

ρ1/3 + d
{ρ1/3 (1 +

d

ρ1/3 + d
) + be−cρ

−1/3

[
3

10
(3π2)2/3 (

ρ1/3

3
(dF + c) + 1)

+
∣∇ρ∣2ρ−3

216
(7(2d2F 2 + 2cdF + c2) − 3ρ1/3(5ρ1/3 + 13(dF + c)))

+
ρ−5/3

36
△ρ(7(dF + c) + 3ρ1/3)]} (8.51)

The parameters a, b, c, d were obtained as a fit to match the calculated energy of the Helium
atom from a Hartree-Fock description. They were initially determined by Colle and Salvetti
[185]. Later, Gianturco and Rodriguez-Ruiz [327, p.107] updated those values as: a = 0.0578; b =
0.062; c = 0.253; d = 0.543, which we use in our current implementation. The function F (ρ) is
defined as:

F (ρ) =
1

1 + dρ−1/3
(8.52)

In (8.51), the dependence on the position r is tacit; gradients ∇ and Laplacians△ operate
on the space coordinate r on which the density ρ(r) depends. Analytical expressions for density
gradients and Laplacians can be found in section 14.1 for Yukawa–14.1.1 and Exponential–14.1.2
distributions.

If the target has open shells, meaning that some orbitals are half occupied, the correlation
potential depends on the local density of the orbitals with spin up ρ↑ and spin down ρ↓, which
are different. This further description should be applied to nitric oxide, oxygen and nitrogen
atoms. Given the limitations of our approach, we did not implement this spin-distinguished
density. Inclusion of spin-related effects would also imply to adapt the exchange model above to
open-shell targets.

Although more involved than simpler free electron gas models of Perdew and Zunger [742]
or Padial and Norcross [728], the kinetic energy density functional correlation potential (8.51)
was observed, in a comparison study conducted in section 10.3.3, to give more agreeable results
at smaller angles for diatomic molecules and at lower energies for argon.
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Correlation-Polarisation

The full potential accounting for the electron-molecule perturbation must somehow conciliate
the long-range polarisation with the short-range correlation. For simplicity, many authors [569,
617, 728] chose to stitch them together at their outer intersection radius. In chapter 10, we
explore different ways to represent a global correlation-polarisation potential. There exists not
any straightforward solution that would yield accurate results over a very wide range of energies
from eV to keV. The greatest issue is that the correlation potential (8.51) is adiabatic and
therefrom independent of the electron’s energy. It becomes unusable at high energies > keV and
must be scaled down heuristically. The most elegant way we found in the literature was proposed
by Salvat [801] and implemented in the program elsepa [803] for calculating DCS. It consists
in taking the maximal (least negative) value between correlation and polarisation in the inner
region below their intersection, if it exists. In this way, correlation gradually vanishes as the
energy increases thanks to the growth of the curbing radius (8.48) with k20, decreasing the value
of Vb (8.46) at the origin.

We did not take this option because we obtained DCS in better agreement at small angles
when using the kinetic density functional correlation (8.51). Acknowledging that finding an
adequate yet simple expression for the combined correlation-polarisation potential for diatomic
molecules and atoms is far beyond the reach of this thesis, we resolved to use the following
distinct expressions for atoms and diatomic molecules respectively:

Diatomic Molecules : Vco+pol = Vco,KDF(r) −
αd,0 + αd,2P2(cosχ)

2r4
exp(−

r2d
r2
) (8.53)

and r2d =max (2a + 6k20,R
2) (8.54)

Atoms : Vcop =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Vco,KDF(r) r < rt

Vb(r) = −
αd

(r2 + r2b)
2

r ≥ rt
(8.55)

and r2b = a + 3k
2
0 (8.56)

We remind here that, in atomic units, velocities and wavenumbers are alike: v0 ≡ k0 a.u.. One
may thus compare the electron’s wavelength (1/v0 ≷ 1?) to the atomic size in expressions where
the velocity appears (e.g. 8.45, 8.58). The radius rt is taken as the outermost intersection
between the polarisation and correlation potential. An illustration of the junction at rt is given
by the darkred curves in figures 10.14 (although the potentials used are not exactly the same,
the analogy applies: —Vcop, ⋯Vco,KDF and - - -Vb). At higher energies, we had to choose an
energy at which the correlation and polarisation would be replaced altogether by a Buckingham
potential. This is explained on page 396 in the results chapter 11.

The values for the parameters involved can be found in table 8.3. For the curbing radii rb
and rd, the original theoretical relation (8.48) was heuristically modified in order to make the
polarisation potential usable over a wide range of energies. In particular, we replaced γd by
αd/2 (this is not true but convenient). We did not attempt to fit rb nor rd in order to get good
agreement. The value for a in (8.54) and (8.56) was simply deduced from what (3βd − αq)/αd

would be as given by equation (8.48). A theoretically founded estimation of the curbing radius
which would yield accurate long-range polarisation potentials is a desideratum for the future.
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Table 8.3: Internuclear separation R, permanent multipole momentsD,Q, polarisabilities αd and
parameter a for the curbing radius of atoms and diatomic molecules to be used in (8.53–8.56).
Last row gives the minimal excitation thresholds ∆Emin selected for the absorption potentials
(8.58–8.70).

N2 O2 NO Ar O N

R (a0) 2.074a,g 2.281a,g 2.175a,g – – –
D (ea0) 0.0625a

Q (ea20) -1.13a -0.29a 1.78f – – –
αd,0 (a30) 11.74a 10.67a 11.47a 11.08b 5.412c 7.423c

αd,2 (a30) 3.131d 4.93e,d 3.78d – – –
a (a.u.) 2.27 2.92 4.3 2.43 2.29 3.07
∆Emin (eV) 6.17g 4.26g 5.48g 11.55h 1.97h 2.38h

a Khristenko et al. [499, p.25–26:table 2.1 for R, p.81:table 4.4 for Q,
p.83:table 4.6 for αd and p.74 for D]

b Inokuti et al. [426, p.244:table 1]
c Miller [648]
d Bridge et al. [108] and Padial and Norcross [728, p.347,

p.1743:table I.]
e Hirschfelder et al. [403] and Machado et al. [617, p.1200]
f Tejwani et al. [924]
g Linstrom and Mallard [601]
h Kramida et al. [539]

8.2.4 Absorption

Formally, an absorption potential represents the imaginary part of the perturbation potential
obtained above for modelling the correlation-polarisation effects. It is negative imaginary every-
where, corresponding to a localised leak of electron current probability density∗ at the position
r from the elastic channel [147, p.292:eq.(7.5)]. The absorption probability per unit time of an
electron at r submitted to the absorption potential Vabs(r) is given by:

Flux loss rate :
2

h̵
I{Vabs(r)} . (8.57)

Ideally, absorption should be derived directly from the potential perturbation given by the
general equation (8.42) from the previous subsection [as in 525, appendix eq.(A.21)]. However,
the correlation-polarisation model introduced above does not account for inelastic reactions.

• On the one hand, the polarisation potential (8.45) stems from long-range interactions
whereas absorption is a rather short-range potential since it depends on a more intensified
interaction with the bound electrons.

• On the other hand, the correlation potential (8.51) represents the local perturbation to
the static potential created by the formation of a Coulomb hole around an electron in an
electronic cloud of density ρ(r). This hole is conservative; it vanishes when the electron
moves away from the cloud.

∗This stems from the non-hermiticity of the Hamiltonian which has a complex potential. The proof is a good
exercise for undergraduate students.
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Thus, usually another approximation is necessary to estimate absorption. If inelastic re-
actions are approximated as binary collisions of cross section σbc between the incident and a
bound electron in a gas of density ρ(r), then the absorption potential may be constructed as a
probability of colliding per unit time [877, eq.(1)]:

Vabs =
h̵

2
v(r)ρ(r)σbc(ε, ρ,∆Emin) . (8.58)

The local velocity v(r) and local energy ε of the incident electron are determined from the
asymptotic energy ε0 and the static-exchange potential:

ε = ε0 − Vs(r) − Vex(r) (8.59)

v =

¿
Á
ÁÀ1 − (

mec
2

ε +mec2
)

2

≊
√
2ε/me
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Non-relativistic : ε≪mec2

(8.60)

In a local binary collision, the invading electron of initial energy ε (locally) transfers a mo-
mentum q = k− − k+ and an amount ∆ε of energy to a bound electron. This energy ∆ε must
be superior to a minimal excitation threshold ∆Emin of the inelastic process. The momenta of
the invading electron before k− ≡ k and after k+ the local collision, separated by an angle θ, are
sketched in 7.2 (with a different notation: k− ≡ pi and k+ ≡ pf ). We may define the recoil energy
as [801, eq.(A2): but missing a factor 2 in front of ‘E’]:

h̵2q2

2me
=
h̵2k2+
2me

+
h̵2k2−
2me

− 2
h̵2
√
k−k+

2me
cos θ = 2ε −∆ε − 2

√
ε(ε −∆ε) cos θ . (8.61)

If the bound electrons are modelled as a free electron gas (FEG) of local density ρ(r),
both ejected and scattered electrons must have a final energy beyond the local Fermi energy

εF =
k2F
2
=
1

2
(3π2ρ(r))2/3 (E.3). Due to the indistinguishability of both electrons, the maximal

energy lost is reduced by half [801, eq.(A24)]. These requirements and the one for the inelastic
excitation are summarised as:

∆ε >∆Emin , (8.62a)
ε −∆ε > εF ⇒ ε >∆Emin + εF , (8.62b)

∆ε <
1

2
(ε − εF). (8.62c)

The difficulty now resides in calculating the binary cross section σbc for the inelastic process.
We defer this discussion to a later section 10.3.4 where different models are compared. Presently,
we implemented the binary cross section of Salvat [801] which relies on the first Born-Ochkur∗

approximation and the dielectric theory of Lindhard [595] for the electronic cloud modelled as a
free electron gas.

With the following dimensionless variables:

Local initial energy : ξε =
ε

εF
,

Transferred energy : ξ =
∆ε

εF
,

Momentum transfer : ζ =
1

2

¿
Á
ÁÀ h̵2q2

2meεF
;

∗Ochkur and Brattsev’s approximation [711] accounts for exchange
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the binary cross section is obtained from the integration of the differential cross section of an
electron scattering in a FEG:

σbc,FEG = ∫
(ε/εF−1)/2

∆Emin/εF

dσbc
dξ

dξ , (8.63)

dσbc
dξ
=

2π

εεF
∫

ζ+

ζ−

1

ξζ

6

16πX2

ξζ2X2f2(ζ, ξ)

(ζ2 +X2f1(ζ, ξ))2 +X4f22 (ζ, ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Generalised oscillator strength of the FEG

[1 −
4ζ2

ξε − ξ
+

16ζ4

(ξε − ξ)2
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Exchange correction

(Born-Ochkur)

dζ ,

(8.64)

where f2(ζ, ξ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

πξ/8ζ if ∣ζ + ξ/4ζ ∣ ≤ 1 ,
π[1 − (ζ − ξ/4ζ)2] if ∣ζ ± ξ/4ζ ∣ ≷ 1 ,
≈ 0 if ∣ζ − ξ/4ζ ∣ ≥ 1 ;

(8.65)

and f1(ζ, ξ) =
1

2
+

1

8ζ
(1 −w2

−) ln ∣
w− + 1

w− − 1
∣ +

1

8ζ
(1 −w2

+) ln ∣
w+ + 1

w+ − 1
∣ . (8.66)

We introduced the shorthand w± ≡ ζ ± ξ/4ζ. To alleviate the notation, the ‘FEG’ index of the
cross sections (referring to the free electron gas), will be implicit in the rest of this section.

The integral operates over the subspace of kinematically allowed collision outcomes (by con-
servation law 8.62c, where the factor 1/2 comes from the electron indistinguishability):

ξmin =
∆Emin

εF
to ξmax =

1

2

(ε − εF)

εF
≡
1

2
(ξε − 1) , (8.67)

ζ± =
1

2
min
max (

√
ξε ±
√
ξε − ξ,

√
ξ + 1 ± 1) ; (8.68)

and in the region where the generalised oscillator strength of the FEG for a momentum and
energy transfer (q, ∆ε) is not null [801, eq.(A26)]. This region is determined by f2 > 0 (8.65),
through the second value appearing in the parenthesis of ζ±’s equation (8.68).

The integrals (8.63) and (8.64) must be computed numerically. Nonetheless, at high energy
transfers, the generalised oscillator strength in (8.64) may be approximated by a Dirac peak
(delta function δ(ξ − 4ζ2)) centred on ζ =

√
ξ/2 (i.e. q ≊

√
2me∆ε/h̵) and the integration on ξ

and ζ yields [801, eqs.(A30–1)]:

σbc ≊
π

ε2
[

ε − 2∆Emin

∆Emin(1 −∆Emin/ε)
− 4

εFε

ε2 − ε2F
− ln(

ε − εF
ε + εF

ε −∆Emin

∆Emin
)] . (8.69)

As a simpler alternative, we also adapted a fully analytical absorption potential based on the
quasi-free (‘qf’) potential of Staszewska et al. [877] but with the use of the local electron energy
in the cross section as suggested but incorrectly implemented by Blanco and García [81]:

σbc,qf =
4π

5k3Fk
2
h(k2b − k

2
F − 2∆Emin)×

[
1

2∆Emin
−
k2b −

3
5k

2
F

(k2b − k
2
F)

2
+ h(2k2F + 2∆Emin − k

2
b)

2(2k2F + 2∆Emin − k
2
b)

5/2

5k3F(k
2
b − k

2
F)

2
] . (8.70)

Heaviside’s step function is noted:

h(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1∀x ≥ 0

0∀x < 0
.
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The momentum kb at r results from the counterbalance between the energy gained by the incident
electron from the potential of the target V and the local binding energy Vb of a bound electron:

k2b(r)

2
= ε0 − V (r) + Vb(r) (8.71)

Vb(r) = −
1

∣r − R
2 ∣
+
(ZA − 1)

ZA
VA(∣r −

R

2
∣) −

1

∣r + R
2 ∣
+
(ZA′ − 1)

ZA′
VA′(∣r +

R

2
∣) (8.72)

However, due to the first term in (8.70) ∝ 1/∆Emin, this model is rather sensitive to the choice
of the inelastic threshold ∆Emin which introduces some arbitrariness since this inelastic threshold
is supposed to represent the onset of a continuum of excitations. We dedicated section 10.3.4 to
a critical review and comparison of various absorption models.

Now that we have assembled a local optical potential from 8.2.1 through 8.2.4, which may
be visualised in figure 8.3 for our six targets, we may return to the one-electron Schrödinger
equation in the next section.

8.3 Operator formalism

Thanks to the optical potential, the elastic scattering of electrons off molecules, originally a
coupled system (8.9), may now be charmingly represented as a single-electron equation in the
centre of mass reference frame:

−
1

2µ
△ψ(r) + V (r)ψ(r) = ε0ψ(r) , (8.73)

where the final energy of the electron is equal to its incident value: ε′ = ε0, thus k′ = k0. The
reduced mass µ = Mme/(M +me) ≈ me may be taken as the electron’s rest mass due to the
heaviness of the target atoms or molecules M ≫me.

We recall that for calculating differential cross sections, we are not interested in the wave-
function ψ(r) per se, but in its asymptotic angular dependence f(Ω) at far distances r→∞.

It would be convenient to possess a formalism that would extract this angular dependence
alone from the wavefunction. For this matter, we introduce here some fundamentals of scattering
from the perspective of operators (see for instance Rodberg et al. [782, chapter 6.1]) starting with:

H ∣ψ⟩ ≡ (H0 + V )∣ψ⟩ = ε∣ψ⟩ , (8.74)

which is the same equation (8.73), but with operators acting in the vectorial space of scattering
states; H0 being the Hamiltonian of a free state and V is now a (potential) operator instead of
a function in space∗.

We consider the Green’s operators ofH0 andH as noted byG0(ε±iϵ) andG(ε±iϵ) respectively
in a complex space of the real energy ε and an arbitrarily small imaginary part ±ϵ which is
useful to bypass singularities on the real axis (we will see shortly soon how the ± distinction is
manifested). Those operators “revert” the Hamiltonians so that [922, p.129:§8-a]:

G(ε ± iϵ) (ε ± iϵ −H) = 1 , (8.75)

for values of ε ± iϵ outside the spectrum of H which is continuous on the positive real axis†.
∗The operator formalism does not require that V be local nor that the state correspond to single-channel

scattering. It can also be applied to the multi-channel case, albeit with more complications (see [922, chapter 16]
or [147, chapter 9.2])

†Despite the fact that H is non Hermitian when the imaginary absorption potential is non zero, its spectrum
remains real. That is a restrictive condition on the absorption potential [147, eq.(10.101)].
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We remember that the electron’s state ∣ψ⟩ can be seen as a superposition of its incident wave
∣k0⟩ with a scattered wave ∣ψs⟩. The latter’s asymptotic form (7.27) contains the information
about the scattering amplitude. Replacing in (8.74) and after some manipulations, we obtain
Lippman-Schwinger’s equations [797, 922, p.133:eqs.(8.4&5), p.380:eq.(7.1.6)]:

G = G0 +GV G0 = G0 +G0 V G , (8.76)
∣ψ⟩ = ∣k0⟩ +G0(ε0 ± iϵ)V ∣ψ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ψs⟩

= ∣k0⟩ +G(ε0 ± iϵ)V ∣k0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∣ψs⟩

. (8.77)

We identified the scattered wave with either of the two projections: G0 V ∣ψ⟩ or GV ∣k0⟩. The
very last equation (8.77) unveils an interesting operator Ω±, called Møller operator [147, §4.1.4],
that takes as input a plane wave and transforms it into the unknown scattering wavefunction:

∣ψ⟩ = Ω±(ε ± iϵ)∣k0⟩ = (1 +G(ε ± iϵ)V )∣k0⟩ = (1 −G0(ε ± iϵ)V )
−1∣k0⟩ , (8.78)

where the last equality was obtained through the first equality in (8.77). As one can see, there
are actually two Møller operators: a forward Ω+ and a froward Ω−, whose significance is given
below.

The expression for G is unknown, but G0(r, r
′) in configuration space takes the known form

[147, eq.(4.37)]:

lim
ϵ→0+
⟨r∣G0(ε ± iϵ)∣r

′⟩ =
2me

h̵2
1

4π

e±ik∣r−r
′∣

∣r − r′∣
, (8.79)

with h̵2k2/2me = ε and where ϵ was taken as a positive arbitrarily small real number. The sin-
gularity branch on the positive real axis signifies that the waves generated from ∣ψ±s ⟩ = G±0V ∣ψ

±⟩
(with the ±ϵ distinction) are associated to outgoing (+) and incoming (−) spherical waves respec-
tively [797, p.382]. In the forthcoming discussion, we shall preserve now this ± distinction and
label G±, G±0 . In the context of scattering, we are mostly interested in the ∣ψ+⟩ solution which
represents the stationary state corresponding to a radially outgoing flux (and transmitted wave).

With (8.77) and the expression of G±0(r, r
′) (8.79), one can confirm, in configuration space,

the asymptotic r→∞ behaviour of ψs(r) (7.27). Since the potential V is of finite range, there is
exists a maximal radius beyond which its decay is stronger than ∼ 1/(r′)2∗ [697, p.337:eq.(12.21)].
For ∣r∣≫ ∣r′∣ we may approximate ∣r − r′∣ as r − r ⋅ r′/r in (8.79) and obtain asymptotically [797,
eq.(7.1.33)]:

⟨r∣ψ±s ⟩ = ⟨r∣G
±
0 V ∣ψ

±⟩ = ∫ G±0(r, r
′)V (r′)ψ±(r′)d3r′

= −
e±ikr

r

2me

h̵24π
∫ e∓ik⋅rV (r′)ψ±(r′)d3r′ =

e±ikr

r
f±k←k0

(Ω) . (8.80)

∗The dipole potential (8.28) is borderline from this perspective. Its long-range effect introduces a divergence
in the traditional partial wave expansion [186, p.470:§low]. An analysis involving rotational excitations shows
that actually this divergence is caused only by rotational excitations ∆J = ±1 whereas the cross section for purely
elastic scattering due to the dipole vanish [198, p.185:eq.(18)]. This means that at forward angles, the cross
section involves an energy gain or loss and thus the divergence of the DCS disappears thanks to a change in the
kinetic momentum of the electron k′ ≠ k0. Fortunately, NO’s dipole is quite small and the distortion at large
radii is not as dramatic as for H2O for instance [616, p.470]. Thus, we allow ourselves to overlook the non-strictly
limited-range potential of NO.
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The outgoing wavector k was naturally identified with the direction of observation k ≡ kr̂. We
recognise now an expression for the scattering amplitude f+k←k0

which can be expressed formally
as a vector biprojection of the operator potential V :

fk′←k0(Ω) = −
(2π)3

4π

2me

h̵2
⟨k′∣V ∣ψ+⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Tk′,k0

, (8.81)

where the (2π3) factor comes from the normalisation of plane waves (7.22).
With the help of the forward Møller operator Ω+, we can introduce a transition operator T

between two outgoing k′ and incident k0 plane waves [922, eq.(3.8)]:

fk′←k0(Ω) = −2π
2 2me

h̵2
⟨k′∣ V Ω+
±
≡T

∣k0⟩ ≡ −4π
2Tk′,k0 a.u. (8.82)

The advantage is that now, instead of a ‘biprojection’, the scattering amplitude may be inter-
preted as the matrix element Tk′,k0 of the operator T in the basis of plane waves. We note of
interest the symmetry (Ω−)†V = T = V Ω+.

As the potential V vanishes, so does the transition operator T and thereby the scattering
amplitude. The part of electron flux which is not accounted by the transition matrix is the
transmitted (unscathed) incident wave. Mathematically, it is interesting to have an operator
which conserves the electron flux, i.e. which is unitary. This is the scattering operator S which
formally expresses the probability that an incident wave (whatsoever) will be cast out into an
outgoing wave. This is where intervenes the froward Møller operator Ω−: given an outgoing
plane wave, the projection Ω−∣k⟩ = ∣ψ−⟩ rewinds back to the scattering state of the electron as a
spherically converging state. The scalar product ⟨ψ−∣ψ+⟩ of the converging and diverging waves
gives the likelihood that the incident wave ∣k0⟩ related to ∣ψ+⟩ evolve into the outgoing wave ∣k′⟩
related to ∣ψ−⟩ scattered or not (k′ ?= k0):

⟨ψ−∣ψ+⟩ = ⟨k′∣ (Ω−)†Ω+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡S

∣k0⟩ (8.83)

One can also define a reactance operator K related to S by the Caley transform [697, p.157]:

K ≡ i(1 − S)(1 + S)−1 (8.84)

The scattering amplitudes are constructed from the matrix elements of the T , S or K op-
erators in momentum space. Below we summarise all pertinent relations between their matrix
elements∗ [697, p.188]:

Tk0,k′ =
δ(k0 − k

′) − δ(ε0 − ε
′)Sk0,k′

2πi
= −

1

π

Kk0,k′

1 − iKk0,k′
, (8.85a)

Sk0,k′ = δ(k0 − k
′) − 2πiδ(ε0 − ε

′)Tk0,k′ =
1 + iKk0,k′

1 − iKk0,k′
, (8.85b)

Kk0,k′ = i
1 − Sk0,k′

1 + Sk0,k′
=
−πTk0,k′

1 − πiTk0,k′
; (8.85c)

where the shorthand 1 = δ(k0 − k
′) is the identical operator in the momentum space base.

∗Different conventions exist among various authors. Here we follow Canto and Hussein [147], Newton [697],
and Taylor [922]
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Note that when one considers an expansion of those operators into multiple coupled channels,
as in the partial wave method in the next section 8.4, the above relations must be understood
as matrix operations between different channels.

When the Hamiltonian H of the scattering electron is Hermitian, the scattering operator S
is unitary. Additionally, if H is invariant under rotation and translation, then the S matrix is
symmetric in momentum space [922, p.282]. This implies that the K matrix is both real and
symmetric which is why it is numerically convenient to compute the T matrix used from the K
matrix. Unfortunately, with the optical potential used here, this advantage may not be exploited.

Because of the imaginary negative absorption potential, the K matrix in our model will
be complex and thus the S matrix will not be unitary.

This is a logical consequence from the loss of elastic scattering flux into inelastic channels.
Still, the relations (8.85) enable to calculate the T matrix from either the S or K matrix

elements. Then the scattering amplitude is obtained from (8.82). These matrices are presently
expressed in the momentum space. Nevertheless, they may be expressed in any complete vectorial
basis to be chosen for our convenience according to the symmetry of the system’s Hamiltonian.
Then, the scattering amplitude between k0 and k′ will have to be reconstructed from partial
spherical waves of which plane waves are composed of. This is the topic on the next section.

8.4 Partial Waves

In principle, one could directly solve (8.73) by imposing the required boundary conditions (8.3).
Nevertheless, a significantly more accurate and economic method is to decompose the problem
into an adequate basis of functions. The method of partial waves in the single-centre expansion
[330] is perhaps the most popular example due to the familiarity of the basis used: spherical
harmonics Yℓm and spherical Bessel functions of the first jℓ and second yℓ kinds.

The scattering electron’s wavefunction is then expanded into [147, p.137:eqs.(4.180a)]:

ψ(r) =
1

(2π)3/2

∞
∑
ℓ=0

ℓ

∑
m=−ℓ

4πiℓ
uℓ(kr)

kr
Y ∗ℓm(k̂0)Yℓm(r̂) (8.86)

This state is associated to the full Hamiltonian with an energy ε = h̵k2/2me and initial momentum
k0. The normalisation of ψ(r) comes from the projection (where k ≡ ∣k∣):

⟨r∣k⟩ ≡ eik⋅r = ∫ dε∑
ℓ,m

⟨r∣k, ℓ,m⟩⟨k, ℓ,m∣k⟩ , (8.87)

and the closure of the free wave basis ∣k, ℓ,m⟩ which forms a complete representation of the
eigenstates of the free particle Hamiltonian. Its projections on space ⟨r∣k, ℓ,m⟩ and momentum
⟨k, ℓ,m∣k⟩ may be found in Sakurai [797, p.398:eq.(7.5.21)]. This decomposition is known as the
Bauer expansion for a free plane wave [147, p.50:eq.(2.43)]:

eik⋅r = 4π
∞
∑
ℓ=0

ℓ

∑
m=−ℓ

iℓjℓ(kr)Y
∗
ℓm(k̂)Yℓm(r̂) =

∞
∑
ℓ=0

iℓ(2ℓ + 1)jℓ(kr)Pℓ(k̂ ⋅ r̂) , (8.88)

where we remind the important connection between Legendre polynomials Pℓ and spherical
harmonics Yℓm through their addition theorem [956, p.164:§5.17.2:eq.(9)] valid for any two unit-
norm vectors x̂, ŷ:

Pℓ(x̂ ⋅ ŷ) =
4π

2ℓ + 1

ℓ

∑
m=−ℓ

Y ∗ℓm(x̂)Yℓm(ŷ) , (8.89)
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It is also not inopportune to remind the definition [956, 133:§5.2:eq.(1)]:

Yℓm(θ,φ) =

¿
Á
ÁÀ2ℓ + 1

4π

(ℓ −m)!

(ℓ +m)!
Pmℓ (cos θ)e

imφ , (8.90)

with associated Legendre polynomials Pmℓ of degree ℓ and order m [3, p.332:eq.(8.1.2)].
Everything seems orderly until we replace (8.86) into the Schrödinger equation (8.73) and

ask about what reference frame are we in. Then, the whole illusion about obtaining a charming
one-electron equation unravels again, because the potential V is (parametrically) dependent on
the orientation of the molecule through the internuclear separation vector R. Much worse, the
orbital angular momentum operator L2 and projection Lz do not commute with the non-central
optical potential of the diatomic molecule. This means that neither ℓ nor m are good quantum
numbers: the matrix of the one-electron Hamiltonian cannot be diagonalised in the basis of
spherical harmonics. This means that the decomposition (8.86) of ψ(r) into spherical harmonics
will inevitably lead to a system of coupled equations between different partial waves uℓ.

A transition between various orbital angular momentum implies also a transfer of angular
momentum to the molecule, thus rotational excitations. Although we have eliminated the wor-
risome expansion in excited electronic states through the optical potential, we must reconsider
the electron-molecule system as a whole from a kinematic perspective. Given a frame of refer-
ence, the total angular momentum of the electron and molecule L = L + J and its z projection
M =m +M are constants of motion [835, p.130:§4.2.1].

Then, we can develop partial total wavefunctions∗ ψLMℓ0m0,J0
at determined L andM =M0+m0,

and which are solutions associated to the initial conditions of molecule of rotational momentum
J0,M0 and of an incident electron at an angular momentum ℓ0 and projection m0 in the chosen
reference frame [147, 442, eq.(9.165), p.5:eqs.(8–9)]:

ψLMℓ0m0
(r) =

4π

(2π)3/2
1

k0
∑
J,ℓ

iℓ
uLℓJ(r)

r
Y ∗ℓ0m0

(k̂0)Y
LM
ℓJ (r̂, R̂)χv(R) , (8.91)

YLMℓJ (r̂, R̂) = ∑
m,M

CLMℓm,JMYℓm(r̂)YJM(R̂) . (8.92)

These functions ψ serve to reconstruct the full scattering wavefunction Ψ in (8.99). They are
composed of partial radial functions uLℓJ of the electron and vibrational wavefunctions of the
atomic nuclei χv(R). Inclusion of vibrational states v′ ≠ v would have led to vibrational close-
coupling [394]. The angular momenta of the electron ℓ and molecule J are coupled together by
the Clebsch-Gordan coefficients CLJℓm,JM to form the function YLMℓJ [908, p.113:§2:eq.(4)]. We
remind the interpretation of Clebsch-Gordan coefficients as [956, p.235:§8.1.1]:

∣CLMℓm,JM ∣
2 corresponds to the probability that two subsystems of angular momenta (pro-

jection on z axis) ℓ(m) and J(M) couple to form a total system whose total angular
momentum is L (∣ℓ − J ∣ ≤ L ≤ ℓ + J) and projectionM =m +M .
The phase of CLMℓm,JM is conventionally fixed so that the coefficients are all real.

∗There are many terms that intervene in the definition of the total wavefunction Ψ in (8.99), and thus one
may choose to group the terms differently when expanding in partial waves. In this section, we did not follow
exclusively one author but took inspiration from a variety of authors to produce a coherent notation. Our main
sources are Canto and Hussein [147, §9.3], Itikawa and Mason [442], Lane [551] and Takayanagi and Itikawa
[908]. We kindly ask forgiveness to the reader who will have to juggle between those references to reconstruct the
formulae that we present.
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Furthermore, if the target molecule has a non-zero spin, one would also need to consider
different electron-molecule spin coupling schemes [as in 551, eq.(60) or (66)]. Despite the fact
that in their ground states, O2(

3Σ−g ) is a triplet, NO(2Π) is a (degenerate) doublet, N(4So) is a
quadruplet and O(3P ) is a triplet, we will utterly overlook the effect of spin coupling in the rest
of the thesis. The approximations made on the optical potential are far worse than negligence
of spin couplings.

Each system of total wavefunction ψLM is uncoupled to other total angular momenta L′M′.
However, each partial wave uLℓJ of a system satisfies an equation for vibrationally elastic transi-
tions v → v [442, eq.(12)]:

[
d2

dr2
−
ℓ(ℓ + 1)

r2
+ k2J]u

L
ℓJ(r) = 2∑

ℓ′J ′
⟨ℓJv∣V ∣ℓ′J ′v⟩LuLℓ′J ′(r) , (8.93)

which couples different ℓ′ and J ′ through the potential matrix elements [908, p.114:eq.(8)]:

⟨ℓJv∣V (r)∣ℓ′J ′v⟩L
HHM = ∫ Y

LM∗
ℓJ (r̂, R̂)V (r,R)YLMℓ′J ′ (r̂, R̂)∣χv(R)∣

2 d2r̂d3R . (8.94)

We remark their residual dependence on the radial coordinate r, and the integration over the
angular space spanned by the r̂ direction. Due to the rotational symmetry of the whole electron-
molecule system, the potential matrix elements are independent of the total projection M,
which justifies the suppression of this index from the partial waves uLZZMℓJ as well. The partial
wave equation (8.93) was obtained from the projection of Schrödinger’s equation (8.73) on the
coupled functions YLMℓJ . The wavenumber kJ in the rotational channel J is obtained from the
energy conservation law as on the right-hand side of (8.9):

k2J
2
+ EJ =

k20
2
¯
≡ε0

+EJ0 ⇔
k2J
2
= ε0 −∆EJ0→J , (8.95)

where the transition energy ∆EJ0→J = EJ − EJ0 is obtained from the rotational energy levels of
the molecule (given concretely later in chapter 11.2).

Each system (8.93) possesses as many different solutions as there are partial wave functions
uℓJ spanned in the discrete ℓ×J space which are energetically allowed (k2J > 0 in 8.95). As men-
tioned before, the independent set of solutions is formed by imposing different initial conditions
(labelled by the initial angular momenta ℓ0 and J0). The radial function uLℓJ,ℓ0J0 , bound to the
initial state ℓ0, J0, satisfies the boundary condition which comprises either the T , S or K matrix
elements. Here, we give the often-used S matrix asymptotic condition [675, eq.(27)]:

lim
r→∞

uLℓJ,ℓ0J0(r) =
i

2

⎛

⎝
δℓℓ0δJJ0 ĥ

−
ℓ0(k0r) −

√
k0
kJ
SLℓJ,ℓ0J0 ĥ

+
ℓ (kJr)

⎞

⎠
, (8.96)

which involve the Riccati-Hankel∗ functions of progressing ĥ+ and recessing ĥ− kinds, constructed
from spherical (Riccati)-Bessel functions. These functions (except jℓ) have different conventions
scattered in the literature. We chose to follow [139, p.198–200 for jℓ and yℓ and p.203 or h±ℓ ]
whose sign convention is revealed by their asymptotic behaviour for x→∞:

∗In the literature, not only do these functions have different conventions but even their names are misspelled:
‘Ricatti’ and ‘Haenkel’. With a pdfgrep, one can easily spot who got confused.
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jℓ(x) =
ĵℓ(x)

x
=

√
π

2x
Jℓ+1/2(x) ∼

sin(x − π
2 ℓ)

x
= jℓ=0(x) (8.97a)

yℓ(x) =
ŷℓ(x)

x
=

√
π

2x
Yℓ+1/2(x) ∼ −

cos(x − π
2 ℓ)

x
= yℓ=0(x) (8.97b)

h±ℓ (x) =
ĥ±ℓ (x)

x
= −yℓ(x) ± i jℓ(x) ∼

e±i(x−
π
2
ℓ)

x
= h±ℓ=0(x) . (8.97c)

The conventions for the normalisation of the partial waves uLℓJ,ℓ0J0 are many. Since (8.93)
is homogenous, one may multiply uLℓJ,ℓ0J0 by an arbitrary complex constant. What remains
invariant is the construction of the full scattering function Ψ (8.99) from which the scattering
amplitude is extracted at the asymptotic boundary condition. Compared to most references, we
decided to follow closely the convention of Canto and Hussein [147, eq.(4.180) and (9.101)]. The
partial components of the T matrix can be obtained from (8.81) with the decomposition of ⟨k′∣
and ∣ψ+⟩ into partial waves in (8.88) and in (8.91) [147, eq.(9.191)]∗:

TLℓJ,ℓ0J0 =
1

π
√
kJk0

∑
ℓ′J ′
∫ ĵℓ(kJr)⟨ℓ, J, v∣V (r,R)∣ℓ

′, J ′, v⟩LuLℓ′J ′,ℓ0J0(r)dr . (8.98)

The (rotational) close-coupling is noticeable from the sum on all ℓ′J ′ states that emerged from
the initial conditions ℓ0J0 and which have to “transit” to the final ℓJ . This is just a mark away
from the vibrational close-coupling which would also include a sum on various v′ states [compare
to, for instance, 671, eq.(35)].

In the end, the full wavefunction which scatters from a molecule initially at J0,M0 is given
by the sum of all possible L andM states and initial electron states ℓ0,m0 [29, eq.(11)]:

ΨJ0,M0(r) =
∞
∑
LM

∞
∑
ℓ0,m0

CLMℓ0m0,J0M0
ψLMℓ0J0(r,R) . (8.99)

Whence, one can get scattering amplitudes for rotational excitations J0,M0 → J,M [442, eq.(15)]:

fJ0M0→JM(k0,kJ) =

2πi
√
k0kJ

∑
LM

∑
ℓ0m0,ℓ

iℓ0−ℓY ∗ℓ0m0
(k̂0)C

LM
ℓ0m0,J0M0

(δℓ0ℓδJ0J − S
L
ℓJ,ℓ0J0

)∑
m

CLMℓm,JMYℓm(k̂J) . (8.100)

Most of the time, one fixes the reference frame so as to align k0 with the z axis, which sets
m0 = 0 (all other projections from Yℓ0m0≠0 are zero). We kept the general expression to preserve
a coherent perspective on the physical interpretation of all terms gathered in (8.100).

At last, the differential cross section which is of interest experimentally should be averaged
(isotropically) on M0 and summed over M to give [442, eq.(25)]:

dσJ←J0(k0 → kJ)

dΩ
=

1

2M0 + 1

J0

∑
M0=−J0

J

∑
M=−J

kJ
k0
∣fJ0M0→JM(k0,kJ)∣

2 . (8.101)

At the beginning of this chapter we stated that we shall not mingle with wavefunctions.
Indeed, from (8.100), our objectives of computing differential cross sections can be met just with
the S (or T or K) matrix. Now that we understand the decomposition of partial waves, we
present in chapter 9 a practical way to compute directly S matrix elements at a chosen distance
r⋙ a0 from a system of coupled ordinary differential equations of the first order.

∗We must advise the diligent reader who will check the references, that this relation depends on the normali-
sation of the radial wave uℓJ,ℓ0J0 . For the choice (8.96), we obtain the T matrix element. A distinct choice [671,
eq.(11)⇒eq.(35)] would have led to the K matrix of Morrison and Sun [675, p.154:eq.(55)].
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8.4.1 Phase shifts

The most treated case in textbooks is when the potential V (r) is central as can be approximated
for atomic targets. For a central potential, the scattering is purely elastic implying k0 = k = k′.
Also, the potential matrix elements are all diagonal in ℓ because of the orthonormality of spherical
harmonics. In other words, there is no coupling between uℓ functions with ℓ ≠ ℓ′. Each partial
wave satisfies an individual ordinary differential equation [834, p.30:eq.(51)]:

[
d2

dr2
−
ℓ(ℓ + 1)

r2
+ k2 − 2V (r)]uℓ(r) = 0 . (8.102)

Consequently, all matrices defined previously are diagonal in angular momenta which leads
to the definition of phase-shifts δℓ for each partial wave uℓ as linked by [906, eq.(4.15)]:

S��
ℓ

L ��*
m

M
ℓ�J,ℓ0��J0

= δℓℓ0e
i2δℓ , (8.103)

Kℓℓ0 = δℓℓ0 tan δℓ . (8.104)

The phase shifts δℓ (not to be confused with the Kronecker symbol δℓℓ0) are extracted from the
boundary conditions of the uℓ partial waves which, in accordance with the normalisation chosen
in the previous subsection (8.91 and 8.96), are expressed as [147, 906, eq.(4.14), eq.(2.39)]:

lim
r→∞

uℓ(r) = e
iδℓ cos δℓ (̂jℓ(kr) − tan δℓŷℓ(kr)) ∼ e

iδℓ sin(kr −
π

2
ℓ + δℓ) . (8.105)

With a given set of phase shifts, the scattering amplitude is expressed very simply in a
familiar form [26, eq.(2)]:

f(θ) =
i

2k

∞
∑
ℓ=0
(2ℓ + 1)(1 − ei2δℓ)Pℓ(cos θ) =

1

k

∞
∑
ℓ=0
(2ℓ + 1) sin δℓe

iδℓPℓ(cos θ) . (8.106)

This expression may be obtained from (8.100) by noticing that since J, J0,M,M0 are zero,
k0 = kJ and the Clebsch-Gordan coefficients impose: CLMℓm,00 = δℓLδmM and so ℓ0 = ℓ and m0 =m.
All that is left is the addition theorem of spherical harmonics (8.89) which gives the Legendre
polynomials Pℓ.

The square of this amplitude involves mixed ℓ, ℓ′ terms which may be reorganised into a
series of Legendre polynomials L according to the relationship [956, p.144:§5.6.2:eq.(9) with
m1 =m2 =M = 0]:

Pℓ(cos θ)Pℓ′(cos θ) =∑
L

(CL0ℓ0,ℓ′0)
2PL(cos θ) (8.107)

The differential, integral and momentum-transfer cross sections become [26, 127, eq.(22–24),
eq.(7)]:

dσ

dΩ
(θ) =

1

4k2

∞
∑
L=0

PL(cos θ)∑
ℓ,ℓ′
(2ℓ + 1)(2ℓ′ + 1)(CL0ℓ0,ℓ′0)

2(1 − ei2δℓ)(1 − e−i2δ
∗

ℓ′ ) , (8.108)

σ =
4π

k2

∞
∑
ℓ=0
(2ℓ + 1) sin δℓ sin δ

∗
ℓ e
−2I{δℓ} , (8.109)

σm =
4π

k2

∞
∑
ℓ=0
(ℓ + 1) (eiδℓ sin δℓ − e

iδℓ+1 sin δℓ+1) (e
−iδ∗ℓ sin δ∗ℓ − e

−iδ∗ℓ+1 sin δ∗ℓ+1) . (8.110)
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All the above cross sections are defined for elastic (or rotational) collisions. Since we model
electronically inelastic scattering with an absorption potential, our phase-shifts δℓ obtained by
integrating (8.102) will be complex. This aspect is included in the formulae above (8.108–8.110)
by the intervention of the complex conjugate δ∗ℓ of the phase shifts. From the imaginary part
of the phase shifts, one can calculate the absorption cross section representing electronically
inelastic scattering by [139, Chapter 18, p.133:eq.(23–24)]:

σa =
4π

(2k)2

∞
∑
ℓ=0
(2ℓ + 1)(1 − exp(−4I{δℓ})) . (8.111)

This relation is very useful to test the consistency of the model used for the absorption potential.
One can compare it to the sum of all electronic and ionisation cross sections of a given target
(this is done in fig. 11.3 on page 394).

8.5 Approximations

In the theoretical sections above, we presented a general treatment: using total wave functions,
operators and partial-wave decompositions which, in principle, should give an exact or accurate
description of the scattering of an electron by the molecule. Even the methodology behind the
optical potential [922, p.383–8:§19-d] may exactly represent the coupling between Nα different
equations, if calculated properly. Nevertheless, there is no secret that without taking approxi-
mations, one can never get close to obtaining a result in a practical way∗. In this section, we
present several approximations that will be exploited, in different ways, to generate our cross
sections. We start with the most popular one.

8.5.1 Plane-Wave Born

If we glance back at section 8.3 and steal (8.76), we can notice a recurrence relation between the
Green’s operator G of the full interaction Hamiltonian and G0 of the free Hamiltonian:

G = G0 +G0V G = G0 +G0V G0 +G0V (G0V G0) +G0V (G0V (G0V G0)) + . . . , (8.112)

which can be developed at will to an infinitely large number of terms. This corresponds to the
Born series [96], the truncation of which to a desired order yields the first, second, .. nth Born
approximation (G = G0 would be the zeroth order whereby no scattering occurs.).

To derive the scattering amplitude in the Born series, we recall that the T operator is defined
as:

T = V Ω+ = V (1 +G+V ) = V (1 +G0T ) , (8.113)

which we can unfold into the series:

T = V
®

First Born approx.

+V (G0V )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Second Born approx.

+V (G0V (G0V )) + . . . (8.114)

∗English has the advantage of permitting such semantically redundant utterances because of its two-sided
etymological lexicon.
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When restricting to the first term only, the T operator is merely replaced by the potential V so
that the scattering amplitude (8.82) in the first Born approximation∗ is:

f̃k′←k0(Ω) = −4π
2⟨k′∣V ∣k0⟩ = −

1

2π
∫ e−ik

′⋅rV (r)eik0⋅r d3r . (8.115)

In the last term, we see that instead of the scattering wavefunction ψ+, the electron’s state
is approximated by an unperturbed plane wave k0 which is why the first Born approximation
for elastic scattering is rightfully called the “plane-wave Born approximation” (PWBA) in the
literature [504, 911]. This terminology is contrasted with the distorted wave Born approximation
which uses waves distorted by the main part of a potential to calculate the scattering amplitude
from an auxiliary part of a potential [511]. A more distant cousin to the PWBA is the Glauber
or eikonal approximation [147, §5.2.1] which assumes that the trajectory of the electron in the
potential follows a straight line and the scattering amplitude is obtained as an integral over the
impact parameter and the straight distance through the potential. This approximation has given
fair results for atoms [137] and molecules [326] even at intermediate energies, though we have
not exploited it presently.

The (conjugate) product of two plane waves in (8.115) clears out an important dependence
of the amplitude, which is solely based on the momentum transfer: q ≡ k0 − k

′. The transition
matrix in the first Born approximation is thus equivalent to the Fourier transform of the potential
(in −q) [147, eq.(5.12–13)]:

T̃k′k0 = ⟨k
′∣V ∣k0⟩ =

1

(2π)3
∫ eiq⋅rV (r)d3r (8.116)

The plane-wave Born approximation is not restricted to potential scattering and may be used
in multi-channel collisions [147, §11.1.1] to represent the first-order transition matrix element
from an initial ∣ki⟩ × ∣Ψi⟩ to a final state ∣kf ⟩ × ∣Ψf ⟩:

ff←i(ki,kf) =∑
s
∫ Ψ∗f(xm,R, s)e

−ikf ⋅r′V (r′, r; s, xm,R)e
iki⋅rΨi(xm,R, s)d

3Nxm d3rd3r′ d3R .

(8.117)
One may include non-local interactions r′ ≠ r, the internal coordinates of the bound electrons
xm, the internuclear separation R and different spin projections s = ±1/2 when the electron’s
spin couples with the target’s to form a total spin S; as required by the full interaction potential
(8.2). This expression (8.117) will serve as a starting point for the modelling of electronically
inelastic collisions as described in chapter 11 sections 11.4.1 and 11.5.1. One may consult the
introduction in Shimamura and Takayanagi [834, chapter 1:§6.2] for further information about
the first Born’s approximation for inelastic channels.

The validity of Born’s approximation is discussed in chapter 10.1. It assumes that the interac-
tion is qualitatively “weak”. The distortion effect of the potential on the electron’s wavefunction
will be smaller (relatively) when the energy (wavenumber) of the electron is high (ε0 ≫ V ) and
when the momentum-transfer is small (q ≪ k). Thus, Born’s approximation (any) tends to be
by default a high-energy approximation. Nonetheless, the partial-wave decomposition discussed
previously enables one to delineate situations where the electron’s wavefunction gets weakly dis-
torted by the potential due to the strongly repulsive centrifugal potential +ℓ(ℓ + 1)/r2 for ℓ > 0
waves which reduces the amplitude of the scattered wave in the region where the interaction

∗In the rest of this thesis, all (but not exclusively all) quantities based on the first Born approximation will
be noted with a tilde˜as f̃ .
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potential is strongest. This justifies also the use of Born’s approximation at very low energies
for rotational scattering as proposed by Gerjuoy and Stein [323].

This partial wave decomposition opens the way to a partial use of the plane-wave Born
approximation in (8.98) by replacing those radial functions uLℓ′J ′,ℓ0J0 , whose distortion is weaker,
by their free-wave analogues δℓ′ℓ0 ĵℓ0 . Weak distortion naturally betokens little change from
a wave’s initial conditions, setting thereby ℓ0 = ℓ

′ . The plane-wave-Born-approximated T̃ℓℓ0
partial-wave matrix element reads [671, p.2536:eq.(A2)]:

T̃ℓJ,ℓ0J0 =
2

π
√
kJk0

∫ ĵℓ(kJr)⟨ℓJv∣V ∣ℓ0J0v⟩̂jℓ0(k0r)dr . (8.118)

This approximation can be used to compute matrix elements between weakly coupled channels
when ℓ ≠ ℓ0 and ℓ≫ 0 ∨ ℓ0 ≫ 0. Of interest, many integrals involving spherical Bessel functions
and polynomials are developed in Bloomfield et al. [85].

Central Potential

In the simple case of a central potential, the plane-wave Born approximation takes a very simple
form. The scattering amplitude (8.115) reduces to (8.88) [799, eq.(5)]:

f̃k′←k0(Ω) = −
2µ

h̵2q
∫
∞

0
sin(qr)V (r)r dr . (8.119)

The phase shifts are obtained from (8.118), remembering that Tℓℓ = (1 − Sℓℓ)/2πi as [147,
eq.(2.72)]:

1 − ei2δ̃ℓ

−2i
= eiδ̃ℓ sin δ̃ℓ =

sin δ̃ℓ ≃

δ̃ℓ ≈

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

− 2k∫
∞

0
V (r)j2ℓ(kr)r

2 dr . (8.120)

Consistence with (8.119) is maintained [680, p.89:V§2] if (8.120-top) is directly inserted into
(8.108) (replacing eiδℓ sin δℓ by eiδ̃ℓ sin δ̃ℓ). It is interesting to note that if one tries to resolve
δ̃ℓ from the topmost equality in (8.120), the imaginary part of δ̃ℓ (if the potential is real) will
be negative. This, implies unphysical creation of scattering flux. Consequently, the differential
cross section derived from the Born approximation will overall lie in overestimation (σ̃ too large,
figure 10.3 is a very good example). There are many ways to interpret this. For instance, that
the effect of distortion is to conserve the flux in scattering. An electron would be accelerated in
the potential of the target and thus have a local wavenumber k superior to the incident k0, which
would reduce the overestimated phase shifts in (8.120) (introduce a dependence of k(r) ≠ k0 in
jℓ(k(r) r)), and the amplitude in (8.106). Since (differential) cross sections obtained from the
plane wave Born approximation are systematically overestimated, we could try to scale them
down in order to improve the applicability of the PWBA [505, 911]. We will exploit this multiple
times in chapter 11.

When the integral in (8.120) surpasses 1 (far beyond the region of validity of the PWBA),
one can use the approximation on the last row, which will guarantee that the phase shift δ̃ℓ stay
real for a real potential (prevent mathematically-allowed trespassing in the complex domain).

For direct applications of the Born approximation for DCS, scattering amplitudes and phase
shifts on atomic potentials, please consult chapter 14 of part III.
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8.5.2 Adiabatic Nuclei

The plane wave Born approximation simplifies considerably the calculation of scattering ampli-
tudes and matrix elements. There are, however, two main criticisms to be addressed. First, this
simplification is too crude to obtain worthy results at intermediate energies of several tens of
eV. Second, despite the crudity, the dread lurking behind the calculation of the potential matrix
elements ⟨ℓ′J ′v∣V ∣ℓJv⟩ (8.94), still looms over us in equations (8.118) and (8.93). To be sure,
Born’s approximation is practical but not pertinent to our needs.

What is mostly relevant, much more than approximating the scattered wave by the free wave,
is that the motion of nuclei is much slower than the flyby time of the electron in the scattering
region. An electron above 5 eV will scatter in less than ∼10−15 s whereas the vibrational period
of molecules is around 10−14 s and the rotational period is even longer ∼10−12 s [834, p.497:§2.1].
Thus, one may assume that during the collision, the nuclei stay fixed. This is in essence the
adiabatic nuclei approximation∗ introduced by Chase [173]. Lane [551, eq.(32–33)] distinguishes
two stages of the approximation: the fixed-nuclei and then the adiabatic-nuclei. First, the
scattering amplitude (or T matrix) is calculated for an immobile molecule. Then, those are
averaged over the internuclear separation vector R. Mathematically, these two stages are clearly
marked on equation (8.127) below. Succinctly:

The adiabatic nuclei approximation replaces rovibrational coupling by averaging.

Its validity relies upon three conditions [551, p.35:bottom-right]:

1. The electron’s incident energy is much larger than the excitation threshold of the rovibra-
tional transition (ε≫∆EJ0→J);

2. The long-range potential is not too strong nor too extended;

3. The scattering is nonresonant.

Under these conditions, the electron’s angular momentum ℓ does not couple with the rota-
tional quantum J , but it couples with the orientation of the internuclear axis R̂ to define the
projection:

Λ ≡ ℓ ⋅ R̂ , (8.121)

which becomes a new constant of motion.
To take advantage of this approximation, one can define and calculate the partial waves uΛℓ,ℓ0

in the molecular body frame of reference where the molecular axis R̂ ∥ z as represented in 8.2
[442, eq.(18)].

[
d2

dr2
−
ℓ(ℓ + 1)

r2
+
k2

2
]uΛℓ,ℓ0 =∑

ℓ′
⟨ℓ∣V ∣ℓ′⟩ΛuΛℓ′,ℓ0 . (8.122)

The potential matrix elements are now obtained as [671, eq.(20)]:

⟨ℓ∣V ∣ℓ′⟩Λ = ∫ Y ∗ℓΛ(r̂)V (r)Yℓ′Λ(r̂)dr̂ =
∞
∑
l=0
Vl(r)

√
4π

2l + 1
∫ Y ∗ℓΛ(r̂)Yl0(r̂)Yℓ′Λ(r̂)dr̂

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡(−)ΛG(l,0;ℓ,−Λ;ℓ′,Λ)

, (8.123)

∗also called “(sudden-)impulse” approximation.
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with Vl(r) defined in (8.31) and where the addition theorem (8.89) and Yℓ0(0,0) =
√
(2ℓ + 1)/(4π)

from (8.90) have been used. The integral of three spherical harmonics is known as the Gaunt
coefficient G(l, µ; ℓ,m; ℓ,m′) and equals [956, p.148:§5.9:eq.(6)]:

∫ Yℓm(Ω)Yℓ′m′(Ω)Ylµ(Ω)dΩ =

√
(2l + 1)(2ℓ + 1)(2ℓ′ + 1)

4π
(
l ℓ ℓ′

0 0 0
)(

l ℓ ℓ′

µ m m′
) ,

(8.124)
with the Wigner-3j coefficients related to the Clebsch-Gordan coefficients as [956, p.236:§8.2.1]:

(
L ℓ ℓ′

M m m′
) ≡
(−)M+(ℓ−ℓ

′)
√
2L + 1

CL−Mℓm,ℓ′m′ . (8.125)

From the properties of those coefficients, we can already edict the following rules applying
on the potential matrix elements:

The l harmonic of the potential matrix element ⟨ℓ∣VlPl∣ℓ′⟩Λ ≠ 0 if :

ℓ + ℓ′ + l is even⇒ ⟨ℓ∣V ∣ℓ′⟩Λ = ⟨ℓ∣V ∣ℓ′⟩−Λ ,
∣ℓ − ℓ′∣ ≤ l ≤ ℓ + ℓ′ .

Because of the first selection rule, the potential matrix element is independent of the sign of
Λ. Also, for homonuclear diatomic molecules, since l is always even (see p. 284), this means
that their potential couples angular momenta ℓ, ℓ′ of the same parity. For homonuclear diatomic
molecules, one can therefore distinguish two independent S matrices: SΛ g

ℓ,ℓ0
and SΛu

ℓ,ℓ0
which

respectively couple even g (“gerade”) and uneven u (“ungerade”) ℓ, ℓ0 pairs.
The system of equations (8.122) is similar to (8.93) but simpler to evaluate. Once the T

matrix elements in the body frame have been evaluated, they have to be transformed back into
the laboratory frame (where z ∥ k̂0) [551, 835, p.38:eq.(40), p.137:eq.(94)] where the total state
LM of the electron-molecule system will be decomposed again into the rotational state J,M of
the molecule and the ℓ,m angular-momentum state of the electron as in (8.98).

Rotational (and optionally vibrational Onda and Truhlar [718, eq.(11)]) dynamics are then
introduced during the frame transformation of the T matrix. This makes the value of the
wavenumber k in the body-frame equation (8.122) ambiguous. Morrison et al. [671, p.2524]
proposed to take k =

√
k0kJ in order to respect the threshold law of the J0 → J cross section at

low electron energies.
The transformation [675, p.151:eq.(37)] of the body frame T -matrix to the laboratory frame

involves two steps: (1) rotation of the molecular axis R̂ to the axis of the initial electron’s
direction k̂0 [551, p.38:eq.(40)] and (2) integrating over the initial (v0, J0,M0) and final (v, J,M)
rovibrational states of the molecule [551, eqs.(32–33)]:

TLMℓJ,ℓ0J0 = ∫ Y ∗JM(R̂)χ
∗
v(R)∑

Λ

Dℓ
mΛ(R̂)T

Λ
ℓ,ℓ0D

ℓ0 ∗
Λ0 (R̂)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fixed-Nuclei approx.

χv0(R)YJ0M0(R̂)d
3R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Adiabatic nuclei approx.

. (8.127)

The Dℓ
mm′ functions are Wigner-D matrices for a transformation between the body frame to the

lab frame coordinates [see 784, p.52].
Putting all things together, the scattering amplitude for the process J0M0 → JM in the

adiabatic nuclei approximation is [551, eq.(44–5)]:
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fJM←J0M0(k0,kJ) =
−(2π)2
√
k0kJ

∑
ℓℓ0m

iℓ0−ℓY ∗ℓ00(k̂0)Yℓm(k̂J) (8.128)

×∑
L
CLM0

ℓ00,J0M0
CLM0

ℓm,JM

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lab decoupling: LM→ JM, ℓm

∑
Λ

√
(2J0 + 1)(2J + 1)

(2L + 1)
CLΛℓ0Λ,J00C

LΛ
ℓΛ,J0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Body → Lab coupled

TΛ
ℓℓ0 .

When computing the differential cross section for the rotational sum and average (8.101), and
summing over all transitions J0 → J for any J , a simplification arises from the Clebsch-Gordan
coefficients coupling J with ℓ. Neglecting the variation of kJ with J , one obtains the compact
form for the differential cross section for all rotational processes which is independent of J0 [673,
eqs.(2.19–23)]:

dσ

dΩ
(θ) =

4π2

4k2

∞
∑
L=0

PL(cos θ)∑
ℓ0,ℓ

∑
ℓ′0,ℓ

′

√
(2ℓ0 + 1)(2ℓ′0 + 1)(2ℓ + 1)(2ℓ

′ + 1)

2L + 1
iℓ0−ℓ(−i)ℓ

′

0−ℓ
′

×CL0ℓ00,ℓ′00
CL0ℓ0,ℓ′0 ∑

Λ,Λ′
CLΛ

′−Λ
ℓ0−Λ,ℓ′0Λ′

CLΛ
′−Λ

ℓ−Λ,ℓ′Λ′T
Λ
ℓ,ℓ0(T

Λ′

ℓ′,ℓ′0
)∗ . (8.129)

This equation is the master equation that we used to compute our vibrationally elastic DCS
for diatomic molecules. In later chapters, we will abbreviate this DCS by “ℓCC” and refer to it
as the angular-momentum (ℓ) close coupling (in the adiabatic nuclei approximation). The TΛ

ℓ,ℓ0
matrix elements correspond to the ones calculated in the body frame. Those are obtained from
an algorithm presented in section 9.1.2.

8.5.3 Multiple scattering

The adiabatic-nuclei approximation with angular-momentum coupling in the body-frame is a
powerful approximation because it considerably simplifies the treatment without sacrificing the
accuracy of the cross sections obtained. Nevertheless, to build the DCS from the T matrix in
(8.129) requires a long loop of sums that, even when optimised, can take very long. As the
electron energy increases, this gets worse as more partial waves ℓ participate to the scattering.
On top of that, when the wavelength of the electron is reduced, one also needs to resolve better
the nuclear singularities; thus requiring higher potential harmonics (increase l). In that case, it
is better to find an alternative way to build the elastic scattering amplitude and DCS.

At higher energies, the T matrix becomes quite sparse and coupling of angular momenta
is reduced to a few only. Physically, when the electron’s wavelength becomes smaller than the
internuclear separation, one may imagine another kind of approximation that is based on the
coherent interference between waves that are scattered at different nodes corresponding to the
position of atomic nuclei surrounded by their diffuse electron cloud. This is named intramolecular
multiple or multicentre scattering.

Just like the Born approximation, multicentre scattering can be developed in a series [526,
eq.(13)]. One can separate the diatomic potential into two contributions representative of each
atom A and A′: V (r) = VA(r) + VA′(r). If one injects this decomposition into (8.113), one gets:

T = VA + VA′ + VAG0VA + VAG0VA′ + VA′G0VA + VA′G0VA′ + . . . (8.130)

The atomic potential would not necessarily have to be central or non-overlapping. However,
as we saw in 8.4.1, there is considerable ease to work with spherically symmetric potentials, in
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which case the scattering amplitude can be solved exactly. If one supposes that VA and VA′ are
unperturbed central atomic potentials centred around ±R/2. One can perform a resummation
in equation (8.130), of all terms that involve only VA or VA′ but no mixing. We can write:

T = TA + TA′ + TA′G0TA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡T 1

A′A

+TAG0TA′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡T 1

AA′

+ . . . (8.131)

which is now a series extending only with mixed terms. We see that we replaced VA by TA
in the first-order mixed terms, which regroup all terms that scattered about A up to ‘infinite
times’ (∑∞n=0 VA(G0VA)

n). This procedure is akin to the distorted wave Born approximation
where the waves injected for calculating T matrix elements are waves scattered from individual
atoms, instead of plane waves as in the first Born approximation. However, as opposed to the
distorted wave approach where stronger emphasis is put on one part of the potential (V1 more
important than V2), in multicentre scattering, there is equal participation of waves distorted by
each of the VA,A′ potentials. We see indeed that if we project ⟨k′∣ and ∣k0⟩ on the resummed T
matrix (8.131), and recalling the link between the Møller operator(s) and the T operator (8.82),
we would obtain [390, eq.(29)]:

⟨k′∣T ∣k0⟩ = ⟨k
′∣VA∣ψA⟩ + ⟨k

′∣VA′ ∣ψA′⟩ + ⟨ψ
−
A′ ∣VA′G0VA∣ψA⟩ + ⟨ψ

−
A∣VAG0VA′ ∣ψA′⟩ , (8.132)

where ∣ψA,A′⟩ = Ω+∣k0⟩ (and ⟨ψ−A,A′ ∣ = ⟨k
′∣(Ω−)†) are wavectors obtained from the scattering of

an incident (outgoing) plane wave ∣k0⟩ (⟨k′∣) on the atoms A,A′ centred at ±R/2:

⟨r∣ψA,A′⟩ = e
±iR

2
⋅k0ψA,A′(r ∓R/2) . (8.133)

The multiplication by a shifted phase comes from the incident plane wave which changes the
initial conditions of scattering about A or A′. This shifting will provoke the emblematic coherent
interference pattern in multicentre scattering through the matrix element:

⟨k′∣VA∣ψA⟩ = ∫
e−ik

′⋅r

(2π)3/2
VA(r −

R

2
)ψA(r −

R

2
)e+ik0⋅R2 d3r (8.134)

=
ei(k0−k′)⋅R2

(2π)3/2
∫ e−ik

′⋅(r−R
2
)VA(r −

R

2
)ψA(r −

R

2
)d3r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡−fA/4π2

, (8.135)

where we see the appearance of the momentum-transfer’s shifted projection q⋅R/2 = (k0−k
′)⋅R/2.

The potential VA projected in space is defined as the function that takes as argument the relative
position with respect to the atom A located at +R/2.

To obtain the DCS from the T matrix we recall so far that:

• In a close-coupling approximation, the DCS would be obtained by the matrix elements
between final and initial states of the total electron-molecule system [147, p.418:eq.(9.192)];

• In the first Born approximation, ... by integration of the first order T matrix (≡ V ) over
the “electron×molecule” initial and final states (8.118);

• In the adiabatic nuclei approximation, ... by integrating T matrix elements over the molec-
ular rovibrational state;

• And in the present multicentre scattering, ... by averaging the DCS (i.e. the square ∣Tk′k0 ∣
2)

over the molecular orientation.
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The distinction is subtle, but essential. With adiabatic-nuclei, the electron transfers instanta-
neously an amount of kinetic momentum which prongs the molecule from an initial J0 to a final
J state. To obtain the total elastic cross section, one has to sum over all allowed J final states.
In multiple scattering, there is virtually no deposition of kinetic momentum, it is like an oriented
mini-crystal (of two atoms) giving a scattering pattern which must be then averaged over the
isotropic distribution of the mini-crystal. This is why the averaging over R is performed on the
fixed-nuclei DCS and not over the T -matrix as in (8.127). Having said that, the multicentre
isotropically averaged DCS may be organised as [920, eq.(10)]:

dσ

dΩ
= IS + ISS
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

IAM

+ISD + ID + IDD + . . . (8.136)

The labelled terms represent[390, eq.(32)]:

Single Pure : IS = ∫
dR̂

4π
∣fA∣

2 + ∣fA′ ∣
2

Single Interference : ISS = ∫
dR̂

4π
2R{fAe

+iR
2
⋅q f∗A′e

−(−i)R
2
⋅k0}

Single-Double Interf. : ISD =
1

−4π2
∫

dR̂

4π
2R{(fAe

i(k0−k)⋅R2 + fA′e
i(k0−k)⋅−R2 )∗

×(∫ d3k (−4π2)⟨ψ−A′ ∣VA′ ∣k⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=fA′ exp(i(k−k′)⋅R2 )

⟨k∣G0∣k⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(ε0+iϵ− k2

2
)−1

(−4π2)⟨k∣VA∣ψA⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=fA exp(i(k0−k)⋅R2 )

+ [A↔ A′])

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

and so on ... Notice the striding (−4π2) factor coming from the conversion between T matrix
elements and scattering amplitudes fA,A′ .

The simplest approximation to multiple scattering is called the independent atom model
(IAM) (8.136) which regroups the sum of separate atomic cross sections IS = ∣fA∣2 + ∣fA′ ∣2 and
their coherent interference term ISS.

Originally, the averaging is made on the molecule’s orientation. If one wants to include vibra-
tional motion, an average on the internuclear separation can be used as well using the first vibra-
tional level solution of the simple harmonic oscillator [264, p.221–5:table 6-1]. Those functions
are scaled with the vibrational angular frequency ω and reduced mass M̄ =MAMA′/(MA+MA′)

of the diatomic molecule. The integration yields [526, p.1917:eq.(34)]:

ISS = 2R

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fA f
∗
A′ ∫

d3R

4π

√
ωM̄

h̵π
exp(−

ωM̄

h̵
(R − R̄)2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈∣χv=0(R)∣2

eiq⋅R

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 2R{fA f
∗
A′}∫

∞

−∞
e−x

2

j0 (q(
x
√
h̵

√
ωM̄

+ R̄))
dx
√
π
≃ 2R{fAf

∗
A′} j0(qR̄) exp(−

h̵2q2

2M̄

1

2h̵ω
)

Thence, the explicit formula of the independent atom model for scattering from a diatomic
molecule of equilibrium separation R̄ and with a momentum transfer q = 2k sin θ/2 is [420, eq.(2)]:

dσIAM

dΩ
= ∣fA(θ)∣

2 + ∣fA′(θ)∣
2 + 2R{fA(θ) f

∗
A′(θ)}j0(qR̄) exp(−

q2

4M̄ω
) , (8.137)
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in atomic units; and for homonuclear molecules fA = fA′ the compact form [419, eq.(11)]:

Homonuclear IAM : 2∣fA∣2 [1 +
sin(qR)

qR
exp(−

q2

4M̄ω
)] . (8.138)

The IAM (8.137) starts to give valid DCS at energies above ≳ 150 eV. Those latter need,
however, to be scaled down by a screening correction s which decreases with the incident elec-
tron’s energy (see table 11.3 on p. 402). This is due to the fact that the IAM, although yielding
qualitatively good DCS shapes, does not obey the optical theorem (7.29) [526, 1915:eq.(10–11)].

8.5.4 Relativistic

Normally, in the relativistic domain of energies, instead of solving Schrödinger’s equation, one
should solve Dirac’s equation which involves the 4-component spinor of the electron [804, §3.2].
The wavenumber k is relativistically related to the kinetic energy ε0 and velocity v as:

h̵k =mevγ =
β

c
(ε0 +mec

2) or k =
βγ

α
a.u. ⇒ k2 =

γ2 − 1

α2
a.u. (8.139)

Since the relativistic DCS differs from the classical Rutherford scattering only by a factor of
γ2 and by (1 − β2 sin2 θ2) for the relativistic spin correction [716, p.902–3:eq.(1A-102–3)], we use
a convenient conversion factor between a non-relativistic to an approximately relativistic DCS:

dσrel

dΩ
(θ) =

dσnon−rel
dΩ

(θ) (
ε0
mec2

+ 1)
2

(1 − β2 sin2
θ

2
) . (8.140)

We do not consider recoil effects nor nuclear form factors which start affecting the DCS at
large angles above 100MeV [803a, p.165].

8.5.5 Inter-Electron scattering

The scattering of two individual electrons is not an approximation per se. Nevertheless, it is used
in binary-encounter models to represent the local interaction of the impinging electron with a
bound electron. This is used in the absorption model 8.2.4 and for approximating the ionisation
cross section 11.5.3. Therefore, we cover here the basic formulae giving the differential cross
sections of two colliding electrons in different reference frames and in the relativistic domain.

Expressed in the centre of mass frame, the scattering into an angle of θ between two frontally
colliding electrons of relative velocity∗ ←→v (in atomic units h̵/a0me) and arbitrary spin orientation
(unpolarised beams) is given by Mott and Fowler’s [679] formula [680, p.302:eq.(25-26)]:

dσ

dω
=
a20
←→v 4

⎛

⎝

1

sin4 θ/2
+

1

cos4 θ/2
−
cos( 1

←→v log(tan2(θ/2)))

sin2 θ/2 cos2 θ/2

⎞

⎠
(8.141)

The solid angle dω = sin θ dθ dφ is expressed in the centre of mass frame. The first term in
the cross section represents classical Rutherford scattering whereas the second term invokes the
possibility that the two electrons exchange places due to their indistinguishability. The last term
represents an interference due to the fact that the wave functions (scattering amplitudes) of the
two electrons are summed coherently before being brought to their square modulus as in (8.5).

∗This is in Galilean kinematics the difference in velocities of the electrons, but not the velocity in the relative
frame! In that latter case, a factor 16 would appear next to the velocity as given in some references [821,
p.350:eq.(15.5.36)] and their eq.(15.5.35) which lacks a 1/4 coefficient somewhere.
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Equivalently, this cross section can be expressed differentially with respect to the energy
ε2 of the secondary electron assumed initially at rest in the fixed frame. This implies that the
momentum transfer q = 2kr sin θ/2 (in the relative frame) is directly converted into kinetic energy
pertaining to the ejected electron: ε2 = h̵2q2/2me. Since the initial momentum k of the primary
electron is twice its value kr in the relative frame, k = 2kr we have:

ε2 =
(h̵2kr)

2

2me
sin2

θ

2
= ε0 sin

2 θ

2
⇒ dε2 = ε0

1

2
2 sin

θ

2
cos

θ

2
dθ =

ε0
2
sin θ dθ (8.142)

Replacing this relation into (8.141) and integrating over the azimuthal angle φ yields the
alternative expression in the fixed frame [412, 605, eq.(1), eq.(7)]:

dσ

dε2
=

2πa20
(2ε0/Eh)2

2

ε0

⎛
⎜
⎝

ε20
ε22
+

ε20
(ε0 − ε2)2

−
ε20 cos(

√
Eh
2ε0

log(ε2/(ε0 − ε2)))

ε2(ε0 − ε2)

⎞
⎟
⎠

=
4πa20
(ε0/Ryd)

Ryd
⎛
⎜
⎝

1

ε22
+

1

(ε0 − ε2)2
−
cos(
√

Ryd
ε0

log(ε2/(ε0 − ε2)))

ε2(ε0 − ε2)

⎞
⎟
⎠

(8.143)

The presence of the Rydberg unit (Ryd) absorbs the factor 2 associated to the conversion
between velocities and energies (hartree: Eh) expressed in atomic units.

The cosine function in the numerator of the interference term is usually designated as ϕ(θ;←→v )
in the relative frame or ϕ(ε2; ε0) in the fixed frame:

ϕ(θ;←→v ) = cos(
1
←→v

ln(tan2
θ

2
)) (8.144a)

ϕ(ε2; ε0) = cos
⎛

⎝

√
Ryd

ε0
ln

ε2
ε0 − ε2

⎞

⎠
(8.144b)

This function ϕ(ε2; ε0) is plotted for various incident energies ε0 in figure 8.4a between
ε2/ε0 = 10−6 and 0.5; the upper limit of ε2 beyond which the formula is symmetrical due to
exchange. Essentially, as ε2 → 0 the function oscillates between ±1, with slower oscillations
as ε0 ≫ Ryd until they become almost imperceptible. Typically, this formula is applied when
←→v ≫ 1 (or ε0 ≫ Ryd) so that the cosine in the numerator is replaced by 1 in most expressions
in the literature [412, 507, 508, 968, eq.(26), eq.(3), eq.(1)]. For direct comparison, we also show
in figure 8.4b the interference function between a free and a pseudo-free electron bound by an
energy B in an atomic orbital. This case will be treated later in sections 10.2.2 and 11.5.2.

Generalised to the relativistic domain, Mott’s cross section is named after Møller [657,
eq.(74)]∗:

dσMøller

dω
= (

a0α
2(1 + β2r )

4γrβ2r
)

2 ⎡⎢
⎢
⎢
⎢
⎣

1

sin4 θ2
+

1

cos4 θ2
−

1

sin2 θ2 cos
2 θ
2

+ (
2β2r
1 + β2r

)

2
⎛

⎝
1 +

1

sin2 θ2 cos
2 θ
2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(8.145)
All relativistic Lorentz factors γr and βr are expressed in the relative (centre of mass) frame.

The appearance of the fine-structure constant α is due to the (inverse of the) speed of light
expressed in atomic units (see 7.38).

∗There is a mistyped exponent in Schwabl [821, eq.(15.5.34)], the last term should be a 1/ sin2 instead of
XXX1/ sin4
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(a) Coulomb-wave interference function from Mott’s scattering between free electrons. Oscillations are
stretched as the incident velocity ε0 increases. The middle-line of the graph at ε2/ε0 = 0.05 separates
logarithmically scaled low values from linearly scaled values up to one half.
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(b) Coulomb-wave interference function from modified Mott’s scattering between free and pseudo-free
(bound) electrons. No oscillations are observed for B ⪆ 0.6656 eV=Bco, the critical binding energy. The
function is monotonically increasing and reaches a minimum at ε0 ≈ 9.1863B = εϕ,min.

Figure 8.4: Coulomb-wave interference functions between two electrons.
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As opposed to Mott’s cross section (8.141) which is based on an exact treatment of the
Coulomb wave interference in a non-relativistic, Møller’s cross section (8.145) is expressed in the
first Born approximation using thus Dirac plane-waves instead of relativistic Coulomb waves.
The difference is that the interference function ϕ(θ,←→v ) was replaced by 1; its asymptotic value
for (←→v )→∞.

Again, one can choose to express this cross section in terms of the energy of the secondary
electron (in the fixed frame where it is initially at rest). The relation (8.142) can be shown to hold
relativistically as well, an elegant way is to remember that the kinetic energies of the ‘primary’
and ‘secondary’ electron which are equal in the centre of mass, transform in opposite ways with
respect to the momentum in the relative frame (see Lorentz transformation in appendix A-
(A.6&A.7)), this implies that their difference is purely due to the momentum exchange 2pr sin

θ
2 ,

which is an invariant of the collision [58, p.324].
When moving to the fixed frame, from equation (A.6) in the appendix A of the previous part

(using V⃗ ⋅ p = −mev
2
rγr), we can convert:

β2r =
γ − 1

γ + 1
and γ2r =

γ + 1

2
, (8.146)

which leads to a more aesthetic presentation [58, 605, eq.(81.14), eq.(13)]:

dσMøller

dε2
=
2πa20α

2

β2
[
1

ε22
+

1

(ε0 − ε2)2
−

1

ε2(ε0 − ε2)
+ (

γ − 1

γ
)2(

1

ε20
+

1

ε2(ε0 − ε2)
)] , (8.147)

=
2πa20α

2

β2
[
1

ε22
+

1

(ε0 − ε2)2
−

2γ − 1

γ2ε2(ε0 − ε2)
+

1

(ε0 +mec2)2
] . (8.148)

In case the notation is not explicit enough, β and γ are now linked to the incident kinetic
energy ε0 in the fixed frame.



Chapter 9

Numerical algorithms

The present chapter regroups various numerical methods that are used in order to compute the
quantities necessary for the generation of differential cross sections (DCS). In particular, we
describe concretely how we obtain in the partial-wave decomposition: the phase shifts δℓ for
central potentials and the S-matrix for diatomic potentials.

9.1 Variable Phase Method

We start with the simplest case of central potentials. For constructing the DCS one only re-
quires the knowledge of the phase shifts δℓ. In principle, they are obtained from the asymptotic
behaviour of the radial functions uℓ(r) at r → ∞. However, there exists a more efficient and
accurate way to calculate those phase shifts, as described in detail in Calogero [139], through
their generalisation as variable phase functions of the radial coordinate δℓ(r). They are defined
such that [139, p.8–10:eqs.(3, 6&11)]:

uℓ(r) = A(̂jℓ(kr) − ŷℓ(kr) tan δℓ(r)) , (9.1)
Asymptotically : lim

r→∞
δℓ(r) = δℓ , (9.2)

At the origin : lim
r→0

δℓ(r) = 0 ; (9.3)

with the normalisation factor A defined in (8.105). If one introduces this form into the second
order differential equation satisfied by uℓ(r) (8.102), after some manipulations, one arrives to
the heart of the differential equation satisfied by the variable phase [139, p.11:eq.(14–5)]:

dδℓ(r)

dr
= −

2

k
V (r) (cos δℓ(r)̂jℓ(kr) − sin δℓ(r)ŷℓ(kr))

2
, (9.4)

which, for ℓ = 0 ∶
dδ0(r)

dr
= −

2

k
sin2(kr + δ0(r)) (9.5)

with the simple boundary condition (9.3). Since, as k increases for higher electron energies, the
spherical Bessel waves have shorter oscillations, we use a different variable of integration: x ≡ kr.
In this space (δ̌ℓ(kr) = δℓ(r)):

dδ̌ℓ(x)

dx
= −U(r) (sin δ̌ℓ(x)̂jℓ(x) − sin δ̌ℓ(x)ŷℓ(x))

2
, (9.6)

with the reduced potential: U(x) ≡ V (x/k)2/k2.

315
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9.1.1 Asymptotics

The behaviour of spherical Bessel functions near the origin is given by:

jℓ(x) ∼
xℓ

(2ℓ + 1)!!
∼

xℓ
√
2(2ℓ+1e )

(ℓ+1)
for x≪ 1 (9.7)

Considering Stirling’s approximation n! ∼
√
2πn(n/e)n, the double factorial when ℓ ≫ 1

approaches:

(2ℓ + 1)!! ∼

√
2π(2ℓ + 1) ((2ℓ + 1)/e)2ℓ+1

√
2πℓ (ℓ/e)ℓ

∼
√
2e(

2ℓ + 1

e
)
ℓ+1

, (9.8)

within 5% for ℓ > 3 and 2% for ℓ > 8.
We can thus derive a rapid evaluation of an outer radius rℓ below which jℓ(krℓ) < ϵ ; ∀r < rℓ :

(krℓ)
ℓ

(2ℓ + 1)!!
< ϵ⇒ krℓ < (ϵ

√
2e)1/ℓ (

2ℓ + 1

e
)
1+1/ℓ

(9.9)

The actual value jℓ(krℓ) will always be smaller for all ℓ > 0 than any desired ϵ, and will decrease
drastically for large ℓ.

We use (9.9) for various purposes.

1. If we want to compute the phase shift for the ℓ partial wave, we integrate the differential
equation starting from rℓ instead of 0.

2. To estimate the maximal ℓmax order beyond which we use the analytical Born approxi-
mation for δ̃ℓ. We first calculate a maximal rmax radius beyond which the potential Vseoa
without polarisation is negligible (<10−12). Then, we invert (9.9) where we replace rℓ by
rmax and search (dichotomically) for the minimal ℓ for which the inequality is satisfied.

3. The phase shift due to the polarisation potential can be calculated accurately and analyt-
ically by the Born approximation (14.43). Nevertheless, the formula for the Buckingham
potential −αd/2(r

2 + r2b)
2 (10.52), presents a difficulty when krb →∞ because:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

K′
ℓ+ 1

2

(krb)
krb→∞
ÐÐÐÐ→∞

Iℓ+ 1
2
(krb)ÐÐÐÐ→

krb→∞
0

,

so that their product is numerically undefined in (14.43). We circumvent this by using
the formula (10.17b) for the asymptotic −αd/2r

4 polarisation where rℓ > 5rb(k) with rℓ
corresponding this time to:

αd

2r4ℓ
⋅
(krℓ)

ℓ

(2ℓ + 1)!!
= 1 (9.10)

In this case, we require that ℓ be at least 5.

9.1.2 Multi-channel variable matrix

The variable phase method can be generalised as in Martinazzo et al. [632] to the angular-
momentum close-coupling method for electron scattering off diatomic molecules. One defines a
variable function SLℓJ,ℓ0J0(r) for each matrix element such that:
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uLℓJ,ℓ0J0(r) = δℓℓ0δJJ0 ĥ
−(k0r) +

√
k0
kJ

ĥ+(kJr)S
L
ℓJ,ℓ0J0(r) . (9.11)

Because kJ ≈ k0 in the range of energies of interest (> 30 eV), we take k ≡ k0 = kJ and use
the same dimensionless variable x = kr as before.

The differential equation satisfied by the S matrix is [632, p.198:bottom]:

dSΛ
ℓ,ℓ0
(x)

dx
=

i

2

ℓmax

∑
i,j=0
(δℓiĥ

−
i (x) − S

Λ
ℓ,i(x)ĥ

+
i (x)) U

Λ
ij(x) (δjℓ0 ĥ

−
ℓ0(x) − ĥ

+
j (x)S

Λ
j,ℓ0(x)) . (9.12)

It is a product of square ℓ̄max × ℓ̄max matrices, one for each Λ projection symmetry. For homonu-
clear diatomic molecules, we recall (see p. 307) that the S matrices may also be separated into two
independent sub-matrices for even (g) and odd (u) parity of ℓ, ℓ0 pairs. We therefore integrate
(9.12) separately for each 0 < Λ ≤ ℓ̄max and for each parity (g, u) if the molecule is homonuclear.

The (reduced) potential matrix UΛ
ij is defined as (8.123):

UΛ
ij(x) =

2

k2

l=min(lmax,i+j)
∑

l=∣i−j∣
Vl(x/k) (−)

Λ
√
(2ℓ + 1)(2ℓ′ + 1)(

l ℓ ℓ′

0 0 0
)(

l ℓ ℓ′

0 −Λ Λ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Precalculated

. (9.13)

For efficiency, we precalculated all the multipliers of Vl and stored them in a [Λ ≤ ℓ̄max; l ≤
lmax; ℓ ≤ ℓ̄max; ℓ

′ ≤ ℓ̄max] matrix file.
The boundary condition for the S-matrix at the origin is S(0) = 1. Nevertheless, one cannot

proceed to integrate (9.12) from x = 0 because the Riccati-Hankel functions ĥ±ℓ defined in (8.97c)
are irregular at the origin due to the Riccati-Bessel function ŷℓ (8.97b). Martinazzo et al. [632]
proposed instead to integrate the K-matrix through:

dKΛ
ℓ,ℓ0

dx
= −

ℓmax

∑
i,j=0
(δℓîjℓ(x) −K

Λ
ℓi(x)ŷi)U

Λ
ij(x) (δjℓ0 ĵℓ0(x) − ŷj(x)K

Λ
j,ℓ0(x)) , (9.14)

and subsequently calculate the S matrix (8.85) at the asymptotic boundary x = xmax, when the
K matrix has converged.

The problem now is that every once in a while, the K matrix may go through singularities
when the potential is strong and the accumulated ‘phase shift’ between jℓ and yℓ passes through
π/2. Each time this happens, one would need to inverse the K matrix and continue integration
on the K−1 matrix. Still, this does not exclude the very improbable but not impossible situation
where the K−1 and K matrices possess singularity points which lie very close on the radial axis.

Thus we settled on the following procedure:

1. Integrate K(x) starting from K = 0 at x = 0 until its trace ∣∑ℓ̄max

ℓ=0 KΛ
ℓ,ℓ∣ ≥ 2;

2. Convert to the S matrix (8.84):

SΛ
ℓ,ℓ0(x) = (I + iK) ⋅ (I − iK)

−1

(using matrix operations and where I = δℓℓ0 is the identity matrix)

3. Continue the integration with the S(x) matrix-function up to xmax (9.12).
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9.1.3 Integration

We need integration at two different levels: calculate the potential and solve the first order
differential equations.

Potential

All central potentials used presently pose no problem to implement since they are analytical,
except for the absorption potential from the free electron gas (FEG) oscillator in section 8.2.4.
There are two integrations: one on the ξ = ∆ε/εF variable representing the ratio of the energy
transfer on the Fermi energy of the FEG; and one the ζ = q/2kF variable representing the
momentum transfer q relative to the Fermi momentum.

• ∫ . . .dζ : As suggested by Salvat [801, p.16], we use an adaptative Gauss-Legendre quadra-
ture of 32 points. Those correspond to the roots pn of the Legendre polynomial P32(x) of
order 32 weighted by [884, p.178–180]:

wn =
2

(1 − pn)2

⎡
⎢
⎢
⎢
⎢
⎣

dP32(x)

dx
∣
x=pn

⎤
⎥
⎥
⎥
⎥
⎦

2

. (9.15)

The corresponding ζn samples are adapted to the segment extending from ζ− to ζ+ as
ζn = rn (ζ+ − ζ−)/2 + (ζ+ + ζ−)/2.

• ∫ . . .dξ : we take 80 linearly spaced values between ξmin and ξmax. Also, to reduce the
strain on the computational effort, we subsample the radial points xn so as not to exceed
10000 points for which double integration is performed.

• Analytical (8.69) : is used when ∆Emin/εF < 100(4ζp(ζp + 1)) where ζp ≈ 1/ 3
√
4πkF is an

approximate value for the plasmon cutoff momentum [801, eq.(A15&A17)]. We recall that
∆Emin represents the minimal loss of energy in the inelastic collision.

For diatomic potentials, we use the analytical decomposition (8.31) for the static part. For
the other potentials, we use another Gauss-Legendre quadrature of 64 points which are reduced
to 32 points only when we exploit the symmetry for homonuclear molecules.

Differential Equations

For integrating (9.6), (9.14) and (9.12), we discretise the radial coordinate x = kr into Nx points
spanning from x = 0 to x = xmax with a logarithmic spacing as follows:

Atoms : from x = 10−9 to xmax and then replacing by x = 0 at the origin.

Molecules : symmetrical logarithmic spacing about the singularity point located at r = R/2. This
is done by stitching together two logarithmically-spaced vectors (x)n (from x = 10−9 to
x = R/2) as: R/2−(x)n and R/2+(x)n and concatenated with R/2 at their junction. Then
we continue a logarithmic spacing up to xmax.

The maximal radius is estimated as follows:



9.1. VARIABLE PHASE METHOD 319

xmax = k ⋅max(r0, rcf ,3rℓmax) (9.16)

Where r0 ∶ ∣Vl=0(r)∣ < ϵ ; ∀r > r0 ,

rcf ∶ ∣
2Vl=0(r)r

2

ℓmax(ℓmax + 1)
∣ < ϵ ; ∀r > rcf

rℓmax ≡ rℓ for ℓ = ℓmax in (9.9)

The potential Vl=0 is the isotropic real potential comprising static, exchange, and polarisation
effects. The maximal partial-wave order ℓmax is estimated from rsr as:

rsr ∶ Vsr(r, θ = 0
○) < ϵ ; ∀r > rsr ,

ℓmax ∶ jℓ(kr) < ϵ ; ∀ℓ > ℓmax and ∀r < rsr .

It is important to note that this estimation is based on the range of the short-range (static)
potential Vsr alone, but not including the long-range multipole nor polarisation potentials for
which the integrals can be calculated analytically from the Born approximation as will be ex-
plained in section 9.2.1.

Our current parameters were set by default to:

ϵ = 10−10 Nx = 200000

With these, we obtain overall (this varies with k):

100a0 <rmax < 800a0 and 72 < ℓmax < 120

For molecules, we note that we use two different ℓ̄max = 35 ≠ ℓmax. The first ℓ̄max is the
maximal order used in the angular-momentum close-coupling S matrix, whereas the second ℓmax

is for the remainder of the diagonal S matrix with phase shifts.
With the discretised space of radial coordinates, we use the popular fourth-order explicit

Runge-Kutta quadrature [431, p.38–41:§3.2:eq.(3.5)]. We denote the function derivative F (x, y).
(This is applicable to a scalar equation: dy/dx = F (x, y) (9.6) as well as for a matrix equation:
dA/dx = F (x,A) (9.14) or (9.12).) Given the value of y(x) at a point x, the value y(x+∆x) at
the next radial step x +∆x is obtained from:

y(x +∆x) =y(x) +
∆x

6
(F (0) + 2F (1) + 2F (2) + F (3)) (9.17)

With : F (0) = F (x, y(x)) (9.17a)

F (1) = F (x +
∆x

2
, y(x) +

∆x

2
⋅ F (0)) (9.17b)

F (2) = F (x +
∆x

2
, y(x) +

∆x

2
⋅ F (1)) (9.17c)

F (3) = F (x +∆x, y(x) +∆x ⋅ F (2)) (9.17d)

The value of y(xmax) is the value of our converged quantity (phase shift or S matrix). In the
next section, we explain how we build the scattering amplitudes and cross sections from those
phase shifts and S matrices.
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9.2 Building Cross Sections

Once the phase shifts and S matrices are obtained, they can be put into the two formulae used for
the elastic differential cross sections (atoms 8.106) and (molecules 8.129). The major difficulties
lies in (i) the infinite sum which must be truncated to ℓmax and (ii) an efficient handling of the
multiple sums through the symmetry or sparsity properties of the T matrix and Clebsch-Gordan
coefficients featuring in (8.129).

Starting with (ii) the 7-folded sum in (8.129), our approach is inspired from the suggestions
in Morrison [664, §7.3:p.179–182]. We first eliminate matrix elements whose value is below 10−12

and estimate the number d of (non-principal) diagonals that are spanned. Then, we proceed
through the sum in the following way for each coefficient AL of the corresponding Legendre
polynomial PL:

• ℓ ∶max(0, L − ℓ̄max) . . . ℓ̄max

• ℓ′ ∶ ∣L − ℓ∣ . . .min(ℓ̄max, L + ℓ) by steps of 2 from the requirement that ℓ + ℓ′ +L be even

• ℓ0 ∶max(ℓ%p, ℓ − p ⋅ d,L − ℓ̄max + p̄) . . .min(ℓ̄max, ℓ + p ⋅ d).

The parity p determines the steps of ℓ0 in virtue of the requirement that ℓ+ ℓ0 be even for
homonuclear molecules (p = 2); which does not affect heteronuclear molecules (p = 1). The
correction: p̄ = 1 if the parities ℓ%p ≠ (L − ℓ̄max)%p, and p̄ = 0 otherwise.

• ℓ′0 ∶ max(∣L − ℓ0∣, ℓ
′ − p ⋅ d) . . .min(ℓ̄max, L + ℓ0, ℓ

′ + p ⋅ d) by steps of 2.

• Λ ∶ 0 . . .min(ℓ, ℓ0,Λmax)

• Λ′ ∶ 0 . . .min(ℓ′, ℓ′0,Λmax)

Because of :

⊳ the symmetry property: CLMℓ−Λ,ℓ′Λ′ = (−)
ℓ+ℓ′−LCL−MℓΛ,ℓ′−Λ′ ,

⊳ from the Wigner-3j coefficient: ℓ + ℓ′ +L is even,

⊳ the independence of TΛ
ℓℓ0
= T−Λℓℓ0 on the sign of Λ;

we may sum only positive Λ and take the twice the value for each additive Λ+Λ′ and subtractive
Λ −Λ′ terms. Care must be taken so that terms for which either or both Λ = 0 ∨ Λ′ = 0, be not
counted twice [664, p.182:eq.(7.19)]. For summing the elements, we separate in advance the real
RΛ
ℓℓ0

and imaginary IΛℓℓ0 parts of the T matrix and execute:

AL+ = (R
Λ
ℓℓ0 R

Λ′

ℓ′ℓ′0
+ IΛℓℓ0 I

Λ′

ℓ′ℓ′0
)
√
(2ℓ0 + 1)(2ℓ′0 + 1)(2ℓ + 1)(2ℓ

′ + 1)(−)
ℓ0−ℓ+ℓ

′
−ℓ′0

2

×(
ℓ ℓ′ L
0 0 0

)(
ℓ0 ℓ′0 L
0 0 0

)CLΛ
′−Λ

ℓ−Λ,ℓ′Λ′C
LΛ′−Λ
ℓ0−Λ,ℓ′0Λ′

For rapidity, we use the wigxjpf library. Naturally, for an efficient handling, we precompute
the coefficients independent of Λ,Λ′ before summing on these.

Currently we used the following truncation:

ℓ̄max = 35 = Λmax lmax = 24
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These limits were chosen after a convergence study in section 10.4 conducted in the range of
energies where the angular-momentum coupling is used. The shortcomings that arise at smaller
wavelengths (higher energies) require to raise both ℓ̄max (deeper penetration in the centrifugal
barrier) and lmax (more resolution at the nuclear singularities). The limitations of lmax are pal-
liated by replacing the computation of DCS with the independent atom model (8.137) described
in sec. 8.5.3. Using atomic potentials makes affordable the promotion of ℓ̄max to a higher ℓmax.

9.2.1 Born Completion
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Figure 9.1: Effect of DCS truncation
to ℓmax illustrated on atomic oxygen
at 100 eV.

As mentioned above, all the summations are truncated
to a maximal ℓ̄max or ℓmax. Truncation at high partial
waves usually only clips the forward scattering slope as
illustrated in 9.1. Luckily, the higher partial waves are
only affected by the long-range potential which is easy to
model analytically [274, eq.(11)] (8.45 for polarisation).
Then, the scattering amplitude may be calculated an-
alytically with the Born approximation f̃ (8.115) [e.g.
430, eq.(8)], whose decomposition in partial-wave phase
shifts δ̃ℓ can also be computed analytically (8.120) [e.g.
430, eq.(9)] (or numerically if need be). It is important
to remind that:

The amplitude f̃ and δ̃ℓ must proceed consis-
tently from the same potential, and in virtue of
the first Born approximation, can be added from
the constituent parts of composite potentials (e.g.
static + polarisation)

For practical purposes, we regrouped the analytical
plane wave Born amplitudes f̃ and associated phase-
shifts δ̃ℓ for various simple potentials in a dedicated
chapter 14 of part III.

The philosophy of the Born completion or closure is to encompass the trailing terms in the
infinite sum in a compact analytical expression [799, eq.(8)]:

f̊(θ) =
1

2ik

ℓmax

∑
ℓ=0
(2ℓ + 1)Pℓ(cos θ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ei2δℓ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Exact

− i2δ̃ℓ
°

Approx.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

2ik

∞
∑
ℓ=0
(2ℓ + 1)Pℓ(cos θ)i2δ̃ℓ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡f̃(θ)

. (9.18)

The formula (9.18) above is specifically designed for scattering amplitudes from spherically
symmetric potentials. In diatomic molecules, the DCS is obtained as an average (and summation)
upon the initial (and final) rotational momentum projection M0 (and M). Then, the Born
completion ought to be performed on the DCS rather than the scattering amplitude [430, eq.(14–
17)]. In this case, we use the expressions of the potentials centred on the molecule [430, eq.(7)]
(not on the individual atoms) to calculate the diagonal T matrix elements ℓ = ℓ0. Using (8.108),
we can subtract from the calculated T matrix the analytical diagonal elements and add separately
the analytical expression ∣f̃(θ)∣2 of the differential cross section.
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Combining with what we said earlier at the beginning of this section 9.2:

dσ

dΩ
=

1

4k2

2ℓ̄max

∑
L=0

PL(cos θ)∑
ℓ

∑
ℓ′
∑
ℓ0

∑
ℓ′0

√
. . .(

ℓ ℓ′ L
0 0 0

)(
ℓ0 ℓ′0 L
0 0 0

)

×{[∑
Λ

∑
Λ′
(RΛ

ℓℓ0 R
Λ′

ℓ′ℓ′0
+ IΛℓℓ0 I

Λ′

ℓ′ℓ′0
)CLΛ

′−Λ
ℓ−Λ,ℓ′Λ′C

LΛ′−Λ
ℓ0−Λ,ℓ′0Λ′

] (−)
ℓ0−ℓ+ℓ

′
−ℓ′0

2 −
δℓℓ0δℓ′ℓ′0
4π2

(1 − ei2δ̃ℓ)(1 − e−i2δ̃ℓ′ )}

+
1

k2
(
∞
∑
ℓ

(2ℓ + 1)Pℓ(cos(θ))δ̃ℓ)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡f̃(θ)

(9.19)

Note that this expression does not include the higher potential harmonics > lmax which are
more adequately included by the independent atom model (IAM). In Schmalzried et al. [812,
Appendix A], we proposed how to separate the contribution of each partial scattering amplitude
fl. Which means that we could also add the IAM to (9.19) and subtract all contributions from
l = 0 to lmax harmonics. Nevertheless, our selected lmax = 24 is high enough that this additional
(IAM) correction is completely negligible and not worth including.

Although the present methodology only exploits the diagonal elements of the T matrix for
high partial waves, the Born completion can be made for any T matrix element as done in
the work of Feldt and Morrison [274, §II.D]. Given our inaccurate modelling of the molecular
harmonics, it was not worth considering non-diagonal elements beyond the ℓ̄max × ℓ̄max block.

Libraries

At last, we would like to credit the libraries of codes we used.

• Wigner 3j coefficients (Clebsch-Gordan coeff.) were computed with pywigxjpf, a python
package from the algorithm Johansson and Forssén [459]

• Analytical atomic wavefunctions of Koga et al. [523]: we used them to fit our coefficients of
1s-Slater densities in table 8.1 and for estimating kinetic densities in orbitals. The package
we used comes from https://github.com/JFurness1/AtomicOrbitals. We subsequently
modified this code according to our needs.

Apart from these two packages, all other packages we used in Python come from the PyPi
library. The list without dependencies can be found in the requirements.txt file on the repos-
itory: https://doi.org/10.5281/zenodo.8190461.

Calculating molecular or atomic potentials, integrating S (or T ) matrix elements, and con-
structing differential cross sections are the main preoccupations targeted by our algorithms.
Those having been exposed in the present chapter, we may now move to a critical perspective
toward the various models that we encountered on our way to obtain results. The following
chapter 10 is supposed to enlighten the choices we made and the difficulties that crossed our way
when building our own model.



Chapter 10

Critical review

Although very outspoken, it is not unfounded to say that one can very easily be mislead or
deceived in the realm of quantum mechanics. Since the beginning, quantum effects brought
into light by specific experiments did not cease to arouse surprise and amazement. Anyone
who followed an elementary course in this field has heard about some turning points about the
undulatory nature of elementary particles in Young’s double slit experiment, Stern-Gerlach’s
experiment on spin-magnetic field interaction or the spectroscopic structure of atoms unveiled
first by Franck and Hertz’ cathode rays in mercury vapour.

Similarly, many important discoveries took place within the more specific field of electron-
molecule collisions. Such is the case of resonant scattering which had been imagined in the
very burgeoning days of quantum physics [300] before experimental evidence [372, 819] emerged
in the well studied case of electron-nitrogen scattering. Another example is the existence of
rotational rainbows in high-energy electron-diatom scattering [1009] which demonstrates that
backscattering is most probably accompanied by a large rotational transition [534, figure 9] ∆J ≳
8, whereas a first Born approximation analysis at low energies [323] only reveals a preponderance
of quadrupole-type transitions ∆J = 2, thus little energy transfers.

From an exterior perspective, the search for an unequivocal explanation to physical observa-
tions of collision cross-sections often appears as a slowly convergent series of over- then under-
compensations of effects. An illustrious example exposed in Robertson et al. [780] is the “long-
standing mystery” of why the simpler quadrupole Born approximation of Gerjuoy and Stein [323]
explained better experimental data than more elaborate studies [208, 266] including polarisation
effects. This is caused by the many cancellations that can occur within a more rigorous descrip-
tion including effects of similar order of magnitude: long-range polarisation, short-range exchange
and correlation, wave-distortion. A concrete example of cancellation of different orders in the
incident wavenumber kn is given in section 10.1.5 as represented in figures 10.6-10.7. A similar
observation was found in Iga et al. [419] in intramolecular multiple scattering order decomposi-
tions where an alternation of sign contribution could be observed between double-scattering as
calculated in Hayashi and Kuchitsu [390] and higher-order scattering terms.

In general, one could say that the ultimate purpose behind calculations in quantum physics, is
to obtain an accurate solution to the Schrödinger equation from which measurable quantities can
be derived in order to validate the model used; ascertain its underlying values, discover further
corrections to be inserted into the model or even bring the assumptions and the theory under
trial. In this sense, computing interaction cross sections is a fundamental way to explore how, in
the current case, electrons interact with matter and shape our understanding of molecular and
atomic structure.

323
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Unfortunately, this honourable endeavour lies beyond the scope of this thesis which just
sought after generating cross sections in order to “fill in” consistently some missing input data
into our electron swarm simulations. Nevertheless, as I scoured through the literature in urge to
find an efficient yet reliable and above all – respectable – way of producing my own cross sections
to model electron-molecule interactions, my attention got especially caught at the enchanting
character by which simple, elegant and comprehensible models could compete with treatments
of utmost sophistication beyond facilitated implementation and easier understanding.

The greatest challenge I struggled with while delving in the realm of quantum physics com-
putation, is that, as opposed to “classical” physics where one would expect a gradual and smooth
reconciliation of theory and experiment; the models used in quantum physics to obtain resulting
cross sections are very fragile. At first, an encouraging result can be obtained from extremely
simple models or crude approximations. Then, if one seeks improvement from little amendments,
the whole model crumbles and yields completely aberrant results. Instead, as dictated by the law
of diminishing returns, one is forced to spend endless time in looking for more accurate models
that require a hecatuplated (100×) effort for a shockingly marginal improvement at best, or at
worst the introduction of more annoyingly indelible inaccuracies.

For this reason, due to the very low effort/gain ratio in quantum computations, the dis-
couraged soul succumbs to the temptation of resorting to semi-empirical models that teem in
the literature. Of indispensable pragmatic use, semi-empirical models form a very dangerous
and deceiving trap for scientific investigation because they often deteriorate the link between a
parameter or a model and its physical significance.

The strength of semi-empirical models often lies rather in ad hoc adjustments of loose
physical justification than in the inclusion of complex effects credited in the model.

As a consequence, I decided to devote this chapter to some of the many deceptions that I
(almost) fell victim to, while trying to generate differential cross sections in elastic scattering. It is
segmented into four sections. The first discusses some inexact statements about the (in)validity
of approximations. The second criticises some a posteriori derivations and incorporation of
more complex effects in formerly simple models. The third is a short review of semi-empirical
models for higher-order (perturbation) effects in electron-molecule scattering. The fourth is
an illustration of the mathematical complexity underlying the construction of differential cross
sections.

10.1 Use of Approximations

A perfect place to start with, is the purpose behind taking approximations in quantum mechanics
calculations.

A Nowadays, an approximation would be most likely understood as an easier way to produce
results that are not far from the ideally expected value that an “exact” (i.e. a more accurate)
treatment would yield. This means that “approximations” are used as a tool of convenience.
Their justification often lies in the assertion that the difference of the result from a more in-
volved/costly/cumbersome method can be reduced below a certain threshold by exploiting a
simpler method, so that it is not worth going through the strain of doing it “the proper way”.
Usually, a quantitative value is given; 15 % being the probably the maximally subjectively ac-
ceptable threshold depending on the uncertainty of experimental values which can be quite large.
Anything lesser than 1% is perceived as insignificant.
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B After the ideal limit of an approximation has been established, one can try to “de-approximate”
that is: try to grossly estimate the cause and value of the n% difference that is not included in
the approximation. For instance, if we had neglected spin or exchange effects in the approxima-
tion of the cross sections, we might try to find a way to roughly estimate their contribution and
possibly augment the approximation with a supplementary effect.

C Oftentimes we may encounter ourselves stuck in front of an insurmountable barrier due to
various limitations: time, resources, knowledge, data, etc. In this case, adopting an “approxi-
mation” can be understood as finding an alternative route, a way around in order to obtain a
result. In burgeoning times of a particular field of science, approximations are indeed rather
an indispensable recourse to obtain results, whatever they were, to have something to compare
experimental data with. I quote this passage from Inokuti’s [427] review (section 3.5 p.321 left
column lower half):

At the outset, one usually assumes the Born-Oppenheimer separation between the
electronic and nuclear motions simply because of lack of better alternatives. The
assumption is perhaps justifiable for the ground electronic state, but is in general
questionable for excited electronic states, especially for higher states that involve
near crossings of different molecular terms. Therefore, the schematic nature of the
treatment below should be always borne in mind.

I would like to emphasize on the “simply because of lack of better alternatives”. It is indeed
quite important to realise that many approximations not necessarily stem from a wilful decision of
the investigator to frame the problem in a certain perspective where it is expected to yield reliable
results. A notorious example is the usage of the independent atom model (IAM) for complex
polyatomic molecules at intermediate energies (∼20�100 eV) [83]. Another example that fits
this purpose are empirical or semi-empirical formulas. Those are introduced in order to obtain
agreeable results with experiments. This way of using approximations for their effectiveness can
be very pragmatic but it can be unfortunately utterly deceptive.

D Finally, getting back to the first point, an “approximation” can simply consist in setting a
practical limit to an otherwise indefinite problem. If the problem faced can be expanded in a
convergent series of decreasing effects (orders), then, an approximation may be understood as a
truncation. It resembles very closely the first point A above but it may still differ in the sense
that some series can be summed exactly and thus, approximations A need not be truncations if
a clever expansion is used.

From the aforementioned points, we may identify four sides to what we commonly refer to
as an “approximation”:

A Approach an ideal/correct result;

B Flee an invalid/incorrect/inaccurate result;

C Move on, continue, proceed with a calculation;

D Truncate an abysmal problem.

This section deals with the most common meaning A attributed to “approximation”. The
ensuing sections illustrate themes B, C and D
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10.1.1 Born Approximations

Although there are various approximations that fall under the “Born” category [146, p.166,
p.187]: Glauber, distorted-wave and higher-order; the most commonly used Born approximation
is the first order with plane waves (PWBA) [146, 922, p.159, p.147:eq.(9.6)] that we presented
in section 8.5.1 and of which we remind the scattering amplitude f̃ :

f̃(θ) = −2π2
2µ

h̵2
1

(2π)3
∫ e−ik+⋅rV (r)eik−⋅r d3r = −

2µ

h̵2
1

4π
∫ eiq⋅rV (r)d3r . (10.1)

The incoming k− and outgoing k+ wavectors are used to represent the incident and emerging
plane waves. The approximation relies on the reduced distortion effect of the interaction potential
V (r) on the incident wave which is assumed to remain plane. The equation is formally expressed
in the centre of mass with µ ≈me as the reduced mass of the electron and the scattering target.

A key quantity in the Born approach to a scattering event is the momentum transfer∗ q ≡
k− − k+ whose norm is connected to the angle of scattering θ as:

q2 = k2+ + k
2
− − 2k−k+ cos θ ≊ (2k sin

θ

2
)
2

, (10.2)

where k± represent respectively the wave number after (+) and before (−) the scattering
event. In pure elastic scattering ∣k+∣ = ∣k−∣ ≡ k.

A very important implication of the Born approximation (10.1) is that the scattering ampli-
tude (and thus the differential cross section) at for zero momentum transfer q = 0 corresponding
to forward elastic scattering (θ = 0○) is constant; independent of the incident energy ε+ [147,
§5.1.1:p.160]. This is not true at relativistic energies though.

As the most ubiquitous approximation in quantum approach to scattering, it has often been
pulled afar from its region of validity to serve the demands of Monte Carlo simulations eagerly
looking for analytical formulations to electron-molecule scattering [497, 677, 713, 830].

Its alliance to the screened Wentzel [980] potential of atomic targets: V (r) = −Z
e−r/a

r
, gave

birth to the legendary screened Rutherford expression recalled here:

dσSR
dΩ

∝
1

(1 − cos θ + 2η)2
, (10.3)

which involves the screening parameter η ≡ 1/(2ka)2, linked to the decay radius a of the electronic
cloud. The great benefit of this formula is its simplicity and the fact that its cumulative integral
may be inverted analytically in order to sample the scattering angle θ in Monte Carlo codes as
in [238, 677, 683, 896].

Our starting point of our enquiry of the Born approximation, will therefore be the screened
Rutherford formula applied to elastic scattering treated in the following subsection.

10.1.2 Elastic

One very straightforward way to verify the applicability of Born’s approximation for elastic scat-
tering, is to compare data from differential scattering cross sections (DCS) at different energies
[287, §IV:fig. 10]. From (10.1), one can see that the key dependence is on the momentum transfer
q = 2k sin θ/2 and is independent from the incident energy. This stems from the fact that no
distortion was taken into account and that the incident and outgoing electron waves are plane.

∗The momentum transfer is often labelled K in the literature. In the more recent formalism of scattering
theory, K is reserved for the reactance matrix or sometimes used also for the kinetic operator of the free electron.
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Figure 10.1: Stacks of experimentally measured differential cross sections at high energies. The
first Born approximation (plane wave) in (10.1) is valid when the DCS depends exclusively on
the momentum transfer q = 2k sin(θ/2) regardless of the incident energy ε. For N2, O2 and Ar,
the Born approximation ‘looks’ valid starting from 500 eV when the momentum transfer is not
too large for angles scattered below ∼90○.

In figure 10.1, we stacked DCS measurements for three targets at energies above 300 eV.
From the qualitative agreement in alignment of the DCS at energies as low as 500 eV, we see
that the first Born’s approximation should hold at least at moderate momentum transfer values.
This agreement improves with increasing energy.

It may thus seem surprising that several sources [316, 603, §IV, §V] pointed out that the Born
approximation would not be valid even at energies as high as 5 keV. For noble gases, the integral
elastic cross section in the Born approximation can be found to be twice the experimental value
at 1 keV and still 20% off at 4 keV [708, p.2546]. This disagreement worsens with the heaviness
Z of the atom due to increased distortion effects (stronger potentials).

Later, it was found [317] that the discrepancy with experimental data was partly due to
unaccounted contributions from forward scattering in the transmission method for measuring
total cross sections, which is not due to the invalidity of the Born approximation.

In order to examine the importance of properly accounting for forward angle scattering, we
plot in figure 10.2b DCS from a variety of analytical models representing the static potential Vs
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shown on figure 10.2a of an atom, which in the present situation was selected to be nitrogen. This
is equivalent to modelling the radial density distribution ρ(r) of nitrogen. We have separated
the models into two categories:

1. Thomas-Fermi (TF) potentials [680, p.460–4] represented as a simple (or a sum of) Yukawa

VTF(r) = −
Ze−r/a

r
potentials, which are based on some correction/adjustment to the Fermi

radius a ≃ aF [862, eq.(12)] (see end of appendix E).

▷ Fermi : simply the Fermi radius aFermi ≡ aF = 0.8853Z
−1/3 as defined in (E.8);

▷ Nigam : the adapted formula of Nigam et al. [702, eq.(67a)] for the Thomas-Fermi
potential, aNigam = aF/1.12 ≈ 0.79a0Z

−1/3;

▷ Berkes&Demeter : the screening derived from experimentally fitted DCS of Berkes and
Demeter [61, p.433-bottom] at very high energies, aBerkes&Demeter = 1.195a0Z

−1/3 (Z/Z − 1)2/3

▷ Molière : the Thomas-Fermi potential as fitted by Moliere [656],

VMolière(r) =
3

∑
i=1
aie
−bi r/aF [

a1 = 0.1 a2 = 0.55 a3 = 0.35
b1 = 6 b2 = 1.2 b3 = 0.3

] ; (10.4)

▷ Jackson : given in Jackson [446, p.641:eq. (13.54)], aJackson = 1.4a0Z−1/3;

▷ Mott&Massey : given in Mott and Massey [680, p.463:eq.(18)], aMott&Massey = aF/0.66 ≈
1.34a0Z

−1/3;

2. Hartree-Fock (HF) potentials for which analytical representations have been given in terms
of Yukawa or Slater functions (for the electron density).

▸ Reference : the only one which is numerical and yielded by the elsepa routine
elscata.exe into the file scfield.dat [803] from the multiconfiguration Dirac-Fock
program of [215].

▸ Present : our present fit to the HF densities of Koga [522] given previously in sec-
tion 8.2.1 table 8.1.

▸ Salvat : Yukawa 2 or 3 term potentials as given by Salvat et al. [800, eq.(12) and
table I] based on Dirac Hartree Fock Slater self-consistent field calculations.

▸ Pacios : Sum of exponentials (Slater 1s orbitals) representing the electron density
from HF analysis as given by Pacios [726, eq.(1) and table II].

▸ Cox&Bonham : 6 Yukawa terms from Cox and Bonham [196, eq.(2.3) and table I]
based on tabulated HF atomic wavefunctions of Clementi [183].

In the DCS (fig. 10.2b), the ‘Reference’ is an exact calculation of the DCS based on partial-
wave phase shifts from the numerical HF potential. Despite the fact that it is well known and
repeatedly advised that the Thomas-Fermi model is neither suitable for light atoms (Z < 27),
especially noble gases and alkali metals [680, p.461], this did not prevent its eager use in Monte
Carlo simulations [238, eqs.(5–11)]. One can see that:

1. The tail of the static potential at r > a0 is strongly under- or over-estimated by the Thomas-
Fermi model for a light atom such a nitrogen.

2. This tail directly translates into an over- or under- estimation of the forward scattering
peak in the Born approximation.
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(a) Comparison of static potentials for atomic nitrogen from various Hartree-Fock and Thomas-Fermi
densities.
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(b) DCS calculated in the plane-wave Born approximation from static potentials given in 10.2a, and
compared to a partial-wave calculated DCS based on elsepa’s HF static potential [803].

Figure 10.2: Importance of forward angle scattering at high energies and its strong dependence
on the representation of the static potential.
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Compact a < a0 More screening Less forward scattering
Diffuse a > a0 Less screening More forward scattering

A more diffuse potential will scatter more the electron (higher momentum transfer cross
section) albeit preferably at smaller angles. A more compact potential will scatter less overall,
but will not be as forward-peaked.

1. As the incident energy increases ε≫ 1keV, the majority of the scattering is due to the tail
of the potential (static and polarisation) from high order phase shifts.

2. At higher energies, the electron becomes less sensitive to the falloff radius a of the static
potential which governs the scattering at intermediate angles.

This means that the exact value of the falloff radius a is not critical at high energies where
the Born approximation is valid. This is also why there can be a significant disparity in the value
of a from various sources as given above, depending on how the DCS is regarded: its integral,
its shape or the momentum transfer. We will illustrate this in the next chapter when using the
Born approximation to represent scattering at high energies (sec. 11.1.4).

What figure 10.2b shows, is that the question of the validity of the Born approximation,
when comparing with experimental data, might be significantly blurred or masked by the very
representation of the potential used. For instance, the Born approximation applied to the bi-
Yukawa potential of Salvat et al. [800] gives a DCS nicely following the reference curve of elsepa
(which is calculated from exact partial waves). Naturally, elsepa does not exactly use the same
potential as Salvat et al. [800], actually the static potential of Cox and Bonham [196] is much
closer to the reference, yet its Born-approximated DCS differs more than Salvat et al. [800] at
small scattering angles. Similarly, one might find a model whose integrated DCS in the Born
approximation is close to the correct one. Nevertheless, if one regards all aspects: integral, shape
and momentum transfer; then fortuitous agreement cannot be maintained throughout.

In order to explore more rigorously the question of first Born approximation’s validity, we
calculate the phase shifts from the same atomic potential. For four atoms (N Z = 7, Ne Z = 10,
Ar Z = 18, Kr Z = 36), we display on figure 10.3 the relative error percentage committed
by the first Born approximation with respect to an accurate partial wave calculation on the
integral cross section σ (ICS), momentum transfer (MT) CS σm and average cosine ⟨cos θ⟩ = 1 −
σm/σ for elastically scattered electrons above 100 eV. The model used includes static, exchange,
polarisation and absorption as described in the previous chapter 8.2. Here, we see that for all
atoms considered Z ≥ 7, Born’s plane wave approximation would be valid at least from 5 keV
but not below. The irregularities close to 10 keV come from our imposed limitations to compute
phase shifts not lower than 10−6, this introduces some artifacts due to the necessity to include
more phase shifts of lower value and higher orders as the energy increases.

From a theoretical perspective, Born’s approximation should be valid if all phase shifts from
the partial waves are small δℓ ≪ 1. Since the most important phase shift in general (outside
resonances) comes from the isotropic wave ℓ = 0, the first Born’s approximation requires that
[680, Chapter V§2:p.89:eq.(12)]:

δ̃0 = −
2mek

h̵2
∫
∞

0
V (r)j20(kr)r

2 dr ≪ 1 (10.5)

Given the fact that atomic potentials decay asymptotically as Yukawa potentials V (r) ∼
Ze−r/a/r, the equation above reduces to [219, 347, §6.612(3), eq.(14.5.7)] :
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Figure 10.3: Error of the first Born approximation (σ̃) relative to a partial wave calculation (σ̇)

for various atoms (N, Ne, Ar, Kr):
σ̃

σ̇
−1. The invalidity of the first Born approximation increases

with Z (Ar and Kr versus N and Ne). This implies that the energy threshold εBorn beyond which
the approximation is valid (error < 1%) is pushed toward higher values.

kδ̃0 ≊ 2∫
∞

0

Ze−r/a

r
sin2(kr)dr = ZQ0 (1 +

2

(2ka)2
) =

Z

2
ln(1 + (2ka)2) (10.6)

One therefore often finds that the validity of Born’s approximation is conditioned by [680,
716, p.111:eq.(89), p.903:(1)a]:

Za

v
=
αZa

β
≪ 1 , (10.7)

expressed in the incident velocity v (or reduced velocity β = v/c) of the electron. The range a of
the potential is not always included explicitly since it is assumed to be not far from the atomic
Bohr radius a0 = 1.

From (10.7), we should expect that the energy εB beyond which the first Born approximation
is valid, scales with the atomic number Z of the target. This can be seen indeed on figure 10.3,
as heavier targets have a higher relative error with respect to the Born approximation at a given
energy.
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Physically, the relevant quantity in elastic scattering is the momentum transfer cross section
σm. If we require that the error exceed not 1%, we can derive the following validity thresholds
εBorn for our three atoms N,O and Ar:

N (Z=7) O (Z=8) Ar (Z=18)
6.5 keV 8 keV 20 keV

According to this criterion (σ̃m/σ̇m − 1 < 1%), we have αZ/β < 1/3. From the trend seen
above for light elements, we can formulate a “magical” rule of thumb:

The validity of the first Born approx. for a light atomic target Z < 20 starts from ∼ Z keV.
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Figure 10.4: Scaling of the first Born approxi-
mation’s DCS. The dashed red (- - -) and dark
blue (—) curves have the same integral value.

Let us glance a second time at figure 10.3.
This time, we consider only the average devi-
ation cosine (green line) which conveys infor-
mation about the shape of the DCS:

⟨cos θ⟩ ≡
∫
π
0

dσ

dΩ
cos θ sin θ dθ

∫
π
0

dσ

dΩ
sin θ dθ

We see now that in principle, the agreement
in shape can be found at lower energies. If a
difference of 1% in ⟨cos θ⟩ may be forgiven,
then the shape from Born’s approximation
could be used from 2 keV for light atoms (N
and O). The absolute value of the DCS may
then be subsequently scaled down in order to
reduce the disagreement in the integral and
momentum-transfer cross sections. An example is shown on the side in fig. 10.4. Significant
differences at large angles > 60○ are observed only where the DCS is negligible (3.5 orders of
magnitude below the forward peak). This qualitative agreement explains why the plane-wave
Born approximation (PWBA) looked valid from 500 eV from the experimental data stacked on
figure 10.1 for small momentum transfers. In the following section and particularly in the next
chapter section 11.4.2, we will see that scaling DCS from the PWBA can be used to our ad-
vantage when modelling inelastic CS from electronic excitations and ionisation [911]. Also of
interest, we included the formula for a completed PWBA when the Born-calculated phase shifts
δ̃ℓ are inserted in (9.18), which considerably improves the applicability of Born’s approximation.

The scaling of the PWBA can be pushed to extremes even when the approximated DCS does
not agree in shape. To illustrate this, we plot in figure 10.5, the elastic cross section for O2 from
various experiments and compare it with our constructed elastic CS (blue) obtained from a total
CS with all inelastic processes subtracted (see part I p.115). A Born expansion (red—):

σ̃Born(ξ) =
πa20
ξ
(Ã + B̃/ξ + C̃/ξ2) , with ξ =

1

mev2 +K
; (10.8)

was fitted to our data with four free parameters (Ã,B̃,C̃,K), the last one K playing the role of
scaling. This expression is used later in the next chapter 11.1.4 for extrapolating elastic ICS at
high energies (11.9). A screened Rutherford (SR) with only one parameter (the decay radius a),
was also fitted for comparison (yellow—).
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Figure 10.5: Elastic cross section for O2 from various experiments and calculations: “Elastic”
– inelastic processes subtracted from a constructed total cross section (4.5); elsepa [803] –
independent atom model; SR – fitted screened Rutherford (to the blue curve); Born – fitted
scaled Born expansion (10.8). Experiments: ▼ [598], × [418], ∎ [893], ▲ [842], ⧫ [206],☀ [938]
and ⧫ [972].

Before we close this subsection, we should mention about the extension of Born’s approxi-
mation for diatomic molecules. In that case, the situation is more complicated because of the
non-spherical potential. As a matter of fact, if the Born approximation is valid, so should be
the independent atom model (IAM – which is exactly the PWBA applied to decentred multiple
isotropic potentials). Therefore, if a discrepancy arises at very high energies, it is imputable
to the imperfect representation of the potential rather than the use of the Born approximation
[602, fig. 4]. For H2 and N2, the effect of chemical bonding, unaccounted for by the IAM, was
shown by Fink et al. [286, 287] to be observable at small angle scattering. This is related to the
long-range quadrupole potential which affects high-order phase shifts. It is therefore irrelevant
to consider the validity of PWBA for diatomic molecules based on agreement at forward angles if
one uses the IAM; i.e. the approximation might be valid, whereas the chemical bonding cannot
be neglected for DCS calculated below 5○ [287, figs.8–9].

On the other hand, the independent atom model yields DCS whose shape agrees qualitatively
well with experimental data at non-small angles (> 5○). Again, with a scaling factor, we exploit
this agreement in order to use the IAM for calculating DCS of diatomic molecules at energies
above 200 eV even when the PWBA is not valid. On figure 10.3, one sees that the DCS data
from elsepa [803] which relies on the IAM, can be scaled down from 100 eV with an appropriate
factor in order to obtain agreeable CS values.
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10.1.3 Inelastic >< Elastic

Cross sections may be expressed differentially in the momentum-transfer dq or scattered angle
dθ through the following equivalence obtained by differentiating (10.2) [427, eq(2.5)§(2.6)]:

q dq = k−k+ sin θ dθ . (10.9)

Furthermore, the expression of the inelastic DCS may also be written through a quantity
known as the generalised oscillator strength (GOS) Fi(q) (described in more detail in sec-
tion 11.4.1) [834, p.61:eq.(158)]:

dσi
dΩ
∝
Fi(q)

q2
, (10.10)

A miscorrespondence of (10.9) blurred further by the formulation (10.10), seems to have
misled a part of the community [377, 454, 896] in Monte-Carlo simulations to believe that
inelastic scattering scales as ∝ 1/q2 instead of the correct Born-Rutherford expression ∝ 1/q4.
This is strange because one ought to expect analytical continuity between a very weakly inelastic
scattering and a purely elastic scattering as the inelastic energy loss ∆E ≪ ε becomes negligible
in comparison to the incident kinetic energy ε.

This is probably due to the fact that the notation used throughout various references might
be confusing. Below is an excerpt from Inokuti [427], Mott and Massey [680], and Shimamura
and Takayanagi [834] of the same equation (careful about the different notations used!):

In the first equation (151) above∗, “q(av → a′v′)” is the DCS dσ/dΩ for an inelastic excitation
from state av to a′v′. The second (2.6) is the same but the excitation is noted with the index
“n” and the differential operator has been moved to the right side. The term “ ∣ϵn(K)∣2” is the
inelastic form factor (defined more in detail in 11.49). The squared integral in the first equation
(151) is the expression of ∣ϵav→a′v′ ∣2 for a diatomic molecule. Finally, in the third equation (84),
the inelastic differential cross section given in Mott and Massey [680, XVI§7p.477:eq(82)] (noted
“Imn” in their work) reads according to the present notation :

dσi(q)

dq
dq =

8πm2e2

h̵4
∣ϵi(q)∣

2

q3
dq (10.11)

∗The vertical bar in red is a correction of the misplaced bar in Shimamura and Takayanagi [834, p.60] as given
by Inokuti [427, eq.(3.48)]
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Thus, in order to obtain the integral cross section, one ought directly integrate on dq in this
formula as given by Mott and Massey [680, p.477:eq.(86)] which should give a ∝ 1/q4 expression.
Nevertheless, this detail was overlooked in some works [454, §2.2] whose mathematical trail we
reproduce below:

The green squared equation is the correct original equation from Mott and Massey [680,
p.477:eq.(86)]. The green arrow shows that “I(K)” should have been integrated directly on
“dK” (dq in our notation) and not “K dK” as the correspondence (10.9) would suggest. This
mistake is the same as if one wrote plainly:

��
���

����

σ = ∫
dσ

dq
sin θ dθ
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≠dq

(10.12)

This is exactly what happened when jumping from equation (14) in the excerpt above to equation
(17). Finally the red arrow points to the fact that this naturally led to the omission of the square
exponent in equation (18) the denominator of the standard screened Rutherford scattering.

This confusion would not likely have taken place in the “more modern” notation dσ/dΩ as
written in Tanaka et al. [911, eq.(4a)] but also in Green and Dutta [348, eq.(3)]; because one sees
directly which differential the cross section is: dq or dΩ, and so integration is straightforward.

In summary, the confusion arises from the fact that DCS are more typically expressed like
the extracted (151) in differential forms of dΩ = q dq/(2k+k−)���HHH= dq . Truly, if one wishes to obtain
the expression for dσ/dΩ, then a 1/q is needed on both sides of (10.11= extracted 84). Then,
the DCS can take its standard familiar form :

dσi(q)

q dq
2k+k− ≡

dσi(θ)

dΩ
≡

dσi(θ)

sin θ dθdϕ
=
8πm2e2

h̵4
k+
k−

∣ϵi(q)∣
2

q4
(10.13)

In other words, taking the original notations from the references, the connection between
equations (151), (2.6) and (84) is:

« Imn(K)dK ≡ dσn(K) ≡ q(av → a′v′)2π
KdK

2kk′
»

Note the 2π factor in the last term because integration of the azimuthal angle φ is implicit
in Imn and dσn, as specified by Inokuti [427, p.299] :

“Further, since K is independent of φ, one implies integration over φ when one
expresses dσn in terms of dK.”
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Moreover, one might argue that the GOS for optically forbidden transitions converges toward
zero for small momentum transfers [855, fig.1-3]. Since it is always positive, it therefore has to
pass through a maximum before decreasing again at large momentum transfers [712, fig.2&3].
This means that there should be a range of angles for which the DCS for optically forbidden
excitations does not decrease steadily as prescribed by the Rutherford ∝ 1/q4 trend. This can be
best seen by comparing how fast the DCS (optically allowed) in figures 5&7 from Wakiya [972]
decrease compared to figures 2-4 in Wakiya [973] (forbidden).

Nonetheless, when one examines the extremal values of q for θ = 0○ and 180○:

qmin ≃
Ei

4Ryd

1

ε
+ o(

1

ε
) , (10.14)

qmax ≃
4ε

Ryd
−

2Ei
Ryd

+ o(
1

ε
) ; (10.15)

then, one sees that the interval [qmin, qmax] expands rapidly [427, eqs.(2.16-2.18)] with increasing
kinetic energy ε = (h̵k)2/2me. Therefore, the range in which the GOS rises and decays gets
quickly compressed into a small angular range and outside this range, the Rutherford trend
should be recovered.

In the end, the consequences borne by this confusion are not catastrophic. They just generate
perplexity [497, 713], introduce limited inaccuracy in Monte-Carlo codes [218, 677, 896, eq.(19),
eq.(12), §2.1] and create a myth on the Born approximation for inelastic scattering [377, 454,
eq.(24), eq.(18)].

10.1.4 Ionisation

Of interest, the plane wave Born approximation was also tried by Tahira and Oda [904] for de-
scribing electron scattering in impact ionisation collisions. As one knows, a remarkable property
of the plane wave Born approximation is that it yields the exact cross section for Rutherford
scattering [474] between two charged particles (see also p. 558):

dσR
dΩ
=

Z2

16ε2r sin
4(θ/2)

(10.16)

The energy εr represents here the kinetic energy in the relative centre of mass frame (prac-
tically equal to electron energy in electron-nucleus scattering).

It seems, therefore, interesting to compare the performance of a plane wave Born approxima-
tion for describing electron impact ionisation of atoms and molecules. Foremost, we must clarify
what exactly are we comparing:

∗ Total ionisation cross section

∗ Singly differential CS in secondary electron energy

∗ Double differential CS in secondary energy and scattering angle

∗ Triply differential CS in secondary energy and angle and primary angle

Those four different concepts are explained more in detail in section 11.5.4. What is important
to realise here, is that the applicability of the plane wave Born approximation depends on the
detail level at which we characterise the ionisation (total cross section or differential).
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Total and Single: When only describing the total cross section (simply accounting for whether
the ionisation takes place or not), the plane wave Born approximation may yield agreeable results
down to 30 times the ionisation threshold [605, p.16:§2.2.3]. As one can imagine, at lower energies,
the distortion effect of the ionic potential on the outgoing electron becomes more important and
the use of a distorted wave Born approximation becomes necessary [605, §2.2.3]. This approach
can give accurate results down to 15 times the ionisation threshold.

Another way around, is to use a so called “scaling” method which remarkably brings the simply
calculated results from the plane wave Born approximation into accurate values throughout the
whole range of energies down to ionisation threshold. This was well exploited by Kim and Rudd’s
[507] model which we propose to revisit in chapter 11.5. It can be shown that this Born scaling
yields good estimations of singly differential cross sections as well (see [503, p.272]).

Double and Triple: Despite the encouraging results of the scaled Born approximation ob-
tained by [904, §2.2:eq.(14)] for doubly differential scattering cross sections describing the angular
emission of secondary electrons, there still remains much room for improvement. A semi-empirical
analytical model is often preferred [790] instead of a modification based on the scaled Born ap-
proximation and the binary encounter theory [see 904, fig 5&6].

Alone, the Born approximation (planar or distorted) gives not reliable cross sections for
inelastic collisions near the threshold. For ionisation, the fact that two electrons are ejected
complicates further the topic, with more interference terms, especially in the situation where the
available kinetic energy is equally split among the fleeing electrons.

10.1.5 Low-energy Approximations

Technically, the plane-wave Born approximation (PWBA) is applicable only at energies high
enough where the higher-order perturbations on the incident plane wave may be disregarded in
(8.114). Nonetheless, in some cases, the PWBA can be useful even at low energies.

This is for example the case of rotational excitation cross sections with homonuclear diatomic
molecules, in which the interaction at low energies comes mainly from the long-range permanent
quadrupole potential of the molecule. Gerjuoy and Stein [323] justified that distortion effects
could be neglected in the region far from the molecule and that, due to the centrifugal potential
of ℓ > 0, the electron at decreasing energies is less affected by the stronger short-range potential.

As mentioned in the previous subsection 10.1.4, the next improvement is the distorted wave
approximation for rotational excitation as was done by Takayanagi and Geltman [905]. The
distorted wave is obtained by including only diagonal elements of the potential matrix in the
angular decomposition (no angular-momentum coupling). Then, the off-diagonal elements of the
scattering matrix are calculated from the first Born approximation with the distorted wave.

Later, it was shown by Robertson et al. [780], that apparently, the success of a simple plane
wave Born approximation for rotational excitation and momentum transfer cross sections at very
low energies < eV was mostly a coincidental feature from the complex cancellation of distortion
effects from short-range potentials whose contribution is in principle non-negligible.

In a similar fashion to Geltman and Takayanagi [322], we tried ourselves to apply the
distorted-wave approximation to calculate off-diagonal elements for elastic scattering at inter-
mediate energies ∼50 eV to cope with the failure of the independent atom model. We obtained
very misleading∗ results showing that it is in general hard to derive any sensible physical inter-
pretation from the application of the Born approximation outside its range of validity. Angular
close-coupling brought into better light our investigations.

∗“Misleading” in the sense that more accurate-looking results were obtained from less accurate models.
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Despite the dangers linked to the Born approximation where distortion, multiple scattering
and coupling effects are important, the plane wave Born approximation still remains a very
practical tool. In general, it can be used for calculating the asymptotic contribution of a matrix
element in a region beyond a certain radius rmax where distortion of the wave is thought to have
little effect on the exact integral [671, Appendix]. Such procedure is sometimes called “Born
completion” [430] or “Born closure”[671, §IV.B.3]. All in all, we conclude and recommend that:

An a posteriori safety check for the applicability of the Born (plane or distorted) approx-
imation, is to ensure that the value calculated (phase-shift 10.5 or matrix element 8.118)
be small ≲ 0.1; otherwise the distortion may not be treated as a first order perturbation.

Below, we remind a low-energy method that conciliates the deficiency of the Born approxi-
mation to properly account for both long-range and short-range potentials in a consistent way.

Modified effective range theory

Undeniably the most prominent and widespread approximation for elastic (differential) cross
sections at low-energies k → 0 is the modified effective range theory (MERT) [668, 836, p.7–
8:§V] which assumes that the dominant force acting at low-energies is the polarisation potential
[168, 710]. This hypothesis is supported by the recent successful application of MERT [272], to
noble gas atoms and a few molecules to energies as high as 20 eV, by encompassing the effect of
short-range potentials into four fitted parameters only.

Assuming an asymptotic decay of Vp(r) ∼ −αd/2r
4 with the dipole polarisability αd, the phase

shifts (sec. 8.4.1) from such isotropic potential are defined by [168, 709, eq.(2.3), eqs.(4-5)]∗:
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π

3
αdk −
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αdA log(1.23

√
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k2 +O(k3) , (10.17a)

1

k
tan δℓ =

παdk

(2ℓ + 3)(2ℓ + 1)(2ℓ − 1)
+Aℓk

2ℓ +O(k3) . (10.17b)

The very definition of the scattering length A is [147, p.71:eq.(2.120)]:

A ≡ − lim
k→0

tan δ0
k

, (10.18)

which can be extended for ℓ > 0 to define the lengths Aℓ (usually Aℓ=1 only). This theory is
named after the parameter r0, known as the effective range of the (full) potential [710, eq.(5.5)]:

r0
2
≡ ∫

∞

0
(ũ20 − u

2
0)dr (10.19)

where the free solution ũ of the Schrödinger equation with V (r) = αd/2r
4 is expressed in the

limit k → 0 :

ũ0 (
√
αd/r) ≡ sin(

√
αd/r) + (

√
αd/A) cos(

√
αd/r) (10.20)

∗Note the missing square on A in Chang [168, eq.(4)] and the fact that Aℓ in his eq.(5) should be accompanied
by k2ℓ+1 instead of k3 which applies to ℓ = 1 only.
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The function u0 is the solution to the Schrödinger equation with the full potential in the
limit of zero energy. All in all, r0 ∼ a0 is expected to be a small multiple of Bohr’s radius [168,
p.894-bottom] and is thus not necessary to include in (10.17a) as k → 0.

When extending to a molecule [268], the ensemble of rotational transitions J → J ′ of the
molecule must be included [168]. After summation and neglect of the kinetic energy gain/loss
due to rotational de/excitation, the differential [668, eq.(100)] and integrated cross sections [168,
eq.(18)] for total scattering (d)σtot can be expanded (presently to second ∼ k2 order) as:

dσtot
dΩ

≅ A2 +
4Q2

45
+ πk(αdA +

α2Q

30
) sin(θ/2) +

8αd

3
A2k2 lnk

+ [(sin
θ

2

παd

2
+ 4kA lnk

αd

3
)
2

−A4 + 2AC]k2 +O(k3) (10.21)
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A
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2 +O(k3)] (10.22)

The coefficient C in (10.21) encompasses the order k2 in 10.17a. The following sum on
Legendre polynomials was used [709, eq.(2.6)]∗:

−
2

3
+
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∑
ℓ=1

2Pℓ(cos θ)

(2ℓ + 3)(2ℓ − 1)
= − sin

θ

2
(10.23)

The issue when applying the above MERT equations on molecules, is that the coefficients of
the higher order k2, k3 terms might actually be quite large (≳ 100) [168, eq.(23)]. Hence, their
negligibility as k → 0 might be justified only at lower energies ≲ 10meV than what is achievable
with atoms [836, table I] (up to a few eVs) [709, §IV].

Worse is the applicability on DCS from the expansion (10.21), rather than by using the phase
shifts (and matrix elements [168, eq.(6)]) from (10.17a–10.17b). The leading backscattering shape
should be due to sin θ/2 according to (10.21). Nevertheless, the probings of elastic scattering
from N2 at 0.1 eV from Sohn et al. [863] show some inadequacy in figure 10.6b. This means that
their curve could not have possibly been plotted with (10.21) as claimed in Morrison [668, fig 13].
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Figure 10.7: Disagreement reveals it-
self at a lower energy (10meV)

Furthermore, the agreement on figure 10.6b between
the DCS from phase shifts and the expansion to order
k3 is misleading. The phase-shift DCS does not include
the quadrupole Q whereas the expansion (10.21) does.
The agreement is merely fortuitous because the nega-
tive isotropic contribution of order k4 is more or less of
the same magnitude as that of 4/45Q2 at 0.1 eV. At a
lower energy of 0.01 eV plotted on fig. 10.7, the fortu-
itous agreement disappears.

This instance is a tree among a jungle of examples
showing how obtaining shape agreement in DCS cal-
culated in the framework of quantum mechanics in a
particular situation, can be largely arranged by fortuity
and thus is often a misleading factor when comparing results from different models.

We will now move on to a different kind of “approximative” method.
∗I was not able to find an identity in reference books for this relation.
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0° 30° 60° 90° 120° 150° 180°
Angle of Scattering

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nt

ia
l C

ro
ss

 S
ec

tio
n 

(
²/s

r)

N2 at 100 meV : Elastic (A=0.44)
MERT-phase
MERT k
MERT k2

MERT k3

Sohn et al (1986)
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Figure 10.6: MERT performance compared between DCS and ICS of elastic scattering with N2,
the applicability for low k orders on DCS is irresolute.
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10.2 Appeal to Generalisations

It is not easy to propose a universal classification of approximations in physics. The habitual
appearance of an “approximation” is that from a general and often incalculable expression, the
parts that pose difficulty are encompassed in an order of magnitude that is shrunk to some
desired smallness while the rest is calculated with ease. This was presented in the former section
with the wavenumber k of the incident electron as one of the parameters determining the overall
imprecision made.

The result obtained may be seen as an idealisation of a real phenomenon, such as assuming
that the interaction with an ion +Z is entirely Coulombic ∝ +Z/r or that the polarisation is
indefinitely intense as we get closer to an atom ∝ α/2r4.

Usually, one is aware that the reality is more complex and that some additional terms (multi-
poles, interferences, etc.) would be needed in order to paint more truthfully the physical situation.
The approximation consists in discarding those terms and looking at the most important one.

So an approximation is basically bringing the real toward an ideal situation.

Approximation ∶ Real Ð→ Ideal

On the other hand, one might decide to start from an ideal case which is known to be treated
exactly and therefrom try to adapt to represent a real situation. Undoubtedly, philosophers must
have a proper terminology for this alternative “approximation” which actually proceeds in the
opposite way of our usual approximation. This is usually designated by the vague term of ad hoc
modification, adjustment or approximation, signifying that it was introduced a posteriori, in a
loosely justified manner, in order to get the desired behaviour. This denomination is, however,
unclear because any subsequent modification or correction of a formula (ideal or approximate)
may be qualified as being ad hoc. Here, I propose a different terminology and name the converse
of an “approximation”: an “approculation” (from an idealised case), “procul” meaning “afar” in
Latin.

Approculation ∶ Real ←Ð Ideal

The underlying idea of an “approculation” is not to get closer toward an ideal but away
from it by introducing a change that leads toward more realistic values. Approximation, or
approculations alike, might be justified, founded or ad hoc.

This distinction will surely seem obscure and futile to the readership. However, the pith of
an approximation is to project reality onto an ideal (like in Born’s plane-wave approximation,
imagining that the incident electron’s wave stays plane), whereas an approculation aims to get
back toward reality by disguising the ideal as we shall exemplify below.

Perhaps another way to look at it (albeit still in the Latin perspective) is to say that the
starting point taken by the approximations introduced in the previous subsection 10.1 was ab
initio. In this subsection, we would like to illustrate what happens when we proceed inversely:
ab fine; the “ending point” being the exact solution in a mathematically ideal situation.

We will cover the following approculations:

1. Adapting a (classical) differential dipole strength oscillator to a (quantum) expression ac-
counting for the indistinguishability of the incident and target electrons.

2. Generalising Mott’s cross section between free electrons to a pseudo-free situation where
one of the electrons is initially bound to an atom.

3. Extending a cross section at slow velocities to the relativistic domain.
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10.2.1 Dipole Oscillator

The dipole oscillator strength (DOS) of a target molecule/atom represents the overall intensity
linked to a transition induced by an inelastic collision. In ionising collisions it is expressed
differentially with respect to the energy ε2 of the secondary electron dfi/dε2, which is formerly
bound by B to the target. The corresponding ionisation singly differential cross section (SDCS)
from the DOS is [427, eq.(4.22)]:

dσd
dε2
=

4πa20
ε0/Ryd

(
Ryd

ε2 +B

dfi
dε2

ln(4čiε0/Ryd) +
Ryd

ε0

dγ̌i
dε2
+O(1/ε20)) , (10.24)

where the function či(ε2) and dγ̌i(ε2)/dε2 are derived from the more generic “generalised
oscillator strength density” (see dedicated section 11.5).

One enigmatic aspect of dfi/dε2 in approximate treatments of collisions involving fast elec-
trons, is the inclusion of indistinguishability between the incident and target electrons which
enables their exchange.

Under Born’s approximation the differential oscillator strength is asymptotically independent
from the incident kinetic energy ε0 and is a property intrinsic to the target atom/molecule. In
Bethe’s [65] theory, exchange comes into play [427, p.333:§below-eq.(4.63)] not from the DOS
itself but by limiting integrations over the kinetic energies to (ε0 − B)/2, thereby defining the
primary versus the secondary electron. Thus, exchange intervenes only when expressing integral
cross sections.

Nevertheless, as we know, Born’s approximation usually holds only at higher energies (ε0 ≫
B). As the energy decreases, there is a departure from the asymptotic expression of the DOS
which becomes affected by ε0.

In the analytical approximation proposed by Kim and Rudd [507, eq.(46&50)] as suggested
by Inokuti [911, eq.(21)], the differential oscillator strength linked to the ejection of electrons
bound by B is expressed as:

df

dε2
∝

1

(ε2 +B)2
+
(ε2 +B)

(ε0 − ε2)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exchange

. (10.25)

The term highlighted is the contribution that would make the singly differential cross section
for ionisation (10.24) symmetric with respect to the exchange of the incident and ejected electrons
which corresponds to the replacement :

ε2 ↔ ε1 ≡ ε0 − ε2 −B , (10.26)

in which the primary ε1 is swapped with the secondary ε2 energy. As mentionned by Kim and
Rudd [507, p.3958:right column-top], this symmetrisation is not important at higher energies
(>100 eV) where the probability of exchange is very low. Nevertheless, since the dipole oscillator
strength is asymptotically defined without taking into account the possibility for exchange, it
is not straightforward to understand [507, 508, p.3958 vs. p.3] whether this symmetrised term
should be included or not when ε0 ≳ B.

Later, we will see in figure 10.8, that comparison with experimental data shows that, a
priori, better agreement is found most of the time when ignoring the exchange symmetric term
in (10.25).

The reason for this, to be discussed much later in section 11.5.3, is probably not physical but
mathematical.
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10.2.2 Pseudo-free Binary-encounter

When two free electrons scatter, their exchange is treated in the interference term of Mott and
Fowler’s cross section averaged over the spin direction for unpolarised beams (8.141) [679]. If
now one electron is subjected to the binding energy to its atom, there arise some complications
with respect to the way to treat the problem as a whole.

If we interest ourselves only on the (single) ionisation channel, we may define the following
asymptotic quantities (i.e. far away from the ion/atom):

ε0 Kinetic energy of the incident electron
ε1 Higher kinetic energy after ionisation (primary)
ε2 Lower kinetic energy after ionisation (secondary)

The energy conservation binds all those energies together with the ionisation potential B
(binding energy):

ε0 = ε2 + ε1 +B = (ε2 +
B

2
) + (ε1 +

B

2
)
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I. : Kim and Rudd [507]

(10.27)

Two possibilities (among many) of grouping kinetic energies with the binding energy are
represented in (10.27). This is because it is unclear how the potential of the ion affects the
fleeing electrons. This relation applies on the macroscopic (asymptotic) scales but it gives no
insight on what happens locally.

If we choose to conceptualise the interaction as given by Møller’s cross section (8.145), we
must now zoom onto the place of encounter: at the orbital. On its way, the incoming electron
gained a certain amount of kinetic energy K due to the attractive potential of the atom. At the
‘time of the collision’, we now have an electron of energy ε0 +K that will interact with a bound
electron.

In the simplest case of a hydrogen atom, an electron initially at rest located at infinity from a
proton will gradually accelerate to reach a kinetic energy of U +B = 2B from the virial theorem.
If by any luck, it loses a B amount of energy, it will stay bound to the proton on an orbital with
a kinetic energy U and a total negative energy −∣B∣ signifying its bound state.

Based on this analogy, we may apply the same reasoning for a more complex atom. As we
know, the bound electron has a certain average initial kinetic energy U ≠ B (not necessarily
equal to its binding energy) associated to the orbital on which it dwells. This electron will be
classically able to escape only if its kinetic energy is augmented by the binding energy B to a
total of U +B. Thus, we may reckon that at the outcome of a local collision leading to ionisation,
the lowest kinetic energy of any of the two electrons must be above B+U in order for them to be
able to escape from the ion. The term U +B can be understood as an energy gain or acceleration
in the ionic potential.

We now differentiate two extreme situations:

I The incident energy ε0 is large and only a fraction is given to ε2 ≪ ε1.

II The energy share is fair and ε1 ≃ ε2.

I. ε2 ≪ ε1 In this case, we may imagine that the incident electron deposited ∆ε, a small
proportion of its energy to the bound electron and left rapidly. Such scenario is widely used in
approximate treatments of interactions and is generically known as the impulse approximation.
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In this picture, the primary escapes at a local speed corresponding to ε0 +K −∆ε and will
trade K back to the atom to seek leave. In the meantime, the bound electron has now a local
kinetic energy U +∆ε, which is augmented by the energy transfer ∆ε = ε2+B. In order to escape,
it will have to give away B +U and remain with the asymptotic ε2.

The local kinetic energies to be used in Møller’s DCS expressed in kinetic energy (8.148) are:

ε0 +K −∆ε = ε0 +K − (ε2 +B) Local kinetic energy of the primary
∆ε +U = ε2 +B +U Local kinetic energy of the secondary

This would lead to the following modified (M) Møller singly differential cross section (SDCS):

dσM,I

d∆ε
=
dσM,I

dε2
=
2πa20α

2

β2
[

1

(ε2 +B��+U )2
+

1

(ε0 +K − ε2 −B −U)2
(10.28)

−
2γ − 1

γ2(ε2 +B��+U )(ε0 +K − ε2 −B −U)
+

1

(ε0 +K +mec2)2
] .

As could be imagined, there is a problem with this reasoning and we have purposefully barred
the ‘+U ’ in the terms related to the secondary electron. The problem is that Møller’s formula
in the form (8.148), is expressed in a reference frame where the secondary electron is initially
at rest, whereas here it possesses an initial kinetic energy U .

If we return to the appendix A in part I dealing with collision kinematics and consult
sketch A.1a, we see that for identical outgoing kinetic energies, there is a continuum of pos-
sible momentum transfers p0 − p1 due to the relative rotation of the momenta in the outgoing
plane compared to the incident plane, about the symmetry axis z aligned with Π: the total
momentum involved in the collision. As highlighted by Vriens [966, p.14], this means that the
relationship between the momentum transfer q and the kinetic energy transfer ∆ε is no longer
univalent as in the two extreme cases (secondary initially at rest vs. centre of mass frame). One
must therefore decide how to express the cross section: in terms of momentum transfer or energy
transfer?

In collisions with bound electrons, in many cases, we are only interested in determining the
kinetic energies of the outgoing electrons; their direction will follow an angular distribution to
be characterised thereafter. The cross section that is obtained is thus an integration over the
transfer momenta q corresponding to a fixed energy transfer ∆ε. Ideally, one would need to
describe the momentum distribution of the electron in its orbital and perform an average.

For an isotropic distribution in the bound orbital over a sphere at an average square orbital
momentum ⟨p2⟩ = 2meU , Vriens [966, eq.(21)] obtained the formula for binary encounters σbe in
which it is the energy transferred ∆ε that intervenes in the denominator of the Mott scattering
cross section. In our notation we have:

dσbe
d∆ε

=
4πa20Ryd

2

ε0
(

1

(∆ε)2
+

1

(ε0 −U −∆ε)2
−

ϕB
∆ε(ε0 −U −∆ε)

+
4U

3
[

1

(∆ε)3
+

1

(ε0 −U −∆ε)3
])

(10.29)
where ϕB is the Coulomb interference term defined in (11.118). One may compare this simple
generalisation with the particular case in which U = 0 given by (8.143). The difference now
is that ε2 has been replaced by ∆ε. To obtain the relativistic form (10.28), we approculated∗

(10.29) and got rid of the binary encounter term ∝
4U

3
, not because it is negligible but because

it is used in a different term when fully describing the ionisation (see section 11.5.3).
∗Meaning that we add relativistic terms based on analogy but not on rigorous derivation. See p. 341
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Here in principle, β and γ relate to ε0 +K (γ − 1 = (ε0 +K)/mec
2). Since usually K ≪mec

2,
it does not really affect γ, though it should not be neglected in β if it is comparable to ε0; this
is at the core of the binary-encounter model [507, eq.(7)] (cf. section 11.5).

If we now want to apply the exchange principle, the SDCS should be symmetric in the
exchange (↔) of the kinetic energies of the ejected electrons on two different scales:

{
Locally : ε0 +K −∆ε↔ U +∆ε

Globally (asymptotically) : ε1 ↔ ε2

Locally, (10.28) is de facto symmetric with exchange of ∆ε↔ ε0 +K −∆ε but not globally
(asymptotically= ε2 ↔ ε0 − ε2 −B). There is however a way to fix this by imposing:

“K ≡ B +U ”

By doing so, we follow the path taken by Kim and Rudd [507, §II.B] and obtain their equation
(6). This corresponds to the grouping I. as labelled in (10.27). Physically, it implies that the
ionic potential is the same as of the neutral atom/molecule.

We must remark that, it is not uncommon to stumble nowadays in the literature (e.g. [911,
§1.a:p.10]) into a contradictory argument whereby the primary electron’s initial energy ε0 would
be incremented by +B+U in the leading denominator of (10.28), but would mysteriously be only
augmented by +B in the bracket terms in order to get the right formula in the end.

The presence of U in (10.28) from (10.29) is fundamental to preserve a sensible physical
explanation. This was already remarked in Rudge’s review [793, §4.3:p.585-6], noting that the
analysis of Burgess [133] and Vriens [966] did not coincide. We recommend the reader to return
to Vriens’ original work [966, 967], where all the details are disclosed about getting the Mott
scattering formula in an arbitrary reference frame where neither of the colliding electrons are
initially at rest.

II. ε2 ≃ ε1 We now take the opposite perspective and imagine that the two electrons confusedly
try to escape the ionic potential at similar speeds, figuratively shoving one another. For further
reference, this corresponds to what is known as ‘post-collision interaction’ mentioned later on
page 495.

There is an overall toll of K +B + U that both electrons have to pay in common to escape
the ion. If we suppose that the system is isotropic, there is no reason that the local energies of
the electrons differ much locally if they match asymptotically. Hence, this time we can suppose
that they decide to split the toll equally:

ε0 +K −∆ε = ε0 +K − (ε2 + (K +B −U)/2) Local kinetic energy of the primary
U +∆ε = ε2 + (K +B +U)/2 Local kinetic energy of the secondary

We recall that if ∆ε represents the kinetic energy transfer (exclusively between two electrons),
then the local kinetic energy of the secondary is U + ∆ε. This electron will have to give up
(K +B +U)/2 (half of the toll) to attain ε2 asymptotically, hence the second equation above.

Again, going back to the origins, we take (10.29) and welcome another guest to the collection
of approximate SDCS:

dσM,II

d∆ε
=
dσM,II

dε2
=
2πa20α

2

β2

⎡
⎢
⎢
⎢
⎣

1

(ε2 +
K+B−U

2 )2
+

1

(ε0 − ε2 +
K−B−U

2 )2
(10.30)

−
2γ − 1

γ2(ε2 +
K+B−U

2 )(ε0 − ε2 +
K−B−U

2 )
+

1

(ε0 +K +mec2)2

⎤
⎥
⎥
⎥
⎦
.
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We see that if we set B + U ≡ K as in the previous case I, we get identical equations
(10.30≡10.28). Nonetheless, this time, the exchange principle applies both locally and asymp-
totically if we replaced ε2 ↔ ε0 − ε2 − B. Thus, we may choose K however we wish. Since we
are certain that K < B +U (this would be the energy gain of an electron impinging on the singly
charged ion), we may parametrise:

K = ιB + κU , (10.31)

in terms of some fractions 0 < ι, κ < 1.
We may expect that for fast electrons, the energy partition is unequal most of the time, so

that dσM,I should give a better approximation. On the contrary, slow electrons ε0 ≲ 2B are most
likely obliged to share their energy fairly with the ejected electron and modelled rather through
dσM,II with an adequate value of K < B +U .

The literature [911, §1.a] is not clear whether introducing ε0 +B(+U?) in (10.28) is mainly
due to the kinetic acceleration [793, §4.3] of the electron or due to the necessity of symmetrising
[605, p.8] Møller’s formula when extending to scattering with a pseudo-free electron. This logical
incoherence was touched upon in §1 above.

Here, we showed that if it is for the latter reason (exchange), then there is not only one way
to symmetrise Møller’s formula but many different ways as shown by the introduction of ι and
κ in (10.31). On the other hand, it is hard to conceive that the acceleration of the electron in
the atom/molecule’s potential would be systematically represented by B +U .

A more formal justification to setting K ≈ B +U as a scaling factor for ε is evoked in Tanaka
et al. [911, §1.a]. Formally, for open-shell atoms, the incident electron would temporarily be
coupled with an orbital of binding energy B if electron correlation and spin alignment were
disregarded. In the simplest case of the hydrogen atom, the incident electron’s wavefunction is
coupled to 1s and higher hydrogenic states with their appropriate binding energies [217].

In Born’s approximation, the appearance of q2 + 4B2 in the denominator is even more con-
spicuous. Bound states decay as exp(−2

√
Br), so that the plane-wave Born matrix element

of the static interaction potential automatically introduces the screening by B (cf. screened
Rutherford in section 10.1.2). Still, this picture holds only in the Born approximation (ε0⋙ B)
when exchange, polarisation, correlation effects can be overlooked.

From this analysis we may retain that setting K = B + U is somewhat justified for fast
electrons. Of course, one could enter into an endless debate of how the energy partition in
the modified Møller equation (10.30) should be handled. It could be thus imagined that the
parameter K would be a function K(ε2, ε0) of the incident and secondary energies tending
toward B as ε2 ≪ ε0.

Nevertheless, such endeavour would be paved with delusions, for one cannot separate the
role played by the target atom/molecule on the outgoing electron waves. An ab initio approach
would be considerably more desirable instead.

For the purpose of demonstration, we now combine the SDCS from the dipole oscillator with
the modified Møller of the previous section in order to define two types of integrated SDCS:

σI(ε0) ≡ ∫

ε0−B

2

0
[(2 −Q)

dσM,I

dε2
+Q

dσd−sym

dε2
]dε2 , (10.32i)

σII(ε0;K) ≡ ∫

ε0−B

2

0
[(2 −Q)

dσM,II(K)

dε2
+Q

dσd−asym

dε2
]dε2 . (10.32ii)

An adjustable parameter to the combined model is Q, which is linked to the integral of the
differential oscillator strength (11.108) from ε2 = 0 to ∞. Its value is at most 1. All the relevant
information linked to this combination can be found in the next chapter section 11.5.3. When
Q = 1, σI is called the relativistic binary-encounter-Bethe model (RBEB) [507, 508].
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We must highlight here the very important distinction:

σI includes the symmetric term of (10.25),

σII does not include the symmetric term of (10.25).

The objective in doing so, is to compare in figure 10.8 the effects of the dipole term and
the modified Møller terms. We plot the cross sections models for various elements of air, fixing
Q = 1 to have a fair comparison. The solid curves show the overall performance of σI(ε0;Q = 1)
(10.32i-darkblue) and σII(ε0;Q = 1,K) (10.32ii-pink). Each time, the chosen value for K (for
σII) is displayed. Provocatively, we show that by fiddling with the value of K, by setting it to
a certain fraction of B and U , one can almost compensate the effects of the symmetric term in
the dipole term and make σI and σII agree more or less.

As mentioned before, setting K = B +U amounts to equalling dσM,II with dσM,I. Therefore,
the difference at K = B+U between σI (darkblue —) and σII(K = B+U) (pink −⋅−) is purely due
to the removal of the symmetric term in (10.24). Overall, this symmetric term mostly contributes
at ε0 <200 eV and results indicate that it is in general better to discard the symmetric term in
the dipole oscillator to obtain closer agreement with the cross section. This is not true for argon,
whose shell structure complexity might compromise the accuracy of the model.

For illustration, we also show in figure 10.8, the contribution to σI of the dipole term only
(darkblue - - -). This is done by an artifice σI(Q = 2)/2 which annihilates the contribution at
small impact parameters from the modified Møller cross sections (cf. 10.32). Here, we see that
even if the magnitude were to be adjusted through Q, the shape would not match the theory as
well. This is due to the fact that higher order terms in the Bethe theory become important at
intermediate energies ε0 ≲ 500eV.

The purpose behind this section, is to illustrate through figure 10.8, a typical and most hated
situation in scientific debate when the approximations taken are so many that no sound physical
conclusion can be harvested from the work done. We have stalled in a ditch. Any attempt at
finding a justification will be densely paved with thick and bumpy cobbles of delusion. There
are uncountable ways one could be lured into. One could:

4 introduce a dependence of Q(ε0) with the incident energy with limε0→∞Q(ε0) = 1;

4 imagine that K(ε2) in (10.30) be a function in secondary energy which is equal to B + U
when ε2 is zero and decreases toward a certain value as ε2 grows;

4 choose a different generic shape for df/dε2 than (10.24);

4 revise the scaling applying to β2 in the leading denominator [359]

4 include an exact treatment of the interference term due to exchange [358]

Anyhow, the RBEB model embodied in (10.32) was designed only by conferring a common
asymptotic ε0⋙ B behaviour of the cross section, which is readily seen by the convergence of
all curves at higher energies on figure 10.8. Ascribing a physical relevance of the cross sections
nearer the threshold ε0 ≳ B is dubious. The binary-encounter-dipole model briefly inserted here
is a marvellous example of simple and approximative models in quantum physics that work
astonishingly well∗ for a great variety of atoms and molecules [415], yet whose success remains
to be elucidated based on a rigorous physical justification.

∗in fact sometimes much better than more cumbersome calculations based on distorted-waves [507, figures:1-7]
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Figure 10.8: Variants of the RBEB model (11.5) defined in (10.32) compared with evaluated
databases found in Inokuti et al. [425] (for Ar and O) and Lindsay and Mangan [596] (for N2 and
O2). The parameter K (energy gain) affects only σII. When K = B +U , the difference between
σI and σII is only due to the neglection of the exchange term in the dipole oscillator strength
(10.25). The curve σI(Q = 2)/2 is an artifice to show only the contribution of the dipole term in
(10.32i).

It is hard to believe that, given the numerous approximations of the model, the agreement
with experimental data be coincidental for so many different molecules. Nonetheless, as will
be shown in the next chapter section 11.5.3, trying to revise the RBEB is unrewarded, by
deterioration of the former agreement with experimental data.

Once again, when performing ad hoc modifications (as illustrated here above by models I
and II) instead of ab initio analysis to model a certain phenomenon, one should not attach too
much importance to the exactness or meaning of the results obtained. A heuristic approach
in quantum mechanics is rewarded with encouraging results more often than not, because finer
effects wont to compensate among themselves.

History is full of examples of “lucky” guesses that were not rigorously introduced from the
outset, but that later revisits elucidated what compensations in the higher order effects validate
the simple result. Such had been the case of the classical Rutherford cross section [147, chapter 3]
and the introduction of the electron’s spin [345, 929], among many other cases.

At the end of section 11.5.3, we take the risk of interpreting the success of the binary-
encounter-dipole model of Kim and Rudd [507] by comparing with the terms from Bethe theory
as reviewed by Inokuti [427]. The essence of the argument is embodied in equations (11.127)
and (11.128). There are still some open questions left regarding the correspondence among the
higher order terms.
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10.2.3 Relativistic Forms

When extending a formula to relativistic energies, one must pay attention not only to mathe-
matical correspondence in the limit c →∞ (infinite speed of light), but also to respect physical
consistency. Below, we transcribe the current [358, 508] appearance of the relativistic binary-
encounter (RBE) model (without the dipole):

dσRBE

dε2
�=
4πa20α

22Ryd2

β20 + β
2
B + β

2
U

[
1

(ε2 +B)2
+

1

(ε0 − ε2)2
+

1

(ε0/2 +mec2)2
(10.33)

−
mec

2(mec
2 + 2ε0)

(mec2 + ε0/2)2

cos
⎛

⎝

¿
Á
ÁÀ α2

(β20 + β
2
B)

ln
β20
β2B

⎞

⎠

(ε2 +B)(ε0 − ε2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10.34)

The fuzzy parts and differences with (10.28) introduced previously are highlighted. To each
coloured group, we address a critique. The reduced velocities β0, βB, βU are defined respectively
from the initial kinetic energy of the inciden electron ε0, the binding B and kinetic U energies
of an electron bound to the atom/molecule (see the correspondences on the right hand side of
10.36 below).

4 Acceleration term: In the non-relativistic binary-encounter model (see 11.79 in section 11.5.2)
the incident energy in the denominator is rescaled as:

σ̄0 ∝
1

ε0
replaced by

1

ε0 +U +B
, or equivalently : replaced by σ̃0 (10.35)

where U is the average kinetic energy of the target electron bound by B to its orbital. This
addition is supposed to represent the kinetic energy gained by the incident electron in the
attractive potential of the target atom/molecule [507, §VI.].

If that is so, then generalisation to relativistic energies implies formally to replace the
total (incident + gained) kinetic energy by its classical expression of the squared velocity,
which is the pertinent quantity in the interaction (not the kinetic energy per se). We thus
introduce the reduced velocity:

β̃2 ≡ 1−(
mec

2

ε0 +U +B +mec2
)

2

≢ β20 + β
2
B + β

2
U = 1−

mec
2

ε0 +mec2
+1−

mec
2

B +mec2
+1−

mec
2

U +mec2
,

(10.36)

which is fundamentally different than the denominator (10.34) from Kim et al. [508,
p.4:eq.(19)]. Of course, mathematically the difference is ridiculous because in general
B,U ⋘ mec

2, except for K-shells (n=1) of heavy atoms. Nonetheless, an expression
summing β2 + β2B + β

2
U should be viewed as a physical aberration∗ (what if β2 > 0.9 and

β2U + β
2
B > 0.1 ?). This concern was raised in Wang et al. [974, p.10-11:eq.(19-21)], though

only to change the prefactor to 1/β20 ...

∗Otherwise, electrons that penetrate to the K-shell of Uranium would surpass the speed of light!
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4 Inaccelerated velocity: In the cosine of the logarithmic term appears a 1/v factor for the
velocity of the incident electron. A glance at Mott’s cross section (8.141) reveals that
this velocity is formally the same as the velocity of relative motion ←→v that appears in the
denominator of the magnitude. Based on the correspondence between Mott and Møller’s
cross sections (8.141 & 8.145), we get the following relationship∗:

(
mea0
h̵
) ←→v =

β̃

α

4

¿
Á
ÁÀ 2γ̃2

γ̃ + 1
. (10.37)

This velocity can exceed the speed of light, an intriguing aspect, but not unphysical since
it is not a velocity of a particle, but a relative velocity for an observer sitting right in both
electrons’ centre of mass frame. The Lorentz factors in (10.37) would be defined as:

γ̃ = (
ε0 +U +B

mec2
) + 1 and β̃2 = 1 −

1

γ̃2
, (10.38)

though this is purely conjectural, as one would need to make a calculation with Coulomb
waves in the relativistic frame of Dirac’s equation instead of Schrödinger’s equation.

4 Momentum transfer: the fraction β2/β2B as argument to the logarithm in (10.34) is a
distortion from its original non-relativistic expression (8.141):

tan2
θ

2
=
(ε2 +B)

(ε0 − ε2)
,

where we have also expressed the angle of deviation θ in the centre-of-mass frame. This
ratio has the same origin as the 1/(ε2 +B) terms in Møller’s cross section: it is related to
the momentum transfer. One’s mind can be refreshed in (8.142) in section 8.5.5 which is
valid relativistically.

There are in essence two mistakes that distorted an energy fraction into a velocity fraction:
First, the expression (10.2.3) was replaced [358, eqs.(7-9)] by its value at ε2 = 0 because of
a recommendation from Vriens [966, eq.(24)] who could not use an exact analytical average
as in (11.88) because he included the initial kinetic energy U in the electron’s bound orbital.

Second, the kinetic energies were mistakenly replaced by ratios of velocities, hence the
conversion of a former ‘ε’ to a ‘β’.

In summary, the physical interpretation of the Coulomb-wave interference in the logarithm
(10.2.3) is not a velocity ratio but an energy ratio between the secondary and the primary
electrons.

4 Mutation to half: the passage from Mott to Møller’s cross section (8.143 to 8.148) is
accompanied by the appearance of a term preceded by:

(
γ − 1

γ
)
2

=
ε20

(ε0 +mec2)2
,

in which there is no trace of a division ε0/2. The curious mind may notice in the excerpt
below from Kim et al. [508], that this factor made its appearance in equation (19) whereas

∗This is merely a comparison, not a derivation. I do not dare plunge into a formal derivation of Møller’s cross
section with Coulomb waves instead of plane waves!
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it was not yet present in their equation (15) which is the same pseudo-free Møller cross
section as used here.

This ‘/2’ never left the stage once it became immortalised in the RBED model. In principle,
the lone ε0 of (10.2.3) should have been augmented to ε0 +B + U , by virtue of the usual
replacement (10.35) representing the acceleration in the target’s potential.

The corrections introduced here could be considered as a mere cavilling at physical inconsis-
tencies in ad hoc adaptations of a formula (Møller scattering in this case). Mathematically, the
differences highlighted may luckily take negligibly small values in the usual range of application
of the formula. Nevertheless, we consider such remarks as important since they point out at a
general problem in scientific investigation: automated repetition of conceptual mistakes. This
problem might represent the tip of an iceberg, that even a field which we would expect to have the
virtue of constantly refining itself, may be sullied by inconspicuous mechanisms of degeneration.

10.3 Semi-Empirical Models

An empirical model corresponds to a mathematical formulation that matches closely all the avail-
able experimental data disregarding a justification or interpretation of the parameters involved.
The promotion to “semi”-empirical entails that a certain guidance is given over the parameters
used, the shape of the function, the asymptotic or near-threshold behaviour based on theoretical
modelling or physical reasoning.

The purpose of the present section is to compare and comment DCS from different semi-
empirical models of the optical potential.

Purely empirical models are usually provisional, since they spur scientific minds to quickly
find a physical reason, mechanism to shed light upon the nature of the underlying function to
which the data would abide.
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Often, semi-empirical models start from a known asymptotic ideal behaviour of a function,
valid in ideal and simple cases (static, adiabatic, unperturbed, high-energy, etc.) and try to
extend the applicability over the whole domain of the function.

In this process, the heuristic approach is the supreme recourse. The primitive function might
become unruly in certain ranges: possess singularities. The first step always consists in checking
that all such singularities are well controlled or screened away either through the application of an
exponential decay or the removal of the singularity through a scale parameter b. Mathematically,
in case of an inversely decaying function ∝ 1/xα, this implies :

1

xα
Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(−(b/x)β)

xα
1 − exp(−(x/b)β)

xα
1

(x
α
β + b

α
β )β

The scale b controls the approximate position where one needs the function to ebb, while the
exponent β tunes the strength of the transition; large (small) β produces an abrupt (smooth)
ebbing. Rarely is β left as an adjustable parameter, one is usually content with setting an integer
value 1 < β < 7 once and for all.

The example given here above was actually applied to semi-empirical models of the polari-
sation potential. Below, we will comment two particular semi-empirical models for representing
optical potentials in electron-molecule scattering: polarisation-correlation and absorption poten-
tials. Before that, for the sake of inclusion, we will graze over semi-empirical exchange potentials.

10.3.1 Static

In order to draw meaningful observations, before we can compare semi-empirical models of the
optical potential, it is important to check that the sensitivity of calculated DCS on the existing
models for atomic electronic densities [196, 726, 800, 803] is smaller than the differences arising
from second-order contributions to the optical potential: exchange, polarisation and absorption.

This preliminary check is represented in figure 10.9a for atomic oxygen at 10 eV. This is
the target for which our fit deviates most from the other models and thus should illustrate the
worst case differences, which, as seen, can be quite significant. Nonetheless, the influence of the
semi-empirical models is even more conspicuous in the forward scattering range.

The effect of the static model is smaller for other atoms as shown in the figure 10.9b below
for argon. The curve from our model is practically superposed with the fit of Pacios [726].

In the case of atomic nitrogen and oxygen, one must however not attach too much relevance
to the exact DCS. First, there is no available experimental data to compare with. Second, the
presence of open-shells is not taken into account. Third, the accuracy of the optical potential
model is poor in the energy range close to ionisation threshold. In the following study, we shall
thus attach more importance to well-known targets such as argon and will highlight significant
differences due to the semi-empirical model used.
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(a) Comparison of DCS for atomic oxygen at 10 eV. Subsequently, we also show the DCS
arising from a different choice of semi-empirical potentials for exchange (10.39), correlation
(10.61) and absorption (10.73) which are discussed in the following subsections.
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Figure 10.9: Effect of the static potential on the DCS from four different models of electronic
density: our model (p.280 and (8.23)), Cox and Bonham [196], Salvat et al. [800] and Pacios
[726]; and elsepa [803].
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10.3.2 Exchange

We recall from (8.13) that the exchange potential comes from the necessity that the wavefunction
of the total electron-molecule system be antisymmetrical with respect to interchange of the
scattering electron with any of the bound electrons. This leads to the introduction of nonlocal
potentials which, at each point r, require the knowledge of the overlap interaction integral of the
scattering wave ψ(r) with a bound orbital ϕj(r). To circumvent this, there have been numerous
propositions of local approximations for the exchange potential that may be classified into two
categories:

1. Free electron gas (FEG) : stemming from Slater’s [856] proposition of modelling the target
locally as a free electron gas for including exchange in bound electron orbitals.

2. Semi classical (SC) : from Furness and McCarthy [309] where the local kinetic energies of
the bound electrons are assumed negligible compared to the intruding electron’s kinetic
energy.

The free electron gas model was later adapted by Hara [384] to electron scattering problems
to take the generic form:

Vex,FEG(r) = −
2

π
kF(r) (

1

2
+
1 − η

4η
ln ∣

1 + η

1 − η
∣) , (10.39)

where η =
k(r)

kF(r)
.

The FEG basically represents all electronic wavefunctions (bound or free) as plane waves with
a local wavenumber k(r) (10.40) for the scattering electron and kF(r) (10.41) corresponding to
the Fermi energy level for all bound electrons (see appendix E eq.(E.3)).

k(r) =
√
2(ε0 − Vs(r)) , (10.40)

kF(r) = (3π
2ρ(r))

1/3
. (10.41)

Those wavenumbers depend on the static potential Vs(r) and the electron density ρ(r), of which
analytical expressions were given in section 8.2.1.

As very well explained in Morrison and Collins [669, §III], those wavenumbers are assumed
constant when performing the overlap exchange integrals, but vary with the position r when
used in the local potential (10.39). In our vocabulary, (10.39) is a marvellous example of:

1. An approximation (the dependence of k on r is neglected):

ψ(r) = exp(k��(r) ⋅ r) , (10.42)
ϕj(r) = exp(kj��(r) ⋅ r) , (10.43)

2. followed by an approculation (the dependence of k on r is reincorporated a posteriori) :

k not constant : k(r) = 10.40 (10.44)
kF not constant : kF(r) = 10.41 (10.45)
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Hence, the dialectic notion of ‘approxi’ and ‘approcul’ is supposed to convey the idea of ‘forth’
and ‘back’. Its adoption, would, in the author’s opinion, clarify how a model is constructed∗.
Different variants appeared [669, 775, §II.A.2, fig.3] depending on the value adopted for the local
potential V (r) for calculating the wavenumber k(r) (10.40) of the scattering electron at position
r. The different versions were unified by Kutz and Meyer [546, eq.(7)] into a parametric form
depending on the ionisation energy potential I:

k2(r; g) = k20 + k
2
F(r) +

(2 − g)k2F(r)2I

(2 − g)k2F(r) + g 2I
, with 0 ≤ g ≤ 2 . (10.46)

A comparison of the performance from various FEG models of local exchange potentials was
done by Riley and Truhlar [775] for He and Ar; and Morrison and Collins [669] for H2 and N2.
The conclusion was that an intermediate model with an adjustable g ≠ 0 or 2 would be the most
appropriate representation for reproducing similar phase shifts as when the exchange is treated
exactly.

The second category (historically) of approximate local exchange potentials is the semiclas-
sical (SC) potential which was generalised by Riley and Truhlar [775, §II.A.1:eqs.(8–9)]:

Vex,SC(r) =
1

2
(ε0 − Vs(r))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡k(r)

−
1

2

√
(ε0 − Vs(r))2 + 4πρ(r) . (10.47)

The assumptions are less restrictive than for the free electron gas. They rely on the fact
that the bound orbitals ϕ(r) are slowly varying functions of r [775, eq.(5–6)] compared to the
wavefunction of the scattering electron ψ(r). Physically, this is equivalent to neglecting the
kinetic energy of the bound electrons compared to ε0 = k20/2:

△ϕ(r)≪ ε0 . (10.48)

In an attempt to include the kinetic energy of the bound orbitals, Gianturco and Scialla [324]
proposed to add the kinetic energy of a free electron gas (E.4) to the local kinetic energy of the
scattering electron in (10.47) giving the model presented earlier in (8.41).

At very high energies, where ε0 ≫ Vs(r), both FEG and SC models converge† to [775, eq.(11)
and §II.B]:

Vex,ε↗ = −
πρ(r)

ε0 − Vs(r)
, (10.49)

which is equivalent to the Born-Ochkur [711] approximation when Vs(r) is removed.
The two approximation classes (FEG and SC) for the exchange potential are represented in

figure 10.10, with the hybrid semiclassical Fermi version (SCF) from Gianturco and Scialla [324],
the high-energy approximation (10.49) and the effect of g on the Vex,FEG in (10.39). We see that
in general, the free electron gas (FEG) gives a markedly stronger attractive exchange potential
than the semiclassical (SC) model for argon but that the effect of the g tuning parameter (10.40)
in FEG for O2 is more or less of the same magnitude as the difference with the SC model.

∗We remind that presently, one would describe this procedure either by the vague “ad hoc” or by a more
correct “a posteriori” that does not however convey that we are somehow “undoing” the assumption made for the
approximation.

†The demonstration is an excellent exercise in an undergraduate exam of quantum physics. It requires to
expand the logarithm ln ((1 + η)/∣1 − η∣) up to the third Taylor order in 2/(η − 1) and prove that the zeroth and
first orders in 1/η in (10.39) cancel and only a ∼ 1/(3η2) +O(1/η3) remains.
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Figure 10.10: Comparison of exchange potentials for argon and molecular oxygen for an electron
at 200 eV and 50 eV respectively.

The inclusion of the bound kinetic energy in the SCF (8.41) systematically reduces the effect of
exchange.

As regarding the recommended model to be taken in calculations, on the one hand, according
to [794, p.5224 and §VI], the semiclassical model alone is too attractive (negative) for N2 at lower
energies. From our analysis, the results with the SC alone for diatomic molecules were indeed
somewhat worse than with the SCF. On the other hand, our own calculations for argon at low
energies (< 10 eV) revealed on figure 10.11 that the FEG (whatever 0 < g < 2) performed more
agreeably than the SC, while the SCF gave significant disagreement. It is absolutely incongruous
to conclude that the FEG model for exchange is more accurate, since alluring results can also
be obtained by tinkering with the polarisation potential (in the next subsection) and the SC
exchange [4, p.11:fig. 1B and p.22:graph 5].

This strange inversion of performance may be related to our poor modelling of diatomic
potentials. For diatomic molecules, we adopted the semiclassical Fermi (SCF) model presented
in section 8.2.2 which was initially used for CH4 [324, eq.(18)]. For atoms however, we preferred
the use of the FEG for argon and the SC for N and O.

There have been numerous studies comparing previous local exchange models and proposing
new ones (e.g. [275]), we did not attempt to delve further in this matter. In the next section we
will concern ourselves with the important potential of polarisation accounting for perturbations
induced by the presence of the scattering electron.
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Figure 10.11: Comparison of DCS for an electron scattering off argon at 5 eV from three dif-
ferent local exchange potentials Vex,FEG (10.39), Vex,SCF (8.41) and Vex,SC (10.47). The static
potential is obtained from Koga’s [522] analytical HF density, while the correlation polarisation
is Vkob (10.71) below. Other theoretical curves are from elsepa [803] and BSR calculations from
Zatsarinny and Bartschat [998] and Zatsarinny et al. [1002] extracted from lxcat.net/bsr. Ex-
perimental data are from ∎ [331], ⋆ [871] and ▼ [644].

10.3.3 Polarisation

It is well known [824, eq.(1.9)] that the dipole polarisation potential of any atomic target behaves
adiabatically and asymptotically as V ∞pol(r) = −αd/2r

4 for r → ∞. The factor αd is the dipole
polarisability of the atom or molecule expressing the deformation of the electronic cloud under
a static and homogeneous electric field. This situation corresponds ideally to an extremely slow
electron (∼eV) and far from the atom (≫ a0). Such premise allows us to assume that the
electronic cloud polarises instantly due to the outer presence of the scattering electron without
any overlap of their respective wave functions.

The base of this image crumbles when the electron is near the target (small r ≲ a0) and at fast
velocities (ε ∼keV) [327, p.100-1]. At closer distances, the molecule polarises to higher orders than
the dipole (lowest order) [257]. At faster velocities, the molecule does not have enough time to
polarise fully. Those invalidating situations are actually connected by the fact that the electron
is not positioned definitely but is spread over a region determined by its wavefunction. This
implies that the response of the bound electrons is non-local and dynamic [524, eq.(11)] which
leads to the necessity of treating the potential non-adiabatically [332]. Here, we briefly review
the attempts of emulating non-adiabatic effects at small radii and/or high velocities through
fully- or semi- empirical modifications. We then select a few of those, compare them and assess
their performance at intermediate (∼ 50 eV) and high (∼ keV) energies for atoms and molecules.
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As seen from the figure 10.12 beside, there is a practical need
to abate the unphysical 1/r4 abyss of the polarisation poten-
tial at small radii. In principle, the radial Schrödinger equa-
tion can be solved exactly for a 1/rn potential [710, §2.A].
This is usefully exploited in the modified effective range the-
ory (MERT, see sec 10.1.5) at low energies, when the cen-
trifugal barrier at ℓ > 0 prevents the electron from penetrat-
ing into the region at small radii. The phase shift δ0 for the
s-wave when n = 4, can also be defined and converges to a
finite value at zero energy. This analytic property has been
exploited by Fedus et al. [272] with a simple 1/r4 potential,
who fitted the three lowest phase shifts ℓ ≤ 2 for argon with
six parameters (two for each ℓ). Those parameters accounted
for all complicated short-range potentials. Agreeable results
could be obtained for energies up to 10 eV.

Nonetheless, at higher energies, when the electron’s par-
tial waves may penetrate deeper into the molecular/atomic
region where the short-ranged potentials of the molecule
dominate, it is clear that the 1/r4 trend of the polarisation
potential must be somehow corrected.

It is impossible to make in just the preamble of a section,
a comprehensive review of how to characterise polarisation
forces beyond the asymptotic adiabatic (static) dipole decay. In this subsection, we focus on the
most widely used semi-empirical models that roughly try to encompass the complicated nature
of polarisation as the electron nears the target.

In early studies, the adiabatic polarisation would either be saturated [905, eq.(5a)] to a
definite radius rc (i.e. 1/r4c ∀ r ≤ rc, dashed - - -line on figure 10.12) or simply sharply quelled to
zero (dotted ⋯ line) [103, eqs.(28-31)].

A smoother, popular empirical correction is to introduce cutoff functions [197, 572, 946, §3.,
eq.(4), eq.(13)] to the adiabatic dipole polarisation potential:

Vpol(r) = V
∞
pol(r) ⋅Cp(r) = −

αd

2r4
Cp(r) , (10.50)

of which the exponential with the exponent 6 [551, 834, p.51:eq.(147), p20:eq.(26)]:

Cp,cut(r) = (1 − exp((−r/rc)
6)) , (10.51)

was the most widespread [135, 166, 389, eq.(41), eq.(4.1), eq.(1)] before it was superseded in
the 80s’ with ab initio approaches [257, 332, 672]. The cutoff radius rc was usually matched
heuristically in order to reproduce a specific feature in the cross section, such as the position of
a resonance peak [127, eq.(13)]

In the meantime, more polished ways of incorporating non-adiabatic curbing at small r was
through the Buckingham potential [126]:

VB(r) = −
αd

2(r2 + r2B)
2
. (10.52)

This formula was also frequently used for permanent quadrupole and dipole potentials [197,
§3]. Its principal advantage is that it lends itself easily to analytical treatment under the first
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Born approximation [397, eq(2)]. It was thus used as an empirical model to fit exponentially
decaying DCS [114, 115, fig.3, 4] at very small angles (θ <10○) and high energies (ε > 200eV)
corresponding to small momentum transfers (qa0 ≪ 1). The parameter rb could then be adjusted
to match the decaying slope in semi-logarithmic scale [453, eq(21)] as : limk→0 dσ ∼ exp(krB)dΩ.

When comparing the value of rB at various energies, an empirical law [653, eq.(8-9)] of its
dependence with energy could be obtained [801, eqs.(4-5)]:

r2B =
αd

2
Z−1/3b2pol with b2pol =max [

ε0 − 50 eV

16 eV
,1] (10.53)

Other variants of the Buckingham potential with an empirically parametrised cutoff radius
rb(ε) were also explored [4, 470, 729]. The results are seductively deceiving because the sensitiv-
ity of the DCS on the cutoff radius is such that one can always obtain alluring agreement despite
the crude simplicity of the polarisation potential used. An alternative way to incorporate non-
adiabaticity was to assume that the polarisability αd(v0/r) depended on the electron’s incident
v0 or local v velocity and distance r from the molecule [389]. At large v/r ratios (fast and/or
close) this apparent polarisability would differ from its static value αd [453, table 12]. This could
be also effectively done through a semi-classical down-scaling [955, §V-VI]: 1/f(r, ε0) ⋅ αd/2r

4.
We note additionally, that some studies [53, 469, 729, 772, eqs.(1-2), eq.(4), eq.(1), eq.(4)]

proposed to adjust the exponents in the Buckingham potential that led to a generic form VB,gen ∼
rn/(rm+rmb )

(4+n)/m, in order to cancel the value at r = 0 like with the exponential cutoff (10.51).
More formally, non-adiabatic∗ effects are found to behave asymptotically as ∼ −c/r6+O(1/r7)

for hydrogen [229, eq.(10)], atoms [824, eq.(1.9)] and also for molecules albeit in more complex
manners (angular dependence) due to anisotropic effects. It is noteworthy to mention that
a derivation based on the eikonal (or Glauber [337]) approximation at high-energies leads to
an opposite sign of c [137, eq.(2.26)], when the potential is deduced from the inverse Fourier
transform of the scattering amplitude [137, eq.(2.24)] in the second Born approximation. This
may signify an inconsistency when mixing terms in the first and second Born approximation (the
scattering amplitude was of second order but the derived potential was based on a first order!).

In the correct derivation, the coefficient c of the r−6 term is a weighted sum of (i) the
quadrupole polarisability αq, the inverse (ii) third ∝∆E−3 and (iii) fourth ∝∆E−4 momenta of
the (dipole) optical oscillator strength distribution.

Some proposals separated each asymptotic power into a series of Buckingham-like potentials
[496, eqs.(24-28)], which we call the “augmented Buckingham”:

VB,aug = −
αd

2(r2 + r2B)
2
+

cr2

(r2 + r2B)
4

(10.54)

Getting rid of empirical corrections, there were also other damping functions fn proposed
[329, eq.(13)] each applying to their respective power of 1/rn:

Vdamp = −
αd

2r4
f4(r) −

c6
2r6

f6(r) −
c7
2r7

f7(r) −
c8
2r8

f8(r) + . . . (10.55)

The expansion coefficients cn as well as the damping functions are obtained from the average
unperturbed density distribution of the target.

Nevertheless, the decomposition into ∝ −a/r4+c/r6+ . . . can be actually taken as the asymp-
totic expansion of a single whole function. This was the philosophy of Onda [717, eqs.(51-a&b)]
who proposed two other cutoff functions, to be replaced in (10.50), which yield the desired 1/r6

term at r ≫ a0:
∗We recall that ‘non-adiabatic’ means that the response of the molecular cloud is not instantaneous and thus

that the energy of the system is correlated to the invading electron’s kinetic energy and position [138, §I]



360 CHAPTER 10. CRITICAL REVIEW

0 2 4 6 8 10
Incident Electron Velocity v0 (a.u.)

0

5

10

15

20

25

30

Cu
rb

in
g 

ra
di

us
 fo

r p
ol

ar
isa

tio
n N2

rB

rb( = ion)
rb( = 2 ion)
r′b

5 20 50 100 200 500 800 1000 1500
Incident Electron Energy 0 (eV)

Figure 10.13: Curb-
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ferent models for the
Buckingham potential
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Cp,exp = exp(−
r2d(v0)

r2
)

Cp,inv =
1

1 + r2d(v0)/r
2

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

∼ 1 − (
rd(v0)

r
)

2

for r ≫ rd . (10.56)

Non-adiabaticity resides in the behaviour of the diabatic radius rd in the electron’s incident
velocity v as [719, eq.(5-6)]:

r2d(v0) =
(3∆̄ + 6v20)

∆̄2
−
αq

αd
. (10.57)

This expression comprises an average excitation energy ∆̄ (in hartrees) which needs to be
determined in virtue of either the third or fourth inverse momenta of the oscillator strength
distribution. It is expected to rove above the ionisation threshold ∆̄ ≳ Eion of the target [719,
§II.A]. The term added in blue represents the ratio of the quadrupole αq on the dipole αd

polarisabilities. It was not present in the original works [717, 719, eq.(32), eq.(5)], we tentatively
restored it in analogy with the polarisation potential of atomic targets [824, eq.(1.9)].

Recently, we proposed [812, eqs.(9-10) see also §II.D(iii)] to unite the cutoff functions to the
Buckingham potential to represent the non-adiabatic 1/r6 expansion as:

Vb(r) = −
αd

(r2 + r2b)
2

with r2b ≡
1

2
r2d(v0) from eq.(10.57) , (10.58)

instead of the other two forms (10.56). The introduction of a new rb = rd/
√
2 is just related to

the fact that 1/(1 + ϵ2)2 expands as ∼ 1 − 2(ϵ2) + 3(ϵ4) . . . for ϵ≪ 1.
Originally [812, p.3-top-right], we had defined the average excitation energy parameter ∆̄ as

the ionisation threshold: ∆̄ ≡ Eion. Later, we realised that the curbing radii rb(v) from formula
(10.57) are too large at intermediate energies > 20 eV (could be a factor 2 or 10 depending on
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v0 see figure 10.13) which causes a premature extinction of polarisation at intermediate energies
(the polarisation potential becomes underestimated from 100 eV onward). Here, after noticing
that our rb(v0) from (10.57) grows much faster than rB(v0) from (10.53), we tentatively risked
setting ∆̄ = 2Eion. This is an arbitrary empirical adjustment so as to soften the slope of rb
with the electron energy (see figure 10.13). We will see below that although this gives agreeable
results for molecules within the limits of the approximations taken, it is an unsound guess for
argon (figs. 10.15&10.18b). This is a sign that non-adiabatic effects are more complicated than
what can be conveyed through a simple Buckingham potential.

A similar definition to (10.57) was used for the cutoff radius [470, 495, eq.(2b)], though for
a modified Buckingham potential made to annihilate at the origin and which does not yield the
proper coefficient for the asymptotic decay.

There were other suggestions [1008, eq.(3)] for fixing rd, not in regard of the asymptotic
behaviour of Vb(r), but at smaller radii in relation to the correlation potential Vco which we
briefly present below.

Correlation

As mentioned earlier in this subsection, the potential perceived by the invading electron due to
the perturbed molecular cloud is non-local. This implies that the interaction Vint would have to
be modelled through an integral:

non-local interaction : ∫
r′
Vint(r, r

′)ψ(r′)d3r′ , (10.59)

with the wavefunction ψ(r′) of the invading electron.
Since the wavefunction of the invading electron is unknown, including non-local interactions

must in principle be done iteratively. Nonetheless, a first way to emulate non-local correlation
effects is to represent the invading electron by a diffuse Gaussian spherical distribution with a
certain spread [98]. As a first-order approximation, one can then calculate the energy perturba-
tion on the molecular or atomic wavefunction from the coulomb interaction of the electron at r
spread over a certain region [276]. Nevertheless, this requires accurate knowledge of the target’s
wavefunction and computing the overlap integral at each point r. It is therefore desirable to
obtain a local approximation to the correlation potential.

The idea underlying the local density approximation (LDA) [327], is to approximate this
correlation through a local potential Vco based on the average electron density ρ(r) at the position
r. This approximation builds upon the framework of the density-functional theory (DFT) to
which quick and extensive introductions can be respectively found in Jones [467] and Iadonisi
et al. [416]. If Eco represents the total energy due to inter-electron correlation, then the potential
Vco can be derived as a functional derivative of the density [327, 527, eq.(2.7), eq.(24a)]:

Vco(r) =
∂Eco
∂ρ(r)

. (10.60)

Although models stemming from the density-based approach rely more or less on a similar set
of fundamental equations, there may be many different analytic expressions for the correlation
potential scattered in the literature. Their difference depends on the assumptions taken to
represent the pair correlation function [416, 467, p.10:§3.5, p.599:§6.2.3]. The most used models
are those for which an analytic expression for this pair correlation was proposed [185, 304, 567,
742].

The most popular expressions for the density-based correlation potential rely on the free
electron gas approximation [728, 742], whose best fit is believed to be given by Perdew and
Zunger [742, p.5075:appendix C. and table XII.] from Ceperley and Alder’s [165] parameters:
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Vco,FEG(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.0311 +
2

3
0.002rs) ln rs − 0.0084rs − (0.048 +

0.0311

3
) if rs < 1

−1.423
1 +

7

6
β1
√
rs +

4

3
β2rs

(1 +
7

6
β1
√
rs +

4

3
β2rs)2

if rs ≥ 1
(10.61)

with β1 = 1.0529 and β2 = 0.3334 ,

expressed in terms of the average inter-electron distance rs in the gas:

rs(r) ≡
3

√
3

4πρ(r)
. (10.62)

Caution is advised when consulting this formula dispersed in the literature. It is rare to find
it unstained by an error sign either in the rs < 1 expression [494, 801, 803a, eq.(7a), eq.(‘46a’),
eq.(7)] or in the rs > 1 one [327, eq.(‘44’):γ ≯ 0].

A more elaborate correlation potential appeared later [567] which considers also the kinetic
energy density of the electrons based on their local density. This potential Vco,KDF (for kinetic
density functional) was introduced earlier in chapter 8 in section 8.2.3. We do not recall it here
but we continue our description of the combined polarisation-correlation model.

Critique

As explained before, the polarisation potential Vpol ∝ αd/2r
4 of an atom/molecule in the pres-

ence of a point charge (the electron) is ill-defined when this intruding electron mingles with
the electronic cloud of the target. For this reason, a complete description of the perturbation
potential (correlation+polarisation) was contrived [728] in which one uses Vco at radial distances
below rt and Vpol beyond [328, 753, eq.(16), ]:

Vcop =

⎧⎪⎪
⎨
⎪⎪⎩

Vco(r) for ∥r∥ < rt
Vpol(r) for ∥r∥ ≥ rt

. (10.63)

For molecular targets, one has to consider a harmonic expansion of the potential as in chap-
ter 8 equation (8.31). Then, for each harmonic order l = 0,1,2 . . . , the corresponding transition
radius r(l)t is implicitly defined as the outermost value at which V (l)co (r

(l)
t ) = V

(l)
pol (r

(l)
t ). Usually,

for homodiatomic molecules only the isotropic l = 0 component of the (asymptotic) polarisation
is considered, so that rt ≡ r

(0)
t is determined only for that case l = 0.

In principle, any combination of Vco and Vpol is possible. If the polarisation is chosen as the
non-adiabatic Vb expression which depends on the electron’s incident velocity v0 via the radius
rb(v0) from (10.58&10.57), then inevitably the transition radius rt(v0) will also depend on the
incident velocity and will have to be recalculated for each electron energy.

This non-adiabatic aspect had been overlooked in studies which considered that rt was invari-
ant. For instance, Zhang et al. [1008] proposed to use a Buckingham potential with the curbing
radius rB chosen so that VB(r = 0) = −αd/2r

4
B = Vco(r = 0), and so the efforts in including

non-adiabatic effects (at faster velocities) are lost.
A major issue with the correlation potential is that it remains exclusively and entirely an

intrinsic property to the atom or molecule without the deranging presence of the intruding
electron. It indeed was originally conceived as a correction potential [527, eqs.(2.5–7)] accounting
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for inter-electronic correlation in space which is overlooked when integrating the total density
ρ(r) in the electronic Coulomb repulsive potential:

Overestimated inter-electron Coulomb interaction ∶
1

2
∫

ρ(r)ρ(r′)

∣r − r′∣
d3rd3r′ . (10.64)

Exchange plays also its role in correcting this overestimation. In any case, Vco(r) ought to
be interpreted as the corrective potential that any electron located at r would feel because of
the “Coulombic hole” which it causes for being there [185]. This supposes that Vco can be seen
as a local modification of the overall static potential Vs given by the ground-state distribution
of charges ρ [527]. Normally, the “size” of this hole depends on the local velocity of the electron
[185, eqs.(2, 12&14)]. This velocity is assumed to be derivable on the basis of the local kinetic
energy as a functional of the density [567, eq.(8)]:

local kinetic energy (Weizsacker) ∶
1

8
[
∣∇ρ(r)∣2

ρ(r)
−△ρ(r)] . (10.65)

From this analysis, we may suppose that the correlation potential as used in scattering prob-
lems is expected to be not severely invalid under two assumptions:

1. The invading electron has a local velocity similar to the host electrons from the molecule.

2. The alteration of the local electron density ρ(r) of the target under the presence of the
invading electron is small enough to be considered as a correction.

Again, our problem is that non-adiabatic effects might appear when the incident electron is
very fast (> 10keV). In those cases, one should also consider scaling down Vco. One usually
assumes that the short-range effects of polarisation dwindle as the electron becomes faster so
that Vco can be discarded altogether leaving only the asymptotic tail −αd/2r

4.
A very effective method of attenuating correlation forces for fast electrons was introduced

by Salvat [801, eq.(9)], where instead of (10.63), a more subtle transition is operated between
polarisation and correlation at r < rt:

Vcop,max =

⎧⎪⎪
⎨
⎪⎪⎩

max{Vco,FEG(r), VB(r)} for ∥r∥ < rt ,
VB(r) for ∥r∥ ≥ rt .

(10.66)

Since both polarisation and correlation are attractive (negative), this means that only the
values of Vco,FEG which are higher (closer to zero) than VB are effectively included in the joint
potential. At high enough energies so that VB(r) > Vco,FEG(r) ∀ r < rt, then this amounts
to completely discarding Vco,FEG. This has proven to be a major improvement not only to
incorporate non-adiabatic effects but also to overcome the inadequacy of the free electron gas
correlation potential at larger radii [327, p.111-2]. This version of the correlation-polarisation was
implemented in the code elsepa [803a] to which results will be compared in the next subsection.

Additionally, an alternative way to derive the correlation-polarisation potential is via its
relation to the absorption potential Vabs [879, eq.(1)] (presented in the next section 10.3.4). The
advantage is that absorption and correlation/polarisation would be treated in a coherent way
in regard of the eigenvalues of the molecule’s Hamiltonian, though this would require to have
a good knowledge of the absorption potential in the first place. Finally, we ought to mention
that polarisation effects may be incorporated ab initio as in the polarised orbital [925] and close-
coupling [413] approaches. We did not explore these last possibilities which are too complex to
be compared with semi-empirical models.
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Below, we illustrate how the correlation-polarisation potential affects the differential scat-
tering cross section of electrons at higher (> 200 eV) and intermediate (> 2Ryd) energies for
various selected targets. In the case of argon, we risked exploring the validity of semi-empirical
potentials at low energies.

Comparison

For this mini-study, we selected four different correlation-polarisation potentials among the ones
introduced above:

⧫ Exponential cutoff :

Vp,cut(r) = V
∞
pol(r) ⋅Cp,cut(r) = αd

(1 − exp(−(r/rc)
6))

2r4
, (10.67)

⧫ Non-adiabatic Buckingham :
VB(r) =

αd

(r + r2B(ε0))
2
, (10.68)

⧫ Free electron gas correlation polarisation :

Vcob(r) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Vco,FEG(r) for r < rt(ε0)
αd

2(r2 + r2b(ε0))
2

for r ≥ rt(ε0)
, (10.69)

⧫ Kinetic correlation polarisation

Vko+p(r) = Vco,KDF(r) + Vpol(r) ⋅Cp,exp(r) = Vco,KDF(r) +

αd exp(−2
r2b(ε0)

r2
)

2r4
. (10.70)

All radii rb(ε0) (10.57) with ∆̄ = 2Eion (twice the ionisation potential), rB(ε0) (10.53), func-
tions of the incident energy ε0 (or velocity v0 ≊

√
2meε0) have been defined previously except rc

which is set to 1.592a0 for N2 [135, p.1706:above eq.(42)]. Note that this radius rc was often used
as a parameter adjusted to fit experimental DCS at different energies, so that rc = 3.1a0 [863,
p.4022] was found to be convenient at lower energies (∼eV). An arbitrary value of 1.7 a0 will be
used of Ar. We did not attempt to adapt rc according to the incident velocity v0. Differences in
agreement at different energies will serve to emphasise the importance of non-adiabatic effects.

Finally, the comparison with elsepa [803] will highlight the importance of properly combining
polarisation and correlation; at lower energies, by not letting polarisation override correlation
effects; and at higher energies, by abating the free electron gas correlation Vco,FEG as done in
(10.66) instead of (10.69).

Those potentials are represented on figures 10.14 for O2 and Ar. At higher energies, non-
adiabatic Buckingham potentials VB and Vb, comprised by Vcob, decrease as a result of the
expansion of the respective curbing radii rB (10.53) and rb (10.57). The transition radius rt
defined implicitly in (10.69) also expands as a consequence. One can see that the free electron
gas model Vco,FEG (10.61) in Vcob overestimates correlation compared to the kinetic density model
Vco,KDF (8.51) in Vko+p at any radial distance.

At lower energies (<20 eV), the values of curbing radii rb and rB are too small and this
causes a spurious overestimation of polarisation forces at small radii as seen on figure 10.14c.
As a consequence, we have to relinquish the idea of promoting the Buckingham potential to a
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potentials, Vp,cut and Vco, remain fixed.
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the Vcob model is also shorter. To be noted additionally is the swelling of Vko+p — from the exponentially
damped polarisation in eq. (10.70).



366 CHAPTER 10. CRITICAL REVIEW

0 5 10 15 20 25 30
Radial Distance (Bohr radius)

0.08

0.06

0.04

0.02

0.00

Po
la

ris
at

io
n 

Po
te

nt
ia

l (
ha

rtr
ee

)

Correlation-Polarisation on Ar at 10 eV

5 10 15 20 25 30

10 4

10 3

10 2

10 1

rt

d/2r4

Vp, cut
VB
Vcob
Vko + p
Vkob

(c) At lower energies, the Buckingham potential VB (green) may greatly exceed the correlation potential
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pletely overpowers the KDF correlation in (10.70). The amended potential Vkob - - - shows the more
sensible combination of correlation and polarisation from (10.71). The potential that clings most onto
the asymptotic −αd/2r

4 - - - potential is Vp,cut — given by the exponential cutoff function (10.51).

Figure 10.14: Selected correlation-polarisation potentials expounded on p.364 for molecular oxy-
gen (top), nitrogen (middle) and argon (bottom) at descending incident energies of the scattering
electron. Dotted (Vco,FEG:eq.10.61) and sparsely dashed (Vb:eq.10.58) lines show the continuation
of the stitched Vcob potential. The equivalent potential implemented in the program elsepa[803]
can be visually seen as the highest (closest to zero) of the two VB (—) and Vco,FEG (—) before
they meet at rt.

slightly-more-than-semi-empirical model through the formula (10.57) for rb. We checked that
due to the higher order terms O(1/r7) in the asymptotic and non-adiabatic expansion of the
polarisation potential, the behaviour of the Buckingham potential may not be constrained well
over a wide range of energies with the simple non-empirical formula proposed for the curbing
radius rb in (10.57). Instead, an empirical scaling of the type r2d(v0) = a+ bv

2
0 (as 8.54) with a, b

as adjustable parameters, is still sadly needed. The value of those parameters is actually quite
arbitrary if one stitches correlation to polarisation at rt as in (10.63). For illustration, we show
in figure 10.18b that with rather arbitrary values (a = 2.43, b = 3), the amended potential:

Vkob(r) ≡

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Vco,KDF(r) r < rt ,

Vb(r, rb =
2.43 + 3v0

2
) r ≥ rt ;

(10.71)

as displayed by the dashed (- - -) line in figure 10.14c, yields a DCS in significantly better
agreement with experimental data at lower energies than Vko+p (10.70).
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The results for the differential cross section obtained from the four models described above for
argon, molecular nitrogen and molecular oxygen are displayed in figures 10.15-10.17. The models
differ solely on the implementation of the semi-empirical correlation+polarisation potential. For
molecules, the reference program elsepa uses the independent atom model whereas our curves
are generated through a combination of molecular isotropic and atomic potentials [812].

Argon as an atom, offers the most straightforward comparison between the models because
the atomic potential is isotropic. As a preliminary remark, we can see that the accuracy of the
results is highly sensitive to the correlation and polarisation models adopted which is why the
literature offers an abundance of theoretical studies on electron scattering with noble gases (to
cite only a few: [298, 373, 383, 638, 729, 753, 772] and references therein). Since they are the
most experimentally studied atoms in the gas phase for electron scattering, they constitute a
very fertile field for testing the validity of semi-empirical potential models.

From figure 10.15, we can see that a great malleability is conferred to the DCS shape by the
correlation-polarisation potential. For instance, the Buckingham VB or the exponential cutoff
models Vp,cut, which a priori give the least accurate results, could be used in conjunction with a
better adjustment of their curbing radius rc and rB to match the experimental data [729]. This
is a heavily criticised aspect of semi-empirical models, but quite irresistible given their simplicity
and the success that they promise.

As a few examples, [997] obtained good agreement with experimental DCS using a simple
Buckingham potential and correlation potential for neon, argon, krypton and xenon by adjusting
rB at each energy. Another study [753], using practically the same potential as Vcob, obtained
somewhat more compelling results than our red curves on figure 10.15, but at the cost of using an
empirical modification to the free-electron-gas exchange model of [384, eq.(21)]. With a quenched
version of the Buckingham potential at the origin r = 0, Reid and Wadehra [772] showed that
good agreement could be found for all five noble gases from He to Xe. In general, we may say
that the DCS of argon at the energies considered (<50 eV) mainly stems from the first three
partial waves (ℓ = 0,1,2), so that if one finds a suitable way to match the calculated phase shifts
to some reference [729], then the DCS are almost guaranteed to match accordingly. They can
even be more accurate than more costly ab initio calculations, as, for instance, the many-body
effects from Kohn-Sham density functional [373] and R-matrix (electronic state close-coupling)
calculations [298].

Taking now a critical look at the performance of the presently studied compilation of models,
we derive the following observations:

⧫ Exponential cutoff Vp,cut (10.67) : The cutoff radius rc is worthless if it is not adjusted at
each energy. The value of this model is purely pragmatic but of low theoretical significance.
The importance of non-adiabatic effects increases with energy and manifests itself at small
angle scattering as can be seen on figure 10.18a.

⧫ Non-adiabatic Buckingham VB (10.68) : The random aspect of the output from this model
bespeaks the invalidity of the Buckingham potential at small radii. If the agreement im-
proves slightly with energy, it is only due to the attenuation of polarisation as rB extends
with ε → ∞ as seen on figure 10.13. At high energies ∼keV, VB concords with elsepa,
which is specialised in scattering at intermediate to high (even relativistic) energies. Thus,
the empirical formula (10.53) for rB is unreliable below 100 eV. The use of correlation
(through eq.10.66) is vital to obtain accurate results. The Buckingham potential was used
by Yousif and Matthew [997] to obtain good results at 3 eV with rB ∼ 2a.u. whereas our
value (10.53) would be at 1.2 a.u. and yield discouraging results as in figure 10.18b.
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⧫ FEG correlation Vcob (10.69) : This gives the most agreeable results of all models over a
wide range of energies and similar to elsepa as expected (the only difference lies in that
the polarisation is replaced by correlation at r < rt à la eq.10.63 instead of eq.10.66). The
criticism we can make here is at high energies where the fact that the correlation potential is
not attenuated poses a problem. First, we may notice that this non-adiabaticity introduces
an overestimation (“a bump”) at small angles as seen on figure 10.18a. This has another
artificial effect at backscattering angles which is the emergence of ripples as seen on the
inset of the same figure. Those ripples are not due to unconvergence of the phase shifts but
to the correlation potential at small radii which ought to be attenuated at higher energies,
a criticism that was discussed previously. The only models that do not introduce ripples
at high energies are VB and elsepa (which are actually equivalent because VB > Vco,FEG
at all radii for ε0 ≳ keV).

⧫ kinetic correlation Vko+p (10.70) : This model fails to give accurate results at intermedi-
ate energies and performs most terribly of all at low energies (see fig. 10.18b). The main
reason for this is the problem of quenching the polarisation potential at small radii. The
assumption that ∆̄

?
= 2Eion in (10.57) is wrongly founded for argon. It gives unreasonably

low values of rd at low energies and this spoils the correlation potential as seen on fig-
ure 10.14c by the unphysical lump on the blue curve. This expresses the major difficulty
in conciliating the asymptotic polarisation with short-range correlation potentials.

⧫ Kinetic+Buckingham Vkob (10.71:- - -) : We provide a quickfix for the invalidity of the
previous model by stitching the polarisation potential from Vb instead of adding Vp,exp (as
done in Vko+p) which spoils the accuracy of the model at low energies. This gives a DCS in
significantly better accord with experimental data throughout a wide range of energies. We
thus support the recommendation given by Gianturco and Rodriguez-Ruiz [328] that the
potential Vco,KDF (8.51) based on kinetic and density functionals [567] gives an accurate
representation of correlation forces for noble gases.

Molecular Nitrogen has also been studied intensely as in [448, 571] with a method based on
multicentre scattering. Almost identical results were obtained using both an exponential cutoff
(10.67) with rc = (R/2+ 1)a0 and an augmented Buckingham (10.54). Presently, in figure 10.16,
we show that an agreement in shape can be obtained with Vko+p and Vcob but due to the violation
of the optical theorem, all cross sections have a systematic overestimation. This may be semi-
empirically corrected through a “screening” correction as done in Schmalzried et al. [812], which
is simply a scaling factor close to 0.5 at energies below 50 eV. Unlike in our published article
[812], we show our results without this additional correction.

A more accurate correction is to solve the Schrödinger equation with a proper expansion of the
molecular potential in spherical harmonics and solve the system of equations coupled in angular
momenta for various symmetries of the electron scattering off the molecule [894, §III.A]. Then a
significant change affects the DCS: all are scaled down, the underestimation of the polarisation
by Vko+p vanishes and issues related to the modelling of the molecular static potential emerge.
These differences will be expounded moreover in the next section 10.4.

Originally, we thought that using the correlation potential Vco,FEG of the free electron gas was
justified. It artificially improved our agreement with experimental data because the polarisation
potential was greatly underestimated when using ∆̄ = Eion in (10.57). As a result, the lumping
artifact of the red curve from Vcob somehow compensated for the underestimation of forward
scattering due to polarisation forces.



10.3. SEMI-EMPIRICAL MODELS 373

Molecular Oxygen on figure 10.17 supports this premise that using Vco,FEG would tend to
improve results at intermediate energies. Nevertheless, we restate that the validity of the simple
method of resolution does not allow us to draw safe conclusions even if the agreement in shape for
Vcob (red curve) is very alluring. More pertinent is the observation at higher energies > 100 eV,
that Vcob yields an overestimation of correlation forces that must be somehow quenched non-
adiabatically. Salvat [801, eq.(9)] had proposed to use the maximal value given by (10.66).
This may be done using the density functional kinetic model of [567] as well. Thus, it is not
straightforward to determine which of the two correlation potentials (Vco,FEG or Vco,KDF) is more
suitable.

Discussion

This section was meant as an introductory discussion about the use(fulness) of semi-empirical
models for correlation and polarisation forces in electron-atom or -molecule scattering. From a
formal point of view, those forces arise from the perturbation that the presence of the scattering
electron induces on the molecular or atomic cloud of electrons. Although difficult to treat
exactly, those forces may be modelled with some average simple analytical formula estimating
this perturbation according to the electron’s position r but also velocity v.

After a brief review of some of the models used in the literature, we conducted a small study
by comparing differential cross sections (DCS) for argon, nitrogen and oxygen. We confirmed the
generally accepted trend that the polarisation potential primarily affects DCS at small angles and
low-energies [see the references in 329, 524, 801, p.3227, p.27, p.7:§IV]. Overall, the sensitivity
of the results to the parameters of the model is high enough to obtain accurate results from
heuristic rather than rigorous adjustments.

The perturbation approach of polarisation collapses very quickly near the target because
the importance of higher order terms (multipoles, hyperpolarisabilities, dynamic distor-
tion, multi-body correlation) grows all at once. A crudely simple semi-empirical approxi-
mation, if properly adjusted, can yield more accurate results than a more rigorous attempt
to truncate a perturbative series.

The comparison with argon revealed why semi-empirical models are irresistible in scattering
calculations. Despite their simplicity, the differential cross section presents enough sensitivity
[672, §IV] to the correlation-polarisation potential used that one could easily try to find an
empirical adjustment to obtain accurate results over a wide range of energies [4, 729, 753, 997].

For molecules, the problem is rendered more complex due to the necessity to treat non-
spherically symmetric potentials. Here, the use of semi-empirical models is even more deceiving
because by tinkering with a series of over-then-under compensations, an accurate result that
reproduces experimental data can still be obtained. In essence, many other studies [332, 672]
showed that the great manifold of effects standing behind an accurate treatment of perturbation
by the scattering electron can be more or less incorporated into simple semi-empirical models.

Unfortunately, the great force of semi-empirical models resides in the “empirical” part rather
than the “semi” part which sometimes plays only a decorative role. Indeed, we have seen that
agreement usually stems rather from ad hoc adjustments (especially the curbing radius rB 10.53
in conjunction with Vco,FEG) than from derived results based on theoretical consideration (like the
diabatic radius rd 10.57 which had to be amended empirically for argon in 10.71). Dramatically,
more rigorous attempts to improve the accuracy of DCS by incorporating higher-order terms
through a perturbation expansion of the polarisation are, very often, unfruitful [276, 329, fig. 5,
figs 6–8].
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For now, we may state that one can be easily mislead into fallacious conclusions concern-
ing the validity of the correlation-polarisation potential for diatomic molecules and even atoms.
Nevertheless, at energies high enough to enable the applicability of the independent atom model,
results show the necessity to include non-adiabatic effects into the short-range correlation po-
tential which is a priori independent of the scattering electron’s energy. The importance of
non-adiabatic effects was already highlighted by Fink et al. [286] for H2 at energies above 100 eV
through comparison with accurate measurements at small scattering angles. Even then, Fink
et al. [287] and Liu [602] showed that discrepancies imputable to the use of the independent
atom model spoil the accuracy of calculated DCS at small angles from N2. The effect of chem-
ical bonding is observable at high energies >1 keV in very precise small-angle measurements.
Thus we see that due to the shortcomings of modelling a molecule as if it were two individual
atoms placed side-by-side, any discussion over the precision and pertinence of semi-empirical
correlation-polarisation potentials becomes shrouded.

A simple, universal, parameterless yet accurate model for a unified treatment of correlation
and polarisation forces is still to be discovered. More complex methods like the multi-channel
variational approach [611], convergent close coupling [51] or polarised orbital [638, 925] constitute
a potential source for benchmarking and comparing against semi-empirical models.

In the meantime, the use of semi-empirical models in elastic scattering should be taken with
great caution especially when they rely on ad hoc adjustments without proper comparison with
more accurate ab initio computations.

10.3.4 Absorption

The absorption part in elastic scattering is certainly a crux in the potential scattering. Its sole
purpose is to represent reduction in the output flow of the elastic collision due to migration
of scattering events into inelastic channels from electronic excitations. It proved to be a very
powerful model to bring DCS from partial-wave expansions into agreement with experimental
data [307, 570], particularly with noble gases [80, 878].

Notwithstanding, this part of the model is undoubtedly the most tentative and as a conse-
quence is also one of the most disputed issues when it comes to get agreeable results.

We recall from (8.58) in section 8.2.4, that the absorption potential is defined as Vabs ≡
− h̵2vρσb, depending on the local velocity v and electron density ρ, where the key element in the
model is the binary-collision cross section σb representing the collision between the incoming
electron and a target electron which would lead to a durable (non-virtual) excitation of the
target.

In the second chapter of this part (8.2.4), we presented two distinct models for the absorption:
namely the quasifree [877] and the dielectric oscillator [801]. The former received repetitive
attention throughout many years and we recall here the generic form of its binary cross section
σb [877, 879, eq.(4), eq.(11)]:

σb ≡
1

p
∫ dkNk(k, kF)∣p − k∣∫ dp̂r

dσMott

dΩ
(pr,pr ⋅ p

′
r)H(p

′ − β)H(k′ − α)H(kF − k) (10.72)

which, after integration gives :

σb =
4π

5k3Fp
2
H(p2 + k2F − α − β) [

1

α − k2F
−
p2 − β + 2

5k
2
F

(p2 − β)2
+H(α + β − p2)

2(α + β − p2)5/2

5k3F(p
2 − β)2

] (10.73)

Here are represented the momenta of the target k and incident p electrons before the collision,
and after as k′ and p′. Their values in the relative centre of mass frame of the two electrons is
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noted with a subscript pr = −kr. The momentum kF of the Fermi sphere populated uniformly
by Nk(k, kF), corresponds to the minimally occupied momentum of the local free electron gas
(see appendix E).

The differential cross section dσMott is normally the one from Mott [679] but it may be
eventually replaced by the classical Rutherford to make the integrals more feasible analytically.
Finally, the Heaviside threshold functions h(x − a) are simply equal to 1 for x > a and 0 below.
The first two quantities α and β are the restrictions on the outgoing momenta of the target and
incident electrons respectively and are referred-to as “Pauli-blocking conditions”. Initially [877,
878, eqs.(12–3)], they were devised as functions of the Fermi momentum kF and the excitation
threshold ∆ as:

α = k2F + 2∆ , (10.74a)

β = k2F , (10.74b)

but were tweaked into multiple variants later on.
This formulation (10.73) of the binary cross sections allows us to see how the Pauli-blocking

restrictions remain after the integrals have been performed. The quasifree model was modified
multiple times by different authors. We start first by introducing its history before commenting
and questioning some of the modifications brought to the model.

History

The quasifree model [877], introduced in 1983 by Staszewska et al., brought a new insight into
how to approximately account for excitation processes other than through an extension to the
polarisation potential. The idea was to model the target electrons as a free electron gas according
to the local density at a certain point. Collisions by the incoming electron that resulted in
outgoing momenta beyond the Fermi sphere determined from the local density, were considered
to participate in the inelastic open channels and thus formed part of the binary cross section σb
leading to excitation events.

No later than the following year, Staszewska et al. [878] proposed already two other versions
of her model by noticing that the behaviour of the absorption potential close the nuclei at
small radii (r ≲ a0) should be shallower to raise underestimated elastic DCS at large angles and
high energies [878, p.3085:top§]. The potential in farther regions (large r) affects the overall
absorption cross section (8.111). Subsequently, the Pauli-blocking conditions representing the
allowed subspace for the outcome of a binary collisions were modified heuristically to try to
take into account the acceleration of the incoming electron in the atomic field and the ionisation
continuum.

Rapidly, the model was tried on more complex molecules, as in Jain [449] for methane. Two
major modifications were proposed so as to make a more consistent connection between the
absorption and the polarisation potential. The distorted electron density due to polarisation
replaced the static density in the absorption model, and the excitation threshold was taken as
an average excitation linked to the static dipole-polarisability αd of the molecule. This model
was applied to many different molecules in the ensuing years [450] together with a higher-order
multiple scattering theory based on the independent atom model. To avoid having to calculate
the average excitation energy, it was proposed to replace it by the ionisation threshold which
gives a more or less close value for most molecules.
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The model got revisited a decade later by Blanco and García [80]. The improvement sought
after a better approximation of Mott’s cross section for two indistinguishable particles in Coulom-
bic interaction [680, p.300:eq.(20)]. In that revision, an error of a misplaced factor was detected
in Staszewska et al. [877, eq.(11)] who perhaps confused the expression of Rutherford cross sec-
tion when expressed with kinetic energy: ∝ 4/ε2 versus velocity: ∝ 1/v4 whose appearances
understandably differ by a factor four.

Used now for more involved calculations, Lee and Iga [569] tried the third variant of the
original quasifree model [878, eq.(22)] together with the average excitation energy [450, table II:∆]
for N2 in a combined Schwinger-variational and distorted-wave approach. They later made in
Lee et al. [570] a comparison of four variants of the model from the different authors: namely
Staszewska, Jain and two from Blanco. They uncovered serious discrepancies in the DCS showing
that models might have been mishandled when implemented (on whose side ever it was).

Moving next toward O2, Raj and Kumar [763] pointed out that the model performed quite
miserably at higher energies, because its excitation threshold is lower than 1 eV. To decrease
the effect of absorption at higher energies as it ought to, they simply added a 1/k factor to the
absorption and obtained significantly better results.

Getting still more attention, adjustments were proposed by Blanco and García [79, 81] to get
better results for various noble gases and diatomic molecules. The new features included:

1. a more adapted choice of the excitation threshold which for some molecules gave the risk
of overestimating the absorption to unreasonable results;

2. a symmetrical Pauli-blocking condition for both ejected electrons since they are indistin-
guishable;

3. a screening of inner regions to account for electrons that already interacted inelastically in
outer regions (and thus are not eligible to excite again);

4. relativistic corrections for electrons impinging on heavy atoms as they get near the nucleus;

5. accounting for multi-body processes according to the probability of interacting with any of
the target electrons within the distance of one local wavelength of the intruded electron.

At last, the original author published three articles the same year where she attempts to bring
together and compare all the existing variants dispersed in the literature of the quasifree model
[879]; then studies the effect of empirical scaling factors [881]; and finally demonstrates [880]
that a completely different empirical model that nevertheless binds absorption and polarisation
potentials in a coherent way gives accurate and consistent results for Helium and Neon, but in-
evitably relies upon adjustment of the free parameters. In their comparative study Staszewska et
al. [879] discusses comprehensively the deficiencies of each version and how they affect integrated
and differential cross section in distinct energy and angular ranges. Also, various polarisation
potentials are combined with the absorption in order to reduce the bias of the real part of the
model on the results. The overall conclusion is that all three versions from the original author
perform well but in different aspects (energy, angle, or absorption cross section) and that the
energy dependence of both polarisation and absorption potential should be studied more in detail
in the future.

There may have been a continuation in the more recent years to this model, but most inves-
tigations on more complex molecules settled on the fact that many empirical modifications to
the ab initio model gave satisfactory results and thus did not attempt to explore furthermore.
Others [383, 494] turned toward another non-empirical model proposed by Salvat [801].



10.3. SEMI-EMPIRICAL MODELS 377

Critique

Having given an overview about the evolution of the quasifree model, I would like to point out
some inconsistencies introduced during some revisions. If I may be pardoned for my obnox-
ious subjectiveness, the history of how the quasifree model was handled, embodies, for me, an
archetypical example of empirical fiddling. Having myself played with it in my own model, I
can ascertain that it is almost impossible to get agreeable results for a wide range of energies,
at all angles and for various targets without tinkering and adjusting the model in order to ob-
tain presentable curves. For that matter, I dedicate to each ad hoc adjustment an explanatory
paragraph arguing why I think it is unfounded (which is why the titles are crossed out).

Local momentum: At the time when the first empirical corrections were proposed to the
model [878, p.3085:eq.(21-22)], it was known that the absorption rate was overestimated at
small radii. Absorption rates are not expected to be important in the deeper layers of an atom,
where the electrons are more tightly bound to their orbitals. Blanco and García [79, p.180, left-
middle§] commented that the excitation threshold, labelled ∆, should ideally be a monotonically
decreasing function of the radial position r from the nuclei, basically repeating what Staszewska
et al. [878, p.3081:2nd§] had remarked for the blocking restrictions. To raise α and β at small r,
Staszewska et al. [878, eq.(21-22)] proposed to adjust (10.74) as (changes in red):

α = k2F + 2∆−2Vse(r) (10.75a)

β = k2F−2Vse(r) (10.75b)

In one of the two modifications, a different offset is taken instead of 2∆ and the factor 2 is
removed before the static-exchange potential Vse(r). In both cases, the physical meaning to such
correction was allegedly attributed to the “local increase in kinetic energy of the incident electron”
[878, p.3085:§between (22)&(23)]. The problem is that this reasoning is ambiguous. Since Vse is
negative, one should expect that this increase would on the contrary permit the incident electron
to kick off electron in deeper shells more easily. What Staszewska et al. probably meant is that,
if the incident electron shall be given the chance to escape again, its outgoing momentum should
lie at least −2Vse above the Fermi sphere. Such reasoning would indeed explain why Vse is added
negatively to α and β instead of p.

Nonetheless, if we imagined that a p = 0 electron was brought in the vicinity of the atom, it
would indeed have a −2Vse and that should be interpreted as the minimum energy an electron
ought to have if is not to stay trapped forever inside the atom. Therefore, in my opinion, a more
sound condition would have been the following:

α = k2F + 2∆ (10.76a)

β =max(k2F + 2∆,−2Vse(r)) (10.76b)

Such conditions would effectively reduce the probability of absorption in atoms nearer the
nucleus (r ≲ a0) when we look at the ratio k2F/(−2Vse) in figure 10.19 for three different targets. If
the polarisation potential were used as well, the condition (10.76) would be even more stringent.
This would however not have any effect with the isotropic potential of molecules because the
atomic singularities are averaged into finite values.

In the previous case, I do not know what would be a correct physical interpretation requiring
that at any point r, the energy of the intruded electron be −Vse(r) above the local Fermi energy
EF(r) as expressed by (10.75).
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Figure 10.19: Comparison of Fermi energy k2F/2 with the local static-exchange potential Vse
according to the radial distance r for Oxygen, Argon and molecular Nitrogen (in which latter
case the potential is the spherically averaged one). This shows that a Pauli-blocking position
based on Vse as in (10.76) would be more stringent in the inner region of atomic targets, but not
in the averaged potential of molecules.

This puzzle was solved differently by Blanco and García. In Blanco’s first article [80], he knew
that taking the local momentum in the absorption would thwart the model’s results. Using the
asymptotic value p instead of p−2Vse(r) in (10.73) was initially justified [80, p.150:left-bottom§]
as a way to incorporate “screening of the inner electrons by the outermost ones”. In his next
article, another interpretation had to be given so as to make room for the new modification
proposed. This time, keeping the asymptotic momentum was due to the excitation threshold ∆
which ideally should be a function with higher values in the inner region. Finally, both forms
of justifications were revoked in his third publication [81], and an average local binding energy
Vb(r) was proposed that would restrict the excitations allowed even when taking into account
the local increase in kinetic energy of the incident electron.

Local binding energy: The potential Vb seen by one of the target electrons due to the nucleus
and the remaining Z − 1 electrons can be estimated in a mean-field approximation as [81, II.A]:

Vb(r) ≊ V (r)
Z − 1

Z
−
1

r
(10.77)

The second term of the right side is to put back again the Coulomb attraction of a proton
that was removed together with one electron in the first term (Z − 1)/Z.
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Figure 10.20: Comparison of absorption potentials for atomic nitrogen with excitation threshold
at ∆ =10.326 eV and incident electron energy of 40 eV. Legend : “qf{1,2,3}” = Quasifree model
[879, §3.2.{1, 2, 3}] version {1,2,3}; bg-?? = modified in (19)99 [80], (20)02 [79] and (20)03
[81]; bg-03* = presently corrected version from last modification with Pauli-blocking condition
β(r) = k2F − 2Vb(r).

Unfortunately, this binding energy was improperly incorporated into the absorption model
as Staszewska et al. [879, p.62] pointed out. This considerably deepens and widens the potential
before cutting it discontinuously at small r as can be observed for “bg-03” in figure 10.20.

The present version “bg-03*”, whose equation (8.70) is given on page 294 (that correctly
includes the binding energy into the Pauli-blocking conditions as : β(r) = k2F − 2Vb(r)), shows
a neat difference and reduction in the absorption as needed to improve the model. The full
comparison shows all three versions of the original quasifree model [879, §3.2.1-3], the three
modified versions [79–81], and the presently corrected version (8.70).

The first modification in 1999 [80] only included the correction due to interference term in
Mott’s scattering cross section which lowers the absorption well, due to less scattering at 90○.
The next two modifications in [79, 81] attempted to symmetrise the Pauli-blocking conditions
by setting α = β = k2F +∆, and introduce more ‘corrections’ that we tackle below.

Indistinguishability: One typical concern is that the ejected electrons with momenta k′ and
p′ in (10.73) after the binary collision are indistinguishable from each other with respect to where
they came from. This led Blanco and García [79, p.179:right column] to symmetrise the original
Pauli-blocking conditions (10.74) into (removal of the factor ‘2’ from eq. 10.74a in red):

α = β = k2F + �A2∆ (10.78)

This caused the potential in (10.20) to deepen by more than two-folds, mostly because of
replacing the first term in σb: 1/2∆ by 1/∆. Although it is undeniable that the electrons are
indistinguishable, this only implies that the definition of the primary electron after the collision is
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arbitrary. If we assume that the electron (whichever of the two) associated to the final momentum
p′ is the one that shall be retained in the asymptotic expression for the scattered wave, then, it
would be more logical to require that p′ ≥ k′ and the Pauli-blocking conditions would become:

α = k2F + 2∆ , (10.79a)

β = k′2 (10.79b)

Omission to restrict p′ ≥ k′, in my opinion, is the greatest inconsistency of the quasifree model
and was never addressed properly in any of the revisions. If we compare to the successful model
of Salvat [801, p.15:eq.(A24)], there, the primary electron is correctly taken as the one possessing
the highest energy of the two ejected electrons. This does not howsoever violate the principle of
indistinguishability.

Exchange effects are directly taken into account in Mott’s cross section [680, p.300:eq(20)]. If
in the aftermath of the collision one defines p′ > k′ as the outgoing momenta of the primary >
secondary electrons, the exchange effects are also accounted-for, since Mott’s DCS was normalised
to 2. This relieves one from having to divide the DCS by 2 [80, §3:eq.(11)] before integrating
(10.73) so as not to double the estimated binary cross section.

Related to this issue, it is often wrongly thought (e.g. [383, p.4:eq(20)§(21)]) that the factor
1/2 in h̵/2vρ(r)σb is due to exchange effects. As Salvat [801, eq.(12)§] points out, this factor is
only due to the interpretation of 2Vabs/h̵ as an absorption rate. This confusion probably stems
from Staszewska et al. [878] which uses half of the Rutherford cross section for binary collisions
between two electrons to roughly account for the quantum interference term maximal at 90○ of
scattering (in the centre of mass frame) from the Mott’s corrected formula.

Screening: Blanco and García [79] conjecture that the part of the incident electron flux that
has been absorbed while going through the outer shell at large radii, should be removed from the
rate of possible inelastic scattering and thus should reduce the absorption potential at smaller
radii deeper in the atomic shell. The screening coefficient that reduces the absorption is:

Cscr(r) ≡ exp(∫
∞

r

−2Vabs(t)

v(t)

t
√
t2 − r2

dt) . (10.80)

This screening measures the average flux reduction based on the local velocity of the projectile
electron v =

√
p2 − 2Vse(r) and the path it traces in a spherically symmetric absorption potential

Vabs(r). This reasoning is intuitively correct, though deceptive. One has to get back to how
the absorption potential is used. It serves to define an absorptive component in the one-electron
Schrödinger equation of the scattering problem:

△ψ(r) − (Vsep(r) + iVabs(r))ψ(r) +
h̵2p2

2me
ψ(r) = 0

To get a physical insight, we take the simplest case of s-waves and constant potential barrier
Vsep+iVabs non-zero only between r0 and r1; and define u0(r) ≡ rψ(r). Since we know that Vabs <

0, with the requirement that u0(r)
r→0
ÐÐ→ 0 and the asymptotic relation u0(r)

r→∞
ÐÐÐ→ sin(pr + δ0)

with δ0 being the asymptotic phase-shift, the amplitude probability of the wavefunction adapts
itself according to the potential barrier in [r0, r1] and shrinks as seen on the graph (10.21) on
the right. The effect of the complex potential is to lift the nodes of u0 away from zero and shrink
the amplitude. The probability distribution beyond r > r1 now never vanishes because of the
complex phase-shift δ0.
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Figure 10.21: Dummy example of an s-wave in
a small complex potential barrier V = 0.2 − 0.3i.

In summary, the “screening” effect of a po-
tential is to effectively reduce the flux of the
wave-function in regions where the absorption
is important. This effect readily operates on
the wavefunction itself. I do not conceive well
what significance would bear an absorption
potential that includes a screening of itself
as given by Blanco and García [81, eq.(1b)]
(10.80). In particular, the equation solved
above is of the time-independent type, thus
barring the notion of flux and penetration; the
wavefunction rather permeates the space and
gets reduced in classically forbidden regions.

Many-body interactions: Another correc-
tion introduced in Blanco and García [81,
p.3:right column] is the probability that the
projectile electron interact with the Z atomic
electrons once in the atom’s vicinity. There, it is argued that if ρ(r)/Z represents the probability
density of one electron to be at r, then the probability of interaction with at least one electron
within a small region of the extent of the projectile’s local wavelength λ is : 1− (1−λ3ρ(r)/Z)Z ,
in other words: the complementary probability that no electron is found in that region λ3. Once
again, intuitive thinking misled. We must recall that the density function ρ(r) comes ideally
from the full atomic properly antisymmetrised wavefunction Ψ(r1, . . . , rZ) [416, eq.(6.1)]:

ρ(r) ≡ Z ∫ ∣Ψ(r, . . . , rZ)∣
2 d3r2 . . .d

3rZ

In this case, ρ(r)/Z corresponds to the probability density of finding any electron near r.
There shouldn’t be any effect of interaction with more than one electron involved since this
information is inaccessible due to the integration over the other Z−1 electrons. It is true, though,
that in density functional theory (DFT) [398, §10.3:eq.(10.37)] , ρ(r) is obtained through a sum
of individual orbitals φi(r):

ρDFT(r) =
Z

∑
i=1
∣φi(r)∣

2

Notwithstanding, the orbitals φ(r) are still obtained through the one-electron Schrödinger
equation in a self-consistent way which includes the repulsive Coulomb and exchange terms
among electrons. This implies that ρDFT(r) should still be viewed as a whole expressing the
probability to find any electron in a system of Z electrons. One should not regress to think that
the Z electrons are all equally and independently distributed over a ρ(r)/Z distribution. This
thinking is erroneous since the individual density of electrons is in principle known for each of
them : ∣φi(r)∣2 ≠ ρ(r)/Z. Taking multi-electron effects by assuming that all follow ρ(r)/Z is
therefore not well founded because it does not acknowledge that ρ(r) was obtained from a Slater
determinant which already comprises spin correlations.

Added on top of that, if one really needs to estimate the joint probability of finding any
pair of electrons at positions r and r′, then one must make use of the correlation function
h(r, r′) which includes exchange and formation of a Coulomb hole (as discussed in the previous
subsection 10.3.3) around an electron due to its presence at r [416, §6.2.3]:
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Figure 10.22: Influence of the excitation energy threshold ∆ used in the quasifree model (10.73).
The four values taken correspond to the lowest excitation state for O2 (which is spin-forbidden),
the first dipole-forbidden, dipole-allowed and Rydberg state.

ρ2(r, r
′) =

ρ(r)ρ(r′)

2
(1 + h(r, r′)) . (10.81)

Therefore, in particular when r ≊ r′ ⇒ h(r, r′) ≇ 0, the pair probability may not be modelled
as a simple independent single particle density probability product due to Coulomb correlation
effects.

Optically allowed threshold ∆: It is clear that the excitation threshold parameter ∆ has a
tremendous influence on the depth of the quasifree absorption potential as can be observed from
figure 10.22. For this reason, taking systematically the lowest excitation state for every target
might not always give reasonable absorption potentials. A suggestion by Blanco and García [81,
§II.C] was to take the first optically-allowed excitation threshold (or the ionisation potential [79,
p.180] in a previous model).

A more consistent reasoning is to remember that any excitation with an energy loss exceeding
∆ will be allowed and counted in the binary CS (10.73). That is, the binary collision approach
models a continuum instead of a discrete spectrum. Each target’s energy-loss spectrum have
unique characteristics, some are more regular, others sparse; some figures can be found in the
section (11.4) devoted to electronic excitations (11.32 and 11.35). The illustrious examples of
O2 and N2 show two very opposite trends: N2 spectrum is dense directly starting from its
lowest threshold at 6.17 eV, whereas O2 is much deserted between 1.62 eV and 7 eV where the
Schumann-Runge continuum starts and all the Rydberg states. Due to the arbitrary nature of
selecting ∆ to represent an onset of a continuum, it seems reasonable that this parameter be left
to the decision of the user according to the target modelled.
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Comparisons can be seen in numerous studies about the effect of absorption as complex
optical potential models. For citing a few, an extensive study of the major semi-empirical
absorption models derived from the quasifree model was conducted by Staszewska et al. [879] for
neon, the conclusion of which led to preferring the “qf-2” and “qf-3” versions. In another study,
“bg-03” and “bg-02” have been compared against “qf-2” and “qf-3” for methane in Lee et al. [570].
The same author had implemented “qf-3” for molecular nitrogen [569] with good agreement down
to 30 eV. The highest score was obtained by “qf-3” when the “threshold” ∆ was used according to
Jain and Baluja’s [450] interpretation as a “mean excitation energy” of the order of the ionisation
threshold. Without comparing, Raj and Kumar [763] altered “qf-2” to their taste to improve
the applicability of the model for molecular oxygen. The general effect of absorption is to lower
differential cross section (loss of flux) at intermediate energies and large angles [878, V(i)].

Although the agreement obtained from the various ad hoc alterations to the quasifree model
was presented in the best of lights, we presently deplore the heuristic nature of the model which
needs quickfixes and a bit of wand wielding to give desired results for each target. Instead, we
prefer to resort to the model proposed by Salvat [801] and presented earlier in section 8.2.4. The
ultimate alternative would have been to delve into the realm of multi-channel scattering [101].

10.4 Convergence Matters

When assessing the accuracy of a numerical result ξ, a fundamental concept at play is the
convergence toward a certain value ξ̇ which is believed to be the ‘true’ value obtained with
infinitely fine precision. Given a certain computational methodology, we may approach this value
with consecutive values from a series (ξ)n n ∈ N. The index n reflects the degree of (numerical)
resolution and/or complexity involved in obtaining the nth estimate. Formally, convergence
(ξ)n

n→∞
Ð→ ξ̇ is defined as:

∃!ξ̇ ∈ R ∶ ∀ϵ ∈ R+ ∃Ncp ∈ N ∶ ∣ξn − ξ̇∣ < ϵ ∀n ≥ Ncp

Vulgarly, convergence of a series concerns whether (1) ξ̇ exists, is unique (“∃!ξ̇”) and finite;
(2) at a certain point, improving the resolution n beyond Ncp will always bring us closer to ξ̇ to
an arbitrarily small difference ϵ (precision). If that is true, thence the notions of resolution and
precision coincide. When the convergence is well understood, one can better assess the errors
made when truncating the series (ξ)n to the (Nlim)

th term (ξ)Nlim
, which otherwise converges

to the ideal value ξ̇ reached at n→∞.
A proper understanding and assessment of convergence is so fundamental that it is often

taken for granted that it has been taken care of properly when publishing results for calculated
differential cross sections (DCS). In the context of the angular-momentum close-coupling formal-
ism which is the one adopted in the thesis, due attention to this issue was given by Morrison and
Sun [675, p.146–8] and their group [see for instance 274, 430, 669, 894, §IV:p.925–7, §IV:1237–9].
We recall here three ingredients as defined by Morrison [666, §IV.A:p.34]:

1. What quantity converges? →DCS

2. When is it converged? →a convergence criterion Clim

3. How does it converge? →number of parameters in the convergence Ncp

To ensure proper convergence, the criterion Clim must be checked for globally and not locally.
This is done by considering how little the DCS differs if one includes K > 1 more parameters
[773, p.34-35:eqs(4.1-2)]:
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Figure 10.23: Convergence of the phase shift δℓ(rmax) according to the maximal radius rmax of
integration of the equation (9.4).

∣
DCS(Ncp) −DCS(Ncp −K)

DCS(Ncp)
∣ < Clim ;

⎧⎪⎪
⎨
⎪⎪⎩

K ≃ 6 ∶ Global convergence
K = 1 ∶ Local convergence

(10.82)

In this thesis, we conducted convergence studies in order to ensure that our results were not
missing out a significant ‘chunk’ of values due to an improper handling of the computation meth-
ods. This is to ensure that all discrepancies observed may be safely imputed to the limitations
of our model and approximations; and not to an incomplete calculation of numerical nature. In
this section, we will briefly expose what parameters intervene (and how) in the convergence of
computed DCS.

Without detailing thoroughly the procedure of checking convergence, we illustrate in this
section how unconverged DCS appear in various situations through the number of partial waves
included ℓmax or the symmetries of the potential lmax and the projections Λmax on the internuclear
axis. We first start with the partial waves for spherically symmetric potentials representing the
interaction with atoms.

10.4.1 Phase shifts

When solving the phase-shift equation (9.4) numerically from r = 0 to rmax, one needs to ensure,
somehow, that the algorithm yielding asymptotic phase-shifts has properly converged and is well
resolved enough.

One very efficient way to do this is to test the convergence of δℓ(rmax) to δ̃ℓ(∞), the Born
approximation for the analytical expression of phase shifts. This is represented in figure 10.23
for scattering off neon at 10 eV for phase shifts from ℓ = 0 to ℓ = 100. As the maximal radius
rmax is extended for the integration of δℓ(r) in (9.4), the phase shifts properly converge and for
high ℓ > 6, they also converge to the theoretical value from the first Born approximation (8.120).
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Figure 10.24: Convergence of the DCS with partial waves and the effect of Born completion. All
phase shifts beyond the ℓmax are calculated from the analytical Born approximation for the static
and Buckingham polarisation potential: ∀ ℓ > ℓmax ∶ δℓ ≡ δ̃ℓ. This enables to use the analytical
scattering amplitude f̃ for completion (9.18). The curve labelled with a dagger ℓmax = 10

† has no
Born completion, implying that the scattering amplitude is only the sum of 11 terms (ℓ = 0..10).
An uncompleted DCS can seem to favour agreement with one set of experimental data (▸ [232])
over another (⋆ [871]).

Since lower ℓ orders converge faster with rmax while higher orders converge faster to the Born
approximation, it is possible in practice as Morrison et al. [671, eq.(38–39)] proposed, to select
a maximal radius rmax = 10a0 beyond which the remaining integral to r =∞ for the phase shift
is completed through the Born approximation.

10.4.2 Partial Waves

The previous subsection was concerned about integration of each phase shift: that is radial
truncation rmax. Here, we treat the partial wave order truncation ℓmax for a spherical potential
and how to ensure that a DCS has properly converged.

In the previous chapter, we presented a very convenient way of circumventing the limitations
of truncation through completion of the infinite sum by the analytical Born approximation of
the scattering amplitude. This is commonly known as Born completion or closure [274, 430]. In
figure 10.24, we show that if such completion is used for all δℓ beyond ℓmax, one can safely take
ℓmax = 5 when the energy is not too high. As the energy increases, higher order partial waves may
penetrate into the short-range region containing exchange, correlation and absorption potentials
which are not accounted by the analytical Born amplitude (they would have to be calculated by
numerical integration). At the same time, those three potentials shrink as the energy increases,
so that in general, imposing ℓmax = 5 poses no significant risk. The uncertainty introduced thus
is of the same order as the very modelling of the target through the optical potential.

An analogous illustration of analytical Born completion but for diatomic molecules is available
in Feldt and Morrison [274, figs. 2&4] in which ℓmax = 2 is a safe choice for H2 and ℓmax = 3 for
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N2. This boundary is pushed slightly higher when considering inelastic vibrational excitations.
We continue our convergence investigation for diatomic molecules in the next subsection.

10.4.3 Angular Momentum Close Coupling

For non spherically symmetric potentials, the scattering matrix Sℓ0ℓ has non diagonal elements
that must be included to construct the DCS. We study here in figure 10.25 the convergence of
the DCS for N2, NO and O2 from the perspective of the number of harmonics used. An example
of a convergence study for the DCS of N2 at low energies can be found in Morrison et al. [674,
III.C:table II].

Partial Waves When it comes to coupling, the illustration for N2 at 40 eV in 10.25a shows
that a difference of ∣ℓ0 − ℓ∣ < 12 is usually sufficient at the energies considered. The remaining
differences arise from the diagonal elements of the S matrix with ℓ > 12, principally affecting the
forward scattering. Also, most high-order elements ℓ0, ℓ > 4 can be safely calculated from the
Born approximation [274, 671, p.2530:§IV.B.2, fig. 4 and tab. II]. In our calculations, we took
ℓ̄max = 35 for the S matrix as in Fujimoto and Lee [307, p.4762], and assumed that the S matrix
were purely diagonal for ℓ > 35.

Potential Harmonics The number of potential harmonics is the most critical parameter in
convergence studies because of the necessity to properly represent the static potential singularities
located at the two decentred atoms. The larger the interatomic distance R, the slower the
convergence of the DCS in lmax will be. We show this slow convergence on figure 10.25b for NO
at 30 eV which has both odd and even l orders. As explained in Morrison [666, pp. 156–7], the
relevance of l is technically limited to 2ℓmax due to the triangular relation. In some cases an
lmax = 36 is recommended [186, p.480:left–middle§]. Presently, we adopted lmax = 24 = 2 × 12
from the convergence seen for ℓmax.

Angular Projection Symmetries At last, we know that the S matrix may be decomposed
in symmetries of the projection Λmax of the electron’s angular momentum on the internuclear
axis. As illustrated in figure 10.25c, it seems that quite a few symmetries are needed to properly
converge the DCS at all angles. Actually, this observation is biased by the size of the S matrix
considered. For large ℓ > 12, one can roughly consider that the scattering matrix S becomes
independent of the projection Λ and therefore, one may sum over all Λ for those higher order
ℓ in order to obtain the diagonal contribution of higher orders which actually account for the
difference seen at forward angles between Λmax = 8 and Λmax = 35. If one has established a ℓmax,
one should not arbitrarily restrict Λmax, as all projections should be summed in order to get
the full contribution from all orientations of the molecule. The only difference is that this sum
can be made more systematic if one assumes an ℓΛ beyond which the scattering matrix is fairly
independent of Λ. Following our decision above, we used Λmax = ℓmax = 35.

Nevertheless, in order not to waste computational time on minute matrix elements, we re-
quired that the minimal value of ∣SΛ

ℓ0ℓ
∣ > 10−10 and neglected all smaller contributions.

Although our current parameters for constructing our DCS are far from optimal, we contented
ourselves with these values for the purpose of the present study whose objective was to complete
the DCS database of elastic cross sections where experimental data were lacking.
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Figure 10.25: Convergence of DCS in the angular-momentum close coupling calculations. Ex-
cluding the parameter varied in the series, the calculations are done at ℓmax = 35, lmax = 24 and
Λmax = 35.
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Apology

The issue of convergence forms a whole field on its own in computational physics and applied
mathematics. Studying the convergence of a series enables us to see clearly whether our efforts
are vain or not, whether our approach is efficient or sloppy. It also enables us to highlight the
importance of each term (ξ)n+1 − (ξ)n involved and helps to bring about new ways of com-
puting/estimating results. There is a fine line demarcating the investigations that highlight
convergence of their results from those that pass over the subject as a mere formality to be
crammed in a paragraph to be lost somewhere in the methodology section. The contrast is as
stark as between a cultivator that comes year round and the reaper who pops up just on the day
of harvest. May I be excused, despite my efforts, to take more after the latter than the former
in the approach to this thesis. At the very least, we may safely assert that the results for the
elastic DCS produced in this thesis stem from the limitations imposed by our optical potential
model and not by some negligence in the numerical calculation. This is a minimal requirement
for those DCS to have relevance in scientific investigation.



Chapter 11

Application to (Differential) Cross
Sections

In the previous four chapters we have:

7 : introduced the topic of (differential) cross section for electron-molecule collisions;

8 : introduced the quantum theory of electron-molecule collisions and focussed on the elastic
scattering for which we selected some incommensurably helpful approximation;

9 : gathered the numerical methods that we implemented in order to calculate the quantities
of relevance to the scattering process;

10 : elaborated on the nature use and validity of approximations, generalisations, semi-
empirical models and touched upon the issue of numerical convergence.

Now:

This chapter presents the underlying models and the resulting cross sections for elastic and
various inelastic (rotational, vibrational, attachment, electronic and ionisation) processes.
Our database is made accessible through this Digital Object Identifier: 10.5281/zen-
odo.8190461 and will be hosted on lxcat.

11.1 Elastic Collisions

An electron that scatters elastically from a target, does not lose kinetic energy in the centre of
mass frame of the collision. From a kinematic perspective, such collisions were treated in the
appendix A of the previous part I. Here, we discuss the probabilistic part which is comprised of
(i) the differential cross section (DCS) dσ/dΩ giving a density probability to scatter the electron
into the direction Ω per infinitesimal solid angle dΩ; and (ii) the integrated cross section (ICS)
σ which relates to the probability that the collision occur. The ICS is obtained from the DCS
as (7.4) σ = ∫ (dσ/dΩ) dΩ.

From the previous chapters we already know that various approximations used to describe
elastic scattering, apply on different energy ranges. This is why, in order to build our database,
we have partitioned the energy space for each target in the following way as detailed in table 11.1.
This partitioning may be qualitatively understood as represented below:

389
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Very low Low Intermediate High Very high Relativistic

Below
resonance

Resonant
and/or below
ionisation

Above
ionisation

Beyond
ionisation
peak

asymptotic
energy
dependence

γ ≳ 2

Modified
effective
range
theory

R-matrix Adiabatic nu-
clei

Independent
atom model

plane wave
Born approx.

relativistic
Born approx.

MERT 10.1.5
[710]

8.4 [134] BF-AN 8.5.2
[671]

IAM 8.5.3
[572]

PWBA 8.5.1
[799]

RB 8.5.4
[716]

≲ 0.1 eV 0.5�15 eV 20�100 eV 0.2�8 keV 10�100 keV ≳ 0.5MeV

In each regime, we give an indicative energy range, we highlight the physical nature of the scat-
tering and associate an adequate model for computing DCS, with a cross-reference in this thesis
and a bibliographic reference (out of a plethora). The only theory which we have not broached in
this thesis is the R-matrix, which defines various regions of space where (electronic, vibrational,
rotational) close-coupling apply. It is a titanic and leading-edge topic in the field, please consult
Burke [136] and Descouvemont and Baye [216] for more information.

Evidently, the qualitative partitioning presented may depend on the target. For instance
the MERT method is inapplicable for atomic nitrogen at 0.1 eV while it seems satisfactory for
molecular nitrogen (see 11.1). In the low- and high- energy limits, we used the same models
(MERT and PWBA respectively), for different targets, with parameters given in tables 11.2 and
11.13). In the middle-energy range, the models varied depending on the target. The rest of this
section describes these models from low to high energies

Table 11.1: Partitioning of the construction of our present DCS database according to the
electron incident energy.

1eV1eV
0.1eV

N2 O2 NO Ar O N
Modified Effective Range Theory

(MERT) MERT
BSR

30eV

150eV
200eV

1keV

8keV 8keV

100keV

1keV

10eV
ExperimentsSun et al. 1995

Sohn et al. 1986

Sullivan et al. 1995
Green et al. 1997

Mojarrabi et al. 1995
Shi et al. 1993

Muse et al. 2008
Linert&Zubek 2009
Gote&Ehrhardt 1995
Nickel et al. 1988

Williams&Allen 1989

Angular-Momentum
 Close Coupling

(ℓCC)  
ℓCC·w + 

IAM·(1-w)s

IAM · s

Plane Wave Born Approximation 
(PWBA) PWBA

Zatsarinny&
Bartschat 2004

Zatsarinny et al. 
2014

No Correlation Vco Vco

200eV

100keV

Partial Wave Phase shifts
(PWPS)

PWPS

Linert et al. 2004

Independent Atom Model
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Table 11.2: Parameters used in MERT (10.21) in atomic units of the Bohr radius a0.

N2 O2 NO Ar O N

A (a0) 0.44 0.3 0.75 -1.37 0.63 0.6
αd,0 (a30) 11.74 10.67 11.47 11.08 5.412 7.423
αd,2 (a30) 3.131 4.93 3.78
Q (ea20) -1.13 -0.29 1.78

11.1.1 Very low energy

In the sub-eV domain, the modified effective range theory (MERT) is has proven to be a very
powerful tool for computing DCS for noble gases [272] and molecules [429]. Nevertheless, the
application of the “classical” MERT, whose equations (10.21) were exposed in section 10.1.5, is
limited. For molecules, Isaacs and Morrison [429] show that because of the underlying adiabatic
nuclei approximation (which is not valid at very low energies near the threshold of rotational
excitations), the scattering length A ought to be extracted from rigorous close-coupling calcula-
tions so as to make the MERT (10.22) ‘fit’ the calculated cross sections. For atoms, in order to
make the MERT applicable up to 1 eV, one requires the inclusion of a few additional parameters
to be fitted. A notable difficulty in the MERT is the relatively high sensitivity of the scattering
length A when derived to fit a DCS or from total cross section at the zero energy limit. Deriving
A from calculations is even more prohibitive [892, p.7] because of the significant dependence of
the s-wave phase shift on correlation, polarisation and exchange at very low energies [999, p.1244
and fig. 2].

Since we wanted to preserve a unified and simple handling of very-low-energy DCS for atoms
and molecules, we did not attempt to pursue any of the advanced MERT implementations which
would require to deal with the body-frame K-matrix [268] or a more advanced parametrisation
of the phase shifts [272, eq.(7)]. Therefore, we only produced simple MERT DCS (10.21) and
(10.17a–10.17b).

The parameters used are summarised in table 11.2, we purposefully privileged values of the
scattering length A most recently derived from total cross sections [545]. Disgracefully, for some
targets we had to resort to ballpark estimates for A. Concretely, the values were obtained:

• N2 : 0.44 from Chang [168] and Fabrikant [269, p.899:§3.2, p.4229:§4.2];

• O2 : 0.3 from Zecca et al. [1006, p.116:1st§] with A =
√
σ(ε = 0)/4π − 4Q2/45;

• NO : 0.75 guessed from the σ(ε = 0) = 3 × 10−20m2 extrapolated to zero from the cross
sections calculated by Laporta et al. [557];

• Ar : -1.37 taken from Kurokawa et al. [545, p.7:table II];

• O : 0.63 derived from Zatsarinny et al. [999, fig.2] and in agreement with Tayal and Zat-
sarinny [921, fig.1] giving σ(ε = 0) ≈ 5a20;

• N : 0.6 from a MERT fit to the integral cross sections of Wang et al. [975] for data below
0.01 eV.

Note that, as remarked by Isaacs and Morrison [429, p.709], the scattering length A for molecules
must be derived in conjunction with the quadrupole contribution (16π/45)Q2 to the zero-energy
cross section if the approximation used is that of the adiabatic nuclei.
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Figure 11.1: Very low energy DCS at three lowest energies (1meV, 10meV and 100meV) for six
targets using the MERT when deemed applicable; otherwise through logarithmic interpolation
(. . . ) between the highest MERT DCS and the lowest experimentally available DCS.

A comparison of very-low-energy DCS in our database with MERT and experimental DCS,
when available, is displayed in figure 11.1. The selected DCS in the database (—solid) are
compared with MERT (−⋅−), when both differ. Dotted lines (⋯) show DCS interpolated loga-
rithmically between two energies when the used approximations are inapplicable to compute a
DCS at a given energy in our database. To be more explicit: we did not compute a DCS for N,
O and NO at 0.1 eV. The dotted DCS shown (⋯) is obtained from a logarithmic interpolation
between 0.01�1 eV and 0.54�1.5 eV respectively.

A noteworthy exception in our database is argon for which the BSR calculation of Zatsarinny
[1000] and Zatsarinny et al. [1002] has been made available on lxcat in the 0.001�200 eV range.

We now move to the low through intermediate to high energy range of the DCS for which we
separate the treatment for atoms and diatomic molecules.

11.1.2 Atoms

For each atom, as seen on the summary representation 11.1 the generation of DCS in the low-
mid-high energy range reflected the differences in availability of data.

Argon

As a noble gas, argon has been honoured by a plethora of both theoretical and experimental
databases. Thus we deemed wise to build from the existing B-spline R-matrix database of
Zatsarinny and Bartschat [998] and Zatsarinny and Bartschat [1001]. Since the DCS spanned
1meV to 200 eV, we completed the set for energies beyond 200 eV with our own calculations
that we checked against elsepa [803]. A comparison at 200 eV is shown on figure 11.2 to wit
the agreement between all three theoretical sources.
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Figure 11.2: A
comparison of BSR
[1000] and our cal-
culations practically
superposed with
elsepa [803] for
electron-argon elas-
tic DCS at 200 eV.
Experiments:
7:[766], ▸:[232],
•:[116]
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Overall, all three DCS are in agreement except perhaps that ours (and elsepa’s) slighlty
overestimate the DCS in some angular ranges. We think this might be related to a strong
underestimation of absorption as can be seen on figure 11.3. More absorption would consistently
raise the calculated inelastic cross section while decreasing the elastic DCS.

Of further interest, we note that, the actual BSR database for integral elastic cross sections
has been updated more recently than the one for differential CS. For this reason, there are some
slight inconsistencies at low energies as can be seen on figure 11.4 if one compares the integrated
DCS with the given CS. Also, there is a discontinuity at 0.017 eV in the shape of the DCS as
can be seen from the momentum transfer CS on the right. Even though the MERT CS seems
to fit the most recent data of Kurokawa et al. [545] well, we did not attempt to resolve this
inconsistency with the MERT DCS due to the quite large difference with the BSR DCS even at
very low energies.

Atomic oxygen

So far, we have access only to one source of experimental DCS for atomic oxygen in the low
energy range 0.5�10 eV [984]. The construction of the DCS has been challenged by the discord
at forward scattering angles between experimental data [984] and theoretical calculations [999].
Regardless, we decided to use the phase shifts determined experimentally by Williams and Allen
[984] to build the DCS below 10 eV and then completed the DCS to higher energies with our
own calculations. Similarly to Zatsarinny et al. [999, fig. 4], the DCS calculated by elsepa on
figure 11.5 also predicts less prominent forward scattering than the measurements. Our DCS
have even less forward scattering which is due to the less precise static potential for atomic
oxygen that we use in table 8.1.
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Figure 11.3: Absorption cross section (8.111) from the imaginary part of the phase shifts obtained
with the central potential for argon based on (8.58–8.64). The consistency of our calculations is
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10 3 10 2 10 1 100 101 102

0

5

10

15

20

25

30

35

El
as

tic
 C

ro
ss

 S
ec

tio
n 

(
²)

Srivastava et al (1981)
Dubois&Rudd (1976)
Furst et al (1989)
Williams (1979)
Andrick (1989)
Panajotovic et al (1997)
Kurokawa et al (2011)
Integrated
CS
MERT

Integrated
CS
MERT

10 3 10 2 10 1 100 101 102

0

5

10

15

20

M
om

en
tu

m
 T

ra
ns

fe
r C

S 
(1

0
20

m
2 )

Srivastava et al (1981)
Panajotovic et al (1997)

Integrated
MTCS
MERT

Integrated
MTCS
MERT

BSR database for argon

Electron Kinetic Energy (eV)

Figure 11.4: Electron-argon elastic integral CS (left) and momentum-transfer CS (right) of the
BSR database (pink) [998, 1002] and calculated with the MERT (10.22) (blue) with parameters
from table 11.2. The MERT seems valid only below 0.1 eV. Solid (—) curves are integrated
from the DCS [1001] and dashed (- - -) are from the ones published in [1002].
Experiments: •:[871], ×:[232], ▲:⧫ ☀:[310, tab. IV], ∎:[731], ▼:[545]



11.1. ELASTIC COLLISIONS 395

0° 30° 60° 90° 120° 150° 180°
Angle of Scattering

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
ffe

re
nt

ia
l C

ro
ss

 S
ec

tio
n 

(
²/s

r)

Atomic oxygen
Williams&Allen 1989 (8.7 eV)
Present (10 eV)
ELSEPA (10 eV)

Figure 11.5: Discrepancy at forward angles be-
tween Williams and Allen [984] data at 8.7 eV
and theoretical calculations (at 10 eV).

Atomic nitrogen

Due to the utter absence of experimental data
for elastic scattering, our calculations for atomic
nitrogen are completely blind. There are sev-
eral theoretical studies [928, 975], however, no
DCS data were made available in tabulated
format. As for oxygen, a general agreement
with elsepa’s calculations was our only guide
in building the DCS.

For the integral elastic cross section (ICS),
Wang et al. [975] published their results on
lxcat. Together with the calculations of elsepa,
they are displayed on figure 11.6. Good agree-
ment of our ICS is found for all energies be-
yond 20 eV. Below this point, it gradually de-
teriorates to a terrible disagreement in the re-
gion of resonance at 0.08 eV.
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database of elastic cross sections for atomic nitrogen is generated by extending the BSR data of
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Figure 11.7: Transitions of the DCS between 1 and 2 keV represented by the replacement (11.1)
of the kinetic density functional correlation potential Vco,kdf by the Buckingham potential Vb.
Experiments: N2 – 9:[397], ▷:[343], 9:[453]. Ar – ×:[418], 7:[396].

Correlation at high energies

As we discussed in the previous chapter 10.3.3, as the energy of the incident electron increases,
the polarisation (and correlation) effects should decrease due to the non-adiabatic response of the
atomic electronic cloud. For all atoms, the long-range polarisation potential is combined with
the short-range kinetic density functional (KDF) correlation potential Vco,kdf through (8.55) by
a junction at their outer intersection radius rt. This is graphically visible on figures 10.14. Non-
adiabatic scaling of the long-range polarisation is done by growth of the curbing radius rd(v)
(8.56) with the incident velocity, but has no equivalent for short-range correlation.

The correlation potential given by the KDF model (8.51) has in fact a significantly longer
range than the static-exchange, and should rather be considered a “mid-range” potential (see
violet—curves in the left panel of figure 8.3). This means that at high energies, correlation will
mostly affect scattering at small angles as we demonstrated on figure 10.18a of section 10.3.3.

As we mentioned on earlier occasions, the determination of a correct DCS at very small
angles at high energies is unclear for at least two reasons.

1. The experimental probing of small angle scattering is difficult even at high energies. The
experimental data available is not sufficiently diverse and resolved in angle to allow to
discriminate one model potential versus another.
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2. For molecules, the DCS at small angles is affected by deficiency of the independent atom
model which does not account for long-range multipole potentials emerging from the chem-
ical bond [287, 602, figs. 8–10, fig. 4].

3. In addition to this, in practical applications of plasma physics, the scattering at very small
angles might come from regions of space (> 20a0) where the electron is affected by other
forces than those attributable to the scattering target.

Since we have not found any evident way of reducing correlation effects at higher energies (oth-
erwise than empirically), we resorted to replace the KDF correlation above 1 keV for all targets
(atoms and molecules alike) by the Buckingham potential which crudely mimics it, but resorbs
with energy. Mathematically:

Below 1 keV included : Vcop(r) = {
Vco,KDF(r) r < rt
Vb(r) r ≥ rt

(11.1a)

Above 1 keV : Vcop(r) = Vb(r) = −
αd

(r2 + rb(ε)2)2
(11.1b)

The curbing radius rb was adjusted so as to enable a smooth transition of the DCS between
1 keV and 2 keV. This is represented on figure 11.7. The transition is almost imperceptible for
argon, because its polarisation is relatively small compared to its static potential; whereas for
molecular nitrogen, we can see in the inset of the top graph in figure 11.7 how switching off
correlation removes a ‘lump’ at very small < 2○ angles where experimental data are nought.

11.1.3 Diatomic Molecules

An overview of the presently constructed DCS for diatomic molecules was displayed on table 11.1
which is separated into low, intermediate and high-energy regions.

Low energy (< 30 eV)

Low-energy scattering with diatomic molecules is very complex and requires top-edge methodolo-
gies to model. Even then, there are some discrepancies that emerge in some angular ranges [915,
fig.1], mostly forward scattering as can be seen for N2 on figure 11.8 comparing the theoretical
−⋅−curve of Sun et al. [894, tables III and VII] with the bulk of experimental data. Fortunately,
for N2 and somewhat for O2, the database of experimentally measured DCS is rich and one can
resort to fitting techniques, as illustrated (see fig. 13.3) in a dedicated chapter 13 of part III.

In order to obtain coherent fits, we had to select some experiments and discard others based
on reviews [124, 941] and comments from more recent studies [17, 353, 600]. The sources in each
column of table 11.1 were retained in the fitting procedure. For cross referencing, those sources
are given below (with the ones disregarded, crossed):

N2 O2 NO

Allan [17], Gote and Ehrhardt [344], Linert
and Zubek [600], Muse et al. [684], Shi et al.
[832], Sohn et al. [863], and Sun et al. [894]

Green et al. [353], Linert et al.
[598], and Sullivan et al. [893]

Mojarrabi
et al.
[654]

Shyn et al. [844],Shyn and Carignan [838]
Srivastava et al. [870],Brennan et al. [105]

Trajmar et al. [938],Woste et al. [989]
and Shyn and Sharp [842],
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For more information about the sources, the reader may consult section ?? in a later chapter,
which comments about eventual adjustments that we made on some experimental data.

The graphs shown on figure 11.8, for all three molecules N2, O2 and NO, are examples of fits
used in our database. Concretely, we have juggled with a combination of:

• Least-squares Legendre polynomial fit of order Lmax between 3 to 7 depending on the
energy and the necessity of including steep DCS slopes at forward angles.

• Molecular phase-shift analysis (MPSA) as initiated by Boesten and Tanaka [87] and re-
minded in equation (13.5b) in section 13.1.1. This method exploits the calculation of
high-order phase shifts from the plane-wave Born approximation to long-range potentials
and leaves the first few phase shifts in 8.108 as free parameters. Its advantage is that the
fit will be guaranteed to be positive and reduce the number of parameters while keeping
high the maximal degree of the Legendre expansion of the DCS. Unfortunately, as one can
imagine, the use of MPSA is purely speculative since molecules do not have a diagonal
S matrix and thus the “phase shifts” fitted are convenient parameters with an unclear
physical significance (in which frame does the S matrix diagonalise since it is supposed to
be unitary? what about absorption and coupling?). As a result, our success in obtaining
agreeable MPSA fits was very limited (O2 at 7 eV on 11.8 is an example of MPSA fit).

• Available theoretical calculations from Sun et al. [894]. We did not find other sources for
which the agreement would be compelling (e.g. Machado et al. [617] for O2).
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Figure 11.9: Constraining the backward an-
gle DCS with theoretical results at 180○.

In some cases, we mixed the three methods at
a same energy to obtain better agreement with a
set of experimental data. In order to better con-
strain the extrapolation to large angles up to 180○,
we aggregated results from theoretical calculations
Fujimoto and Lee [307], Machado et al. [616], Sun
et al. [894], and Tashiro et al. [915] at 180○ when
performing a least squares or MPSA fit. This can
be seen on the figure 11.9 where we disregarded
experimental data [838, 870] while privileging the
theoretical backscattering trend∗ [894, table VII].
In a few cases, we performed a fastidious adjust-
ment of our DCS. This is neatly seen for N2 at
2.46 eV, where we stitched theoretical calculations
[894] at forward and backward angles while using
a least squares fit at intermediate angles.

At energies beyond 15 eV the shape of the DCS
starts to be prominent at forward scattering angles . Unfortunately, our modelling of molecular
potentials did not enable us to use angular-momentum close-coupling results below 30 eV (see
how bad the grey dash-dotted −⋅− curve looks on figure 11.11 for NO at 20 eV, while being
acceptable at 30 eV). Thus in the energy range 15�25 eV, we used a combination of a screened
Rutherford formula complemented by a residual backscattering Legendre polynomial expansion.
This trick is the remnant of our original methodology in Schmalzried and Luque [811, §2.4] which
produced empirical fits of DCS based on an adaptation of the Rutherford screening parameter η
in (14.9) for all energies above 15 eV.

∗This figure 11.9 reveals the mistyped value ‘0.793’ at 7 eV and 175○ which should be corrected to ‘0.693’
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Intermediate energies (30 eV ≤ ε ≤ 100 eV)

Originally, in Schmalzried et al. [812], we had designed a way to extend the validity of the
independent atom model (IAM) to this intermediate energy range by performing a different
separation of the molecular potential: two atomic unperturbed potentials and a central isotropic
molecular potential. With a partial-wave decomposition based on the Born approximation, we
estimated a way to subtract that part of the scattering amplitude fA that participated to the
scattering from the isotropic centre of the molecule. This technique enabled us to obtain DCS
in fair agreement with experimental data, yet only involving scattering amplitudes from three
central potentials (two atomic and one molecular isotropic).

In yearn of improving our DCS, we decided to implement the angular-momentum close
coupling (ℓCC) methodology in the body-frame as described in 8.5.2 and embodied in equa-
tion (8.129). The results may be observed on figure 11.10 for N2 and O2, and on figure 11.11 at a
few selected energies. Since the validity range of the simple IAM overlaps with the applicability
range of the ℓCC, we did not use our methodology [812] to construct our elastic DCS database.

N2 The results for N2 on the left column of figure 11.10 are fairly in agreement with
experimental data, except at intermediate angles between 60○ to 120○. We deem that a more
accurate treatment the static molecular potential as in Lee and Iga [569], would remove this
overestimation. Nevertheless, at energies below 40 eV, it seems that their results [569] also
present slight overestimation in the mid-angular range. This could be imputable to a limited
modelling of correlation-polarisation and absorption effects. Perhaps, the FEG Vco,feg (10.61)
correlation potential (—) that they use is too strong (deep) compared to the KDF Vco,kdf (8.51)
(—) as can be seen best on figure 10.14b in the previous chapter on pages 364–373.

For O2 and NO which both have open shells, we were confronted with more difficulties.
O2 For O2, a comparison of our calculations is shown on the right column of fig. 11.10 with the
Schwinger-variational distorted-wave calculations of Machado et al. [617] (−⋅−) and experimental
data of Shyn and Sharp [842]. Very surprisingly, despite our crude modelling of oxygen’s diatomic
potential, our results differ little with Machado et al.’s in the intermediate energy range. However,
it seems that both our and their [617] calculations, despite their more accurate modelling of static
and exchange potentials, overestimate the experimental DCS in the mid-angular range. Here,
the discrepancy may either come from the absorption potential, which improperly accounts for
the coupling with the low-lying inelastic transitions to a 1∆g and b 1Σ+g states of O2, or rather
be likely due to a bias in Shyn and Sharp’s [842] experimental results which are the only ones
available at intermediate energies. Indeed, one can find on the right column in fig. 11.12 a quite
noticeable discrepancy of a factor exceeding 1.3 with Daimon et al. [206] at 200 eV whose data
is favoured by both our ℓCC calculations and those of Machado et al. [617, table II]. This is also
consistent with the difference at 30 eV with Sullivan et al. [893] in fig. 11.10-top-right.

NO However, the same conclusion cannot be drawn for NO. A comparison of Mojarrabi et
al.’s measurements [654] with the calculations of Fujimoto and Lee [307, figs. 3&4] show excellent
agreement at 30 and 40 eV∗, while ours (ℓCC−⋅−) on figure 11.11 dramatically overestimate
scattering at intermediate 70○–130○ angles. They [307] used the FEG correlation potential Vco,feg
(10.61) with the quasifree absorption Vabs,qf of Jain and Baluja [450, eq.(7–8)] but treated the
static and exchange potentials exactly and properly averaged the cross section according to the
spin triplet and singlet couplings with the single 2π electron of NO. We therefore surmise that
the present discrepancy in our calculations for NO arises from our very limited modelling of
static molecular diatomic potentials and no account for the deformation of the valence orbitals
from the chemical bonding, nor inclusion of spin-dependent cross sections.

∗They unfortunately did not provide digitised data at those energies.
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Figure 11.10: DCS calculated from angular-momentum close-coupling (ℓCC-8.129) and com-
pared with various experimental data [288, 344, 397, 453, 700, 838, 842, 844, 870, 893] in the
intermediate energy range. Also shown are the curves (- - -) from the independent atom model
(IAM-8.137). The general issue is that our calculations overestimate the DCS at large angles.
Also shown are the theoretical calculations of Machado et al. [617] (−⋅−).

As a matter of fortunate coincidence, the independent atom model (IAM) on the other
hand has a dip in that angular range (- - -curve on fig. 11.11) due to the negligence of multiple
intramolecular scattering. For pragmatic purposes, to palliate our modelling flaws and salvage
our endeavour of building an elastic DCS database, we decided to use a weighted sum of ℓCCand
IAM DCS for NO in the following way:

dσNO

dΩ
= w

dσℓCC

dΩ
+ (1 −w)s

dσIAM

dΩ
. (11.2)

The parameter w ≤ 1 is a weight and s ≤ 1 is a screening correction to scale down the IAM
which violates the optical theorem (and thus overestimates the overall DCS). Both w and s
decrease with energy as given in table 11.3. We decided not use weighting w for N2 nor O2; the
improvement of their calculated DCS will be left for the future.
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Figure 11.11: ↑ DCS calculated for NO
from a least squares Legendre polynomial
fit ⋯, from angular-momentum close-coupling
−⋅−(ℓCC-8.129), from the independent atom
model - - -(IAM-8.137) and their weighted sum
—(11.2). The experimental data are from Mo-
jarrabi et al. [654].

Table 11.3: Empirical weight w (for NO only)
and screening correction s for constructing DCS
from angular-momentum close-coupling and in-
dependent atom models as through (11.2). The
cells highlighted lightly in green correspond to
cases where the DCS could be compared to ex-
perimental data. All other cells are therefore
“blind” interpolations. →

Energy (eV) N2 O2 NO
s s w s

30 – – 0.7 0.65
40 – – 0.675 0.65
70 – – 0.6 0.66
100 – – 0.375 0.68
150 – 0 0 0.7
200 0.85 0.85 0 0.75
300 0.85 0.87 0.8
400 0.85 0.9 0.85
500 0.85 0.92 0.9
600 0.85 0.93 0.91
700 0.85 0.93 0.92
800 0.86 0.94 0.93
900 0.87 0.94 0.94

1000 0.9 0.95 0.95
2000 1 1 1
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Figure 11.12: Present DCS constructed with scaled independent atom model (IAM⋅s) with the
screening correction s given in table 11.3. The angular-momentum close coupling (−⋅−ℓCC) is
still a valid, albeit increasingly costly way to compute DCS. For O2 at 200 eV we decided to
favour Daimon et al.’s [206] (⧫) experimental results over Shyn and Sharp [842] (▲) for reasons
developed on page 574 of part III.

High energies (> 150 eV)

The angular-momentum close coupling is used up to 150 eV included for all three diatomic
molecules. Beyond that energy, we use a scaled independent atom model (IAM) DCS (8.137)
with a screening correction s: dσIAM/dΩ ⋅ s. There have been several propositions to estimate
s semi-empirically through a thorough geometrical approach as in Jiang et al. [458] and Zecca
et al. [1007] or through a loosely justified empirical law as in Blanco and García [83] which we
corrected in Schmalzried et al. [812, eq.(35)] for a factor 4 which had no apparent justification.
We have nonetheless left those formulae aside and adjusted s to our experimental database as
reported in table 11.3.

The reason for this is that we could have continued using angular-momentum close coupling
(ℓCC−⋅−) at high energies to calculate DCS as can be seen on the graphs of figure 11.12. There
are however two computational issues that deterred us from doing so. First, IAM calculations
are much faster (20 seconds versus 2 hours).
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Second, the ℓCC DCS were contaminated by oscillations of the Hankel functions (8.97c),
which are denser at higher energies, at backward scattering angles due to our limitations of the
radial discretisation in the integration (9.17) as can be observed on figure 11.12.

In the end, manually-scaled IAM do not differ significantly from a well-converged angular-
momentum close coupling calculation as seen on figure 11.12. The IAM calculations are per-
formed with atomic potentials except that we use molecular parameters in table 8.3 for polar-
isability and excitation thresholds. Following Salvat et al. [803a, eq.(94)], each atom carries a
proportion of the molecular isotropic polarisation according to the atomic polarisability.

11.1.4 Very high energy

We have seen in previous chapters that many useful approximations can be used when the
electron energy ε is high “enough”. In chapter 8 section 8.5.1, we introduced the plane wave
Born approximation (PWBA) which is of fundamental importance in high energy scattering.
The determination of what “high enough” is, was the purpose of section 10.1, where we estimated
the error committed by the PWBA compared to a more accurate calculation of phase shifts. As a
result, all our DCS beyond 8 keV were calculated with plane wave Born phase shifts as in (8.120)
whose analytical expressions are to be found in chapter 14. Those phase shifts δ̃ℓ were then used
in the Born closure of the scattering amplitude (9.18) to replace the exact phase shifts δℓ. Note
that this procedure is slightly better than the direct use of the Born scattering amplitude f̃ of
(8.115), as can be seen on figure 10.4.

In addition to the PWBA we include a corrective relativistic factor as explained in sec-
tion 8.5.4. This implies that the DCS at forward angles does not saturate to a constant value
when the energy increases as implied by (8.115). On the contrary, it rises to absurdly high
values due to the extremely forward-peaked DCS at relativistic energies. This poses no physical
incoherence because the integral cross section (ICS) saturates to a constant value (fig. 11.13a)
while the momentum transfer cross section (MTCS) decreases steadily as seen on figure 11.13b.

This behaviour is due to the screening parameter η related to the wavenumber k and range
a of atomic static potentials:

η =
1

(2ka)2
= (

α

2aβγ
)
2

=
α2

4a2(γ2 − 1)
, (11.3)

together with the saturation of the electron’s speed β < 1 in relativistic units. We remind that
the range a of an atomic static potential is the inverse of the exponential average decay rate
a = 1/λ. Of course, since there are more than one decay rate λi, the effective potential range
a(ε) is, in fact, an energy-dependent average between the different ai.

Notwithstanding, beyond 10 keV for the present targets, one might desire to determine a sin-
gle energy-independent ā value that fits the DCS with a simple screened-Rutherford expression:

dσ̃SR

dΩ
=

σ

2(kā)2
1 + η̄

(1 − cos θ + 2η̄)2
, with η̄ ≡

1

(2kā)2
. (11.4)

This is because this expression can be analytically inverted when sampling the scattering angle
in Monte Carlo simulations (see eq. 3.11 in chapter 3 of part I). One must, however, choose what
to fit ā to: the ICS, MTCS or ⟨cos θ⟩? Most references logically choose the momentum transfer
cross section (MTCS) which is the physically relevant quantity. In our case, since we provide
Born fits to the ICS (see eq. 11.9 below), in order to obtain the correct MTCS σm, one must
properly fit the average cosine ⟨cos θ⟩ so as to verify:

σ̃m = σ̃(ε)(1 − ⟨cos θ⟩(ε)) (11.5)



11.1. ELASTIC COLLISIONS 405

Table 11.4: The shape parameter ā (single Yukawa exponential decay radius) used for (11.4)
adjusted from the average cosine on figure 11.13c from 100 eV. The uncertainty on ā was quite
large due to the relative low sensitivity of the average cosine ⟨cos θ⟩ on the exact value of ā.

N2 O2 NO Ar O N

ā (⟨cos θ⟩) 0.6052 0.5677 0.6039 0.4533 0.4875 0.5546

Thus, by fitting the DCS shape and the ICS separately, we can reconstruct a coherent MTCS
which depends on 4+1 parameters (4 – Ã, B̃, C̃,K – from the ICS and only 1 – ā – from the
DCS). This is much better than trying to fit the MTCS directly with 5 parameters.

The parameter ā required by (11.4) was fitted to the average cosines represented on fig-
ure 11.13-c). The fitted values are reported in table 11.4.

At very high energies, leading terms in the integral and momentum-transfer cross sections
from a Slater 1s potential (8.23) are respectively from (14.33) and (14.34) of chapter 14.1.2:

lim
k→∞

σSX(k) = lim
k→∞

2πZ2a20γ
2

k4
{
6η(2η + 3) + 7

6η(1 + η)3
−
β2

2
[
1 − η(η(η + 9) + 6)

6(1 + η)3
+ ln(

1 + η

η
)]}

=
2πZ2a20α

4γ2

(γ2 − 1)2
{
14(γ2 − 1)a2

3α2
+ 3 −

γ2 − 1

2γ2
[
1

6
+ ln(1 +

4(γ2 − 1)a2

α2
)]}

∼
2πZ2a20a

2α2

β2
(
14

3
+

3

k2a2
−

α2

12a2γ2
ln(1 +

4(γ2 − 1)a2

α2
)) , (11.6)

lim
k→∞

σm,SX(k) = lim
k→∞

2πZ2a20γ
2

k4
[

1

1 + η
−
1

2
(1 −

η2

(1 + η)2
) −

1

3
(1 −

η3

(1 + η)3
) −

β2

3

4η + 3

(1 + η)3
+ ln(

1 + η

η
)]

=
2πZ2a20α

4

β4γ2
[
5

6
− β2 + ln(1 +

4γ2β2a2

α2
)]

∼
2πZ2a20α

4

β4γ2
[2 ln(2

γβa

α
) +

5

6
− β2] . (11.7)

We see on the right-hand side of figure 11.13 that while the integral cross section saturates
at an asymptotic rate ∼ 1/β2(cst. + β2η ln(1 + 1/η)), the momentum transfer cross section keeps
decreasing roughly as ∼ ln(γ)/γ2. We also see a nice continuity between the asymptotic values of
the ICS according to the target’s effective atomic number, which is Z̄ ≡

√
Z2
A +Z

2
A′ for diatomic

molecules. From (11.6), one could generalise the traditional σ̃el = πa20k
−2(A+Bk−2+Ck−4+Dk−6)

Born expansion from Inokuti and McDowell [424, eq.(13)] to a relativistic expression:

σ̃el =
πa20γ

2

k2

⎛
⎜
⎜
⎜
⎜
⎝

A +
B

k2
+
C

k4
+

B′β2

k2
ln(1 + 4ā2k2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Relativistic and spin correction

⎞
⎟
⎟
⎟
⎟
⎠

(11.8)

Nonetheless in practice, the logarithmic term is never important: neither at high energies

where it is shrunk by the
1

k2
prefactor, nor at lower energies where it is muted by β2. On the

other hand, more critical is the quenching of the terms inversely proportional to k when k → 0
at lower energies. This can be done by adding an acceleration’ energy K to the incident kinetic
energy ε of the electron (see p. 343). As a result, we devised a scaled relativistic Born expansion
in the following way:
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σ̃el =
πa20γ̃

2

k̃2
(Ã +

B̃

k̃2
+
C̃

k̃4
) , (11.9)

where γ̃ = 1 +
ε +K

mec2
and k̃ =

γ̃β̃

α
a.u.

In order to avoid possible confusion with parameters in the MERT expansion (sec. 10.1.5),
we note the Born coefficients Ã, B̃, C̃ with a tilde (following the nomenclature of Born-related
quantities). More on the physical explanation behind this ‘acceleration’ K was elaborated –
picturesquely – in the previous chapter 10.2.2 through (10.31). We shall come back again to
this very useful scaling in inelastic scattering in sections 11.4.2 and 11.5.3. For a review of this
method, we recommend Tanaka et al. [911]. Most examples of the Born scaling in the literature
are applied to inelastic scattering. It would be surprising, nonetheless, that a formula similar to
(11.9) would not have been proposed already by other researchers for elastic CS. In any case,
examples of the curve from (11.9) adjusted to our ICS database can be seen as red dot-dashed
curves (−⋅−) on the upper graphs of figures 11.14. The adjusted Born parameters to our ICS
database are displayed in table 11.13 in the last section 11.6.2 where they are used for computing
the total scattering cross section at high energies together with Bethe parameters (for inelastic
scattering).

11.1.5 Integral cross sections

In principle, integral elastic cross sections should be straightforwardly obtained from the DCS
with (7.4). These are plotted on figure 11.14. Nonetheless, there is no guarantee that the sum of
all elastic and inelastic cross sections (as detailed in the following sections 11.2–11.5) adds up to
the measured total scattering cross section as in transmission beam experiments (see section 7.3.3
p.254). This is why for the purpose of creating a consistent database of cross sections we define
a:

Residual (Vibrationally) Elastic Cross Section : σre ≡ σtot − ∑
i∈(�e/{rot})

σi , (11.10)

which is the total cross section minus all inelastic processes (�e) excluding pure rotational excita-
tions (rot).

This unfortunately means that we must resign to following inconsistency of which the user
of our database should be alerted:

The integral and momentum-transfer cross sections in our database are not obtained from
the differential cross sections reported, but as residual products through (11.10) from the
total scattering cross section.

The atomic nitrogen and oxygen were exempted from this inconsistency because there is no
or not enough data available in order to construct the “grand” total scattering cross section.
The differences between the residual (—) and integral (- - -) cross sections may be observed on
figures 11.14 for N2, O2, NO and Ar.

From the residual elastic cross section σre we may also derive the equivalent:

Residual Momentum-Transfer Elastic Cross Section : σrm ≡ σre(1 − ⟨cos θ⟩) , (11.11)
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Figure 11.13: a) Integrated differential cross sections (ICS) b) momentum transfer cross sections
(MTCS) and c) average cosine deviation ⟨cos θ⟩ obtained from our DCS database for all six
atmospheric gas targets.
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(a) Most trusted experimental data are from Allan [17], Linert and Zubek [600], Muse et al. [684], Shi
et al. [832], and Sun et al. [894], less trusted from DuBois and Rudd [232], Shyn and Carignan [838],
Sohn et al. [863], and Srivastava et al. [870] and untrusted from Finn and Doering [288] because they
measured DCS up to 90○ only (hence the large error bars on top-right graph).

Figure 11.14: Difference between the integrated cross sections (7.4) and the residual cross sections
as defined through (11.10) for molecular nitrogen, molecular oxygen, nitric oxide and argon. A
fit (−⋅−) of the Born expansion (11.9) to the residual (purple) curves is represented for higher
energies.
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(b) (continued from 11.14) Most trusted experimental data are from Daimon et al. [206], Iga et al. [418],
Linert et al. [598], Linert and Zubek [600], and Sullivan et al. [893], less trusted from Trajmar et al. [938]
(older) and untrusted from Shyn and Sharp [842] and Wakiya [972] because of the discrepancies discussed
above on page 400 and also 574.

where we remind that the average cosine ⟨cos θ⟩ is obtained from the DCS as:

⟨cos θ⟩ ≡
∫
π
0

dσ

dΩ
(ε, θ) cos θ sin θ dθ

∫
π
0

dσ

dΩ
(ε, θ) sin θ dθ

. (11.12)

The residual momentum-transfer elastic cross section σrm is useful for comparing consistently
results from kinetic solvers with Monte Carlo simulations (see previous part I sections 2.3.2 and
4.3.2).

This concludes the output of our investigations on the elastic scattering of electrons from
atmospheric atoms and molecules. We remind that those (differential) cross section include
all rotational excitations (modelled in the adiabatic nuclei approximation 8.5.2). In the next
section, we develop how individual rotational excitation cross sections may be calculated or
approximated.
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(c) (continued from 11.14) Only (available) experimental data are from Mojarrabi et al. [654]. Note the
very narrow resonance peaks below 1 eV from the calculations of Laporta et al. [557].

11.2 Rotational Excitations

Classically, when a projectile impacts a rigid rod at a point distinct from its centre of mass, a
certain angular momentum h̵J′ = ωrotIrot is induced on the rod which starts turning at a velocity
ωrot determined by its moment of inertia Irot. The (dimensionless) angular momenta of the initial
J and final J′ states obey the addition rule:

h̵J′ = h̵J + h̵Jt , (11.13)

for a transfer of h̵Jt angular momentum. The parallel and anti-parallel alignments of J and Jt

delimit the range of values taken by the norm J ′ ≡ ∥J′∥:

∣J − Jt∣ ≤ J
′ ≤ J + Jt . (11.14)

This fundamental inequality is known as the triangular relation between angular momentum
and is symmetric with respect to permutation of any pair between J, J ′ and Jt.

The projection of J on the axis z is traditionally denoted as M = J ⋅ ẑ and verifies:

−J ≤M ≤ +J . (11.15)

The values of J, J ′, Jt and their projections M,M ′,Mt may only take integer values (i.e. all
momenta and projections are multiples of h̵). Thus M may take only 2J + 1 values and J ′ only
2max(J, Jt) + 1 values.
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(d) (continued from 11.14) Trusted experimental data are from DuBois and Rudd [232], Furst et al. [310],
Panajotović et al. [731], Srivastava et al. [871], and Williams and Willis [985]. Less trusted are from Iga
et al. [418]. The ‘Residual’ purple curve actually follows exactly the most recent measurements for total
scattering with argon of Kurokawa et al. [545] (not represented because superposed).

The energy Erot and angular velocity ωrot of a rotating rigid molecule are connected to its
momentum quantum J by the rotational constant Brot = h̵

2/2Irot [399, §3.3.2:p.153]:

Erot = BrotJ(J + 1) and ωrot =

√
2Erot
Irot

=
2Brot

h̵

√
J(J + 1) . (11.16)

This may be generalised to a non-rigid rotator which involves elongation of the molecule
under the centrifugal force from the rotation [399, 676, eq.(13), §3.3.6:eq.(3.54)].
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11.2.1 Long Range PWBA

We recall from chapter 8 section 8.4 that the angular-momentum close-coupling method yields
scattering amplitudes (8.100) for a rotational transition from state J0,M0 to J,M :

dσJ0→J
dΩ

=
(2π)2

4k20
∑

M0,M

(2L + 1)

(2J0 + 1)

RRRRRRRRRRR
∑
ℓℓ0

(2ℓ0 + 1)(4π)Y
∗
ℓ0m0
(k̂0)Yℓm(k̂J)i

ℓ0−ℓTJMℓm,J0M0ℓ0m0

RRRRRRRRRRR

2

,

(11.17)

TJMℓm,J0M0ℓ0m0 =
√
(2J + 1)(2J0 + 1)∑

L

1

2L + 1
∑
Λ

CLMJM,ℓmC
LM
J0M0,ℓ0m0

CLΛJ0,ℓΛC
LΛ
J00,ℓ0ΛT

Λ
ℓℓ0 (11.18)

where the leading (2π)2 factor comes from the definition (8.85a) of the T matrix involving
a 1/(2πi) coefficient. Optionally, the squared sum in the first (11.17) may be expanded into
a Legendre polynomial series [908, p.114:eq.(11)] to obtain the formula of Arthurs et al. [29,
p.542:eqs.(18–20)] involving Racah coefficients.

This way of calculating rotational DCS for each single J0 → J transition is extremely costly
and one might wish to possess a faster, albeit approximative, way to do so [323]. This can be
done for instance in the first Born approximation which equals [812, 908, eq.(21), eq.(22)]:

dσ̃J0→J
dΩ

=
4kJ
k0

∞
∑
l=0

2J + 1

(2l + 1)2
[C l0J00,J0]

2
∣∫

∞

0
jl(qr)Vl(r)r

2 dr∣
2

(11.19)

This relation comes from the fact that the Bauer expansions (8.88) of the incident and
outgoing planar waves may be combined to be expressed only in the momentum transfer q2 =
k2J + k

2
0 − 2kJk0 cos θ. We recall that Vl is the lth harmonic of the interaction potential (8.31).

The great advantage of (11.19) is that one may completely separate the parts that depend
on the rotational quanta J0, J from the actual shape of the DCS stemming from the potential
harmonics Vl. The major contribution to rotational excitations in the Born approximation comes
from long-range multipoles (induced or static). Assuming that the short-range contribution of
the potential to the DCS is negligible for l > 0, one may replace Vl by the multipolar asymptotic
decay ∼ −Ml/r

l+1 (8.27) and exploit the following analytic integral [347, p.684:eq. (6.561.14)]:

∫ jℓ(qr)
r2

rn
dr =

√
π
qn−3

2n−1
Γ( l−n+32 )

Γ( l+n2 )
. (11.20)

Γ(x) is the Gamma function [3, p.255:eq.(6.1.1)] which can be reduced, in the present case, to
either a factorial or double factorial depending on the parity of l + n.

From there, one obtains the first Born approximation for rotational excitations from long
range potentials [21, 323, 908, p.116:eq.(22), p.1674:eq.(20), p.119:eq.(27)].

dσ̃J0→J
dΩ

=
4kJ
k0

∞
∑
l=0
[C l0J00,J0]

2
(

Ml

q2−l(2l − 1)!!
)

2

; (11.21)

dσJ0→J0+1
dΩ

=
k′

k0

4

3

J0 + 1

2J0 + 1
{
D

q
+O(Ml>2)}

2

, (11.21a)

dσJ0→J0+2
dΩ

=
k′

k0

6

5

(J0 + 1)(J0 + 2)

(2J0 + 1)(2J0 + 3)
{
Q

3
+
αd,2

2

πq2

16
+O(Ml>3)}

2

. (11.21b)
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The inverse J0 ← J transitions may be obtained from the direct J0 → J excitation through
the detailed balance (7.6) [836, p.8:eq.(16)]:

εJ(2J + 1)
dσJ0←J
dΩ

(εJ) = ε0(2J0 + 1)
dσJ0→J
dΩ

(ε0) . (11.22)

with εJ = ε0 +B (J0(J0 + 1) − J(J + 1)).
The higher-order l > 2 multipoles of diatomic molecules are weak, thus one may assume that,

in the first Born approximation, rotational excitations are reduced to transitions J −J0 = ±1 due
to dipole D and J − J0 = ±2 due to quadrupole Q and anisotropic polarisation αd,2. Dipolar
transitions are by nature very forward peaked ∝ 1/q2 [21] whereas quadrupolar transitions are
almost fully isotropic ( ⊧ q) [323] with an eventually weak backscattering due to anisotropic
polarisation [208]. These trends are verified experimentally at low energies as can be seen on
figure 11.15 extracted from Jung et al. [473]. The slight angular variation stems mostly from the
resonant part of the excitation in this energy region as pointed out by Wong and Dubé [988].

The first Born approximation for rotational excitation is a very powerful tool, nonetheless
it might not yield accurate results at intermediate energies when the electron’s p and d waves
penetrate deeper in the molecule and when the scattering is resonant. Actually, outside of reso-
nances, we do not need the Born approximation to efficiently estimate rotational cross sections
at higher energies. Under certain assumptions, one may relate any rotational excitation J0 → J
from a known set of J0 = 0→∆J of elementary transitions. This is the topic of the next section.

11.2.2 Sudden Impulse Approximation

At an ambient temperature of 300K, the rotational states of N2 are typically populated to some
J = 12. With the constant Brot(N2) ≈ 0.25meV the maximal rotational velocity of a nitrogen
atom would be ∼ 500m/s; a velocity that even a slow electron of 1meV would surpass by two
orders of magnitude. Therefore, it is customary to assume that the momentum transfer from the
electron to the molecule is an instant process [908, p.107].

This assumption is commonly known as the sudden [834, Chapter 2:§3.2], impulse or adiabatic
nuclei approximation [173]. It implies that:

• The rotational energy of the molecule is neglected, the Hamiltonian Hrot is removed from
the Schrödinger equation;

• The coordinates of the nuclei are fixed during the scattering process;

• There is no coupling between the rotational states of the molecule and the scattering wave
of the electron.

These assumptions, however, are only valid if the energy lost by the electron from the rota-
tional excitation ∆Erot is a negligible fraction of its incident energy ε0:

ε0 ≫∆Erot = Brot (J(J + 1) − J0(J0 + 1)) . (11.23)

Different scaling laws were proposed in order to enable the use of the abiabatic nuclei ap-
proximation near threshold such as the scaling from first Born approximated T matrix elements
[273].
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on the figure are rescaled DCS from the first Born approximation (11.21b) and from the spectator
model (11.35).
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Supposing one possesses a set of differential cross sections for excitations: 0→∆J , one may
construct the DCS for an arbitrary transition J0 → J as:

dσJ0→J
dΩ

=
kJ
k0

J+J0
∑

∆J=∣J−J0∣
[CJ0J00,∆J0]

2 k0
k∆J

dσ0→∆J

dΩ
. (11.24)

The wavenumbers are related by conservation of the total the energy in a determined channel
(rotational transition), namely [835, p.116:eq.(62)]:

k20
2
=
k2∆J
2
+ E∆J

k20
2
+ EJ0 =

k2J
2
+ EJ . (11.25)

One may check easily that the plane wave Born rotational cross sections presented above
in (11.21) verify the scaling law (11.24) as an immediate consequence of the Clebsch-Gordan
relation [956, p.245:§8.4.3]:

CJ0J00,∆J0 = (−)
J0

√
2J + 1

2∆J + 1
C∆J0
J00,J0 (11.26)

Also, since∑J [CJ0J00,∆J0]
2
= 1 [956, p.259:eq.§8.7.2(9)], one may relate the probability PJ0→J(ε,Ω)

that an excitation from an initial rotational state J0 comes out into the state J for a scattering
event at an incident energy ε and solid angle Ω:

PJ0→J(Ω) ≃∑
∆J

[CJ0J00,∆J0]
2
P0→∆J , (11.27)

where P0→∆J =

dσ0→∆J

dΩ

∑J
dσ0→J

dΩ

, (11.28)

a logical consequence from the first equation (11.24) when J0 = 0⇒ CJ000,∆J0 = δJ∆J .
From now on, all that we miss is a way to determine the DCS dσ0→∆J/dΩ. Since our

modelling of molecular static potentials is poor, we did not dare to produce our own rotational
elementary DCS through (11.17). On the other hand, the first Born approximation in the
previous section is not of much help because it only allows for ∆J = 2,1,0 transitions whereas
we are looking for larger momentum-transfer reactions. Such reactions of large ∆J may be
approximated according to the model presented in the next section.

11.2.3 Spectator Model

This model introduced by Korsch et al. [535] imagines that the electron, when impacting the
diatomic molecule, transfers part of its momentum only to one of the two atoms. The other
atom acts then as a “spectator” in the collision, hence the model’s name.

The assumptions of this model [534, §2.1.2] rely, in addition to those underlying the sudden
approximation, that (i) the interaction potential possesses only even harmonics and (ii) there
is no multiple scattering of the electron among the constituent atoms, i.e. that the electron
interacts independently with each atom. Therefore, the spectator model may be seen as the
independent atom model applied to rotational excitations of homonuclear diatomic molecules. It
is by nature a high energy approximation.

This extremely simple model is actually independent of the interaction potential. Thus, it
should not be expected to be accurate at low or even intermediate energies.
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0

Figure 11.16: Classical sketch of the spectator model whereupon the electron impinges on one
of the two atoms and transfers its momentum exclusively to that one. Extracted from Kutz and
Meyer [546, p.3822:fig. 2].

The rotational angular momentum change ∆J of the molecule, as depicted in sketch 11.16,
is geometrically related to the momentum transfer of the electron by:

∆J = kR sin
θ

2
sinα =

qR

2
sinα . (11.29)

The interatomic distance R of a few diatomic molecules can be found in table 2.2. The angle α
describes the orientation of the molecule with respect to the z axis aligned in the direction of
incidence and θ is the usual scattering angle. In quantum mechanics, naturally, the transition
∆J is discretised over a certain set of values.

At α = 90○, the quantity JR = kR sin θ/2 defines a rotational rainbow parameter∗ [535, eq.(7)].
At a fixed energy ε and scattering θ, JR determines the rotational excitation for which the
probability is maximal. This rainbow mechanism of excitation has been confirmed experimentally
at high energies above 100 eV from the study of Gote and Ehrhardt [344, fig. 7] whose figure is
reproduced in 11.17.

Rotational rainbow excitations at high energies are particular because they allow larger trans-
fers of energy than expected through a resonant interaction at low energies [473, §3.1].

From the rainbow parameter JR, the spectator model gives the branching ratio to excite a
molecule initially at rest to a ∆J rotational quantum:

Pspectator(0→∆J, ε, θ) = C̄(2∆J + 1)j2∆J(kR sin
θ

2
) , (11.30)

where jn is the spherical Bessel function of degree n and C̄ is a normalisation factor such that
∑∞∆J=0P(0→∆J) = 1.

For heteronuclear molecules, since∑∞n=0 j2n(JR)(2n+1) = 1 [3, 219, p.440:eq.(10.1.45), eq.(10.60.12)],
the normalisation is automatic and C̄ = 1. However, for homonuclear molecules, only pair ∆J
transitions are permitted and thus 1/C̄ = ∑∞m=0 j

2
2m(JR)(4m + 1) = (1 + sin(2JR)/(2JR))/2.

We may thus summarise the relative rotational transition probabilities in the spectator model:

Homonuclear : P(0→∆J) =
2(2∆J + 1)j2∆J(kR sin(θ/2))

1 + sin(2kR sin θ/2)/2kR sin θ/2
; ∆J even, (11.31)

Heteronuclear : P(0→∆J) = (2∆J + 1)j2∆J(kR sin(θ/2)) ; ∆J ∈ N0 (11.32)

∗The terminology comes from ‘rainbow’ scattering [147, §1.4.2] where the scattering is enhanced at large
angles, itself called in relation to the wonderful light scattering in water droplets giving birth to rainbows.
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Figure 11.17: Rotational rainbows related to important momentum transfers giving rise to ro-
tational transitions with larger quantal differences ∆J > 2 for electrons scattering off nitrogen
molecules at energies above 100 eV. The DCS are normalised so that the sum of all ∆J transi-
tions give unity at a given energy and angle. The experimental data of Gote and Ehrhardt [344]
(•) are compared to close-coupling calculations of Kutz and Meyer [546] (—) and the spectator
model (- - -). The figure has been extracted from Gote and Ehrhardt [344, fig. 7]
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To obtain the DCS, since the spectator model is a geometrical model disregarding the in-
teraction potential, one needs to manually set the norm with the help of the following integral:

ς̄n = ∫
π

0
j2n(kR sin θ/2) sin θ dθ = (

2

kR
)
2 π

2
∫

kR

0
J2
n+ 1

2

(JR)dJR (11.33)

= (
2

kR
)
2

[ς̄n−1 + j
2
n−1(kR)(

(kR)2 + 2n − 1

2n
)

+kRjn−1 (
n − 1

n
jn−2(kR) − jn(kR)) −

(kRjn−2(kR))
2

2n
] (11.33a)

With : ς̄0 = (
2

kR
)
2 1

2
(ln(2kR) + γe −Ci(2kR)) (11.33b)

ς̄1 = (
2

kR
)
2 1

2
(j0(kR)[j0(kR) − kR j1(kR)] + ln(2kR) + γe−m −Ci(2kR) − 1) (11.33c)

The finite integral in the first line must be computed from the indefinite integral series of Bloom-
field et al. [85, eq.(46)], which gives a second order recurrence relation (11.33a). The terms
introduced include the cosine integral [219, eq.(8.21.7)]:

Ci(x) ≡ −∫
∞

x

cosw

w
dw = γe−m + ln(x) + ∫

x

0

cosw − 1

w
dw , (11.34)

and the Euler-Mascheroni constant:

γe−m = lim
n→∞
(
n

∑
k=1

1

k
− ln(n)) ≈ 0.577216 .

Finally, the DCS could be normalised from known integral CS σ0→∆J:

dσspectator

dΩ
(0→∆J, ε, θ) =

σ0→∆J

2πς̄∆J
j2∆J(kR sin

θ

2
) , (11.35)

such as σ∆J theoretically calculated by Kutz and Meyer [546] or Morrison et al. [665] and Morrison
et al. [674] for example. Note, however, that this would override the scaling set by the model
between the relative probabilities Pspectator (11.30).

In principle, with this set of DCS, in conjunction with the impulse approximation (11.24),
one could now generate rotational DCS between any arbitrary pair J0 → J of rotational states.
Nevertheless, despite the mathematical and analytical seductiveness of the spectator model, it
is evidently not suitable for modelling rotational excitations at low impact energies as can be
seen from the disagreement on figure 11.15 at 2.47 eV. We shall keep in mind that at low
energies, the spectator model overall underestimates the rotational excitation probabilities as
seen on figure 11.17 from [344, figure 7]. On the other hand, the DCS from the first Born
approximation (11.21) are not suitable either in the resonant region of scattering (which is ∼
2�4 eV for N2). Since we could not find a proper way to unify the rotational excitations at low,
resonant, intermediate and high energies respectively, and due to a lack of experimental and
theoretical data, we did not attempt to construct more accurate representations of rotational
excitations.

For future investigations, it would be desirable to elucidate how to astutely exploit approxi-
mations and accurate calculations so as to produce a smooth set of rotational DCS throughout
the whole electron energy range. Leaving that aside, we introduce now, in the following section,
vibrational excitations in the light of resonant scattering.
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11.3 Vibrational Excitations

The vibrational excitation of a diatomic molecule ‘AB’, characterised by the transition of vibra-
tional quanta v to v′, can be formally separated into two processes: direct and resonant.

e− + AB(v)→ AB(v′) + e− direct (V1)
e− + AB(v)→ AB−(v′′)→ AB(v′) + e− resonant (V2)

In this section, a set of cross sections for vibrational excitations is assembled by combining
accurate calculations for resonant scattering of Laporta et al. [552, 554, 557] with available
experimental measurements outside the resonances modelled.

The direct channel (V1) constitutes in most cases a minor contribution (unless v′ = v which
corresponds to elastic scattering). In this reaction, the electron would transfer in a short time a
significant kinetic momentum to a nucleus in order to excite the molecule to a higher vibrational
level. Due to the very low electron-to-atom mass ratio ≲ 4 × 10−5 for N and O, the transfer of a
large amount of kinetic energy, enough to induce a vibrational excitation, is improbable at low
electron energies and classically impossible [834, p.191–2].

Therefore, the nature of vibrational excitations must be radically different from a classical
kinetic view of hard spheres. In particular, vibrational excitations of multiple quanta v′ − v > 1
are almost exclusively due to ‘resonances’ [91, 834, p.363, §VI]. What formally occurs, is the
formation of a negatively charged electron-molecule compound AB− vibrating at v′′, which is
unstable and decays after a certain time. The lifetime of this compound is variable depending
on the molecule’s electronic affinity and the potential curves of the compound and the molecule.

A concrete illustration for O2 is given
in figure 11.18. Excited anion states
O−2(X

2Πg, v
′′) for v′′ ≤ 3 are stable (indefi-

nite lifetimes) which means that they will not
detach unless if given energy through a col-
lision with another molecule (or a free elec-
tron). For O−2(X

2Πg, v
′′ = 4), the lifetime is

very long ∼ 10−10 s [820, p.470], exceeding by 4
to 5 orders of magnitude the fly-by time spent
in a non-resonant collision. In human terms,
this would mean a fateful overlay of 30 years
instead of 1 day at a transit airport.

Figure 11.18: Potential curves of oxygen and its
anion in their ground states taken from Schulz
[820]. The vertical difference between the vi-
brational ground levels of O−2(v

′′ = 0) and of
O2(v = 0) corresponds to the electronic affin-
ity which equals ≃ 0.44 eV[820, §VI.A.1:p.468].
All O−2(v

′′ = 0..3) levels are below O2(v = 0)
which means they are stable and will detach only
through endothermic collisions.

As a result, the lifetime of the compound formed during collision may be a large fraction
or exceed the period of diatomic molecular vibration which is of the order of ∼ 10−14 s [820,
p.427]. This possibilitates the transition to a different vibrational state not through instantaneous
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Figure 11.19: Comparison of resonant versus full (non-resonant and resonant) scattering from
molecular nitrogen. One can see that the N−2

2Πg resonance mainly takes place for incident elec-
trons between 1.5�4 eV and is the dominant process for the v = 0 → v′ = 1 channel (bottom).
For elastic scattering (top), the rotational excitations (with ∆J ≠ 0) were calculated from the
theoretical cross sections of Kutz and Meyer [546, fig. 7] and averaged over a Maxwellian distri-
bution of initial J0 states at 300K. The curves for resonant scattering in the 2Πg symmetry are
obtained from Laporta et al. [554]. The second mound between 15�30 eV is principally due to
another (excited) configuration of the negative ion: N−2

2Σ+u [600, §3.3:p.6].

transfer of momentum but through a prolonged perturbation of the Coulomb field acting upon the
nuclei [834, chapter 3:§2.5]. The formation of the compound is due to the temporary trapping of
the incoming electron in the potential of the molecule. This process is referred to as a resonance.
The importance of resonant scattering can be assessed by comparing full (resonant+direct) and
resonant curves on figure 11.19.

Below, we talk briefly about resonances, mainly directing towards some references in the field
and illustrating the concept. Then, we present the cross sections used for vibrational scattering
and attachment, which is also a resonant process.
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11.3.1 Resonances
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Figure 11.20: Illustration of possible
shape resonances due to trapping of an
incident electron in the potential of ar-
gon and centrifugal barriers of ℓ = 1,2,3.

Resonances occur when the potential of the molecule
(or atom), combined with the centrifugal potential of
harmonic waves with ℓ > 0, presents a classical barrier
that the electron of a lower energy (than the maximum
of the barrier) has to cross. This is illustrated besides
(fig. 11.20) for electrons in the central potential of ar-
gon, modelled with the optical potential (without ab-
sorption), described in section 8.2 and outlined in ta-
ble 8.2. We see that an electron below approximately
1 eV could be trapped in the centrifugal potential of
angular momentum ℓ = 1 which presents a low but
wide barrier. A similar situation occurs for electrons
between 7�14 eV for ℓ = 2 waves with however a nar-
rower and peaked barrier. The partial waves beyond
ℓ = 3 do not present any resonances.

If the electron is trapped in the potential given by
the ground state of the molecule, we have a shape resonance [820, VII.A]. When the incoming
electron interacts with a bound electron so that both become trapped in the potential of an
electronically excited compound, it corresponds to a core-excited resonance. The state that the
molecule would be in if the most energetic (if in different orbitals) of the electrons were removed,
is known as the parent state. Core-excited resonances may be of two types:

Type I : the total energy of the compound lies below the energy of the molecule in the electronically
excited state. Then it cannot decay into the parent excited state, the channel is closed.
The decay process requires electronic rearrangement and is usually slow, implying longer
lifetimes. This is also known as a Feshbach resonance [280].

Type II : the total energy of the compound lies above the threshold of electronic excitation from
ground to the parent state. Then, the electronic excitation to the parent state is a possible
outcome of the resonant collision. This is equivalent to a shape resonance but with an
excited state instead of a ground state. Shape resonances tend to have shorter lifetimes.

When the excited state (parent) is in a Rydberg orbital, the two excited electrons may be
seen as wandering about in the field of a core ionic state (grandparent).

Each resonance is characterised by an energy Eres and a width Γ that characterises the decay
at a rate given by τ = h̵/Γ [399, §6.5.2]. In the helpful image of a particle (the scattering electron)
trapped in a potential well (see fig. 11.20), the energy Eres is related to the de Broglie wavelength
of the electron at which successive reflections on the “walls” of the potential add constructively
and thereby enhance the amplitude of the electron’s wavefunction inside the well. The width
Γ is interpreted as the leakage rate through the barrier. For more insight, we recommend the
introduction given in chapter 3 section 2 of Shimamura and Takayanagi [834, p.201-220].

At a resonance Eres, the phase shift of one specific partial wave ℓr varies abruptly over a small
range Γ of energies, while other phase shifts δℓ≠ℓr can be considered approximately constant or
weakly (linearly) dependent on energy. More generally, for non-spherical potentials, this abrupt
variation could apply to one particular element of the scattering matrix SΛ

ℓ0ℓ
of a symmetry Λ.

Mathematically, this abrupt variation comes a pole in the scattering matrix S(ε) at the complex
energy Ẽres ≡ Eres − iΓ2 . The smaller Γ, the closer the pole is to the real axis and thus the more
abrupt (narrow) the resonance is [399, 834, §2.4, eq.(6.124)].
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What results from this, is that the cross section (differential or integrated) for the process
considered can be locally approximated near ε ≃ Eres as the renowned Breit-Wigner profile[834,
p.355:eq.(6)]:

(d)σ(ε) ≊ ∣C +A
Γ/2

(ε − Eres) + iΓ/2
∣

2

(11.36)

The non-resonant (background) term C may present a slight variation in energy to the first
order as : C(ε) = C0+C1(ε−Eres), near the resonance. If applied to the differential cross section,
then angular dependence through Legendre polynomials is included in C and A. An equivalent
expression, when the square modulus is applied in (11.36), can be obtained after a rearrangement
of the terms which leads to the famous [270] profile [26, eq.(13)]:

(d)σ ≊ (d)σmin +
(ϵ + q)2

(1 + ϵ2)(1 + q2)
(d)σres , (11.37)

with ϵ ≡
(ε − Eres)

Γ/2
;

which determines a minimum value σmin and a resonance amplitude σres. The shape parameter
q, sometimes called the “profile index”, may vary from −∞ to +∞. Depending on the relative
phasing and amplitude of A and C, the Fano profile may either show a perfectly symmetric peak,
dip or a general asymmetric ripple. As C vanishes, the profile converges to a Lorentzian. For
illustration, please consult Hertel and Schulz [398, p.370:fig 7.10 and eq.(7.74)].

We may now restate the relationship between the lifetime of a resonant state and the corre-
sponding breadth observed in the peak structure of a given cross section in a given channel:

• Sharp, narrow peaks are related to resonant states with long lifetimes (small Γ): a typical
example is the O−2

2Πg resonance on figure 11.21a.

• Broad, flatter knolls are related to short-lived resonant states (large Γ): those are charac-
teristic in the H−2

2Σ+u resonance on figure 11.21b.

Typically, the lifetime of a resonance is compared with a vibrational period ∼10−14 s of the
compound. Lifetimes are considered short if the compound decays no longer than after a quarter
of a period has elapsed [834, p.225]. Longer lifetimes imply that the compound has time to
vibrate even up to several cycles and therefore individual vibrational peaks may be identified
in the cross section. The compound N−2

2Πg lies just in the middle between short-lived and
long-lived resonances with a lifetime of approximately one vibrational period [72, fig. 2], which
explains the wobbly shape of resonances peaks with flat tops in figure 11.19.

In general, Feshbach resonances are long-lived whereas shape resonances are short-lived. Of
course, this is not a strict rule as the O−2

2Πg compound (shape resonance) has a very long
lifetime ∼10−10 s. The fine spectroscopy of Okumura et al. [714] even permits to distinguish the
non-degeneracy of the O−2 anion with Hund’s coupling case (a) [399, §3.6.4] : Ω = 1∓ 1

2 from Λ = 1

and Σ = 1
2 for the 2Πg symmetry.

An example of sharp Feshbach resonance peaks associated to multiple NO− excited states
(labelled a,b,c,d,d’) is shown in figure 11.22b. For N2, one can visualise in figure 11.22a the
Feshbach resonance linked to the N−2 (R 2Σ+g ) state observed as a notch in the total cross section
[512, fig. 5] and compare it to the core-excited shape resonance linked to the N2(E 3Σ+g ) parent
in the inset [407, fig. 14].
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(a) Example of sharp resonance peaks for long-lived
compounds (O−2

2Πg) from [714, fig. 3].
V
i
b
r
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H2 : v=0−1

(b) Example of broad resonance bump for short-lived
compounds (H−2

2Σ+u) adapted from Buckman et al.
[130, fig.2]

Figure 11.21: Comparison of long-lived and short-lived resonant states and the resulting structure
in the vibrational excitation cross section.
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(a) Core-excited Feshbach and shape resonances (in-
set) linked to the E 3Σ+g parent state of N2, total
cross section from [512, fig. 5] and excitation cross
section in inset from [407, fig. 14]

(b) Feshbach resonance bands (a,b,c,d,d’) linked to
various low-lying excited states of NO from [355].

Figure 11.22: Narrow profiles from Feshbach resonances: a very fine spectroscopic resolution is
needed to resolve bands from long-living resonant states.
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In practice, the simple image of resonance shapes with Fano profiles (11.37) can be enriched
with several considerations, in particular when applied to molecules.

Peak. The position of the Fano profile peak, not necessarily located at Eres, may vary with the
scattering angle [124, p.281]. This variation [17, p.3663-4:figs. 6-10] (Eres stays fixed) comes
from the coherent superposition of the direct C and resonant components in (11.36) [832].
The peak may be shifted or shrunk depending on the relative phase of C. Therefore, the
peaked structure of DCS (if observable) may be blurred when considering the integral cross
section at a given energy. As a result, comparison with experimental data is made difficult
in the resonance region [894, §V] due to the convention used to slice the two-dimensional
space where the DCS varies in energy and scattering angle.

Width. The resonance width Γ(ε,R) varies with the electron’s incident energy ε and the in-
ternuclear separation R. Since the resonance width Γ(ε,R) represents the probability rate
of escaping through the potential barrier, it is natural that Γ be considered a function of
both the incident electron’s energy ε and the internuclear separation R [72]. From the
illustrative example 11.20, varying the electron energy changes the height (and thus the
width) at which the barrier must be crossed. If it represented the potential of a diatomic
molecule, a dependence on R would roughly stretch and compress the landscape if the
Born-Oppenheimer approximation (separation of electronic and vibrational wavefunctions)
is valid.

Interference. If there are resonant poles which lie close to each other in the Eres − iΓ/2 com-
plex energy space, then the Breit-Wigner formula (11.36) will be composed by coherent
superposition of multiple resonant profiles. The resultant cross section may be composed of
multiple peaks (if narrow resonance widths as in fig. 11.21a) or a mixed broader profile (as
in fig. 11.19-lower graph in the region 15�30 eV which lies above the ionisation potential
of N2 are where multiple closely spaced configurations are thought to participate in the
resonance [740]).

Averaging. Depending on the duration of the resonance, the cross sections should be obtained
from vibrational and rotational averaging in order to be compared with experimental ones.
An efficient yet reliable calculation of the cross sections depends on the lifetime of the reso-
nant state. For durations longer than the order of a rotational period ≳10−12 s, the rotation
of the molecule must be taken into account (coupled) to the resonant state. Rotational
motion strongly affects the resonant shape of the differential scattering cross section [820,
fig. 66]. When the duration is shorter than the rotation of the molecule but still longer
than a vibrational period, the cross section may be averaged on the orientation of the
molecule but the electron and vibrational wavefunctions remain coupled. For a short-lived
resonance (≪ 10−14 s), the impulse approximation may be used to compute the cross sec-
tion [834, p.266-8]. Rotational and vibrational averaging over the internuclear separation
distance R (and orientation R̂) are performed by taking the (ro)vibrational wavefunctions
of the final and initial states of excitation.

Resonant scattering is, of course, not limited to vibrational excitations. As seen in (V2) the
first step consists in the formation of the resonant compound. The following step is the decay
of the compound into a final state accessible by an open reaction channel. Elastic scattering,
rotational excitations (see fig. 11.19-bottom), electronic excitations (see red curve on fig. 11.30),
dissociation are also subject to resonances. Evidently, attachment is an exclusively resonant
process due to the necessity to form the compound state. We may distinguish the three following
compound decay outcomes:
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A. Auto-detachment: after a while, the electron detaches from the compound and leaves the
molecule in its initial or in an excited (rotationally, vibrationally, electronically) state AB*.
The detachment happens in the internuclear distance range where the potential curves of
the compound and neutral molecule overlap (see fig.11.18).

B. Attachment: if the lifetime of the compound is longer than the average time of collisions
between molecules in the gas, the compound may communicate its excess of energy to
another molecule and deexcite to one of the stable states (v′′ ∈ {0..3} for O2 and v′′ = 0 for
NO). This corresponds to the three-body attachment which affects electric discharges in air
as described in the first part of this thesis.

C. Dissociative Attachment: when the energy of the electron is sufficiently high, above the
last vibrational level of the compound (>4.02 eV for O−2

2Πg [558, table 1] and >5.074 eV
for NO− 3Σ− [441, eq.(6a)]), this compound may dissociate into its individual atoms, to
one of which the electron stays attached.

More illustrations and information about resonant scattering can be found in the early com-
prehensive review given by Schulz [820] for the main diatomic molecules usually encountered
in air. In the following subsections, we will describe how we assembled the cross sections for
vibrational excitations and attachment.

11.3.2 Differential Cross Sections

As mentioned earlier, resonance occurs when the scattering electron gets trapped in a potential
well that is formed by the attractive potential of the target and repulsive centrifugal potential.
This electron somehow “settles in” an orbital of the compound state, whence it eventually escapes
with a wave corresponding to the symmetry and angular momentum of the orbital.

For instance, electrons escaping from the 2Πg symmetries of N−2 and O−2 will flee through a
dπ wave because of the former 3dπg orbital they occupied [820, p.448:§III.A]. Nevertheless, the
shape of the differential cross section will not necessarily reflect the symmetry determined by the
wave unless four conditions are verified [820, p.458]:

• Background scattering (term C in eq.11.36) is negligible.

• The resonance is dominated by only one electronic configuration.

• The lifetime of the compound is much shorter than the rotational period: τres ≪ 10−12 s.

• The electronic and vibrational parts of the wavefunction are separable.

Under these conditions, the theory of angular distribution for resonant scattering [770,
§6:eq(9)&tab 4] may be applied. For a single partial wave characterised by ℓλ, the DCS equals:

dσres
dΩ

= σ0∑
n

AnPn(cos θ) , (11.38)

An = (2n + 1)(
ℓ ℓ n
0 0 0

)

⎧⎪⎪
⎨
⎪⎪⎩

(
ℓ ℓ n
λ −λ 0

)

2

+ p(
ℓ ℓ n
λ λ −2λ

)

2⎫⎪⎪
⎬
⎪⎪⎭

. (11.39)

The parameter p = 1 when the states are doubly degenerate (Λ ≥ 1 symmetries) and p = 0.5 for
non-degenerate Σ symmetries (which can either be + or −, see appendix C). The proportionality
coefficient σ0 is related to the norm of the cross section.
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Figure 11.23: DCS for vibrational excitations of diatomic molecules. At low energies, the DCS
shape can be plainly characterised as a dπ wave (11.40) only for N2. At intermediate energies,
the interference between different configurations of the resonant anion make the shape harder to
interpret. Experimental data from a:[105, 894, 898], b:[600], c:[599, 846] and d:[654].

The most conspicuous example of such uniquely shaped resonant scattering are the DCS of
N2(v → v′) excitations in the 2Πg resonance region for which a dπ wave [17, p.3669]:

dσdπ
dΩ

= σ0 (1 − 3 cos
2 θ +

14

3
cos4 θ) (11.40)

was plotted on figure 11.23a. Note that if the vibrational excitation is accompanied by a ro-
tational transition ∆J ≠ 0, the shape of the DCS is considerably affected, to the point that
it becomes roughly isotropic [473, fig. 4-5]. At higher energies (fig. 11.23b), more than one
configuration participates in resonant scattering and so the shape at 20 eV is more complex.

For O2 at low energies, because of long lifetimes, the DCS cannot be simply averaged over
the rotational levels. In figure 11.23c we show the measurements of Linert and Zubek [599] for
the O2(v = 0→ v′ = 3) excitation at 10 eV. There are two oversights in [599, p.4088&4091] when
citing Allan’s work [12]. Firstly, the autodetachment width of O−2 around 9 eV is actually narrow
which implies that the resonance is longer -lived. Secondly, the expected pσ wave seems to be
contaminated by a small contribution of a dσ wave on figure 11.23c. The DCS is then presumably
determined by the relative proportion of two waves, and may be somewhat rotationally blurred
thus resulting in a relatively flat bed. Since Allan’s [12] measurements, we do not know of any
theoretical work that addressed this question for that specific excitation.

Finally, we show in figure 11.23d the measurements of [654] for NO at 10 eV. In the shape
resonance below 2 eV the DCS results from a mixture of a dominant pπ (from NO− 3Σ−) and
a minor dπ wave (from NO− 1Σ+ and NO− 1∆) [16, fig. 10]. Above 2 eV, the DCS results from
higher-lying configurations [557, §3].

To model approximately the scattering from vibrational excitations at low energies, we rec-
ommend taking a dπ wave for N2 below 5 eV and resort to isotropic scattering for O2 and NO.
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11.3.3 Cross sections

As seen in the previous section, computing cross sections from resonant scattering requires a solid
model of the target molecule to which the bound and continuum states of the scattering electron
are coupled. Among the bound states in previously unoccupied orbitals, resonances are observed
at certain energies and with a certain width (which varies also with the internuclear separation).
The resonant vibrational cross sections are then obtained from the transition matrix between
internuclear (vibrational) wavefunctions of the compound ξ and final χv′ states of the molecule
and electron. There may be several compound states participating to the cross section at a given
electron energy. Potential curves of the three diatomic molecules and some lower anion states
have been put together in figure 11.24. Those potentials intervene in the Schrödinger equation
verified by the compound internuclear wavefunction. Another term accounts for the probability
of capturing the incident electron given the initial molecular state χv [553, eqs.(4-6)].

Comparison between calculations and experiments, as done in figure 11.19, enables to identify
regions where direct, or resonant processes from other symmetries not included in the theoretical
model (e.g. N−2

2Πu), participate to vibrational excitation. The data from theoretical calculations
are downloadable from Laporta’s database on lxcat [732]. Putting together both sources, we
obtain the sets on figure 11.25 (in solid) for N2, O2 and NO. The dashed curves show the
calculated CS beyond the range of energies where they are adopted.

N2 : This molecule has the most replete experimental database for vibrational excitation,
especially in the 2Πg resonance region between 1.8�4 eV. There, the cross section is taken from
Laporta et al. [554] and compared with Allan [17], Brennan et al. [105], Sun et al. [894], and
Sweeney and Shyn [898]. The high-resolution measurements of [778, 962] are not shown though
good agreement was found in [554, fig. 3]. Surprisingly, there is an absence of experimental
integral cross sections for higher excitations v → v′ > 1 beyond the resonance region. The present
constructed CS shown on figure 11.25-top is basically the same as the one from Kawaguchi et al.
[482, fig. 1] except for two adjustments explained below.

i. Below 1.6 eV, we interpolate the data of Sohn et al. [863], rescaled by us (×1.3, 1.4 and 1.5
at 0.55 eV, 1 eV and 1.5 eV) as explained in part III section 15.1.1. The outlying point is
from Allan [17] whose measurements are accurate and which could eventually be inserted
in the interpolation grid.

ii. Above 4.5 eV, there are only data for v = 0 → v′ = 1: from Tanaka et al. [910] and Linert
and Zubek [600]. Between 15�30 eV there is a second resonance bump due to the N−2 ( 2Σ+u)
configuration [600, p.6]. There, we privileged the more recent data [600] and used the
former [910] above 21 eV only, as opposed to Kawaguchi et al. [482] (who used [910] only).

O2 : The comparison with experimental data shows qualitative agreement in the position of
the sharp 2Πg peaks below 2 eV and also for the broad knoll at 10 eV. The experimental data
is essentially based on the compilation of Itikawa [440] who adopted Shyn and Sweeney’s [846]
measurements above 5 eV. The agreement of the theoretical results from Laporta et al. [552] is
best at 10 eV; the only energy at which Linert and Zubek’s [599] measurements are available. The
shift to lower magnitudes for v → v′ > 1 excitations is in disagreement with Allan’s [12] absolute
measurements at 90○. Presently, it is not possible to determine whether the disagreement above
and below 10 eV is due to errors in extrapolation and/or normalisation of vibrational DCS from
Shyn and Sweeney [846], or whether the theoretical calculations underestimate the contribution
of other (resonant or non-resonant) vibrational channels. As a result, we did not alter the CS
and use Laporta et al.’s [552] original complete set of vibrational cross sections.
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Figure 11.25: Constructed CS for the first three vibrational excitations of N2, O2 and NO. The
smooth curves in the main resonant regions are based on the calculations by Laporta et al. [552,
554, 557]. The dashed lines (- - -) demarcate the theoretical calculations in the region where a
log-log interpolation (in solid —) between selected experimental data is used instead.
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NO : The vibrational excitation of NO is dominant in the 0.1�2.5 eV range where resonant col-
lisions take place in the NO−: 3Σ−, 1∆ and 1Σ+ symmetries, increasing in energy (see fig. 11.24).
There, the contribution of direct excitation is negligible [944]. Below 2 eV, the calculations of
Laporta et al. [557] are in good agreement with the shapes measured by Allan [16].

The region between 3�7 eV is devoid of resonances and therefore the cross section (from
direct excitation) is low. Then, the CS rises again and spreads over a broad bump between
10�25 eV mainly due to the 3Π shape resonance [557, p.2:§3]. The only available experimental
data > 7 eV are from Mojarrabi et al. [654], which had to be extrapolated beyond 90○ and
have thus a large ∼30% uncertainty. On figure 11.25-bottom, there is a miscorrespondence
between the theoretically predicted knoll beyond 6 eV which is narrower and at lower energies
than what measurements show [557]. This could be from the participation of even higher-lying
(>6 eV) symmetries of the NO− anion which were not included in the calculation of Laporta et al.
[557]. Given the limited available knowledge of vibrational excitations, we interpolate data from
Mojarrabi et al. [654] beyond 6 eV. The connection point has been placed at the energy where
the theoretical CS goes through a minimum.

Neutral Dissociation

In the extreme case where the resonant state is excited beyond the dissociation threshold of
the molecule (Ediss in table 2.2), the nuclear wavefunction may diverge and the atoms, in their
respective ground states, are ejected into the kinetic continuum. This can be visualised on the
black curves of figure 11.24 when the internuclear separation is large (R > 8a.u.). In neutral
dissociation, the electron flees away from the anion as it dissociates. If it stays bound to one of
the atoms, the situation corresponds to dissociative attachment presented below.

Cross sections for resonant neutral dissociation of N2, O2 and NO into the vibrational con-
tinuum have been computed by Laporta et al. [554, 556, 558]. They are displayed in figure 11.26.

This channel is negligible for N2. Dissociation of NO involves mainly the NO− 3Π and 1Π
symmetries, with a contribution of the ground state 3Σ− giving the flat slope beyond 11 eV [556,
fig. 2] on the green (—) curve of figure 11.26. For O−2 , the extended broad dissociation CS
is shared between 2Πu (lower energies, higher peak) and 4Σ−u (higher energies, flatter hump)
symmetries [558, fig. 4a].

Figure 11.26: Cross sec-
tions for neutral dissociation
through resonant scattering
in diatomic molecules from
Laporta et al. [554, 556, 558].
This channel of dissociation
is mainly important for O2

and NO while negligible for
N2.
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Figure 11.27: Inaccurate semi-empirical scaling methods for estimating vibrational excitation
cross sections from vibrationally excited states of N2. The equations “Shifting”-(11.41) and
“Scaling”-(11.42) are compared to the calculations of Laporta et al. [554]

Scaling laws

Before accurate theoretical calculations of vibrational cross sections were available, modellers
made use of scaling laws in order to derive cross sections for electron collisions with vibrationally
excited states based on the excitations from ground level. In kinetic models, if an electron
energy distribution is assumed (Maxwellian), then the scaling may be applied directly to reaction
rates instead of individual electron-molecule collisions [187]. The resulting electron distribution
obtained depended strongly on the set of cross sections used [253].

To stress the importance of using a reliable set of vibrational cross sections in electron-
molecule collisions, we present two elementary scaling laws for vibrational cross sections.
The first, widely used in earlier studies [609, p.22], is [187, eq.(3)]:

Shifting : σvv′(ε) = σ0∣v′−v∣(ε −∆E) (11.41)

where ∆E = (Ev′ − Ev) − Ev′−v for v′ > v.
The second scaling law, used in [758], is based on arguments for resonant scattering [645, eq.(9)]:

Scaling : σvv′(ε) =
ε + Ev
ε

σ0v(ε + Ev)σ0v′(ε + Ev)

σ00(ε + Ev)
, (11.42)

For both (11.41) and (11.42), the vibrational energy levels Ev and the set of CS were taken
from [554]. The comparison on figure 11.27 shows that resonant scattering is too complex to be
modelled by simple semi-empirical formulae. While shifting (11.41) tends to overestimate the
0 < v → v′ cross section, the scaling in (11.42) strongly underestimates the CS. One can therefore
surmise that the results of previous studies which used semi-empirical scalings [253, 609, 758]
would be affected if a proper set of vibrational cross sections were used instead [149, 187].
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11.3.4 Attachment

As mentioned previously, attachment is a resonant process in which the electron does not au-
todetach. When the compound anion is formed, two possibilities occur.

If the molecule has a positive electron affinity, then it may transit to a stable anion after it
deexcites in a collision with an atom or a molecule in the gas. This process is known as three-
body attachment. It is possible to form O−2(v

′′ = 0,1,2,3) and NO(v′′ = 0) anions, provided the
resonant state has a long enough lifetime in the pressure conditions of the gas. In principle, a
radiative deexcitation of the anions could also lead to attachment. However, this theoretically
conjectured possibility has a very low probability and has been measured experimentally. The
reactions for three-body attachment in air are:

e + NO + MÐ→ NO− +M , (A1)
e + O2 + MÐ→ O−2 +M . (A2)

An alternative scenario for electrons at energies above the dissociation limit of the compound
is called dissociative attachment. If the compound is excited beyond its last vibrational level, the
nuclear wavefunction is purely divergent and the atoms separate; one of them keeps the electron
attached.

e− + O2 Ð→ O−2(
2Πu)Ð→ O−(2P ) +O(3P ) (D1)

e− + NOÐ→ NO∗ Ð→ N +O− (D2)

e− + N2 Ð→ N−2(A
2Πu)Ð→ N−(3P ) +N(4So)Ð→ e +N +N (D3)

Between those two contrasted (dissociative and three-body) attachment mechanisms, there is
a third intermediate possibility; dissociation and attachment to ‘Van der Waals’ molecules [833]:

e + (O2)2 Ð→ O2 +O−2 (B1)
e + (NO)2 Ð→ NO +NO− (B2)

Those ‘molecules’ are weakly bound molecular aggregates by intermolecular forces caused by
mutual polarisation (perturbation) of bound electronic clouds. A common name for those binary
aggregates is a ‘dimer’ (‘two-parts’ in Ancient Greek). The presence of dimers requires high
concentrations of molecules in the gas. Effects of ‘dis-mer-ing’ attachment are most important
at lower temperatures where they supplant three-body attachment rates.

Three-body attachment

Measurements of three-body attachment usually proceed from swarm experiments measuring the
output signal of molecular anions. Attachment and detachment rate coefficients were measured
for NO by Parkes and Sugden [734] and for O2 by Shimamori and Fessenden [833]. A measure-
ment of the reaction rate based on electron energy for oxygen was performed by Spence and
Schulz [868], showing a quadratic dependence on molecule density. A theoretical estimation of
three-body attachment requires to know:

1. σres : the total collision cross section for the formation of the resonant compound

2. τres : the lifetime (inverse autodetachment rate) of the resonant compound
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Figure 11.28: Unknown discrepancy between three-body rates drawn from Biagi and Phelps
databases on lxcat (which are presently scaled to one-tenth for clarity) and the data of Itikawa
et al. [438, fig. 8.3] based on Spence and Schulz [868, fig. 5].

3. σAM the total collision cross section between the anion (A) and a neutral molecule (M)

4. ξ(v′′ → v′′′) : the branching ratio of the A +M collision to a vibrational state v′′′ of the
anion situated below the ground state of the molecule.

Then, the ansatz for the three-body attachment cross section is [694, eq.(62–3)]:

σ3B ≊ σresτresv̄MnMσAMξ , (11.43)

with the density of molecules nM and average inter-molecule velocity v̄M at the given gas tem-
perature. If we take the total cross section 0.5 × 10−20m2 from Okumura et al. [714, fig. 3] at
the resonance peak 0.1 eV for the v′′ = 4 vibrational state of O−2 with an average lifetime of
τv′′=4 = h̵/Γv′′=4 ≈ 25ps and roughly estimate the average inter-oxygen velocity at 300K, hard
sphere collision cross section ∼ π(3RO2)

2 and assuming a univalent branching ratio ξ = 1, we get
the three-body attachment cross section ≈ 3.3 × 10−37 cm2 cm3 for an electron at expressed as
an effective cross section for a gas at a density of 1 molecule/cm3. For comparison, Spence and
Schulz [868, p.728] reported value at 0.09 eV is 3.1 × 10−37 cm2 cm3.

Nevertheless, the three-body attachment cross section values only available in Biagi and
Phelps databases on lxcat are about one order of magnitude higher than in Spence and Schulz
[868, fig.5], from figure 11.28. A more agreeable estimate could be obtained from the resonant
cross sections reported by Okumura et al. [714, fig. 3] put into the tentative derivation (11.43).

In the end, we surmise that elastic and vibrational resonant cross sections in the 2Πg resonance
of O−2 should be somewhat quenched by three-body attachment process at higher molecular
densities and lower gas temperatures. We did not pursue this route of investigation any further.
A more rigorous derivation of three-body attachment cross sections, like the one described in
Spence and Schulz [868, §V], would be desirable in the future.
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Figure 11.29: Electron impact dissociative attachment from resonant collisions with O2 (mainly
O−2

2Πu) and NO (mainly NO− 3Π and 1Π) calculated from Laporta et al. [555, 558] and measured
by Rapp and Briglia [767].

Dissociative attachment

An overview of the resonances and thresholds for dissociative attachment is given in table 11.5.
Various dissociation processes from different resonant anion symmetries can be found on at the
asymptotic ends of the potential curves in figure 11.24.

For O2, the major contribution to dissociative attachment comes from the 2Πu resonant
anion state [558, 820, p.475, fig. 2]. Other symmetries participate at lower (2Πg) and higher
(4Σ−u) energies. All the present dissociation channels lead to production of O 3P and O− 2P .

NO may dissociate into several channels:

e− +NOÐ→ NO−(3Σ−)Ð→ N(4So) +O−(2P ) , (DA1)

e− +NOÐ→ NO−(1∆, 1Σ+)Ð→ N−(3P ) +O(3P ) , (DA2)

e− +NOÐ→ NO−(3Π, 1Π)Ð→ N(2D) +O−(2P ) , (DA3)

e− +NOÐ→ NO−(∗)Ð→ N(2P ) +O−(2P ) . (DA4)

The most important channel comes from resonance symmetries 3Π and 1Π [555, figs. 4-5]. The
other channels have a lesser contribution, the formation of N− in particular is negligible and
information about the production of N(2P ), possibly related to some of the higher excited
symmetries of NO [574], is missing in the most recent reviews [441, 555, 865]. The contribution
of the shape resonance NO−(3Σ−) rises with the initial vibrational state v of NO. The threshold
levels for each process are given in table 11.5. In figure 11.29, one can compare the importance
of total dissociative attachment cross sections for O2 [558] and NO [555] and the good agreement
with experimental results from Rapp and Briglia [767].

Formally speaking, dissociative attachment applies also to the core-excited shape resonance
of N−2(

2Πu) linked to the N2(A
3Σu) parent state [834, p.378-383:chapter 5-§2.7]. The unstable
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N−(3P ) anion has a short lifetime ∼2.5 × 10−14 s [635]. Therefore this process (D3) is comprised
in the total dissociation cross section into neutral products [193].

Table 11.5 Dissociative attachment thresholds EDA, from Laporta et al. [558, §I] (O2), Itikawa
[441] and Laporta et al. [555, eq.(6), tab. 1] (NO) and [834, p.380] (N2). These are the dissociation
limits of different anion states on fig. 11.24 with respect to the neutral molecule ground state.

Compound O−2 NO− N−2
Resonance 2Πu (

2Πg,
4Σ−u,

2Σ−u)
3Σ− 1∆, 1Σ+ 3Π, 1Π ∗ 2Πu

EDA (eV) 3.64 5.074 6.55 7.457 8.65 9.83

11.4 Electronic Excitations

When the incident electron approaches a molecular or atomic target, it perturbs the electrons
bound to the target which are repelled by Coulomb interaction. In some cases, this perturbation
may be significant enough to “shove” a bound electron into another orbital. If this new electronic
orbital configuration is stable, it maintains itself even after the incident electron has left, this
leads to an electronic excitation into a discrete state.

The cross sections for electronic excitations form an important energy loss for incident elec-
trons not far above the ionisation threshold of the target. For molecules: rotational, vibrational
and electronic excitations combine together to form “rovibronic” bands with regularly spaced
vibrational peaks (rotationally broadened) that fill the probability space in which an incident
electron may lose part of its energy (see figures 11.32,11.35 below).

The present section provides analytical expressions for electronic excitation cross sections
with N2, O2, NO, Ar, O and N. Those are obtained based on semi-empirical corrections to
the plane-wave Born approximation (11.61-11.64), fitted to a presently reviewed database
of experimental measurements in tables (11.6-11.11).

As of today, the database in electronic excitations is very rich. Experiments were conducted
early [158, 938] from the 70’s and some groups still perform active research either theoretically
[889] or experimentally [493, 624, 897]. One of the major reasons for ongoing investigation is the
persisting discrepancies between various measurements for some electronic states [479], especially
near threshold [463]. It is not unusual that recommended values present large uncertainties [121,
439, 440] above 30%.

The reason for this is that there are several ways to obtain integral cross sections: through
time-of-flight analysis of electrons or excited species [633], detection of radiative de-excitations
from principal emission bands for optically-allowed transitions [9, 452], swarm experiments on
electron energy loss spectra [289, 490] or direct integration of differential cross section measure-
ments [158] extrapolated through the whole angular range. Since these experiments may rely on
different reference values, fitting methods, instrumental calibration procedures or normalisation,
it is not straightforward to obtain good agreement. Nevertheless, most reliable values for the
cross sections are obtained when various techniques agree well for the same excitation considered
[124, figure 37(b)].

Theoretical calculations of electronic excitations are cumbersome because they require an
accurate description of the wave functions associated to each excited state and their dependence
on the internuclear separation. Then, the resolution is befitted by a close-coupling treatment
involving various (or rather many) excited target states [914, 916].
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Setting these complex methods aside, our approach for representing inelastic cross sections
is based on two powerful tools:

1. The “generalised oscillator strength” formulation from Bethe [64] relying on the plane-wave
Born approximation.

2. A semi-empirical correction to the above formulation called the “scaled plane-wave Born
approximation” introduced by Kim [504].

In the next two sections, we first introduce in 11.4.1 the generalised oscillator strength as reviewed
by Inokuti [427] and then, in 11.4.2, we present an adaptation of the scaled-Born method to our
modelling of electronic excitations.

11.4.1 Generalised Oscillator Strength

We start from the plane-wave Born approximation (8.117) for the scattering amplitude f of an
electron scattered with momentum transfer q = k − k′ with a reduced mass µ for a transition
of a diatomic 1Σ molecule from a state a, v, J,M to a state a′, v′, J ′,M ′, assuming the Born-
Oppenheimer separability of nuclear and electronic motions [907, p.58:eq.(145)]:

f(a, v, J → a′, v′, J ′) = −
2µ

h̵24π

y
R2 dRdR̂drm dr× (11.44)

e−ik
′⋅rϕ∗a′(rm,R)

χv
′,J ′,∗
a′ (R)

R
Y ∗J ′,M ′(R̂)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
final state

V (rm,R, r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

interaction

eik⋅rϕa(rm,R)
χv,Ja (R)

R
YJ,M(R̂)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
initial state

,

with R being the interatomic separation and orientation R̂; rm: all internal electronic coordinates
of the molecule; ϕ, χ/R and Y : the electronic, vibrational and rotational (spherical harmonic)
functions; and the interaction potential constructed from Coulomb static interaction and other
local approximations Ṽ (R, r) [907, eq.(147)]:

V (rm,R, r) =∑
A

−ZAe
2

∣r −RA∣
+ ∑
j∈m

e2

∣r − rj ∣
+ Ṽ (R, r) . (11.45)

Considerable simplifications arise when the scattering is electronically inelastic : a ≠ a′. Since
ϕa is orthogonal to ϕa′ through integration over rm, all potential terms independent of rm can
be discarded and one may cunningly exploit [427, p.299:eq(2.3)] (as justified originally in Bethe
[64]):

∫
e2

∣r − rj ∣
exp(iq ⋅ r)dr→

4πe2

q2
exp(iq ⋅ rj) . (11.46)

In practical applications, the differential cross section as obtained through ∣f ∣2 k′/k is summed
over final J ′,M ′ and averaged over initial M rotational states and under the sudden impulse
approximation (fixed molecular orientation and k′ independent of J ′), it is independent of J .
After calculations, it can be expressed as [834, p.60:eq(151)]∗ :

∗Note that there is a typo in eq(151), the averaging over R̂ should be done outside of the modulus bar ∣ as
in, for instance, Takayanagi [906, p.221:eq(3⋅5)]



11.4. ELECTRONIC EXCITATIONS 437

dσ

dΩ
(av → a′v′) =

k′

k

(2µ/me)
2

(a0q2)2
∫

dR̂

4π

RRRRRRRRRRR

x
∑
j∈m

eiq⋅rjϕ∗a′(rm,R)χ
v′

a′(R)ϕa(rm,R)χ
v
a(R)dRdrm

RRRRRRRRRRR

2

.

(11.47)
Under the first Born approximation, the term in modulus brackets (“inelastic scattering form

factor”) is seen not to depend on the impacting electron’s energy. This leads to the definition of
the generalised oscillator strength∗ for a transition between two energy levels Eav → Ea′v′ :

Fav,a′v′(q) ≡
Ea′v′ − Eav

Ryd

⟨∣ϵav,a′v′(q)∣
2⟩R̂

a20q
2

, (11.48)

where Ryd ≈ 13.606 eV is the Rydberg energy unit and ⟨∣ϵav,a′v′(q)∣2⟩R̂ stands for the spherically-
averaged (as above in 11.47) squared form factor ϵ defined as :

ϵav,a′v′ ≡
x
∑
j∈m

exp(iq ⋅ rj)ϕ
∗
a′(rm,R)χ

v′∗
a′ (R)ϕa(rm,R)χ

v
a(R)dRdrm . (11.49)

It is also known [911, §1] as the molecular or atomic matrix element. Under the dipole
approximation (cf. appendix D.1), it is rather called the dipole matrix element; when ∥q∥a0 ≪ 1,
so that the exponential may be limited to its lowest order in q ⋅ r.

Furthermore, the combination of the Born-Oppenheimer approximation with the impulse
approximation, enables to separate the integral (11.49) over electronic rm and nuclear R parts
so as to factorise ϵav,a′v′ as:

∣ϵav,a′v′ ∣
2 ≃ ∣∫ χv

′∗
a′ (R)χ

v
a(R)dR∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Caa′(v→v′)

RRRRRRRRRRR
∫ ∑

j∈m
exp(iq ⋅ rj)ϕ

∗
a′(rm,R)ϕa(rm,R)drm

RRRRRRRRRRR

2

, (11.50)

thus defining a transition probability Caa′(v → v′) between the v and v′ vibrational levels of the
electronic states a and a′ respectively. This probability is known as the Franck-Condon factor,
which is presented in appendix D.2.

The “generalised” oscillator strength (11.48) takes its name after its relationship to the optical
dipole oscillator strength [398, see §4.3.4 and §5.2.2] fav,a′v′ at small momentum transfers [427,
p.300:eq(2.12)] q → 0:

lim
q→0

Fav,a′v′(q) = fav,a′v′ , (11.51)

which can be derived from the expansion of exp(−iq ⋅ r) = 1 − iq ⋅ r + (−iq ⋅ r)2/2 + . . . in (11.47),
and noting that the zeroth term disappears due to the orthogonality of electronic states a ≠ a′.
More information about this optical oscillator strength is to be found in appendix D.1.

This connection of the generalised to the optical oscillator strength implies that it also satisfies
the Bethe sum rule [64] ⨋

a′v′
Fav,a′v′(q) = ∑AZA = N , amounting to the total number of electrons

(N) in the molecule. The “sum” over all states a′v′ should be understood as including the
ionisation continuum of states as well (see section 11.5).

∗The conventional notation for molecules [834, Chapter 1:§6.5.2] is Faa′ whereas for atoms [427] it is faa′ . In
this thesis, however, regardless of atom or molecule, we take the capital letter F for the generalised OS whereas
the lower case f is for the optical OS in the limit q → 0
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The generalised oscillator strength (GOS) is an idealised property of any target molecule at
high scattering energies ka0 ≫ 1, where the Born approach is valid, and is a measurable quantity
proportional to the differential cross section :

dσ

dΩ
=

k→∞

k′

k

(2µ/me)
2Ryd

Ea′v′ − Eav

Fav,a′v′(q)

q2
. (11.52)

This relation can however be preserved down to energies even where the Born approximation
is not valid [563], to the cost of having an additional dependency on the projectile’s initial

momentum k : Fav,a′v′(q)
ka0≲1
Ð→ Fav,a′v′(q, k). In this case, F (q, k) is called the apparent GOS

[911, eq.(11a)]:

Fav,a′v′(q, k) ≡
k

k′
q2
Ea′v′ − Eav
(2µ/me)2Ryd

dσ

dΩ
. (11.53)

For electrons scattering off molecules and atoms, µ ≊ me and we may drop this term in the
rest of this section. The knowledge of the GOS enables an easy integration of any cross section
as [834, p.62:eq(159)]:

σav,a′v′(ε) = ∫
dσav,a′v′

dΩ
dΩ =

2π

k2
4Ryd

Ea′v′ − Eav
∫

k+k′

∣k−k′∣

Fav,a′v′(q, k)

q
dq . (11.54)

The integration over q was deduced from q2 = k′2 + k2 − 2k′k cos θ giving the differential
relationship q dq = k′k sin θ dθ, and noting that dΩ = sin θ dθ dϕ.

The asymptotic behaviour of inelastic cross sections at energies considerably higher than the
excitation threshold: ε≫∆E = Ea′v′−Eav, can be predicted according to whether the transition is
optically allowed (fav,a′v′ ≠ 0) or forbidden (fav,a′v′ = 0) through the electric dipole operator. To
alleviate the notation, we now use the subscript x ≡ av, a′v′ to denote the excitation transition.

Starting with the simplest case of optically forbidden transitions, fx = 0 enables to extend
the lower bound ∣k − k′∣ ≃ 0 in (11.54) without committing much error when k ≫ ∆E . Then,
asymptotically [427, p.328:eq(4.28)] using k2a20 =mev

2/2Ryd:

σx(ε) =
4πa20Ryd

mev2/2
(bx +O (

Ryd

mev2
)) . (11.55)

The parameter bx is a moment of the GOS given by [427, eq.(4.21)]:

bx ≡ ∫
∞

0

2Ryd

∆E

Fx(q)

q
dq (11.56)

For optically allowed transitions fx ≠ 0, the decrease at higher energies (ε ≫ ∆E) is slightly
slower [427, p.328:eq(4.26)] :

σx(ε) =
4πa20Ryd

mev2/2
(M2

x [ln(
2mev

2γ2

Ryd
cx) −

v2

c2
] +O (

Ryd

mev2
)) . (11.57)

Mx is known as the dipole matrix element related to the optical oscillator strength fx =
M2
x∆Ex/Ryd (see appendix D.1 and equation (D.2)). The other coefficient cx is a constant

related to some integral of the GOS for the given transition x. It is analogous to the definition
of the či(ε2) parameter for impact ionisation (p.464), replacing the differential GOS (dFi/dε2)
by the GOS (Fx) in equations (11.74) and (11.76).

Those two expressions above (11.55&11.57) are given in terms of the electron velocity v
instead of its kinetic energy ε so as to remain relativistically correct as noted by Bethe [64] and
Inokuti [427, p.299 and eq.(2.27)].
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Alternatively, the cross section σx (allowed or not) can be expressed [504, eq.(1)] in terms of
the collision strength∗ Ωx(ε):

σx =
4πa20

g ε/Ryd
Ωx(ε) (11.58)

The coefficient g represents the statistical weight (energy degeneracy) associated to the initial
state [154, eq.(2)].

For practical purposes of performing integrals, the GOS can be expanded [562] in the following
series [505, §C:eq(9)]:

Fx(q) =
1

(1 + ξ)ℓ+ℓ′+5
(fx +

∞
∑
m=1

amξ
m

(1 + ξ)m
) , (11.59)

where ξ is defined with the ionisation (binding) energy B of the electron in its initial orbital,
which will be subsequently left excited by the amount ∆Ex, as [968, p.100:right column]:

ξ = (
qa0

√
B +
√
B −∆Ex

)

2

. (11.60)

The integers ℓ and ℓ′ represent the orbital angular numbers of the excited electron in its
initial and final configurations. They may be well defined in atoms, but as soon as one moves to
a poly-atomic description, their definition is more involved as discussed by Kim [505, §C]. The
coefficients am are to be determined by fitting or can be derived as explained by Klump and
Lassettre [513, p.889:left column] from the expansion of the exponential in the electronic form
factor in (11.49).

The literature giving such fits of GOS for various transitions is rich [563, 604, 968] and in
many cases, equation (11.59) may be reduced to just one term and give a sufficiently accurate
fit as shown in Kim [505, eq(10-14)].

Note that for dipole-forbidden transitions fx = 0 implies that the series starts at least from
the first power in ξ at m = 1. Moreover, higher degrees of forbiddance [513, eq.(27-30)] can lead
to am = 0 ∶ ∀m ≥M . This gives a leading term of ξM/(1+ ξ)ℓ+ℓ

′+5+M in (11.59). For M > 1 this
implies that bx = 0 in (11.55) and thus the corresponding cross section decreases at faster rates
than 1/ε.

In spin-forbidden transitions (∆S ≠ 0, refer to appendix D.1), the change in total spin results
most probably from the exchange of the incoming electron with a shell electron of opposite spin
[834, p.11 lower half]. This situation preferably happens at slow incoming velocities and implies
that the cross section rises steeply at low energies [399, p.463] but decreases fast ∼ 1/ε3 (see the
“d = 3” curves on fig. 11.30) as reported in Inokuti [427, p.341:left column lower half] from the
exchange approximation of Ochkur and Brattsev [711].

Depending on the nature of the electronic transition, the cross section, in the framework
of Born’s approximation, will decay at an asymptotic rate of 1/εd for forbidden transitions
and (ln ε)/ε for optically-allowed ones. We will call the exponent d the “forbiddance degree”
because it describes how much a transition is forbidden (dipole, quadrupole, spin). The
value d = 0 is reserved for optically-allowed transitions.

∗Different conventions can apply to the definition of the collision strength. Some authors [154, 395, §V.,
eq.(2)] prefer the connection to the momentum k in the DCS which after integration gives a 4πa20/(2k)2 factor.
Others [427, 504, eqs.(4.26-28), eq.(1)] absorb the 1/4 factor in Ω to keep the 4πa20 magnitude. We shall adopt
here the latter convention.
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In practice, nothing impedes the cross sections from decaying as 1/εα at some intermediate
non-integer α rates [973, §2.2:(iii)], because the contribution to the process may not entirely
depend on one mechanism (exchange, magnetic/electric dipole, etc.). Sometimes, a cross sec-
tion can also correspond to various transitions lumped together as in the broad peaks of O2.
Nonetheless, in the next section describing semi-empirical fits, we shall impose the asymptotic
decay 1/εd with d ∈ N an integer, in order to constrain the optimisation and prevent unphysical
behaviour in the extrapolated high-energy region.

11.4.2 Scaled Plane-wave Born Cross Section

Despite the possibility of integrating cross sections through the generalised oscillator strength
seen before, we are interested in taking a shortcut and directly provide reliable fits to integral
cross sections. Such attempts were already made multiple times in the farther [350] and recent
[27, 902] past as new and revised sets of experimental data were released.

Here, we are looking for compact formulae that asymptotically behave as (11.57) and (11.55),
that annihilate at the threshold ∆E and present enough flexibility to match the typical cross
section gently/steeply rising to maximum and slowly/steadily decreasing for optically allowed/-
forbidden transitions.

For this, we make use of the scaling correction proposed by Kim [504] to the Born approxi-
mation. This procedures amounts to replacing the 1/ε dependence in (11.57) by 1/(ε+εo), where
the offset εo ≃ ∆E + I is linked to the excitation threshold ∆E and the ionisation potential I
of the molecule. This scaling was originally intended and successfully applied [27, 604] only for
dipole-allowed transition CS [911, p.14:§2.a].

To extend the application of Born-scaling to forbidden transitions, we presently propose to
offset the denominator 1/εd ⇢ 1/(ε + εo)

d even for stricter degrees of forbiddance (d > 1).

The second correction is what Green and Stolarski [350] describe as “low-energy modifiers”
so that the fitted CS behaves well near the excitation threshold ∆E . For allowed transitions, the
annihilation at threshold energy can be inserted in the logarithmic part [350, eq.(9)] of (11.57).
For forbidden transitions, this can be done most naturally through (ε −∆E)b as a numerator
[349, eq.(1)]. Still, as explained in Hertel and Schulz [399, §7.2.7], the behaviour near threshold
may undergo a very rapid change over a very short range of energies. Forbidden transitions
are known to rise steeper than allowed ones. In order to enable a better flexibility for this
rising portion, the generic form (1 − (∆E/ε)a)b seen in many reports[348, 350, 444, 549, eq.(7),
eq.(1)] can be used∗. It enables to separate the near-threshold behaviour from the fast rising
portion of the graph. Nevertheless, the near-threshold behaviour usually remains unrevealed by
experimental data. So it is better to fix a = 1 and leave b as a free parameter. Furthermore, due
to the introduction of the offset in the scaling correction, the description with (1 − (∆E/ε)a)b

and (εa − (∆E)a)b as numerators are no longer equivalent as they were in the original work of
Green and Dutta [348]. In order to cope with this, we decided to privilege (ε−∆E)a/(ε+ εo)a+d

over (1 −∆E/ε)a/(ε + εo)d. The former expression could fit experimental data better than the
latter (cf. sec. 13.1.2 fig. 13.7).

Finally, touching the dangerous border of overfitting, we indulged into adding another factor
[(ε − ∆E)a

′

+ c′] to the expression to form a six-parameter adjustable function when deemed
necessary. The reason why the exponent features inside the bracket is to produce sharper inflexion

∗A square root could be imposed (b = 0.5) if s-waves (ℓ = 0) are allowed in the outgoing channel Wigner [982,
§III.A]. This law near threshold does however not hold well over a large range of energies.
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points around c′ to follow given data trends. More insight about this choice of functions is given
in the third part in the section 13.1.2 devoted to commenting fitting procedures.

The elementary generic functions sexc for fitting electronic excitation cross sections take the
following forms expressed in the dimensionless variable w ≡ (ε/∆E − 1) :

sexc =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4πa20
∆E/Ryd

M

b

ln((4w∆ERyd c)b + 1)

(w +C)
; allowed transition (11.61a)

4πa20
(∆E/Ryd)d

M
((w + 1)a − 1)b

(w +C)d+ab+a′
[wa

′

+ c′] ; forbidden transition (11.61b)

In those expressions, M,a, a′, b, c, c′ and C are free parameters. In particular, a′, c′ can be
fixed to zero, and a to one, to decrease the parametric form of sexc in forbidden transitions that
present simple enough trends.

In contrast, the forbiddance degree d ≥ 1 should be determined in advance as discussed toward
the end of the previous section:

• dipole-forbidden : d = 1

• quadrupole-forbidden: d = 2

• spin-forbidden: d = 3

Furthermore, a comparison with the asymptotic Bethe equations (11.55–11.57) shows that
the following correspondences should be found with the Bethe parameters [427, eq.(4.15&4.20)]:

For ε≫∆E ( or w ≫ 1) ∶

⎧⎪⎪
⎨
⎪⎪⎩

M → bx in forbidden sexc
M →M2

x = fx ⋅Ryd/∆E and c→ cx in allowed sexc

If the Bethe parameters are known (or oscillator strengths for allowed transitions), they can
serve to check the pertinence of the fitted parameters, as initial input values or simply fixed
constraints for the fitting procedure. For atomic transitions, the optical oscillator strengths can
be well constrained. However, in molecular transitions, these can vary much with the particular
rovibronic transition.

Also, the parameter C is related to the scaling correction εo ≃ ∆E + I mentioned above as
C = εo/∆E + 1. Therefore, we should in principle have: C ≃ 2 + I/∆E . This relation is however
overshadowed by the introduction of the low-energy modifier (parameters a and b).

For allowed transitions, the expression (11.61a) can be generalised to relativistic energies to
follow a formula similar to Bretagne et al. [106, eq.(5)]:

srel(ε) =
4πa20

∆E/Ryd

M

b

ln ((w′γ2 4c∆E/Ryd)b + 1)�
��−β2

w′ +C
with w′ =

β2mec
2

2∆E
− 1 , (11.62)

where w′ represents the generalisation of the reduced kinetic energy above threshold w in the
relativistic regime.

Originally, Bretagne et al. [106, eq.(7)] used an empirical modification to make the relativistic
expression valid down to threshold ε → ∆E . Here, we decided to embed the near-threshold
behaviour more naturally inside the logarithmic term. Due to this choice, we had to drop the
β2 crossed out∗ in the numerator of (11.62). Nevertheless, we resigned to drop it because it

∗By crossing it out, we remind the reader that we are aware of its presence in the relativistic expression.
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annoyingly makes the cross section become almost imperceptibly negative near threshold. One
would need find a more pleasing way to modify the relativistic expression near threshold [as in
106, eq.(7)].

In the rare cases where a resonance peak (or feature) in a cross section was well resolved
experimentally, we provided an additional function sres as suggested by Andrick [26, eq.(21)]
following a Fano profile [270] :

sres = Ares
cos 2αr −w

′ sin 2αr

(1 +w′2)
(11.63)

The dimensionless energy parameter w′ ≡ (ε−Er)/(Γ/2), depends this time on the energy position
of the resonance Er and the resonance width Γ. Ares and αr are parameters related to the
amplitude (normalised by a factor 4πa20) of the resonance and background phase-shift of the
dominant partial wave respectively. Further information about the emergence this profile can be
found in the previous section 11.3.1

Resonances are characterised by abrupt changes in the scattering matrix over a short energy
range producing a transient feature whose validity is local only. For spin-forbidden transition,
the decay ∝ 1/ε3 is stronger than a Fano profile which decays at most as ≳ 1/ε2. Therefore, if we
took a simple addition sexc+sres, the tail of the Fano profile would eventually ruin the asymptotic
expression of the whole at large energies above the resonance region. This is why, we thought it
be wise to factorise the cross section in a ‘slowly’ varying sexc and a local enhancement 1 + sres.
The total profile for excitation cross section was then constructed as a product:

saug ≡ sexc(1 + sres) . (11.64)

By choosing adequate bounds (refer to sec. 13.3), the parameters from (11.61) could be easily
determined for each transition from a least-squares fit to experimental data weighted by their
uncertainties. However, because of the factorisation in (11.64), one may not rigorously attribute
the usual significance to the parameters obtained when fitting sres in (11.63).

We illustrate in figure 11.30 our use of the variants sexc for four different excitation cross
sections with N2 : one allowed (b 1Πu), a simply-forbidden (a′′ 1Σ+g ) and two spin-forbidden
(B 3Πg) and (E 3Σ+g ) with a resonance peak fitted by sres.

To obtain more flexibility, other authors like Tabata et al. [902] used linear combinations of
modified forms of Green and McNeal [349, eq.(1)]. Although the fits presented there reproduced
well the data sets considered, we prefer in our case to curtail the number of free parameters in
order to elude the great fear of overfitting discussed in section 13.1. For detailed information
about our reasoning and challenges encountered during the fitting process, we redirect the reader
to the chapter 13 in the third part.

Additionally, as we shall see below, many experimental sets present poor agreement (some-
times higher than 50%) beyond the uncertainty of the reported values. This is why we do not
think it wise to put stress upon obtaining close cross section fits. Rather, simple considerations
of near-threshold and asymptotic behaviour should suffice for constructing a reliable database.
Additionally, the purpose of providing simple analytical fits as compared to tabulated values is to
permit quick amendments when new experimental evidence emerge, according to the philosophy
of Green and Stolarski [350] and Inokuti et al. [426].

For each molecule, we present our assembled database of electronic excitation cross sections
that served to construct our fits and very briefly discuss the main reviews in the field. Details
relevant to the fitting procedure are explained and illustrated in chapter 13 of the third part. For
more information about how the database was assembled and comments of eventual renormalisa-
tions made, please refer to the subsection for the corresponding molecule/atom in the subsequent
chapter 15.
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Figure 11.30: Representative fits of sexc (11.61) for N2 electronic excitations to allowed b 1Πu
(d = 0, ∎-Malone et al. [624]) and forbidden a′′ 1Σ+g (d = 1, ×-Malone et al. [622]), B 3Πg (d = 3,
○-Johnson et al. [463]) and E 3Σ+g (d = 3, ×-Malone et al. [622]) with the peak (◇-Hoffmann et al.
[407]) fitted by sres (11.63) and combined smoothly in saug (11.64).

Also, the excitations listed altogether might not fully account for the losses endured by
electron in inelastic non-ionising collisions. We explain in chapter 15, how to compensate for
these missing losses. This played a decisive role when validating our set of cross sections in the
first part, chapters 4 and 5.

As a last warning, it must be stated that :

The present fits with 11.61 were conceived as a convenient and simple way to express cross
sections.
The only parameter of clear physical significance is the leading magnitude coefficient M
which, for dipole-allowed transitions, is related to the oscillator strength f =M ∆ERyd .
For the other parameters, it is unsafe to try to derive a physical meaning from the values
obtained.

With more insight about the near-threshold behaviour (a, b) and the physical significance of
the scaling parameter C by Kim [504], the fits below could be better constrained physically.

Meanwhile, we dare not qualify our fits with the noble status of “analytical representation”
whose cause Inokuti et al. [426, p.216] defends.
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11.4.3 Molecular Nitrogen

As the most common diatomic molecule in atmospheric physics, the experimental database for
electronic impact excitation cross sections is replete. Nevertheless, for some transitions at certain
energies, discrepancies among different research groups persist.

A summary of electronic states, their energy thresholds ∆E [439, 493, table 7, table I],
allowance/forbiddance, ranges of most probable vibronic excitations (v′ range), branching ratios
for predissociation ηpd [193, 620, 624, 1011, table 2, table III, table 1] and experimental sources
is given in table 11.6. See also the comprehensive report from Lofthus and Krupenie [607].
Predissociation and spontaneous emission rates from deexcitation (Eintein coefficients) can be
found in Capitelli et al. [150, p.157:table 9.1].

The transition probabilities PX,a′(0→ v′) to a vibronic level v′ in a band (X,a′) from ground
state X to excited state a′ were taken from [492, 493, table II, table I]. Those probabilities can
be, but are not necessarily, equal to the corresponding Franck-Condon factors (FCF) defined
in (D.5) or (11.50). Based on those probabilities PX,a′(0 → v′), the most probable range of
vibronic bands (v′ range) is loosely defined as one standard deviation around the mean value of
the vibrational excitation level. The definition is loose in the sense that if a vibronic level lies
initially beyond one standard deviation but its transition probability differs not by more than
90% of its direct neighbour in the range, then it is also included in the range.

N2

Figure 11.31: from Tashiro and Morokuma [914]

An overview of potential curves for lower
electronically excited states of N2 is displayed
in figure 11.31 from the calculations of Tashiro
and Morokuma [914]. Since the extensive ex-
perimental results of Cartwright et al. [159]
for lower and Chutjian et al. [181] for higher
states, more recent detailed comparisons of
cross sections were conducted by Johnson et
al. [463] for valence states and Malone et al.
[624] for Rydberg states.

The three forbidden states C 3Πu, E 3Σ+g
and a′′ 1Σ+g were most recently studied by Mal-
one et al. [622]. For E 3Σ+g in particular, the
near-threshold resonance peak was well re-
solved by Hoffmann et al. [407] in very good
agreement with Brunger et al. [123].

There may eventually be observable nar-
row or broad resonance peaks not too far from
threshold energies on integrated cross section
of other forbidden transitions.

Recent theoretical R-matrix calculations [889, 914] predict that A 3Σ+u, B 3Πu and C 3Πu
should have a “bump” around 12 eV (for A and B) and 17 eV (for C). The main contributions
to these features come [914, §III.B:p.3-5] from N−2

2Πu, 1 2∆g and 2Σ+u shape resonances respec-
tively. Other symmetries have a smaller participation. Although the agreement between various
R-matrix calculations is good [333, 889], they rely on identical assumptions: particularly the
fixed-nuclei approximation which may not be valid below 15 eV in the resonance region.

Experimentally, resonance peaks are observed at lower energies than predicted theoretically.
In spectroscopic measurements [834, p.378-383:fig. 16], the peak from the 2Πu resonance linked
to the N2 A parent state is seen at slightly lower energies ≲10 eV, which supports the maximum
observed at 10 eV in Johnson et al. [463, fig. 2].
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The presence of resonance peaks is difficult to confirm though, because (1) the scatter of
measured CS near threshold is quite chaotic and (2) measurements are too sparse (jump to
fig. 16.3 on p.592). Exceptions are the E 3Σ+g and the C 3Πu states, both fitted with saug (11.64).
The C 3Πu state was clearly delineated experimentally by Zubek [1012] with a prominent bump
around 14 eV (lower than the predicted 17 eV). We used Zubek’s data renormalised by [622].

For most excitations, we privileged the recent data of Johnson et al. [463], Malone et al.
[622], and Malone et al. [624] and our renormalisation of Cartwright et al. [159]. Procedures for
normalisation and stabilisation of the signal in DCS from which the ICS derive, were carried
over meticulously [492, 493, 623].

The only data which did not lend themselves easily to be fit by sexc with 4 parameters were
the ones for w 1∆u because of a very sharp rise near-threshold and a damped fall-off tail. We
did not venture to use a resonant shape sres as it would overfit the data. This case is addressed
in section 13.3 (fig 13.13).

Some experimental reports had to be rejected from our database for fitting. The data from
Campbell et al. [141] were based on a phase-shift extrapolations from 10○–90○ measurements of
Brunger and Teubner [122] and thus were contaminated by a too large uncertainty to be used
presently. The detection of metastable a 1Πg by Mason and Newell [633] was criticised [463,
§34-36] to suffer from contamination by other excited states and to have been normalised to
outdated data.

Dissociation. At the end of the table 11.6, we also give the expression – based on an optically
allowed transition – for the residual dissociation cross section σrd. It is obtained from the total
dissociation σdiss into neutral nitrogen atoms recommended by Cosby [193], after subtracting all
the contributions from predissociation given by the branching ratios ηpd as prescribed by Itikawa
[439, p.51:eq.(8)]:

σrd(ε) ≡ σdiss(ε) −∑
i

ηpd,iσi(ε) . (11.65)

The predissociation ratios ηpd can be found in table 11.6 for N2 whose dissociation threshold
is at 9.753 eV [193, p.9550]. The values for most states were taken from James et al. [452] and
from Malone et al. [624, p.7&11] for the b 1Πu (88%) and b 1Σ+u (96%) states.

For the C 3Πu state, the value of 50% in Majeed and Strickland [620, table 1] could not be
found anywhere else in the cited literature. According to Lofthus and Krupenie [607, p.167:§8.5],
all higher v′ > 4 vibrational levels from C 3Πu predissociate. From the FCF of Malone et al. [623,
table I], this would correspond to only 0.39% on the whole, which is the value that we take.

The values with question marks are the ones for which we did not find a precise numerical
value in the literature, but suggestions thereof. Some branching ratios are assumed to be close
to 100% because the emission bands of those states are either very faint [10] or were never
observed (for the G 3Πu and F 3Πu states) [193, p.9550:right column]. For the c′4

1Σ+u state, the
predissociation is “certainly nonzero” [624, p.13:right column] (contrary to the assumption of
Ajello et al. [9]). Although not confirmed by more recent experiments, we took the original value
of 15% reported in Zipf and McLaughlin [1011, table 2].
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Table 11.6: Electronic transitions from Nitrogen molecule ground state. Optically allowed (↕) are distinguished from forbidden (↕̸) transitions
characterised by their asymptotic 1/εd trend d in brackets. Also given are the energy threshold ∆E to v′ = 0, the range of most probable
vibronic v′ excitations and the predissociation rate ηpd. The next four columns give the parameters of the Born-scaled equations (11.61–
11.64) fitted to the experimental data given in the last column. The middle horizontal line separates valence from Rydberg states although
b 1 and b′ 1 are high-lying valence states.

(d) ∆E v′ range ηpd Fitting Parameters Experiments
to N2(X 1Σ+g ) (eV) (%) M ∆E/Ryd C a ∣ c b

↕̸ (3) A 3Σ+u 6.169 4-14 1.06 ± 0.34 5.23 ± 1.62 1 0.5 ± 0.36 ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[159, 463]

↕̸ (3) B 3Πg 7.353 0-6 † 0.481 ± 1 0.82 ± 7 1.63 ± 25 5.64 ± 18

↕̸ (3) W 3∆u 7.362 4-13 0.311 ± 0.049 0.403 ± 0.118 1 9.51 ± 2.56

↕̸ (3) B′ 3Σ−u 8.165 4-12 0.19 ± 0.071 0.561 ± 0.422 1 7.54 ± 5.38

↕̸ (2) a′ 1Σ−u 8.398 4-12 0.026 ± 0.006 0.227 ± 0.286 1 10 ± 12

↕̸ (1) a 1Πg 8.549 1-7 12 0.102 ± 0.05 0.99 ± 2.7 1.75 ± 9 2.368 ± 0.584

↕̸ (1) w 1∆u 8.895 3-11 ✠ 0.686 ± 2.25 0.551 ± 0.094 0.942 ± 0.031 6.79 ± 3.42

↕̸ (3) C 3Πu 11.032 0-2 0.39 0.476 ± 0.071 1.384 ± 0.116 1 1.203 ± 0.062 [159, 623,
1012, 1013]resonance param. sres : Ares, αr, Er, Γ 2.682 ± 0.253 −0.336 ± 0.03 13.72 ± 0.06 2.11 ± 0.135

↕̸ (3) E 3Σ+g 11.877 0-1 0.048 ± 0.013 1.38 ± 0.21 1 1.15 ± 0.125 [123, 141, 159,
407, 622]resonance param. sres : Ares, αr, Er, Γ 1000 0.027 ± 0.007 11.9 ± 0.01 0.128 ± 0.028

↕̸ (1) a′′ 1Σ+g 12.255 0-1 0.041 ± 0.008 1.301 ± 0.428 1 0.851 ± 0.19 [622, 1013]
↕ b 1Πu 12.500 1-8 96 0.144 ± 0.055 1.53 ± 5.63 0.5 ± 1.2 2.29 ± 2.31 ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[181, 624]

↕̸ (3) G 3Πu 12.810 0-2 100? 3.484 ± 3.625 5.35 ± 3.74 1 0.61 ± 0.566

↕̸ (3) D 3Σ+u 12.841 0 100?
↕ b′ 1Σ+u 12.854 0-2,8-9 88 0.105 ± 3.7 2.88 ± 164 0.3 ± 41.5 0.89 ± 9.72

↕ c3 1Πu 12.912 0-2 100 0.098 ± 0.06 0.18 ± 2.69 0.18 ± 0.0915 2 ± 2.48

↕ c′4
1Σ+u 12.934 0-1 15? 0.131 ± 0.086 4.1 ± 22 0.28 ± 1.19 1.66 ± 1.25

↕̸ (3) F 3Πu 12.985 0-2 100? 1.288 ± 1.2 3.53 ± 2.36 1 1.06 ± 0.74

↕ o3 1Πu 13.103 1-4 100 0.084 ± 0.144 10 ± 101 0.7 ± 12.4 1.11 ± 6.28

↕ N+N 9.75¤ 0.583 ± 14.4 9.21 ± 100 1 3 ± 242 [193]
† The state B 3Πg was fitted with 6 parameters in (11.61b) with a′ = 4.56 ± 1.57 and c′ = 1.168 ± 0.323 as shown in fig. 13.12.
✠ The equation used for fitting w 1∆u was a variant corresponding to (13.4c) described in chapter 13 and shown in fig. 13.13.
¤ The onset of the residual dissociation (without predissociation) is located at 12.5 eV (use w = ε/12.5 eV − 1 in (11.61a)).
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(a) N2 from Kato et al. [479] (b) O2 from Suzuki et al. [897]

Figure 11.32: Electron energy loss spectra from inelastic scattering by the most common
molecules in air. The very neat spiky structure in nitrogen (a) is markedly different from broad
peaks, bands and the continuum displayed in oxygen (b).

11.4.4 Molecular Oxygen

Compared to nitrogen, the database for excitations with oxygen lacks completion. This was
repeatedly emphasised in different reviews [124, 440] and motivated further research [27]. A
representation of the internuclear potential curve for various electronic bound and repulsive
states of O2 is shown in figure 11.33.

Figure 11.33: from Tanaka et al. [911,
p.29:fig.21(b)]

The most well-defined and studied transi-
tions are the two first low-lying levels [938] of
a 1∆g (0.977 eV) and b 1Σ+g (1.627 eV). The-
oretical calculations [916, fig.3] predict a res-
onance peak (for both states) located around
8 eV due to the O−2

2Πu compound state. This
resonance can be clearly observed when look-
ing at the energy dependence of DCS at a fixed
scattering angle [12], but its shape varies with
the angle. Currently, there is still no consen-
sus whether this peak persists in the integrated
DCS or whether it is averaged down when the
calculations included nuclear motion into ac-
count, as a long-lived resonant scattering would
require so.

Experimental evidence of such peak [643] in
the ICS is disputed in reviews, with Rescigno et
al. [773, §6:p.149] being in favour of the peak
and Itikawa [440, §7.1] doubtful. For transi-
tions to higher states [352], such peak was not
observed either. Presently, I followed the ad-
vice of Itikawa [440] to disregard this peak since
the uncertainty of the experimental ICS is large
due to the necessity of extrapolating [642] be-
yond 90○.
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One of the principal difficulty of characterising other electronic excitations of oxygen is the
presence of broad bumps in the energy-loss spectrum seen on figure 11.32b, compared to the
very non-overlapping narrow peaks of nitrogen.

This has motivated some studies [847] to try to deconvolve the enmeshed bands of the trio
[438] c 1Σ−u (4.05 eV), A′ 3∆u (4.262 eV) and A 3Σ+u (4.340 eV) forming the Herzberg Pseudo-
continuum(II, III and I) [540, §3.4–7]. Nevertheless, most of the works in the literature [351,
923, 973] give the cross section summed over all three systems lumped together. The three
electronic states c,A′&A, whose potential curves lie very close to each other on figure 11.33, are
characterised by closely spaced vibrational levels, none with prominent excitation probability
as can be checked from their Franck-Condon factors in Campbell et al. [145, table 1]. This is
because their vibrational states lie outside of the Franck-Condon region [438, §7.2.a] as can be
apprehended in figure 11.33 (see fig. D.1 on p. 521 for a visual explanation). An imaginary
vertical excitation line from the ground state would intersect at a position of any of the three
c,A and A′ states which is above the first dissociation threshold of O2 (this corresponds to the
situation a–c in the middle-top graph of figure D.1). This explains why the Herzberg Pseudo-
continuum is mostly composed of energy losses in the 4.5–6.1 eV range [351, fig. 1] which lead
to the dissociation when above 5.116 eV [438, tab. 2.1]:

e + O2 (X
3Σ−g ) Ð→ e + O∗2 (c, A, A

′)Ð→ e + O( 3P ) + O( 3P ) . (HPC)

In our fitting procedure, we thus left the threshold energy as a free parameter between 4 and
7 eV just to avoid overestimating the near-threshold behaviour of the cross section. The bulk of
the energy losses are however situated in the range 4.5�6.1 eV.

The true continuum known as Schumann-Runge (SR) starts around 7 eV and is due to the
dissociation of molecular oxygen either directly or through predissociation of an excited state
whose vibronic bands may be seen as a superposition of sharper peaks [560] on figure 11.32b.
The main contribution to the bands is due to the first optically allowed transition to B 3Σ−u from
ground. The continuum is formed by direct dissociation from excitation to repulsive states :
1 3Πu, 1 1Πu, 1 5Πu, 2 3Σ+u whose potential curves cross with B 3Σ−u and cause predissociation [472].
Minor contributions to the SR come from the peaks of higher optically-forbidden transitions of
Rydberg states (C 3Πg, d 1Πg, etc.) [937]. The upper limit of the SR is arbitrary as other
isolated bands emerge in the spectrum, it was assigned to 9.7 eV by Wakiya [972]. We modelled
the energy-loss spectrum of the SR continuum with a very simple mound between two boundaries
E0 and E1 moulding the shape∗:

fSR(E) = Cnorm(E − E0)
s(E − E1)

2 , (11.66)

with

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E0 = 6.12 eV Onset of B 3Σ−u
E1 = 9.7 eV arbitrary, from Wakiya [972, p.3922–3]
Emax = 8.6 eV peak position, from Suzuki et al. [897, fig. 1] in fig. 11.32b

hence s = −2
Emax − E0
Emax − E1

≈ 4.51 ; (11.67)

where Emax represents the energy at which the energy-loss in the Schumann-Runge continuum
is maximal. The normalisation Cnorm is arbitrary and unimportant since the shape fSR is used
in part I eq. (3.12) to sample the probability of loosing an energy E in the continuum.

∗We could not find a tabulation of energy-loss spectra in the SR, thus we took a simple shape with three
fairly-well-defined parameters: two boundaries and a maximum position.



11.4. ELECTRONIC EXCITATIONS 449

The energy-loss spectrum in the Herzberg pseudo-continuum has been modelled similarly us-
ing (11.66) with the following parameters: E0 = 4.5 eV, Emax = 6.1 eV, E1 = 7 eV and thus s ≈ 3.55.
Those values were based on the curve displayed in Wakiya [972, figure 2]. It is not incompatible
that it overlaps with the SR.

Beyond the SR lie the prominent optically-allowed bands of E 3Σ−u known as the longest band
(LB) for v′ = 0 and second band (2B) for v′ = 1 as assigned by Yoshimine et al. [995]. Neverthe-
less, the nature of these bands was debated for long and the results of Shyn et al. [848] indicate
that those bands might actually be a mixture of dipole-allowed and forbidden transitions (thus to
different states). The latest study by Suzuki et al. [897] on those bands does, however, not men-
tion any composite structure and in their introduction, they implicitly assume that the bands
belong to E 3Σ−u exclusively. Due to the relatively recent identification of this state, it is not
labelled uniformly in the literature. For instance, we could not establish a correspondence with
the states mentioned in Krupenie [540, §3.9], the identification came indeed later [995]. Also,
the E 3Σ−u state seems to correspond to the state labelled “B’ 3Σ−u” in Cosby [194]. We suppose
that the predissociation rate of E 3Σ−u mentioned in Huber and Herzberg [410, p.494:footnote b.]
is nearly 100%.

Unlike for nitrogen, higher lying states have been studied very little so far. Bands from E 3Σ−u
v′ > 1 are of a considerably lower magnitude [460] and other systems are of even lesser impor-
tance. Current information about those high states is regrouped in Huber and Herzberg [410,
p.492–4]. The ionisation continuum of oxygen starting from 12.07 eV superposed with excitation
bands of ionised oxygen make the major energy-loss contribution to electron impact.

An interesting aspect of oxygen, is that the idealisation of well defined distinct electronic
states as imagined for a molecule, is broken due to non-negligible perturbation [573] terms in the
Hamiltonian (such as rotational, vibrational, and spin-orbit coupling in the description of the
electronic states). For N2 the peaks in the energy-loss spectrum can each be associated to a dis-
tinct molecular state. Here, for O2, the SR continuum and the peaks beyond, all bespeak strong
valence-Rydberg state interferences [584]: the molecule’s “real” state could be more accurately
described by a linear combination of individual states [882, §5.7]. Therefore, the bands belonging
to the same system do not scale as predicted by Franck-Condon factors [509]. This interference
makes the theoretical study of excitations in the SR, LB, and 2B difficult and accounts for the
vacuum in the literature [897, p.2].

The excited states of molecular oxygen with their threshold energies [440, 897, table 7, ],
most probable vibronic transition range [145, table I], and grouped together when not resolved
are summarised in table 11.7. A row is left out in the SR continuum for repulsive (e.g. 1 1Πg)
and unclassified states in the 7-9.7 eV region [849] which could correspond those labelled in [410,
p.494]. The vibronic bands v′ of trio states from the Herzberg pseudo-continuum which lie above
the dissociation threshold (5.116 eV) lead to direct dissociation. The states in the Schumann-
Runge continuum, and presumably all Rydberg states beyond, predissociate entirely∗.

∗The rates are faster than spontaneous emission rates
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Table 11.7: Electronic transitions from Oxygen molecule ground state. Optically allowed (↕) are distinguished from forbidden (↕̸) transitions
characterised by their asymptotic 1/εd trend d in brackets. Also given are the energy threshold ∆E to v′ = 0 and the bulk of most probable
vibronic bands v′. The next four columns gives parameters for sexc fitted with the experimental data given in the last column regroups the
experimental data available. The dashed line separates the states that lead to dissociation of the molecule for which it is assumed that the
predissociation ratio ηpd is very close to 100%. All states in the Schumann-Runge continuum (SR) and above are strongly perturbed by
valence-Rydberg state interference. The perturbation is so strong for the E 3Σ−u state, that its first and second vibrational levels are markedly
distinct from a Franck-Condon ratio (see eq.D.4). They are designated as the longest (LB:v′ = 0) and second (2B:v′ = 1) bands [897, §1].

(d) ∆E (eV) v′ range ηpd Fitting Parameters Experiments
to O2(X 3Σ−g ) M ∆E/Ryd C a ∣ c b

↕̸ (3) a 1∆g 0.977 0 0.187 ± 1.084 12.12 ± 2.59 0.1 2.281 ± 0.358 [221, 593,
642, 845,
938, 973]

↕̸ (3) b 1Σ+g 1.627 0 0.026 ± 0.28 8.03 ± 1.83 0.1 1.415 ± 0.308

HPC
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

↕̸ (3) c 1Σ−u 4.05 6–18 93.11⧫ ⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0.008 ± 0.055 0.067 ± 13 7 ± 47.5 10 [352, 973]↕̸ (1) A′ 3∆u 4.262 6–12 97.71⧫

↕̸ (2) A 3Σ+u 4.340 7–12 98.47⧫

SR

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

↕ B 3Σ−u 6.12 1–8 <100 ⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0.085 ± 0.096 6.072 ± 14.7 7.536 ± 72 4.925 ± 108 [897]. . . 7–9.7 100?
↕̸ (1) C 3Πg 8.15 0–2 100?
↕̸ (3) d 1Πg 8.595 0 100?

LB,
2B, {

↕
{E 3Σ−u

9.97 v′ = 0 >0 0.007 ± 0.016 10−20 1.171 ± 10.7 3.961 ± 55.3 [848, 897]
↕ 10.28 v′ = 1 >0 0.006 ± 0.113 3.922 ± 102 0.787 ± 77 0.844 ± 15

⧫ This is not a predissociation but a direct dissociation ratio obtained by subtracting from 1 the sum of Franck-Condon factors
reported in Campbell et al. [145, table I].
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11.4.5 Nitric Oxide

This molecule produced in atmospheric discharges is recognised to play an important role in
auroral emissions [140] and as a catalyser for the destruction of the ozone layer [143]. In our
model, NO intervenes marginally as it is formed in non-overheated (∼ 3000�6000K) leader cores
(consult our table 2.1 in part I section 2.1). Still, it is thought that it might be present up to a
ratio of ∼10% in that temperature range.

Figure 11.34: from Song et al. [865, fig.1]

NO displays a great abundance of elec-
tronic states below ionisation threshold
(9.26 eV) with some potential curves repre-
sented on figure 11.34 from Song et al. [865,
fig.1]. Except from optical emission cross sec-
tions, the only comprehensive study of excita-
tion cross section was made by Brunger et al.
[120] for 28 states∗ between 15 and 50 eV. The
most recent review by Song et al. [865, §2.7,
p.11] found that there is a shortage of about
four times the sum over all those 28 electronic
states between 15 to 40 eV to match the total
scattering cross section with the given elastic
and ionisation cross sections. This means that
a major part of the electron energy loss in NO
is currently unrepresented by the set of elec-
tronic excitations summarised in table 11.8.
As explained in the third part p. 577, we chose
to patch this deficiency with a cross section
for losses beyond 9 eV which we reckon re-
mained unprocessed† in the energy-loss spec-
trum of Mojarrabi et al. [655], reproduced in
figure 11.35.

An atypical CS was measured for L′ 2Φ
which, with the scaling correction at 50 eV (cf.
sec 15.1.3), displays a cusp at 30 eV instead of
a bump. It is reported [119, §2.5] that the ex-
trapolation of higher vibrationally excited con-
tributions to that band introduced significant
uncertainties in the derivation of the DCS. Be-
cause no reasonable fit can be obtained for
such a dataset, we regrouped it with the energetically nearest state D 2Σ+.

The result of our fits to the reported data is given in table 11.8. To reduce the number of
individual states having to be modelled in Monte Carlo simulations, some fits are presented for
the sum of energetically close-lying states, either because they were reported thus or because we
chose to group them together. Though we have not found any concrete information about pre-
dissociation rates, we surmise that all branching ratios for predissociation above the dissociation
threshold at 6.534 eV [865, tab. 1] are very high ≳90%.

∗10 states were lumped by three or two to present combined cross sections
†Actually, we lack of formal information and chose this threshold arbitrarily just by looking at the overall

deconvolution of the energy-loss spectra



452 CHAPTER 11. APPLICATION TO (DIFFERENTIAL) CROSS SECTIONS

Table 11.8: Electronic transitions from Nitric Oxide ground state. Optically allowed (↕) are
distinguished from forbidden (↕̸) transitions characterised by their asymptotic 1/εd trend d in
brackets. Also given are the energy threshold ∆E to v′ = 0 and the most probable vibronic
bands v′. Valence states are separated from Rydberg states by the dashed line, except for A 2Σ+

and C 2Π which are low-lying Rydberg states. The last four columns gives parameters for sexc
exclusively fitted to the experimental data of Brunger et al. [120]. Keep in mind that the flag
signalling overfitting is raised; for only 5 data points were available at each excitation.

(d) ∆E v′ range Fitting Parameters
to NO(X 2Π) (eV) M ∆E/Ryd C a ∣ c b

↕̸ (3) a 4Π 4.747 6–10 0.322 ± 1 4.5 ± 16 1 3.2 ± 11

↕ A 2Σ+ 5.484 0–3 0.004 ± 0.009 0 0.34 ± 4 2.6 ± 16

↕ B 2Π 5.642 10–21 0.0036 ± 0.02 0 0.384 ± 11 2.9 ± 15

↕̸ (3) b 4Σ− 5.718 1–6 0.133 ± 0.137 0.36 ± 3 1 16 ± 135

↕ C 2Π 6.499 0–3 0.016 ± 0.019 0 0.24 ± 0.42 2.23 ± 9

↕̸ (1) L′ 2Φ 6.6 9–>30
} 0.044 ± 1.4 0 0.06 ± 3 1.2 ± 13

↕ D 2Σ+ 6.617 0–3
↕ B′ 2∆ 7.442 2–8 0.0082 ± 0.044 0 0.64 ± 16 5

↕ E 2Σ+ 7.58 0–2 0.0018 ± 1.6 3.6 ± 6470 0.284 ± 918 1

↕ F 2∆ 7.722 0–3 0.008 ± 3.5 2.43 ± 6920 0.17 ± 267 1.38 ± 322

↕ L 2Π 7.751 6–12 0.21 ± 22 4.6 ± 4880 0.12 ± 69 1.47 ± 81

↕ H 2Σ+ 7.833 0–3
} 0.0078 ± 0.017 0 0.27 ± 1 2.3 ± 19

↕ H′ 2Π 7.856 0–3
↕ K 2Π 7.977 0–3

} 0.012 ± 0.034 0 0.208 ± 0.38 2.14 ± 10
↕ M 2Σ+ 8.017 0–4
↕ S 2Σ+ 8.324 1–2

} 0.0058 ± 0.0072 0 0.35 ± 3 3 ± 19
↕ N 2∆ 8.383 0–2

↕
O′ 2Π

} 8.43 0–2 0.0061 ± 0.016 0 0.23 ± 0.32 2.3 ± 12
O 2Σ+

↕ Q 2Π 8.515 0–4 0.0078 ± 0.027 0 0.18 ± 0.5 2.11 ± 8

↕ T 2Σ+ 8.674 1–>3 ⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

0.0009 ± 0.002 0 0.42 ± 6 2.9 ± 23↕ U 2∆ 8.705 0–>3
↕ 5f 8.718 0–3
↕ W 2Π 8.784 1–>2

} 0.008 ± 0.01 0 0.29 ± 0.47 2.3 ± 10
↕ Y 2Σ+ 8.876 0–2
↕ Z 2Σ+ 8.814 0–1 ⎫⎪⎪⎪

⎬
⎪⎪⎪⎭

0.0031 ± 3 6.5 ± 3810 0.046 ± 126 0.67 ± 34↕ 6dδ 8.86 0–>2
↕ 6f 8.885 1–>2
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Figure 11.35: Electron energy-loss spectrum in NO at 30 eV of impacting energy scattered at
90○, extracted from Mojarrabi et al. [655, fig.1:bottom plot]

11.4.6 Argon

As a fundamental gas in noble-gas discharges and lasers, the database for Argon is maybe
the most replete [89, p.348] after Helium. Because noble gases offer accessible assessment of
cross sections both theoretically and experimentally, the number of publications about argon
spans over more than a century. The colossal work of compiling existing cross sections and
giving recommended values was made by Hayashi in 2003 [388]. The most recent review from
Gargioni and Grosswendt [319] gives practical information about where to find databases online
[30, 732], how to inspect experimental data, analytical expression for fitting cross-sections and a
comparison of the most recent data. For detailed information about the renormalisation presently
made to generate analytical fits, please refer to part III section 15.1.4.

From the theoretical side, argon was studied profusely [283, table 2]. We shall only retain
here (i) the recent B-spline R-matrix calculations from Zatsarinny et al. [1002] which were up-
loaded to the lxcat [732] database and compared to the most recent experimental data [175,
491, 883]; and (ii) Gangwar et al. [313] as an example, out of a plethora, of distorted-wave studies.

The ground state electronic configuration of Argon is : (1s2 2s2 2p6 3s2 3p6) 1S0. Its lowest
excited states are structured as represented in the energy diagram in figure 11.36 according to
the progression of the excited electron into the orbitals 4s, 4p, 3d, 5s, etc.

As explained in the review of Boffard et al. [89, §2.1:p.321], the spin-orbit coupling in Ar is
important in the (3p5) ion core, as well as the electrostatic interaction with the excited electron.
Thus, two rivalling coupling schemes (LS and jj, cf. C.1) interplay under the total angular
momentum J = Lc + Sc + ℓe + se between the Ar+ core (c) and the excited electron (e). As a
result, the sublevels seen for each of the orbitals on figure 11.36 are non-degenerate and can all
be resolved within a tenth of an electron-Volt. Most importantly, as opposed to the spectra of
N2 and NO for which there is virtually no mixing between different molecular states within the
same peak, excitation lines of Ar can correspond to a mixture of singlet and triplet states with
the same total angular momentum J (intermediate coupling). This is why, sometimes, it is not
possible to attribute a definite 2S+1LJ configuration (see appendix C) for every excited state [89,
p.354-364]. Instead, the Racah notation is used [388, consult table 1 at the end]: nl[K]oJ , where
K = Lc + Sc + ℓe is the coupling momentum without the spin of the excited electron occupying
the nl orbital. Since the Ar+ core can either be 2P 3/2 or 2P 1/2, a shortcut prime is added as
nl′[K]oJ when the core is 2P 1/2.
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Figure 11.36: Energy diagram of excited levels of Argon

There are four distinct ns at each n > 3. Two are allowed (and mixed): 1P 1 and 3P 1; the
other two are dipole-forbidden [89, p.322]: 3P 2 and 3P 0. The 4s configuration [89, §5.1.2] was
most recently studied by Khakoo et al. [491]. Cross sections from optical emissions for the two
J = 1 allowed states of 4s were reported by Ajello et al. [8] and for all four 5s states by Stewart
et al. [883].

Lc(= P ) + ℓe(= p)
S P D

1S0
1P 1

1D2 0 Sc
+

se

3S1
3P 0

3D1 1
3P 1

3D2 1
3P 2

3D3 1

The np states [89, §5.1.4] form a suite of ten levels. All involve
a mixture of different S and L configurations for J = 0,1,2 except
the state J = 3, which is uniquely defined by the 3D3 triplet to
which transition from ground is spin-forbidden. Despite being all
forbidden at least due to parity violation (ℓ = p ↛ p), practically
all 4p cross section derived from the optical emissions of Chilton
et al. [175] exhibit a high-energy tail not decaying as fast as pre-
dicted by the Born-Bethe approximation. This is a defect due to
the important contribution of cascades beyond 100 eV. It implies
that the direct cross sections are derived as differences between two large values with sometimes
overlapping uncertainties, and thus cannot be used reliably∗. When available, we privileged us-
ing Chutjian and Cartwright [180] renormalised results from relative-flow measurements rather
than optical emissions (see sec. 15.1.4 p. 577 for details about renormalisation).

∗Actually, in some cases [176], the cascade contribution is measured higher than the apparent emission and
thus their difference would yield negative direct cross section values.
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Table 11.9: Electronic transitions from Argon ground state. Optically allowed (↕) are distin-
guished from forbidden (↕̸) transitions characterised by their asymptotic 1/εd trend (d) in brack-
ets. Also given are the energy threshold ∆E . The last four columns gives parameters for sexc
exclusively fitted with the experimental data of Ajello et al. [8], Chilton et al. [175], Chilton and
Lin [176], Chutjian and Cartwright [180], Filipović et al. [282, 283], Khakoo et al. [491], and
Stewart et al. [883]. Keep in mind that the flag signalling overfitting is raised; the 4p and 3d
were sometimes fitted with only 4 data points [180].

(d) ∆E Fitting Parameters
to Ar(X 1S0) (eV) M ∆E/Ryd C a ∣ c b

↕̸ (3) (4s)[3/2] 3P o2 11.55 0.041 ± 0.0064 0.3 ± 0.12 1 4.25 ± 1.9

↕ (4s)[3/2] 3P o1 11.62 0.06 ± 0.03 0.26 ± 0.9 0.1 ± 0.13 0.99 ± 0.77

↕̸ (3) (4s′)[1/2] 3P o0 11.72 0.0086 ± 0.0016 0.26 ± 0.12 1 5.43 ± 2.7

↕ (4s′)[1/2] 1P o1 11.83 0.233 ± 0.07 0.28 ± 0.7 0.11 ± 0.054 1.2 ± 0.5

↕̸ (1) 4p 12.91 0.13 ± 0.08 0.73 ± 4.26 1 0.74 ± 6.43
↕̸ (1) (4p)[1/2]1 12.91 0.00073 ± 0.01 0.12 ± 27 1.24 ± 64 9.14 ± 2070

↕̸ (3) (4p)[5/2] 3D3 13.08 0.14 ± 0.34 1.4 ± 32 8 ± 663 0.5 ± 31
↕̸ (1) (4p)[5/2]2 13.09 0.021 ± 0.009 0.11 ± 1.26 1 10 ± 115
↕̸ (1) (4p)[3/2]1 13.15 0.0041 ± 0.0047 0.1 ± 17 1.08 ± 18 5.2 ± 917
↕̸ (1) (4p)[3/2]2 13.17 0.021 ± 0.0087 1.74 ± 3.38 1 0.34 ± 1.2
↕̸ (1) (4p)[1/2]0 13.27

0.014 ± 0.0082 0.1 ± 3.2 1 5 ± 170
↕̸ (1) (4p′)[3/2]1 13.28
↕̸ (1) (4p′)[3/2]2 13.3 0.016 ± 0.009 0.1 ± 1.74 1 10 ± 168
↕̸ (1) (4p′)[1/2]1 13.33 0.002 ± 0.0033 0.1 ± 15 1.1 ± 14 10 ± 1050
↕̸ (1) (4p′)[1/2]0 13.48 0.3 ± 45 0.1 ± 6.77 0.1 ± 21 1.1 ± 33.9

↕̸ (1) 3d + 5s 13.84 0.37 ± 0.48 1.2 ± 29 10 ± 855 0.5 ± 26
↕̸ (3) (3d)[1/2]3P o0 13.84 0.308 ± 0.17 0.92 ± 1.15 1 1.53 ± 3.13
↕̸ (3) (3d)[1/2]1o 13.86 0.1 ± 0.02 0.63 ± 0.15 1 2.8 ± 0.62
↕̸ (3) (3d)[3/2]2o 13.9 0.23 ± 0.12 0.62 ± 0.82 1 2.61 ± 4.54
↕̸ (3) (3d)[7/2]3F o4 13.98 0.221 ± 0.29 0.1 ± 6.7 0.85 ± 7.9 9 ± 559
↕̸ (1) (3d)[7/2]3o 14.01 0.0032 ± 0.0031 0.13 ± 6.6 1.17 ± 9.9 10 ± 475
↕̸ (3) (3d)[5/2]2o 14.06 0.0094 ± 0.0023 0.27 ± 0.1 1 2.46 ± 1.07
↕̸ (1) (3d)[5/2]3o 14.09 0.0104 ± 0.0034 2.38 ± 1.7 1 0.8 ± 0.4
↕ (3d)[3/2]1o 14.153 0.083 ± 0.39 10 ± 44 0.16 ± 4.3 0.5 ± 0.7
↕̸ (1) (3d′)[5/2]2o 14.21 0.0017 ± 0.0026 0.68 ± 2.97 3.1 ± 19 4.56 ± 8.16
↕̸ (1) (3d′)[5/2]3o 14.24 0.0077 ± 0.002 1.8 ± 1.52 1 0.113 ± 0.3
↕̸ (1) (3d′)[3/2]2o 14.23 0.028 ± 0.008 0.882 ± 0.26 1 0.97 ± 0.49
↕ (3d′)[3/2]1o 14.3 0.093 ± 0.33 7 ± 102 0.4 ± 13 1.04 ± 6.5

↕̸ (3) (5s)[3/2]3P o2 14.07 0.106 ± 0.034 1.35 ± 0.52 1 0.533 ± 0.45
↕ (5s)[3/2]P o1 14.09 0.026 ± 0.007 0.3 ± 6.4 0.18 ± 0.16 1.45 ± 4.44
↕̸ (3) (5s′)[1/2]3P o0 14.241 0.025 ± 0.0055 1.39 ± 0.31 1 0.56 ± 0.23
↕ (5s′)[1/2]P o1 14.255 0.011 ± 0.053 1.97 ± 6 0.1 ± 1.8 0.5 ± 0.24
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Finally, nd states, for which only n = 3 is considered, can be
combined into twelve levels most of which were reported in Chilton
and Lin [176] and Chutjian and Cartwright [180]. Only two states
are pure triplets: 3P 0 and 3F 4; the others are mixtures of singlet
and triplets. For some states – (3d)[3/2]2○ – the asymptotic decay
matched rather d = 3 than d = 1; bespeaking little participation of
the 1D2 singlet in the mixture.

In a similar fashion to the relativistically correct analytical ex-
pressions from Bretagne et al. [106], we attempted to fit the excitation cross sections for Argon
given in table 11.9. Since the levels lie close to each other, we grouped for convenience all 4p
and 3d + 5s excitations into a summed cross section highlighted in grey. The sum of individual
fits was checked to be consistent with the global fit. For allowed transitions from higher excited
states, Bretagne et al. [106, table 1] constructed a more exhaustive set of analytical excitation
cross sections, albeit based on optical oscillator strengths (OOS) from Lee and Lu [568]. Since
then, the set of OOS has not been significantly updated. Thus, we did not attempt any revision
for those higher electron-impact excitations.

11.4.7 Oxygen

No less important is the role that atomic oxygen plays in hot gas channels. Its major impact
consists in catalysing chemical reactions. In gas discharges, it manifests its presence through the
O(3p 5P ) → O(3s 5So) transition located at a magical number ∼ 777 nm. This strong dipole-
allowed line may be seen from space to track optical emissions from lightning activity [e.g. 74,
figs. 1-2], but also in laboratory sparks in order to infer the temperature inside the ionised
channel [e.g. 500, §4.2]. As for collisions with electrons, atomic oxygen offers an important
cooling mechanism in the ionosphere and plasmas in space [437, table 5.1]. Therefore, an accurate
assessment of O(3p 5P ) and other excitations are vital when modelling electron swarms in hot
ionised plasma discharge channels.

The experimental setup for measuring cross sections with atomic oxygen is made difficult
by the need of dissociating a parent oxygen molecule (usually O2 or NO) through a microwave
discharge and then deriving the signals related to O transitions relative to the parent molecule.
Of primary importance is to ensure that the dissociation fraction in the beam is stable in order
to properly deconvolve the energy-loss spectrum.

An example from Kanik et al. [476, fig 2] is shown on figure 11.37. The dissociation fraction
is derived by comparing the ratios of the summed longest, second and third bands of molecular
oxygen when the discharge was on and off. Such experiment was carried by Stone and Zipf [887]
for the first time, measuring however optical emissions instead of energy-loss spectra which can
result in high uncertainties on the derived results due to the difficulty related to normalisation
and proper exclusion of all cascading contributions.

The numerous theoretical and experimental investigations that ensued, were comprehensively
reviewed by Laher and Gilmore [549]. The contemporaneous report by Itikawa and Ichimura [437]
also included elastic and photon emission and absorption cross sections. The most recent update
was made by Johnson et al. [462] to incorporate the advances made by later experiments [227,
461, 476]. It seems that no other experiment has been reported after 2005, despite Johnson
et al.’s [462, §8] call for new measurements.

On the other hand, as for other atoms in general, oxygen has been actively studied theo-
retically. The latest report from Tayal and Zatsarinny [921] incorporated the largest amount of
pseudostates in the (B-spline) R-matrix method. The excellent agreement for some states is con-
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: O2

 : O + O2 

Impact Energy 100 eV
Scattering Angle 10°

Figure 11.37: Electron energy-loss spectrum (at 100 eV and 10○) in an oxygen-nitrogen (19:1)
mixture during and without sustained microwave discharge, adapted from Kanik et al. [476,
fig 2]. Nitrogen is used as a buffer gas in order to raise the oxygen dissociation fraction (reduce
recombination). The atomic bands must be fitted to derive their intensity (area) and then be
compared against the molecular bands.

trasted with unsystematic discrepancies for other transitions where even experimental evidence
cannot lucidate∗.

As a light atom, the states of atomic oxygen can be well described by LS-coupling (cf.
appendix C.1). Its ground state configuration is 2s2 2p4 ∶ 3P 2 which is non-degenerate in J =
2,1,0 in decreasing (rising) order of binding (potential) energy.

Unsurprisingly, there is a complete experimental void of data on those fine-structure split
states [462, 549]. All information rely on theoretical considerations [154]. Following Itikawa
and Ichimura [437], we took the more recent calculations of Berrington [63] near threshold for
collision strengths that we converted into cross sections with a = 3 and b = 0.5 in sexc (11.61) so
that σ ∼ ε3/2 farther from the threshold as prescribed [63, see fig.1 and p.1086§3.].

There are two other valence states which are metastable : 1D2 and 1S0. The most recent
reports come from Doering [220], Doering and Gulcicek [224], Shyn et al. [839], and Shyn and
Sharp [843] with middling agreement and high uncertainty rates. Both excitations are spin-
forbidden ⇒ d = 3, however, this asymptotic trend is not conspicuous in the experimental data

∗‘Lūčidāre’ = bring light, enlighten; it would have been nice if ‘lucidate’ were the intransitive version of the
transitive ‘elucidate’. However, as Latin became vulgarised, its use became slacker.
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Figure 11.38: Energy diagram of excited levels of atomic Oxygen adapted from Itikawa and
Ichimura [437, fig 2.1]. Levels lying above the ionisation continuum are autoionising states.

[437, fig. 5.2]. As a result, the fit to 1D2 had no other choice than to be forceful (meaning that
additional constraints on the parameters had to be imposed in order to get pleasing results cf.
13.2:fig. 13.9).

The Rydberg states populate the n(spdf) . . . ;n ≥ 3 orbitals displayed on the diagram 11.38.
All np series are dipole-forbidden 3P (or spin-forbidden 5P ) while ns and nd series give rise to
allowed ( 3So, 3Do) and spin-forbidden ( 5So, 5Do) transitions from ground. The single (nl′) and
double (nl′′) primed notations refer to the state of the ion core (2s2 2p3) 2Do and 2P o, which
ordinarily is 4So when unprimed (all 2p have parallel spin projections) [462, p.590].

Best known is the (3s) 3So state [461, 476, 958]. Some discrepancies in later measurements
[227, 360] that revealed larger cross sections were pointed out by Kanik et al. [476, p.2662-2663]
and dismissed for an improper extrapolation of smaller angles and thereby an overestimation of
the forwardly peaked DCS.

For the other states: nd series [960], np series [361], 3s′ state [959] and autoionising states
[960], data is comparatively scarcer and uncertain.

The trend underlined by the nd 3Do series [476, 960] is queer. As an allowed transition, it



11.4. ELECTRONIC EXCITATIONS 459

should follow a slow logarithmic falloff. Nevertheless, a peaked structure at 50 eV precludes a
close fit like the one shown in Vaughan and Doering [960, figure 3]. Laher and Gilmore [549,
p.286:§2.3.d] decided to stitch a logarithmic tail above 100 eV.

Presently, we deem this is because all nd 3Do are inevitably contaminated by their spin-
forbidden sibling nd 5Do which lies at most 10meV below, and therefore could not be possibly
resolved within the 50meV spectral resolution of the detectors [476, p.2651]. Spin-forbidden
transitions should indeed present sharply peaked and decaying CS usually located in the imme-
diate threshold’s vicinity > 12 eV, thus around 20�30 eV. Kanik et al.’s [476, figure 3, table 4]
data indeed suggest that this peak would be located below 30 eV, as opposed to Vaughan and
Doering [960, table 4]. Reluctantly, taking these considerations into account, we decided to lump
all nd transitions [960] together, disregard their peak at 50 eV and let the fit take a maximum
nearer threshold at 12.09 eV for all transitions.

Autoionising states reported by Vaughan and Doering [960] had somewhat peaked structures
that could not be fitted simply with the expression (11.61). We allowed a supplementary term
according to the Bethe theory decaying as 1/ε2 and fixed C = 1 and M = fxRyd/∆E from the
optical oscillator strength [225, table 2] fx and the excitation threshold ∆E :

s′a ≡ 4πa
2
0

fx
∆E/Ryd

(1 − (∆E/ε)a)b

ε/Ryd
[ln(4

ε

Ryd
c) +

c′

ε/Ryd
] . (11.68)

Experimental data for ≥ 4s,4p is absent and Laher and Gilmore [549, §2.2] suggested a
scaling method based on the knowledge of fits for lower states and energy level distribution from
quantum defects. We used the optical oscillator strengths of 4s 3So to scale its CS from 3s 3So.
As for forbidden transitions, they are lower in magnitude and scaling is less straightforward; thus
we omitted them.

A summary of the excitation thresholds and cross section fitted presently is available in
table 11.10.

11.4.8 Nitrogen

In molecular form, we started with the most studied target in electron collisions and end presently
with one of the least studied light atoms : nitrogen. So few is the experimental data that it
did not even deserve its own section in Zecca et al.’s centennial review [1006, p.139:§5.3] nor in
Inokuti et al. [425].

Although its study in laboratory for impact excitation from optical measurements preceded
that of oxygen by one year [886], the low signal-to-noise ratio of crossed-beams experiments on
atomic nitrogen is very prohibitive. The reason for this, as Doering and Goembel [222] explain,
is because the dissociation yield of N in microwave discharges is very low ∼ 5%, and also because
the signal can get contaminated by metastable excited states produced in the discharge.

The ground state electronic configuration of N is a quadruplet : 2p3 4So3/2. Of the two
spin-forbidden transitions only the lowest lying 2Do was experimentally studied by Yang and
Doering [992]. The other two previous experiments probed the allowed 2p2 3s 4P [222] and
2s2p4 4P [223]. The 3s 4P transition possesses a core-excited Feshbach-like resonance structure
near threshold at 10.33 eV [867], for which unfortunately not enough data are available in order
to provide a reliable fit.

In contrast, theoretical investigations on atomic nitrogen are bountiful. From early variational
matrix studies for low-energy scattering [928] to Born approximated GOS at high energies [312],
to name just a few examples. Again, we shall retain here the most recent BSR calculations [975],
particularly because their results are readily available on lxcat.
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Table 11.10: Electronic transitions from atomic Oxygen ground state. Optically allowed (↕) are
distinguished from forbidden (↕̸) transitions characterised by their asymptotic 1/εd trend (d) in
brackets. Also given are the energy threshold ∆E . The last four columns gives parameters for
sexc (11.61). The three excitations below the dashed line are autoionising states.

(d) ∆E Fitting Parameters
to O(2p4 3P 2) (eV) M ∆E/Ryd C a ∣ c b

↕̸

(1)
(2p4) 3P 1 0.0196 1.123 × 10−4 1 3 0.5

↕̸

(1)
(2p4) 3P 0 0.0281 6.351 × 10−5 1 3 0.5

↕̸

(1)
(2p4) 3P 0 0.0095 3.5 × 10−6 1 3 0.5

↕̸

(3)
(2p4) 1D 1.967 0.324 ± 29 11.35 ± 16 0.1 ± 21 0.5 ± 4.1

↕̸

(3)
(2p4) 1S 4.19 0.063 ± 0.07 3.03 ± 3.3 1 1.72 ± 2

↕̸

(3)
(3s) 5So 9.146 0.007 ± 0.015 1 ± 2 10 ± 1040 2.43 ± 966

↕ (3s) 3So 9.521 0.048 ± 0.12 2.3 ± 14 0.25 ± 2.3 0.844 ± 0.78

↕̸

(3)
(3p) 5P 10.74 5.89 ± 605 4.97 ± 8.9 0.1 ± 24 0.5 ± 2

↕̸

(1)
(3p) 3P 10.99 0.001 ± 0.001 0.84 ± 0.15 5.15 ± 2.62 5.85 ± 2.9

↕ (nd) 3Do 12.09 0.017 ± 0.15 1 ± 36 1.6 ± 78 9.782 ± 5 × 10−6

↕ (3s′) 3Do 12.54 0.061 ± 0.11 1.1 ± 33.1 0.108 ± 0.5 0.98 ± 7.8

↕ (3s′′) 3P o 14.12 0.086 ± 0.21 0 ± 32 0.18 ± 1.94 2 ± 21

↕ (2s2p5) 3P o 15.66♠ 0.07 ± 2.75 1 ± 0.733 0.1 ± 10 10 ± 357

↕ (4d′) 3P o 16.11 0.02 ± 0.014 1 ± 11 0.27 ± 1.2 10 ± 421

♠ This autoionising state had to be fitted to [960] using (11.68) with a = 3.1±70 and c′ = 10±170
(upper bound constraint)

We decided, for practical purposes, to fit the missing cross sections [(2p3) 2P o, (3p), (3d),
(4p) states and (4s) 4P ] based on calculations provided by Wang et al. [975]. All transitions to
3p, 3d and 4p orbitals, whose excitation thresholds lie close together, were summed and fitted into
one compound cross section per orbital. A summary of our results is presented in table 11.11.
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Table 11.11: Electronic transitions from atomic Nitrogen ground state. Optically allowed (↕) are
distinguished from forbidden (↕̸) transitions characterised by their asymptotic 1/εd trend (d) in
brackets. Also given are the energy threshold ∆E . The last four columns gives parameters for
sexc (11.61).

(d) ∆E Fitting Parameters
to N(2p3 4So3/2) (eV) M ∆E/Ryd C a ∣ c b

↕̸ (3) (2p3) 2Do 2.39 0.213 ± 0.228 3.12 ± 4.1 1 2.28 ± 3.27

↕̸ (3) (2p3) 2P o 3.58 0.07 ± 0.036 1.82 ± 5 5.1 ± 36.2 1.329 ± 0.986

↕ (3s) 4P 10.33 0.271 ± 0.139 1 ± 14 0.39 ± 1.6 10 ± 0.00415

↕ (2s2p4) 4P 10.93 0.085 ± 0.64 5.3 ± 75 10 ± 727 6.7585 ± 0.0011
↕̸ (1) 3p 11.84 0.11 ± 0.053 2.26 ± 4.8 1 0.41 ± 1.23
↕ 3d 13 0.075 ± 0.072 7.106 ± 30 0.477 ± 2 1.085 ± 1.64

↕ (4s) 4P 12.85 0.027 ± 0.024 9.5 ± 37 1.8 ± 18 1.3 ± 11
↕̸ (1) 4p 13.24 0.068 ± 1.51 1.3 ± 12 0.1 ± 4.8 0.5 ± 2.6
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11.5 Impact Ionisation

Impact ionisation is the dominant process by which high-energy electrons interact with matter.
As consequence, a variety of empirical, semi-empirical and approximative theoretical methods
were developed in order to model impact ionisation (see for instance Hahn et al. [380, p.3-
128..9]). The early review of Rudge [793] highlights how much attention the subject was given
and summarises the various approximations and empirical models at the time. A more recent
review, more focused on concrete calculations and results was conducted by Llovet et al. [605].

When an electron collides with a molecule and induces ionisation, a secondary or ejected
electron is freed from the molecular shell and both outgoing electrons are formally defined by
Coulomb waves in the potential of the ion.

The theoretical difficulty is that the primary electron is now coupled to an ionic target
with a continuum of states for the ejected electron [102, eq.(17-18)]. In practice, close-coupling
expansions make use of a large number of pseudo-states whose density is used to approximate
the continuum [662].

Instead of proceeding to a direct resolution of Schrödinger’s coupled equations of the target
and incident electron, the problem can again be circumvented with an approximation valid at
high-energies and extended down to threshold by means of artful adjustments.

Perhaps the most advanced treatment is given by the distorted-wave Born approximation
[97] which uses the incident electron wave distorted by the potential of the neutral target in the
interaction with a target electron. This treatment also properly includes the effect of electron
exchange at lower energies. Despite the complexity of this approach, it was shown many times
in the literature [97, 793, 911] that the major correction provided by the distorted-wave can be
encapsulated effectively in a scaling factor of the cross section which offsets the incident electron’s
energy ε0 by a certain gain of kinetic energy. As a result, considerably simpler methods using
the plane-wave Born approximation with an adequate scaling proved to be invaluable tools to
model ionisation cross sections with great accuracy.

In this section, we present a betterment of the to relativistic binary-encounter Bethe model
of Kim et al. [508] that consist in two major revisions:

1. The inclusion of high-order effects in the dipole term through a coefficient Cd

2. For ionisation from ejection of an electron in valence orbitals, the reformulation
of the partial ionisation cross sections not in binding energies Bo to the (valence)
orbital o of the initial state, but in terms of energy thresholds Ii to excited ionic
states i.

For core orbitals, we still use the binding energy B. To keep a coherent notation, we will
keep the notation “B” for denoting either a binding energy or an ionisation potential.

To start on steady grounds in the following two sections (11.5.1 and 11.5.2), we first remind
the two complementary models of the dipole (Bethe [64]) and the binary encounter (Vriens [967])
approximations to the impact ionisation of electrons on molecules. The revision and concise
review starts in section 11.5.3. Finally, the results for practical applications are best summarised
in table 11.12 of section 11.5.4.
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11.5.1 Generalised Oscillator Strength Density

In this subsection, we underline the fundamental concepts applicable to electron impact ionisa-
tion in the revisited formulation of Inokuti [427]. The notation is adapted to match with the
convention taken in this thesis.

In Bethe’s [64] theory, the concept of GOS for discrete excitations is extended to the “dGOS”:
density of generalised oscillator strength [427, eq.(2.21)] :

dFi(q, ε2)

dε2
≡
ε2 + Ii
Ryd

∑
Ω2

∣ϵε2,Ω2(q)∣
2

(qa0)2
, (11.69)

where q is the momentum-transfer of the primary electron as usual, ε2,Ω2 represent the kinetic
energy and direction of the secondary electron and Ii is the ionisation potential to the state i
of the ion (it may be an excited state or a multiply ionised state in which case, one must also
account for the other ejected electrons). The Rydberg Ryd and Bohr radius a0 are given in
section 7.5.

With this further generalisation of the notion of generalised oscillator strength density over
a continuum of states, the Bethe sum rule seen previously (section 11.4.1), traditionally noted
S(0) implying the ‘zeroth’ momentum of the dipole oscillator strength distribution, can now be
written explicitly [911, eq.(16)]:

S(0) ≡ lim
q→0
∑
a′v′

Fa′v′(q) +∑
i
∫
∞

0

dFi(q, ε2)

dε2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ni

dε2 =∑
A

ZA = N . (11.70)

This result is independent of the value of the momentum transfer q which is maintained
constant in the process of summation/integration.

Moving onward, the doubly∗ differential ionisation cross section (DDCS) is similarly related
to the GOS density as for discrete excitations (11.47):

dσi
dΩ1 dε2

=
4a20
ε/Ryd

dFi(q, ε2)

dε2

Ryd

ε2 + Ii

kk′

q2
. (11.71)

The kinetic energy of the incident electron is denoted ε. This theoretical DDCS should not be
confused with experimental DDCS (p. 492) which are typically in the secondary electron’s energy
ε2 and direction Ω2. Integration through Ω1 (or q equivalently) gives the ionisation cross section
singly differential in ejected electron energy ε2 which behaves asymptotically as a dipole-allowed
transition. The relativistically correct version is:

dσi
dε2
=

4πa20Ryd

mec2β2/2
[
Ryd

ε2 + Ii

dfi(ε2)

dε2
(ln(

2mec
2β2γ2

Ryd
či(ε2)) − β

2) +
dγ̌i(ε2)

dε2

Ryd

ε2
] . (11.72)

The differential optical oscillator strength dfi(ε2)/dε2 is obtained from (11.69) at the limit
q → 0:

dfi(ε2)

dε2
≡

dFi(q, ε2)

dε2
∣
q=0

. (11.73)

The Bethe parameters for the ionisation continuum či(ε2), γ̌i(ε2) which are functions of ε2,
are defined in Inokuti [427, eqs.(4.12, 14&19)]:

∗in direction of the primary electron Ω1 and in kinetic energy of the ejected electron ε2. Adding the distribution
of the direction taken by the secondary electron Ω2 would lead to the triply differential cross section (p. 495).
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ln či(ε2) = 2 ln [(q̄ia0)
Ryd

Ii + ε2
] , (11.74)

dγ̌i
dε2
= −

me

2µ

dfi(ε2)

dε2
−
ε2 + Ii
4Ryd

d2Fi(q, ε2)

dε2 d(q2)
∣
q=0

. (11.75)

The average momentum transfer q̄i, linked to the ionisation process i, is defined as:

dfi
dε2

ln(q̄ia0) = ∫
∞

0

dFi(q, ε2)

dε2
d[ln qa0] − ∫

0

−∞
(
dfi
dε2
−
dFi(q, ε2)

dε2
)d[ln qa0] . (11.76)

If one is not interested in the partial but only in the total ionisation σion cross section, then
it suffices to sum over all possible i (final ionic states):

(d)σion =∑
i

(d)σi (11.77)

In principle, we could thus use the same empirical low-energy modifiers (11.61) on the Bethe
ionisation cross sections and fit the parameters as in the previous section for optically allowed
excitations. This methodology was followed in early times [608, eq.(4)] after measurements of
ionisation cross sections became available.

We do however not choose to proceed to parametric fitting for three main reasons. First,
as we saw in the previous section 11.4.2 for discrete excitation, there is too much arbitrariness
introduced by the parameters, which are not always well constrained (large variance). Second,
ionisation is the dominant energy loss process for incident electrons above the ionisation thresh-
old. We must not allow any form of arbitrariness contaminate the cross sections asymptotically
(through a magnitude parameter like M in eq.11.61b). Third, ionisation requires as input the
differential cross section in secondary electron energy which is not only difficult to fit (because of
its 2D character) but also not necessarily well probed experimentally for all targets considered.
In brief, we seek a consistent theoretical model that would enable us to characterise ionisation
for any of the atmospheric gases considered in this work.

Alternatively, we choose to describe ionisation with two simpler models [503, p.265-6:§2] that
derive from the general Bethe theory.

1. Dipole oscillator ↦ soft collisions

2. Binary encounter ↦ hard collisions

The dipole oscillator is a straightforward approximation from the generalised oscillator when
the momentum transfer is small qa0 ≪ 1 associated with soft collisions, in which case all matrix
elements are calculated from the dipole operator (cf. appendix D.1). The binary encounter [969]
emerged as an impulse approximation from close interaction (small impact parameters) between
the incident and target electrons which involves a significant transfer of energy, associated with
hard collisions.

We will see later in this chapter that a proper alliance of the binary-encounter with the dipole
oscillator models yields remarkably satisfactory results of the total ionisation cross section for a
very broad variety of targets over the whole range of energies. We proceed now by introducing
the binary-encounter model.
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11.5.2 Binary Encounters

When both incident and ejected electrons move fast compared to the kinetic energy of electrons
in bound orbitals, their interaction may be viewed as isolated from their environment. In this
framework, the following assumptions are equivalent:

Impulse Approximation:
Small Impact Parameter:
Pseudo-Free Binary-Encounter:

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

the energy ∆ε lost by
the incident electron
is transferred

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

instantly
locally
entirely

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

to the secondary electron.

This approach takes its roots already from Bohr [90] and Thomson [931]. The energy of the
free incident electron is ε0. The target electron is initially in a bound orbital with an average
kinetic energy U ≡ ⟨p2⟩/2me and a binding energy B > 0. The energies ε1 > ε2 of the outgoing
primary and secondary electrons are bound by the conservation of kinetic energy (neglecting
kinetic energy communicated to the ion):

ε0 = ε2 + ε1 +B (11.78)

During the collision, it is assumed that a kinetic energy ∆ε≫ B is (exclusively) transferred
to the secondary electron. In this framework, the process may be modelled by a modified Mott
cross section (cf. eq.(8.143) in §8.5.5) between a free and pseudo-free electron [507, eq.(14)]:

dσeBe

dε2
=

4πa20Ryd
2

ε0 + κU + ιB

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

direct
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1

(ε2 +∆2)2
+

exchange
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1

(ε1 +∆1 −U)2
−

interference
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ϕB(ε2; ε0)

(ε2 +∆2)(ε1 +∆1 −U)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pseudo-free Mott

+
4U

3
(

1

(ε2 +∆2)3
+

1

(ε1 +∆1 −U)3
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
target electron in motion

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.79)

The modifications introduced roughly account for the potential of the atom/molecule and
the initial kinetic energy U of the bound electron in its orbital [969]:

• The most important one is the quenching of the denominator at low energies:

ε0 replaced with ε0 + κU + ιB ,

where the offset K ≡ κU + ιB represents the acceleration of the electron in the target
potential [605, eq.(8)].

• The kinetic energy ∆ε transferred from the incident to the secondary electron may be
decomposed as ∆ε ≡ ε2 +∆2. The offset ∆2 +U represents the energy that will be lost by
the secondary electron after it escapes from the ion.

• Similarly, the primary, which locally has an energy ε1 +∆1, will lose ∆1 after escaping.
The difference is that the initial energy U of the bound electron is subtracted from the
primary in the exchange and interference terms, instead of appearing in the direct term.
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• Altogether, the energy required for liberating the two (incident and bound) electrons from
the potential of the ion amounts to ∆1 +∆2 + U = K +B + U = (1 + ι)B + (1 + κ)U . The
offset ∆2 may be obtained from the requirement of exchange symmetry ε1 ↔ ε2 between
(ε2 +∆2) and (ε1 +∆1 −U) giving:

ε2 +∆1 −U = ε2 +∆2⇔ (1 + ι)B − (1 − κ)U = 2∆2 (11.80)

Thus, in the square brackets, Mott’s cross section between free electrons is now offset by:

ε2 +∆2 ≡ ε2 +
1 − ι

2
B −

1 − κ

2
U , (11.81)

ε1 +∆1 −U ≡ ε0 − ε2 −
1 − ι

2
B −

1 − κ

2
U . (11.82)

• The additional term behind 4U/3 represents the fact that the bound electron is not mo-
tionless but has an initial (average) kinetic energy U ≠ 0 so that its final energy corresponds
not exactly to the recoil energy due to momentum transfer (h̵q)2/2me [427, eqs.(4.82–9)].

• ϕB is a Coulomb-wave interference term from the Mott scattering (see sec. 8.5.5) between
a free and a pseudo-free electron bound by −∣B∣ to the molecule.

Presently, in (11.79), we took the liberty of introducing two corrective parameters 0 < κ ≤ 1
and 0 < ι ≤ 1, following the discussion presented in the previous chapter section 10.2.2. They
underline the fact that ιB + κU = K are supposed to represent the gain K in kinetic energy by
the incident electron from the attractive potential of the neutral atom/molecule.

Tacitly, this gain was assumed [133] in some binary-encounter theories to be equal to B,
putting ι = 1, κ = 0. Such assumption relies on the plane-wave Born approximation applied to
static potentials of the target with negligible motion of electrons in their bound orbitals (ε0 ≫ U)
and when all other exchange, correlation, polarisation effects can be ignored.

The additional introduction of U in the leading denominator of (11.79) was proposed by
Vriens [967, §II.B:eq.(9)] based on the fact that, setting ι = 1 = κ, this acceleration is exact for
the electron bound to the hydrogen atom. It [κU ] has physically nothing to do with the 4U/3
term inside the square bracket! For more information please consult section 10.2.2 and Vriens
[966, 967].

Furthermore, for atoms beyond the second row (heavier than Neon), Huo and Kim [412,
§III.B:p.1234] suggested that κ ≡ 1/n for n > 2 where n stands for the principal quantum number
of the orbital considered. When treating with molecules, this applies only to atomic (core)
orbitals.

To highlight the conjectural nature of these scalings:

we write ι, κ in (11.79) to remind the reader that the scaling of the incident energy through
ε0 + κU + ιB is purely speculative [793, §4.3] and that numerous corrections and revisions
have been proposed in order to seek improvement [359, 412]. The prefactors ι and κ
are certainly not intended to act as fitting parameters. They serve as a visual guide for
unifying the representations of different variants of the binary encounter model.
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Coulomb-wave interference ϕB The numerator of the interference term in (11.79) comprises
a function ϕB originally stemming from interference between the phases of Coulomb-waves from
two outgoing electrons in (8.144b). Vriens [966] originally introduced it rigorously from the mo-
mentum transfers q and q̃ = ∣k2 −k0∣ (called the ‘exchange momentum transfer’). Unfortunately,
it may not be averaged analytically over an isotropic distribution of initial secondary momenta
k−2. This means that an average value of ϕB must be somehow estimated. Notwithstanding, the
presence of ϕB in (11.79) is controversial since the binary encounter is valid for large momentum
transfers implying ε2 ≫ U . Thus the interference term in (11.79) might rigorously be a more
complicated term whose form is both uncertain but also irrelevant due to the approximative
nature of the binary-encounter model between a free and a pseudo-free electron.

To stay consistent with all the changes introduced in the pseudo-free Mott cross section,
namely ε2 ↣ ε2 +∆2 and ε0 ↣ ε0 +K, we currently approculate ϕB(ε2; ε0) as [793, eq.(4.19)]:

ϕB(ε2; ε0) ≡ cos
⎛

⎝

√
Ryd

ε0 + ιB + κU
ln

ε2 + (ι + 1)B/2 − (1 − κ)U/2

ε0 − ε2 − (1 − ι)B/2 − (1 − κ)U/2

⎞

⎠
. (11.83)

The function (with ι = 1, κ = 1) is plotted in figure 8.4b on page 313 in the section 8.5.5 where
the Mott scattering was introduced. For binding energies in atmospheric targets (B ≳ Ryd), we
can see that the image of ϕB is situated between ∼0.75 and 1, with all minima at ε2 = 0. If we
try to determine the value of ε0 which minimises ϕB(ε2 = 0; ε0), we arrive at a transcendental
equation:

ln
√
x − 1 −

1

x
= 0 ⇒ x =

ε0
B
≈ 9.1863 . . . , (11.84)

that we solved through a simple non-linear root-finder (such as Newton-Raphson’s method [706,
p.274-8, p.633-5]). At this specific energy almost ten times above threshold, the minimal value
of ϕB is given by:

min
ε0

ϕB(0; ε0) =min
ε0

cos
⎛

⎝
2

√
Ryd(ε0 +B)

ε0

⎞

⎠
= cos

⎛

⎝
2

√
Ryd

B

√
x + 1

x

⎞

⎠
at x ≈ 9.1863 . (11.85)

From this value, we can also determine the minimal threshold Bco below which the in-
terference is no longer monotonically increasing in ε2. This corresponds to Bco = 4Ryd(x +
1)/(xπ)2 ≈0.6656 eV.

Since for most targets considered B ∼ Ryd ≫ Bco and the fact that the binary encounter
requires ε0 ≫ B, the assumption ϕB(ε2; ε0) ≃ 1 is tacitly taken in most binary-encounter models
[412, 507, eq.(13-14), eq.(1)].

The great advantage by defining ϕB as (11.83), is that the interference term in (11.79) can
be easily integrated analytically:

∫

ε0−B

2

0

ϕB(ε2; ε0)

(ε2 + (ι + 1)B/2 − (1 − κ)U/2)(ε0 − ε2 − (1 − ι)B/2 − (1 − κ)U/2)
dε2 (11.86)

=

sin(

√
Ryd

ε0 + ιB + κU
ln
ε0 − (1 − ι)B/2 − (1 − κ)U/2

(1 + ι)B/2 − (1 − κ)U/2
)

√
Ryd(ε0 + ιB + κU)

, (11.87)

which will prove useful in the next subsection for studying total ionisation cross sections. For
this, we introduce also the average of the pseudo-free Coulomb-wave interference:
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Figure 11.39: Comparison of the true average numerator of the interference term ϕ̄B(ε0) from
(11.88) and the value used by Vriens [966, eq.(24)] ϕB(0; ε0) from (11.83). Also shown in green
is the weighted average ϕ′B as defined in (11.100) for the binary-encounter-dipole model.

ϕ̄B(ε0) ≡
∫

ε0−B

2
0

ϕB(ε2; ε0)

(ε2 +B)(ε0 − ε2)
dε2

∫

ε0−B

2
0

1

(ε2 +B)(ε0 − ε2)
dε2

=

sin(

√
Ryd

ε0 +B
ln
ε0
B
)

√
Ryd

ε0 +B
ln
ε0
B

. (11.88)

This had not been exploited in the past [358, 966, eq.(24), eq.(4)], where a ‘recommended’
constant value was given but not rigorously calculated, equal to cos(

√
Ryd
ε0+B ln ε0

B ), which actually
corresponds to ϕB(0; ε0): the minimum but not the average. As shown in figure 11.39, this
systematic underestimation has a slow asymptotic convergence toward 1. This will exaggerate
the effect of the interference term [358] which later in figure 11.42 will be shown to be completely
irrelevant in the total ionisation cross section given the approximations taken in the binary
encounter model.

Although very successful at intermediate energies, the binary-encounter model cannot repro-
duce the correct energy dependence of the total ionisation cross section at high energies. This
is due to the fact that it lacks the dipole interaction which is characterised by small momentum
transfers. In the next section, we proceed to combining the advantages of both approaches.
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11.5.3 Binary-Encounter-Dipole

Dipole (11.69) and binary-encounter (11.79) interactions are two complementary ways to concep-
tualise electron impact ionisation on molecules. The former (dipole) describes the global response
of the electronic cloud behaving as a dipole under a perturbation from an external electric field,
whereas the latter (binary-encounter) idealises a local and sudden impact of the incident electron
onto one particular bound electron. Their complementarity can be summarised as:

Theory Impact Parameter b Incident Velocity v0 Momentum Transfer q
Dipole Oscillator Far Fast Small
Binary Encounter Near Fast Large

We see already that both theories rely on the common assumption of fast incident electrons,
that is with energies much greater than the average kinetic energies U of the bound electrons:
ε0 ≫ U . Inokuti [427, §4.4] showed that both models actually derive (in the specific case of elec-
trons as projectiles) as particular cases to Bethe’s theory [64] based on the generalised oscillator
strength density dF (q, ε2)/dq dε2.

The dipole approximation assumes qa0 ≪ 1 while on the contrary the binary-encounter is
based on (h̵q)2/2me ≫ B with a target electron in an orbital at an energy −B < 0.

There have been many early attempts [451, eqs.(7-9)] at constructing a hybrid binary-
encounter + dipole-oscillator model for electron impact ionisation. Although their success was
encouraging, their empirical nature remained an unattractive part. Later, a parameterless model
proposed by Kim and Rudd [507] was able to ally simplicity with effectiveness. The results ob-
tained were satisfactory for a great variety of atomic [506] and molecular [415] targets. In this
section, we present and elaborate on the foundation of this model.

All the present discussion here applies specifically to a subshell containing N electrons each
with an average kinetic energy U , in an atomic/molecular orbital of a binding energy B > 0.
Generalisation to the whole target is straightforward through a summation of those partial cross
sections for each subshell o:

σion =∑
o

σo(No,Bo, Uo) , (11.89)

Construction

To begin with, the binary-encounter-dipole (BED) singly differential cross section (SDCS) for
ionisation dσbed can be viewed asymptotically (ε0 ≫ B) as composed of the dipole oscillator
(11.72) and pseudo-free Mott (11.79) cross sections with different coefficients Cd and CM:

dσbed
dε2

∼
4πa20
ε0/Ryd
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
≡σ̄0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ryd

(ε2 +B)

dfd
dε2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dipole

(ln
ε0
B
+Cd)

+CMNRyd(
1

(ε2 +B)2
+

1

(ε0 − ε2)2
−

ϕB(ε2; ε0)

(ε2 +B)(ε0 − ε2)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pseudo-free Mott

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11.90)
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In line with the main forms encountered in the literature, we follow the assumption ι = κ = 1
for the pseudo-free Mott cross section (11.79) discussed in the previous subsection, which we
recall (see 10.2.2) is the soundest approximation when ε0⋙ B and ε1 ≫ ε2 in the framework of
binary encounters.

We have exposed the simpler non-relativistic form, as the procedure does not change when
generalising to relativistic energies (exposed in subsection 11.5.3). In the original work [507], Cd

was not included, which we add presently to the model. The leading magnitude factor intervenes
in all expressions and will be designated henceforth as σ̄0 = 4πa20Ryd/ε0. After analysis, σ̄ will
be replaced by the rescaled magnitude σ̃ as used in the binary-encounter model [133, 969], which
we define here for later reference:

σ̃0 ≡
4πa20Ryd

ε0 +U +B
, (11.91)

in order to account (roughly) for the acceleration of the incident electron in the potential of the
molecule/atom.

In (11.90), the binary-encounter contribution 4U/3 was excluded because it constitutes a
higher-order term in the expansion at large momentum transfers [427, eq.(4.87)] which (i) may
not be valid in general and (ii) could actually be included mathematically in the dipole term as
we will see in later.

Direct comparison with the asymptotic expression from Bethe’s theory (10.24) shows that
ideally:

Cd
?
= ln(4č(ε2)B/Ryd) ,

CMN
dσM
dε2

?
=

dγ̌

dε2

1

ε0
+O(1/ε20) ?

This does however not bring any help, because the functions č(ε2) and dγ̌(ε2)/dε2 dq depend
on the density of the generalised oscillator strength (dGOS): df(ε2, q)/dε2, which remains unbe-
knownst to us. Furthermore, the dependence of č(ε2) on ε2 would force Cd to become a function
of ε2 which goes against our principles. Also, the pseudo-free Mott cross section involves a term
1/(ε2+B)

2 which is independent from ε0 and so may not be matched to the 1/ε0 term in (11.72).
In other words, no sound conclusion can be drawn from the comparison of the SDCS (11.90)
and (11.72). This is quite logical, otherwise we would have directly used Bethe’s expression, and
would not need to approximate it by a dipole and binary-encounter contribution.

An easier path is to take advantage of Bethe’s parameters and sum rules (11.70), and proceed
instead by comparing the total σi and stopping-power σsi cross sections from ionisation. In
Bethe’s theory, they amount asymptotically (ε0 ≫ B) to:

σi = ∫

ε0−B

2

0

dσi
dε2

dε2 ∼ σ̄0 [(M
2
i −O(

1

ε3.50

)) ln(
ε04ci
Ryd

) +O(
1

ε0
)] (11.92a)

σsi = ∫

ε0−B

2

0

(ε2 +B)

Ryd

dσi
dε2

dε2

∼ 2σ̄0 [(Ni −O(
1

ε2.50

)) ln(
ε0

B̃

√
e

2
) +

∆Ni

2
ln(

ε0(ε0 −B)

B2

e

2
) +O(

1

ε0
)] (11.92b)
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We have introduced the following Bethe parameters which emerge by definition of the differ-
ential oscillator strength. They are reminded here [427, eq.(4.30-1)]:

Ni ≡ ∫
∞

0

df

dε2
dε2 ≠ N (11.93)

M2
i ≡ ∫

∞

0

Ryd

ε2 +B

df

dε2
dε2 (11.94)

ln ci ≡
1

M2
i
∫
∞

0

Ryd

ε2 +B

df

dε2
ln či(ε2)dε2 (11.95)

ln(
B̄

Ryd
) ≡

1

Ni
∫
∞

0

df

dε2
ln(

ε2 +B

Ryd
)dε2 (11.96)

Since the integrals in (11.92) do not run to∞ but stop at (ε0−B)/2, the asymptotic tail [769]
of df/dε2 ∼ 1/(ε2)3.5 may be rigorously removed from Ni and M2

i . For ci, this tail is put aside in
the O(1/ε0) garbage term (this is because of eq.11.127 on page 485 from [427, eq.(4.89)]). The
factor 2 in (11.92b) comes from the contributions of č(ε2) after integration [427, eqs.(4.60-3)].
Also, the integral of the dGOS (Ni) does not fully amount to N , because it does not include
the discrete excitations which are in principle necessary to complete Bethe’s sum rule (11.70).
Finally, the residual ∆Ni represents an average of the dGOS over the kinematically allowed
space:

∆Ni(ε0) ⋅ ln(
ε0(ε0 −B)

B2

e

2
) ≅ ∫

ln( ε0−B
Ryd

)

ln( B2

4ε0Ryd
)

⎡
⎢
⎢
⎢
⎣
−Ni + ∫

ε0−B

2

0

dF

dε2 dq
dε2
⎤
⎥
⎥
⎥
⎦
dq (11.97)

This accounts roughly for the fact that, as the energy due to momentum transfer q becomes
larger than the electron binding energy h̵2q2/2me > B, the probability of ionisation predominates
over discrete excitations. This implies that the Bethe sum when performed at such q is actually
very near N : the actual number of bound electron. The factor e/2 (Euler number/2) is a
correction that incorporates the effect of electron exchange as indicated in Inokuti [427, eq.(4.63)-
§below]. At threshold and asymptotically, this average is constrained as:

0
ε0≃B
←ÐÐÐ∆Ni(ε0)

ε0≫B
ÐÐÐ→ N −Ni . (11.98)

It is nevertheless not straightforward to estimate what shape does ∆Ni(ε0) have. One could
at first guess a typical (N −Ni)(1 − (B/ε0)

a) trend, but this is unrigorous and unproven.
At this point, it is important to highlight the notation presently used:

The Bethe parameters in eqs.(11.93–11.96) are specifically linked to single ionisation events
for the N electrons that are bound by B. This does not include multiple ionisation nor
ionisation through electrons situated on a different subshell (i.e. with binding energies
≠ B).
Their present definition is thus less general than in Inokuti [427] which applies to all
ionisation events.

If we now insert the BED (11.90) into those definitions of σi and σsi, we obtain:

σbed ≃ σ̄0 [(M
2
i −O(1/ε

2
0)) (ln(

ε0
B
) +Cd) +CMNRyd(

1

B
−

1

ε0
− ϕ̄B(ε0)

ln(ε0/B)

ε0 +B
)] (11.99a)

σs,bed ≃ σ̄0 [(Ni −O(1/ε0))(ln(
ε0
B
) +Cd) +CMN (ln [

(ε0 +B)
2

4Bε0
] + 1 −

B

ε0
− ϕ̄′B ln(

2ε0
ε0 +B

))]

(11.99b)
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The weighted average ϕ̄′B is defined as:

ϕ̄′B ln(
2ε0

ε0 +B
) = ∫

ε0−B

2

0

ϕB(ε2; ε0)

(ε0 − ε2)
dε2 , (11.100)

from the interference term in (11.90) and the multiplication by (ε2 +B) in the stopping-power
(11.92b). It is displayed on figure 11.39, where we observe that ϕ̄′B(ε0) > ϕ̄B(ε0), as could be
expected from the multiplication by (ε2 +B) in (11.100). Although ϕ̄′B is not analytical, we can
see that it differs at most 5% from 1 and converges rapidly to 1, so applying ε0 ⋙ B we may
safely replace ϕ̄′B by 1 in (11.99b).

The attractiveness of (11.99) as opposed to (11.92) is that the cross sections properly annihi-
late at threshold ε0 = B (M2

i is annihilated by the O(1/ε20) term), and higher orders up to 1/ε0
are included explicitly. In order to proceed to matching (11.99) to (11.92), the BED model splits
the leading logarithmic term into two parts:

ln(
ε04ci
Ryd

) = ln(
ε0
B
)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
known

+ ln(
4ciB

Ryd
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unknown

. (11.101)

As mentioned before, ci is problematic and is put to the side. Then, the main contribution to
the cross sections in the asymptotic region is bequeathed [507, eq.(34)] to ln(ε0/B). In the limit
ε0 ≫ B, it is found that the 1/(ε2 + B)

2 term of the pseudo-free Mott cross section stemming
from (11.90) has a non-overlookable contribution only in the stopping-power CS. We then arrive
to the wedding ceremony of the binary-encounter and dipole models. When all terms that do
not vanish with ε0 ≫ B are included, we equate terms from the Bethe theory (terms on the left)
and the BED (terms on the right) :

Integral ionisation CS lim
ε0⋙B

σi(ε0) ∶

M2
i (ln(

ε0
B
) + ln(

4Bci
Ryd

)) =M2
i (ln(

ε0
B
) +Cd) +CMN

Ryd

B
(11.102)

Ionisation Stopping-Power lim
ε0⋙B

σsi(ε0) ∶

2Ni (ln(
ε0
B
) + ln(

B

B̄
) +

1

2
−
ln 2

2
) +∆Ni(ε0) (2 ln(

ε0
B
) + 1 − ln 2)

= Ni (ln(
ε0
B
) +Cd) +CMN (ln(

ε0
B
) + 1 − 3 ln 2) (11.103)

⇔ (2N −Ni) ln(
ε0
B
) + 2Ni ln(

B

B̄
) +N(1 − ln 2) = NiCd +CMN (ln(

ε0
B
) + 1 − 3 ln 2)

From the stopping-power cross section (11.103) we get the constraints:

ln(
ε0
B
) term : CM = 2 −

Ni

N
(11.104)

Constant term : Cd = 2 ln
B

B̄
+ 1 −

N

Ni
+ (5

N

Ni
− 3) ln 2 (11.105)

But from the integral cross section, we get a questioned equivalence:

ln(
4ciB

Ryd
)

?
= 2 ln

B

B̄
+ 1 −

N

Ni
+ (5

N

Ni
− 3) ln 2 + (2N −Ni)

Ryd

BM2
i

? (11.106)

The definition of CM = 2 −Ni/N was already established in Kim and Rudd [507, eq.(41)].
Their questioned equivalence [508, eqs.(27-31)] is different from ours (11.106) due to the present
inclusion of the parameter Cd.
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Analytical Dipole-Oscillator-Strength

In principle, the above equations from the binary encounter model can be applied to any target
molecule/atom if the dipole oscillator strength df/dε2 is provided. In practice, this DOS is
known with great accuracy only for a few light atoms: H and He in particular. For more complex
atoms, one needs to proceed numerically or build upon known hydrogenic DOS [974]; although
this reduces the attractiveness of the binary encounter model as easily treated analytically.

As a result, Kim and Rudd [507, eq.(47)] proposed a simple analytical approximation:

dfQ

dε2
= QNB

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

(ε2 +B)2
+
(ε2 +B)

(ε0 − ε2)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
symmetric

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11.107)

which is properly normalised so that its integral gives ∫
∞
0 dfQ = Ni. The function fQ is parametric

in Q, which is defined by [507, eq.(49)]:

Q ≡
Ni

N
≤ 1 , since Ni ≤ N . (11.108)

Various integrals of dfQ/dε2 intervening in the integral and stopping CS can now be calcu-
lated exactly:

∫

ε0−B

2

0

dfQ

dε2
dε2 = QN (1 +

B

2ε0
(1 −

B

ε0
) −

2B

ε0 +B
) = Ni,Q +O (

1

ε0
) (11.109)

∫

ε0−B

2

0

Ryd

ε2 +B

dfQ

dε2
dε2 = Q

NRyd

2B
(1 −

B2

ε20
) =M2

i,Q +O (
1

ε20
) (11.110)

∫

ε0−B

2

0

dfQ

dε2
ln(

ε2 +B

Ryd
)dε2 = Ni,Q ln

B̄Q

Ryd
+O (

ln ε0
ε0
) (11.111)

= Ni,Q (1 + ln
B

Ryd
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ln(B̄Q/Ryd)

(1 +
B

2ε0
) +

Ni,QB

ε0 +B
[
1

2
ln
ε0
B
− 2 ln(

ε0 +B

2Ryd
) − 3] −Ni,Q

B2

2ε20
ln

B

Ryd

From the last line we find a simple proportionality relationship:

B̄Q = eB , (11.112)

that could be verified if the true differential optical oscillator strength were known and inserted
into the definition (11.96) of the ‘mean ionisation energy’ [427, eq.(4.62)].

The questioned equivalence (11.106) now takes a more concrete form:

ln(
4ciB

Ryd
)

?
= −

1

Q
(1 +Q − (5 − 3Q) ln 2) +

2(2 −Q)

Q
=

1

Q
(3(1 −Q) + (5 − 3Q) ln 2) ? (11.113)

We see better now how Q could be adjusted to match the unknown ci Bethe parameter. If
we took Q = 1 that would imply:

ci
?
=
Ryd

B
; (11.114)

a relationship that should not be too difficult to examine in practice for a wide range of targets.
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Relativistic Model

The formula presented in (11.90) can be generalised to the relativistic domain through the
adaptation of the Møller cross section (8.148) to scattering with a pseudo-free electron as done
previously with the Mott cross section. The details of converting from the classical to relativistic
domain are covered in section (10.2.3), where critiques are addressed to the original [508, eq.(19)]
and modified [358, eq.(10)] formulae in the literature. The present version, noted RBED*, takes
the form:

dσRBED*

dε2
=
4πa20α

2

β̃2
Ryd [

1

ε2 +B

dfd
dε2
(ln(

mec
2β20γ

2
0

2B
) − β20 +Cd) (11.115)

+ (2N −Ni)(
1

(ε2 +B)2
+

1

(ε0 − ε2)2
+

1

(mec2γ̃)2
−
(2γ̃ − 1)ϕB(ε2; ε0)

γ̃2(ε2 +B)(ε0 − ε2)
)] .

The parameter Cd has been defined earlier (11.105). As mentioned before, a crucial aspect
of the binary-encounter model (11.90) is rescaling the denominator (11.91) as proposed initially
by Burgess [133]. In the relativistic regime, the incident electron accelerated in the static atomic
potential ε0 +U +B ≳MeV, ideally possesses a velocity linked to the Lorentz parameters:

γ̃ = 1 +
ε0 +U +B

mec2
and β̃2 = 1 −

1

γ̃2
. (11.116)

In contrast, the dipole interaction is considered to act at long ranges where the electron is
not so affected by the molecular potential. Therefore, the Lorentz factors involved in the dipole
term correspond only to the (unaccelerated) incident energy ε0:

γ0 = 1 +
ε0
mec2

and β20 = 1 −
1

γ20
. (11.117)

The generalisation of the interference function to the relativistic domain is less certain (cf.
section 10.2.3), although it is not crucial, since ϕB → 1 for fast electrons. We actually recommend
taking ϕB = 1 because this effect is irrelevant in the model discussed. The approximation
underlying the binary encounter model is far worse that neglecting ϕB, this can be checked
through the two practically superposed negative dotted curves on figure 11.42. Nevertheless, to
soothe the minds that cannot withstand the removal of ϕB from the interference in the Mott’s
modified cross section, we propose∗:

ϕB(ε2; ε0) = cos
⎛

⎝

α

β̃

4

√
γ̃ + 1

2γ̃2
ln
ε2 +B

ε0 − ε2

⎞

⎠
. (11.118)

The slow γ̃ dependence ensures that the velocity does not saturate to 1/α, which would break
the convergence of ϕB → 1 at extreme ε0⋙mec

2.

∗Keeping the ϕB in the notation is at least useful for distinguishing wilful negligence from unaware omission
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Applying the analytical model seen in the previous subsection with the parameter Q, we may
introduce the RBEQ* model:

dσRBEQ*

dε2
=
4πa20α

2N

β̃2
Ryd [(

QB

(ε2 +B)3
+

QB

(ε0 − ε2)3
)(ln(

mec
2β20γ

2
0

2B
) − β20 +Cd) (11.119)

+(2 −Q)(
1

(ε2 +B)2
+

1

(ε0 − ε2)2
+

1

(mec2γ̃)2
−
(2γ̃ − 1)ϕB(ε2; ε0)

γ̃2(ε2 +B)(ε0 − ε2)
)] .

σRBEQ* =
4πa20α

2N

β̃2
Ryd

B
[
Q

2
(1 −

B2

ε20
)(ln(

mec
2β20γ

2
0

2B
) − β20 +Cd) (11.120)

+(2 −Q)(1 −
B

ε0
+
B(ε0 −B)/2

(mec2γ̃)2
−
(2γ̃ − 1)ϕ̄B(ε0)B

γ̃2(ε0 +B)
ln(

ε0
B
))] .

The dipole coefficient Cd(Q) is obtained through (11.105) and (11.111) as :

Cd(Q) =
−1

Q
(1 +Q − (5 − 3Q) ln 2) (11.121)

⇒ Cd(Q = 1) = −2(1 − ln 2) ≈ −0.6137 (11.122)

The average of the Coulomb-wave interference ϕ̄B(ε) results from applying to (11.88) the
replacement of

√
Ryd/(ε0 +B) by α/β̃ 4

√
(γ̃ + 1)/2γ̃2 as in (11.118).

Discussion

In total, the (relativistic) binary-encounter-dipole introduced by Kim and Rudd [507] and Kim et
al. [508] and presently revised has three declinations depending on the choice for dipole oscillator
term f :

RBED RBEQ RBEB
fd fQ fQ=1
? (11.107) (11.107) with Q = 1

Good knowledge of fd is only available for atomic Hydrogen and Helium. We will not use
here any differential dipole oscillator strength for the atmospheric targets presently studied. This
aspect may be deferred to future investigation. Thus, we restrict ourselves to studying the RBEQ
and RBEB sub-models.

There are a number of uncertainties linked to the marriage as declared through (11.103-
11.106). All of them emerge from the fact that the contract was established asymptotically
(ε0⋙ B), but nothing guarantees satisfaction over the whole domain of incident energies∗

In the original RBED model [507]:

1. Kim and Rudd [507, eq.(29)] used the total stopping power cross section including all in-
elastic processes instead of the exact (11.92b) stopping power cross section due to ionisation
only. The reasons for this are (i) the unknown behaviour of ∆Ni (11.97) and (ii) the fact
that ionisation is the dominant process at high energies implying N ≈ Ni.

2. Cd had been totally ignored

3. B̄ had been silently substituted by B in (11.103) which actually is its lower boundary.

∗This is one of the major causes of discrepancies in physical hybrid models: a miscorrespondence between
asymptotic and ordinary behaviour.
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Figure 11.40: Comparison of the RBEB sub-model variants for molecular (top) and atomic
(bottom) oxygen. The limitations of the RBEB model is due to the imposition of Q = 1.
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4. It is not clear whether df/dε2 should be symmetric with respect to exchange in order to
bring better accord of the CS near threshold.

5. The analytical approximation to df/dε2 in (11.107) might not be correct asymptotically.
Formally, it seems that [769]:

lim
ε2→∞

df

dε2
∼

1

(ε2 +B)7/2
, (11.123)

whereas the DOS as defined in (10.25) behaves as 1/(ε2 +B)2 asymptotically. This results
in a mismatch of the higher-order correction terms of M2

i and Ni as can be compared in
(11.109 vs. 11.92b) (11.110 vs. 11.92a).

6. In general, all higher order O(1/εn0) ∶ n ≥ 1 terms in (11.99a) are not guaranteed to
correspond properly to the Bethe theory (11.92a).

7. Minor details were disregarded such as Coulomb-wave interference which was approximated
by ϕB → 1 and generalisation to relativistic energies. This was discussed in section 10.2.3.

Presently, we have tried to push the consistency of the model one step further by using
the symmetric form of the DOS and incorporating a correction stemming from a multiplicative
constant in the logarithmic term in incident energy: (ln(ε0/B) +Cd) in (11.90) and determined
by (11.105). In the list above, these corrections correspond to addressing points 2,3,4 and 7.

In figure 11.40, we show what effect do these corrections bear on the model in the case of
O2 and O. Here, we compare four different versions of the RBEB sub-model with the analytical
DOS (11.107) and Q set to 1.

⧫ RBEB♮ represents the original unaltered∗ RBEB of Kim et al. [508] with the symmetrised
version (including exchange) of the DOS (11.107), addressing only point 4 above.

⧫ RBEB♭ represents the non-symmetrised version (excluding exchange) of the DOS (11.107),
addressing none of the points above. The flat ♭ was chosen because the symbol does not
have a symmetric shape and that the values taken by the cross sections are systematically,
albeit slightly, lower than with the symmetrised DOS version.

⧫ RBEB♯ represents the model linked to a

df

dε2
=
Ni(5/2)

B
[

1

(ε2/B + 1)7/2
+

1

(ε0/B − ε2/B)7/2
] , (11.124)

DOS in accordance with Rau and Fano [769] and Inokuti [427, eq.(3.31)], which addresses
the points 4 and 5 above. The sharp ♯ was chosen because the symbol is (can be idealised
as) symmetric and that it yields higher values of the cross section at lower energies <100 eV.

⧫ RBEB* is the version including both Cd and the symmetric shape of the DOS, addressing
points 2,3,4&7 above. The asterisk * is just a way to represent that the model is newer
(but not necessarily better) and perhaps more cumbersome.

⧫ A dash-dotted −⋅− line is a variant of the preceding RBEB*, in which B̄(ε0) is allowed to
be a function of ε0 according to the integral (11.111), and thus making Cd ↣ Cd(ε0) also
dependent on ε0. This corresponds, very loosely, on probing point 6 in the list.

∗hence the “bécarre” ♮ symbol
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We can observe on figure 11.40a that all expressions rapidly converge asymptotically except
RBEB♯ because of an unreasonable choice for df/dε2 in shape, though we tried to incorporate
its predicted asymptotic behaviour. This results in an overestimation of the coefficient M2

i

multiplying ln ε0/B in (11.92a).
Then, above 300 eV, the best performance is obtained by RBEB∗ thanks to the inclusion of

Cd. The collapse of the Born approach in Bethe theory at energies nearing threshold is seen by
the utter separation of the dash-dotted (−⋅−) and solid aquamarine (—) curves which respectively
include and neglect the monotonically increasing behaviour of Cd(ε0) with incident energy in
virtue of (11.105) through B̄(ε0) in (11.111). Although the allowance of Cd(ε0) as a function
(dash-dotted −⋅−) gives the best agreement down to 300 eV, its departure from accuracy at low
energies is caused by an improper treatment of higher order terms of 1/ε0 in (11.99).

The least unsatisfactory models below 300 eV are the original RBEB♮ and non-symmetric
RBEB♭. The latter, which from a formal point of view is the crudest of all models, is slightly
better than the former. This is because taking Q = 1 is prone to instigate overestimation of the
CS everywhere and especially at low energies. Hence, removing the symmetrical contribution
from the DOS (11.107) will mathematically reduce this overestimation.

Which of those models is the best? This is an ill question from the outset since all of them
are compared with the assumption that Q = 1 which is certainly not true for O2 due to the
very important presence of the Schumann-Runge continuum (optically allowed) in the electron
energy loss spectrum (cf. figure 11.32b of previous chapter). This entails that a non-negligible
contribution in the Bethe sum of the GOS (11.70) is occupied by electronic excitations making
Ni only a fraction of N = 16 at ε0 ≳ B.

Furthermore, when comparing to experimental results, there can also arise differences due to
the contribution of:

a) Auto-ionisation from states above the first ionisation threshold. This occurs when sub-
valence orbital electrons are excited to a Rydberg orbital or to the valence orbital if it is
not fully occupied. This contribution is represented for atomic oxygen by the sunny yellow
line (—) in figure 11.40b. It more or less accounts for the underestimation of the RBEB♮
sub-model.

b) Ionisation to excited ionic states that are not accounted by ionisation from a subshell.
This could be for example ionis/excit-ations to either one of the B,D or C states of N+2
because all of them are assumed (from the electron configuration table of Lofthus and
Krupenie [607, p.121]) to be mixtures involving at least one state with the 1πg orbital
occupied∗. For atomic oxygen, this effect (expounded later) can be best apprehended by
comparing the solid (—) and dash-dotted (−⋅−) lines on figure 11.40b. An example of
partial contributions from excited ionic states of atomic nitrogen is given by the dashed
(- - -) lines in figure 11.41a.

c) Ionisation from low lying metastable states present in the gas beam. This is typically the
case of atomic nitrogen data, as seen on figure 11.41, from the contribution of the N 2Do

metastable state, believed to be present in Brook et al.’s [117, table 5] experiment due to
the method used to produce atomic beams. Apparently, the contamination of metastable
states for oxygen is not as high [930, 1010] and thus good agreement (cf. fig. 11.40b) can
be obtained just by using ionisation from its ground 3P state.

Kim and Desclaux [506] considered these three additional aspects when comparing the RBEB
to the measured total cross sections for ionisation of C,N and O atoms (see fig. 11.41b).

∗N2 ground state’s last occupied orbital is 3σg < 1πg.
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Once again, compelling agreement was obtained within the framework of the approximation
and the uncertainty of the experimental conditions. This result is nonetheless at the cost of
complexifying the model which now has to involve a weighted sum of excitations that lead to a
different excited state of the ion.

For a fixed electronic configuration, the final state of the ion may correspond to a certain
LS coupling (total ionic orbital and spin momentum, see appendix C.1). Assuming that the
probability of excitation to one of the states is proportional to its multiplicity (2L + 1)(2S + 1),
the weighted sum of the direct ionisation (not including auto-ionisation) is [506, eq.(2&3)]:

σdirect =
1

Nmult
∑
LS

(2L + 1)(2S + 1)σLS , (11.125)

where Nmult = ∑LS(2L + 1)(2S + 1) is the summed multiplicity of all ionic states with a
different LS state.

As an example, we take atomic nitrogen [506, table I] which can be ionised in the three
following ways (five if fine-structure is taken into account) for the (2s2 2p2) configuration:

N(2s2 2p3) 4So3/2 → N+(2s2 2p2)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3P 0 (14.53 eV),
3P 1 (14.54 eV),

3P 2 (14.55 eV)
1D2 (16.43 eV)
1S0 (18.59 eV)

(11.126)

At the same time, the orbital structure of the N ground-state atom is [506, table II]:

Orbital B (eV) U (eV) N
1s1/2 425.469 598.726 2

2s1/2 25.828 65.656 2

2p1/2 15.439 51.094 1.0025

2p3/2 14.534 51.034 1.9975

Originally, Kim and Desclaux [506] used the ionisation potentials of the excited states in
(11.126) as B and the U and N values in the table above. It is nonetheless not clear whether the
only orbital used was 2p3/2 (with B replaced) or whether inner orbitals 1s, 2s were also included,
and what was done with the 2p1/2 orbital (included, modified, discarded?).

In order to bring clarification and simplification of this procedure, we propose to restructure
the input values in the RBEB model. First, we quote a fundamental aspect of the model:

“
”

Kim and Desclaux [506, §II.B]

[...] the target data [B, U , and N ] used in [the RBEB model] are those for the initial
state only. No final-state data are used explicitly, except indirectly through the ionization
energy B.

As a consequence, we decide to reverse the logic of the model and take the point of view
of the final ionic state. Instead of viewing a target (atom or molecule) as a structured set of
electrons bound in orbitals with different average kinetic energies, we propose to conceptualise it
as a set of open-channels with different activation thresholds B that lead to a determined final
state of the ion.

This interpretation is the correct one regarding the dipole oscillator strength: the B in (11.90)
now corresponds to the ionisation potential Ii as defined and used in the original Bethe theory
(11.72). For the binary-encounter model this represents a shift of perspective:
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Upon meeting a bound electron, the incident electron asks:
Initial-state →“What is the price of your freedom (Bo) ?”
Final-state →“What should I pay (Ii) in order to leave your ion in tranquillity ?”

We see that the question of ionisation is now posed to the target as a whole, instead of a
single electron. This is a more pertinent question since the ion may be left only in a determined
state. In case of molecules, this may even lead to a vibrationally excited state! Thus it is not
important to know necessarily the structure of the initial state rather than the open-channels
that lead to ionisation.

To reinstate this new perspective into the RBEB model we propose to use the statistical
multiplicity (2L + 1)(2S + 1)/Nmult as the new factor determining the number of electrons N in
a virtual subshell. Therefore, we now have:

Orbital Transition B (eV) U (eV) N

1s1/2 425.469 598.726 2
(2s)−1 → N+ 5So 20.34 65.656

(1)⋅5
40 ⋅ 2 =

1
4 = 0.25

(2s)−1 → N+ 3Do 25.97 65.656
(2⋅2+1)⋅3

40 ⋅ 2 = 3
4 = 0.75

(2s)−1 → N+ 3P o 28.08 65.656
(2⋅1+1)⋅3

40 ⋅ 2 = 9
20 = 0.45

(2s)−1 → N+ 1Do 31.42 65.656
(2⋅2+1)⋅1

40 ⋅ 2 = 1
4 = 0.25

(2s)−1 → N+ 3So 33.78 65.656
(1)⋅3
40 ⋅ 2 =

3
20 = 0.15

(2s)−1 → N+ 1P o 35.22 65.656
(2⋅1+1)⋅1

40 ⋅ 2 = 3
20 = 0.15

(2p)−1 → N+ 3P 14.545 51.094
(2⋅1+1)⋅3

15 ⋅ 3 = 9
5 = 1.8

(2p)−1 → N+ 1D 16.43 51.034
(2⋅2+1)⋅1

15 ⋅ 3 = 15
15 = 1

(2p)−1 → N+ 1S 18.59 51.034 1⋅1
15 ⋅ 3 =

1
5 = 0.2

This perspective is now tested on figure 11.41a to be compared against the original perspec-
tive reference 11.41b below. Two differences arise. First, the N+(2s1 2p3) contribution in our
version 11.41a, seems to have been lumped together in the ‘Partial, N+(3P )’ of Kim and De-
sclaux’s figure on 11.41b-right [506]. Second, we used a very crude approximation to account
for auto-ionisation from the N(2s2p4) 2D state which systematically underestimates the one in
figure 11.41b-left. Besides these differences, the correspondence is quite good. We may thus
conclude that the change in perspective (final-state instead of initial-state) is a useful shortcut
since it is mathematically equivalent though conceptually different.

We recommend thus that the orbital structure of targets be now interpreted with regards
to the probability of producing an ion in a certain final state. This very simplistic perspective
overlooks the complexity of determining which orbital did the ejected electron come from and
whether the interaction perturbed other neighbouring electrons to the point of switching orbitals
and/or flipping their spin, and whether they could have exchanged places with the incident
electron, etc. In brief, it completely bypasses the realm of quantum physics as unfolded through
Schrödinger’s equation of the electron-molecule compound.

Overall, we must recall that the binary-encounter-dipole model is only defined so as to an-
nihilate at threshold (ε0 = B) and adjusted to decay asymptotically (ε0 ≫ B) as predicted by
the Bethe theory. Therefore, the gap in the region of interest ε0 ≳ B is filled in a completely
blind manner! Yet, the original model works astonishingly well even when none of the aforemen-
tioned issues are addressed duly. Notwithstanding the success of the RBEB sub-model, it was
repeatedly apprised in Kim and Desclaux [506] and Kim et al. [508, §II.D, §II.B&C] that it is
not clear how the simplicity of the model might compromise the exactitude of results obtained.
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(a) Final-state perspective: Reinstated RBEB♮ model where B corresponds now to ionisation potentials
that lead to a particular ionic state LS and N to its statistical ratio.

(b) Initial-state perspective: Data from Kim and Desclaux [506] where a weighted sum (11.125) of different
final ionic states LS is used.

Figure 11.41: Comparison of the original RBEB♮ with experimental for atomic nitrogen which is
believed to contain a 70% N 4So3/2 and 30% N 2Do mixture due to the production method used.
The N2Do also includes auto-ionisation from the N(2s2p4) 2D state.
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Figure 11.42: Decomposition of the RBEB model illustrated for Argon. The dashed (- - -) line
shows the effect of rescaling the leading denominator through (11.91) or (11.116). The dipole
contribution (−⋅−) is separated from the binary-encounter (BE ⋯). The main effect of the RBEB*
revision is to change the shape of the dipole term through the Cd coefficient (11.105) added to
the logarithm ln ε0/B in (11.120). The binary-encounter contribution (⋯) is further decomposed
in the direct+exchange terms of the pseudo-free Mott cross section (11.79) and the interference
where the effect of ϕB (11.118) is of lowest importance.

Conversely, as we saw with our revisions, the search for deeper accuracy through corrective terms
can unravel the simplicity of the model, its attractiveness and even its accuracy. We may already
formulate a pre-conclusion:

Imposing Q = 1 severely restrains the improvements that can be made on the binary-
encounter-dipole model and the physical conclusions that can drawn from its practical
application.

If we wish to preserve the present improvements proposed so far, we must explore the con-
cealed secrets behind the success of the RBEB model. To this end, we first decompose the equa-
tion (11.120) underlying the model as shown in figure 11.42. We see that the most important
ingredient is the rescaling of the cross section’s denominator through (11.91) or (11.116). Next,
the dipole and binary-encounter terms are complementary: the former dominates asymptotically
while the latter determines the near-threshold behaviour. The binary-encounter is moderated
by the (negative) interference term. A synthetic view of the RBEB model is given below.

Incident velocity Main ingredient, lowers the CS at ε0 ≲ 4(U +B) by more than 80%.
rescaling Critical for proper near-threshold behaviour.
Dipole Slow asymptotic tail of the cross section (ε0 ∼ 10keV⋙ B)

Sign of derivative at threshold determined by Cd.
Binary-encounter Dictates the behaviour at threshold
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Direct : 1/ε0 asymptotic tail.
Exchange : 1/ε20 asymptotic tail.
Interference : negative ln(ε0)/ε

2
0 asymptotic tail.
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Figure 11.43: Cd(Q) dipole offset in
RBEQ* model from (11.121) as a func-
tion of Q.

Finally, our revised RBEB* model implies a signifi-
cant reduction of the dipole term through Cd < 0 which
even induces negative values near threshold. We recall
here from (11.121) that Cd(Q) is a monotonically de-
creasing function in the range Q ∈ [0,1] taking its min-
imum minCd ≈ −0.6137 at Q = 1 and annihilating at
Q ≈ 0.8 as shown here-against (fig.11.43).

This demonstrates already that the distinction be-
tween dipole and binary-encounter contributions is
blurred at low energies. The behaviour of Cd(Q) as
a function of Q is crucial in determining the effect of Q
on the RBEQ sub-model.

We illustrate how the partial ionisations from dif-
ferent shells scale with Q in two comparative graphs in
figure 11.44a for RBEQ♮ and 11.44b for RBEQ* mod-
els. At first sight, it would seem that the RBEQ♮ and
RBEB* react oppositely to the adjustment of Q. A
closer inspection reveals that this is not inherently true
because they both increase near threshold and decrease
asymptotically when Q → 0 is tuned down. Their radi-
cal difference lies in the crossing point εQ at which the curves switch trends with Q. For RBEQ♮
this point εQ ≃ 2B is much lower than for RBEQ* (εQ > keV). This time, if we compare quali-
tatively the matching of experimental data by the shapes, we see that the revised RBEQ* has a
much better adjustability to the single non-dissociative ionisation of N2 than the original RBEQ♮.
We can also deduce that there is not a univocal correspondence between the orbital ionised and
the dissociative ionisation. Explicitly, some ionisation events from the 2σu subshell of N2 lead
to dissociation while others not. There is a branching ratio associated with each ionic excitation
channel involved. The dissociation energy [228] of N+2 is at ≃15.58+8.72=24.30eV. In the exper-
imental data [596, p.62-3:table 5.1.44] shown on 11.44, the onset of dissociative ionisation starts
around ∼30 eV. This dissociative process may either be direct or come from predissociation (cf.
appendix D). For core K-shells (1σ), dissociation is systematic due to an “Auger shower” and
“Coulombic explosion” to put it in Berkowitz’s [62, p.216:bottom] terms.

From this analysis, we can conclude that taking Q ≃ 1 might not necessarily be a good
assumption since the RBEQ* sub-model is sensitive to Q and as opposed to the original RBEQ♮,
the missing percentage to the completion of Q = Ni/N is directly reflected on the value of the
cross section. For molecules which have a manifold of optically allowed excitations including
auto-ionising states, the contribution of ionisation (i.e. Ni from 11.93) can be an underwhelming
fraction ofN , the total electrons in a subshell that figuratively participate in a set of open-channel
reactions. This will clarified in the next section.

In order to ensure that all partial cross section be positive near threshold, we need to make
an additional amendment regarding Cd(Q). In principle, Q < 0.8 will guarantee that all cross
sections are positive. However, this restriction on Q is unfounded and cannot be applied.
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match the partial ionisation cross sections, their sum reproduces more or less the total cross section.
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(b) The RBEQ* sub-model is quite sensitive to Q and its maximum increases as Q decreases. This trend
reverses at the crossing point εQ beyond 1 keV.

Figure 11.44: Behaviour of RBEQ with the parameter Q for two shell groups of molecular
nitrogen. Those are compared to experimental data for partial (single and dissociative+double)
ionisation from Lindsay and Mangan [596, table 5.1.44].
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There are only two options that are at our disposal for the time-being.

i. Cd be multiplied by a quenching factor → Cd ⋅ (1 − b(B/ε0)
a), where a and b would need

to be determined.

ii. The total dipole + binary-encounter cross section be enforced to zero where otherwise it
would be negative.

Option i. is intuitive but is not flawless, and its ad hoc character is somewhat deterring.
Here lies an opportunity to reconcile the ionisation threshold law of the RBEQ* model with
the Wannier [976] theory that may be examined in future investigations. Presently, since all
considerations were based asymptotically, we do not recommend to succumb to the empiricist’s
secret weapon of ad hoc magic. We simply recognise that the limitative aspect of our approach at
low energies and decide to opt for the amendment ii. For total ionisation cross sections, this will
not pose any problem since the constraints require that the summed cross section be positive.
However, when applying to a subshell by subshell analysis, there are some unforeseen risks that
have to be tackled.

Before we close this section, we now unveil what property made the RBEB♮ an unbeatable
opponent in simplistic yet accurate modelling of electron impact ionisation. In his seminal review,
Inokuti [427, eq.(4.25) and (4.89)] discloses the fundamental behaviour of the unknown ln či(ε2)
parameter seen previously in (11.72):

Ryd

ε2 +B

dF

dε2
ln či(ε2) ∼ N (

Ryd

(ε2 +B)
)

2

. (11.127)

This formula clearly expounds the connection point and complicity between the dipole and
binary-encounter models. To strike the minds of the readership, the mathematical layout (11.128)
can help.
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We now get to another corner of the binary-encounter-dipole model, where one doesn’t know
well what to do with the ∆Ni residue as defined by (11.97) which is necessary to patch the correct
integral total (11.102) and stopping-power (11.103) cross sections for ionisation. This is to say
that although asymptotic relations are well determined, there is much leeway left in the region
of interest ε0 ≳ B. Why does the binary-encounter seem to complement well the dipole term
even in non-asymptotic regions is subject to further questioning. Likely, it stems from the fact
that at lower energies, the partition of energy is more equal between the secondary and primary
electron, which validates the use of the binary-encounter cross section meant to be used at large
energy transfers ε2 ≲ (ε0 −B)/2 (also see discussion in 10.2.2).

There are still many ways one could try to deepen the consistency of the binary-encounter-
dipole model, nevertheless, it is not certain whether this would lead to a significant and sys-
tematic improvement over the results obtained; given the number of approximations and ad hoc
modifications introduced...
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11.5.4 Cross Sections

We now quietly leave the realm of scientific pondering and go back to practical purposes: the
determination of total, singly and doubly differential ionisation cross sections.

We provide total (11.120) and singly differential (11.119) cross sections by our revised
RBEQ* model, with all parameters tabulated in table 11.12.
For simulating angular scattering of the secondary electron Ω2 = (θ2, φ2), we propose a
provisional sampling method (11.132).
Angular scattering of primary electrons Ω1 = (θ1, φ1) = (θ+, φ+)

a is deterministic (in θ1)
according to the relativistic binary encounter model (2.60) but neglecting the kinetic
momentum of the bound electron.

aNotations differ slightly between part I and part II

Total cross sections were determined from the RBEQ* model represented by (11.120). A
constrained fit on Qo was performed for each subshell/open-channel o of the atomic or molecular
target. The constraints imposed were the following:

a) Qo=1 = 1

b) 0.1 ≤ Qo ≤ 1 ∀o > 1

c) minNi ≤ ∑
o
No ⋅Qo ≤maxNi

Here, all K-shells are represented by o = 1, their contribution to ionisation is so minimal that
it is not pertinent to try to perform a fit on the Qo=1 parameter involved. Besides, if a very
unlikely K-shell excitation happens, it is most probably going to lead to ionisation. It is hard
to imagine that an electron that came from a K-shell would be stuck in a Rydberg state, since
the instability of the hole in the K-shell would inevitably cause (multiple) auto-ionisation and
dissociation in molecules. In general, Qo = 1 for core o orbitals.

For the remaining subshells, the lower boundary 0.1 of Q is arbitrary. Even though it is
evident that such a low value is unlikely, for practical purposes, it is safer to leave the algorithm
realise itself that such a value would give an absurd result.

The sum on the product of Qo and No is the most effective of the constraints. The values
minNi and maxNi reflect the knowledge we have about Bethe sums of a given molecule or atom.
Those values are determined from the optical oscillator strengths tabulated in Berkowitz [62].
The maximum maxNi = N −∑x fx is simply the subtraction of the discrete excitations fx from
the total electron number N in the target. The minimum minNi = ∫ dfi(q, ε2) is the derived
integral of the differential oscillator strength over a region of probed energies.

For atoms, an even finer constraint on Qo was possible by subtracting the sum of oscillator
strengths fx pertaining to excitations from a given orbital configuration. For argon, the sum of
fx for excitations from the 3p orbital is at least 0.8. Since, the 3p subshell is populated by 6
electrons, we constrained its Q value as (16.53 − 12)/6 < Q3p < (6 − 0.8)/6. The lower boundary
comes from the minimal value of the oscillator strength from ionisation and the twelve electrons
in lower < 3p shells. An overview of subshell constraints for O and N is given in the descriptive
list below.

With these constraints, we performed a least-squares minimisation algorithm on the most
recommended experimental values of ionisation for all the atmospheric gas targets. A summary
of the fits is presented in table 11.12 and displayed in figure 11.45. The table also includes the
revisited orbital/open-channel structure described in the discussion of the previous section.
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A glossary of the bibliographic sources for each element is given below. Most of these data
are also available online on Kramida et al. [539].

N2 B – Lofthus and Krupenie [607, p.198:table 3] : average of observed values

U – Hwang et al. [415, p.2958:tab. I] and Santos et al. [805, p.4215:tab. 1] for core K-shell

Ni – Berkowitz [62, p.100:table 9]

O2 B – (1σ) [565], (2σg) [318], Edqvist et al. [259, p.27:table I] for the rest

U – Hwang et al. [415, p.2958:tab. I] and Santos et al. [805, p.4215:tab. 1] for core K-shell

Ni – Berkowitz [62, p.107:table 11]

NO B – (1σ, 2σ and 3σ) averages from Davis and Shirley [211] and Edqvist et al. [260,
table 2]; for the rest, representative values of the band onsets

U – Hwang et al. [415, p.2958:table I] and respective U from O2 (1σ) and N2 (2σ) for
deepest core.

Ni – Berkowitz [62, p.113:table 14]

Ar B – Jolly et al. [464, p.444] (2s and 2p) and Williams [983]; average over orbitals as
B(np) = 1

3B(np1/2) +
2
3B(np3/2).

U – Santos et al. [805, p.4215:table 1] for K-shell and calculated averages ⟨∣−ih̵∇Ψ(r)∣2⟩/2me

from analytical Slater orbitals Ψ(r) of Koga et al. [523].

Ni – Berkowitz [62, p.84:table 3]

O B – Kim and Desclaux [506, p.6:table II] (1s and 2s) and Moore [658] for 2p open
channels

U – Kim and Desclaux [506, p.6:table II] for 2p open channels the values are arbitrarily
chosen from 2p1/2 and 2p3/2 orbitals∗.

Ni – Doering et al. [225, p.84:table 3] and Tayal and Zatsarinny [921, table II] optical
oscillator strengths
(2s2p5) 3P o = 0.07 O+(4P )

channel(3s′′) 3Do = 0.086 subtracted
from the

O+(2P o)

(3s′) 3Do + (4s′) 3Do = 0.071 O+(2Do)

(3s) 3So + (4s) 3So + (3d) 3Do + (4d) 3Do = 0.093 O+(4So)

N B – Kim and Desclaux [506, p.6:table II] (1s and 2s) and Moore [658] for 2p open
channels

U – Kim and Desclaux [506, p.6:table II] for 2p open channels the values are arbitrarily
chosen from 2p1/2 and 2p3/2 orbitals∗.

Ni – Goldbach et al. [338] optical oscillator strengths
(2s2p4) 4P = 0.085 subtracted from the 2s orbital
(3s) 4P + (4s) 4P + (3d) 4P = 0.373 N+(3P ) channel

In principle, the RBEQ* model can also be applied for metastable excited states of the gases
covered here. However, the knowledge of the oscillator strengths from excited states is very
reduced. In that case, it might be more desirable to recur to the RBEB model with Q = 1 as
done by Laricchiuta et al. [561].

∗The exact value is irrelevant, we recall that U is an ad hoc representation of the acceleration of the incident
electron in the potential of the atom.
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The only case where the contribution of ionisation from a metastable specie is non-negligible in
experimental data is with atomic nitrogen as seen from the least agreeable result on figure 11.45-
bottom-right. Since the specie mixture is unknown in the experiment of Brook et al. [117], we do
not presently try to fit the RBEQ* model because of (i) the ambiguous dependence of the cross
section both on Q, (ii) the mixture percentage and (iii) possibly non-negligible contribution from
auto-ionisation [506, §III.B]. Therefore, the Q values for N in table 11.12 are not least-squares
fits but subtractions from known optical oscillator strengths [338] of discrete excitations below
the ionisation potential. The interested reader may like to consult recent R-matrix calculations
of impact ionisation of atomic nitrogen [182, 465].
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Figure 11.45: Ionisation cross sections yielded by the RBEQ* model (solid) calculated with the
parameters in table 11.12 and compared to the RBEB♮ model (dashed - - -). For atomic oxygen,
the dash-dotted (−⋅−) line shows the sum with the auto-ionising states, and for atomic nitrogen:
the weighted sum of the N 2Do metastable state including its auto-ionisation. Experimental data
are extracted from Inokuti et al. [425, p.65-6:tables 2.6.5, 6] and Lindsay and Mangan [596, p.60-
1, 62–4, 67-8:tables 5.1.42, 44, 46] for the circles (•), from Shen et al. [831] (N2), Brook et al.
[117] (N,O) and Schram et al. [814, 815] for the crosses (×) and Rapp and Englander-Golden
[768] for the triangles (△).
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Table 11.12: Ionisation parameters for the revised RBEQ* model described in section 11.5.3 and
equations (11.119-11.120). B : Binding energy, U : Average kinetic energy, N : effective number
of electrons in the orbital or reaction, Q = Ni/N : OOS ratio of ionisation / excitations.

subshell/open-channel B (eV) U (eV) N Q

N2 (X 1Σ+g ) 12.512 ≤ Ni ≤ 12.84 = 14 − 0.682
²
b 1Πu

− 0.471
²
b′ 1Σ+u

1σ 409.50 603.30 4 1
2σg 37.30 71.13 2 0.76 ± 0.19

(2σu)
−1 → N+2(B

2Σ+u) 18.72 63.18 2 1.00 ± 0.05

(1πu)
−1 → N+2(A

2Πu) 16.74 44.30 4 0.938 ± 0.014

(3σg)
−1 → N+2(X

2Σ+g ) 15.58 54.91 2 0.792 ± 0.011

O2 (X 3Σ−g ) 15.784 ≤ Ni ≤ 15.801 = 16 − 0.179
²

SR

− 0.020
²
Rydberg

1σ 543.80 796.20 4 1
2σg 40.33 79.73 2 0.96 ± 0.27
2σu 27.05 90.92 2 1.00 ± 0.21

(3σg)
−1 → O+2(B

2Σ−g ) 20.30 71.84 2 1.00 ± 0.11

(1πu)
−1 → O+2(A

2Πu) 17.08 59.89 4 1.00 ± 0.02

(1πg)
−1 → O+2(X

2Πg) 12.07 84.88 2 0.9314 ± 0.0021

NO (X 2Πr) 1.413
²

Auto-ionisation

+12.759 = 14.172 ≤ Ni ≤ 15

1σ 534 796.2 2 1
2σ 401 603.3 2 1
3σ 32.1 76.55 2 1.00 ± 0.29
(4σ)−1 → NO+(B, B′, . . . ) 21.848 77.04 2 1.00 ± 0.26
(1π)−1 → NO+(A′, A, W, . . . ) 18.370 55.37 4 1.00 ± 0.09

(5σ)−1 → NO+(a 3Σ+, . . . ) 15.730 62.25 2 0.60 ± 0.08

(2π)−1 → NO+(X 1Σ+) 9.260 65.27 1 0.970 ± 0.004

Ar (X 1S) 16.53 ≤ Ni ≤ 17.173 = 18 − 0.827
²

11.623�15.755eV
1s 3203.00 4229.00 2 1
2s 326.30 683.10 2 1

2p (= 1
32p1/2 +

2
32p3/2) 249.13 651.00 6 1

3s 29.30 103.5
3

a 2 0.85 ± 0.15

3p (= 1
33p1/2 +

2
33p3/2) 15.76 78.03

3
a 6 0.804 ± 0.009

O (X 3P 2) 7
®

Arbitrary

≤ Ni ≤ 7.69 = 8 − 0.154
²

3s,3s′,4s,3d,4d

− 0.156
²

Auto-ionisation

1s 562.878 796.1890 2 1.0
2s 33.913 84.7620 2 0.965 ± 0.035

(2p)−1 → O+(2P o) 18.630 70.8825 1.2 0.928 ± 0.005

(2p)−1 → O+(2Do) 16.932 68.5050 2.0 0.9645 ± 0.0035

(2p)−1 → O+(4So) 13.610 69.1400 0.8 0.6b
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Table 11.12: Ionisation parameters for the revised RBEQ* model described in section 11.5.3 and
equations (11.119-11.120). B : Binding energy, U : Average kinetic energy, N : effective number
of electrons in the orbital or reaction, Q = Ni/N : OOS ratio of ionisation / excitations.

subshell/open-channel B (eV) U (eV) N Q

N (X 4So3/2) 6
®

Arbitrary

≤ Ni ≤ 6.542 = 7 − 0.271
²

3s

− 0.085
²
2s2p4

− 0.027
²

4s

− 0.075
²

3d

1s 425.469 598.726 2 1.0000
2s 25.828 65.656 2 0.9575

(2p)−1 → N+(1S) 18.590 51.100 0.2 1.0000

(2p)−1 → N+(1D) 16.430 51.094 1.0 1.0000

(2p)−1 → N+(3P ) 14.544 51.034 1.8 0.7930

a division by principal quantum number, see Huo and Kim [412, §III.B:p.1233-4] and Tanaka
et al. [911, eq.(29)]

b the algorithm converged to 0.4±0.04, which seems too low. Due to the uncertainty on the
contribution of auto-ionising states, we selected the value manually while maintaining Q
fixed for the other open-channels.

Singly Differential Cross Sections

The formula (11.119) represents the cross-sectional distribution in secondary electron kinetic
energy ε2 for a given incident energy ε0, commonly known as the singly differential cross section
(SDCS). Since the two emerging electrons after ionisation are indistinguishable, they should have
the same distribution. The function (11.119) is indeed symmetric around the mirror energy at
ε2 = (ε0 −B)/2 = ε1. The energy distribution of the primary electrons ε1 is obtained through the
reflection:

dσi
dε1
(ε1, ε0) =

dσi
dε2
(ε2 = ε0 −B − ε1, ε0) . (11.129)

A comparison with experimental data [343, 721, 837] is given in figure 11.46 for N2.
Experimentally, SDCS are obtained by angular integration of doubly differential CS (DDCS)

displayed in the next subsection on figure 11.47. Those DDCS are hard to probe at large and small
angles [343, p.543:right-bottom]. In order to derive pertinent SDCS, a good angular resolution of
the DDCS is required or assistance from a smoothing procedure based on semi-empirical models
to extrapolate the DDCS throughout the whole angular range. This is problematic partly due
to enhanced backscattering [792, eq.(10)] which is due to dipole interaction [503, p.269:§4] and
subsequent recoil of the secondary from the ion.

As discussed in the following subsection p. 492, the data of Opal et al. [721] at low ε0 ≲ 50 eV,
are dubious at small and large angles θ2 of the secondary electron. As a result, there is a
systematic discrepancy of about 50% lower than the data reported by Shyn [837] as shown
by the purple triangles (▲) on figure 11.46. Nonetheless, at higher energies ε0 ≳ 200 eV, the
agreement between Goruganthu et al. [343] and Opal et al. [721] is good.

For an adequate comparison with the experimental data, the energy of primary electrons ε1
had to be blended seamlessly into the distribution of the secondaries which are summed over all
partial ionisation SDCS:

dσi
dε2
=∑

o

dσBo

dε2
. (11.130)
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Figure 11.46: Singly differential cross section for molecular nitrogen at different incident electron
energies ε0. For synopsis, the energy of the secondary electron ε2 on the abscissa is normalised
according to the available energy ε0− I0, with the ionisation threshold at I0 = 15.58 eV. Energies
beyond 0.5 simply correspond to energies of primary electrons ε1 > ε2. Solid curves are calculated
with dRBEQ* (11.119) and compared with Goruganthu et al. [343] (▸), Shyn [837] (▲) and Opal
et al. [720] (◂).

The binding energies Bo for each orbital o (or rather ionisation channel) are tabulated in
11.12. One must therefore beware that signals of primary electrons which underwent a higher-
lying ionisation event Bo > I0 than the ionisation threshold I0 = 15.58 eV are included in the
region ε2/(ε0 − I0) < 0.5. For instance, primary electrons which emerge from excitations to
the A2Πu (16.74 eV) and B2Σ+u (18.72 eV) states of N+2 are counted in the region below (ε0 −
15.58 eV)/2. The discontinuity at 50 eV around 0.37 in figure 11.46 comes from the impossibility
of having ionisation events from the inner orbital 2σg with B2σg = 37.3 eV with ε1 > 12.7 eV. The
experimental data does not reveal such a drop, implying perhaps that the ionisation from this
inner shell is presently overestimated.

The trends of the SDCS with respect to the incident ε0 and secondary ε2 energies are quite
simple. At small impact energies ε0 ≲ 3I0, a flat distribution signify an overall even repartition
of kinetic energy. For higher ε0, the curves decrease steeper as ε2 rises, implying that the energy
is split unevenly. Most of the energy is kept by the primary and a small part is given to the
secondary. This is very compatible with the Bethe theory comprising far-range dipole and close-
range binary-encounter interactions as given by the RBEQ* model (11.119). Departures from
this model are obvious as ε0 and ε2 become small, i.e. a few times the ionisation threshold. This
is discussed more in detail in the following subsections p. 492–495.
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Figure 11.47: Double differential scattering cross sections in secondary electron energy ε2 and
polar angle θ2 for N2 at various energies of the incident electron ε0. Experimental data come from
◂–[721]; ▲–[837] and  –[177]. When ε2 becomes appreciable, above the ionisation threshold, the
binary encounter model may be identified as a local maximum on a broad bump. The translucid
triangles give the exact location classically determined by the binary encounter model from the
kinematic relationship (11.131) between a free and a pseudo-free electron.

Doubly Differential Cross Sections

At a fixed emitted energy ε2, we may choose to observe the direction of the primary Ω1 or of
the secondary electron Ω2. The former is bound to the generalised oscillator strength density
as described at the beginning of section 11.5.1. Experimentally though, it is easier to observe
the latter, ejected electrons’ angular distribution (in Ω2), since we need to measure ε2. These
secondary DDCS reveal two main features (see 11.47):

• the ‘binary encounter’ peak (ε2 ≫ I): corresponding to a simple kinematic relation between
two free electrons once their energies after collision ε1, ε2 are known (see also chapter 2 on
66),

cos θ2 =
ε2 + I/2
√
ε0ε2

; (11.131)

• a “backward rise” (ε2 ≲ I): may be due to dipole interaction or more complex effects, such
as interference, exchange or intensified interaction and correlation with the ion core.

Those features do not always appear both on the same graph at a fixed ejected energy ε2.
The binary peak is more prominent when ε2 is high above the ionisation threshold I, where the
binary collision assumption is more valid. On the other hand, the “backward” rise corresponding
to recoil scattering (see next subsection p. 495) increases as ε2 decreases below I. The trends
are well explained and summarised in Ehrhardt [261].
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Figure 11.48: Double differential scattering cross sections in secondary electron energy ε2 and
polar angle θ2 for helium at an incident energy of ε0 = 100 eV which is roughly 4 times above
the ionisation threshold IHe ≈ 24.6 eV. There are two types of discrepancies between the data of
Opal et al. [720, p.216] (◂), Shyn and Sharp [840] (▲) and Müller-Fiedler et al. [681] (9): one
comes from normalisation to an absolute scale [840, p.560:right column], the other by inaccuracy
at small and large angle scattering (away from 90○) [791].

Data for doubly differential cross sections are mainly available for helium [31, 262, 342,
681, 817, 840]. The first survey over various target gases (He,N2,O2, noble gases, important
diatomic and some polyatomic molecules) was made by Opal et al. [721] and tabulated in [720].
Nevertheless, a subsequent survey by DuBois and Rudd [233] revealed serious discrepancies at low
incident energies ε0 and forward and backward scattering angles (away from 90○). These can be
seen on figure 11.47&11.48 where the data of Opal et al. [721] (◂) are compared with Shyn [837]
and Shyn and Sharp [840] (▲), DuBois and Rudd [233] (▸) and Müller-Fiedler et al. [681] (9).
Rudd and DuBois [791, p.29-30] attributed this discrepancy to an inadequate estimation of the
electron-gas interaction volume and to the low angular resolution (10○–15○) in the experiment.
At higher energies ε0 > 200 eV this disagreement is reduced and the results may be compared
well with theory, in particular with the Born approximation above 1 keV [233, fig. 3].

Examples of prominent binary peaks can be seen when both ε0, ε2 ≫ I; on figure 11.47 for
N2 on the lower curves in the middle ([721]–◂) and bottom ([177]–•) graphs . The validity of
the binary encounter is confirmed by a correct alignment of the predicted central position of the
peak (coloured triangles) from equation (11.131).

Gradually, as ε2 diminishes, the binary peak drowns into a meagre knoll [343, fig. 3], and the
angular distribution becomes almost isotropic (upper curves on fig. 11.47), which invalidates the
binary encounter model.
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In the region where the incident electron’s energy is just a few times above the ionisation
threshold ε0 ≲ 4I, there is a transition from binary (higher ε0) to backward (lower ε0) scattering
regimes. This can be seen on figure 11.48 for helium at an incident energy of ε0 = 100 eV ≃ 4IHe =

4 × 24.6 eV. The exact position of the supposed maximum from the binary collision is however
difficult to establish, due to the important scatter among the experimental data. Although a
peak is visible somewhere at intermediate angles (50○–70○), it may not be simply attributed to
binary kinematics as through (11.131), which would predict a more pronounced peak, as seen
by the coloured triangle patches on figure 11.48. The inter-electron repulsive Coulomb force
actually increases this angle between the outgoing electrons and causes the secondary electron
to be scattered more toward 90○. This is known as ‘post-collision interaction’ and is illustrated
by the shift in scattering angle on figure 11.49 in the following subsection p. 495 as well.

At lower ε2, backward scattering is well enhanced for He in figure 11.48 on Müller-Fiedler
et al.’s (9 [681]) and Shyn and Sharp’s (▲ [840]) measurements but absent in Opal et al.’s (◂
[720]) due to the discrepancy discussed above. The same can be said about N2 (fig. 11.47-top)
at ε0 =50 eV, were this discrepancy is the most striking.

Ab initio calculations of the angular distribution from ionisation events is complicated by
the coupling of the scattered electron’s wave with the states of ionisation continuum (comprising
the ejected electron). On the other hand, use of approximative methods is quite restrictive
[996, §4.2.1.1]. Due to the long-range Coulomb interaction with the ion, the wavefunction of the
scattered electron is significantly distorted. Only at high energies (≳30×the ionisation threshold),
may this distortion be neglected by use of the plane wave Born approximation. Furthermore,
one can then make use of a distorted wave instead of a plane wave to get reasonable agreement
[605, §2.2.3]. Still, the improvement is lowered down to at most 15 times the ionisation threshold
but does not yield reasonable results at lower energies.

This is why semi-empirical or fully empirical formulae are widely used in order to represent
DDCS. Tahira and Oda [904] compared the results from a pure plane wave approximation, a
binary-encounter model and a scaled Born approximation; the latter giving the least disagreeing
results.

A simple analytical yet accurate formula is still greatly sought after, in order to model an-
gular distributions from impact ionisation. The two features described above can be empirically
modelled by Lorentzian profiles [790] for the binary-encounter peak and a simple ∝ cos2 θ term
for the backward rise [503, eq.(20)]. Experimental angular distributions complemented by the-
oretical calculations were tabulated for helium by Kim [502]. Similar data could exist for other
targets (depending on the availability of experimental data).

Although we did not explore any further, we surmise that there could exist more developed
models for computing DDCS from impact ionisation [177, §3]. For instance, some authors of ex-
perimental studies provide coefficients of Legendre polynomials that fit their experimental data
[343, 681, tab. 13, tab. IX]. We leave the search for analytical DDCS up to future investigation.

In the mean time, for Monte Carlo simulations we will use a crude averaging:

cos θ2 =
ε2

ε2 +B

ε2 +B/2
√
ε2ε0

+
B

ε2 +B
(1 − 2x) , (11.132)

where B is the binding energy of the secondary electron and x represents a sample of a random
variable uniformly distributed on [0,1]. The resulting distribution is simply a square window
(shifted toward larger angles) that shrinks as ε2 ≫ B.
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Figure 11.49: Triply differential cross section from impact ionisation of molecular nitrogen’s outer
valence shell (1πu, 3σg and also the deeper 2σu) for electrons scattered at an angle of −6○ and at
an energy of ε1 = 500 eV after the event (adapted from Lahmam-Bennani et al. [550, fig. 1]). The
consecutive plots show how the angular distribution of the ejected electron (dσ(Ω2; ε2)) varies
with respect to its energy ε2. The main lobes experimentally observed correspond to the ideal
situations of electron binary-encounter peak and recoil (back)scattering from the ion core.

Triply Differential Cross Sections

The ideal full description of the ionisation process should be given by the triply differential cross
section in secondary energy ε2, angle Ω2 and primary angle Ω1 from which all quantities can be
derived [503, p.264:eqs.(1-5)]:

dσDDCS

dε2 dΩ2
= ∫

dσTDCS

dε2 dΩ2 dΩ1
dΩ1 (11.133)

dσSDCS

dε2
= ∫

dσDDCS

dε2 dΩ2
dΩ2 (11.134)

σion = ∫
dσSDCS

dε2
dε2 (11.135)

As usual, the primary (1) and secondary (2) electrons are conventionally defined as ε1 > ε2.
Probing the TDCS requires a very sophisticated experimental apparatus correlating detections
of primary and secondary electrons that emerged from the same ionisation event. The resolution
and accuracy of measurements greatly improved over time [263, 550, 810, 817], in particular at
small scattering angles of the primary electron θ1 < 10○.

Triply differential cross sections provide an invaluable means of probing the momentum dis-
tribution in electronic orbitals of atoms and molecules [978]. This is done by measuring TDCS
in a symmetric configuration where ε1 = ε2 and varying the azimuthal φ (non-coplanar) and/or
polar θ (coplanar) angle [996, Chapter 4:§4.2].

An example of recent TDCS for impact ionisation of N2 is shown in figure 11.49 from Lahmam-
Bennani et al. [550]. As an important update to the introductory discussion in subsections 11.5.1–
11.5.3, when considering angular distributions, impact ionisation may actually be categorised
[550] into three regimes:

• Dipole interaction : q, Ω1, and ε2 all small
Weak interaction of the incoming electron classically dashing by at large distances.
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• Binary-Encounter peak : q ≃ k2

Local interaction between a free and a pseudo-free electron, this corresponds to the ‘Bethe
ridge’.

• Recoil peak : q, Ω1 small but ε2 large, i.e. q < k2
This implies that the recoil momentum ki of the ion is comparable to −k2.

The first two regimes (also referred to as ‘soft’ and ‘hard’) are relatively well understood
and described in the previous sections. The binary lobe (oval shape in forward scattering on
figure 11.49) is useful to derive information about the momentum distribution of electrons that are
ejected from a certain orbital [996, §4.2.2:p.111–117]. Additionally, a binary lobe corresponding
to ejection of an electron coming from a np orbital will be split into two sub-lobes.

Recoil scattering on the other hand remains poorly understood other than the fact that it
results from complex interaction with the ion whereby a significant momentum of the secondary
is imparted to the ion which ‘recoils’ with ki. The ejected electron is then backscattered at
θ2 > 90

○ which defines the ‘recoil lobe’ on figure 11.49. It must not be understood as a regime
not fully comprised by the now-classical soft dipole and hard binary models. Recoil concerns
mostly what happens with the secondary electron after the primary has left. Although the Born
approximation (upon which the dipole and binary encounters are founded) does predict a recoil
lobe, it is nevertheless quantitatively off the experimental chart, as seen by dash-dotted −⋅−lines
on figure 11.49. Most impressive is to see some apparent contradictions about the magnitude of
the recoil lobe derived from experimental surveys.

At earlier times it was observed in general that:

“ ”
Ehrhardt [261, p.191:§iii.]

For high ε2 ≥ 20 eV the binary peak represents a very high portion of the cross section.
The recoil peak practically vanishes.

whereas recent experimental investigations reveal rather that:

“ ”
Lahmam-Bennani et al. [550, p.5:§(i)]

For the outer orbital of N2, [...] the experiments reveal the opposite, i.e. an increasing
[recoil-to-binary] ratio with increasing ejected electron energy ε2.

To clarify this, we may draw a “territory” chart 11.50 in a ε0, q
2 map that delimits the

applicability of each of the three (dipole, binary, recoil) domains above. At each point, there are
two supplementary degrees of freedom that delineate a subspace: namely the secondary electron’s
kinetic energy ε2 and the momentum transferred to the ion ki. These degrees of freedom, which
are also critical for delimiting the different regimes, blur the boundaries defined and tune the
respective contributions of the binary and recoil lobes.

The dipole approximation is a Born approximation (high energies ε0⋙ B) with small mo-
mentum transfers q ≪ 1. At larger q, the untruncated oscillator strength in the Bethe theory
should be used (higher multipoles) and this description encompasses the impulse approximation,
as discussed previously 11.5.3 and in Inokuti [427, §4.4].

The impulse approximation is embodied by the binary encounter with larger momentum
transfers that exclusively correspond to the ejected electron’s kinetic energy ε2 (this third di-
mensional aspect is missing in 11.50). Nevertheless, as ε2 increases and becomes comparable to
the energy of the primary ε1, the electrons interact for a longer time during their escape. This
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Figure 11.50: Domains of different regimes
of electron impact ionisation with atoms and
molecules in a map showing the incident mo-
mentum k0 and the momentum transfer q. The
shaded area is physically unreachable (q > 2k0).
The dashed line represents the limit of symmet-
ric scattering k1 = k2 at q2 = (k20 −2meB/h̵

2)/2.
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overall widens the angle between them both, and produces a shift of the binary lobe compared to
the classical direction as can be seen on figure 11.49 for the plots in the middle and especially on
the right. This inter-electronic repulsion is technically designated as “post-collision interaction”
(PCI) implying that this shift results from long-range coulomb repulsion even far away after the
ionisation has taken place [200]. PCI effects are most important when both electrons flee at
similar velocities, thus in symmetric scattering conditions.

Conceptually opposite to PCI, recoil is characterised by small angle scattering but comparable
momenta of ejected electron and ion core : k2 ≃ ki. This corresponds to an enhanced interaction
of the secondary electron with the ion whereas the primary has left the scene. It is impossible
to delimit a region in the (k20, q

2) space alone which would strictly pertain to binary or recoil
scattering since both are present over a broad range of ε2 with variable amplitudes. The binary
lobe is enhanced when ε2 increases but while q remains substantial. If, on the contrary, the
primary angle of scattering θ1 becomes too small, then the binary model collapses and the recoil
lobe takes importance [996, p.117]. This is the situation represented in figure 11.49. We remark
that this is where the contradiction [261, p.191:§i] vs. [550, p.5:§i] dwells.

At low incident energies, the interaction is more complex and the bilobed binary-recoil struc-
ture of the TDCS vanishes. We do not know what terminology applies to this situation, but it
physically corresponds to a complex ternary electron-electron-ion interaction with various cou-
pled channels and interferences.

Although variably successful methods of calculations exist for computing the TDCS [936],
even under the Born approximation, it is out of the scope of the present thesis to include those
as a modelling of impact ionisation.
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11.6 Total scattering cross section

The five sections of this chapter, about elastic, rotational, vibrational/resonant, electronic and
ionisation collisions enable us to culminate our research so far to the construction of “grand total”
cross sections of electrons with six atmospheric gas targets.

11.6.1 Low-energy : experiments

In order to make the set consistent with experimental data of total cross sections, we remind
that in 11.1.5, we constructed what we call a residual elastic cross section σre (encompassing
rotational excitations) so as to sum, together will all other inelastic processes, to the grand total
cross section σtot. The latter has been obtained from a weighted average of carefully selected
measurements from the most up-to-date experiments available. The results can observed on the
graphs of figure 11.51.

We selected experimental data based on the extensive reviews of Brunger and Buckman [124]
and Zecca et al. [1006] and also from more specific reviews [865] for NO. Once selected, the total
cross section σtot was averaged on a logarithmically spaced (but rounded to three significant
digits) array of kinetic energies according to the uncertainties sm of the measurements m:

σtot(ε) =
∑m σm/s

2
m

∑m 1/s2m
(11.136)

These are the purple curves (—) shown in graphs of figure 11.51. Measurements are available
usually up to a few keVs. Beyond a certain point at ε>, one needs to find a way for extrapolation.

11.6.2 High-energy : theory

At high energies, the total cross section may be approximated by the sum of the inelastic cross
section in the Bethe theory as revisited by Inokuti [427, §4.3:eqs. (4.55–6)] and the elastic cross
section in the Born approximation (11.9) to combine into a well-known Born-Bethe expression
[424, 428, eq.(13), eqs.(1–2)]:

σ̃tot(ε) = σ̃inel
±

Bethe-Inokuti

+ σ̃el
¯

Born-Inokuti

(11.137)

=
8πa20

mev2/Ryd
(M2

tot [ln(β
2γ2 4ctot

mec
2

2Ryd
) − β2] +

γtot
mev2/(2Ryd)

)

+
2πa20

meṽ2/Ryd
(Ã +

B̃

meṽ2/(2Ryd)
+

C̃

(meṽ2)2/(2Ryd)2
) (11.138)

=
4πa20α

2

β2
(M2

tot [2 ln(2k) + ln ctot − β
2] +

γtotα
2

β2
) +

πa0α
2

β̃2
(Ã +

B̃

k̃2
+
C̃

k̃4
) (11.139)

Born parameters in the last rows of table 11.13 are fits to integral cross sections of elastic
scattering as explained earlier in section 11.1.4.
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Figure 11.51: Total cross sections constructed from weighted averages of selected experimental
data (N2, O2, Ar) and from a patchwork of recommended values and calculations (NO, O, N).
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structure O(3P 0,1) → O(3P 2) transitions. The linear
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(g) This cross section comes mainly from the BSR
calculations of [975] up to 200 eV, apart from some
inelastic excitations and ionisation (see sec. 11.4.8).
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Table 11.13: Bethe and Born parameters, separated in the middle by a vertical line, for
atmospheric species. The last column is the energy ε> at which junction is made between the
asymptotic expression and the actual value of the total CS.

M2
tot ln ctot Z ln B̄ Ã B̃ C̃ K (eV) ε> (keV)

N2 4.70 0.400 14 9.70 129 −271 74900 342 6
O2 4.40 −0.0900 16 11 149 −381 167000 412 6
NO 4.29 0.0765 15 10.3 139 −296 24900 296 1.25
Ar 4.33 −0.400 18 35.6 246 −530 4340000 1910 10
O 2.15 0.111 8 11.6 57.7 −116 8250 238 10
N 2.26 0.334 7 9.96 54.3 −111 4340 180 10

Air 4.63 0.295 14.5 10.1 134 −296 136000 372 –

The Bethe parameters, gathered in the first rows of table 11.13, are obtained from analytical
parameters describing impact ionisation and electronic excitations (allowed and forbidden) in
the following way [427, eqs.(4.42, 43&52)]:

M2
tot =∑

i

M2
i,i +∑

a

Ma , (11.140a)

M2
tot ln ctot =∑

i

M2
i,i ln ci,i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ionisation

+∑
a

Ma ln ca

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
allowed

+ ∑
b

Mb

´¹¹¹¹¸¹¹¹¹¶
dipole forbidden

, (11.140b)

γtot ≃ −
3

4
Z +Z (ln(B̄α2/β2) − 1) . (11.140c)

The number Z ≡ ∑iNi represents the total number of electrons in the molecule (all atoms
comprised).

Ionisation The dipole matrix elements from ionisation M2
i,i and the parameter ln ci,i, for each

partial ionisation channel indexed by i, can be found from the RBEQ* model in sec-
tion 11.5.3 which we remind here:

M2
i,i =

QiNiRyd

2Bi
(11.141)

ln ci,i = ln
Ryd

4Bi
+

1

Qi
(3(1 −Qi) + (5 − 3Qi) ln 2) (11.142)

The values of the ionisation number Qi, the number of bound electrons Ni, the binding
energy Bi; all parameters of the RBEQ* model, are to be found in table 11.12 on page
490. The definition of the “average binding energy” B̄ in the last equation (11.140c) is
unclear from its sudden apparition in Inokuti [427, eq.(4.52)]. We would need to rederive
the original formula to confirm whether it can merely be taken as the average:

B̄
?
=

1

Z
∑
i

NiBi ,

which is the value that we used and reported in table 11.13.

Allowed The oscillator strength fa of an allowed excitation is linked to the magnitude factor
Ma as through the excitation threshold ∆Ea as :

fa =MaRyd/∆Ea .
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Tabulated values of this magnitude as well as the parameter ca for allowed excitations are
dispersed throughout the tables (11.6,11.7,11.8,11.9,11.10,11.11) in section 11.4. (Look for
the rows headed by the symbol ↕ for optically allowed transitions.)

Forbidden Only dipole-forbidden transitions contribute to the second parameter ctot (11.140b)
through their magnitude Mb coefficient also found in the tables mentioned above. (Look
for the rows headed by the symbol ↕̸ and a forbiddance degree d = 1)

Bethe parameters from a gas mixture are combined through a sum of the parameters in
(11.140) weighted by the ratio xg of each species g in the mixture.

11.6.3 Connection

To extend the cross sections to high energies ≳ 5keV, where measurements are unavailable, we
added a connection point with the expression for the total cross section from Bethe’s theory.
There are two possible choices of for the junction located at ε> which may be visualised on
figure 4.3 in the chapter 4 of the previous part page 118:

∎ σtot(ε>) = σ̃el(ε>) + σinel(ε>) : replace only the elastic CS σel by the Born approximation
σ̃el but leave the inelastic CS as the exact sum of individual processes : σinel = ∑i σi.

In this way, the elastic cross section is replaced by the Born approximation (11.9) at ε>,
but the inelastic cross sections are kept as their exact sum.

● σtot(ε>) = σ̃el(ε>)+σ̃inel(ε>) : replace both the elastic and the inelastic by their high-energy
approximations (Born-Inokuti 11.9 and Bethe-Inokuti 11.139).

Then, the total cross section may be fully extrapolated analytically from ε> but it will not
exactly match the sum of all processes (elastic and inelastic).

For the purpose of Monte Carlo simulations of electron swarm in the first part of this thesis,
it is primordial to preserve the correspondence between the total cross section and the sum of
all cross sections. Thus, we used the first choice for junction which corresponds to the last row
in the tabulated values of the total cross sections available here. More on this issue is discussed
in part I section 4.1.2, in particular on pages 118–120.

The construction of the total scattering cross section concludes the investigation we have
done so far. The fruit of our efforts consists in a creation of a new database of cross sections
which is compared and assessed in greater detail in chapter 16 of part III. In the last chapter of
this part, we summarise and overview our work.



Chapter 12

Synthesis

Throughout this second part, our objective was to revisit the differential and integral cross
sections between electrons and neutral atoms/molecules present in atmospheric gases; namely:

1. Molecular Nitrogen : N2

2. Molecular Oxygen : O2

3. Nitric Oxide : NO

4. Argon : Ar

5. Atomic Oxygen : O

6. Atomic Nitrogen : N

Our study is motivated by the presence of those species at different temperatures (see table 2.1
on page 41) which ideally correspond to different evolution stages of electric discharges in air
described in the first part of this thesis.

In this chapter, we bring together the results obtained and highlight the main points of
the database constructed.

After an introductory chapter 7 discussing the basic notions related to scattering (sec. 7.2),
how cross sections are obtained experimentally through a very diverse palette of methods (sec. 7.3),
how the calculation of cross sections relies on the marvels of quantum physics (sec. 7.4.2), we
delved into an overview of the theoretical models used to calculation cross sections in chapter 8.
After commenting on the difficulty of solving Schrödinger’s equation from the most general
approach (sec. 8.1), we oriented ourselves toward the widely used potential scattering method
(sec. 8.2) in which we adopted an independent atom-based description of molecular potentials
due to lack of access to more accurate models (sec. 8.2.1).

Using the partial wave approach (sec. 8.4), we combined various relevant approximations
(sec. 8.5) at different energy domains to compute differential cross sections for elastic scatter-
ing 11.1 over a wide range of energies, except at low energies where we resorted to deriving
differential cross sections (DCS) from a database of carefully selected experiments at each en-
ergy. A useful graphical overview of our procedure is rendered on table 11.1.

In chapter 9, we presented the algorithms used to compute matrix elements of the partial-
wave method (sec. 9.1) and subsequently to assemble the differential cross section (sec. 9.2). On
our path, we were faced with many doubts and issues that we expose in a dreadful chapter 10.

503
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There, in an attempt to make a coherent review, we discuss the applicability of approximations
(sec. 10.1) and criticise some ad hoc corrections for which we propose a dialectical terminology to
qualify them and distinguish them from ab initio approximations (sec. 10.2). At last, we offer a
walk through semi-empirical models upon which the potential scattering model relies (sec. 10.3)
and conclude with a mini-study on the numerical convergence of our results (sec. 10.4).

After putting those efforts in setting up the stage, the fruit of our labour is presented in
chapter 11. There, we scoured the literature in order to gather a complete set of cross sections
for electron-molecule collisions. We strived to build cross sections based on available experimental
data represented by simple yet adequate theoretical formulae. Chapter 11 is structured into five
sections, each associated to a specific collision process:

11.1 Elastic Scattering: a patchwork of experimentally fitted DCS at low energies and theoretical
calculations at intermediate and high energies.

11.1.1 Modified effective range theory (MERT–sec. 10.1.5) to calculate DCS at very low
energies < eV based only on the scattering length A and static dipole polarisability
αd,0 of atoms and molecules.

11.1.4 Plane-wave Born approximation (PWBA–sec. 8.5.1) to calculate DCS at very high
energies > 10keV based on the exponential decay radii ai of atomic Slater-1s type
orbitals (tab. 8.1).

11.1.5 Integrated and “residual” elastic cross sections obtained from the DCS and total cross
sections respectively.

11.2 Rotational Excitations: a summary of three approximations used to calculate rotational
DCS in different energy domains.

11.2.2 Sudden impulse approximation enables to derive DCS for any rotational transition
J0 → J ′ from a basic set of J = 0 → J ′ DCS at energies far from the excitation
threshold and resonances.

11.2.1 First Born approximation enables to calculate DCS at very low energies (< eV) for:

∗ (11.21a) J → J + 1 transitions from the static dipole D of heteronuclear diatomic
molecules;

∗ (11.21b) J → J + 2 transitions from the static quadrupole Q and anisotropic
polarisability αd,2 of homonuclear diatomic molecules.

11.2.3 Spectator model approximates rotational DCS at higher energies (> 50 eV) only based
on a geometric perspective relying on the internuclear separation R.

11.3 Vibrational Excitations and Attachment

11.3.1 Some elementary notions about resonant scattering

11.3.2 recommended vibrational DCS in the shape resonance regions (dπ wave for N− 2Πg,
isotropic for O− 2Πg and NO− 3Σ−)

11.3.3 Cross sections of vibrational excitation obtained from the combination of accurate
calculations in the local-complex-potential approach [553] and experimental data.

11.3.4 Dissociative attachment from theoretical calculations [555, 558] and semi-empirical
law for three-body attachment.
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11.4 Electronic Excitations represented by fully analytical formulae based on a semi-empirical
model constructed from:

11.4.1 theoretical cross sections for dipole-allowed transitions based on the generalised oscil-
lator strength Fn from Bethe’s theory connected to the optical oscillator strength fn
of the same transition.

11.4.2 first Born approximation scaled semi-empirically to account for the acceleration of the
scattering electron in the attractive field of the molecule

11.4.3–11.4.8 mini-review of most recent experimental data for electronic excitations with N2, O2,
NO, Ar, O and N targets, to which our variant (11.61) of the scaled plane-wave Born
approximation was fitted. The physical parameters of the fit are the “forbiddance
degree” d of the transition and the optical oscillator strength fn for optically (dipole)
allowed transitions. The remaining 2 to 5 parameters are semi-empirical.

11.5 Impact Ionisation represented by an analytical model emerging from the complementation
of two approximations:

11.5.1 dipole approximation of the Bethe theory described by the generalised oscillator
strength density dFi/dε, which is accurate at small momentum transfers qa0 ≪ 1
and large impact parameters.

11.5.2 binary encounter approximation between the incident and a bound electron valid at
large momentum transfers and small impact parameters.

11.5.3 together, both approximations were joined in Kim and Rudd [507] and Kim et al. [508]
to which we propose a revision consisting of : (1) a higher-order correction ∝ 1/ε0 in
the incident electron energy ε0 and (2) a reinterpretation of the parameters used in
partial ionisation cross sections.

11.5.4 most accurate and up-to-date experimental ionisation cross sections are fitted with
the resulting model which relies on one parameter Qi physically related to the integral
of the oscillator strength density in each specific ionisation channel i. Furthermore,
an assessment of differential ionisation cross sections is performed.

11.6 at last, we constructed a total cross section from zero to relativistic energies bridging the gap
(in sec. 11.6.3) between accurate experimental measurements at low energies (sec. 11.6.1)
and the asymptotic trends predicted by the Born-Bethe-Inokuti approximation for elastic
and inelastic scattering of fast electrons (sec. 11.6.2).

In complementation of the summary given here, we give, in the next section, a succinct
overview of the cross sections obtained for each gas target.

12.1 Anagraphs per target

For each target, we summarise the main points on the integral cross sections (ICS) and differential
cross sections (DCS) obtained. For a visual and more detailed comparison of the cross sections
with experimental data and other databases, the interested reader may consult chapter 16 in the
third part.

Below, we first remind the notation we use and underlying models.
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• σtot : Total CS, constructed as explained in the previous subsection 11.6 from experimental
data up to a few keV and Bethe parameters S(−1) ≡Mtot and ln ctot.

• dσe/dΩ
∗ : (vibrationally) elastic DCS (comprising all rotational transitions) obtained

either from:

1. Mean-effective-range theory (MERT sec. 10.1.5) (very low energies ≤ 0.1 eV)

2. Extrapolation of experimental data (low energies 1�20 eV)

3. Partial wave calculations in potential scattering (intermediate and high energies 30 eV
to 10 keV) from (8.129) with (9.19)

4. Born approximation to polarisation and static atomic potentials (very high energies
> 10keV) from formulae gathered in chapter 14

• σe : Elastic ICS, integrated from the DCS:

σe ≡ 2π∫
π

0

dσe
dΩ

sin θ dθ .

• σre : Residual rotational-elastic CS, obtained from the total CS after subtracting all in-
elastic (except rotational) cross sections:

σre ≡ σtot −∑
i

σi .

• σm : elastic momentum-transfer CS obtained from σre through:

σm = σre(1 − ⟨cos θ⟩) ,

with
⟨cos θ⟩ =

2π

σe
∫

π

0

dσe
dΩ

cos θ sin θ dθ .

• σrot : rotational excitation CS. Obtained from a set of elementary J0 = 0 → J rotational
excitations, and extended to arbitrary transitions J0 ≠ 0 → J ′ with the sudden impulse
approximation (11.24).

• σvib : vibrational excitation CS. Obtained from the local-complex-potential calculations of
Laporta et al. [552, 553] and extended with experimental measurements for a few v = 0→ v′

transitions.

• σatt : dissociative attachment CS for O2 and NO. Obtained from the local-complex-
potential calculations of Laporta et al. [555, 558] and experimental data of Rapp and
Briglia [767].

• σelc : electronic excitation CS. Analytical fits to most recent experimental data. Transitions
are categorised according to their “forbiddance degree” d determined by the transition
matrix element in the Born approximation:

d = 0 : Optically (dipole) allowed transitions (11.62)

d = 1 : Electric dipole forbidden transitions (11.61b)

∗The subscript ‘e’ is implicit in the thesis



12.1. ANAGRAPHS PER TARGET 507

d = 2 : Electric quadrupole forbidden transitions (or magnetic dipole forbidden) (11.61b)

d = 3 : Spin forbidden transitions (11.61b)

Some transitions may contain a resonance peak fitted by (11.63).

• σion : total or partial ionisation cross sections determined by a revised analytical relativis-
tic binary encounter and dipole approximation called RBEQ* (11.120). It relies on one
adjustable parameter Q (11.108) of physical interpretation linked to the integral of the op-
tical oscillator strength density for a given partial ionisation channel (11.109) and (11.93).
Q is adjusted with constraint to match most recommended experimental data by Lindsay
and Mangan [596].

N2

σtot The number of experimental data their agreement and resolution are very good and enable
an accurate estimation of the total CS up to 2 keV. Data above 2 keV are contaminated
with noise. The Bethe parameter Mtot is in agreement with previously reported values [62,
p.100:table 9].

dσe
dΩ

Below 30 eV, experimental results agree well and an accurate extrapolation is possible. The

DCS may be extended with the MERT below 0.1 eV where it agrees well with the results
of Sohn et al. [863].

Above 30 eV, angular-momentum close-coupling calculations with an optical potential give
acceptable results except at intermediate angles 70�120○, where the DCS is overestimated.
This can be corrected with a more accurate representation of the static potential from the
Hartree-Fock variational method.

σm Elastic momentum transfer cross section (MTCS) is in excellent agreement with experimental
data in the two regions of 0.1�2 eV and 4�200 eV. In the vicinity of the N−2

2Πg resonance, it
needs considerable improvement from the DCS. Above 200 eV, there is a large experimental
uncertainty over scattering at wide angles.

σrot The theoretical calculations of Kutz and Meyer [546] may be used to derive rotational CS
in the sudden impulse approximation.

σvib The calculations of Laporta et al. [554] provide accurate CS in the N−2
2Πg resonance region.

Above 5 eV, the CS must be extended with experimental data [600, 910] available only for
v = 0→ 1.

σelc Analytical fits to recent experimental data [463, 622, 624] were obtained. Fits to optically
allowed excitations are very accurate. For forbidden transitions, experimental results not
agree well, especially in the region near threshold where the data is also sparse. Thus, fits
to forbidden transitions are average.

Two notable exceptions : accurate measurements of the transitions to the C 3Πu [623,
1012] and E 3Σ+g [123, 407, 622] states enabled to give close fits using (11.64) including the
resonance peak.

σion The RBEQ* analytical fit to the data recommended by Itikawa [439] and recently measured
by Shen et al. [831] is accurate to within 3%.



508 CHAPTER 12. SYNTHESIS

O2

σtot Up to 100 eV experimental data are not in good agreement and one must choose carefully
which measurements to favour in certain regions over others. Above 100 eV the agreement
is very satisfactory. The Bethe parameter Mtot is in slightly below the one reported in [62,
p.107:table 11].

dσe
dΩ

Below 30 eV, some sets of experimental results agree better [353, 598, 893] than others, an

accurate extrapolation to 180○ is possible at some energies. The DCS does not agree well
with the MERT at 1 eV and the extrapolation below 1 eV is very uncertain.

Above 30 eV, angular-momentum close-coupling calculations with an optical potential give
fair results except at intermediate angles 70�120○, where the only available experimental
DCS is overestimated [842]. This can be improved, albeit not totally corrected, with
a more accurate representation of the static potential from the Hartree-Fock variational
method. There is a discrepancy at 200 eV between experimental data at large angles and
the unadjusted absorption potential of the optical model favours one set of data [206] over
the other [842].

σm Good agreement between 1�10 eV but strong overestimation over a factor of 2 beyond 30 eV.
This discrepancy may be partly imputable to the underestimated experimental data and
partly to the overestimation of the mid-angle DCS and intermediate energies.

σrot Utter absence of reliable rotational theoretical or experimental cross sections. These are
affected by the very narrow O−2

2Πg resonance. The first Born quadrupole approximation
gives insufficient CS.

σvib The calculations of Laporta et al. [552] provide accurate CS in the O−2
2Πg resonance re-

gion. The agreement in the 4Σ−u resonance (mainly) at 10 eV with experimental data is
qualitatively good but deviates strongly at 5 eV.

σatt : Exclusively from theoretical calculations [558] which agree well with experimental data
[767].

σelc Experimental data for low forbidden transitions (a 1∆g and b 1Σ+g ) are numerous but scat-
tered. The fit is difficult to constrain asymptotically. Old and recent experimental data
for higher excitations are in considerable disagreement. We privileged the recent study of
Suzuki et al. [897] which the fits follow closely.

σion The RBEQ* analytical fit to the data recommended by Itikawa [440] is accurate to within
4% and within 8% with the data of [814] at high energies > keV.

NO

σtot Experimental data are few but agree well. We copied the recommended data of Song et al.
[865, table 2] and used theoretical calculations of Laporta et al. [554] below 1.16 eV. There
is a great gap in the (Bethe) sum of oscillator strengths of optically-allowed excitations
(11.70) which is also seen in [62, p.113:table 14].

dσe
dΩ

Below 30 eV the DCS is extrapolated from only one set of data [654]. DCS below 1 eV

extrapolated with the MERT are expected to be inaccurate due to the permanent dipole
of NO.
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Above 30 eV, angular-momentum close-coupling calculations with an optical potential are
mixed with the independent atom approximation to give a close match with experimental
data in the mid-angular range. Accurate results could be obtained with a more rigorous
calculation using a representation of the static potential from the Hartree-Fock variational
method. There is to experimental data to compare with above 50 eV, calculations from the
optical potential are blind.

σrot No experimental nor theoretical data, the first Born dipole approximation is the best guess.

σvib The calculations of Laporta et al. [557] at energies below 5 eV were complemented with
experimental [654] in the NO− 3Π resonance region near 15 eV whose position is shifted
about twice farther in energy than predicted theoretically.

σatt Below 6 eV from theoretical calculations [555] above from experimental data [767].

σelc Experimental data are scarce [120] and the description of the inelastic energy losses is
incomplete. Nonetheless, most excitations are optically-allowed with no resonance feature
and the fits to the unique data are usually good.

σion The accuracy of the RBEQ* analytical fit to the data recommended by Itikawa [441] is
better than 2% but the disagreement with other data [768] exceeds 12%.

Ar

σtot Experimental data agree very well on a broad range of energies except from 400 eV where
a small (∼8%) disparity appears probably imputable to strong forward angle scattering.
The Bethe sum of oscillator strengths (11.70) is incomplete. Also, due to missing ionisation
losses, the Mtot Bethe parameter is greatly underestimated compared to the reported value
[62, p.84:table 3].

dσe
dΩ

Below 200 eV, accurate BSR calculations of Zatsarinny et al. [1002] give DCS in good

agreement with a lavish database of experimental DCS.

Above 200 eV, calculations from our implementation of the optical potential scattering join
smoothly with the BSR DCS and agree well with experimental data at high energies.

σe & σm The miscorrespondence between the ICS and the MTCS σm at energies below 5 eV
deteriorates the accuracy of the latter near the Ramsauer-Townsend minimum around
0.23 eV. Beyond 10 eV, both ICS and MTCS are accurate although disagreement persists
with experimental DCS in specific energy regions.

σelc Experimental data from optical methods [175, 176] disagree significantly with cross-beam
integrated DCS [180, 491]. The fine-structure splitting of Ar excited states may not be
resolved well for all states. Our fits to experimental data are essentially good for 4s excited
states and fair for the ensemble of 4p states grouped together. Fits to optically-allowed
excitations are well constrained with measurements of optical oscillator strengths, but lack
good constraint for forbidden excitations. Excitations to Rydberg states above the 5s
orbital are difficult to resolve and must be lumped together.

σion There is a surprisingly large disparity (>15%) in the experimental data for ionisation. The
RBEQ* analytical fit matches selected measurements [321, 768] to within 4%. Never-
theless, the corresponding Bethe parameters M2

i,Q are greatly underestimated because the
model distinguishes not partial ionisations to excited ionic states.
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O

σtot Experimental data are few and very noisy.

dσe
dΩ

Below 10 eV only one set of experimental DCS is available [984]. It does not join smoothly

neither with the MERT below 1 eV nor with our partial-wave DCS from an optical potential
above 10 eV. The fact that atomic oxygen has two singly occupied orbitals requires to
improve significantly the exchange and correlation potentials based on the spin-up and
spin-down average electron densities.

σelc There is no data for transitions between the low lying fine-structure levels of the atomic
oxygen ground state. The CS are based on purely theoretical conjectures [63]. For other
excitations, several experiments were conducted to measure inelastic cross sections and
oscillator strengths. The fits are not always constrained well. There are four excitations
to fully auto-ionising states.

σion The RBEQ* model may not be directly fitted to experimental cross sections because of
autoionising states modelled separately. Without autoionisation, the analytical fit is 10%
the experimental CS for total ionisation.

N

σtot Data is absent.

dσe
dΩ

Experimental data is absent. We use our own partial wave calculations in the whole range

of energies, except below 1 eV which is calculated by the MERT. Calculations are coherent
with the optical potential CS of elsepa.

σe Calculations of Wang et al. [975] are used up to 150 eV. The derived MTCS σm are probably
inaccurate below 5 eV.

σelc Very few experimental data. Many transitions, for which experimental data is absent (e.g.
N∗ 2P o), are fitted to the calculations of Wang et al. [975].

σion Available experimental data are probably contaminated with ionisation CS from metastable
N∗ 2Do states released in the microwave discharge producing nitrogen atoms from dissoci-
ation of N2 [117]. The RBEQ* is not fitted to the data but the Q values are derived from
known oscillator strengths to optically-allowed excitations. The resulting CS agrees well
with the theoretical conjecture of Kim and Desclaux [506].

12.2 Conclusions

The interaction of electrons with molecules is paved with endlessly fascinating characteristics.
The outcome of a collision is determined by the outgoing electron energy, deflection and the final
state of the molecule. For each different final state, one defines a reaction channel of the collision.
Within the same channel, the angular distribution of the outgoing electron is encompassed by
a differential scattering cross section whose integration over all angle of the unit sphere gives a
very practical quantity of the dimension of a surface area named the integral cross section.
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A cross section linked to a specific channel may be physically interpreted as the “apparent
size” of the molecule seen by electrons that are shot like arrows on an archery target. A cross
section is thus a bridge between the deterministic and probabilistic description of a collision. The
possession of cross sections for all possible reaction channels enables, in principle, a complete
description of the interaction of electrons in gaseous media. In this second part of the present
thesis, we sought after such endeavour.

From low to high kinetic energies of the colliding electron, the outcome of the interaction
reflects very distinct traits.

At low energies and at far impact pa-
rameters (distant interaction), polari-
sation forces dominate;

At high energies and close distances, the
electrostatic force between electrons and
the screened nucleus dominates.

Fast electrons at far distances introduce an electromagnetic perturbation on the electronic
cloud similar to that of a photon. This perturbation can be approximated by a swinging dipole
whose amplitude is determined by the dipole matrix moment between the ground and electronic
excited state. This is why in the limit of very high energies and small momentum-transfers (in-
significant deviation), the cross section for inelastic scattering may be related to photoabsorption
cross sections through the optical oscillator strength. At closer distances, fast electrons impinge
on bound electrons in a fashion assimilable∗ to billiard balls. The interaction is described as a
binary encounter with large amounts of momentum transferred to the bound electrons.

Slow electrons at far distances perturb the electronic cloud almost adiabatically; meaning
that the cloud distorts in response to the quasi-electrostatic field of the slow electron. The
distortion induced may be parameterised by the static polarisability coefficients of the molecule.
Moreover, except for s-waves (frontal collisions) slow electrons do not penetrate the inner layers
of atoms and molecules due to the centrifugal barrier. This implies that the interaction may
be restricted to a zone of the size of the molecule’s effective range. For very slow electrons, a
development in orders of the electron’s velocity leads to the modified effective range theory.

In the intermediate range of energies, the interaction is complex and intricate. The scatter-
ing electron invades the space occupied by the electronic cloud and becomes almost part of the
molecule, forming thereby an anion compound. The compound formed is unstable and decays
after a certain time. Formation of the compound is favoured at certain electron energies which
emulate electronic configurations of the anion. The specific energies and decay times characterise
the phenomenon of resonance. Resonant interaction manifests itself very conspicuously by rapid
changes in the cross section according to the electron energy.

In a wave mechanics perspective, the propagation of a free electron is described in terms of
plane waves (or rather packets of these), whereas the interaction with a target involves harmonic
spherical waves. The correspondence between planar waves and spherical waves makes the whole
description of scattering mathematically challenging to grasp though beautifully interlaced. In-
terference patterns between different spherical waves create, far from the scattering target, a
distribution pattern of scattering probabilities describing the angular differential cross section
of the scattered electrons. Understanding the correspondence between incoming spherical waves
and outgoing spherical waves which incurred phase shifts, enables to encompass the information
of the electron-molecule interaction into the differential cross section.

The purpose of the second part of this thesis was to gather available knowledge about electron-
molecule scattering in order to construct an extended set of cross sections for various types of
interactions with atmospheric atoms and molecules.

∗“assimilare”: to make like, make similar. The modern meaning, of integrating into a community or adopting
an idea/tradition, is a derivation.
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Our goal was reached within the limits of our possibilities owing to the great amount of open
research available in the scientific literature. The advance of science and availability of data
enabled us to undertake a study similar to the one conducted by Brusa et al. [125] for noble
gases, but extended to diatomic molecules with several major improvements which we highlight
below.

▷ The description of elastic scattering through an optical potential based on the model of
Salvat [801], extended presently with more recent semi-empirical models, and the S-matrix
in the angular-momentum close-coupling approximation from Martinazzo et al. [632].

▷ Extension of the scaled Born approximation to obtain new analytical fits to the asymp-
totical integral elastic cross sections calculated with from atomic potentials based on the
Hartree-Fock-Slater approximation.

▷ Use of the sudden impulse approximation to scale rotational excitations to arbitrary tran-
sitions J0 → J as summarised by Shimamura [836].

▷ Combination of most recent experimental data [598, 600, 654] and accurate theoretical
calculations from Laporta et al. [552, 553] in order to produce a set of cross section for
vibrational excitations and attachment to oxygen and nitric oxide.

▷ Improved analytical formulae of cross sections for electronic excitations based on the semi-
empirical scaling model of Kim [504].

▷ Constraint of the electronic excitations according to their forbiddance degree and optical
oscillator strengths (if allowed).

▷ Partial ionisation cross sections from an improved model of the relativistic binary-encounter
Bethe model of Kim et al. [508].

▷ Constraint of the partial ionisation based on only one physically meaningful parameter Q,
related to the integral of the generalised oscillator strength density.

▷ The asymptotical total cross section is not fitted but results from the sum of the Born and
Bethe parameters related to the analytical elastic and inelastic cross sections respectively.

▷ The total cross section was constructed from a selected set of most up-to-date experimental
measurements.

▷ As done in the study [125], the residual elastic cross section has been obtained as the
difference between the total and the sum of inelastic cross sections.

The cross sections obtained are physically enrooted through well defined parameters which are:

○ A : the scattering length

○ αd : the static dipole polarisability

○ D : dipole and Q : quadrupole moments

○ fx : Optical oscillator strengths

○ M2
i : Bethe parameters

○ Ii : Partial ionisation thresholds

This is a first step in producing a database which contains both information and knowledge.
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12.3 Perspectives

There are many ways in which our cross sections would need to be improved. Their current state
reflects the limitations inherent to a doctoral thesis isolated from the community of quantum
physics electron-molecule interactions.

Starting from the least demanding to the most difficult improvements we list:

∗ Use more advanced versions [272, 668] of the modified effective range theory to improve
the elastic cross sections at very low energies.

∗ Apply the analytical Born completion [274, 676] to diatomic molecules to calculate accurate
rotational cross sections near threshold.

∗ Search for the most recent updates on the sum of oscillator strengths of optical allowed
excitations pertaining to each vibronic band of a molecular excited state.

∗ Obtain accurate Hartree-Fock representations of static potentials of diatomic molecules.
We could start with analytical corrections to the independent atom model [285].

∗ Build a robust semi-empirical to calculate three-body attachment cross sections from res-
onant vibrational excitation CS.

∗ Find a simple yet universal parameterisation of the generalised oscillator strength to use
in the RBEQ* model and discrete excitations.

∗ Devise a semi-empirical fit to inelastic DCS based on the generalised oscillator strength.

∗ Extend the RBEQ* model to represent doubly differential cross section for impact ionisa-
tion.

∗ Move away from semi-empirical models of the optical potential to the more general R-
matrix calculation of DCS.

Further investigations on the experimental side are always welcome, however, we think we
should better manage the resources that are at our disposal rather than ask for more onerous
projects.

The present study revealed that the resources available are endlessly bountiful and exceed
our ability to assimilate those into coherent sets of information. We would therefore like to
encourage the centralisation of parameters of physical relevance, such as multipole moments,
polarisabilities, oscillator strengths, Franck-Condon factors, scattering lengths, etc. which are
scattered throughout the literature and are not always regrouped for modellers’ convenience.

As a note to the side, investigation in the future will certainly focus and exploit the potential
offered by machine learning to construct cross sections from trained algorithms [885]. Although,
we think that diversification of methods always enriches the field of science, it also poses a danger
that some methods fall out of use due to the extensive shift to others. Some methods have proven
themselves more powerful than others without any doubt. Nevertheless, ascent in power is most
often accompanied by more onerous needs. It is thus good to have a palette of possibilities each
affordable and open to everyone’s means.

The philosophy of the present cross sections was to make them accessible and understandable
to the users. We wish that the future will bring us with sources of data both open in their
information content but also significantly less obscure in the knowledge they rely on.





Appendix C

Atomic and Molecular Structure

C.1 Atoms

The qualitative shell structure of electrons around nuclei is well-known and perhaps too basic
to be included here. Every elementary textbook on quantum mechanics (e.g. Eisberg et al.
[264, §7-5:p.239-242 and §9-7:p.331-336] or Hertel and Schulz [398, §3.1:p.137-142]) explains why
the electron’s wave function in bounds states can be characterised by four quantum numbers :
(n, ℓ,mℓ,ms). Those represent the principal quantum number (essentially for the radial part of
the wave function), the orbital angular momentum h̵ℓ(ℓ+ 1), its projection ℓ ⋅ ẑ on the reference
z-axis mℓ (known as the magnetic number) and the spin projection ms = ±1/2 on z. All orbitals
with an identical n form an atomic shell composed of ℓ = 0 . . . n − 1 subshells.

Arguably the most fundamental principle (after quantisation) to the structure of matter is
the Pauli exclusion principle which states that the set of quantum numbers in a system are
unique to each electron. This leads to the regular filling of orbitals in the periodic system of
elements.

With the familiar spectroscopic notation ℓ = 0,1,2,3, ⋅ ⋅ ⋅ ≡ s, p, d, f, . . . , the electronic config-
uration of an atom is represented as an ordered set of orbitals with their occupation number as a
superscript. The three atoms studied presently N, O, Ar, have a ground-state (“X”) configuration
[539] :

N - 1s2 2s2 2p3 ∶ X 4S○3/2

O - 1s2 2s2 2p4 ∶ X 3P 2

Ar - 1s2 2s2 2p6 3s2 3p6 ∶ X 1S0

Besides the configuration, the state of the atom can be described by the total (orbital and
spin) angular momenta of its constituent electrons with the following notation 2S+1LJ . The pre-
superscript 2S+1 gives the multiplicity of the state due to the total spin S. Then, a capital letter
is used S,P,D, . . . for total orbital momenta L = 0,1,2, . . . . Finally, the value for the combined
orbital+spin angular momentum J = L + S is written as a subscript. This type of coupling is
known as Russel-Saunders or “LS”-coupling which applies to atoms with smaller Z (typically all
before Neon). More explanations can be found in Hertel and Schulz [398, §6.2.6:p.301-303].

For heavier atoms, the spin-orbit j = ℓ + s coupling between a group of electrons (ionic core
or shell) or even for each individual electron becomes important. In this case, the total orbital
L and spin S momenta may no longer describe unambiguously the state of the atom and only J
becomes pertinent. This situation is known as the “jj”-coupling illustrated in Hertel and Schulz
[398, p.512-9:§10.4].

515
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In addition to J , regardless of the dominant coupling scheme, the inversion symmetry (parity)
of the wave function is signalled as ○ for negative (odd) parity states. This property can be derived
from the number (odd/even) of electrons in open shells of odd ℓ angular orbitals inherent from
symmetry properties of spherical harmonics.

For more insight about atoms and various perturbations altering the simple image of their
shell structure, I recommend consulting Morrison et al. [670, especially chapters 8&9].

C.2 Molecules

In molecules, the orbital structure observed in atoms must be amended. Molecular orbitals
(MO) can be roughly seen as a linear combination of atomic orbitals (LCAO) in order to estab-
lish an identification pattern. When two atoms are brought close together, the orbital angular
momentum number ℓ loses its goodness (the ℓ operator does not commute any more with the
Hamiltonian due to the breakdown of spherical symmetry). This means that a new set of quan-
tum numbers must be chosen to describe molecular orbitals. One such number is the orbital
angular momentum’s projection on the internuclear z-axis : λ = ℓ ⋅ ẑ, labelled with Greek letters
λ = 0,1,2, ⋅ ⋅ ⋅ ≡ σ,π, δ, . . . in analogy to s, p, d, . . . atomic orbitals.

For homonuclear atoms, depending whether the atomic orbitals a, a are combined construc-
tively (a + a) or subtractively (a − a), the resulting molecular orbital is endowed with different
symmetry properties (± parity). For positive = “even” = “gerade” = g parity, the wave function
Ψ(r) is symmetric in space inversion (r ↔ −r) about the internuclear midpoint. Negative =
“odd” = “ungerade” = u parity is antisymmetric. In shorthand :

Ψg(r) = +Ψg(−r) whereas Ψu(r) = −Ψu(−r) (C.1)

A useful notion (but not a quantum number) to the MO is the bonding character of an orbital
related to the overlap integral. Simply put, the electronic density of a bonding orbital does not
annihilate on the internuclear axis, as opposed to antibonding orbitals which are marked with an
∗ superscript. Below, we indicate how the first 1s, 2s and 2p orbitals from homonuclear atoms
merge to give molecular orbitals

1s + 1s→ 1σg 1σ∗u ← 1s − 1s

2s + 2s→ 2σg 2σ∗u ← 2s − 2s

2px,y + 2px,y → 1πu 1π∗g ← 2px,y − 2px,y

2pz + 2pz → 3σ∗u 3σg ← 2pz − 2pz

The first numeral quantum number merely counts the orbitals in an ordered manner rising
with energy for each projection type. In LCAO from heteronuclear atoms, parity ceases to exist
and thus what were originally 1σg,1σ

∗
u,2σg,2σ

∗
u, . . . have to be relabelled as 1σ,2σ∗,3σ,4σ∗, . . . .

In a similar fashion to atoms, the state of a linear molecule is designated by 2S+1Λ, where the
projection on the molecular z-axis Λ = L ⋅ ẑ of the total orbital angular momentum L operator is
used instead; with Λ = Σ,Π,∆, . . . for Λ = 0,1,2, . . . . As before, 2S + 1 denotes the multiplicity
due to the molecule’s spin projections on ẑ. For homonuclear molecules (or symmetric-top), the
state can additionally be characterised by its parity (g/u) defined by the properties in (C.1).

For Σ ∶≡ Λ = 0 states only but also applicable to heteronuclear molecules, an additionally
quantum number noted as a superscript ±, characterises the reflection symmetry property by an
arbitrary plane containing the molecular axis ẑ.
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We can now introduce the notation that characterises the ground state of our three main
diatomic molecules N2, O2 and NO as [399, 540, 607, p.121, p.426, p.217]:

N2 - 1σ2g 1σ2u 2σ2g 2σ2u 1π4u 3σ2g ∶ X
1Σ+g

O2 - 1σ2g 1σ2u 2σ2g 2σ2u 3σ2g 1π4u 1π2g ∶ X
3Σ−g

NO - 1σ2 2σ2 3σ2 4σ2 1π4 5σ2 2π1 ∶ X 2Π

In summary we have here perfect examples of a singlet (N2), a doublet∗ (NO) and a triplet
(O2) for diatomic molecules in their ground states.

Readers interested in more quantitative information can consult Hertel and Schulz [399,
Chapter 3, section 3.5.4] discussing molecular orbitals built from LCAO. Particularly, the atten-
tive reader will find why there is an inversion between 3σg and 1πu orbital energies from N2 to
O2 (as correctly listed above) in their figures 3.36 and 3.37 [399]. Finally, [399, sections 3.6 and
3.7] study respectively homonuclear and heteronuclear diatomic molecules.

Both for atoms and molecules, all filled inner orbitals corresponding to a certain principal
quantum number are called core orbitals whereas the last level is known as the valence orbitals.
Core orbitals participate weakly to chemical bonding and remain fairly unperturbed when atoms
are grouped into molecules as opposed to molecular valence orbitals which get deformed from
their original atomic shape and define the molecular bond strength. All outer orbitals s, p, ...
pertaining to the same principal quantum number n form the valence shell.

Excitations. When a shell electron excites, it switches to a previously unoccupied orbital or
flips its spin if it may. If this new configuration remains still within the same valence shell, it is
referred-to as a valence state. If however the electron jumps to a higher orbital with a different
principal quantum number, a Rydberg state is created. Rydberg states of molecules resemble
the Rydberg progression in atoms where the excited Rydberg electron sees a screened central
potential. They play a fundamental role in core-excited resonance scattering and molecule pre-
dissociation.

Finally, from spectroscopic tradition, all ground states are preceded by and “X” and elec-
tronically excited states form (ro)vibronic bands named with letters A,B,C, . . . , a, b, c, . . . with
an eventual single ′ or double prime ′′ and a numeral subscript 2,3,4, . . . for Rydberg states
indicating the principal quantum number of the excited electron.

Valuable information about the electronic configuration of ground and excited states can be
found in the reports of Lofthus and Krupenie [607] (N2) and Krupenie [540] (O2).

∗Actually, the spin-orbit interaction of the lone electron in 2π splits the degenerate state into 2Π1/2 and 2Π3/2





Appendix D

Vibronic Transitions

When an electron excites a molecule to a different electronic state, the molecule’s potential curve
with respect to the internuclear separation R changes also. This is illustrated on figure D.1. As
a consequence, the final state can settle into a different vibrational level of the excited electronic
state. Thus, electronic and vibrational transitions are most often mixed together and known
as “vibronic” transitions. However, because the nuclei are considerably heavier than electrons,
the vibrational motion and electronic transitions can be handily separated in their mathematical
treatment.

When the energy is sufficiently high, vibronic excitations can eventually lead to dissociation
of the molecule. There are essentially five ways in which this can occur [834, p.67:figure 12]
(excluding the role of subsequent collisions).

1. The molecule is directly excited to a repulsive state. The nuclei move away from each
other as they roll down the internuclear potential curve (fig D.1-iii). This is considered as
a direct dissociation.

2. The vibrational level of the excited state lies beyond the highest bound state (fig D.1-ii
transition a → c). In this case, if the molecule cannot lose more energy through de-
excitation, it dissociates as well. This is known as dissociative excitation and is not a
strictly direct excitation in the sense that the process can be resonant∗ [558].

3. There is a crossing point between an electronic bound state and a repulsive state (fig D.1-ii
point p). As it vibrates, the molecule can also change its state at this crossing point and
veer apart in a mechanism known as predissociation.

4. The unstable intermediary state of the electron-molecule anion has a lifetime longer than
its vibrational period which may lead to dissociative attachment [834, p.276] (fig D.1 (vvv)
or transition a→ c on (vv) )

5. For energies above the ionisation threshold, dissociative ionisation corresponds to (direct
or pre-)dissociation of an ion most often when left in an excited state. This is particularly
the case when the ejected electron comes from a core orbital.

∗and thus not obeying the Franck-Condon principle described below

519



520 APPENDIX D. VIBRONIC TRANSITIONS

Figuratively, those scenarios of molecule dissociation by electron impact could be parodied
by a child running and accidentally kicking into a towering stack of lumber whereupon:

1. the stack collapses on the spot;

2. the stack wiggles while collapsing;

3. the stack tilts to one side, to the other, gives a sign of ebbing then suddenly collapses long
after the child has run away in terror;

4. the unfortunate child actually clings onto the stack which slowly falls down;

5. one log got swiftly kicked away, causing subsequent instability of the stack.

The point is, that while the stack is tilting, an adult can try to intervene and resorb the
swaying to prevent collapse.

Formally, back to the atomic world, a collision with another molecule or a spontaneous
photon emission can prevent the dissociation of a excited bound state. Also, analogous to the
concept of predissociation, the phenomenon where excited states above the ionisation threshold
subsequently ionise on their own is known as autoionisation. This mechanism applies to atoms
as well.

In summary, the future of a (super-)excited molecule (state a′v′) is torn between the compet-
ing probability rates of spontaneous emission Aa′v′ (to any allowed lower state), autoionisation
Ia′v′ (if applicable), predissociation Pa′v′ or collisional quenching Qa′v′ . Given the conditions
(gas density, temperature, composition), predissociation is characterised by a branching ratio
ηpd which determines the overall probability that an electronically (a′) and vibrationally (v′)
excited state lead to dissociation [1011, eq.(1)]:

ηpd =
Pa′v′

Aa′v′ + Ia′v′ + Pa′v′ +Qa′v′
(D.1)

When determining this ratio experimentally, a distracting enemy is the optical thickness of
the medium [1011, p.450:right column] which gives the impression that predissociation rates are
higher due to a lower apparent emission (detection) rate of optical signals.

For an introduction into electron-diatomic molecule collision processes, we recommend read-
ing Chandra and Joshi [167, p.2-11] from which the figure D.1 was extracted and remastered.
Below, we offer a slight reminder of how and why electron-impact electronic excitations are af-
fected by selection rules applying to optical transitions and then explain how the vibrational
part can be treated separately from the electronic part in the calculation of inelastic differential
cross sections.

D.1 Dipole approximation

An introduction to optical transitions (absorption/emission) due to induced electric-dipole oscil-
lations in atoms and molecules can be found in Hertel and Schulz [398, chapter 4]. Here, we just
need to express the basic formula of the dipole approximation to which the (optical) oscillator
strength is closely tied. Since the electromagnetic perturbation’s wavelength around the optical
domain is much longer than the size of the target molecule : k ⋅ a0 ≪ 1, only the linear term in
the expansion of the plane wave exponential phase is used:

exp(ik ⋅ r) = 1 + (ik ⋅ r) +
1

2!
(ik ⋅ r)2 + o(k ⋅ r)2
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Figure D.1: Vibronic impact excitations can be visualised, according to the Franck-Condon
principle (D.4-D.5), as vertical transitions intersecting two different potential curves. The inter-
nuclear separation does not change much during such transition and the probability to reach a
certain vibrational sublevel can be interpreted visually as related to the probabilities of finding a
molecule stretched at an initial separation value R0. The six different situations illustrate various
possible outcomes in inelastic excitations.
The three top figures represent the possibility that the molecule be (i) excited; (ii) excited or
dissociated (either directly or from predissociation); (iii) directly dissociated (with or without
anterior ionisation).
The bottom figures cover the possibilities that incident electron (v) be captured (attach); (vv)
attach and-or dissociate the molecule; (vvv) attach dissociatively to the molecule.
Displayed on the figure are: D energy (from ground) for dissociation into atomic fragment in
their ground state; D′ energy for dissociation into excited fragments; EA′ kinetic energy of the
dissociated excited atomic fragment A′; EA electronic affinity of the anion AB−; p a connection
point from which predissociation is triggered. (Readapted from Chandra and Joshi [167, figure 2])
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The form factor ϵAB(q) in inelastic transitions (11.49) becomes approximated by the dipole
matrix element MAB between two states A, B of a molecule comprising N electrons [399, 427,
eq.(2.11), §3.4:eq.(3.63)] :

MAB ≡ ⟨∫ ϕ∗A(x1..xN ,R)
N

∑
j=1

rj ⋅ êϕB(x1..xN ,R)dx1..dxN dR⟩ê , (D.2)

where ê is an arbitrarily oriented vector used to represent light polarisation over which we perform
an average (⟨. . .⟩ê), assuming the target molecules are isotropically oriented (R̂). The wavefunc-
tions ϕA, ϕB depend of the shell electrons’ generalised coordinates xj = (rj , sj) of configuration
space rj and spin sj , and the nuclear separation vector R.

If MAB = 0, the transition A ↔ B is qualified as “forbidden” in the dipole approximation.
Terms such as “(electric) dipole-forbidden” or “optically-forbidden” are equivalent terminologies.
If this is the case, then, one must search for higher-order terms of interaction. These can stem
from higher electric multipole moments (quadrupole, octupole, etc.) or from weaker coupling
effects between the magnetic moment from the total electron orbital angular momentum L and
the spin S (commonly known as “LS coupling”, Hertel and Schulz [see section 6.2 of 398]).

If the total spin S of the multi-electron configuration changes between states A and B,
only including the spin-orbit interaction (fine structure) can enlighten the possibility of such
transition. In absence of coupling, because the matrix element (D.2) annihilates due to spin
orthogonality, such transition is particularly qualified as “spin-forbidden”.

Selection rules can quickly indicate how the transition between a state A and B is allowed
or forbidden. They can be derived from symmetry arguments of the dipole matrix element (D.2)
and conservation laws of total angular momentum. The spin carried by a photon is 1. Thus
defining j and j′ as the initial and final total momenta of the target: the triangular relation
∣j − j′∣ ≤ 1 ≤ j + j′ must be satisfied (with j = 0 ↮ j′ = 0). We summarise the following rules of
interest in diatomic and monatomic molecules:

• The product of ϕA and ϕB must not be symmetric with respect to the inversion of rj
coordinates for all j. Thus in homonuclear diatomic molecules transitions between: u↔ g
states are allowed but u↮ u and g ↮ g not. In atoms, the parity must change also (odd
↔ even).

• In Σ states, other considerations prohibit the change of the reflection symmetry, implying:
Σ+ ↔ Σ+ or Σ− ↔ Σ− but Σ+ ↮ Σ−.

• The total angular momentum projection conservation logically implies that ∣∆Λ∣ ≤ 1, since
a single photon cannot induce a momentum-transfer change superior to 1.

• When spin-orbit coupling is neglected, the total spin S must be preserved. Transitions
between states of different spin multiplicities ∆S ≠ 0 are thus spin-forbidden.

• In atoms, where the orbital angular momentum is well defined, the parity rule of spherical
harmonics together with the conservation of the total angular momentum imposes that
ℓ + ℓ′ + 1 be even. Thus only ∆ℓ = ℓ′ − ℓ = ±1 are allowed, ∆ℓ = 0 is forbidden. This is
valid when only one electron switches orbitals, multiple reconfigurations are not allowed in
optically induced transitions.

Those selection rules are introduced and discussed in Hertel and Schulz [399, p.309-312:especially
table 5.1] for diatomic molecules and in Hertel and Schulz [398, p.196-203] for atoms. For more
details and mathematical insight, refer to Steinfeld [882, p.87].
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D.2 Franck-Condon Principle

When the target is a diatomic molecule, electronic transitions also involve vibrational and ro-
tational excitations. The latter ones have negligible thresholds at energies where electronic
transitions are permitted so that they are averaged over the initial and summed over the final
rotational states. The transition integral as used in (11.47) for the differential cross section
depends on the initial χva and final χv

′

a′ vibrational wave functions of the electronic transitions
a→ a′ considered.

Similarly to the adiabatic approximation underlying rotational averaging, in non-resonant
scattering, the Franck-Condon principle states that the electronic transition is faster than the
vibrational period of the molecule [834, §6.5.4]. Thus, if we represent the potential curves Va,a′(R)
of the final a′ and initial a states with respect to the internuclear separation R, a transition can
be conceptualised as a “vertical jump” connecting two specific vibronic states a, v and a′, v′ (as
schematised in figure D.1, from point a→c or b→d or any intermediate pair).

Mathematically, the Franck-Condon principle is represented by taking the approximation
[427, §3.5:p.321] that in orientationally-averaged DCS integral of (11.47) the electronic parts
ϕa′v′(rm,R) vary slowly with R compared to the vibrational functions χv

′

a′ so that an equilibrium
Re separation can be fixed for ϕa′v′(rm,Re) and the remaining integral over R now proceeds
only on the vibrational functions χv,v

′

a,a′ :

∫
dR̂

4π

RRRRRRRRRRR

x
∑
j∈m

exp(−iq ⋅ rj)ϕ
∗
a′(rm,R)χ

v′

a′(R)ϕa(rm,R)χ
v
a(R)dRdrm

RRRRRRRRRRR

2

, (D.3)

≊ ∣∫ χv
′

a′(R)χ
v
a(R)dR∣

2

∫
dR̂

4π

RRRRRRRRRRR
∫ ∑

j∈m
exp(−iq ⋅ rj)ϕ

∗
a′(rm,Re)ϕa(rm,Re)drm

RRRRRRRRRRR

2

.

(D.4)

The Franck-Condon factor CFC(av, a
′v′) is defined as the squared integral [834, p.63:eq.(164)]:

CFC(av, a
′v′) ≡ ∣∫ χv

′

a′(R)χ
v
a(R)dR∣

2

. (D.5)

This factor primarily governs the relative intensities of vibronic peaks corresponding to the
same electronic a → a′ transition [563]. There are however many cases in which this scaling law
is not satisfied [509] as for example the X 3Σ−g → B 3Σ−u and E 3Σ−u systems of O2.





Appendix E

Free electron gas

This model introduced by Fermi, is widely known and used in problems of quantum mechanics
and can be consulted in many reference books as Eisberg et al. [264] and Hertel and Schulz
[398, p.400-406, p.103-107]. Nonetheless, we think a basic reminder for our purpose might be
useful here, especially since many derivations of the Fermi momentum found on the internet are
erroneous.

The fundamental idea is to find the most compact energy distribution taken by a number
of electrons confined in a small volume of space. In a cube element of volume V = L3, the
solutions of the 3-dimensional Schrödinger equation are standing waves verifying the following
wave-number equation:

k2 = (
2π

2L
)
2

(n2x + n
2
y + n

2
z) with nx + ny + nz ∈ N+ (E.1)

Those are multiples of the maximal wavelength 2L, twice the size of the box.

nx

ny

nz

kF

Figure E.1: Occupied cells in the mo-
mentum space of a free electron gas
with spin degeneracy

Each cell is characterised by a unique set (nx, ny, nz),
and can host two degenerate substates due to the elec-
tron’s spin ±1

2 . An illustration is given in figure E.1,
with three cells, populated by electrons of spin-up or
spin-down (either or both). For a given number of
electron Ne inside that cubic volume element L3, one
starts populating the levels from the lowest energy. The
highest occupied level when all sublevels are occupied is
known as the Fermi energy εF straightforwardly related

to the Fermi momentum kF: εF =
h̵2k2F
2me

.

For a given electron density ρ(r) in configuration
space, one can deduce at each point the corresponding
Fermi energy if we imagine that electrons coexist lo-
cally as a free gas. When the number of electrons is
sufficiently high, we can move toward a statistical de-
scription of the Fermi sphere making nx,y,z continuous
positive numbers. The overall number of vacant cells

in a radius of r ≡
√
n2x + n

2
y + n

2
z is given by the octant: 1

84πr
3/3. By equating the number of

vacancies (twice the number of cells for spin degeneracy) to the number of electrons Ne ≡ ρ(r)L
3,

we get the Fermi radius rF:

2

8

4πr3F
3
= Ne = ρ(r)L

3⇔ rF = L
3
√
ρ(r)3/π . (E.2)
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The Fermi momentum-transfer corresponds to this radius as in virtue of (E.1):

kF =
2π

2L
rF =

3
√
3π2ρ(r) . (E.3)

The present derivation of the Fermi momentum is simplistic but holds the line. I strongly
advise the reader to be suspicious of derivations hosted on official websites of universities where

the wave-number is magically set to
�
�
��k =
2π

L
(nx, ny, nz) then the volume 4πk3F/3 is compared to

the erroneously derived volume occupied by a single state, to get in the end the correct formula.

From the Fermi distribution, uniform in a spherical volume of radius kF, the average classical
kinetic energy at a position r is given by the integral in momentum space:

⟨
h̵2k2(r)

2me
⟩ = ∮

h̵2k2

2me

3

4πk3F
4πk2 dk =

3

10

h̵2k2F
2me

=
3

10
(3π2ρ(r))2/3 a.u. (E.4)

At a position r, the local kinetic energy density dε(r) in a volume element d3r is the average
kinetic energy (E.4) times the local electron density ρ(r):

dε(r) = ∮
kF

h̵2k2

2me

ρ(r)d3r
4π

3
(h̵kF)3

d3(h̵k) =
3

5

h̵2k2F
2me

ρ(r)d3r =
3

10
(3π2)2/3(ρ(r))5/3 d3r . (E.5)

When the free electron gas is applied not to a boxed space but to the Coulomb potential
given by a point-like nucleus V0(r) = −Z/r, one obtains the Thomas-Fermi model for an atom
described in Hertel and Schulz [398, §10.1.5:p.501–2]. Now, the electrons in the gas are subject to
a total potential VTF determined by the nuclear potential and electronic density distribution ρ.
If one assumes that the Fermi energy directly relates to the potential at a point r: εF = −VTF(r),
then the potential VTF may be determined from the Poisson equation and the link between the
Fermi energy (or momentum eq. E.3) and the electronic distribution ρ [398, eq.(10.21)]:

△VTF(r) = e
2 ρ

ϵ0
= −

e2

ϵ0
(
2me

h̵2
)
3/2 1

3π2
∣VTF(r)∣

3/2 . (E.6)

The solution of this equation with the boundary constraints yields:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lim
r→∞

VTF(r) = 0 ,

lim
r→0

rVTF(r) = Z ,
⇒ VTF(r) = −

Ze2

4πϵ0
ΦTF(r/aF) , (E.7)

where the Fermi radius aF is defined as:

aF =
1

4
(
3π
√
2
)

2/3

Z−1/3 ≊ 0.8853Z−1/3 . (E.8)

The Thomas-Fermi screening function ΦTF is not exactly a decaying exponential function,
though there are many analytical fits which are expressed as a weighted sum of exponentials
[443] or a polynomial expansion of a denominator [564]. For exponential fits, the exponents may
be scaled either in Bohr radii a0 or Fermi radii aF.



Part III

Building a cross sections database
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Epilogue

A scientific investigation journey, when it ends, if it ends, is torn by the dilemma:

¿To share or not to share?

Historically, we know that knowledge is power and it is often assumed that withholding the
former will preserve the latter. If it has not been obviated by the two previous parts of this thesis,
a scientist may often feel powerless compared to (I) the enormity of the phenomenon studied
and (II) the bolting advancement of theory and experiment. Not sharing data only empowers
the feeling of powerlessness.

There is nothing to gain from withholding information, but is there anything to lose?
While it is very rare that experimental studies do not share concrete values of their measure-

ments in numerical tables or supplementary files; this is quite the opposite for theoretical studies
even if their results look fantastic in their plots. I would say there are two main reasons why
there could be some reticence about sharing theoretical data.

Time. Disclosing data requires an extra effort than just showing the data. Since experimental
data always primes over theoretical data, one could fear that the effort invested in preparing
theoretical data be a waste of time.

Vulnerability. There is a fundamental difference between experimental and theoretical data.

• Errors on experimental data may be classified into systematic biases and noise.

– When systematic, errors can sometimes be corrected by a scaling factor or a
recalibration.

– Noise, on the other hand, cannot be corrected. However, if one measurement is
an outlier, it does not necessarily compromise the rest of the data.

In brief, there are ways to salvage experimental data if one understands better what
errors contaminate the data. One does not necessarily have to redo the measurements.

• Unless stochastic, as in Monte Carlo models, errors in theoretical calculations are
systematic in the sense that an imprecision in the model will affect all results to a
certain degree. Although in principle one can try to salvage inaccurate theoretical
results with ad hoc corrections, these are very unwelcome.

Since theoretical results are never perfectly in agreement with experimental data, modellers
might be content with showing their results but discouraged to share them (as concrete
numerical values).

Then, we arrive at a crux. Contemporary science is mainly propelled by data∗. Data are
indispensable inputs to modelling. As a consequence, there is a growing and insatiable hunger
for data because:

A. Quantity: experimental data are never enough, and we unanimously ask for more,

B. Quality: theoretical data are too often not deemed to be accurate enough, and we often
disregard them.

∗This sounds almost like a tautology, but anthropologists could argue that, in the past, science was driven by
aesthetics, ideas or more dangerously: ideologies.
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There is only one way to consolidate the best of both worlds: through synthesis. The action
of synthesising is difficult because it requires to make the connection, between experimental and
theoretical worlds, look seamless. This process heavily relies on the judgement aptitudes of the
scientist. The mind of the scientist is assaulted by questions which require a firm decision:

• Which data are to be trusted?

• How to put weights on the data?

• Where does a model stop to be valid?

• Should a model be adjusted to data?, how?

• How to correct data to resolve a discrepancy?

• How to join smoothly two sets of data?

• Should the data privilege accuracy or traceability?

The last question deserves more explanation. Concretely, in scattering experiments, data
cover a certain range of incident electron energies and angles. Synthesis is about representing
the values of many experimental data, but also at energies and angles where data is absent. A
theoretical model typically gives partial agreement: good agreement at some energies and angles,
but less good elsewhere. If experimental evidence is compelling, one has to decide whether to
adjust (tweak) the model or whether to preserve the reproducibility of the data.

¿To adjust or not to adjust?

• Adjustment of a model or the data itself may improve accuracy but kills the scientific soul
of the results because it jeopardises reproducibility. Thus, adjusted data can either be
taken in or thrown out but they cannot be recycled.

∎ Raw data output by an algorithm or a model will inevitably contain “imperfections”.
Nonetheless, if the algorithm and the model are well documented, there is a spark of
hope that the data could be revised in the future by improving the algorithm or the model.

This dilemma resembles the historic transition of science in the ‘enlightenment’ age and in the
‘industrial’ age. I strongly recommend the essay of Daston and Galison [210] about the objectivity
of scientific images. There, they explain that, where atlases used to show stereotypical pictures
of animals, plants, the human body; the advent of photography suddenly froze our perception
of reality into raw pictures with shocking realism. The images would become presented not
aesthetically, but in their crude raw unsynthesised form with minimal intervention of human
judgement and/or perception.

At the time, raw data from photographs or measurements from machines were very prestigious
because of their rarity and the difficulty to obtain them. Therefore, there were regarded as tokens
that nobody would ever think about ‘touching’ them howsoever. In contrast, now, times have
changed significantly and we are literally flooded with data produced by machines; we must
synthesise them.

Back to our situation, we decided to respond to the need for updated electron-molecule cross
sections by creating a database from the investigation that we conducted about electron-molecule
collisions in part II. This database could not rely only on pure theoretical calculations and we
had to intervene in many cases to obtain agreeable results.
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This third part contains chapters that complement the work realised in part II which was
subsequently used as input to the research conducted in part I.

• chapter 13 explains how experimental (differential) cross sections were fitted by analytical
expressions, how they were constrained and how we assessed them.

• chapter 14 regroups a collection of formulae obtained in the framework of the plane-wave
Born approximation in order to model elastic scattering at high energies above 10 keV.

• chapter 15 presents the database constructed. The first section 15.1 explains how some
experimental data were updated and how we coped with missing data. The second sec-
tion 15.2 explains how to access and use the database.

• chapter 16 compares the database presented in the previous chapter with cross sections
from other databases and experimental data. It then assesses the accuracy of the new
database from electron swarm transport parameters calculated by a kinetic solver of the
Boltzmann equation.

At the end, I added two other chapters about the conclusions I drew, not about the content
of the science produced, but about the process of scientific investigation from an anthropological
perspective.

• chapter 17 very briefly stresses how important language is for a steady foundation of science,
why English has been a judicious provisional choice and why we, the scientific community,
should seriously consider adopting a new language in the near present∗.

• chapter 18 is a collection of thoughts about the thesis and why I felt the need to make it
so long...

At the beginning of the doctoral study, I shared the illusion† that with time, experimental
data will be better matched with more sophisticated theoretical models. Today, at the end, I
think that human intervention will always remain an essential ingredient to the generation of
information.

∗¿Kial ne nun? https://esperanto.net/
†In French and English, ‘illusion’ is imbued with pejorative connotation of a false belief or idea. Here, I invite

the reader to see it from the Spanish perspective ‘ilusión’ which is a dream, an idea that does not exist, yet brings
hope and motivation.





Chapter 13

The Art(ifice) of Fitting
“Analytic forms which are good over broad energy ranges can provide compact and
accurate means of communicating information,"

— Green & Stolarski, 1972, J. Atmos. Terr. Phys. 34-1716

When introduced for the first time in mathematics classes, functions are dreaded for being so
mystical objects. The fact that they could represent (almost) anything that binds two variables
makes them somewhat difficult to appraise. With time and habit, they become the most coveted
friends of (data-)scientists because of their potential of concisely representing tabulated datasets.

In the most fortunate cases, the functions underlying a physical model of reality are mathe-
matically known objects. They can be part of a parametric family whose few parameters need
to be determined according to some given information. A dummy example is the exponential
growth rate of an electron population as treated in this thesis. Given a certain number of points,
one can infer from semi-logarithmic plots, the offset and slope related to the initial number of
electrons and their growth rate with respect to the variable (space or time).

A more elaborate example are the spherical harmonics Y m
ℓ which appear anytime one is

interested in working with spherical coordinates for solving the Schrödinger’s equation of a
particle in a potential. If the angular distribution of a molecular potential is known at a certain
radial distance, one can try to find the coefficients linearly applied to Y m

ℓ that reproduce the
angular shape. In this case, one needs also to known how many of such harmonics are needed;
to choose an upper L ≥ ℓ limit.

In less fortunate cases, the functions that would provide structure to the given data points
are not known at all. This situation is probably the most common that data-scientists are faced
with at first sight. Our intuition is trained to see curves that link points together. Interpolating
unidentified data can be mathematically embodied in the most basic of all functions : polyno-
mials, of which the simple linear regression is part. However, this intuitive approach fails when
measurements are sparse or look erratic. Evidently, the lesser data points one has, the lesser
information is known about the problem faced. The worst comes when we try to extrapolate the
trends beyond the lower and higher boundaries. Consider two restricted sets of measurements
shown in figure 13.1.

The first figure on the left shows some experimental data for an excitation of nitrogen by
electron impact. Luckily, the data points look very well aligned and our eye can imagine a smooth
curve going through all the points. The problem is that our imagination would draw a curve that
does not bend much beyond the rightmost point, it would either continue growing slowly or curb
and halt toward a threshold. Here our imagination comes into conflict with our intuition that
tells us that all cross sections must somehow decrease and fade at higher electron energies, but
how? The situation on the right panel is different. The points look erratic although they display
a hooked shape with a slightly decreasing slope on the right. In this case, our imagination stalls
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Figure 13.1: Illustration of issues linked to sparse or restricted sets of measurements. It is difficult
to imagine a physically founded trend to the data.

and it seems helpful to underline graphically the connection between the points with dotted lines.
Our intuition is also mesmerised, should an electron swarm diffuse less at lower electric fields?
Or should it actually diffuse more, due to scattering that is more isotropic at lower energies?

In general, we are interested in inferring trends from experimental data when we try to build
a model that relies on it as an input source. If one has no knowledge of eventual physical models
that can roughly complement the available data, then one has to find clever ways to make the
data usable as input to the actual problem that one is concerned with. Interpolation is rarely
an issue. Most scientists find it acceptable to link data points by straight lines: the comforting
linear interpolation. It is however when making extrapolations that one is doomed trying to find
a discrete way to get around the inquisitive gaze of the scientific suspicion.

This was my first concern when I worked on my first article [811]. I tried to make the input
differential cross section for electron scattering look consistent as they were both extrapolated
at small and large angles and toward higher energies. This article is a perfect example showing
how much fiddling is involved in fitting curves. It is understandable that the human eye is
craving after perfection embodied in nicely smooth curves. However, the subjective ugliness in
the analytic expressions obtained may be a source of disappointment to the user.

In the rest of this chapter, I would like to illustrate two common problems linked to fitting.
The first is overfitting and the second is ad hoc forcing.

13.1 Overfitting

It is well known that if we throw tens dots onto a surface and ask a child to join them by one
uninterrupted line, we may get theoretically an infinitely continuous number of curves that satisfy
the requirements. Selecting our preferred curve would inevitably invoke our arbitrariness. Even
if we impose that the curve must belong to a mono-valued continuous and infinitely derivable
function, the field of possibilities remains large.

To reduce subjectivity and personal bias, algorithms can be used that define criteria and
constraints on the curve to be obtained. The most celebrated method is the “least squares”
which strives to find the curve giving minimal sum of distance to the points weighted by the
uncertainty of their values. Other constraints can define the asymptotic behaviour of the function
beyond data boundaries, some desired property of the function (e.g. positive, monotonic, etc.),
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or some reasonable range given to each adjustable parameter. The concept of least-squares can
be generalised into a minimisation problem of a cost function that can penalise any kind of
undesired behaviour.

Overfitting occurs when various curves that score all very closely on the criteria given and
satisfy all constraints still differ significantly in some parts. It thus introduces arbitrariness again.

For the purpose of illustration, we shall reintroduce here the following functions used in the
context of fitting excitation cross section in part II sec.11.4.2. We label them here as f4 and f6:

f4(w) = c0
((w + 1)a − 1)b

(w/C + 1)d+ab
f6(w) = c0

((w + 1)a − 1)b((w/c′)a
′

+ 1)

(w/C + 1)d+ab+a′
(13.1)

f3(w) = f4(w;a = 1) f5(w) = f6(w;a = 1) (13.2)

The variable w represents the relative electron energy (ε) difference from the reaction thresh-
old (∆): w = ε/∆ − 1. The forms f4 and f6 can both be reduced to f3 and f5 by fixing the
parameter a ≡ 1. The parameter d is not free, it is determined by the type of transition con-
sidered, I will call it the “asymptotic strength” because it represents how much the denominator
overpowers the numerator at high energies w →∞.

The numerator in all expressions is based on Green and Stolarski [350, eq.(7)] for correctly
encompassing behaviour at threshold. The exponent a controls the sharpness of the transition at
threshold, while b curbs it. When used in the form (w/c′)a

′

+ 1, this can lead to the occurrence
of local extrema near c′. We exploited this property by creating the 6-parameter form f6 to be
able to “twist” in the region w ≃ c′.

After we introduced the Bethe scaling from Kim [504] which offsets the denominator ε/∆ =
w + 1 to w + C, we were faced with the dilemma of what to do with the numerator. Should
we echo this offset or not? For this we decided to compare the differences between (w + 1)a − 1
(normal), 1 − 1/(w + 1)a (original) and (w/C + 1)a − 1 (offset) as the numerators based on the
low-energy modifier in Green and Stolarski [350, eq.(7)]’s original expressions. We denote those
functions as f○ and f○○:

f○4 (w) = c0
((w/C + 1)a − 1)b

(w/C + 1)d+ab
f○6 (w) = c0

((w/C + 1)a − 1)b((w/c′)a
′

+ 1)

(w/C + 1)d+ab+a′
(13.3a)

f○○4 (w) = c0
(1 − 1

(w+1)a )
b

(w/C + 1)d
f○○6 (w) = c0

(1 − 1
(w+1)a )

b((w/c′)a
′

+ 1)

(w/C + 1)d+a′
(13.3b)

We also explored other possible functions by departing from the canonical expression of
Green and Dutta [348] and adding more flexibility in other places. We denote by f ′ (13.4a), the
versions that have enhanced “twisting” capabilities instead of an adjustable near-threshold slope.
They can have up to 7 parameters to point-out how quickly can overfitting arise (even when the
number of points is over 30).

f ′5(w) = c0
wb((w/c)a + 1)

(w +C)d+b+a
f ′7(w) = c0

wb((w/c)a + 1)((w/c′)a
′

+ 1)

(w +C)d+b+a+a′
(13.4a)

f ′4(w) ≡ f
′
5(w;a = 2) f ′6(w) ≡ f

′
7(w;a

′ = 2) (13.4b)

f ′′4 (w) = c0
((w + 1)a − 1)b

((w/C)d+ab + 1)
f ′′6 (w) = c0

((w + 1)a − 1)b((w/c′)a
′

+ 1)

((w/C)(d+ab+a′) + 1)
(13.4c)

Finally, Tabata et al. [902] as inspired by the earlier formula from Green and McNeal [349, eq.1]
proposed to exploit sharp transitioning in the denominator to give f ′′4 and f ′′6 (13.4c). This
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Figure 13.2: (Over)fitting electron-N2 differential cross sections with Legendre polynomials (LP).
At each selected energy (5, 10 and 20 eV) Legendre polynomials of degrees 3, 5 and 8 are fitted
in least-squares to experimental data points [288, 894] in black. The results of Linert and Zubek
[600] in blue triangles which cover the range of large angle scattering are shown so that one may
observe how far off are the fitted results in the extrapolated regions.

contrasts the prescription by Kim [504] who offsets the denominator only linearly by a factor
C. However, this form for the denominator can fit sharper structures as for example resonance
peaks, in which case the exponent e in (w/C)e should in principle be equal to 2, though such
restriction has not been imposed.

With this set of functions, together with other basic functions, I exemplify overfitting in two
ways. Although they are two sides of the same coin, on one side I focus on how allowing too
many free parameters spoils the fit; whereas on the other side, I show that for the same number
of parameters involved, some functions adapt more easily (because of their nature) to a set of
data than others.

13.1.1 Too many parameters

It is well known that any N pairs of data coordinates (xi, yi) can be perfectly joined with a
polynomial of degree N −1. Although very tempting, this solution is strongly deprecated because
offers no control over the values that the obtained fit takes between and beyond the data given.
This undermines the purpose of the fit which tries to find a regular curve implied by the points.

A very conspicuous place to start is the problem of fitting differential cross sections to obtain
a fit covering the full angular range 0○–180○. This is a ubiquitous problem in all cross-beamed
studies which try to derive integrated cross sections from incomplete measurements [120, 141].
In figure 13.2 we show how naively applying a least squares algorithm to find the best matching
Legendre polynomial can give utterly erroneous results beyond the angular scope of the measured
data especially at large angles. A comparison is shown with the late experimental data of
Linert and Zubek [600] in which the magnetic angle changer technique [1014] permitted to probe
backscattering angles. The point is that the results of a 3 parameter fit (2nd degree) can overall
surpass the mediocrity of higher-degree polynomials even though they do not follow exactly the
curve undertraced by the points in all of its meanders as the other fits. On the rightmost graph
at 20 eV, the cusp of the DCS is deep and it would require a higher degree Legendre polynomial
to be properly fitted for all angles. Nevertheless, DCS which merely extend to 90○ are very
difficult to extrapolate and that the parity of the highest degree of polynomial can have a severe
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Figure 13.3: The phase-shift (MPSA-eq 13.5b, flashy colours, dash-dotted) analysis [87] is com-
pared to a penalised (anti-negative and lower coefficients for high degrees) least-squares fit (LPP-
eq 13.5a, mild colours, dashed) of Legendre polynomials. The degrees L = 4,6,8 of the fits are
always the same but the phase-shift analysis only involves L/2 + 1 free parameters (δl). The
black points show experimental data used for the fits [288, 893, 894] and blue triangles show
backscattering measurementsLinert et al. [598] and Linert and Zubek [600].

impact on the fitted result. The decomposition of DCS in partial waves (13.5b) described in the
previous part section 8.4.1 implies that the highest degree of the Legendre polynomial should
always be even. If odd degrees are left unchecked, it is not uncommon that negative values are
obtained in the range of extrapolated angles!

The art of extrapolating DCS over the full angular range called for new fitting techniques
such as the famous phase-shift analysis of Boesten and Tanaka [87]. This consists of exploiting
the assumption that DCS for molecular targets averaged over their orientation can be modelled
by phase shifts much alike in central potentials seen in the previous part section 8.4.1.

DCS(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

∑
l=0
alPl(cos θ) > 0 ∀θ ∈ [0, π] (13.5a)

1

(2k)2

RRRRRRRRRRRR

L/2
∑
l=0
(2l + 1)(e2iδl − 1)Pl(cos θ)

RRRRRRRRRRRR

2

(13.5b)

In figure 13.3, we compare a more cautious Legendre fitting based on penalisation (cost
function - LPP 13.5a) and molecular phase-shift analysis (MPSA 13.5b). The main message is
that the MPSA can both prevent the DCS from being negative and can significantly reduce the
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excitation cross-sections for oxygen. Increasing the number of parameters makes the fit more
vulnerable to overfitting.

number of free parameters while the more traditional fitting with cost function does almost never
extrapolate reasonably, getting worse at intermediate energies which are characterised by steeper
curves and deeper cusps. Nevertheless, at energies closer to resonances, it gets more difficult to
handle the MPSA because the initial guess for the phase-shifts is only based on the (molecular
isotropic) polarisation potential which is valid rather at higher energies and higher phase-shifts.
Again, adding more parameters does not always help improve the fit. Sometimes, the fits with the
lowest number of parameters yield the most desirable results. This is because the optimisation
algorithm is unguided adequately and thus searches almost blindly for a solution. In some cases
when the angular range is very limited (<90○), it is necessary to explore the variable space of the
MPSA and perform an averaging [141, figure 1].

As mentioned, the MPSA assumes that the scattering matrix (S-matrix) of a rotationally-
averaged interaction with a molecule is mainly diagonal. At lower energies and lower partial-
waves, this is not true and a deeper physical analysis is required; with off-diagonal elements
calculated through a first Born approximation [274] as described in Sun et al. [894, §VII.A].

Fitting DCS is an example where the extrapolation range is limited, when moving to CS, the
energies are in principle unlimited and thus, one must watch over the asymptotic trend of the
fit. Another example of overfitting due to too many free parameters is shown in figure 13.4

At this stage, it is instructive to first observe the progression of functions f involving from
3 to 7 free parameters. The shape beyond 30 eV looks magnetically attracted to the somewhat
up-shifted data of Wakiya [973] (which we renormalised, cf. sec 15.1.2). The question, more
difficult to answer here is: at what point can we consider that we are overfitting? Clearly the f ′7
form is the over the top. What about f3 ⋖ f4 ⋖ f5 ⋖ f6 (with a ⋖ b as “b slightly better than a”)?
Could we consider that the two points at 100 and 200 eV are trustworthy and should we thus
privilege f5,6 over f3,4?
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Figure 13.5: Various fits to the experimental data reported by Trajmar et al. [941] (dark cyan)
and Campbell et al. [141] (light brown). The polynomial fits (dashed) synthesised by Brunger
et al. [121] and Cartwright et al. [159] have a higher cross section than the present fits (solid)
between 15�40 eV. The very large error bars (≳ 40%) of Campbell et al. [141] may have not been
incorporated in the least-square fit (dashed light brown), since the dotted line fitting only those
data shows also a prominent bump in the CS.

Perhaps the aftershock of looking at completely aberrant fits of DCS (fig 13.2) might affect
our judgement. As a matter of fact, the functions (13.1) chosen to describe CS are much better
constrained than the Legendre polynomials which we may mangle however we please. This leads
us to the next section discussing the problem of flexibility in a fit.

13.1.2 Too much flexibility

Polynomial expansions are very powerful mathematical tools because they offer a virtually un-
limited flexibility to represent functions. Physically though, one should not expect to get much
answers while using them as a fitting basis.

For DCS, figure 13.3 showed previously how reducing the flexibility over the allowed space of
polynomial coefficients as expressed through the difference between equations (13.5a) vs. (13.5b),
can reduce the aberration of a polynomial fit in the extrapolated region. As a complement,
figure 13.5 compares polynomial fits ([121, 159, §6.4.5.2.13, fig.1]) and a fraction fit [902] to
the data of Trajmar et al. [941] and Campbell et al. [141]. Our set of generic functions f, f ′, f ′′

(13.1,13.4a,13.4c) is fitted to the same data. The most recent measurements of Malone et al. [622]
are displayed as an exterior reference. There is a striking difference between the set of polynomial
fits which all display a prominent bump between 15�40 eV, and our fits which remain low.
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The difference can be explained at least by two factors. First, by comparing the curves, one
could surmise that that the least-squares polynomial fit [121, §6.4.5.2.13] must have comprised an
at least third degree (1×2) numerator and maybe a first degree denominator raised to the power
of four (the asymptotic strength d = 1). Second, the closest reproduction of the “Polynomial
LS” fit obtained with the 4-parametric f ′4 is given as a dotted line based solely on Campbell
et al. [141] data though. The great difference in error bars between the two data sets indicates
that those were probably not accounted-for properly in the polynomial fit, since the difference
between the solid lines (fitting both sets) and the dotted line is quite significant.

Here again we face the question of where lies the boundary between overfitting. This can
become a philosophical question: are we trying to link sporadic measurements with a smooth
curve (like the dashed curves in fig. 13.5), or are we trying to derive the generic shape that
would be in accordance with the Born approximation? The unused data of Malone et al. [622,
§4.4] bring more material to the discussion. Without them, the dashed fits look much more
convincing than our solid-line fits. Nevertheless, the experimental discrepancy near threshold
casts a doubt on the previously reported polynomial fits. The reason for this discord is because of
the narrower angular range of the measurements involved in Campbell et al. [141] which implies
a wide uncertainty on the derived ICS. As a result, we deem that the bumped dashed lines
on figure 13.5 are overfitting the data in the sense that they either do not consider the wide
uncertainties in the least-squares fit, or endow too much flexibility to the polynomial function
used (which is pitifully not reported).

We further illustrate how the shape of the function chosen can severely affect the risk of
overfitting even if the number of parameters is kept constant.

First, we explore the concept of vulnerability to outliers. Without constraining the pa-
rameters, we unleash the optimisation algorithm on a dataset with one point amiss for the
(4p)[5/2] 3D3 state of Argon (cf. comment 15.1.4) and observe the curves obtained on fig-
ure 13.6a. We see that f ′′4 is definitely attracted by the outlier at 30 eV and its natural propensity
to peak would wrongfully judge the last of the four points at 100 eV to be the outlier. From
here, we can already place a doubt on the generic form of f ′′. The rest of the generic functions
completely ignore the outlier, however, the lack of points near threshold permits the exposure
of two kinds of singular behaviours caused by b → 0 for f3, f ′4; and by C → 0 for f4 and f○○4 in
(13.1). We shall see later how such marginal behaviours are duly addressed.

In the second figure 13.6b for N2(G 3Πu), f ′4 shows too much sensitivity to the first point in
the series. Its vulnerability is exhibited due to the factor (w/c)a +1 in (13.4a). Conversely, f ′′4 is
unable to adapt itself to the trend because of its inherently asymmetrical shape with a sharper
falloff beyond w > C due to the denominator 1/((w/C)e + 1) with e > d = 3 in (13.4c).

Next, we consider fits of N2—B 3πg for f, f ′, f ′′ are presented in figure 13.7-top (left:logarithmic
and right:linear scales). Each time, the competing formulae have the same number (6) of pa-
rameters so that they stand in principle on equal footing when discussing mismatching issues,
the f’4 is shown for comparison.

This set from Johnson et al. [463, §4.2]’s measurements shows a wavy pattern, also called a
“shoulder”, about 20 eV. On the contrary to the example of b 1Σ+g state of O2 on figure 13.4 which
also presents a wave due to juxtaposition of different experiments, the present data comes from
the same experiment and it is reasonable to assume that the shoulder observed is therefore not
an artifact. Another sound observation is to notice the fact that this “irregularity” happens close
to threshold (≃7.353 eV) as opposed to the data in 13.4 which appears an order of magnitude
above threshold (lower at ≃1.627 eV). Therefore, we deem that even though we fit 8 points of
N2 (fig 13.7-top) with 6 parameters, the curves for O2 (fig 13.4) with 22 points are clearly more
overfitted by 6 parameters.
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Figure 13.6: Vulnerability on outliers is
tested on the generic functions.

Nonetheless, since only one database is used it
is difficult to decide which of f6 and f ′6 best rep-
resent the data. Their shape near threshold is too
sensitive to the first point of the data set which
shows a large (absolute) uncertainty.

Concerning the underfits, f ′4 and f ′′6 , it is quite
obvious that their shape is not adequate for the
data selected. The sharper transition in the f ′′

variant given its by denominator (we + C) creates
a three-segmented bow with marked changes in the
first derivative. Probably a sounder variant would
be to consider (w2 + C)e in reminiscence of Breit-
Wigner resonance peaks.

A sum of two f ′′6 would be needed to represent
the data. Actually, two f ′′4 would suffice. This is
because the theoretical capability of f ′′6 to twist like
its siblings f6 and f ′6 seems inhibited by the trau-
matisingly sharp form chosen for the denominator.
Once the w = C threshold is passed, it is impossible
for the numerator to catch up and induce a wob-
ble, the asymptotic strength (d = 3) prohibits such
option.

The use of f ′′4 as generic function [349, eq.(1)]
comes from pragmatic but definitely not physical
considerations. When combined in sums as was the
case in the original publication [902, eq.(ii-iii)], each
component can fit one bump and thereby produce
a wavy pattern like the dashed-pink curve seen on
fig 13.5. The decomposition of the bumps can be
also seen on 13.4 where the solid and dashed light-
brown curves, when summed, would in principle be
also able to link the points continuously. These
examples illustrate, in my opinion, why choosing a
cutoff denominator 1/(we +C) with e > 2 does not
make much physical sense and should therefore be
avoided (even if it may be convenient for creating
sharp peaks near threshold as in fig 13.17 presented
later).

Moving back to Argon again, we present an-
other set of fits to the (4p)[1/2]1 state in the middle row of figure 13.7. This time, f4 keeps
a decent shape, while f○4 and f○○4 display a singular behaviour near threshold. The dotted line
shows the unconstrained singularity C, b → 0, which is attenuated on the solid lines when C, b
are bounded minimally.

The reason for the apparent versatility of f4 is due to the asymptotic strength which was
d = 3 (spin-exchange excitation) for the (4p)[5/2]3 state in fig. 13.6 while being d = 1 (dipole-
forbidden) for the present (4p)[1/2]1 state. In many cases, the behaviours of the f , f○, f○○

saga are indistinguishable (e.g. bottom graph of fig. 13.7). This occurs when C ≃ 1, whereby all
forms are equivalent. These three variants are distinguished when C → 0, as provoked by the
measurements for (4p)[1/2]1, where C = 0.16 for f4 and would be even smaller for f○ and f○○.
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Figure 13.8: The near-
threshold resonant peak
of C 3Πu cannot be fitted
with any of the generic
forms presented earlier in
(13.1-13.4a). The function
f must be augmented with
a Fano profile fres (13.6) in
order to produce a satis-
factory result. All dashed
lines use 6 parameters, and
full lines use 7.
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13.2 Ad hoc Fitting

So far, the fitting procedure we have covered was based on open exploration. We presented a
functional space in which the fits could be built and optimised in that space and sometimes to
its fringes. When the intrinsic characteristics of a function could not enable a pertinent fit to a
set of data, which most stereotypically was the case of f ′′ in figures 13.7-top or 13.6, and f○, f○○

in figure 13.7-middle; then we would simply discard it and favour the other successful variants.
Sometimes, a function might be regarded as too precious by its creator and it would hurt too

much to discredit its use. And so, several ways might be tried in hope of salvaging that poor
function.

In my personal case, that would apply to the f4 and f6 I have so fervently dedicated time
and effort. So when there arises, somewhere in the database, an instance of data that cannot be
fitted well by the f family, I had to urgently find a way to preserve its use which was satisfactory
in 96% of the instances. I augmented f to its ‘super-peaky-power’ form :

faug(w) ≡ f3(w) ⋅ (1 + fres(w
′))

=M
wb

(w +C)b+d
(1 +A

cos(2α) − sin(2α)w′

(w′)2 + 1
) ; with w′ =

ε − εr
Γ/2

(13.6)

This augmented form distinguishes a “slow” background shape f3 on which is superposed a
resonant asymmetric Fano-profile fres introduced in Andrick [26, eq.(21)]. One can see how the
faug overwhelms all other forms f6, f ′6 and f ′7 on figure 13.8.

In this case, the augmentation is semi-justified by the fact that there most likely is a resonance
peak for C 3Πu somewhere near 13 eV which also features in R-matrix calculations (but at 16
eV, cf. 11.4.3). Also, the profile of shape resonances is well described theoretically and I didn’t
need to recur to a far-fetched modification.
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In more unfortunate cases, lack of knowledge may prevent us from finding a physical expla-
nation and subsequently derive a modified formula that matches well the results. I call “ad hoc”
fitting, any kind of amendment that augments a formula based on a tentative (or simply put:
flimsy) physical justification. In my personal point of view, a non-overlookable percentage of
scientific research is imbued by ad hoc ‘improvements’.

The problem with ad hoc fitting is not necessarily about its pragmatism but rather about
how it is presented and treated. In my example above (13.6), some parameters have a physical
meaning, while others do not (or at the very least it is blurred).

• M : it is related to the bi (or γi or higher-order) coefficient in Bethe-Born theory of inelastic
collisions (cf. 11.4.1-eq.11.55)

• C : is the empirical coefficient proposed by Kim [504], it lost its “semi” status as I liberated
it into a free parameter.

• d : is the “forbiddance degree” of the transition which is fixed. Other authors [482] might
have chosen to give it some leeway since some transitions can be partly dipole permitted
and partly quadrupole.

• a and b : control the near-threshold bump and slope, but are physically-unbound mere
mathematical parameters.

• εr : would be the resonance centroid energy position. It could be known, just like the
excitation threshold. For C 3Πu, the maximum is reported by many experiments [1012]
to be located at 14.1 eV. But this needs not correspond to the centroid εr because it is
superposed on the function f3 which also peaks in that region. The present fit (fig 13.8)
was obtained with εr = 13.7 eV.

• Γ : would be the resonance width fitted to ≃2 eV.

• A : would be related to the resonance amplitude

• α : would be the background phase-shift at the resonance of the dominant partial-wave.

Notice the difference between which parameters are and which would be their correspondent.
Unfortunately, the formula faug is an ad hoc modification to my favourite profile for forbidden
transitions. Normally, the resonance is considered as a local feature in the cross section. If the
reader did not wince when reading that Γ = 2 eV was the resonance width, he or she is probably
not acquainted with typical resonance widths [407] which are expressed in the order of meV.
The safer interpretation is to admit that (13.6) is an ad hoc modification based on resonance
profiles that was required in order to fit the feature peak seen for C 3Πu. If one starts diverging
toward physical arguments, one will tread on swampy grounds. The cross section presented is
the sum over the first three vibronic bands and the bump fitted with faug may correspond to
contributions due to various symmetries of the N−2 compound [914, p.5]. In informal words, I
have no idea whether this feature should be considered officially as a ‘resonant peak’ or a ‘residual
resonant bump’ and I use the Fano-profile as a convenient way to fit its shape. It would have
been dishonest to stay with the justificative paragraph written above the list.

A somewhat similar augmentation was introduced in Laher and Gilmore [549, eq.(2)] where
the original shape [444, eq.(1)] was modified for spin-forbidden transitions:

f ′aug =
M

1 + γ(w + 1)2

(1 − 1
(w+1)a )

b

w + 1
(13.7)
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Figure 13.9: The two low-lying spin-forbidden transitions in atomic oxygen (1D 1.97 eV and
1D 4.19 eV) require an asymptotic decay 1/ε3. This trend is however not underlined by the
experimental data. The formula adopted for the fit presents significant variations outside the
range of experimental values.

This form cannot peak like faug (13.6) but bends around √γ(w + 1) = 1. It was introduced
after the observation that O 3P → 1D, 1S transitions in atomic oxygen are spin-forbidden and
thus must decay ∼ 1/ε3 ∼ 1/w3 at “high-energies” (>200 eV) [549, p.282]. However, this trend
is not evinced experimentally [437, see figure 5.2]. In figure 13.9, we show how mismatching
trends between experimental values and predicted asymptotic decay affect the fitted function in
the near-threshold and high-energy regions. The bent form f ′aug (13.7) seems convenient for 1D

but somewhat inappropriate for 1S. Our generic form f4 (13.1) has trouble keeping a and b at
reasonable values (a ∼ 1 and b > 0.5) in the former case because of the steep rise near threshold
predicted theoretically [395, fig 3]. Trying to adjust carefully the formulae to the experiments
would be another example of ad hoc fitting. Ultimately, this lack of determination calls for
further experimental investigation [462, §8].

The literature is rich in examples of ad hoc fittings and one should always be wary that:

Conclusions based on assessments of ad hoc constructs are of little scientific value.

Therefore, one should not be tempted to seek physical meaning under every ad hoc adjustment
being made to match data. I list:

• The “screening correction” that I use to adjust my DCS for elastic scattering in chap-
ter 11.1, should not be interpreted as a compensation for the hiding of one atom behind
another in a molecule [82]. It is a mere convenience for scaling down the independent atom
approximation which does not verify the optical theorem.
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• The “screening factor” in the screened Rutherford expression should not be systematically
linked to the electronic density profile around atomic nuclei, especially when it is used to
fit below ∼100 eV. Beside my own fit [811] which certainly holds no other than a pragmatic
value, Jackman and Green [445, eq.(4)]’s expression has a screening factor a = 0.11 which
is constant with energy; an absolute physical inconsistency!

• The restless “scaling factor” for the absorption potential [881] is a correction that merely
compensates the overestimation of absorption rates at higher energies. The numerous other
ways [79–81, 878] that this shortcoming can be compensated with, attaches an inseparable
arbitrariness to this correction. It should not be considered as a physically founded effect
as implied in Raj and Kumar [763].

A very responsible way of introducing an ad hoc adjustment is given by Kim [504, p.2] to
explain the introduction of C in (13.9) below:

“
”

Kim [504, p.2]

In the absence of more fundamental understanding of the origin of the BE scaling, the
combination [I +∆E ] in the BE scaling should not be taken literally as a rigid rule, but
only as an indicator of the order of magnitude of a constant shift to be added to [ε].

It is good to state that the fundamental justification to such adjustment is not clear and may
derive from various causes. Also, this is applied only for dipole-allowed transitions; I presently
used it as a fitting parameter for any transition (forbidden or allowed). With the low-energy
modifier ((w + 1)a − 1)b, this parameter C in 13.1 loses any physical significance it may have
borne before.

13.3 Constraining

In the two previous sections, we underlined the issues that paved the world of fitting. The present
section is dedicated to the indispensable caution with which fitting ought to be approached.

The risk of overfitting can be reduced and brute forcing can be alleviated when properly
constraining the fitting procedure. When we look at an unsatisfactory fit (as in figures 13.7,13.4),
we immediately know what has gone wrong. Giving proper constraints can discard such results
and facilitate the process of optimisation.

We illustrate this with three basic considerations: preliminary treatment of data, choosing a
proper analytical variant and applying rigid bounds to the parameters. More advanced aspects
such as inclusion of cost functions and the optimisation search algorithm, though very important
as well, will not be covered here. We will show that significant improvement can already be
attained starting with the most basic of considerations below.

Data Presentation

It goes without saying that the first step to take in data analysis is to look at the data. Even
while the field of machine learning is booming and works sometimes miraculously well without
prior checking, it is vital to acquaint oneself with the characteristics of the data (magnitude,
range, regularity, trends, source, etc.). After all, “machine learning” operates subliminally in
ourselves as well.
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Figure 13.10: The comparison between left and right columns illustrate the process of inspecting
a set of data and choosing appropriate scales for x and y-axis. Top row shows cross sections for
dipole-allowed transitions of N2, middle row shows generalised oscillator strengths for optically
allowed O2 excitations and bottom row is a set of elastic differential cross sections with Ar.

There are many directives for treating data whatsoever and a branch of science dedicated on
data analysis. Here, I shall just restrict myself to highlight some important preliminary steps to
get acquainted with data.

The first place to start when given data is to inquire about the units and scale the problem to
a range of values easier to grasp for our mind. Determine the extrema, the amplitude they span,
their sign. If non-zero and homo-signed, determine their ratio and check the magnitude range.
Choose an appropriate unit to express them altogether. In our case, energies might be expressed
in eV, keV, MeV, GeV,... or Rydbergs, Hartrees (atomic unit system). Cross sections might be
barns (=10−28m2), squared Bohr radius (≃2.8 × 10−21m2), squared Angströms (=10−20m2) or
any round magnitude in the 10−19�10−26m2 range. The choice might depend strongly on the
domain of research: nuclear, atomic/molecular, plasma, high-energy physics etc.

From the perspective of machines, it is sounder to normalise the data either to the maximal
absolute value, or the mean/median when appropriate. In rare cases where one doesn’t know at
all what is being observed, it might help to subtract the mean/median, divide by one standard-
deviation/interquartile-range and sneak a peek on a plot. This enables to properly constrain the
values observed.
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If one has a trained eye or brain, then knowledge about the data characteristics comes into
play. Regular data could be turned into their spectral component, power laws viewed in a log-log
scale and exponentials or logarithms in a semi-log scale.

In our case, cross sections are viewed on a log-log scale to observe the predicted asymptotic
Bethe trend. For more complex trends, as for allowed transitions (cf. section 11.4.2), one
speaks of a “Fano plot” ( [427, p.329:fig. 17-18]) or “Bethe line” ( [476, p.2662]), while naming
it “Bethe plot” ( [450, p.215]) or “Born-Bethe plot” ( [865, p.4:fig. 3]) when looking at total
scattering; there the cross section is multiplied by the electron kinetic energy σ/(4πa20) × ε/Ryd
and displayed against log(ε/Ryd).

When looking at differential cross sections, the relevant quantity is the momentum transfer
q. One may choose to plot generalised oscillator strengths against [851, fig 1-2] (qa0)2 or its
logarithm [427, p.324:fig 13]. A comparative illustration of how to prescale data for visualisation
and treatment is shown on the graphs of figure 13.10. Clearly, setting an adequate format for
prescaling data is essential to grasp their structure, detect inconsistencies and check trends.

It is important to keep in mind that how data are prescaled will affect the optimisation
process for finding a suitable fit. In particular, if one is fitting an exponential function or a
power law on raw data, the result may be greatly affected by outlying or misplaced points with
higher values. To spread more evenly the importance among the points xi, yi used for fitting a
function f , one may choose to apply the least-square method scaled to the relative ∣f(xi)−yi∣/yi
instead of the absolute displacement.

Linked to this issue of sensitivity to data points is the knowledge about the uncertainty
associated to each point. This is where we ought to turn toward the source of the data and
go through the painstaking process of examination. The minimal requirement (necessary but
certainly not sufficient) for a report to be reliable, is to include a section dedicated to a quantified
error analysis of reported data. Those may come as relative uncertainties in percents applying
to a wide range of values, or absolute error estimates accompanying each individually tabulated
value.

Nevertheless, the hardest error to guess from an exterior point of view, is about the reported
data themselves. This would be the “meta-error” or the trust we attribute to a particular value
reported in a study. The purpose of many articles is actually to address the reliability of reported
values, characterise this meta-error.

As an example, the raw data of Chutjian and Cartwright [180] for excitations with Argon
are given in figure 13.11 for the lowest two (4p) excitations. An unidentified [106, p.766] typo in
Chutjian and Cartwright [180] table IV at 30 eV misplaced the data units by an order of magni-
tude higher causing Puech’s database to become spoiled for those two excitations. A comparison
with Hayashi’s database on the right shows that this typo had been properly identified in other
reviews.

There may be many other spurious inconsistencies in reported values of DCS and CS hidden
in the literature. I address some of them later in this part in the chapters 15&16 describing
the databases. The one for Argon is the most prominent and obvious which is why I showed
it here. For some molecules, there is an ongoing disagreement among reported measurements.
Surely, the normalisation procedure may play a major role in those discrepancies. The process
of rewinding the reported work and trying to untie the knot can be dreadfully time-consuming
and often fruitless, which is why it not addressed enough. Nevertheless, solving discrepancies is
one of the major endeavour in scientific research, and this starts by getting acquainted with the
data being presented to us.
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Figure 13.11: Two unidentified mistyped orders of magnitude in the columns of Chutjian and
Cartwright [180, table IV]. On the left: uncorrected typo. On the right: same data with typo
corrected. Comparison with other databases (e.g. Hayashi on the right) or measurements can
serve to spot them out easily.

Analytic Variants

Equivalent functions can be expressed in different forms; which one should be chosen? Depending
on the algorithm used, or the desired shape, one might prefer a variant over another. In general,
it is recommended that all the parameters vary within a “reasonable” magnitude range.

As described above, it is important to start by setting an adequate order of magnitude M .
Thus, if one fits cross sections ∼ a20 that are of the order of a squared Bohr radius, it is natural
to prepend a magnitude factor a20 to the function as in 11.4.2 eq.(11.61). If the magnitude is
not set properly, the optimisation algorithm might run back and forth running through a great
range of values of M and might even give up. A concrete example is given below.

Next, one must face the hard choice of fixing the generic expression for the core of the function
when multiple parameters are involved. Typically, this has to do with factorisation. As implied
above, it is not the same to ask an algorithm to fit b exp(−ax) or −ax + log(b).

We first consider the very simple cases of the three-parametric variants :

Mxb

(x +C)b+d
versus

Mxb

(x/C + 1)b+d

The difference affects again the magnitude coefficient M which varies as 1/(C)b+d between
the left and the right expressions. In this particular case, the functions all annihilate at the root
x = 0 and the characteristic magnitude is obtained at their maximum when x = C b/d which
gives:

M

(C bd )
d(1 + d/b)b+d

versus
M(C)b

( bd)
d(1 + d/b)b+d

In the limit of C → 0, the left expression would need to respond by M → 0 to maintain the
magnitude, whereas the expression on the right would bring M → ∞ to catch up. Since it is
preferable for a parameter to be well bounded, the left expression seems a better candidate for
feeding an optimisation algorithm.
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Table 13.1: Least-squares optimisation on various N2 electronic excitation cross sections. In each
cell are listed the number of (function calls ; iterations) for a Nelder-Mead simplex algorithm
[314] The first function form is better suited for such purposes. In * , the algorithm did not even
converge.

Fit Function a 1Πg a′ 1Σ−u a′′ 1Σ+g B′ 3Σ−u B 3Πu
Mx/(x +C)b+d 196 ; 111 269 ; 462 340 ; 190 343 ; 197 289 ; 165
Mx/(x/C + 1)b+d 311 ; 176 2000∗ ; 3411 401 ; 228 1281 ; 748 361 ; 206

This hypothesis is tested on a few sets of excitation cross section data in table 13.1. We see
that the Nelder-Mead simplex algorithm has to run on average lesser times to converge to an
identical result with (x + C)b+d as a denominator. Sometimes, when C is menacingly low, the
algorithm might not even converge within the limit number of iterations as has happened with
the N2(a′ 1Σ−u) database.

The bottom line is that even if 1/(x/C + 1)b expressions in (11.61) are more friendly from
our perspective, to imply strictly that C > 0, they might not be suited to the fitting procedure.

This duality of having a parameter featuring as 1/c versus c/1 is ubiquitous when giving form
to a particular generic function. If any of the parameters in a fit are put out abnormally high or
low, it signifies most probably that the problem was not constrained well.

The careful process of checking that parameters in a function can all be restricted to a
reasonable range of values is what makes our interaction with machines more civilised rather
than appealing to brute force. After having applied this principle on equation (13.1), the task
of optimising is greatly eased with the following recipe:

f4[6](w) =
M

(w +C)d
(
(w + 1)a − 1

(w +C)a
)

b

[
wa

′

+ (c′)a
′

(w +C)a′
] (13.8)

If we are sure that we want a certain parameter to be confined within a certain range of
values (e.g. C > 0 in 13.8); rather than making it implicit in the form chosen for the function, it
is always better to tell it explicitly by providing bounds as presented in the next section.

Bounds

Parameters intervening in a function do evidently not all play the same role. Some (e.g. expo-
nents) are more critical than others (e.g. coefficients of higher orders) to which the fit is less
sensitive. Often, each parameter is expected to vary in a decently restricted range of values. For
instance, magnitude coefficients and exponents of fixed denominators ought not be negative. In
general, exponents shouldn’t exceed 12, otherwise, a better suited function (exponential, Lorentz
profile) can be chosen for the steep slopes of the fit.

In some instances, the shape of the four-parameter function f4 might not be adequate to
fit the data given. Then, it is important to properly constrain the range of values that the
parameters can take, in order to avoid getting discontinuous or marginal behaviour.

In (13.8) The pair a, b of exponents represents the near-threshold rising portion. For a, b > 1
the derivative at the root value w = 0 is zero but then rises steeply. When a < 1 and b > 1, the
transition is smoother but still steady. Non-zero derivatives are obtained for b ≤ 1, with sloppy
a < 1 or faster a > 1 convergence toward one for w ≫ C. Clearly, a cliff is obtained when b → 0
and a→∞, which we must prevent from forming. Physically, it is doubtful that b < 0.5 which is
the limiting case of near-threshold from s-wave excited transitions [982]. We show on figure 13.12
that setting b ≥ 0.5 wards cliffs away from threshold.
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Figure 13.12: Constrain-
ing b ≥ 0.5 in (13.8) pre-
vents the generic func-
tions defined in (13.8)
from exposing their cliff-
ing capability from the
singularity b → 0 com-
bined with a → ∞ at
threshold. Solid curves
are constrained (b ≥ 0.5)
while dot-dashed are un-
constrained
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Figure 13.13: The upper
bound of b in (13.8) con-
trols the steepness of the
slope close after thresh-
old. The solid (b ≤
10), dashed (b ≤ 50) and
dotted (b ≤ 1000) show
how the peaking capa-
bilities differ among the
three variants presented
in (13.1-13.3). In partic-
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Figure 13.14: Finding appropriate fitting functions for excitation cross sections among the pos-
sible candidates.
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Figure 13.15: Low values of a introduce a slowly rising portion of the graph that can fit broad
plateaus. Here, the algorithm is trapped into getting its tail closer to Wakiya [973]’s results at
high energies. It is accompanied by a divergence of M → ∞; its value goes from 0.2, 2.6,480,
1.3× 105 up to 3.4× 107 at the lowest value of a = 0.0001. To prevent this ill-conditioned fit, one
must impose a lower bound on a in (13.8).

The other extreme b→∞ while a can take any value, creates a displaceable wall. It is not as
discontinuous as the previously seen cliff because it must gradually rise from a zero derivative,
which makes a bend at the foot of the wall. Physically, this trend would not be necessarily
unfounded as some data display very sharp onsets (see figure 13.13). In this case, constraining
the upper bounds for b and a prevents generic functions from surpassing their capabilities. It is a
precaution against overfitting. As a general rule, we impose a, b < 10 and when the optimisation
reaches this ceiling, we look at why the shape of the data calls for a sharp peak or steep slope.
Generally, such structure can result from a local resonance (as for N2-E 3Σ+g ), in which case we
prefer to augment the fit with a generic 1/((2x/Γ)2 + 1) Breit-Wigner profile (13.6).

If we now examine the last case where a→ 0 while b stays finite, we obtain a gradual fading
in amplitude of the low-energy modifier with an initial step followed by a very slowly rising slope.
This occurs when the function requires a flat and broad plateau as for instance with a 1∆g of
oxygen in figure 13.15. It shows a series of extremely slowly convergent curves as a → 0 which
all try to desperately raise their high-energy tail. This behaviour is naturally accompanied by a
C ≫ 1. The parameter suffering most from this sloppiness is the magnitude M which will shoot
up M → ∞, to try to maintain the level of the plateau. Since we chose b < 10, we decided to
impose a > 0.1 so that their product ab can be at least unity if needed.

The offset C is due to Kim [504]’s BEf scaling and would represent the local increase in
kinetic energy of the electron incident in an attractive potential. It is clear that the asymptotic
trend emerges only after w > C which implies that one should not expect C to be much larger
than the ratio of the energy at CS maximum to the threshold ∆E . It can happen that a given
set of data probes only the rising portion of a CS as represented in figure 13.16. In this case,
the upper bound of C is endangered as the optimisation process may try to shove C as far as
possible toward high energies. Physically, C is not expected to be many folds of the excitation
energy, so that we chose C < 10 as an upper bound.
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Table 13.2: Parameters for forbidden (13.8) and allowed (13.9) generic functions.

Parameter M C a b a′ c′

Effect Magnitude Fall-off Cliff/Plateau Wall Wriggle Wriggle
(position) (height/breadth) (onset) (bump) (position)

Bounds ]0,∞[ ]0,12] ]0.1,10] [0.5,10] [1,10] ]1,10]

The lower bound of C cannot go below 0 for the obvious concern of not introducing a
singularity at w + C = 0. Theoretically, from BE-scaling (see section11.4.2), C should at least
be > 1 so that the cross section decreases with 1/εd as the inverse of the kinetic energy. There
are nonetheless some situations that demand a peak with a fall-off nearer threshold. One may
visualise that lim

c→0
1/(w/c + 1) moves the singularity closer toward the threshold w = 0 and thus

brings steeper fall-off slopes at w = 0 corresponding to −w/c. In figure 13.13, the fall-off portion
is situated slightly below twice the energy threshold of the transition (∆E=8.895 eV) which
demands C ≊ 0.85 < 1 for an optimal fit given the bound constraints. For this reason, we didn’t
dare to impose an inferior bound higher than 0.

The same argument about C applies to allowed transitions whose generic expression is recalled
here as well :

g4(w) =
M

(w +C)
log((w ⋅ a)b + 1) (13.9)

Its behaviour near threshold shows that a, b play the same role (derivative, flatness) as in (13.8).
For most allowed transitions with NO, as shown in figure 13.17, the optimisation converged

preferably toward C ≃ 0 just because the last data point (at 50 eV) in Brunger et al. [120] mea-
surements systematically demands a sharper fall-off even when it is corrected for normalisation
(cf. section 15.1.3). The opposite trend, when the fall-off is demanded to be slow, C swings
toward higher values as seen in figure 13.16.

A brief summary of the parameters treated presently and their bounds is given in table 13.2.
The constraints over the wriggle [(w/c′)a

′

+ 1] in (13.8) come from the fact that this feature
is usually farther from threshold thus c′ ≥ 1 and a′ ≮ 1 is because the wriggle cannot appear
unless the transition at w = c′ is sharp.

13.3.1 Diagnostics

So far, we have presented very binary and qualitative means of assessing whether a fit is well
constrained or not. We have determined that if the parameters are permitted to vary over a
broad range, the fitting is not well constrained either because of the function chosen, or the data
available.

There is another very important quantitative indicator assessing how well (or unwell) are the
parameters suited to the data to be fitted. It is the variance of the parameters involved (or its
square root giving the standard deviation). It gives an estimation of the uncertainty over the
optimum obtained. The covariance of the parameters is very rarely disclosed because its values
can be frighteningly large. As can be imagined, most of the fits presented above are actually
very poorly conditioned. This is because the near-threshold behaviour is scarcely probed by
measurements. This implies that a and b of (13.8) in particular, are not known with exactitude
and that the algorithm will try to adjust them over broad ranges for minute improvements (as
for example in figure 13.15).
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A concrete example is given in figure 13.18, comparing how the low-energy modifier b, though
similar in value (≃2.6), is fitted with larger uncertainty for an excitation with argon (bottom
graph) than with nitrogen (top graph). This is because of the presence of a data point [159]
at low values and near the excitation threshold of a 1Πg highlighted as a red dot at 10 eV. By
artificially imposing different values for b ∈ [1.5 ; 8], one can see how the shapes of the CS fits
evolve. While on the bottom graph, the least-square distance to the 4 data points is weakly
affected by the behaviour near-threshold, the situation is quite different on the top graph where
the distancing of the curve to the red dot is impactfully penalising the result of the fit.

Unfortunately, there are very few cases where the data is enough to constrain well the pa-
rameters a and b. For most of our fits, their uncertainty can even exceed their nominal value!
At first, this could discredit the quality of the fits presented. In practice, this only means that
the parameters a and b cannot, for most of the cases, be given pertinent significance. The most
important parameter remains the magnitude M linked to the physical Bethe-Born parameter bi
(or γi for forbidden transitions) given in sec. 11.4.1 eq. (11.55). When disclosing parameters in
a publication, such diagnosis helps to distinguish crucial parameters from flexible ones.
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Figure 13.18: Near-threshold behaviour for N2-a 1Πg (top) better constrained than for Ar-
(3d)[5/2]2o (bottom). The red dot at 10 eV from Cartwright et al. [159] (renormalised) is crucial
in constraining properly the b parameter in (13.8). It is estimated at 2.553 ± 0.517 for N2(top)
versus 2.61 ± 4.54 for Ar (bottom).

13.4 Closing Remarks

There are many more aspects to be covered when fitting data. Data science forms an entire field
on its own and many treaties can be found in a variety of textbooks. The least-squares optimi-
sation method used presently is covered for example in Kendall [487], and concrete numerical
methods can be found in Nocedal [706].

Besides being didactic, one of the purposes of this chapter was to bring a qualitative justifi-
cation (i.e. “how I came up with”) for the choice of generic functions used to fit excitation cross
sections in part II section 11.4.2. Such complementary information about the scientist’s intuitive
thinking could be disclosed more often in supplementary files to published articles, or at least in
public reports, like the ones of Phelps and Pitchford [750]. It enables to inspect more easily the
quality of fitted data and most importantly, opens the way for further improvement.

We showed that the risk of overfitting is lurking practically everywhere. One can easily overfit
not only when one set of data is considered (fig 13.5) but also when one combines data from
different sources (fig 13.4). Although one might not be acquainted enough with each molecule’s
electronic state characteristics and eventual resonances, the behaviour of a generic function
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when fitting a set of cross section data can help to indicate whether that set is consistent or not.
For individual cases, the variance of the parameter is a key indicator to the pertinence of the
parameters used.

If the function must writhe and contort itself, push its parameters toward their limits to try
to match a shape it means that either:

A. The data is inconsistent

B. The fitting function is wrongly chosen

Identifying which of the two conclusions is the sounder, is part of the art of fitting. Failure
to identify any of the two, disregard the discrepancy and force an extrapolated shape through
tuning would rather be called the artifice of fitting. Pitifully, both are needed in a science which
craves after results.

In its most virtuous application, fitting permits to reconcile fragmented pieces of a theory to
experimental data. One can ideally draw physical conclusions about the nature of a phenomenon.
In the present example, fitting the tail of cross sections from unidentified transitions could help
to unveil the forbiddance degree d and understand whether this transition is spin-forbidden or
not, or a mixture of states, etc. Nevertheless, one should never confuse fits whose purpose is
to derive a value for a physically well-defined parameter, with fits destined to trace curves. In
particular, we should refrain from giving in to the perilous temptation of doing science with
results derived from ad hoc fits.

In the current state of the scientific literature, fits are undeniably under-regarded. It is less
and less common to have access to the generic function or the value of the parameters [121, 482,
902], let aside their uncertainty. Paradoxically, machine learning, which is a direct descendent
to the art of fitting, attracts an explosively obsessive attention from the scientific community.
Could it be because the (older) basics are assumed well-mastered? Whereas on the contrary, I
believe they become forlorn.

In Inokuti et al. [426, p.216]’s own words :

[...] the systematization of physical data into an analytic expression sometimes leads
to a deeper understanding[...] Once a reliable form of analytic representation is
established, we can sometimes use it to judge the correctness of data given in the
literature or even to predict cross-section values. To emphasize the importance of
sound reasoning in choosing an appropriate form of analytic expression, we use the
term analytic representation and distinguish it from the data fitting often practiced
by engineers.

The topic of analytic representation has not received the attention that its importance
warrants.

In the end, fitting, when not an art, is unfortunately a heuristic process, or more informally:
a disgraceful loss of time in a scientist’s life.



Chapter 14

Plane-Wave Born Scattering
“Les mathématiques sont la poésie des sciences."

— Léopold Sédar Senghor.

The majority of analytical expressions for differential cross sections (DCS) are based on the
plane-wave Born approximation (PWBA) which was presented in the section 8.5.1 of part II.
They are used in Monte Carlo (MC) simulations for modelling elastic scattering of electrons off
molecules in gases [218, 445, 542, 713, 896].

We devoted some effort into investigating the validity of the plane-wave Born approximation
at the beginning of chapter 10. There, we determined that, overall, for the atoms considered
(Z > 7), the PWBA could be used from about ∼10 keV.

Regardless, many MC simulations in the past used analytical DCS from the PWBA either
because of limited availability of experimental data for DCS or because of convenience. It is
indeed very convenient to sample the scattering angle analytical from a reverse formula (3.11)
than to construct a bilinear interpolation of many experimental data collected and extrapolated
manually.

In the ever-growingly digitised world of today, access to well maintained numerical databases
is key for facilitating further research. We strived to create a database of elastic differential
cross sections synthesised from both experimental and theoretical sources. The next chapter 15
explains how to access and use this database.

Notwithstanding, we acknowledge that accurate analytical representations are superior to
numerical tables in their capability to encompass a physical model and because there is no
loss of information due to discretisation. In this chapter, we present succinctly the expressions
relevant to elastic scattering at high energies.

The analytical representation of electron-molecule differential cross sections in the plane-
wave Born approximation is only valid at high energies. We recommend to use it only
above 10 keV.

The bias introduced in MC simulations by modelling elastic scattering from PWBA DCS
at energies lower than 10 keV can be assessed. Many studies demonstrated that the effect of
elastic scattering on the electron energy distribution function is large [169, 811]. In particular,
Janssen et al. [454] compared electron transport in argon from various analytic DCS models to
DCS from precise quantum calculations of Zatsarinny and Bartschat [998]. They concluded that:
(i) no simple analytical DCS may accurately represent elastic scattering at large angles and (ii)
transport parameters are significantly affected by anisotropic scattering above 100Td.

In the following sections, we gather various quantities related to the elastic scattering of
electrons at high energies: differential (DCS), integral (ICS), cumulative (CCS), momentum-
transfer (MTCS) cross sections, scattering amplitudes and phase shifts; all calculated from the
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ze

Ze

θ

p−

p+
q

θ

Figure 14.1: Scattering of two structureless charged particles ze and Ze in their centre of mass
frame with a reduced mass µ. The deflection by an angle θ is accompanied by a momentum
transfer q between the two particles.

first Born approximation applied to a spherically symmetric potential representing the static
potential of an atomic target. Consult Canto and Hussein [147, p.57:eq.(2.72) and p.160:eq.(5.18)]
for more information.

As a prerequisite, we remind first the Rutherford scattering formula between two charged
particles Ze and ze forming a system of reduced mass µ:

dσR
dΩ
= (

e2

4πϵ0

Zz2µ

q2
)

2

(14.1)

where q is the momentum transfer linked to the deflection angle θ as ∣q∣ = 2p sin θ/2. The modulus
of the kinetic momentum in the centre of mass frame p = ∣p+∣ = ∣p−∣ remains unchanged before
(p−) and after (p+) the collision. The situation is sketched in 14.1.

We now present the screened Rutherford formulae obtained from a Yukawa and a Slater 1s
potential. These are used for modelling static atomic potentials in section 8.2.1 in part II.

14.1 Static (Screened Rutherford)

Considering an electron of wavenumber k, one usually defines a:

Screening Parameter : η ≡
1

(2ka)2
. (14.2)

14.1.1 Yukawa : Z exp(−r/a)/r

Potential

VY(r) = −
Ze−r/a

r
(
e2

4πϵ0
) . (14.3)

Electronic Density

ρY(r) =
1

4πa2
Ze−r/a

r
a.u. (14.4)
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Gradient :

∇ρY(r) = −r̂
Z

4πa2
(1 + r/a)e−r/a

r2
a.u. (14.5)

Laplacian :

△ρY(r) =
Z

4πa2
e−r/a

ra2
a.u. (14.6)

Phase-shifts From (8.120) and with [347, 6.612:eq.(3)]:

δSR,ℓ = 2k∫
∞

0
Z
e−r/a

r
j2ℓ(kr)r

2 dr =
Z

k
Qℓ (1 +

1

2(ka)2
) =

Z

k
Qℓ(1 + 2η) , (14.7)

with the Legendre polynomial of the second kind Qℓ as defined in [3, p.332:eq.(8.1.3)].

A. The Golden Screened Rutherford

Plane-Wave Scattering Amplitude

fSR = −(
2µ

h̵2
)∫

∞

0

−Ze−r/a

r

sin(qr)

qr
r2 dr =

2Z

q2 +
1

a2

=
Z

k2
1

1 − cos θ + 2η
¯

2/(2ka)2

(14.8)

Plane-Wave DCS

dσSR
dΩ

= ∣fSR∣
2 =

4Z2

(q2 + 1
a2
)2
=
Z2

k4
1

(1 − cos θ + 2η)2
(14.9)

Plane-Wave CCS

σ́(θ)SR = 2π∫
θ

0

dσSR
dΩ
(θ) sin θ dθ =

2πZ2

k4
(
1

2η
−

1

1 − cos θ + 2η
) (14.10)

Plane-Wave ICS

σSR = ∫
2π

0
∫

π

0

dσSR
dΩ
(θ) sin θ dθ dφ =

2πZ2

k4
1

2η(η + 1)
=
4πZ2a2

k2
1

1 + 1
(2ka)2

(14.11)

Plane-Wave MTCS

σm,SR = ∫
2π

0
∫

π

0

dσSR
dΩ
(θ)(1 − cos θ) sin θ dθ dφ =

2πZ2

k4
[ln(

1 + η

η
) −

1

1 + η
] (14.12)

B. The Relativistic Screened Rutherford

Relativistic Scattering Amplitude

fSR+ =
Zα2a0
γβ2

√
1 − β2 sin2 θ2

1 − cos(θ) + 2η
(14.13)
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Relativistic CCS with µ = sin2 θ2

σ́SR+(θ) = (
Zα2a0
γβ2

)

2 µ + β2η [µ − (µ + η) ln(1 +
µ

η
)]

2η(µ + η)
, (14.14)

Relativistic ICS

σSR+ = (
Zα2a0
γβ2

)

2

[
1

2η(1 + η)
−
β2

2
(ln(1 + 1/η) −

1

1 + η
)] . (14.15)

Relativistic MTCS

σm,SR+ = (
Zα2a0
γβ2

)

2

[(1 + 2β2η) ln(1 + 1/η) −
1 + β2(1 + 2η)

1 + η
] . (14.16)

Relativistic ⟨cos θ⟩

⟨cos θ⟩m,SR+ = 1 + 2η [2 −
1 + (1 + η) ln(1 + 1/η) − β2

1 + β2η(1 − (1 + η) ln(1 + 1/η))
] . (14.17)

C. The Generalised Screened Rutherford

Potential

V (r) = −Z∑
i

gi
e−r/ai

r
(
e2

4πϵ0
) . (14.18)

Generalised Scattering Amplitude Define ηi ≡ 1/(2kai)2.

fSR∗ =
Zα2a0
γβ2

√

1 − β2 sin2
θ

2
∑
i

gi
1 − cos(θ) + 2ηi

(14.19)

Generalised CCS

σ́SR∗ =
Zα2a0
γβ2

{∑
i

g2i [
1

1 + 2ηi
−

1

1 − µ + 2ηi
+
β2

2
(1 −

2η

1 − µ + 2η
− ln(

1 − µ + 2η

2η
))]

−2∑
i<j

gigj

ηi − ηj
[ln(

1 − µ + 2ηi
1 − µ + 2ηj

ηj

ηi
) + β2 (ηi ln(

1 − µ + 2ηi
2ηi

) − ηj ln(
1 − µ + 2ηj

2ηj
))]

⎫⎪⎪
⎬
⎪⎪⎭

.

(14.20)

Generalised ICS

σSR∗ =
Zα2a0
γβ2

{∑
i

g2i [
1

2η(1 + η)
−
β2

2
(ln(1 + 1/η) −

1

1 + η
)]

−2∑
i<j

gigj

ηi − ηj
[ln(

(1 + ηi)

(1 + ηj)

ηj

ηi
) + β2 (ηi ln(1 + 1/ηi) − ηj ln(1 + 1/ηj))]

⎫⎪⎪
⎬
⎪⎪⎭

. (14.21)
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Generalised MTCS

σm,SR∗ =
Zα2a0
γβ2

{∑
i

g2i [ln(1 + 1/η) −
1

1 + η
−
β2

2
(2 +

2η

η + 1
− 4η ln(1 + 1/η))] (14.22)

+2∑
i<j

gigj

ηi − ηj
[(ηi ln(1 + 1/ηi)(1 + β

2ηi) − ηj ln(1 + 1/ηj)(1 + β
2ηi)) − β

2(ηi − ηj)]

⎫⎪⎪
⎬
⎪⎪⎭

.

14.1.2 Exponential (Slater) : (1 + r/2a) exp(−r/a)/r

Potential

VSX(r) = −(1 +
r

2a
)
Ze−r/a

r
(
e2

4πϵ0
) . (14.23)

Electronic Density

ρSX(r) =
Z

8πa3
e−r/a a.u. (14.24)

Gradient:

∇ρSX(r) = −r̂
Z

8πa3
e−r/a

a
(14.25)

Laplacian:

△ρSX(r) =
Z

8πa3
(r/a − 2) e−r/a

ar
(14.26)

Phase-shifts From (8.120) and with [347, 6.612:eq.(3)]:

δSX,ℓ = 2k∫
∞

0
(1 +

r

2a
)
Ze−r/a

r
j2ℓ(kr)r

2 dr =
Z

k
[Qℓ(1 + 2η) +

1

(ka)2

∞
∑
l=ℓ+1
(l +

1

2
)Ql(1 + 2η)] ,

(14.27)
with the Legendre polynomial of the second kindQℓ as defined in [3, p.332:eq.(8.1.3)]. In practice,
the sum can be truncated to ℓmax = 100, for instance.

A. The Golden Screened Slater

Plane-Wave Amplitude

fSX = −(
2µ

h̵
)∫

∞

0
−(1 +

r

2a
)
Ze−r/a

r

sin(qr)

qr
r2 dr =

Z

k2
(1 +

2η

1 − cos θ + 2η
)

1

1 − cos θ + 2η
.

(14.28)

Plane-Wave DCS

dσSX
dΩ

= (
Z

k2
)
2

(1 +
2η

1 − cos θ + 2η
)
2 1

(1 − cos θ + 2η)2
. (14.29)

B. The Relativistic Screened Slater

Relativistic Amplitude

fSX+ =
Zα2

γβ2
(1 +

2η

1 − cos θ + 2η
)

√
1 − β2 sin2 θ2

1 − cos θ + 2η
. (14.30)
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Relativistic DCS

dσSX+
dΩ

= (
Zα2

γβ2
)

2

(1 +
2η

1 − cos θ + 2η
)
2 1 − β2 sin2 θ2
(1 − cos θ + 2η)2

. (14.31)

Relativistic CCS Let: µ ≡ cos θ and ξ ≡
2η

1 − µ + 2η

σ́SX+ = (
Zα2

γβ2
)

2

[
(7/3 − ξ − ξ2 − ξ3i /3)

2η
+
β2

2
(
2η2 − 9η(µ − 1) + 3(µ − 1)2

3(2η)2ξ3
−
1

6
+ ln ξ)] (14.32)

Relativistic ICS Let ζ ≡ η/(1 + η)

σSX+ = (
Zα2

γβ2
)

2

[
6η(2η + 3) + 7

6η(1 + η)3
−
β2

2
(
1

6
(1 −

η(η(η + 9) + 6)

(η + 1)3
) − ln ζ)] (14.33)

Relativistic MTCS

σm,SX+ = (
Zα2

γβ2
)

2

[ln ζ + 1 − ζ −
1 − ζ2

2
−
1 − ζ3

3
− β2 (

4η + 3

3(η + 1)3
)] (14.34)

C. The Generalised Screened Slater

Potential

VSX∗(r) =∑
i

gi − (1 +
r

2ai
)
Ze−r/ai

r
(
e2

4πϵ0
) . (14.35)

Generalised Scattering Amplitude

fSX+ =
Zα2

γβ2
∑
i

gi (1 +
2ηi

1 − cos θ + 2ηi
)

√
1 − β2 sin2 θ2

1 − cos θ + 2ηi
. (14.36)

Generalised DCS

dσSX∗
dΩ

= (
Zα2

γβ2
)

2

(1 − β2 sin2
θ

2
)∑

i

g2i (1 +
2ηi

1 − cos θ + 2ηi
)
2 1

(1 − cos θ + 2ηi)2
(14.37)

= 2∑
i<j

gigj

(1 − cos θ + 2ηi)(1 − cos θ + 2ηj)
(1 −

2ηi
1 − cos θ + 2ηi

)(1 −
2ηj

1 − cos θ + 2ηj
) .

Generalised CCS Let: µ ≡ cos θ and ξi ≡
2ηi

1 − µ + 2ηi

σ́SX∗ = (
Zα2

γβ2
)

2

{∑
i

g2i [
(7/3 − ξi − ξ

2
i − ξ

3
i /3)

2ηi
+
β2

2
(
2η2i − 9ηi(µ − 1) + 3(µ − 1)

2

3(2ηi)2ξ3i
−
1

6
+ ln ξi)]

+ 2∑
i<j

gigj

(ηi − ηj)
[(1 −

ηiηj

(ηi − ηj)2
) ln(

ξi
ξj
)

−
1

2(ηi − ηj)
((1 + β2ηi)(ηi − 2ηj)(1 − ξi) + (1 + β

2ηj)(ηj − 2ηi)(1 − ξj))

+
β2

2(ηi − ηj)2
((η2i (ηi − 3ηj) ln ξi − η

2
j (ηj − 3ηi) ln ξj))]} (14.38)
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Generalised ICS Let ζi ≡
ηi

(1 + ηi)

σSX∗ = (
Zα2

γβ2
)

2

{∑
i

g2i [
6ηi(2ηi + 3) + 7

6ηi(1 + ηi)3
−
β2

2
(
1

6
(1 −

ηi(ηi(ηi + 9) + 6)

(ηi + 1)3
) − ln ζi)]

+ 2∑
i<j

gigj

ηi − ηj
[(1 −

ηiηj

(ηi − ηj)2
) ln(

ζi
ζj
)

− (
(ηi − 2ηj)(1 + β

2ηi)

2(ηi − ηj)(1 + ηi)
+
(ηj − 2ηi)(1 + β

2ηj)

2(ηi − ηj)(1 + ηj)
)

+
β2

2(ηi − ηj)2
(η2i (ηi − 3ηj) ln ζi − η

2
j (ηj − 3ηi) ln ζj)]} (14.39)

Generalised MTCS

σm,SX∗ = (
Zα2

γβ2
)

2

{∑
i

g2i [ln ζi + 1 − ζi −
1 − ζ2i
2
−
1 − ζ3i
3
− β2 (

4ηi + 3

3(ηi + 1)3
)]

+ 2∑
i<j

gigj

(ηi − ηj)2
[(ζi(ηi − 2ηj) + ζj(ηj − 2ηi))

−
(η2i (ηi − 3ηj) ln ζi − η

2
j (ηj − 3ηi) ln ζj)

(ηi − ηj)

+β2 (
2(ηiηj)

2

ηi − ηj
ln(

ζj

ζi
) + 1 − (ζiηi(ηi − 2ηj) + ζjηj(ηj − 2ηi)))]} (14.40)

14.2 Multipole : ∼ 1/rn

14.2.1 Polarised : ∼ 1/r4

Potential
Vb = −

αd

2(r2 + r2b)
2

(14.41)

Phase-shifts From (8.120) and with [347, 6.541(1-2)]:

δ̃b,ℓ = 2k∫
∞

0

αd

2(r2 + r2b)
2
j2ℓ(kr)r

2 dr =
αdπk

2rb
(Iℓ+ 1

2
(krb)K

′
ℓ+ 1

2

(krb) +
1

2krb
) (14.42)

= −
αdπk

2rb
(I′
ℓ+ 1

2

(krb)Kℓ+ 1
2
(krb) −

1

2krb
) (14.43)

with modified Bessel functions of the first (Iℓ+ 1
2
) and second (Kℓ+ 1

2
) kinds [3, p.374:§9.6]. The

K ′(x) means the derivative in x. There is a ‘k’ missing in the numerator of [812, eq.(B4)]

Scattering amplitude From (8.115) and [347, 6.565(3)], (see also [572, eq.(24)]):

f̃b = −(
2µ

h̵2
)∫

∞

0

−αd

2(r2 + r2b)
2

sin(qr)

qr
r2 dr =

αdπ

4rb
e−qrb =

αdπ

4rb
e−2k sin

θ
2
rb (14.44)





Chapter 15

The IAA Database
“A database is never finished, only abandoned."

— As was said by many others, in their own wor(l)ds...

When it comes to cross sections, one could perhaps establish the following hierarchy :
Study ≪ Multiple study ≪ Compilation ≪ Review ≪ Database

A study just publishes a set of cross section measurements at various energies, whereas
a multiple study presents several ones measured with the same apparatus (for instance elastic
along with vibrational or various electronic transitions). A compilation regroups different studies
but does not present much critique by comparing data such as in reviews. Finally, a database
gives a practical recommendation based on reviews and structures clearly the data into easily
transcribable tables and eventually regroups them into a file readily readable by a program.

The purpose of the present chapter is to expose the cross sections assembled in chapter 11
and turn it into a database. Comparison to experimental data and other databases is made in
the next chapter 16.

We would like to baptise the present database of electron-molecule cross sections as the
“IAA database” in honour of the Instituto de Astrofísica de Andalucía which has gener-
ously provided its resources to the realisation of the present thesis.
This chapter is devoted to the description of the present – IAA – database which is hosted
on the server https://doi.org/10.5281/zenodo.8190461.

Our IAA database, is distinguished from other ones in seven respects:

I. – It is mostly independent from all other databases but not totally unrelated either.

By this, we mean that we have not directly used the values of the CS featuring in other
databases but we gleaned experimentally measured and theoretically calculated CS avail-
able in the literature with an emphasis on the most recent ones. The only places where our
database coincides exactly point-by-point with another one, is when it relies on theoreti-
cally calculated CS for a particular species in a specific energy range from either the BSR
calculations of Zatsarinny [1000] or the local-complex-potential resonant CS of Laporta
et al. [552, 553].
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II. – It possesses, in addition to integral cross sections, a grid of differential cross sections (DCS)
for elastic scattering sampled on angles spanning 0○ to 180○ with an interval of 0.5○ (361
values at each energy).

The energy grid is the union of all energies probed experimentally, with presently made
theoretical calculations on a grid of rounded energy values in eV. The only exception is
the DCS of argon up to 200 eV for which we resampled the more accurate DCS computed
by Zatsarinny and Bartschat [998].

For inelastic scattering, it uses linear interpolation of various experimental data collected
into a common file.

III. – The elastic momentum-transfer CS is the product of a three-step chain:

i. Determine the total CS and all inelastic CS (sec. 11.6);

ii. Deduce the residual elastic CS from the subtraction of all inelastic CS (sec. 11.1.5);

iii. Derive the momentum-transfer CS from the average cosine ⟨cos θ⟩ given by the shape
of the DCS (see eq. (11.11)).

This was a choice motivated by the availability of abundant, accurate, well-resolved and
updated measurements of the total scattering cross section. The other way around would be
physically more relevant, but also unfortunately too risky because of the larger uncertainties
and lesser availability of data of elastic momentum-transfer CS.

IV. – It extends on an unequalled wide range of energies from 0 eV to 1GeV thanks to the
extrapolation through relativistically valid analytical formulae.

V. – The extrapolation of the CS at both extremes of the energy range is based on physically
meaningful parameters:

◁ At low energies : the scattering lengthA, static (dipole) polarisability αd and quadrupole
Q (for molecules only)

▷ At high energies : Bethe parameters moments of the oscillator strength distribution
for inelastic CS (M2, ln c) and parameters from a Born expansion for elastic scattering
Ã, B̃, C̃ and a cutoff energy K for the Born-scaling.

VI. – The inelastic cross sections are enhanced with more precise information on the electron
energy loss such as Franck-Condon factors (or transition probabilities) for discrete vibronic
bands of diatomic molecules, distribution over a bump for continuum losses (molecular
oxygen) and partial ionisation based on core orbitals and valence-state excitations of the
ion.

VII. – It is unadjusted to match transport coefficients when used by a two-term Boltzmann kinetic
solver.

In lieu of adjustment, the CS are complemented with an inelastic cross section from un-
known losses based on the complementary to the Thomas-Reiche-Kuhn sum rule of os-
cillator strengths from optically-allowed excitations and ionisation. The big exception is
molecular nitrogen, for which the CS had to be complemented with losses from forbidden
excitations based on the database of Kawaguchi et al. [482].
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The known weaknesses of our database depend on each target, but are generally all linked to
elastic cross sections at energies below 1 eV because of three reasons:

i) Elastic CS were derived from integral total scattering cross section measurements instead
of momentum-transfer cross sections deduced from swarm experiments.

ii) The DCS at very low energies < 1 eV are computed from a too basic model (the MERT
described in 10.1.5). The correspondence between integral and momentum-transfer cross
sections might thus be inaccurate at low energies.

iii) Because of the two previous limitations, the resolution (number of data points) at low
energies is very sparse. Only 3 points are given: 1meV, 10meV and 100meV.

We could not find a reliable way to compute three-body attachment coefficients to molecular
oxygen. This process significantly affects transport in O2 at low electric fields < 100Td.

For atomic oxygen and nitrogen, the cross section might be very inaccurate, especially elastic
scattering due to little availability and lower reliability of experimental data.

Nevertheless, we estimate that the present database reflects electron-molecule interactions
in atmospheric gases to the best of our knowledge. The rest of this chapter is divided into two
sections. In the first 15.1, we give additional information on how the data was manipulated
besides all the explanations given throughout part II. In the second 15.2, we give practical
information on how to retrieve and use our data.

15.1 Metadata

In this section, we redirect the reader looking for specific information to the appropriate place
in the thesis. Most of the information on how (differential) cross sections were constructed is
available in chapter 11, organised in sections according to the collision type. The table 15.1
contains hyperlinks to figures, tables and equations for each target according to the collision
type of the cross section. A detailed account of how we used fitting to synthesise data from a
large experimental database was given in the previous chapter 13. A commented summary of the
results from the physical point of view is presented in section 12.1 organised per gaseous species.

Instructions about how to use our cross sections in Monte Carlo simulations are given in sec-
tion 15.2 and additional prescriptions in section 4.1. For sampling the outcome or the occurrence
of a collision, instructions are given in section 3.2.

An overview of the performance of our cross sections and comparison with other databases
is the topic of the next chapter 16.

In the rest of this section, for each target we explain how we dealt with:

A. Outdated experimental data Ô⇒ Renormalisation

B. Missing experimental data Ô⇒ Completion

Renormalisation

Any measurement of a physical quantity requires a calibration of the instrument so as to match
the output signal of the instrument to an absolute physically meaningful value. Since a full
calibration is such a tedious process, many experimental measurements rely on benchmarks [132]
which are a consensus over either very precise experimental values or very accurate theoretical
calculations.
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Table 15.1: Overview of information about cross sections scattered throughout this thesis for
each gaseous target. Next to the number of the section are displayed the page numbers. Both
are hyperlinked. To navigate easily back and forth, use Alt+←, or check the equivalent shortcut
on your pdf browser to come back to this page. In the printed distribution, here is a good page
to place your bookmark.

Target N2 O2 NO Ar O N

Anagraph p.507 p.508 p.508 p.509 p.510 p.510
Transport fig.16.5 fig.16.10 fig.16.14 fig.16.18 fig.16.21 fig.16.23
References tab. 16.1 tab. 16.2 tab. 16.3 tab. 16.4

Total σtot fig.11.51a fig.11.51b fig.11.51d fig.11.51c fig.11.51f fig.11.51g

Elastic DCS
dσ

dΩ
fig.11.9 figs.11.10,11.12,11.8 fig.11.11 fig.11.2,11.7fig.11.5

ICS σe fig.11.13 fig.11.6
MTCS σm fig.11.14a fig.11.14b fig.11.14c fig.11.14d fig.16.19

Residual σre fig.16.1 fig.16.6 fig.16.11 fig.16.15 × ×
MTCS σrm × ×

Rotational σrot eq.(11.24) eq.(11.21b) eq.(11.21a)
Vibrational σvib fig.11.19 fig.11.25,11.23
Attachment σatt fig.11.29
Electronic σelt fig.16.3 fig.16.8 fig.13.17 fig.16.17 fig.13.9

tab.11.6 tab.11.7 tab.11.8 tab.11.9 tab.11.10 tab.11.11
eq.(11.64) eqs.(11.61),(11.62) eq.(11.68)

Ionisation σion fig.16.4 fig.16.9 fig.16.13 fig.16.16 fig.16.20 fig.16.22
eq.(11.120) fig.11.45 tab.11.12

SDCS
dσi
dε2

fig.11.46 eq.(11.119)

Benchmarking serves to bridge the gap between the instrument signal and the measurement
value by using a known quantity about a standard object. In scattering experiments, these are
typically resonance peaks and cross sections in helium or argon. To know how benchmarks are
used to facilitate subsequent measurements of cross sections, please refer to sections 7.3.5&7.3.6.
As instrumental or theoretical accuracy improves with time, new benchmarks [e.g. 14] are brought
about every decade or so. Therefore, we may say that a set of experimental data becomes
outdated when the benchmark it relies on, has been replaced by a more recent one.

One of the great usefulnesses of reviews, is not only to gather information under a coherent
ensemble, but also to keep it updated as was done throughout the years [124, 388, 941]. Nonethe-
less, updating data from someone else’s measurements without their assistance is exacting. If
original values of the raw measurements are not disclosed, it is all the more risky. This is why,
most reviews prefer to update the measurements performed by their group only [941].

In our case, we decided, notwithstanding, to update some of the older sets of measurements
based on evidence gleaned from the literature. There are mainly two reasons for this: first, using
outdated data to construct a database would compromise the coherence of the database; second,
there would be no point in proposing a new database if we decided to overlook this aspect.

For those studies that were not revised for their normalisation to outdated references, we
proceeded to a coarse renormalisation corresponding to the second case in the equation of point
2. in section 7.3.5 of the previous part.
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By coarse, we mean that instead of properly selecting a benchmark differential cross section
(DCS) at each individual energy, calculate all the ratios to the older reference DCS and then
applying those ratios to all other concerned DCS (not to mention extrapolation to 0○ and 180○);
we only proceeded to renormalisation directly from reported integrated DCS (ICS). This assumes
that all DCS actually perfectly agree in shape, and that there is only one calibration factor to
be adjusted at each energy. This, of course, is not necessarily verified. Nonetheless, normalising
through the DCS would require to deal with extrapolation, which may be risky or daunting for
the purpose of the present thesis. The renormalisation we present for each target is thus based
on an average of ICS values.

All experimental which have been renormalised by us are labelled with an asterisk * placed
before the author name in our figures.

For instance, data from Zubek [1012] renormalised for N2 are displayed as “*Zubek (1994)”
in figure 16.3.

Completion

An often understated issue of cross section databases is their completeness. It is difficult to
obtain a set of cross sections which completely accounts for all the losses endured by electrons in
their collisions with molecules. We explain here how we compensate missing cross sections from
unknown or unmeasured inelastic processes in our database.

Let us refresh our minds and jump to∗ figure 11.32a on page 447. Yon figure showed a
snapshot of the electron energy-loss spectrum (EELS) for an electron originally at an energy
of ε0 = 20 eV after being inelastically scattered at an angle of 20○. If we were to integrate this
spectrum over all angles Ω and all energy-losses ε, we should be able to retrieve the total cross
section of interaction:

σtot = ∮
Ω
∫

ε0

0

dσEELS
dεdΩ

dεdΩ . (15.1)

If we have good spectroscopic knowledge, we may group energy losses according to the
(rotationally-broadened) vibronic band pertaining to one identical electronic configuration of
an excited state of the molecule. This is a tedious process since, as seen well on figure 11.32a,
we would need to fit each peak of a band with a Voigt or Lorentz profile then take the integral
value of the fit and sum all integrals to obtain the differential cross section of that electronic
excitation at the observed angle of scattering.

Notwithstanding, even with good spectroscopic knowledge, we may not classify all bands;
and particularly not those which are drowned in the noise. In relation to this limitation, we
would like to quote an astute observation:

“
”

Song et al. [865]

The resultant electronic excitation cross sections, however, should be understood as a
whole only to provide realistic energy loss of electrons passing through the gas, and in fact,
unique determination of individual cross sections will not be possible as long as there is
no additional information.

∗On a typical .pdf reader press Alt+← to promptly navigate back here to the previous page.
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This means, that even with the greatest of all care, there will always be a part of the electron
energy-loss spectrum unaccounted in our database.

“Completion” of a set of inelastic cross sections is the attempt to include all unidentified
losses in the electron energy-loss spectrum into complementary cross sections which may
be seen as virtual electronic states at certain average energy levels.
For molecules, completion also comprises the construction of a set of rotational cross
sections.

There are essentially three ways to create the complementary cross section:

I. Sum rules: The preferred way is to exploit the Thomas-Reiche-Kuhn sum rule (11.70) when
the sum of optical oscillator strengths from dipole-allowed excitations (fx) and ionisation
(fi) does not amount exactly to the number of electrons (N) in the target molecule. We
may then very straightforwardly define a complementary optically-allowed excitation whose
oscillator strength fo is determined by the parameters of our analytical fits from chapter 11:

fo = N −∑
x

Mx
∆E

Ryd
−∑

i

QiNi . (15.2)

[Please mind the notation in the above equation (15.2): x index for discrete excitation, i
index for ionisation channel (ground, ionic excitation and/or multiple ionisation). Namely,
forgive the potentially confusing notation Ni,i = QiNi (roman ‘i’ subscript stands for
ionisation, whereas italic i is the index for ionisation channel). The Ni,i quantity (“ac-
tive number of electrons in the ionisation channel i”) was defined in (11.93) and more
specifically in (11.108). The Qi and Ni parameters are to be found in each row (indexed
by i) of table 11.12.]

If this sum (15.2) is already complete (i.e. fo = 0), then, one must seek for other sum rules
or higher moments of the oscillator strength sum rule [319, §IV.C].

II. Total inelastic CS: An alternative way is to derive directly the missing cross section from
the difference between the total CS for electronic excitations σexc and the sum from the
CS σc in the current database.

σJ(ε) = σexc(ε) − ∑
c∈exc

σc(ε)

The disadvantage is that one does not always have access to the total inelastic CS and if
so, the accuracy might not be good enough. One then obtains an (ugly) tabulation of the
complementary CS whose accuracy is marginal.

III. Blind adjustment : When none of the solutions above are within reach, one must surrender
to the ultimate empiricist’s tool: ad hoc adjustments.

The concept of completion is tightly linked to the adjustment of cross sections so as to
match experimental transport coefficients of an electron swarm in a given gas at a certain
electric field. The complementary inelastic cross section represents major electron energy
losses besides the ionisation which, normally, is well characterised. One may then scale
an arbitrarily chosen cross section upwards until the Townsend’s first ionisation coefficient
αi (or other reaction coefficients) match well the experimental data of electron swarms in
discharge gas tubes.
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Figure 15.1: Experimental electron elastic differential cross section with N2 at 0.55, 1 and 1.5
eV. ▲ - Shyn and Carignan [838]; ∎ - Brennan et al. [105]; ●- Sun et al. [894]; + - Shi et al. [832];
9 - Sohn et al. [863]. Earlier data [838, 863] are lower than more recent data [832, 894].

Completion is not a new concept, but its denomination is not standard. Many databases
on lxcat possess such a complementary cross section. For instance, for N2, Phelps (and also
IST-Lisbon) has one named “sum of singlet states” which represents the bulk of all electronic
excitations lying beyond a′′ 1Σ+g at 12.25 eV. Biagi also possesses a “sum of singlets” but it is
hard to guess which states it comprises because the b, b′, c3, c′4 and o3 singlet states are all
already present in the database.

We recommend that “completion”∗ be added as a fourth criterion to the list of Itikawa [435].

15.1.1 N2 – updates

Renormalisation

The accuracy of elastic DCS of molecular nitrogen improved with time. As an example, several
discrepancies [832, fig. 1-2] at low energies got resolved after more recent experiments [894]
elucidated the DCS with a deepened comparison with theoretical values and calibration to a well
established absolute reference, usually Helium [693, 771]. Such disagreement is shown in 15.1 at
0.55, 1 and 1.5 eV, where the earlier measurements of Sohn et al. [863] and Shyn and Carignan
[838] are challenged by Sun et al. [894] and Shi et al. [832].

Although Sohn et al. [863] mentioned that all their results were underestimated by calcula-
tions and other experimental results, they did not expound their calibration and normalisation
procedure. Albeit not systematic, an upward correction by ∼1.2, 1.25, 1.3, 1.4 and 1.5 to Sohn
et al. [863, table 2] at 0.1, 0.35, 0.55, 1 and 1.5eV brings their data into better agreement both
with [832, 894] and even the most recent total CS of Kitajima et al. [512]. Consequently, we
used these factors to scale up all their [863, table 2-3] elastic and vibrational CS.

∗“completion of the representation of inelastic losses of electrons in a gas through a discrete set of cross
sections”.
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In the 2Πg resonance region, comparison between theory and experiment and even among
different measurements is intricately difficult. This stems from the fact that the energy position
of the resonance feature (peaks or dales) varies with the angle of scattering [17, p.3664-5:table 2].
Thus, it is not straightforward to understand whether the energies reported are consistent be-
tween different experiments. Instead, it is desirable to take a reverse approach [832, table 2] and
compare DCS by adjusting the incident electron energy to remain at the peak position while
maintaining the angle fixed [894, 1240-2:table I].

In general, it is observed that Shyn and Carignan [838]’s DCS (also for other molecules [842])
report higher rates of forward and backward scattering than the majority of other experiments
[894, figs. 6–8]. This might point toward a systematic contamination of the signal at small and
large angles in their apparatus [939, §V:p.82]; a concern that was addressed already many times
and that should be reminded to those who use the data for modelling. This is also true for
doubly differential cross section from impact ionisation as discussed in section 11.5.4 p.492 in
the previous part II (see the triangles ▲ in figures 11.47–11.48).

At higher energies, the agreement between measurements is much better due to an accurate
calibration of the absolute DCS [114]. Herrmann et al. [397] performed measurements over an
extended range of energies (90�1000 eV) but used approximate IAM calculations to normalise
their data. They did provided scaling factors [397, table II] to bring their DCS in agreement with
Bromberg [114] and Jansen et al. [453] on absolute scale. After rechecking those original factors
from averaged ratios, we determined that those are valid and should be applied for correcting
their reported DCS.

Some measurements published during the 70’s were updated due to more accurate results
for the values of the DCS used as a reference. This was the case of Cartwright et al. [158] and
Chutjian et al. [181] which were renormalised later by Trajmar et al. [941] with the data of
Srivastava et al. [870] revised. Nevertheless, at the lower energies ε < 15 eV, the latter DCS is
higher at small and large angles than more recent measurements as observed in figure 15.2. In
contrast, Brunger and Teubner [122, §III.B] relied on the measurements of Shyn and Carignan
[838], which they found to lie in better agreement with their own results.

Since the most recent measurements of Linert and Zubek [600] and Allan [17] probed a wide
range of angles even up to 180°owing to the magnetic angle changer technique [510], we performed
our own quick renormalisation of Cartwright et al. [158] DCS using Linert and Zubek [600] below
21 eV and Shyn and Carignan [838] at higher energies. The overall agreement with Johnson et
al. [463] was slightly improved compared to Trajmar et al. [941]. This freshly renormalised set
of data was used along with the most recent measurements to obtain fits for the integral cross
sections in section 11.4.3 of the previous part.

The difficulty with measurements [910] based on normalisation from the relative ratio to
Helium published in Srivastava et al. [870, table II] is that they are not guaranteed to be con-
sistently accurate at all angles and all energies. Indeed, uncertainty is introduced twice, when
multiplying by the ratio N2/He and then by the absolute He DCS. In order to obtain newly
renormalised sets, one would have to revert the process of normalisation at all angles, multiply
by a trusted set of absolute N2 DCS and extrapolate at small and large angles before finally
integrating. We did not choose to pursue this daunting task and decided to simply put less
weight on older measurements that could not be renormalised in a straightforward way.

Malone et al. [622] reported re-integrated values of Zubek and King [1013] for the C 3Πu,
E 3Σ+g and a′′ 1Σ+g states. Subsequently, we scaled down Zubek [1012]’s ICS for C 3Πu by a factor
of 1.28∗ in order to bring his formerly reported value of 24 × 10−18 cm2 at 17.5 eV in agreement
with the newly calculated value of 18.8 × 10−18 cm2 by Malone et al. [622].

∗Malone et al. [622, figure 1] had hinted a factor of 1.32
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Figure 15.2: Experimental electron elastic differential cross section with N2 at 10, 15 and 20 eV.
▲ - Srivastava et al. [870] renormalised by Trajmar et al. [941]; ∎ - Shyn and Carignan [838]; ●-
Sun et al. [894]; ▼ - Linert and Zubek [600]. At lower energies, the data of Srivastava et al. [870]
lead to a slight overestimation of the integral cross section.

Completion

Despite the differences between all other databases of N2, what mostly distinguishes our – in-
complete – database is that its total inelastic cross section (for N2) lies systematically below any
of the other databases as can seen on the bottom graph of figure 16.2.

We checked that the sum Thomas-Reiche-Kuhn sum amounts to ∼14 in our database:

OOS completion for N2 : ⨋
x
fx =∑

x

fx
∆E

Ryd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1.145

+∑
i

QiNi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=12.856

= 14.01 ; (15.3)

so the difference cannot be imputed to a missing dipole-allowed excitation.
Strangely, we also include the residual dissociation cross section σrd as defined in (11.65).

It is obtained as the remaining dissociation cross section by subtracting the contribution of
predissociation to Cosby’s [193] cross section for neutral (i.e. non-ionising) dissociation of ni-
trogen molecules. This “residual” dissociation cross section, together with all other identified
electronic states, is also present in the most recently updated database for N2 by Kawaguchi
et al. [482] but our total inelastic CS is systematically lower than theirs (compare - - - with ⋯
in fig. 16.2–bottom).
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Thus, the only possibility is that we underestimate the cross sections from forbidden excita-
tions. This is confirmed by looking at figure 16.3, for four excitation CS of optically-forbidden
transitions. Most of the databases show higher peaks, whereas we decided not to follow strictly
outlying points in our analytical fits on table 11.6.

We also know from our study of transport coefficients at the end of chapter 4 p. 137, that
it is our database which is deficient since it overestimates Townsend’s ionisation coefficient αi

by over a factor of 2 (fig. 4.17a–right panel), and the mobility coefficient µe by roughly 10%.
Thus, we may reasonably suppose that there are some missing resonance peaks of spin-forbidden
excitations which could explain the discrepancy with the ionisation coefficient.

Due to the present lack of information and resources, we opted for the method II. consisting
in completing from the total sum of inelastic CS of a known and trusted source. Among the
databases listed in the next chapter section 16.1, the “Muroran” database of Kawaguchi et al.
[482] showed the greatest diligence in assembling the cross sections. Therefore, we patched our
database with the differences observed between our incomplete (dark blue dashed - - -) database
and the dark purple short-dotted curve⋯ in figure 16.2–bottom. Then, we split the cross section
into two regions: one with a loss at 7 eV and the other at 14 eV. The difference between our
incomplete and complete sets can be observed on figure 16.2–bottom, where the complete set is
superposed with the purple dotted curve (⋯) of “Muroran” from Kawaguchi et al. [482].

Concerning rotational losses relevant at low electric fields <1Td, we constructed the set of
rotational cross section for J0 → J ′, using the sudden-impulse approximation (11.24), with the
four elementary transitions: J = 0 → 0, J = 0 → 2, J = 0 → 4 and J = 0 → 6 which we digitised
from the figures of Kutz and Meyer [546, fig. 7a].

15.1.2 O2 – updates

Renormalisation

The data from Wakiya [972, 973] and Shyn and Sweeney [845, 847] and Shyn et al. [848, 849]
were normalised to an elastic cross section that was later found to be in disagreement with
more recent and improved experiments [206, 353, 598, 893] as can be seen in figure 15.3. We
thus took the initiative of renormalising their data assuming that their DCS overall shape was
reasonably correct. Unfortunately, the measurements of Shyn and Sharp [842] showed system-
atic overestimation at large angles [893, §3:p.4321-2, fig 1&2] and small energies. Brunger and
Buckman [124, §3.3.2.2:p.317] believes that this is caused by error contamination of Shyn’s mea-
surements at backward angles (> 110○). In addition to this, the data of Shyn and Sharp [842]
systematically underestimate DCS at 30 eV in comparison with the data of Sullivan et al. [893]
and at 200 eV by 30�100% with those of Daimon et al. [206]. This could be due to a bias in the
absolute normalisation of the DCS.

The reference data for renormalisation was essentially composed of Linert et al. [598] (update
of Sullivan et al. [893]) at low energies and of Daimon et al. [206] at high energies which we
extrapolated with our own IAM calculations from the previous part. Currently, there is no other
available experimental data from 40�150 eV than that of Shyn and Sharp [842]. Therefore, we
have no sound way to assess the accuracy of the DCS and ICS in that range. This discrepancy
and uncertainty might somehow affect the inelastic DCS outside of the 10�30 eV range.

The two (original vs. renormalised) are compared in figure 15.3. The data from Shyn and
Sharp [842] are all lowered, especially < 10 eV due to spurious backward scattering, whereas
Wakiya [972]’s values are all raised in the renormalised version. A dotted line represents the
data gathered from other sources [221, 352, 897, 938].
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Figure 15.3: Renormalised set of cross sections of Wakiya [972, 973] (in violet) and Shyn and
Sweeney [845, 847] and Shyn et al. [848, 849] (in red) for electronic excitations of O2. Solid-
dotted (−⋅−) lines represent renormalised data according to the ratios of the elastic cross sections
represented on the bottom right panel. There, the purple dashed (- - -) is our built reference
for the integral elastic cross section. Light-grey dotted lines represent data points from other
sources in the literature.

Unfortunately, the improvement in experimental concordance with our renormalisation is
quite marginal. Wakiya’s elastic data was lower than our reference and raising the values ac-
tually worsens the trend seen at large energies yielding significant overestimation. A possible
cause would be that the inelastic-to-elastic ratios had large uncertainties. A survey of inelastic
scattering beyond 50 eV would be desirable in order to check Wakiya [972, 973]’s results. The
overlap [599, fig.2] between ground state vibrational levels v′ = 5 and a 1∆g, and v′ = 9 and b 1Σ+g
could potentially explain a slight overestimation in Wakiya’s result below 50 eV but it cannot
explain discrepancies above 50 eV, where vibrational losses are typically negligible. Shyn’s data
are overall brought into better agreement with renormalisation, although the bulk of the data
situated in the interval 10�30 eV is luckily in the region where Shyn and Sharp [842]’s elastic CS
do not differ much from the reference (cf. fig 15.3 bottom right).

Completion

See the explanation on p.569 about the concept underlying “completion”, in particular point I..
If we sum the oscillator strengths from allowed excitations on table 11.7 and from ionisation

11.12, we get:

OOS completion for O2 : ⨋
x
fx =∑

x

Mx
∆E

Ryd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0.1232

+∑
i

QiNi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=15.7828

= 15.906 < 16 . (15.4)
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Thus, we took fo ≈ 0.1 and ∆Eo = 11 eV. The parameters for (11.61a) are fixed by: Mo =

foRyd/∆Eo, Co = 3, bo = 1 = co. Hence, we do not make any adjustments on Co, bo, co. The
interested user is invited to do so if he/she finds it convenient.

Another aspect, often tacit, is that inelastic cross sections σx associated to a given energy
threshold ∆Ex might not represent accurately the actual inelastic electron energy loss spectrum
(EELS) in the gas. This is particularly true for molecules, whose vibronic bands can extend
over several eVs and even more for O2 because of the broad continuous bumps in the EELS
forming the Herzberg pseudo-continuum (HC) and Schumann-Runge (SR) continuum spanning
altogether from about 4.5 eV up to roughly 9.7 eV. While in the Monte Carlo approach, we
are free to sample the actual energy loss from a discrete (vibronic peaks) or continuous (bump)
distribution; this is not (usually) the case of kinetic solvers which are based on a single threshold
∆E . As a result, it is not correct to set the loss in the HC or SR to the threshold value; rather,
one should set it to the average value Em:

Em =
∫
Emax

∆E
dσ

dε
εdε

∫
Emax

∆E
dσ

dε
dε

, (15.5)

where the upper boundary Emax is determined from the EELS (sometimes arbitrarily). Thus, as
done in the Phelps database, we presently set the centroid Em in the Herzberg pseudo-continuum
to 6 eV; whereas in the Schumann-Runge continuum, to 8.6 eV (a small part was left at 6.12 eV
for the onset of the SR, which, for practical purposes, can be merged into the HC if one wishes).

For rotational cross sections, we could not find any experimental nor theoretical data. Lacking
such information, we used the quadrupole and anisotropic polarisation Born approximation in
(eq. 11.21b, p. 412), as given in Takayanagi and Itikawa [908, eq.(38)] from Dalgarno and Moffett
[208]. Bluntly put, these rotational cross sections are but a “better than nothing” addition.
They are expected to be severely inaccurate since rotational scattering off O2 should be strongly
affected by the O−2

2Πg resonance.
In order to fit transport parameters in O2 from Nelson and Davis [691] below 0.1Td, Alves

et al. [24] had to use a value (1.4a.u.) for the permanent quadrupole Q more than four times
higher that the actual experimental value (Q ≃ −0.29a.u.). This confirms the invalidity of the
quadrupole Born approximation for electron rotational scattering off O2.

15.1.3 NO – updates

Renormalisation

The elastic cross section used for normalisation [654] was corrected by Brunger et al. [120, table 3]
before they presented their integrated cross sections (ICS) for electronic excitations. Neverthe-
less, the value at 50 eV must have been extrapolated because this energy was not measured in
Mojarrabi et al. [654]. Since the theoretical ICS by Fujimoto and Lee [307, table 1] were all in
good agreement with the experimental data at lower energies, Itikawa [441, table 2] recommended
to use their results for ε ≥ 50 eV. As a result, all values from Brunger et al. [120] at 50 eV were
presently raised by a factor 7.88/6.444, which, to our relief, improves the agreement of fitted sexc
functions at that energy for all cross sections. We interpret this as a clue that the extrapolated
[120, table 3] 6.444 × 10−20m2 at 50 eV is underestimated. Sadly, this slight inconsistency was
not noticed by any of the most recent reviews [441, 865], we hereby recommend to multiply all
the reported ICS at 50 eV by 1.223 for electronic excitations of NO.
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Completion

The completion of NO is even more important than for O2 or N2. Song et al. [865, p.11–2:fig. 13]
reports that the sum of all electronic impact excitation CS from Brunger et al. [120] is a factor
of five below total electronic CS derived from swarm experiments.

This, we confirm from the complementary oscillator strength fo = 0.571 deduced from:

OOS completion for NO : ⨋
x
fx =∑

x

Mx
∆E

Ryd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0.2587

+∑
i

QiNi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=14.17

= 14.429 < 15 . (15.6)

Due to the low ionisation potential of NO at 9.26 eV, we took ∆Eo = 9 eV giving thus Mo =

foRyd/∆Eo ≈ 0.8636 and the remaining parameters are fixed as for O2 (Co = 3, bo = co = 1).
When we include this complementary cross section, our complete set agrees better with

the swarm results of Song et al. [865, fig. 13] and are about a factor of five higher than our
incomplete set as observed from the large difference between the solid and dashed dark blue
curves in figure 16.12.

NO has a permanent dipole of D ≈ 0.0625ea0 [924]. In the Born approximation, rotational
excitation CS for NO may be expressed with (11.21a) [442, eq.(39)]. We used this simple formula
to compute a set of J0 → J0 + 1 cross sections, up to 20 eV, which are the dominant modes of
rotational excitation in NO at low energies. Be wary that these cross sections might be inaccurate
in the resonance region between 0.2 eV and 1.5 eV.

15.1.4 Ar – updates

Renormalisation

As with the previous cases, the older data from Chutjian and Cartwright [180] could benefit
from renormalisation due to the differences observed between their reference elastic cross section
[871] and newer measurements [310, 731]. In his recommendation, Hayashi [388] must have
been aware of this because his reported values are much better matched by renormalised data
of Chutjian and Cartwright [180]. In his earlier report, Hayashi [387, p.4-5] mentions that he
indeed renormalised some of the data with the then recent measurements for elastic scattering
with Helium from Register et al. [771]. Strangely, Srivastava et al.’s measurements were actually
normalised on that aforementioned set of Helium data. Perhaps in 2003, another set of reference
data was used for renormalisation of subsequent cross section with argon.

Ironically, Srivastava et al. [871] in their table IV add a footnote saying that their results
from phase-shift analysis are less reliable than from the normalisation, though the former were
found in better agreement with all experimental data in those energy ranges [310, p.39-40]. We
used the renormalised data based on Furst et al. [310] values ≤20 eV and Panajotović et al. [731]
above, to produce our recommended analytical cross sections. Still today, many sources [313,
319, 383, 491, 1002] do not consider renormalisation when they compare their calculated results.
This is probably because no review of argon’s CS specifically addressed the daunting task of
correctly renormalising DCS and then proceed to integration once more.

Another renormalisation was pointed out in Allan’s measurements [14, p.2:bottom right]
concerning the most recent data of Khakoo et al. [491] for 4s excited states at 15 eV only. They
say a division by a factor of 1.45 brings Khakoo et al.’s results in agreement with their absolute
DCS at 135○. We checked that Khakoo et al. [491] DCS at 15 eV indeed show an awkward lump
for all four 4s states that is not attributable to a resonance but to the normalisation used. We
then used the 1/1.45 reduction for those data (at 15 eV only) in our collected database.
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Another important deduction is that the units of DCS at 30 eV in table IV of Chutjian and
Cartwright [180] were manifestly mistyped to an order of magnitude larger:

.
This caused Puech and Torchin [760]’s database on lxcat to grow two jolly bumps (cf.

figure 13.11 behind) to try to match the erroneous data for 4p[1/2]1 and 4p[5/2]3 that was fitted
in Bretagne et al. [106, p.766:table 2].

We surmise that there are two other typographical errors in Chutjian and Cartwright [180]:
for the magnitude of level ‘3’ (3P 0) in table III at 100 eV which should be 10−22 and level ‘21’
((4d′)[5/2]2○) in table IX at 100 eV which should be 10−21. This gives indeed a very good
agreement both with the theoretical 1/ε decrease for forbidden transitions but also with Khakoo
et al. [491] and Chilton and Lin [176] respectively. The first typo could not be identified in
Hayashi [388] because no suitable comparison was available at that time.

At the time in 1986, the availability of other databases was scarce and even a typo of an
order of magnitude can pass through examination if no comparison can evince the queerness. I
used this example in chapter 13 section 13.3 to stress the importance of inspecting thoroughly
given information.

Completion

See the explanation on p.573 about the concept underlying “completion”, in particular point I..
In case of argon, completion was not obtained through the complementary to the sum of

oscillator strengths (OOS). This is because there is almost fo = 1 missing to complete the sum
(15.2), which is an implausibly large portion:

Missing OOS in Ar : ⨋
x
fx =∑

x

Mx
∆E

Ryd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0.505

+∑
i

QiNi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=16.532

= 17.037 < 18 . (15.7)

Furthermore, as we commented in chapter 12 p.509, the RBEQ* model to ionisation could
be improved by specifying each particular channel leading to partial ionisation from the 3p
orbital. Then, the integration of oscillator strength densities from the ionisation continuum
could become higher than the actual value (16.53) which corresponds to the minimum reported
in Berkowitz [62, p.84:table 3]. We also note that the current Bethe parameter from the RBEQ*
fit (Mi,Q = 2.662 < Mi ≃ 3.52) is significantly below its reported value Mi. We therefore think
that a great portion of the missing (complementary) oscillator strength in Ar is imputable to an
imprecise modelling of losses in the ionisation continuum.

In lieu of completion, the complementary oscillator strength in the complete database is
obtained from the sum of OOS of allowed excitations to higher states than to 5s orbitals (e.g.
4d, 6s, etc.) as collected by Gargioni and Grosswendt [319, p.477:table XI].

Complementary OOS in Ar : ∑
x>5s

fx = 0.293 = fo . (15.8)

These are supposed to encompass loss from 14.7 eV up to the ionisation threshold (15.76 eV).
We therefore set ∆Eo = 15 eV giving Mo = 0.2678.
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Besides the inclusion of fo, the complete database for argon is also a finer database in the sense
that the excitations to 4p, 3d and 5s orbitals are fitted individually, whereas in the “incomplete”
database they are grouped together in a singly fitted CS as represented by the gray-shaded lines
on table 11.9. Those differences can be observed on the four graphs of figure 16.17, where a true
sum of CS (“complete” —) is compared to an overall fit (“incomplete” - - -).

15.1.5 O – updates

Renormalisation

The data of Kanik et al. [476] were normalised at each angle and energy based on summed
DCS Johnson and Kanik [460] for molecular oxygen, which themselves were normalised based
on inelastic excitations of He and Ne. A more recent survey from Suzuki et al. [897] probed the
same excitation DCS (for O2) but normalised to the elastic DCS of He. Both sets agree within
their uncertainties except at 100 eV where Suzuki et al. [897] are systematically a factor of ≃ 1.25
higher. Thus, we decided to multiply all values from Johnson and Kanik [460] and Kanik et al.
[476] by 1.25 at 100 eV. This correction systematically improves agreement with Vaughan and
Doering [959, 960]’s measurements.

Completion

See the explanation on p.569 about the concept underlying “completion”, in particular point I..
As for molecular oxygen, the set for atomic oxygen was complete with the complementary

oscillator strength:

OOS completion for O : ⨋
x
fx =∑

x

Mx
∆E

Ryd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0.3

+∑
i

QiNi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=7.4526

= 17.037 < 8 , (15.9)

giving fo = 0.247. We chose the threshold of 13 eV below ionisation, and thus Mo = 0.2585.
Many of these complementary states are auto-ionising and we could have chosen a higher

threshold. Nevertheless, when we fitted the RBEQ* on p.488, we only included known (i.e.
fitted) auto-ionising states: 3s′′ 3P o, 2s2p5 3P o, and 4d′ 3P o. Therefore, it is not very clear
which auto-ionising states form part of the RBEQ* and which not.

15.1.6 N – updates

Renormalisation

There are not many data about atomic nitrogen, so the discussion about renormalisation is
limited. We only detected one potential systematic bias in the data of Doering and Goembel
[222, 223] at 30 eV which was normalised to Chutjian and Cartwright [180, table III] excitation
to (4s′)[1/2]o1 of Argon, lying about ∼1.45 below the more recent Khakoo et al. [491, figure 6(d)]
and most of the theoretical curves. We multiplied thus Doering and Goembel [222] data at 30 eV
by 1.45. Raising this outlying point on Wang et al. [975, figure 4-mid] improves the agreement
with the most recent theoretical calculations.

Measurements at higher energies were based on the well established values for Helium 1S0 →
1P from Register et al. [771], and we could not find any relevant correction applying there.
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Completion

The sum rule (15.2) may be applied to any electronically inelastic excitation, including ionisation.
In case of atomic nitrogen, we decided to apply the sum rule for completion on the Q parameter
of the RBEQ* model instead of fitting it to ionisation CS as was done for the other targets.

This is because, as Kim and Desclaux [506, §III.B] explain, in the experiments of Brook et al.
[117], the ionisation CS for atomic nitrogen were performed on a mixture including the lowest
metastable state 2Do. Thus, if one wishes to derive the ionisation CS for the ground 4So state,
one needs to adjust also the proportion of the metastable state.

Since we did not wish to make such speculations, we used the known oscillator strengths for
electronic excitations from Goldbach et al. [338] that pertain to the N→ N+(3P ) channel:

OOS completion for N : f(N→ N+(3P )) = 1.8 − 0.373 = 1.427 ,

and ionisation from the 2s orbital:

OOS completion for N : f(N→ N+(2s2p3) = 2 − 0.085 = 1.915 ,

From there, the Q = Ni/N parameter of the RBEQ* was derived straightforwardly (see
explanatory paragraph on page 490).

15.2 Instructions for use

There are essentially two perspectives in which we anticipate our database can be used:

1. Opaque : As input data to electron swarm calculations at moderate to high electric fields.

2. Transparent : As a basis data for future investigation on electron-molecule interaction.

These objectives reflect those of part I and part II of the thesis.

15.2.1 Opaque : pragmatic

If you are looking for raw numerical data of cross sections to be plugged into a kinetic solver or
a basic Monte Carlo code, we provide a file available on:

https://doi.org/10.5281/zenodo.8192503

which respects the input format of the standard two-term solver bolsig+. We advise the users
to use a log-log interpolation of the energy and cross sections as explained on p.111, particularly
at high energies.

Elastic differential cross sections (DCS) are to be found in separate folders (one per target
molecule) at:

https://doi.org/10.5281/zenodo.8190461

which also includes our own reading module written in Python for parsing cross sections and
differential cross sections in various formats. The interpolation of DCS can in principle be
bilinear, nonetheless, we prefer the following scheme:
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dσ

dΩ
(θ) =

(S[i, j](x − x[i + 1])(y − y[j + 1]) + S[i + 1, j + 1](x − x[i])(y − y[i]))

(x[i + 1] − x[i])(y[j + 1] − y[j])

−
(S[i + 1, j](x − x[i])(y − y[j + 1]) + S[i, j + 1](x − x[i + 1])(y − y[j]))

(x[i + 1] − x[i])(y[j + 1] − y[j])
;

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S[i, j] =
dσ

dΩ
(ε[i], θ[j]) ,

x[i] = log(ε[i]) ,

y[j] = sin
θ[j]

2
,

which is a bilinear interpolation in transformed spaces of the electron energy (logarithmic) and
scattering angle (sine).

A more robust reader also written in Python, but only for integral cross sections, is included
in the package bolos (https://github.com/aluque/bolos) authored by Alejandro Luque, the
director of this thesis.

We list below some important points:

Extrapolation: Cross sections of inelastic processes are typically tabulated up to 1 keV. For
extrapolation, you will have to use the analytical formulae given in chapter 11.

Scattering: Electron scattering beyond 10 keV can be safely sampled analytically from the
inverse of a single screened Rutherford expression (3.11) on page 94 using the average
decay radius ā tabulated in table 11.4 on page 405.

Rotational Excitations: A common issue for molecules, is to distinguish purely elastic (non-
rotational) losses from rotational excitations. The sum total cross section of rotational
excitations J0 → J varies with the temperature of the gas, because the proportion popula-
tion of initial rotational states at J0 changes according to the Boltzmann distribution (see
appendix B.2 in part I). The problem is that “elastic” momentum-transfer cross sections
are determined experimentally at a given temperature and comprise actually both elastic
and rotational losses. They are more formally called “vibrationally elastic” cross sections.

In solvers like bolsig+, if you give as input both state-to-state rotational excitations
and the elastic momentum-transfer cross section σm, there will be a discrepancy because
momentum losses will be overestimated due to being counted twice. The solution is to
provide an “effective” momentum-transfer cross section which is the sum of σm and all
inelastic CS. Then, at each gas temperature, the rotational cross sections will be subtracted
from the “effective” CS and the remaining CS will determine the momentum-losses which
are purely due to elastic scattering.

Thus, for each molecule, we provide an “effective” momentum-transfer cross section that
should be used in bolsig+. The elastic σm is given but in comments.

Resonances: In very narrow resonant scattering, the duration of the collision may have a visible
impact on the transport parameters. This is why accurate vibrational cross sections do not
entail accurate modelling of electron transport if this “temporal period of attachment” is
not considered. We did not investigate this effect in this thesis, but we surmise it should
be important in O2 and NO but negligible in N2.

In that case, paradoxically, you might wish to use less accurate cross sections that have
been adjusted to transport parameters for your needs. Ours have not been adjusted.
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Inelastic Losses: The exact position of the energy thresholds for electronic excitations is rela-
tively unimportant compared to the magnitude of the cross section. This is because losses
are actually distributions over a discrete band of vibronic states or over a continuum as in
molecular oxygen. Ionisation losses are typically underestimated as well, because partial
ionisation to excited ionic states may be significantly above the ionisation threshold, albeit
the cross section is also much smaller than ionisation to the ground ionic state.

If you are unsatisfied with the accuracy of the cross section database, consider first adjusting
the energy threshold of each electronic excitation to the centroid of the vibronic band or
continuum.

We did this already for molecular oxygen which makes a significant difference when setting
the loss in the Herzberg pseudo-continuum at 6 eV (true threshold is around 4.5 eV) and
the Schumann-Runge continuum at 8.1 eV (threshold would be below 7 eV).

In short: tweak the energy loss, not the cross section magnitude.

Atomic oxygen: Oxygen’s ground state is split in fine-structure spectroscopy into three very
low-lying states: 3P 2, 3P 1 and 3P 0 (separated by some ∼20meV). This is above but
still comparable to gaps between rotational states of diatomic molecules. Since oxygen
in atomic form appears in gases at high temperatures, oxygen atoms in plasmas must be
distributed over their fine-structure states.

From a purely computational perspective, these states may be treated in a kinetic solver just
as rotational excitations of molecules, so that their abundance ratio be adjusted according
to the temperature. In our database, they are labelled as “ROTATION” (obviously they
are electronic excitations). Thus, please do not let yourself be surprised when you check
the list of collision types for atomic oxygen.

15.2.2 Transparent : scientific

If you are interested in our cross sections for scientific investigation, in order to improve their
accuracy, we recommend you to download the elmolcs package on CodeBerg∗:

https://codeberg.org/aschmalz/elmolcs.git

or the frozen version hosted on a DOI server: https://doi.org/10.5281/zenodo.8190461.
With the reader module that we provided, use the routines loadCS and loadDCS for loading

cross section (CS) and differential cross section (DCS) databases respectively.
To load our CS database, use:

>>> cs = loadCS(’N2’,’iaa*’)

and replace ’N2’ by O2, NO, Ar, O or N for other targets. This will load all the analytical fits
to electronic excitations and the RBEQ* model for impact ionisation from the cscoll module.
The cs object is a dictionary of cross sections classified according to their collision type:

• ’TOTAL’ : total scattering (integral)

• ’ELASTIC’ : integral and momentum-transfer

• ’EXCITATION’ : only electronic and dissociation
∗CodeBerg is an open-source platform for hosting projects, not owned by a private organisation. Feel free to

visit it at https://docs.codeberg.org/getting-started/what-is-codeberg/



15.2. INSTRUCTIONS FOR USE 583

• ’VIBRATIONAL’ : only v = 0→ v′ < 4 transitions

• ’ROTATIONAL’ : elementary J0 = 0→ J ′ transitions

• ’ATTACHMENT’ : only dissociative attachment

• ’IONIZATION’ : total impact ionisation

To save space, we did not include two copies of our full set of numerical cross sections. For
rotational and vibrational cross sections, this means that if you want access to the full numerical
values of the CS, you should load:

>>> cs = loadCS(’N2’,’iaa’)

which loads CS from the file presented in the previous section 15.2.1. This is because:

i) Rotational CS are constructed from elementary transitions (J0 = 0→ J ′) using the sudden-
impulse approximation (sec.11.2.2).

ii) Vibrational CS are constructed from the theoretical calculations of Laporta et al. [552, 553]
which are stored in voluminous files describing rovibrational transitions J0, v0 → J ′, v′. We
decided not to include those files nor the routines to read and process them.

In addition to our database, we provide all the resources from other databases and experi-
ments that we used in our investigation. To load them, replace the ’iaa*’ argument above by
any of:

Databases hosted on lxcat

• ’phelps’ : Phelps’ database

• ’biagi’ : Biagi’s database

• ’ist’ : IST-Lisbon [22]

• ’itikawa’ : Itikawa’s reviews (only
molecules)

• ’hayashi’ : Hayashi database (only
Ar and NO)

• ’flinders’ : Flinders database (only
molecules)

• ’bsr’ : BSR database [1000] (only
atoms)

• ’muroran’ : from Kawaguchi et al.
[482] (N2 only)

Collected experimental data

• ’total’ : Total scattering and ioni-
sation CS

• ’elastic’ : Elastic integral and
momentum-transfer CS

• ’excitation’ : Electronic excita-
tions mostly

• ’vib’ : vibrational excitations for O2

only

• ’rotational’ : Theoretical rota-
tional excitations for N2 only

If you wish to compare and handle a large database of cross sections together, you can use
the CS_Data object in the following way:

>>> csdata = CS_Data()
>>> csdata.add_database(’O2’,’total’)
>>> csdata.add_database(’Ar’,[’hayashi’,’excitation’])
>>> csdata.add_database([’N2’,’NO’],’itikawa’)
>>> selection,errors = csdata.select([’N2’,’O2’],[’itikawa’,’Szmytkowski’])
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This will output two DataFrame objects from the pandas package, one for the values of the cross
sections for the selected criteria (target, source), and the associated uncertainties. All our plots
for cross sections were generated using this selection routine.

For differential cross sections, call the routine:

>>> dcs,_ = loadDCS(’N2’,’iaa’)

This will load a DCS_Data object in the dcs variable of elastic scattering from our database.
As for integral CS, we also made an extensive tabulation of experimental DCS for elastic and

inelastic scattering. To access them, call:

>>> elast,inel = loadDCS(’N2’,’exp’)

Elastic DCS (elast) are distinguished from all inelastic processes stored in a dictionary of
DCS_Data objects (inel) mapped by keys of the final excitation state of the process. All our
DCS were plotted using the DCS_Data objects, which stores two DataFrames:

>>> dcs = elast.data
>>> err = elast.error

representing the DCS values and uncertainties respectively on an angle-by-energy array (angles
on rows, energies on columns).

Minimal bibliographic information accompanies the data loaded by our routines. If you want
to retrieve the original articles, you may either: (1) search for the article (and its DOI link) in
the references.bib file provided (using a reference management program) or (2) peek into the
source files classified in the Data folder according to the gas target.

The files are relatively easy to read and contain headers with full bibliographic information
and DOI links to the articles. There, you will also find more detailed comments about how cross
sections were adapted from experimental data in a given energy range.

If our database receives positive and enthusiastic feedback, we hope to be able to incorporate
it to the lxcat server.



Chapter 16

Comparison with Previous Databases
“The manipulation of cross-section sets weakens the predictive power of the simulation
technique because of its arbitrary nature."

— Blevin&co-workers as reported by Brunger & Teubner, 1990, Phys Rev A:41-1425

In the previous chapter we introduced our database of cross sections, overviewed how it has been
constructed and gave instructions on how to use it. Here, we are only interested in comparing
databases, the creation of which requires a tremendous amount of effort. We make two types of
comparisons:

• Direct comparison of cross sections with selected experimental measurements based on our
own judgement.

• Comparison of electron transport parameters calculated by the two-term Boltzmann kinetic
solver bolsig+ [378] which we introduced in part I section 4.3.2 on page 4.3.2.

We do not compare differential cross sections (DCS) because currently, there does exist any
proper database of DCS. At best, there are collections of experimental and theoretical data, but
no attempt to make a full description of scattering throughout a large scale of electron energies.
The consistent modelling of DCS in Monte Carlo simulations is left to the discretion of each
author. Instead, in the next chapter 14, we dress a catalogue of analytical DCS expressions
based on the first Born approximation to model elastic scattering at high energies.

Most databases presented are hosted by the outstandingly useful lxcat server [732]. Never-
theless, its main focus is for kinetic solvers rather than Monte Carlo simulations. As a result,
we believe that addition of other databases might significantly enhance the scope of the lxcat
project.

A noteworthy example is the cross section set proposed by Kawaguchi et al. [482] which we
refer to as the Muroran∗ database. Its wealthy collection of references prompted us to conduct
our own independent assemblage of cross sections (from primary sources), which we described in
chapter 11, only to be compared in the forthcoming sections.

Separate from and complementary to the lxcat server is the (Japanese) National Institute
for Fusion Science: NIFS [682] which compiles a very wide set of measurements, calculations and
evaluations of cross sections for atoms (AMDIS) and molecules (AMOL). The NIFS also hosts
the most complete compilation work of collision cross sections between electrons and atoms or
molecules which was conducted by Hayashi at the beginning on the new century. This colossal
work regroups all the bibliographic references for 17 atoms and 51 molecules from 1906, i.e. since
the discovery of the electron, to the beginning of the 21st century. Those reports are available

∗It is an unofficial name, we call it thus because the authors are all affiliated to the Muroran institute of
technology.
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at http://dpc.nifs.ac.jp/hayashi/. Furthermore, Hayashi also prepared some recommended
sets of cross sections [387] for noble gases, four diatomic molecules and CO2 readily available
as input into Boltzmann solvers or Monte-Carlo codes. Some of them are available on lxcat,
whereas others are hosted by the Institute of Electrical Engineers of Japan and are available
to download at http://dpc.nifs.ac.jp/DB/IEEJ/. Some recommendations have been updated
since then.

The rest of this chapter is structured in six sections dedicated to the six atmospheric gas
species studied. Comparisons of cross sections and transport parameters are preceded by an
introduction and overview of the selected databases.

16.1 N2

As the most prominent diatomic molecule in atmospheric physics, the database for nitrogen is
lush and numerous reviews were published especially in the early 2000. A compilation of cross
sections was released as early as 1966 by Takayanagi and Takahashi as cited in Itikawa’s 1986
seminal review [436].

Today, a vast number of databases are available on lxcat. They are, however, not all
independent works and a certain lineage can be established by looking at table 16.1. We offer a
short description of each database below.

Phelps The most ancestral database (on lxcat) is the one from Phelps and Pitchford [749] and
retranscribed from the JILA report [750]. Some databases (not shown) are direct copies
of this data. The CS were adapted from available experimental and theoretical results
in order to bring the transport coefficients of the two-term Boltzmann kinetic approach
into agreement with experimental data. At low energies < 7 eV, (elastic) momentum-
transfer cross sections are derived from swarm experiments [266]. At higher energies,
elastic scattering is derived from integrated DCS of beam experiments. They also derive
the integral elastic CS and the average deviation cosine (11.12). Rotational excitations are
modelled according to the single-level approximation described in the appendix of Hake
and Phelps [381]. Vibrational and electronic excitations from a variety of sources [159,
740, 819] were adjusted so as to yield reaction coefficients in agreement with experimental
results.

IST-Lisbon We could say that the direct successor of Phelps database is the IST-Lisbon
database whose main differences are (i) interpolation on a finer grid of values, (ii) up-
date of the ionisation cross section with partial ionisation cross section from Isola et al.
[433] and (iii) extension with a rotational set of quadrupole transition (∆J = 2) cross
sections from Gerjuoy and Stein [323].

Biagi This is the most obscure database as it is the least documented of all. There is no
publication associated to it and no reference specific to any of the processes included. Its
origin comes from the Fortran program of Stephen Biagi [71] called magboltz hosted
by the CERN. Most probably, it is based on the Phelps database, albeit with notable
differences.

Itikawa Very well documented in Itikawa et al. [436] and Itikawa [439] and mostly based on the
massive compilation of cross sections in 2003 [434] where Itikawa was the editor. This is
the only database on lxcat which has not been adjusted in order to yield good results for
the transport parameters calculated by a two-term Boltzmann kinetic solver. When using
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with bolsig+, one needs to ensure to subtract predissociation from the total dissociation
cross section.

Flinders Comprises only vibrational and electronic excitations as measured by the research
group in Flinders’ University Campbell et al. [141, 142]

Tabata Analytical fits by Tabata et al. [902], to experimental data mainly from the reviews of
Itikawa et al. [436] and Majeed and Strickland [620] and the data from Campbell et al.
[141] as in the Flinders database.

Laporta Vibrational cross sections exclusively from the N−2 (X 2Πg) resonant state using accurate
local-complex-potential calculations as published in Laporta et al. [554].

Muroran Most recently published database in Kawaguchi et al. [482] which proposes new fits to
the latest experimental studies [463, 622, 624]. It incorporates the calculations of Laporta
et al. [554] as well.

We owe the authors of this publication the discovery of the most recent references relevant to
the cross sections with nitrogen molecules. Our work brings an update to their contribution.

To-date, the databases which give swarm transport parameters most in accord with exper-
imental measurements are the IST-Lisbon from Loureiro and Ferreira [609] and the Muroran
from Kawaguchi et al. [482]. The comparison was done in part I, section 4.3.3. It is therefore,
very instructive, albeit exhausting, to compare how cross sections sets may differ yet give similar
transport parameters when used in a two-term Boltzmann kinetic solver (see p. 81 and sec. 4.3.2).

Comparisons

Using the renormalised data when applicable (all preceded by an asterisk when labelled in leg-
ends as : “ *Zubek ”), we now display comparisons of cross section sets against experimental
measurements. At the very end, in figure 16.5, we compare the transport coefficients obtained
for each (complete) database when used by the two-term kinetic solver bolsig+ [378].

Elastic CS fig. 16.1

1. At very low energies < 0.1 eV, we both need to improve the momentum-transfer cross section
given from the MERT method (see sec.10.1.5) and use swarm-derived measurements such
as Haddad [374].

2. In the N−2
2Πg resonance region (2 eV < ε < 4 eV), the “Muroran” momentum-transfer CS

has been scaled upward [482, p.4] so as to closely match the electron-drift experimental
measurements in the 1�100Td region.

3. At intermediate energies above the N−2
2Πg resonance region (4 eV < ε < 15 eV), there are

two classes of measurements, those of Shyn and Carignan [838] and Srivastava et al. [870]
of higher momentum-transfer and the more recent from Linert and Zubek [600] about
10�20% lower. The databases tend to either follow one set or the other with a crossing
point at 15 eV where the trends revert (overestimate ⇌ underestimate).
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Table 16.1: Databases of electron collision cross sections with molecular nitrogen. First half
represents the ones hosted on lxcat, the second half are incomplete or separate databases.
Names in quotes are unofficial denominations. In the columns we regroup the references to the
experimental data upon which the database are constructed. If it exists, the reference to the
publication which describes each database is under the column “Origin”.

Database Year Origin Total Elastic Vibrational Electronic Ionisation

IAA
(Present)

2023 11 [124,
317, 488,
512, 699,
894, 900]

[344,
600, 684,
700, 832,
863, 894]

[554, 600,
863, 910]

[123, 407,
463, 622,
624,
1012]

[768,
831, 888]

Phelps 1985 [749] [266] [113,
288, 453,
838, 870]

[819] [159,
1011]

[768,
814]

Itikawa 2006 [436,
439]

[478,
488, 699,
894]

[105,
232, 832,
838, 863,
870, 894]

[105, 863,
894, 910]

[123, 141,
289, 333,
633, 757,
941,
1013]

[768,
888]

Biagi 2012
IST-Lisbon 2014 [22] [749] [609, 819] [159,

1011]
[433,
768]

Flinders 2001-
4

[142] [141]

“Tabata” 2006 [902] [105,
316, 405,
699, 705]

[105,
436, 832]

[436] [9, 123,
159, 289,
452,
1012]

[768,
888, 932]

Laporta 2014 [554]
“Muroran” 2021 [482] [512] [232,

600, 684,
838, 863,
870, 894]

[554, 600,
863, 910]

[141, 407,
463, 622,
624]

[888]
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Inelastic CS fig. 16.2

• Vibrational CS : ∑v′ σv=0→v′

1. First resonance 2Πg 2�4 eV: similar for all databases except Itikawa [439], who pur-
posefully recommended only the v = 0 → 1 transition, since updated experimental
data for all other transitions is missing.

2. Second resonance 2Σ+u ∼23 eV [600, p.6] (broad shape resonance): two sets of measure-
ments, the former from Tanaka et al. [910] and more recent from Linert and Zubek
[600], explain the difference between our and other databases.

3. Outside resonances: databases manage the CS differently. Some use linear-linear in-
terpolation which creates the skipping aspect of the pink ⋯ and green ⋯ dotted curves
on figure 16.2-top; when a database uses linear interpolation instead of logarithmic
(power-law) interpolation to between sparse data points.

• Electronic CS : ∑a′ σ0→a′

△ Resonance peaks of spin-forbidden transitions < 12 eV : most databases have higher
peaks near threshold, in particular Flinders and Itikawa (orange ⋯ and beige ⋯
dotted curves on fig 16.2-bottom) because they follow Campbell et al.’s [145] mea-
surements as seen on the individual electronic CS in figure 16.3.

△ Missing tail : at energies above 30 eV our incomplete cross sections (- - -) are system-
atically below the others. We did include the residual dissociation CS σrd obtained
from eq. (11.65); i.e. fitted to the data of Cosby [193] after subtracting all contribu-
tions from predissociation (see p. 445). Notwithstanding, the uncertainty on the total
dissociation into neutral products is large as seen from the error bars on fig. 16.2-
bottom. Also, our incomplete (- - -) CS intersects with the total dissociation CS at
the last measurement at 200 eV, which should not be the case since some excitations
do not lead to dissociation.
This missing tail is the reason why we decided to patch our database with the remain-
ing difference to “Muroran” curve (purple dotted ⋯) from Kawaguchi et al. [482].

Electronic CS fig. 16.3

1. In general, the measurements of Campbell et al. [145] (comprised in the Flinders database)
tend toward indicating the presence of tall peaks of dipole- and spin-forbidden transitions
near threshold. Most databases try to follow those peaks, except ours which used resonance
profiles only for well-resolved measurements as, for example, from Zubek [1012] for the
C 3Πu state (fig. 13.8).

2. The high-energy decaying tail is not well constrained in any of the databases, except in
ours (from the imposed integer d in (11.61) determining the ∼ 1/εd decay) and in Muroran
[482]. This has however no observable effect on the swarm transport coefficients.
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Ionisation CS fig. 16.4

• All databases follow the measurements of Rapp and Englander-Golden [768] below 50 eV
and the values of Straub et al. [888] (renormalised in Lindsay and Mangan [596]) at higher
energies.

• Our analytical RBEQ* fit misses about ∼3% on the peak.

• The data of IST-Lisbon [433] are surprisingly lower than the rest. This is due to retraction
of the N+2 B 2Σ+u ionic excitation, which is treated separately, but even when included, does
not sum to the total ionisation.

Transport Coefficients fig. 16.5

• Below < 2Td : Transport is dominated by rotational excitation. Both sets of Gerjuoy and
Stein [323] in IST-Lisbon and of Kutz and Meyer [546] in our IAA database bring mobility
into accord with experiments. For diffusion in particular, the set in our database gives
more accurate results. The influence of rotational cross sections on transport in N2 was
elaborated in Ridenti et al. [774].

Note that the comparison with Muroran is not fair because we did not include the rotational
set. Nevertheless, the results are practically identical to IST-Lisbon below 0.5Td so that
the difference between IST-Lisbon (- - -) and Muroran (- - -) highlights the importance of
rotational excitations.
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• Between 0.6�6Td : we predict a mobility about 10% higher than most experiments (except
Pack and Phelps [727] which is lying above). This difference is hard to explain but we
surmise that it is because our elastic MTCS is lower than for other databases in the energy
region 0.1�1 eV surrounding the characteristic energy ⟨ε⟩ and especially at the onset of the
resonance region at 1.5 eV. Part of this difference could also be due to rotational excitations
but this does would affect only values below ∼ 5Td. Muroran has an even lower elastic CS,
but then compensates with a MTCS scaled upwards in the resonance region. Given the
very close similarity of our IAA database with Muroran, we attribute our overestimation of
the mobility to an underestimation of momentum loss in particular in the resonance region.

• Between 5�100Td : The average electron kinetic energy ⟨ε⟩ is nearing toward the N2
2Πg

resonance region. The separation of Itikawa transport curves is due to the absence of
vibrational excitations higher than the v = 0→ 1 transition in that set.

• αi : Ionisation coefficient in decreasing order IAA>Muroran> IST-Lisbon> Phelps> Itikawa.
Biagi crosses from first to last as the electric intensifies. This is explained by a late but
higher loss of energy in electronic excitations (fig. 16.2). Itikawa’s lowest αi is due, on the
contrary, to an early peaked electronic inelastic CS (at lower energies).

16.2 O2

In comparison to N2, molecular oxygen is much less studied. As a reactive gas, it is difficult
to make accurate measurements. An early review of cross sections was done, again, by Itikawa
et al. [438] and updated two decades later [440].

Because of its high electron affinity (see sec. 11.3, fig. 11.18), the electron interaction with O2

at low sub-eV energies is sprouted with a series of sharp narrow and very tall resonance peaks
from the O−2 (X 2Πg) symmetry (fig. 11.25). Proper visualisation of those peaks require precise
and highly resolved measurements which became possible only recently [128, 714].

Those peaks seem to be better characterised now. Nonetheless, according to the most recent
survey of Szmytkowski and Możejko [901, fig. 4], there is an ongoing “disaccord” of measurements
beyond 1 eV in the total scattering cross section.

An overview of the principal databases for O2 is laid out in table 16.2, for each of which we
give an individual description below.

Phelps This database predates the one for N2 and was described in the appendix C of Lawton
and Phelps [566] and tabulated in Phelps and Pitchford [751]. The elastic momentum-
transfer of Hake and Phelps [381] was modified below 1 eV so as to yield good results in
agreement with Nelson and Davis [691] at electric fields < 1Td, together with the single-
level approximated rotational cross section at a loss of 20meV (as for N2). Three-body
attachment cross section are adapted from Spence and Schulz [868] with regular peaks
coinciding with the shape resonance of the O−2 (

2Πg) anion. Dissociative attachment was
adapted from Schulz [818]. Apart from the two lowest electronic states a 1∆g and b 1Σ+g ,
electronic excitations of higher states are grouped into losses at 4.5 eV, 6 eV and 8.4 eV.

Itikawa Documented in depth in Itikawa [440] which updates the former review [438]. The cross
sections are principally taken from the massive compilation of Itikawa [434]. The major
difference with our database is that Itikawa privileged data from Shyn et al.’s laboratory
[842, 845, 846, 848, 849], whereas we shunned those data due the availability of more
recent results and also to Brunger and Buckman’s observation in Brunger and Buckman
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Figure 16.5: Transport coefficients in molecular nitrogen as calculated by bolsig+ for different
cross section sets and compared with a variety of experimental data.
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Table 16.2: Databases of electron collision cross sections with molecular oxygen. Middle rows
represent the ones hosted on lxcat, the last rows are incomplete databases. In the columns
we regroup the references to the experimental data upon which the database are constructed.
If it exists, the reference to the publication which describes each database is under the column
“Origin”.

Database Year Origin Total Elastic Vibrational Electronic Ionisation Attachment

IAA
(Present)

2023 11 [207,
315, 477,
714, 900,
1003]

[353,
598,
893]

[552] [352,
845, 848,
897, 972,
973]

[768,
814, 815,
888]

[558]

Phelps 1978 [566] [381] [593, 987] [593] . . . [917] [818,
868]

Itikawa 2009 [438,
440]

[205,
207, 477,
798, 890,
900,
1003]

[598,
842,
893,
938]

[12, 401,
599, 846]

[845,
848, 849]

[888] [767]

Biagi 2012
IST-
Lisbon

2016 [24,
346]

same as Phelps + 14 eV exc.

Flinders 2014 [467] [897]
Laporta 2013 [552] [552] [552] [558]

[124, p.317]. Careful that the energy thresholds for the longest (LB) and second (2B) as
re-transcribed on lxcat should be modified to 9.97 eV and 10.29 eV respectively (instead
of put 6.12 eV which is for the Schumann-Runge continuum). Also, do not use the total
dissociation cross section when input to bolsig+.

Biagi See note for N2 in the previous section 16.1.

IST-Lisbon It is practically the same as the Phelps database, except that it includes an ad-
ditional electronic excitations lumped together at a loss of 14 eV as the last table in the
report of Phelps and Pitchford [751]. Also, in Alves et al. [24], it was extended with a
set of rotational cross sections as calculated with the quadrupole Born approximation of
Gerjuoy and Stein [323], albeit with a highly contrived value of the quadrupole Q = 1.4 ea30
which is more than four times the actual value Q = −0.29a.u. reported in Khristenko et al.
[498, p.81]. This was changed in order to fit closely the transport coefficients of Nelson and
Davis [691] at low energies.

Flinders Vibrational and electronic excitations as reported in the cross-beam measurements of
Jones et al. [466] and Suzuki et al. [897].

Laporta Resonant vibrational excitation and attachment cross sections from local-complex-
potential calculations of Laporta et al. [552, 558] and used in Laporta et al. [559] to estimate
vibrational relaxation in oxygen plasmas.
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Comparisons

Elastic CS fig. 16.6

1. Very low energies < eV : no data from beam experiments, only swarm data [e.g. 381],
though they have been modified in Phelps [566, Appendix C:(1)] so as to match transport
coefficients from Nelson and Davis [691]. Our values directly result from Okumura et al.’s
measurements [714] scaled by 1 − ⟨cos θ⟩ from the MERT DCS (cf. fig. 11.1).

Also, hard to determine is the momentum-transfer CS in the resonance peaks.

2. Low-to-intermediate 1 eV < ε < 30 eV : our momentum-transfer CS and Itikawa faithfully
meander between the two most trusted results of Linert et al. [598] and Sullivan et al. [893],
whereas the other databases go through a “roller-coaster” of over-then-under-estimations.

3. Intermediate 30 eV < ε < 200 eV : unadjusted angular-momentum close-coupling calcula-
tions (see chapter 9). We know from Brunger and Buckman [124, §3.3.2.2:p.317] and our
own observations that Shyn and Sharp’s results [842] most probably have a systematic er-
ror, so that we cannot rely on those. The same is true about Trajmar et al. [938] as noted
by Lawton and Phelps [566, p.(1065):§C(1)]. Systematic errors could be due to contact
potential changes∗ since O2 is a reactive gas as Green et al. [353] say so in their conclusion.

4. High energies > 200 eV : our CS dashes (accompanied by the hopping Biagi CS) between
the beam measurements of Daimon et al. [206] and Iga et al. [418], whereas IST-Lisbon
and Phelps go their own clearly distinct way.

Inelastic CS fig. 16.7

• Vibrational CS : ∑v′ σv=0→v′

1. First resonance O−2
2
Πg < 1.2 eV : our tall skewed peaks come entirely from Laporta

et al. [552]. Of very important note :

The first vibrational resonance peak strongly affects the electron mobility in
O2 between 1�10Td. Reducing this peak both in our and Biagi’s CS would
considerably improve agreement with experimental mobilities (see fig. 16.10).

What about modelling the delay in electrons resonantly scattering from O2? This
could also lower the discrepancy observed in the mobility while keeping the CS intact.

2. Second broad resonance (mainly 4Σ−u) 7�14 eV : we follow theoretical calculations,
whereas other databases interpolate experimental measurements [846, 938, 987].

3. Between resonances 1.2�4 eV : participation of other electronic configurations to the
excitation to higher vibrational levels [552, p.6:§5]

• Electronic CS : ∑a′ σ0→a′

△ Schumann-Runge (SR) ≳ 8.6 eV : cliff discontinuity for IST-Lisbon and Phelps be-
cause they do not include losses to the SR below 8.6 eV. Overestimation due to
Wakiya [972], see fig. 16.8-left-bottom.

∗I am not an experimentalist, so behold my words like an umbrella repelling rain.
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Figure 16.6: Comparison of elastic integral and momentum-transfer cross sections for molecular
oxygen.
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Figure 16.7: Comparison of the sum of vibrational and electronic impact excitation cross sections
for molecular oxygen.

△ Losses beyond the SR > 10 eV : Our incomplete CS (- - -) are complemented with an
unknown loss from an optically allowed excitation of fo = 0.1 oscillator strength which
increases the total CS to the solid dark blue curve —.
It is very unlikely that the states from the complementary CS would not predissociate.
Nevertheless, these losses are not part of the neutral dissociation of Cosby [194].
Therefore, we think that these losses are most probably from auto-ionising excitations
not comprised in the ionisation RBEQ* model.
Itikawa’s database does not provide extrapolation beyond 50 eV (which is why the
tail drops at high energies).
Supplementary losses in IST-Lisbon and Biagi are unreasonably overestimated.
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Electronic CS fig. 16.8

1. Forbidden low-lying a 1∆g : the peak is sharper than our fit can follow.

2. Herzberg Pseudo-continuum (HC) : Phelps, IST-Lisbon and Biagi overestimate the peak
but underestimate the tail.

3. Schumann-Runge continuum (SR) : Wakiya’s results [972] are about twice the values of
Suzuki et al. [897] and Shyn et al. [849], this is the first cause of too high CS of Phelps,
IST-Lisbon and Biagi.

4. Longest and Second bands (LB+2B) : origin of overestimation same as for SR.

Ionisation CS fig. 16.9

• More recent : Itikawa and our database following Straub et al. [888] and Schram et al.
[814, 815].

• Older : Phelps, Biagi following Rapp and Englander-Golden [768]

• Outlying : IST-Lisbon below 200 eV overestimates the ionisation CS for no apparent
reason. It is supposed to be identical to the Phelps database [346].

Transport Coefficients fig. 16.10

• Three-body Attachment : Only included in Biagi’s curve. The effect is high below 20Td
and extreme at any field below 0.7Td. This effect is only shown for illustration of the
importance that three-body attachment has at low electric fields.

• Dissociative Attachment : Our and Ititkawa’s CS for dissociative attachment are identical.
The differences in the reduced Townsend coefficient ηa = νa/vd for attachment are thus
entirely due to the differences in the electron energy distribution function. The same can
be said about the ionisation coefficient αi.

• Below < 5Td : The good matching between IST-Lisbon and Nelson and Davis [691] is due
to an adjustment of the rotational set of cross sections calculated in the Born approximation
setting the quadrupole of O2 to a value of 1.4 atomic units which is more than 4 times
its true value. Our rotational cross sections were calculated with the experimental value
Q = −0.29 atomic units and are manifestly too small. The adjustment of Q serves as a
scaling factor of the rotational CS which are mostly flat. This indicates that rotational
scattering off oxygen ought to be strongly enhanced by low-energy resonant scattering, of
which a proper study would be highly valued.

• Between 0.5�15Td : Region dominated by vibrational resonant collisions linked to O−2
2Πg (lowest threshold ∼20meV). This can be seen by the glitchy behaviour of Itikawa
curves (µe and DL) whose vibrational CS are very sharp and very tall (fig. 16.7–top). The
wider the peaks, the smoother the curve is, but the larger the deviation. Our and Biagi’s
transport coefficients are strongly affected by the resonant vibrational CS which are wider
and taller than used in Phelps and IST-Lisbon.
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Figure 16.8: Comparison of selected electronic impact excitation cross sections for molecular
oxygen.
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Figure 16.9: Comparison of impact ionisation cross sections for molecular oxygen.

• Above 200Td lowest inelastic losses in electronic excitations in Itikawa (fig. 16.7) explain
why transport and ionisation are enhanced at higher electric fields.

• αi : Ionisation coefficient in the following order : Itikawa>IAA>Phelps>IST-Lisbon. Biagi
crosses through. This can be explained by initially low elastic MTCS (fig. 16.6) and
low inelastic CS (fig. 16.7). Then, the ionisation rate decreases as the inelastic losses in
electronic excitations rise and peak highest than all other databases.

• IST-Lisbon : has the lowest αi but highest σion. This is because it has to compensate for
the overestimation of losses in electronic excitations (fig. 16.7).

16.3 NO

Interest in nitric oxide is more recent than for other diatomic molecules since it is absent in the
list of recommended CS of Hayashi [387]. In the near past, the interest in studying NO has been
spurred due to its presence in auroral emissions from the Earth’s ionosphere where it is formed by
recombination of nitrogen and oxygen atoms as dissociated products from UV radiation [144].
More recently, it received further attention due to its production in discharges [743], or as a
byproduct of fossil fuel combustion, in order to assess its climatological impact.

It has been reviewed twice in recent years. Once by Itikawa [441] which was then extended
by Song et al. [865] about three nitrogen oxides. Nitric oxide is usually included in studies of
electrons scattering off diatomic molecules together with the unmissable hydrogen, nitrogen and
oxygen diatomic molecules. [207, 768, 900].
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Figure 16.10: Transport coefficients in molecular oxygen as calculated by bolsig+ for different
cross section sets and compared with a variety of experimental data.
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Nevertheless, the database of elastic and inelastic scattering of electrons off NO is nearly
reduced to the studies from the group of Brunger et al. [120]. In particular, the database of
elastic DCS for NO is restricted to the single study of Mojarrabi et al. [654]. We could not access
the measurements of Kubo et al. [541], though they lie roughly in agreement with Mojarrabi
et al. [654, figs. 2–3]. Also, at low energies below 1.5 eV, there is a strong resonant structure in
electron-NO scattering [944, figs. 1–2], which makes the establishment of elastic DCS prohibitive
there.

In table 16.3, we offer an overview of current databases of cross sections with NO, which we
briefly describe below.

Phelps This database seems to be even older than the one from N2 and O2. It has been updated
only once for its ionisation cross section from Lindsay and Mangan [596, p.5-60]. The
documentation regarding the determination of the remaining cross sections is unavailable.

Hayashi Database from Hayashi’s massive compilation of electron-molecule cross sections. It
was privately communicated to the JILA centre.

Itikawa From the recent review of Itikawa [441]. The cross sections are principally taken from
the massive compilation of Itikawa [434]. For inelastic (vibrational and electronic) excita-
tions, the cross sections are the same as in the Flinders database.

Flinders Vibrational and electronic excitations as constructed in Campbell et al. [144] from the
cross-beam measurements of Cartwright et al. [157], Jelisavcic et al. [456], and Mojarrabi
et al. [654].

Laporta Resonant vibrational excitation and attachment cross sections from local-complex-
potential calculations of Laporta et al. [553, 555, 556] and used in Laporta et al. [557]
to investigate electron transport in non-equilibrium nitrogen-oxygen plasmas.

“Song” Most recent review in Song et al. [865] principally based on the previous review from
Itikawa [441]. The main differences are (i) the total scattering cross section has been
corrected at high energies to follow the Born-Bethe scaling, (ii) the elastic momentum-
transfer has been updated from swarm measurements, (iii) the electronic excitations are
completed with Born-scaled analytical fits as described in Kim [505]. Also, (iv) the new
review includes transitions between the fine-structure spin-orbit split states of the ground
configuration 2Π1/2 and 2Π3/2 from Allan [15].

This latest review served as a basis for the creation of the present set of cross sections.

Comparisons

Elastic CS fig. 16.11

1. Resonance region NO− 3Σ− < 1.5 eV : vibrationally-elastic data of Laporta et al. [557].

2. Low to intermediate energies 2�50 eV : cross-beam ICS from Mojarrabi et al. [654] (cor-
rected in [120, tab. 3]). Our ICS are taken from the total CS recommended by Song et al.
[865, table 2] and the subtraction of the sum of all inelastic CS. The inclusion of the com-
plementary inelastic CS improves the agreement with the measured ICS below 20 eV but
is underestimated beyond.
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Table 16.3: Databases of electron collision cross sections with nitric oxide. Middle rows represent
the ones hosted on lxcat, the last rows are incomplete databases. In the columns we regroup
the references to the experimental data upon which the database are constructed. If it exists,
the reference to the publication which describes each database is under the column “Origin”.

Database Year Origin Total Elastic Vibrational Electronic Ionisation Attachment

IAA
(Present)

2023 11 [865] [654] [557, 654] [120] [597] [555]

Phelps 1969 unpublished
Hayashi 1987
Itikawa 2016 [441] [207,

899,
900,
1005]

[654] [456, 654] [120] [597] [767]

Flinders 2004 [144] [157,
655]

Laporta 2013 [553] [553] [553] [555]

3. Momentum-transfer CS : The complete database lies systematically in better agreement
with the momentum-transfer CS integrated from the DCS of Mojarrabi et al. [654] and the
recommendation of Song et al. [865, fig. 6]. The data recommended by Itikawa [441] are
somewhat lower than the rest.

The data of Phelps are outdated (and were actually never published).

4. Above 500 eV : the lowering correction from the tail of the complementary inelastic cross
section is too strong and could be reduced.

Inelastic CS fig. 16.12

• Vibrational CS : ∑v′ σv=0→v′

1. Below 2 eV : vibrational excitation CS from Laporta et al. [557] mainly from NO−
3Σ− (0.2�1.5 eV) resonant state.

2. Between 5�15 eV : double peak is an artifact due to the mismatch in the position
of the dominant 3Π resonance between theoretical calculations [557] (∼ 8 eV) and
measurements (∼ 15 eV) [144, 654] synthesised by the Flinders database (light brown
dotted ⋯).

• Electronic CS : ∑a′ σ0→a′

△ A significant portion of the electronic excitation CS is missing from the survey of
excitations by Brunger et al. [120]. The total sum of inelastic CS for electronic ex-
citations must be completed with four times its value in order to bring calculations
from a kinetic solver in agreement with experimental swarm transport parameters
[865, §2.7].
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Figure 16.11: Comparison of elastic integral and momentum-transfer cross sections for nitric
oxide. No curve could be obtained from Hayashi because the subtraction of inelastic CS from
the reported ‘total’ cross section gives negative values above 10 eV.

△ The significant difference between the complete (—) and incomplete (- - -) CS might
be due to the non-ionising dissociation CS of NO which is expected to be large,
although concrete experimental data is missing [865, §2.8].

Ionisation CS fig. 16.13

Transport Coefficients fig. 16.14

• Our and Itikawa sets differ substantially, it is therefore not surprising to see almost a
complete discord among the calculated transport coefficients.

• The effect of rotational cross sections at electric fields <1Td is very strong and completely
governs the transport of electrons in that region. This was already observed in CO by
Vialetto et al. [961]. NO’s dipole is about 1.5 times stronger than CO’s.
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Figure 16.12: Comparison of the sum of vibrational and electronic impact excitation cross sec-
tions for nitric oxide.

• Below < 40Td : Transport in Hayashi is eased by a lower vibrational CS (fig. 16.12–top)
and absence of the 3Π resonance around ∼ 8�12 eV.

• Above > 40Td : Inversion of trends due to acute inelastic losses in Hayashi total electronic
CS (fig. 16.12–bottom).

16.4 Ar

There are many reviews about noble gases in general. Argon is the second most studied noble
gas after helium. An early set of recommended cross sections was given in Hayashi’s report
[387]. Later came many other reviews, which sometimes cover also other noble gases. Brusa
et al. [125] gave analytical fits to elastic, electronic excitation and ionisation cross sections of
electrons colliding with noble gases.

Most recently, Boffard et al. [89] reviewed electron-impact excitations of noble gases including
from metastable states. Then, Gargioni and Grosswendt [319] performed a more detailed review
specific to argon including the verification of the consistency of optical oscillator strength mea-
surements and sum rules. The construction of our database was mainly based on the information
reviewed in those two recent studies [89, 319].
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Figure 16.13: Comparison of impact ionisation cross sections for nitric oxide. We exclusively
follow the recommendation of Itikawa [441] from the review of Lindsay and Mangan [596]. Data
in Hayashi database were communicated privately to the JILA centre and are available on lxcat
only.

Regarding cross section databases, argon is perhaps one of the targets most replete with sets
of data. A review and comparison of databases hosted on lxcat for argon was conducted by
Pitchford et al. [752]. It is actually the first of the review trilogy for noble gases continued in
Alves et al. [23] and Bordage et al. [95]. Extensive comments to each database of lxcat are
given in appendices of that review [752], we invite the reader to consult them there and offer
only a tabular overview, for practical purposes, of the argon database in table 16.4 below.

Comparisons

Elastic CS fig. 16.15

1. Very low energies < 0.01 eV : the elastic cross sections of each database converge to a
difference value σe(ε = 0) = πA2 corresponding to the scattering length A. Ours is based
on the value most recently deduced by Kurokawa et al. [545, p.7:table II].

2. Low energies < 10 eV : Purely elastic scattering, ICS identical to total CS of Kurokawa
et al. [545] the BSR calculations of Zatsarinny and Bartschat [998] are slightly different.

3. Momentum-transfer (MT) : obtained from ICS with the ⟨cos θ⟩ given by the BSR DCS.
Thus, the differences in σm between our and all other databases are a consequence of the
slight mismatch between the BSR and the ICS. The calculated average cosine ⟨cos θ is too
large in the Ramsauer-Townsend minimum at ∼ 0.23 eV

4. From 10�100 eV : our ICS and MTCS are closer to the values of DuBois and Rudd [232]
and Panajotović et al. [731] than all other database.
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Figure 16.14: Transport coefficients in nitric oxide as calculated by bolsig+ for different cross
section sets. We could not retrieve any experimental data in NO, consult Laporta et al. [557,
fig.9] on which our set is based.
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Table 16.4: Databases of electron collision cross sections with argon hosted on https://www.
lxcat.net/. In the columns we regroup the references to the experimental data upon which
the database are constructed. If it exists, the reference to the publication which describes each
database is under the column “Origin”.

Database Year Origin Elastic Electronic Ionisation
4s 4p 3d, 5s other

IAA
(Present)

2023 11 [129,
278, 545,
701, 708,
891, 900,
1004]

[8, 180,
282, 283,
491]

[180] [180] [319] [321, 768,
814, 815,
869]

Phelps 1983 [306,
903]

[295,
650]

Schaper and Scheibner [809] [861]

Puech 1986 [760] [306,
650]

[106, 107, 180] [106]

Hayashi 1991 [388] Hayashi [388, p.200–9]
IST-Lisbon 2005 [993] [991] [491] [175] [388] [568,

977]
[768]

Biagi 2011 [752,
app.A]

[689,
746]

[14, 319, 504, 505] [768, 888]

BSR 2014 [998] Zatsarinny et al. [1002]

5. Above > 100 eV : the trends inverse. Our database lies closer to Hayashi’s and BSR, whereas
Biagi and IST-Lisbon are lower.

6. At 1 keV : All database intersect and coincide with the last measurement of Iga et al. [418]
except Phelps which has been straying away from 150 eV.

7. Completion : the complete database has a roughly constant correction ratio of −8%.

Inelastic CS fig. 16.16

• Electronic CS : ∑a′ σ0→a′

△ Below < 200 eV : All databases peak differently. Hayashi and Biagi have a broad and
tall peak, BSR has a flat and low plateau, IST-Lisbon and our incomplete database
have sharper peaks, and Phelps has a tall pointy peak with only one excitation at
11.55 eV

△ Above 200 eV : our complete database is well in agreement with Hayashi, Biagi,
BSR and Phelps IST-Lisbon coincides with our incomplete database.

• Ionisation CS :

– Below < 100 eV : All databases follow Rapp and Englander-Golden [768] except BSR
[1002] which misses a large portion. Ours analytical fit cannot swerve awkwardly
between 50�70 eV.

– Above > 100 eV : Two groups:
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Figure 16.16: Comparison of the sum of electronic impact excitation and ionisation cross sections
for argon. The weird bump on the Hayashi curve is due to a linear interpolation from 1 keV to
10 keV where the CS is forced to zero.

A. Followers of Rapp and Englander-Golden [768] : IST-Lisbon, Phelps, Biagi and
Hayashi.

B. Followers of Gaudin, Albert and Hagemann, Robert [321], Inokuti et al. [425],
and Schram et al. [814] : our database (IAA) and BSR.
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Electronic CS fig. 16.17

1. Completion : The dashed curves “incomplete” - - - are direct fits to the data plotted,
whereas solid curves — and dotted curves cdots are sums over the states mentioned.

2. Allowed 4s (3P o1 and 1P o1) : When renormalised, Chutjian and Cartwright [180] and Fil-
ipović et al. [282] seem to indicate the presence of a peak between 40�50 eV, which is
only followed by Hayashi. The most recent cross-beam measurements of Khakoo et al.
[491] show the opposite. Theoretical BSR [1002] calculations follow neither trends, and
IST-Lisbon is about half the updated CS estimate.

3. 4s forbidden (3P o0 and 3P o2) : peaked CS in the following order : IST-Lisbon > Present >
Hayashi > BSR. Our CS follow most Khakoo et al. [491] and Filipović et al. [283]. Hayashi
follows Chutjian and Cartwright [180] when renormalised, we suspect he did his own renor-
malisation when constructing his recommended data in Hayashi [387].

4. 4p (9 dipole-forbidden + 1 pure spin-forbidden): IST-Lisbon follows closely Chilton et al.
[175], whereas we and Hayashi preferred to follow Chutjian and Cartwright [180] after
renormalisation. The BSR database misses a significant portion of the CS below < 100 eV.

5. 3d + 5s (mixture of allowed, dipole forbidden and spin-forbidden transitions, 12 in total)
: Here is where lumping together the cross sections in a single fit (‘Incomplete’: - - -) is
inaccurate compared to a sum of individual fits (‘Complete’: —). IST-Lisbon is practically
superposed with Hayashi which is located between Chutjian and Cartwright [180] when
renormalised and Chilton and Lin [176]. Our full curve is a fit to individual CS from various
sources: Chilton and Lin [176] and Stewart et al. [883] and Chutjian and Cartwright [180]
renormalised. One can see in the inflexion points of the curve, the regions where forbidden
and allowed transitions dominate respectively. Again, BSR underestimates the CS in the
peak region.

Transport Coefficients fig. 16.18
See Pitchford et al. [752] for a detailed comparison of transport in argon and explanation of

each cross section database. Here, we only highlight differences with the present database.

• Below < 5Td : Differences are entirely imputable to the momentum-transfer CS (fig. 16.15–
bottom).

– 0.005�0.1Td : Diffusion coefficients governed by the depth of the Ramsauer-Townsend
minimum at 0.23 eV. Our MTCS is certainly less accurate in that minimum than all
other databases.

– DL at 3Td : Two groups in the sharp bend: IST-Lisbon, Phelps and all others.
This demarcation may only be explained by the lower elastic MTCS for those two
databases between 5�12 eV (fig. 16.15).

• Above > 10Td : mean kinetic energy ⟨ε⟩ ≳ 5 eV, influence of electronic excitations starts
building up.

– µe around ∼ 10Td : Difference in the mobility is probably also due to the elastic
MTCS; separation again of Phelps, IST-Lisbon from the rest (fig. 16.15).
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Figure 16.17: Comparison of selected electronic impact excitation cross sections for argon.
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– αi : neatly ordered values of the ionisation coefficient from highest to lowest: Phelps >
Hayashi > Biagi ∼ BSR > IST-Lisbon > IAA.
It is very probable that our RBEQ* to the ionisation CS is too low at the peak around
∼100 eV and should be raised. This is not obvious from the experimental data shown
on figure 16.16–bottom.

• Above 100Td : difference in transport of the BSR database due to underestimation of
inelastic losses (fig. 16.16).

16.5 O

Atomic oxygen was mainly studied by Vaughan and Doering in a series of articles [220, 227,
958–960].

More recently, Johnson et al. [462] made a survey of the available experimental and theoretical
cross sections for O.

Two databases exist for atomic oxygen: IST-Lisbon who reinterpolated the data reported
in the former survey of Laher and Gilmore [549] and BSR from the calculations in Tayal and
Zatsarinny [921]. The latter are unfortunately not disclosed on lxcat, so we could not compared
our results to BSR.

Comparisons

Elastic CS fig. 16.19

1. Below < 0.5 eV : our CS are calculated with the MERT (sec. 10.1.5).

2. Between 0.510eV : we closely stick to the only experimental results available of Williams
and Allen [984].

3. Above 10 eV : all our CS are obtained from partial wave calculations off the optical poten-
tial. They differ significantly from the ones of IST-Lisbon for increasing energies.

Inelastic CS fig. 16.20

• Electronic CS : ∑a′ σ0→a′

△ Below < 20meV : our CS are dominated by superelastic collisions between the fine-
structure states of O: 3

P 0
o, 3

P 1
o and 3

P 2
o (ground). These were obtained by pure

conjecture based on the theoretical calculations of Berrington [63] and scaled according
to the Boltzmann distribution at 300K.

△ From > 20meV : we see two bumps due to excitations from the ground to fine structure
states.

△ At > 2 eV we see excitations to the two lowest spin-forbidden excitations to valence
states: 2p4 1D and 2p4 1S (fig. 13.9), which are a bit lower in IST-Lisbon from Laher
and Gilmore [549].

△ Beyond > 10 eV : Large bump due to all other electronic excitations. The complemen-
tary cross section is significant and its relevance is supported by the tall peak seen in
IST-Lisbon.



616 CHAPTER 16. COMPARISON WITH PREVIOUS DATABASES

10 1

100

M
ob

ilit
y 

(m
²/V

.s)

e

Ar

IAA (Complete)
Phelps
IST-Lisbon
Biagi
Hayashi
BSR

101 1023 × 10 2

4 × 10 2

5 × 10 2

6 × 10 2

101 1023 × 10 2

4 × 10 2

5 × 10 2

6 × 10 2

Experiments
Haefliger&Franck (2018)
Christophorou et al (1979)
Nakamura&Kurachi (1988)
Robertson (1977)

Pack et al (1992)
Hernandez-Avila et al (2004)
Bozin et al (1996)

Jelenak et al (1993)
Specht et al (1980)
Lakshminarasimha et al (1977)

Al-Amin&Lucas (1987)
Robertson et al (1972)
Milloy&Crompton (1977)

102

101

102

103

104

105

106

To
wn

se
nd

 A
va

la
nc

he
 C

oe
f. 

(1
/m

)

e

10 1

100

101

M
ea

n 
El

ec
tro

n 
Ki

ne
tic

 E
ne

rg
y 

(e
V)

D
L /

e

DT /
e

10 2 10 1 100 101 102

100

Tr
an

sv
er

sa
l D

iff
us

io
n 

(m
²/s

)

DT

BOLSIG+
IAA (Complete)
Phelps
IST-Lisbon
Biagi
Hayashi
BSR

BOLSIG+
IAA (Complete)
Phelps
IST-Lisbon
Biagi
Hayashi
BSR

10 2 10 1 100 101 102

Reduced Electric Field E/N (Td)

10 1

100

Lo
ng

itu
di

na
l D

iff
us

io
n 

(m
²/s

) DL

Figure 16.18: Transport coefficients in argon as calculated by the two-term Boltzmann solver
bolsig+ for different cross section sets and compared with a variety of experimental data.
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Figure 16.19: Comparison of elastic integral and momentum-transfer cross sections for atomic
oxygen.

• Ionisation CS : The main difference between our database and IST-Lisbon is that we treat
three auto-ionising states (3s′′ 3P o, 2s2p5 3P o, and 4d′ 3P o) separately from the total ion-
isation cross section. This explains why our CS is lower that experimental measurements.

Transport Coefficients fig. 16.21

• Below < 1Td : Electron transport is dominated by the inelastic spin-forbidden transitions
between the fine-structure spin-orbit states of O : 3

P 2,
3
P 1 and 3

P 0.

Trick : when given as input to bolsig+, these three inelastic transitions are treated as
‘rotational’ excitations, so that the program scales the superelastic transitions according
to the temperature (300K).

• Between 0.5�50Td : Mean kinetic energy of IST-Lisbon is higher due to lower inelastic
CS (fig. 16.20) higher ionisation rate due to higher ionisation CS.

• Above > 100Td : Transport trends inverse, probably due to the difference in ionisation and
perhaps also due to CS divergence of momentum-transfer CS between IST-Lisbon and our
database above 20 eV (fig. 16.20).
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Figure 16.20: Comparison of the sum of electronic impact excitation and ionisation cross sections
for atomic oxygen.

16.6 N

Cross sections for atomic nitrogen were mainly measured by the group of Doering and Goembel
[222, 223, 992].

From the theoretical perspective, the most recent calculations were conducted by Wang et
al. [975] from which two databases derive : the BSR and the IST-Lisbon which can be seen as
reduced and reinterpolated version of the former.

Comparisons

Elastic CS fig. 11.6

• Below 140 eV : we use calculations from Wang et al. [975] (BSR database)

• Beyond 140 eV : our calculations of partial wave from the optical potential merge smoothly
with the BSR data.
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Figure 16.21: Transport coefficients in atomic oxygen as calculated by the two-term Boltzmann
solver bolsig+ for different cross section sets at a temperature of 300K.
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Inelastic CS fig. 16.22

• Electronic CS : ∑a′ σ0→a′ , three peaks :

△ First peak < 10 eV : due to spin-forbidden low-lying excitations (2p3 2Do and 2p3 2P o).
The BSR calculations predict a sharp rise, whereas we fitted a curve rising more slowly
to the data of Yang and Doering [992].

△ Middle peak ∼ 12 eV : mainly from 2s2p4 4P allowed excitation and a small partici-
pation from 3p dipole-forbidden states.

△ Third peak > 40 eV : mostly from allowed 3s 4P excitation and small participation of
higher allowed excitations (4s and 3d).

△ In BSR, the two last peaks are merged into a mound. We find this a more ‘natural’
shape for the electronic CS in nitrogen.

△ IST-Lisbon does not include higher states than the lowest two spin-forbidden from
BSR.

• Ionisation CS : We recall that we did not perform a fit with the RBEQ* model but derived
the Q parameter based on the sum rule of oscillator strengths (see previous page 580).
Worthy to note, the BSR calculations [975] seem to fit well the ionisation of Brook et
al. [117] without taking into account metastable states, whereas Kim and Desclaux [506]
obtained a good fit corresponding to a 70:30% ratio of N 4So:N 2Do. To be continued. . .

Transport Coefficients fig. 16.23

• Below < 1Td : Electron transport is identical in all databases since most is due to elastic
scattering.

• Above > 1Td : Mean kinetic energy and ionisation in our database is superior to the BSR,
as expected from the higher electronic CS of the latter.

• Above > 100Td : The effect of higher excitations than forbidden states (second bump on
figure 16.22–top) is significant as can be seen by the divergence of the IST-Lisbon from
the BSR database. Since the former does not include higher electronic excitations.
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Figure 16.23: Transport coefficients in atomic nitrogen as calculated by the two-term Boltzmann
solver bolsig+ for different cross section sets at a temperature of 300K.



Chapter 17

Scientific Language
“Les langues sont faites pour être parlées,
l’écriture ne sert que de supplément à la parole..."

— Jean-Jacques Rousseau, Prononciation

In his “Traité des systèmes” (1749), the French philosopher Étienne Bonnot de Condillac asks
rhetorically:

Voulez-vous apprendre les sciences avec facilité?

and answers provocatively:

Commencez par apprendre votre langue.

Certainly, language is an essential element to the foundation of knowledge or at least its
transmission. Cognitive sciences are arduously debating whether knowledge is possible without
a language, but this is a completely other topic.

Transmission of knowledge heavily relies on its vector: a scientific language. Since science
keeps not only refining but also revolving itself, an ideal scientific language must:

(i) be prepared to evolve alongside,

(ii) possess the most generic infrastructure possible to build knowledge from elementary cog-
nitive bricks,

(iii) and have a consistent intrinsic logic that can only be defied by philosophers.

During a very long epoch, Latin, constructed on Ancient Greek foundations, was the pri-
mary vector of knowledge and profoundly influenced all languages on the European continent.
Originally, Latin (and Greek) was used as the language of sciences and was indissociable from
scientific education. It possessed all the vocabulary and grammar to be able to engage into
philosophical debate.

After the fall of the Roman empire, the use of Latin was maintained for over a millenary,
especially in administrative texts, treaties and scientific monographs. Then, Renaissance was
not only a rebirth of aesthetic and humanitarian values, but also an enlivenment of European
vernaculars∗ into scientifically active languages. The massive importation and resurrection of
Latin words into European vernaculars at the time happened throughout the 16th century. Next,
the shift from Latin to vernaculars in scientific literature took place in the late 17th century
as prominent scientists, such as Galileo or Newton, started to publish in their own languages

∗A vernacular is the language most commonly spoken in a region. In modern times, we are accustomed that
vernaculars are official languages of the state. Historically, this was and still is not always the case.

623
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and therefrom, the rest followed. The benefit of this shift was that there was consequentially
much less obstruction to the access to knowledge by individuals. However, on the downside,
the spread of knowledge between different countries would be significantly restrained and the
scientific community feared the “Babelisation” of science [77].

At the time, there was a spirited discussion about creating a new international language for
the scientific community. The society at the Renaissance was very earnest to recover the legacy
of the Greek schools of philosophy and to search after a truthful description of nature. There
were various attempts of creating a perfect language for science. However, the quest in search
of absolute clashed with the imperfection inherent to human language and so, the idea that a
perfect language for science could exist faded out.

Notwithstanding, the scientific community at the time continued to use Latin as a base for
international communication. Scientific vocabulary was almost completely shaped by the Greco-
Latin infrastructure of words, with their somewhat obscure radicals and various prefixes. Many
words of Latin or Greek origin were converted in vernaculars and then used in scientific discourse.
As a few examples:

• ‘molecule’ was derived in the 17th century as the diminutive of ‘moles’ : ‘mass’ in Latin,
to signify a tiny part of physical bodies.

• ‘electron’ was proposed by the Irish physicist G. Stoney in 1891 as the elementary unit of
electric charge. The word ‘electric’, introduced in 1600, is of Greco-Latin origin for the
material ‘amber’ because of its charge-separation properties when rubbed.

• ‘interference’ was used for wave mechanics in 1802 by T. Young from an earlier nominal-
isation of the verb in Old English ‘enterferen’ which was passed down from Old French
constructed on Latin.

None of these terms actually existed in Latin, but were constructed on, or derived from, Latin
roots. The creation of those terms was enabled by an agglutination of a root and an affix (prefix
or suffix). A similar example was given in the first chapter p. 14 with the ’an-ion’ and ’cat-ion’
based on Greek prefixes (ana/cata) and Latin root (ion).

However, what is most stunning about all these terms, is that none originally bore the
meaning that we ascribe them today. Nobody knew what molecules could be, how small nor
even how big they could be! An ‘electron’ was not thought of as a particle, but a unit! Not
to mention that a cation would turn out to be a molecule missing an electron. As for the verb
‘to interfere’, it was a sound analogy of cancelling contributions of waves, but still far from the
phases of complex numbers.

The emergence of scientific terms conceals a complex history of analogies, derivations from
concepts or words that philosophers of the past spent much time to construct. ‘Molecule’ for
instance, was discussed by Le Gallois in the 17th century, more than a century before Avogadro
finally attached to it, the physical meaning of today. It is bemusing to think that philosophers
whisper to the ears, the words that scientists crave to describe what they find or what they
perceive.

Strange isn’t it, to think that language after all, is not merely a means of communication,
not just a vector of information, but a also a cognitive framework, a matrix for building knowl-
edge. Stranger it was, how the shift toward this perspective of language – as a cultural soul, a
cognitive capacity of a society – nourished loathsome supremacist ideologies which would later
become newborn ‘racisms’. The book of Olender [715] develops further on this issue.
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As time passed, the usage of Latin, at least as a base, declined severely during the 19th

century. Perhaps, to study machines was too busying to have time to learn an obsolete language.
And after the turn to the 20th century, new terminologies in science had roots directly stemming
from the official languages:

∗ ‘Bremsstrahlung’ by Sommerfeld for “braking radiation”,

∗ ‘spin’, due to an ardent discussion about the fourth quantisation of the electron’s state in
atoms (maybe remembered from L. Thomas’ article [929])

∗ and, of course, ‘runaway’, which was reportedly first used by Eddington [258, p. 32:left-
bottom§] in reference to Wilson’s article [986].

‘Runaway’, in this context, referred to the fact that these [run-away] electrons would acceler-
ate in the electric field to such high energies until they start radiating rays of energy comparable
to subatomic processes. Later, when interest in nuclear fusion was brought about, the term
‘runaway’ was perhaps based on an analogy of trains whose speed runs out of control, until they
eventually derail or result in a train wreck; ‘runaway’ was the common term to describe such
phenomenon∗.

What is very interesting to note is that, perhaps, the 19th brought a baggage of tools, concrete
insightful measurements, experimental evidence, that the scientists would turn away from books,
literary studies, as they did traditionally; and start a new exciting era of science which was much
more enrooted experimentally than ever before. It seems thus understandable that the concepts
that emerged then – ‘bremsstrahlung’, ‘spin’, ‘runaway’, etc. – would not have been given
abstract and abstruse Latin terms whose origin and meaning not many would fathom. This
transition is natural, as one would attempt to describe what one sees or foresees in his or her
own language.

For a short while, before the outbreak of WWII, it seemed as if German would ascertain
its place as an international language of science. The turn of dismal events did not pursue this
route, however. Today, English is considered the prime language of scientific discourse, and we
may inspect it from a closer perspective in the following section.

17.1 English

According to sociologists, when an institutional power weakens and cedes to the emergence of
smaller competing parties, the period traversed is known as a “critical juncture” [151]. Specific to
scientific languages in Europe, the first linguistic critical juncture came in the late 17th century
with the obsolescence of Latin as we mentioned above.

Then, a lively competition arose between European languages as to which one would become
the new lingua franca. For a while, French had ascended to that position, albeit precariously.
Toward the end of the 19th century, the European continent was linguistically tri-polar: French–
for diplomacy, German–for sciences and English–for commerce.

The latter is today, the ongoing winner of that competition and the interested reader may
find in Crystal [201], a detailed narration of how this came to be†. Briefly, the rise of English can
be explained by (i) geo-political factors, in a first wave; and then echoed by (ii) socio-cultural
aspects in a second stage, especially in the second half of the 20th century.

∗It was used in the 16th century to speak about horses that would run out of control of their harness.
†It is reputed to be one of the few objective narrations of the rise of English without the “triumphalist tone

which is unfortunately all too common when people write on English in English”.
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It is however not the aim to go over the global perspective, encompassing the press, advertis-
ing, broadcasting, cinema and music; tourism, travelling, politics, business, industry, technology
and the many aspects which follow from the global stance of English. Here, I wish not to di-
verge on the multi-faceted aspect of English, but would like, instead, to refocus on the primary
concern: English as a language for science.

Shortly, we may summarise the most-cited advantages of using English in science:

• Morphological simplicity : no genders, almost no conjugation, practically no declination.

• Concision : interchange of word classes.

– Gerund↔noun : an electron scattering off a molecule ↔ electron scattering is a
complex topic.

– Verb↔ noun: electrons spread isotropically ↔ the electrons’ spread is isotropic.

– Adjective↔ noun: runaway electrons are scarce ↔ electron runaway rarely occurs.

– Adverb↔ adjective: slow electrons scatter fast ↔ fast electrons scatter less

Interchanging word classes enables to formulate concise phrases in English∗.

• Grammatical flexibility : English is grammatically not a ‘pure’ language but a hybrid with
Anglo-Saxon, Germanic, Nordic and Latin roots. As a result, it offers much flexibility
when formulating a sentence.

– Anglo-Saxon: “There are more issues to talk about.”

– Nordic (V2): “Never have we talked about so many issues.”

– French-like (SVO): “We ought to talk about more issues.”

– Latin-like (OSV): “About these issues, we must talk.”

Certainly, there is some subtle variation in the meaning conveyed by each of these sentences.
The last line, would be a “declamative” English; to put more stress.

• Lexicon: Because of the innumerable importations and loans of foreign words during its
evolution, English probably possesses the largest – scientific – vocabulary of all languages
in the world. A few examples:

– from German: Ansatz – initial guess to a mathematical problem

– from Norse: Bulk – originally the cargo of a ship; now the most of an object, a volume,
a size...

– from Dutch: Trigger – to pull

– from French: Evanescent† – another word for “vanishing”

– from Latin: Equilibrium – balance

• Neologism : forming new words in English is fairly simple. This follows from the three
points above.

∗Compare with: “L’alternance entre les classes grammaticales des mots permet de formuler des phrases concises
en anglais” in French.

†I tried to take an example different from the full encyclopedia of words imported into English during the
Norman invasion.
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– Compound : ‘isotropically-averaged’ differential cross section (run-away is another
example)

– Inflection : ‘thermalisation’ (from ‘thermal’)

– Loan : ‘intershock’ (I just made it up from French)

It is difficult to find a French word used in science that is not already present in English.

• Outreach : Currently, no other language has a global outreach as expanded as English.

These advantages may well support the use of English in sciences, but may not, in any case,
bring justification. The use of English today, in sciences, has little to do with any linguistic or
cognitive trait, but, as had always been the case historically, is tightly bound to the ascension of
English-speaking countries to power over the globe.

Understandably, English has also evolved considerably since it ascended to the position of
a global international language. This, however, poses several problems from the perspective
of English qs still participating to the cultural identity of a nation. Since it is the language
most spoken today by non-native speakers, it is also, as a result, the language which is currently
changing at the fastest rate. As Crystal [201] puts it clearly in his first chapter, a global language
may not be ‘owned’ or claimed as property to a single nation, but must be shared throughout
the world.

Although I enjoy imitating a pure Anglo-Saxon way of forming sentences, my (ab)use of
English is noticeable in this thesis. I liken English to a linguistic playground because it is, to put
it in delicate terms, striving to maintain a resemblance of coherence∗. English has spread much
faster than it was able to gather a coherent and even consistent grammatical structure. And this
utter lack of consistency makes it, in my opinion, a language ill-suited to the communication of
scientific knowledge. Below, I list some inconsistencies:

Spelling: This is probably the first issue as a global language; English spelling is not phonetic
but an unkempt ensemble of unassimilated loan words. There are and have been many
propositions to reform the spelling of English. Nevertheless, there are too many homo-
phones in English that prevent a systematic solution in a spelling reform (‘sight’ clashes
with ’site’, ‘red’ with the past tense of ‘read’, ‘write’ with ‘right’, etc.)

Pronunciation: The next problem is directly related to the former, English pronunciation has
been deformed very significantly over time to the point where no pronunciation can be
considered ‘standard’. With respect to the problem of spelling, it would be much simpler
to change the way we speak and pronounce words so as to revert the shift in vowels that
took place in the 17th century. Words such as ‘disappearance’ would have to respect
the “ea” sound in “stead”. Again, such a change would be cataclysmic because we grew
so accustomed to hearing non-standard English† in the media, that trying to revert the
pronunciation would turn it into an (even more) unintelligible language.

Word morphology: There are too many exceptions to “general rules” to speak rightfully in
terms of exceptions and rules. Here I give a few example of opposites:

• Coherent: uncoherent but ‘incoherent’

• Balance: ‘Imbalance’ (noun) and ‘unbalance’ (verb)

∗Coherency?
†American English is non standard from a linguistic perspective: vowels are absent in the alphabet (they are

diphthongs) and the only vowel ‘E’ is mispronounced as ‘i:’ ...
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• Stable: instable but ‘unstable’ though ‘instability’ not unstability

• Tractable: ‘intractable’ or ‘untractable’ ?∗

Then, there also exist words that are, from a semantic point of view, concealed double
negations:

• ‘Impaired’ and ‘unimpaired’

• ‘Impeded’ and ‘unimpeded’

At times, it is hard to figure out when the preposition is a negation or an “enabling”:

• Inflammable = flammable

• Invalidate >< validate

• Inhabitable = habitable

• Incapacitate = “discapacitate” but invigorate = “envigorate”

The Latin prefix ‘in’ is ambiguous because it can either indicate inward or negate. Better
would be to drop it and use only ‘un’ and ‘en’ instead, just as in ‘enable’ and ‘unable’
which are both very clear. Imagine having to deal with ‘inable’... As a result, it is not
unimpossible to avoid misunderstandings in English...

The third problem is that there is no systematic way of distinguishing words from verbs.
There are some terminations that are exclusive to verbs (“-ize”, “-ate”) and to nouns (“-
tion”, “-ence”, “-ment”) but most of the time, it is wearisome to guess if a word is a verb or
a noun.

• Postposition: phrasal verbs are always separate (e.g. break down) whereas nouns or
adjectives are in one word (e.g. breakdown)

• Preposition: there is no rule – act → ‘enact’ (verb), break → ‘outbreak’ (noun)

Subjunctive: in a scientific field, it is of primal importance to distinguish which assertions are
hypothetical or depend from† their subject and which ones are objective. With the decline
of subjunctive in English, this is not possibilitated any more.

In British English, the use of subjunctive was still fairly common and I have checked that all
authors of British origin always used the correct form [680, 793, 922, p.301, p.585:eq.(4.22)]:

“The probability that [an electron] be [backscattered] is [high,low,negligible]”

In American English, some authors would use “should be” like Slater [856, p.387:§III]; while
in International English, this subtlety is washed away altogether. At times, I made correct
use of subjunctive in this thesis, as I would have if I had written it in Spanish. But most of
the time, I decided not to abuse of the correct use of subjunctive in order to avoid upsetting
the readership. I made a compromise.

Negation: it is not possible to negate non-auxiliary verbs without putting emphasis on the
negation with the verb ‘to do’. This makes negation pointlessly cumbersome: The electron
scatters not isotropically → The electron does not scatter isotropically Cumbersome nega-
tion is an argument against the assertion that English is concise. The most concise lan-
guages I know of, are either Slavic or Asian.

∗go check Collins’ dictionary, you will be surprized.
†See the “Phrasal verbs” bullet point on p. 630
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Grammar: Once again, there may not be a coherent way to encompass English grammar.
Linguistically, one of the most despised and unpardonable aspect of English grammar is
the confusion of participles (passive voice) with the past tense (active voice):

✓ Write: ‘wrote’ (past) and ‘written’ (passive)

× Increase: ‘the energy increased’ (active) and ‘the increased energy’ (passive),
then what about our energy-increased electron (compound-word adjective) ?

? Prove: has anyone proved that English is a suitable language for global communica-
tion? Or does it remain to be proven?∗

The second problem is about the transitivity† of verbs:

• Scatter : ‘electrons scatter in the gas’ (intransitive) but ‘the gas molecules scatter
electrons too’ (transitive)

• Decrease : ‘the electric field decreases’ (intransitive) but ‘accumulation of space
charges decreases the electric field behind ionisation waves’‡ (transitive).

• Accelerate : electrons accelerate (intransitive) but the electric field accelerates elec-
trons♪ (transitive)

Transitivity is a problem for parsing scientific articles outside of one’s field. There is no
easy way to resolve this issue. I sense that archaic verbs would distinguish transitivity
with the preposition ‘be’ as in ‘befit’ and ‘bescatter’ (which are exclusively transitive).
The subject of those verbs transforms the object into a state which is given by the root.
An archaic example is ‘darken’ (e.g. the skin) and ‘bedarken’ (someone who causes it to
darken).

Sometimes, there are very big surprises about the (in)transitivity of verbs such as ‘to
obtain’ which, most of the time is transitive (obtain something) but also exists weirdly as
an intransitive:

“Such a situation actually obtains when the incident particle is heavy (M ≫m)
and at least moderately fast.” [427, p.334:§4.4]

The transitivity is partly smeared because English lost the presence of reflexive verbs.
In other European languages, reflexivity unambiguously determines the intransitivity of a
verb. Compare in French (“disperser” = “to scatter”):

– “Les électrons se dispersent” (intransitive reflexive)

– “Les molécules dispersent les électrons” (transitive non-reflexive)

Semantic: Because of a queer grammar, the semantic aspect of English can, at times, become
absurd. The very way we coin new terms can illustrate, not only how unaware we are
of the linguistic aspect of languages, but also how many thoughtlessly abide by a new
terminology.

“Cognitive science” ... Which sciences are not cognitive?

∗Check your dictionary, this case is very interesting!
†By the way: transitiveness?
‡A correct formulation is : “The electric is decreased by ..." or replace “decreases” by “screens”.
♪I tried to privilege the formulation “electrons accelerate in the field”
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‘Cognitive’ relates to the process of forming knowledge and understanding. Is it possible
for us to have a branch of science totally unrelated to our cognitive aspects? I understand
it is supposed to be: “the branch of science that studies (human) cognition”. But then, it
should be named “Cognology”∗.

Certainly, this is not a problem exclusive to English but to virtually all language to confuse
the trait with the purpose. However, in English, this is greatly facilitated as illustrated
below:

• Gerunds: “Dining table”, “drinking fountain”, “sleeping mattress”... yes, those all
express the purpose of the object, but why the gerund? A “staggering achievement”
is it an achievement so unstable that it staggers until it crumples?

• Phrasal verbs: “depend on” is constructed in analogy to “rely on” but the image
is incorrect. It should be “depend of” or “depend from” as in all other Romance
languages.

Confusion: Because of the reasons exposed above, I think that English is confusing from the
outset. One requires an immense amount of drilling, inhibition of logical reasoning and
effort to grow accustomed to the way English is used by fluent speakers.

In the following examples, I find it difficult to find the verb in the sentence when we parse
it in a first run:

• “Coronas from objects on the ground limit the electric field there to typically 0.1 to 1
×104 V m−1.” [764, p.84]

• “Polling at the time suggested Salmond accurately gauged the popular mood on the
Queen” press release

• “The slight shift of the M3DW-OAMO results from the θK direction was discussed
[previously] and is due to the fact that this model includes final state electron–electron
post-collision interactions.” [550, p.5]

All in all, the lack of firm grammatical structure in English makes it a profuse language in
garden-path sentences. I really have to strive hard to avert creating such ambiguous syntactical
structures. The solution proposed is often to make shorter sentences, or use more punctuation. I
think, however, that the problem is more profound than that. I liken the native way of speaking
English to a gradual laziness to communicate plainly in written form. Most of the time, I cannot
distinguish between the levels of written and spoken English.

Any article taken at random written by a contemporary speaker, has examples of syntactical
structures that bespeak how English speakers are deprived of alternative ways of expressing
themselves. On an article featuring on the front page of the journal nature:

“But in practice, people still dispute precisely what needs reining in, how risky AI is
and what actually needs to be restricted.”

I can understand that “needs reining in” is a contraction of “what needs to be reined in”
and thus, that English speakers hail the conciseness of English. I also understand that the
author already uses “needs to be” at the end of the sentence, and thus thought it would be
nicer to use a different syntactical structure in the first clause so as not to make the sentence
too repetitive. But I also cannot believe that this syntactical structure is universal. I assume

∗Unfortunately though, this term is just the name of a parading private business company.
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I would be severely reprimanded for saying: “I need processing data” or “Their measurements
needed revising”, “should we talk planning the project?”, etc.

I think these syntactical problems are deeply enrooted in the former abuse of English word
classes. Namely, that gerunds are too often employed as nouns for continuing processes, and
that speakers cannot distinguish between both uses.

It may help, in the short term, to endorse the training in English language skills by:

• instilling English as early as possible in the minds of the younger generation,

• by continuing to discriminate against foreign learners who do not have the knack for speak-
ing in the queer zeitgheist of the contemporary anglophone community,

• or by continuing to debilitate the use of other languages in science to prevent scientists
from thinking and sharing their work in other languages than English.

However, I do not find any attractiveness in any of the solutions mentioned, nor do I find myself
capable of shrouding the emotional heaviness of the way I formulated those three options.

I cannot disagree anyhow with Wilhelm von Humbolt when he said:

“
”

On Language, On the Diversity of Human Language Construction and its In-
fluence on the Mental Development of the Human Species.

Language is, as it were, the outer appearance of the spirit of a people; their language is
their spirit, and their spirit is their language; we can never think of them sufficiently as
identical.

The only way I was able to overcome my strong aversion against the use of English in science,
was to reconnect with the spirit of past geniuses that once contributed to the construction of
knowledge as we have inherited it. To anyone that traverses internal strife about having English
as the global language, I recommend reading articles written before WWII, where I found a
very pleasing and personal tone to English as in the articles of Eddington [258] and Mott [678].
Outside the scientific sphere, the English literature of the past is very rich. Fortunately, being
able to choose my own way of spelling and enjoying the freedom of resurrecting archaic words
such as “whence”, “yon”; filled my time writing this thesis with delight and rediscovery both of
the language and the science I gathered.

I would not dare advocating that English should be dethroned from the status of a global
language. However, if it is to maintain that prestige, then the “native” community of English
must inevitably relinquish their ownership or rightfulness over the language. The way we choose
to speak and write English should be much more free so as to prevent unilateral thinking and
create a chasm between fluent and not fluent speakers; which I foresee is happening nowadays.

This is a very complex issue because one cannot dissociate easily a language from its cultural
background or even its spirit as W. von Humbolt put it. This is why there is maybe another,
more desirable and indisputably more just alternative solution for the future, which I present in
the following section.

17.2 Esperanto

I had heard of this mysterious artificial language before, at secondary school, but shared the
same prejudice that all learners of foreign languages have: why should we learn a language
whose speaking community is so small and that is not even an official language at a national
level?
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This is because we often think of a language in the traditional way: a mere tool of commu-
nication, a vector of information. However, throughout my university studies, I realised that
language bears also a cognitive dimension and that thinking in a different language can have an
impact on scientific investigation. It is fair to have a common language to relay information, but
it is certainly not fair that the burden of relaying information in a common language be carried
by scientists alone.

During the writing of my thesis, I suddenly got curious to know more about the story behind
Esperanto and consulted various sources. I became immediately astounded by the many posi-
tive aspects of this artificial language. I will distinguish pure technical linguistic aspects from
humanitarian and cultural traits.

Humanitarian. Esperanto was created with the hope of bringing humanity under a common
union. Its originator, L.L. Zamenhof, yearned to bring a peaceful end to the conflicts that scarred
the many different communities living under a common imperial rule in Europe. He came from a
Jewish family living in Poland under the rule of the Russian empire. He travelled a lot, learned
many languages and realised that learning a new language would not have to be necessarily
difficult if the learner did not have to assimilate the cultural and historical traits which the
language bore.

He was not the only one of his time to share this dream. Actually, the beginning of the 20th

century was marked by a simultaneous emergence of many artificial languages due to the com-
petition between French, English and German to take the position of a lingua franca. However,
he was the only one not conceited to the point of wanting to hold a firm grasp over the future
of his language. Instead, he founded an international committee with various members which
would discuss matters about the language and make polls among the speaking community for
changes or amendments proposed to the language.

Thanks to this, Esperanto was able to survive as the only artificial language still spoken today.
Because it reflected the democratic values of our modern society. More information about the
history of Esperanto can be found in Garvía [320].

Grammar. The construction of Esperanto reflects a consistent logic befitting a scientific lan-
guage. It is genderless and its conjugation is not pronominal but only based on tenses. There
are no irregularities in its spelling and it is fully phonological. All grammatical classes are
unambiguously defined:

• Substantives (nouns): all end with the letter ‘o’ (e.g. ‘energio’ for energy)

• Adjectives: end with ‘a’ (e.g. ‘energia’ for energetic)

• Verbs: end with ‘i’ (e.g. ‘̂sanĝi’ for the verb ‘to change’)

• Adverbs: end with ‘e’ (e.g. ‘energie’ for energetically)

Other classes such as pronouns, numbers, conjunctions and prepositions are concise and easy
to remember. Notably the correlatives are very logically organised in a matrix which maps
beginnings (for demonstrative, interrogative, negative,...) to endings (for place, time, people,
quantity, cause,...).

Then, the morphology is also very clear. One may either add a prefix or a suffix to the root
of the word like in most Indo-european languages. Prefixes include ‘dis’, ‘pra’, ‘ek’ indicating in
all directions, long ago, suddenly. Suffixes are plentiful and specify whether the word is an actor,
a container, an action, a group, etc.

A succinct introduction to Esperanto’s grammar is available on https://lernu.net/gramatiko.
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Culture. Virtually, Esperanto is like a cultural whiteboard. It is the language currently most
devoid of cultural bias, because it bears no history of idiomatic expressions. At the same time,
it has the potential of being the most culturally rich language because it has native speakers
scattered around the globe issued from many different local cultures. Learning Esperanto would
enliven the scientific community of today as much as prominent scientists of the Renaissance had
the delight of rediscovering, but also reinventing their own vernacular language.

Several scientists mentioned about the usefulness of Esperanto as a scientific language [357,
663]. These prospects were stifled by the stirring political contentions in the course of the 20th

century and still distracting us today. Sadly, no one seems to consider seriously the possibility of
promoting the use of Esperanto in science nowadays. I hope this will gradually change with time.

In brief, of all the languages I know, if there is one language better suited for science it is
definitely Esperanto. Out of many reasons, I name three:

• Clarity: the purity of Esperanto’s grammar would greatly facilitate the learning and mas-
tery of that language. This would be a relief to the stress and injustice of learning and
mastering English.

• Flexibility: as science evolves, it is important to have a language whose infrastructure is
solid yet flexible enough to adapt to the new discoveries made in science. Such is the case
of Esperanto.

• Ethics: Having Esperanto as a language for science would promote building a scientific
community whose values are reflected by the language it speaks.

As an illustration of what Esperanto looks like, I translated and corrected the English abstract
into Esperanto at the beginning of the thesis on page xi. I hope I will be able to improve my
skills of Esperanto in the future and explore better its possibilities.

Notwithstanding, the most beautiful fact about Esperanto, is not its grammatical coherence
but that it has never been used as a means of domination...





Chapter 18

Some Retrospection
“I would prefer not to."

— Bartleby, the Scrivener, 1853, A Story of Wall Street

I would have liked to conclude this thesis in due manner but I find myself unable to gather the
words to do so. I was astounded by the difference I see myself now, compared to when I had just
started. Of all the many things I have learned, during my doctoral journey, there is one thing I
certainly did not learn:

Concision

Although it is too late to try to do so after hundreds of loquacious pages, I would like to
share – in a few words – some personal thoughts in retrospect to my work.

18.1 Toward a Deontology of Science?

If translated into English, “deontology” based on δϵoν+λoγoς from Ancient Greek, could mean
the “discourse about what ought to be done” or the science of duty and moral bindings.

Although I did not work on living beings nor did anybody directly depend on my work, I
still believe there are some issues about how we relate to science and how we work as scientists.
I cannot give this issue the full importance that it deserves, nonetheless, I feel adequate to find
some place for it at the end of this thesis.

In the following, I write a few sentences on different aspects of science nowadays∗.
In the next section, I offer a few advices to future students. And to conclude the thesis, I

end with acknowledgements.

Self-plagiarism In this thesis, I absolutely avoided recycling any phrases, paragraphs from
my previous publications.

To me, I strongly share the view of Kafka about the imperfection of language. There are
endlessly better ways in which to reformulate one’s assertions. Nonetheless, there are several
disappointing examples of authors that reused some of their texts from previous publications
without quoting them.

Common example of self-plagiarism: [246] and [250] (§9-10 ≃ sec. 2.1, §11 ≃ sec. 2.2.1, §12 ≃
sec. 2.6.1, §26-27 ≃ p.148).
Worse example: introductions of [778] and [758].
Forgivable example: experimental apparatus of [847] and [849].

∗Some things were too upsetting to write black on white, so I buried them in white font...

635
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I can understand that it may be a burden to try to reformulate something that we have been
working on for the past ten years. But this betokens another problem: that we gradually become
incapable of innovating, taking a different perspective and correcting our previous mistakes. Self-
plagiarism is okay only if it is clearly indicated (e.g. we requote our work: “ ... ”). However, this
is probably not going to be a problem in the future with automated generation of texts...

Referencing In the majority of the citations in this thesis, I strived to place the exact page,
equation, figure or paragraph to the source I was referring to, in order to facilitate the traceability
of my work.

A bad example of ineffectual referencing is [80, eq.(5)] which points a textbook of 500 pages
without the page number.

It is a great strain to look for the exact formula that we are thinking about or the exact plot
that we remember we have seen once. However, it is not only useful to the community but to
ourselves. Science is very fragile and mistakes may slyly slip into typographical errors at any
time. It is therefore important to take the time to be sure about what exactly we are referring.

Doubts I strongly believe that doubt is an inseparable part of knowledge. I tried to create a
special place for my doubts in this thesis so that they would not subvert the relevance of my
work, but at the same time that they enlighten the path toward open questions.

Science is a continuing open debate about our understanding of nature. The assertions we
built are founded on our premises and we should always make sure to put them together when
we present our results. That was the idea about the framed list on p. 149. Multiple times, I
would also remind the reader to vigilance, about the limitations of the model and my doubts
about the importance of other effects that would significantly distort the results presented. I
admire authors who, with very few words, express their surprise at an unknown discrepancy and
resist the temptation to fit in an explanation. Good examples of open discussions are Khakoo
et al. [491], Kim and Rudd [507], and Zatsarinny et al. [999, p.13–4, p.3958:right§, last§].

Self-Critique This is the direct continuation of the previous paragraph. Even if I did not have
the resources to palliate the limitations of my work, I tried to explore the limits of my model
and from there, estimate a range of validity.

A deductive approach in science is only possible in the negative: the ability to disprove a
hypothesis but not to prove. When we propose a model, adopt a premise or reach a conclusion,
we should not only already have in mind a possible counter-example or method of falsification,
but we should also find the courage to expose it in our publications. It is one of the toughest
problems I find in science, to find the balance between self-criticism and confidence.

It is true that at first, this exposes us to the risk of being refuted, but science progresses
through funerals and we should not identify our efforts to the models that we build. There is
no vanity in ephemerity, there is no progress without failures. I respect the views of the Atomic
Collisions Group from the University of Wisconsin’s, who humoursomely set up a “hall of failures”
on their homepage∗ to illustrate how much serious research is paved with mistakes thwarting
scientific output.

Peer-reviewing All my experiences with peer-reviewing, turned out (ultimately) to be positive
ones. I received many pertinent comments and suggestions from my first reviewers that I shall
duly thank in the very last section of this thesis. Luckily, it was not until my third paper that I

∗http://raptor.physics.wisc.edu/fail/
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got confronted with the contentious archetypical personality who had difficulty in concealing his
complacency at discrediting my work.

Those were tough times but I made a great effort in addressing all the critiques that had
some foundations in them. Nonetheless, it also spurred a great wave of angst at the level of
disrespect that can be put under guise in the peer-reviewing process.

What I disapprove about the peer-reviewing is the anonymity. The reviewer, when he or
she does a good job, should be duly recognised because it requires much effort to understand
someone else’s work and bring a critical improvement to its quality. On the counter part, not
benefiting of anonymity would also prevent deplorable traits of unnecessary disrespect and the
ridiculous need for reviewers to earn recognition by being bribed with more citations.

From my perspective, my most useful reviewers were people who knew me and who had
accepted to review my work. I think peer-reviewing is an ingenious collaborative implementation
of Hegel’s Thesis, Anti-thesis, Synthesis pillars. I strongly support that articles be published with
two columns: authors alongside reviewers. It would also greatly relieve the burden to prove our
productivity to the exterior.

Sharing Data It was very important to me not to finish my thesis until I had something to
share. In a data-driven scientific era, there is no better way to contribute than to disclose data
in a safely guarded repository.

Today, this is possible with the digital object identifier and the generosity of public organisa-
tions to host massive servers supporting open science. Unfortunately, stress is almost exclusively
put on paper output. Paradoxically, advance in science is at the present time mostly boosted by
sharing common pools of data or codes. Notwithstanding, there is little or no recognition to the
work done in compiling databases and making them available in machine-readable files.

This thesis would have never come into being without the existence of servers such as lxcat
and NIFS. Still, even though it would benefit everyone, there are publications that list the data
they used from sources scattered in all corners of the literature but did not choose to take on
the responsibility to make them available to the rest of the community.

The work of Babich and Bochkov [43] is a sad example. They made the greatest effort today
of computing the most accurate estimates of thermal runaway rates but without sharing neither
their output data, nor their input...

Given the critical importance of data, we should think about reviewing numerical databases
and treating data as the primary contribution of a scientific output and not as a bonus to research.
Nobody has time to read articles any more, nor even to write them it seems...

Time A critical turning point during my thesis is when I started working for results and not
for time. Although I believe it is the way it ought to be, it brought many troubles. In retrospect,
I do not think it is possible to revert this problem. Time is the ultimate emperor, and we should
abide by its rule...

18.2 A different epoch

Looking now not at the immediate past, but much before I came into existence, I find myself in
utter admiration of the legacy of our scientific predecessors. The lens of time is a highly distorting
one, but there is no other glass to look into the past. I have little notions of anthropology but
there are some traits I venture to identify.
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Bibliography One of the major differences about articles published at the beginning of the
20th century and today is the number of citations that they contain. In the past, twelve could
be a sufficient number of references. Nowadays, it seems there are never enough references to
give credit to every one. Even now, with over a thousand references, I am still anxious about
having overlooked the work of some pertinent source to the field I broached.

The problem with such an immense number of references is that one has no time to really
understand and read them in depth. I have my favourite references that I would read en long
et en large such as Inokuti [427], Itikawa [439], and Takayanagi and Itikawa [908]. But the
vast majority, I only took a glimpse at them. The problem is complex because, with reference
management software, we may generate an indefinite amount of bibliographic references at no
cost.

I imagine that in the past, scientists had much better knowledge of each other’s work. In
contrast, they had also much less overview and hindsight than we do today. I found the re-
transcription of Goudsmit’s talk (https://lorentz.leidenuniv.nl/history/spin/goudsmit.
html) very insightful in this respect. About how it was like to work in science in the 1920s’.

Archive On the other hand, our access to worldwide research, recent or far in the past has
never been so facilitated. I must duly thank my department’s librarian for finding references for
me and access to many journals. Furthermore, I acknowledge the indispensable helpfulness of
open-access hubs. I hope that we could bring more support to open-access science not by paying
golden access to the paperless paper industry, but by officially supporting projects like:

• sci-hub https://www.sci-hub.st/

• the internet archive https://archive.org/

• the arXiv https://arxiv.org/

• CodeBerg https://codeberg.org/

• Zenodo https://zenodo.org/

• lxcat https://nl.lxcat.net (specific to our community)

I think the ratio of value/investment surpasses the one we spend in other resources by at leat
one order of magnitude. Our money should reflect our will, not our fears. I have come to use all
of those resources and found them much more resourceful than payed services.

Yet, despite this advantage at our disposal, there is a feeling of anxiety indissociable from
browsing through archives. The further we dig, the more our hopes of finding what we are
looking for erode. There is always a limit to the things that are documented, no matter how
much or deeply they are documented. We may stumble onto a formula, whose notation we have
no means to decrypt. We may debouch onto an article outside our comprehension, intellectually
or linguistically. Or we may stumble into a dead end such as a “private communication” or a
number that has manifestly popped out from nowhere. This impression, Derrida and Prenowitz
[214] call it “Mal d’Archive” translated as “Archive Fever”. Derrida explores in great depth,
beyond science, the importance and impact of archives on sociocultural identity, on granting
authority, on justification, etc.

I find his analyses very timely and relevant, especially today where we have constructed
the biggest archive in human history and where a strife happens not merely for the access to
information but for the protection against disinformation. What we can most remember is that
archives are a double-edge sword: on the one hand they are used as a foundation for truth,
justification; while on the other hand, they are subject to interpretation and manipulation.
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Communication Another great difference is the immediacy of the system of communication
today. From my understanding, scientific journals were really like journals: i.e. a relay of
information, updates, suggestions, ideas, notes... When I consult, for instance, Eddington [258],
Franck and Grotrian [300], and Wilson [986] I see a very interesting style of writing. An account
of one’s insights, about possibilities, about observations in experiments with a few figures when
obtainable.

Today, we are conferred the possibility to speak, to express ourselves in many more ways.
However, in a world where everyone is given a voice, only the loudest will be overheard. Now
that we have access to this incommensurable amount of information, instantaneously, I find it
harder to engage into a scientific debate.

Thankfully, anthropologists take the time to study the evolution of human conditions and
its impact on society. I found particularly useful the work of Virilio [963] about the “tyranny of
velocity” in our modern times.

Media Immediately related to the ease of communication, is the overwhelming mediatisation of
science. Since the progress in our society is essentially driven by technology, too much emphasis
is put on science to the point that the mass media seems incapable of differentiating the complex
peripeteia of scientific investigation from the episodes of an entertainment series. It is most
deplorable to me to hear everywhere the expressions of “selling your science” or “make your
research a breakthrough over the world”.

These expressions have so much exacerbated my attitude to science that I would start seeing
articles as advertisements for formulae and methodologies full of defects. Certainly, there are
some dubious behaviour I saw in many articles, about some strange bias in how they selected
their sources, about their omission to disclose the values of the (semi-)empirical parameters they
fitted, about their staged figures comparing their results with other references...

From my perspective, I am wary of how the content of scientific investigation is distorted
by the mediatic coverage they receive. The visibility that we are conferred through the number
of articles we publish is distracting us from our primary concern. There is no further need for
“breakthroughs”, we have broken enough already. Let us gather the remaining pieces while they
are still here...

Authorship It is good to know the source of one’s information. It is important for tracing
knowledge and giving due recognition. It could be, that in the past, individual contributions to
a scientific study were well defined, or it could also be that not. Regardless, today it is even
more blurry. Leading-edge research now depends on the collaboration of gigantic international
groups working together on different aspects of the research. Some of those aspects may still
be acknowledged in the form of publications, but a non-overlookable contribution lacks a proper
recognition.

I understand that scientific research has evolved at a bewildering rate over a short interval
of time, but so have changed the ways to produce scientific output. This was probably already
true before, but it is even truer today: science relies heavily on the contribution of individuals
which are not given due recognition in the scientific field.

There is certainly a part in innovation, improvement of existing models, but to be successful,
science requires a lot of bookkeeping, handling databases, technical software development and
student supervision... Those are not low-level tasks and can be much more exhausting and
challenging than to produce new results. An overweighted emphasis on authorship has, from a
personal point of view, also stimulated a decrease in scrupulousness.
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I think science is, both at a personal and at a societal level, a sufficiently rewarding endeavour,
that it needs not be distracted with an output metric that reflects the structure of a worldwide
videogame.

Objectivity Although the objective of natural sciences is to give an objective description of
reality, the objectivity of science is subject to much subjectivity.

The greatest limitations that were imposed on my thesis came from a lack of time and
resources. I had to impose them myself and this did not stem from an objective decision. It is
very hard to find out which physical effects are relevant or not in the research conducted and
which are less relevant. The relevance can be estimated only once the problem is framed. And
the very framing of the problem is an entirely subjective process.

I was also impressed to see how the objectivity of science evolved over time as analysed by
anthropologists. This can been observed in the evolution of atlases by Daston and Galison [210],
how the advent of photography and machine-produced graphs suddenly imposed themselves as
new standards of objectivity. Since now, much of our results rely of the output of machines, we
might be tempted to see ourselves closer to our ideal of objective science. However, there is always
some intervention when we present the data to make it intelligible to us, as Lynch and Edgerton
[614] argues. The scales, the colours, the processing algorithms, the resolution, the sampling...
In many cases, it is hard to reach a consensus about what we are measuring. In scattering
experiments near resonances, do we choose to stay on the peak energy while varying the angle
or do we maintain the energy fixed? In forward scattering, how do we emulate non-adiabatic
effects at high energies in semi-empirical models?

There are millions of instances where scientifically “objective” output requires human inter-
vention which, by nature, is subjective. Fleck [294] reminds us how perilous it is to grant scientific
results an objective status and therefrom use it as a justification for political decisions. In the
same way as archives need interpretation to derive meaning, so does information extracted from
contemporary scientific conclusions.

Overall, I would say that the information we obtain is objective; it is a measurement or an
indicator that was extracted from reality. The hardest part is to unveil its relationship to reality,
where does it come from, how does it emerge? Knowledge enables us to interpret information,
to relate it with other observations.

However, the way we see this relation depends on us, our perception. I “know” electrons
interact through their electric field, but my colleagues will tell me they interact through quantas
of virtual photons they emit. Will anyone prove they interact through a distortion of the space
around them?

I would say that a good scientific study maintains a balance between (i) the information it
gathered/produced and (ii) the knowledge about how this information was produced, what it
signifies and what can it be related to other information. In a simple formula:

Information
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼Objective

+Knowledge
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼Subjective

= Science

Of course, this equation, though eloquent, looks really too simplistic to be taken on serious
grounds.



18.2. A DIFFERENT EPOCH 641

And this, I hope,

will

at the individual level
beyond our attachment

prompt us to acknowledge that

science

a visage

takes

at a societal level

that reflects

our culture.
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