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Biometrical sciences and disease diagnosis in particular, are often concerned
with the analysis of associations for cross-classified data, for which distance
association models give us a graphical interpretation for non-sparse matrices
with a low number of categories. In this framework, usually binary exploratory
and response variables are present, with analysis based on individual profiles
being of great interest. For saturated models, we show the usual linear rela-
tionship for log-linear models is preserved in full dimension for the distance
association parameterization. This enables a two-step procedure to facilitate the
analysis and the interpretation of associations in terms of unfolding after the
overall and main effects are removed. The proposed procedure can deal with
cross-classified data for profiles by binary variables, and it is easy to implement
using traditional statistical software. For disease diagnosis, the problems of a
degenerate solution in the unfolding representation, and that of determining sig-
nificant differences between the profile locations are addressed. A hypothesis
test of independence based on odds ratio is considered. Furthermore, a proce-
dure is proposed to determine the causes of the significance of the test, avoiding
the problem of error propagation. The equivalence between a test for equality
of odds ratio pairs and the test for equality of location for two profiles in the
unfolding representation in the disease diagnosis is shown. The results have
been applied to a real example on the diagnosis of coronary disease, relating the
odds ratios with performance parameters of the diagnostic test.
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1 INTRODUCTION

In general, the most data analysis problems in medical research and clinical decisions involve the analysis of associations
between a binary response variable and a set of response (or explanatory) categorical variables; that is, the traditional
log-linear (or multivariate logistic regression) problem. In particular, this is usual in the diagnosis of a disease, which
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2 VERA and ROLDÁN-NOFUENTES

is a fundamental phase in clinical practice, prior to the treatment and prognostic phases. The diagnosis of a disease
is made through the application of diagnostic tests and also considering the symptomatology of the patient and the
covariates related to the disease (eg, gender, the presence of risk factors, family history, etc.). For example, an adult
male with fatigue may require an electrocardiogram for the diagnosis of coronary heart disease. However, if the male is
young, then fatigue may be due to other causes (eg, anemia or diabetes), and therefore the patient will initially require
a laboratory test. Therefore, knowing covariates related to the disease is also of great help for the correct diagnosis of
the disease.

In many situations, a preliminary step is taken to decide the most influential variables in a set, but often this selec-
tion may not be so clear. Instead of this kind of variable-oriented approach, a person-oriented approach to data analysis
might be preferred.1 Any combination of the categories of the variables is called a profile. In the most general case,
the data consist of a profile-by-response contingency table in which the profiles represent a single categorical response
variable. In this situation, the analysis of associations between profiles of individuals based on diagnostic test together
with covariates (rows), and having or not having a disease (columns), is of great interest. In the clinical setting, this
allows greater control over the profiles with the highest risk, which can favor personalized treatment and improve health
outcomes.

Distance association (DA) models enable the representation of associations for a saturated log-linear model in terms
of squared Euclidean distances.2-4 It has been shown that the DA model produces the same expected frequencies than the
RC(M) model,5 although the graphical interpretation of the associations is easier in the DA model in terms of points in a
Euclidean space.2 This is performed by considering a suitable parameterization of the association term that, together with
a transformation for the identification of the parameters in the model, preserves the log-linear relation. In low dimensions,
the distance association model is an approximation to the traditional log-linear model and, in general, it is more efficient
than a two-step procedure that first performs traditional log-linear analysis and then represents the associations in terms
of Euclidean distances. In a combined procedure of clustering and distance association model to deal with sparse data
sets, the superiority of a simultaneous strategy compared to a two-step procedure has been explicitly shown by Vera, de
Rooij and Heiser3 for the latent class distance association model and by Vera and de Rooij4 for the latent block distance
association model.

In DA models, associations are analyzed relative to an unconditional unfolding procedure after removing the effect
of the overall mean, and the main row and column effects, in a log-linear framework. However, when a binary variable
is considered as a response, while the profiles are a categorical explanatory variable, a row conditional representation
may also be appropriate. For example, when one of the two variables is binary, a simple and easy-to-interpret condi-
tional representation can be made when the associations are analyzed directly from the observed frequencies (without
removing the overall and main effects) using the procedure proposed by Heiser.6 This exploratory procedure relates
the position of the points (centroids and vertexes) in a simplex with the distances between them and the observed
proportions.

An important feature in DA models, and in particular for the diagnosis of a disease, is to statistically determine sig-
nificant differences between the profile locations in the unfolding representation. This is a very important issue in this
context and one that is not traditionally covered by unfolding procedures. In general, unfolding is based on the relation-
ships between the elements of two sets to be represented, in this case the profiles of the row variable and the two column
categories. However, unfolding does not usually address the relationships within the categories of each variable separately,
and this is also true of the distance association model. Stability analysis of point locations has been used to determine
confidence regions in multidimensional scaling,7,8 but an inference-based procedure in this respect in unfolding, and in
particular in the distance association model, would be desirable.

In general, when two qualitative variables are studied in a I × J table, the independence between them is usually
studied by the classical Fisher’s exact test or the chi-squared test.9 In a distance association model, it is also of interest to
study the independence between an explanatory or response variable (such as the presence or absence of a disease) and
profiles (eg, based on diagnostic tests and covariates), in particular, in terms of estimated expected frequencies. Testing
independence is equivalent to testing that all odds ratios between profiles are equal to one. This will be of special interest
when the representation of associations is one-dimensional, as occurs in the diagnosis of a disease, given the relationship
between odds ratio and distances. It is important to note that studying the independence for all the profiles across all
combinations of individual hypothesis tests about the odds ratio at the 𝛼 error (or equivalently through the respective
confidence intervals at the level 1 − 𝛼), can lead to erroneous conclusions due to the propagation of the 𝛼 error. In a
distance association model for the disease diagnostic, this can be related to the location of the points in the unfolding
representation which highly complements the graphic interpretation.
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VERA and ROLDÁN-NOFUENTES 3

In this article, we show that, in full dimension, a distance-based parameterization of the association terms leads to an
equivalent linear decomposition of the expected frequencies to that given by the traditional log-linear model, which means
the distance association model in full dimension is a log-linear model with a special interpretation of the parameters.
This result is particularly relevant when the variable of interest is binary, as is usual in the diagnosis of a disease, or is
determined by a categorical variable with at most four categories, (eg, non-diseased, patients in phase 1, patients in phase
2 and patients in phase 3), which allows the associations to be visualized graphically in full dimension. In this situation, a
two-step procedure is proposed that first estimates a log-linear model, for example, using any statistical software familiar
to medical researchers, and then represents the estimated associations in full dimension using the parameterization of
a distance association model. From a computational point of view, the expected frequencies in any saturated log-linear
model coincide with the observed frequencies, so only the DA parameterization of the observed frequencies is needed
for the graphical representation, which makes it even easier to use. However, since the model is a true log-linear model,
it allows the use of hypothesis tests and confidence intervals for the validation of the traditional log-linear model, while
also enabling clinical researchers to take decisions easily based on an exact graphical representation of the associations
in low dimension.

Moreover, based on the relationship between the odds ratio and the Euclidean distances in the unfolding represen-
tation, we propose an inferential procedure to decide about a degenerate solution10 in the DA model, and also about
significant differences between two locations in the unfolding representation in terms of the odds ratio. In this context,
when the profiles correspond to results of binary diagnostic tests and categorical covariates, the odds that a profile has the
disease can be expressed in terms of measures of accuracy of the diagnostic tests in the different patterns of the covariates.
In the same way, the odds ratios between each two profiles can be expressed. Thus, if the profiles are obtained from a diag-
nostic test and two binary covariates, then the odds that a profile has the disease can be written in terms of the post-test
odds of the diagnostic test, and the odds ratio between two profiles can be expressed in terms of the likelihood ratios (or
post-test odds) of the diagnostic test in the different patterns of the covariates. Therefore, the Euclidean distances in the
unfolding representation are related to measures of the quality of the binary diagnostic test in the different patterns of
covariates.

The rest of the article is organized as follows. In the next section, we formulate the two-step log-linear procedure
for estimating and representing associations for cross-classified data, and the equivalence of the log-linear model to the
full-dimensional distance association model is shown in terms of their parameterizations. Furthermore, for the case of
association with a binary variable, the relationship between independence and equality of location of the points in the
unfolding representation is shown in terms of odds ratio. In particular, the relationship between a degenerate solution
and independence is also shown. Section 3 introduces the independence test in terms of odds ratios for a general distance
association model. Additionally, in the case of the association with a binary variable, the independence test is studied
in terms of odds ratio, together with its properties, and a method is proposed to study the causes of significance when
the independence test is significant. The results are also specified for the situation in which a diagnostic test and two
binary covariates are available, relating the odds ratio between two profiles with measures of the accuracy of the binary
diagnostic test. In Section 4, a Monte Carlo experiment is performed to study the asymptotic behavior of the hypothesis
test introduced above, using eight profiles. In Section 5, the results have been applied to the diagnosis of coronary heart
disease. In the final section, we summarize the main conclusion drawn.

2 REPRESENTATION OF ASSOCIATIONS BASED ON DISTANCES

Let us denote by F =
(

fij
)

an I × J contingency table that collects the counts of combinations of row and column categories,
which can represent profiles of variables. We will consider here the particular situation in which the rows represent
profiles or categories of a response variable and the columns represent possible stages or characteristics of a disease.
Let us define the I ×M matrix X and the J ×M matrix Y, whose row vectors xi, i = 1, … , I and yj, j = 1, … , J are the
coordinates of the row and column categories of F, respectively, in dimension M.

We use the well-known equivalence of the multinomial and Poisson distribution,9,11 and under the usual Poisson
sampling model, counts are considered as independent random variables,9 and denoting by 𝜇ij the expected values, the
log-likelihood is given by

log(L) =
I∑

i=1

J∑

j=1
fij log

(
𝜇ij
)
−

I∑

i=1

J∑

j=1
𝜇ij. (1)
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4 VERA and ROLDÁN-NOFUENTES

In the usual multiplicative form in a log-linear framework for a two-way cross-classification, the expected frequencies
can be written as follows:

𝜇ij = 𝜇𝛼i𝛽j𝜃ij, (2)

where 𝜇 is the overall scale parameter, 𝛼i is the row effect parameter, 𝛽k is the column effect parameter, and 𝜃ij is the
interaction effect. In the distance association model is assumed the association parameter 𝜃ij can be expressed in terms of
the Euclidean distances,

d2(xi, yj
)
=

M∑

m=1

(
xim − yjm

)2

using the exponential form 𝜃ij = exp
(
−d2

ij

)
. Thus, the greater the association between a row and column categories,

the smaller the distance between their corresponding points. Taking the logarithm of (2) we can express the model in
log-linear terms (focusing on the squared distances) as follows,

log
(
𝜇ij
)
= 𝜆 + 𝜆i + 𝜆j − d2

ij
(
xi, yj

)
, (3)

where log
(
𝜃ij
)
= −d2

ij (note that this model is the distance association model, which in low dimension is log-quadratic in
the configuration parameters, but in full dimension is log-linear as shown in Appendix A). As usual, for identification
purposes, the mean of the row effects and the mean of the column effects will be assumed to be zero. To this end, the
following parameterization of the expected frequencies2 can be considered.

2.1 Equivalence between log-linear and distance association models in full dimension

Given the parameter estimated values from (3) by the usual saturated log-linear (see Appendix A) or by the distance
association model in full dimension, let us denote by 𝛍̂ =

(
𝜇ij
)

the I × J matrix of the estimated expected frequencies
(𝛍̂ = 𝛍, since both are saturated models). To obtain an identified solution, the parameters are expressed as a function of
singular values and singular vectors,2 since the singular value decomposition is unique and is characterized by M(M + 2)
constraints, with M = min(I, J) − 1 the maximum dimension.10

Let us denote by G =
(

gij
)
, the matrix of entries gij = log

(
𝜇ij
)
, and denote by g, the global mean of G, and by gi and gj the

marginal means for the ith row and the jth column of G, respectively. Then, we define 𝜆 = g, 𝜆R
i = gi − g, 𝜆C

j = gj − g, and
𝚫 the matrix of entries 𝛿ij = gij − 𝜆 − 𝜆R

i − 𝜆
C
j . From the singular value decomposition of𝚫 = U𝚪𝚲′, we can estimate X and

Y, both in dimension M, such that X
√

2 = U𝚪1∕2 and Y
√

2 = 𝚪1∕2𝚲′. Then, denoting by dx,i =
∑

m x2
im, and dy,j =

∑
m y2

jm,
identified parameters are obtained:

𝜆̇

R
i = 𝜆R

i + dx,i, (4)

𝜆̇

C
j = 𝜆C

j + dy,j, (5)

𝜆 = 𝜆 + 1
I

I∑

i=1
𝜆̇

R
i +

1
J

J∑

j=1
𝜆̇

C
j , (6)

𝜆
R
i = 𝜆̇

R
i −

1
I

R∑

i=1
𝜆̇

R
i , (7)

𝜆
C
j = 𝜆̇

C
j −

1
J

J∑

j=1
𝜆̇

C
j . (8)

The mean of the values of 𝜆R
i , i = 1, … , I and of 𝜆C

j , j = 1, … , J is equal to zero, and gij = 𝜆 + 𝜆R
i + 𝜆

C
j − d2

ij

(
xi, yj

)
.

Then, after this parameterization, the model is characterized by 2 +M(M + 2) further constraints.2 Thus, in full
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VERA and ROLDÁN-NOFUENTES 5

dimension M, two configurations X and Y can be estimated such that (3) holds. This results in a distance association
model which is equivalent to the corresponding log-linear model, and therefore, a two-step procedure for the parame-
ter estimation is allowed. The parameters of the log-linear model can be first estimated using any statistical software for
inferential purpose, or simply consider the expected (observed) frequencies, and then the above parameterization can be
used to represent associations in full dimension.

2.2 Odds ratio and distances

The log odds of a response j against a response j′ for a given class i are given by

log
(
𝜇ij

𝜇ij′

)
= log

(
𝛽j
)
− log

(
𝛽j′
)
− d2

ij + d2
ij′ .

The odds are a function of both the main effect parameters and the distances. Concerning the distances, the odds are
in favor of the closest category. Concerning the main effects, the odds are in favor of the category with the largest 𝛽 value.
The odds ratio can be defined in terms of squared distances as2

Oii′jj′ =
𝜇ij × 𝜇i′j′

𝜇ij′ × 𝜇i′j
= exp

(
−d2

ij − d2
i′j′ + d2

ij′ + d2
i′j

)
, (9)

and if the row category I and the column category J are set as the reference, then the usual set of local odds ratio, denoted
by Oij = OiIjJ, are given in terms of distances as Oij = exp

(
−d2

ij − d2
IJ + d2

iJ + d2
Ij

)
. Then, for a fixed column j, Oij = Oi′j if

and only if
(

d2
iJ − d2

ij

)
=
(

d2
i′J − d2

i′j

)
.

When the cross-classified data set involves a binary variable, the baseline category J represents one of the two choices,
and the unfolding representation is in one dimension. Then, denoting by J and j the only two column categories in the
table, it follows that for any i, i′ = 1, … I row categories,

Oij = Oi′j ⇔ diJ − dij = di′J − di′j, (10)

which only occurs when both categories i and i′ are represented by the same point in the unfolding configuration (see
Appendix B). Hence, from a statistical point of view, a hypothesis test contrasting the equality of the corresponding odds
ratios would allow us to decide whether the position of two nearby points can be considered to be significantly different in
terms of association. When the response variable is binary, OiIjJ = Oi′IjJ if and only if Oii′jJ = 1. Therefore, the hypothesis
that two row profiles do not differ from each other with respect to their association with the response variable can be
formulated in terms of the independence test by considering the null hypothesis: Oii′jJ = 1.

3 TESTING DIFFERENCES IN DISTANCE ASSOCIATIONS BETWEEN
PATIENT PROFILES

The study of patient profiles and their association with a certain disease is of great interest in Clinical Medicine and
Preventive Medicine. Here we will focus on patient profiles defined from qualitative variables, such as the results of binary
diagnostic tests and disease-related covariates. Likewise, we will also consider that the disease status of each patient
(present disease or absent disease) is known by applying a gold standard (GS), which is the medical test that allows to
determine whether or not a patient has the disease. In this context, consider a random sample of n individuals, to whom
T binary diagnostic tests (BDTs) are applied, and K qualitative covariates A1, … , AK are observed in all individuals.
Each covariate can take values a1, a2, … Let Tt be the binary random variable that models the result of t-ht BDT, with
t = 1, … ,T, such that Tt = 1 when the test is positive and Tt = 2 when it is negative, and GS models the result of the gold
standard (GS = 1 if the individual has the disease and GS = 2 if he does not have it). Let aa1,… ,aK ,t1,… ,tT and ba1,… ,aK ,t1,… ,tT

be the number of diseased and non-diseased individuals, respectively, in which A1 = a1,… , AK = aK and T1 = t1,… ,
TT = tT , with tt = 1, 2 and t = 1, … ,T. The observed frequencies are the realization of a multinomial distribution with
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6 VERA and ROLDÁN-NOFUENTES

probabilities

pa1,… ,aK ,t1,… ,tT = P(GS = 1,A1 = a1, … ,AK = aK ,T1 = t1, … ,TT = tT)

and

qa1,… ,aK ,t1,… ,tT = P(GS = 2,A1 = a1, … ,AK = aK ,T1 = t1, … ,TT = tT),

such that

∑
pa1,… ,aK ,t1,… ,tT +

∑
qa1,… ,aK ,t1,… ,tT = 1.

The maximum likelihood estimators of these probabilities are

p̂a1,… ,aK ,t1,… ,tT
=

aa1,… ,aK ,t1,… ,tT

n

and

q̂a1,… ,aK ,t1,… ,tT =
ba1,… ,aK ,t1,… ,tT

n
.

Let 𝛑 be a vector of dimension 2I whose components are the above probabilities, where I is the number of profiles.
Applying the multivariate central limit theorem it is verified that

√
n(𝛑̂ − 𝛑)−−−→

n→∞
N2I

(

0,
∑

𝛑

)

.

Since the sample of size n is the realization of a multinomial distribution, the variance-covariance matrix
∑
𝛑 is

estimated as follows:

∑̂
𝛑̂
=
{

diag(𝛑̂) − 𝛑̂𝛑̂T
}
∕n.

Assuming GS = 1 the baseline category, let Oii′ = Oii′21 be the odds ratio between profile i = (a1, … , aK , t1, … , tT)
and profile i′ =

(
a′1, … , a′K , t

′
1, … , t′T

)
, with i, i′ = 1, … , I and i ≠ i′. If Oii′ = 1, then the odds of having the disease is the

same for both profiles. It is obvious that Oii = 1 and that Oii′ = O−1
i′i . In terms of the probabilities of the vector 𝛑, the odds

ratio between i and profile i′ is written as follows:

Oii′ =
pa1,… ,aK ,t1,… ,tT∕qa1,… ,aK ,t1,… ,tT

pa′1,… ,a′K ,t
′
1,… ,t′T∕qa′1,… ,a′K ,t

′
1,… ,t′T

, ,

and its estimator is

̂Oii′ =
aa1,… ,aK ,t1,… ,tT∕ba1,… ,aK ,t1,… ,tT

aa′1,… ,a′K ,t
′
1,… ,t′T∕ba′1,… ,a′K ,t

′
1,… ,t′T

.

In this situation, it is of interest to study whether or not the profiles are associated with the disease, and for this reason
the following hypothesis test is studied.

3.1 Testing independence and degenerate solutions in DA

In general, the distance association model in low dimension is not equivalent to the related log-linear model, except for
M = min(I, J) − 1. In addition, the DA model represents associations between row and column categories, after overall,

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9854 by U
niversidad D

e G
ranada, W

iley O
nline L

ibrary on [07/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VERA and ROLDÁN-NOFUENTES 7

row and column effects in the cross-classification dataset are removed. Hence, a procedure for testing independence
in terms of the estimated distances is of great interest, in particular when the DA model is estimated in a dimension
lower than M. As noted above, testing the independence between the I profiles and the disease is equivalent to testing
that all odds ratios are equal to 1, and that therefore all profiles have the same odds of having the disease. In this situa-
tion, independence is equivalent to the fact that the location of all profiles is the same in the unfolding representation,
that is, that the solution is degenerate.10,12 Here, we focus on the situation in which the associations are represented
in full dimension, in which case the log-linear and DA models produce the same expected frequencies, which coin-
cide with the observed frequencies as they are saturated models. Although global independence can be tested using
any classical test, or by comparing models in a log-linear framework; here, we focus on odds ratio tests and its prop-
erties, in line with the identification of degenerate solutions. Having set a profile i, i ∈ {1, … , I}, Oii′ = Oi′′i′∕Oi′′i with
i′ ≠ i′′, and an independence test, or global hypothesis test to compare that all odds ratios are equal to 1, is defined
as follows:

H0 ∶ Oii′ = 1, i′ = 1, … , I, i ≠ i′,
H1 ∶ al least one odds ratio is different from 1. (11)

In this hypothesis test, only I − 1 odds ratios are involved, and the null hypothesis means that all odds ratios are equal
to 1, regardless of the baseline profile. In this paper, we solve this contrast by applying transformations on the odds ratio,
specifically the natural logarithm, which is a transformation widely used to compare and estimate parameters and whose
application to the case of an odds ratio in a 2 × 2 table is widely known. Therefore, the hypothesis test (11) is equivalent
to the test

H0 ∶ Uii′ = 0, i′ = 1, … , I, i′ ≠ i,
H1 ∶ al least one Uii′ is different from 0, (12)

where Uii′ = log(Oii′ ). Let Ui = (Ui1, … ,UiI)T, that is, Ui is a vector of dimension I − 1 whose components are Uii′ , with
i, i′ = 1, … , I and i′ ≠ i. Applying the multivariate central limit theorem it is verified that

√
n
(

Ûi −Ui

)
−−−−−→

n→∞
NI−1

(
0,𝚺Ui

)
.

As Ui is a function of the probabilities of 𝛑, the estimated asymptotic variance of
∑

Ui
is obtained applying the delta

method, that is,

∑̂
Ûi
=
(
𝜕Ui

𝜕𝛑

)

𝛑=𝛑̂

∑̂
𝛑̂

(
𝜕Ui

𝜕𝛑

)T

𝛑=𝛑̂
.

Then, the test statistic

Qi = Û
T
i
∑̂−1

Ûi
Ûi

is distributed according to Hotelling’s T-squared distribution with a dimension I − 1 and n degrees of freedom, where
I − 1 is the dimension of the vector Ûi. When n is large, the statistic Qi is distributed according to a central chi-squared
distribution with I − 1 degrees of freedom when the null hypothesis is true, that is,

Qi = Û
T
i
∑̂−1

Ûi
Ûi−−−−−→n→∞

𝜒
2
I−1.

Therefore, having set a profile we will obtain a value for the test statistic of the global test and the corresponding
P-value. It can be shown (see Appendix C) that using the transformation of the natural logarithm, the test statistic for the
global test is the same regardless of the baseline profile set, that is,

Qi = Qi′ = Q, i, i′ = 1, … , I, i′ ≠ i.
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8 VERA and ROLDÁN-NOFUENTES

Setting an 𝛼 error, if the P-value of the hypothesis test (12) is higher than 𝛼 then we do not reject that all of the profiles
have the same odds of having the disease, that is, the unfolding configuration is degenerate. For a P-value ≤ 𝛼, we accept
that at least one odds ratio is different from 1, which means that at least one profile has odds of having the disease different
to the rest of the profiles. Faced with this situation, it is necessary to investigate the causes of the significance of the test,
for which the usual steps are:

1. Solving the individual hypothesis tests on the odds ratio between two profiles. This is of special interest in this frame-
work, since as shown above in Section 2, this is equivalent to testing whether the distance between the locations of two
row profiles differs from zero in the DA model representation, that is, the localization of the two profiles is the same
in the unfolding representation. Hence, we propose to statistically determine if there are any differences between the
associations of two row profiles with respect to having the disease or not. To this end, we study the test

H0 ∶ Uii′ = 0 vs. H1 ∶ Uii′ ≠ 0,

with i < i′ and i, i′ = 1, … , I. A Wald test statistic for this hypothesis test is9

zii′ =
Ûii′√

V̂ar
(

Ûii′
) ,

which is distributed according to a normal standard distribution when n is large, where V̂ar
(

Ûii′
)

is obtained applying
the delta method. This test statistic is the classical one used to test that the log-odds ratio is equal to zero.9 A confidence
interval for the log-odds ratio can be obtained simply by inverting this test statistic (Agresti9). However, it is important
to take into account that the formulation of hypothesis tests allows us to know the evidence against the null hypothesis.
The number of individual hypothesis tests that need to be solved is I(I − 1)∕2.

2. Adjusting the P-values to control the 𝛼 error to adjust the I(I − 1)∕2 P-values obtained by solving the individual tests,
we propose to use Holm’s method,13 which is easy to apply and is less conservative than the classic Bonferroni method.

The development for the clinical situation in which the diagnosis of the disease is based on the application of a BDT
and on the observation of two binary covariates is shown in Appendix D.

4 SIMULATION EXPERIMENTS

Monte Carlo simulation experiments have been carried out to study the type I errors and the powers of the indepen-
dence test based on the odds ratios (Q statistic), together with the Pearson chi-square test of independence (𝜒2 statistic)
and likelihood ratio test (G2 statistic).9 The value of I = 8 was considered, such as the situation studied in Appendix D
and, for example, when considering two BDTs and a binary covariate, or three BDTs. As usual, the value of 0.5 was
added to the entire table when at least one cell has zero frequency (a situation in which none of the three indepen-
dence tests can be applied). These experiments consisted of the generation of 10 000 multinomial random samples sized
n = {125, 150, 200, 300, 400, 500, 1000, 2000, 5000} (for n ≤ 100 it was not possible to generate enough random samples
under the necessary conditions14,15 to apply the classical tests), and whose probabilities were calculated as follows:

1. For
∑

prst were considered the values of {0.20, 0.40, 0.60, 0.80}, which also set the values of
∑

qrst (since
∑

qrst = 1 −∑
prst).

2. For p111 were considered the values of
{

0.05, … ,

∑
prst − 0.05

}
and for q111 the values of

{
0.05, … ,

∑
qrst − 0.05

}
.

3. For simplicity, for prst and qrst, with (r, s, t) ≠ (1, 1, 1), were considered the values of prst =
∑

prst−p111

7
and qrst =

∑
qrst−q111

7
,

respectively. Therefore, it is considered that prst (qrst) are all equal and so, in each profile the odds ratios are all equal
(for i′ > i), which considerably simplifies the dimension of the problem.

For the type I error, all of the odds ratios are equal to 1, and for the power we considered that in the first profile
(i = (1, 1, 1)) all of the odds ratios are equal to each other and greater than 1 (O1i′ > 1 with i′ = 2, … , 8), and that in the
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VERA and ROLDÁN-NOFUENTES 9

T A B L E 1 Type I errors (in %) of the independence tests.
Oii′ = 1

∑
pijk = 0.20

∑
qijk = 0.80

p111 = 0.05 q111 = 0.20

Oii′ = 1
∑

pijk = 0.40
∑

qijk = 0.60
p111 = 0.10 q111 = 0.15

n Q 𝝌
2 G2 Q 𝝌

2 G2

125 2.7 8.6 12.6 2.1 4.6 6.3

150 2.8 7.4 10.8 2.4 4.7 6.0

200 2.9 5.9 7.1 3.2 4.4 5.4

300 3.1 5.1 6.0 3.9 4.8 5.3

400 3.9 4.7 5.5 3.9 4.5 5.0

500 4.1 5.4 5.7 4.3 4.7 5.2

1000 4.3 4.9 5.1 4.5 4.9 5.1

2000 4.6 5.0 5.1 5.0 5.2 5.3

5000 5.1 5.2 5.3 5.2 5.2 5.3
Oii′ = 1

∑
pijk = 0.60

∑
qijk = 0.40

p111 = 0.15 q111 = 0.10

Oii′ = 1
∑

pijk = 0.80
∑

qijk = 0.20
p111 = 0.20 q111 = 0.05

n Q 𝝌
2 G2 Q 𝝌

2 G2

125 2.0 4.5 6.2 2.5 8.6 13.1

150 2.3 4.6 6.1 2.6 6.8 9.9

200 3.2 4.7 5.7 2.8 5.8 7.0

300 3.8 5.1 5.6 3.2 4.9 5.9

400 3.9 4.6 5.0 3.9 4.8 5.6

500 4.3 4.8 5.3 4.0 5.3 5.6

1000 4.5 4.8 4.9 4.4 5.0 5.2

2000 4.9 4.9 5.0 4.6 4.9 5.0

5000 5.1 5.1 5.1 5.1 5.2 5.3

Note: Q: Test based on the odds ratios. 𝜒2: Pearson test. G2: Likelihood ratio test.

rest of the profiles it is verified that Oii′ = 1 with i = 2, … , 7 and i′ = i + 1, … , 8. As the nominal error, 𝛼 = 5% has been
considered.

Table 1 shows the results obtained for some of the scenarios considered. The Q test presents type I error values that
increase with the sample size, and very close to the nominal error for n ≥ 500 or n ≥ 1000, depending on the scenario.
The Q test is somewhat more conservative than 𝜒2 and G2 tests (mainly for n ≤ 400), but it does not exceed the nominal
error in excess with any sample size in all considered scenarios. The 𝜒2 test and the G2 test greatly exceed the nominal
error in some situations, especially for n = 125–150 (also for n = 200 in the G2 test), and therefore both hypothesis tests
can give rise to too many false significances and should not be used for these small sample sizes, as expected. In general,
the 𝜒2 and the G2 test are somewhat less conservative than the Q test for 200 ≤ n ≤ 400, and type I errors are very similar
for all when n ≥ 500.

Table 2 shows the results obtained for the powers, indicating the values of the odds ratio of the first profile and the
values of the probabilities of the multinomial distribution. No results are shown for n = 125–150 in two of the scenarios
because it has not been possible to generate samples that meet the conditions to apply the chi-square test. In all the
hypothesis tests and under the same sample size, the power increases as the values of the odds ratio of the first profile
increase.

For the Q test, in general, a sample size between moderate (n = 125) and large (n ≥ 500) is needed for the power to be
high (greater than 80%), depending on the scenario. The 𝜒2 and G2 tests are a little more powerful than the Q test when
n ≤ 150–200 (depending on the scenario) because their type I errors are also larger (they can greatly exceed the nominal
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10 VERA and ROLDÁN-NOFUENTES

T A B L E 2 Powers (in %) of the independence tests.
O1i′ = 2

∑
pijk = 0.40

∑
qijk = 0.60

p111 = 0.20 q111 = 0.20

O1i′ = 3
∑

pijk = 0.80
∑

qijk = 0.20
p111 = 0.40 q111 = 0.05

n Q 𝝌
2 G2 Q 𝝌

2 G2

125 13.8 23.7 28.7 – – –

150 18.3 25.8 31.3 – – –

200 26.8 30.9 35.9 62.3 66.1 66.2

300 45.9 49.1 52.5 77.6 80.6 79.4

400 63.7 66.1 68.1 87.9 89.8 88.8

500 74.3 76.1 77.4 100 100 100

1000 98.4 98.5 98.5 100 100 100

2000 100 100 100 100 100 100

5000 100 100 100 100 100 100
O1i′ = 5

∑
pijk = 0.20

∑
qijk = 0.80

p111 = 0.15 q111 = 0.30

O1i′ = 15
∑

pijk = 0.60
∑

qijk = 0.40
p111 = 0.50 q111 = 0.10

n Q 𝝌
2 G2 Q 𝝌

2 G2

125 – – – 100 100 100

150 – – – 100 100 100

200 92.6 95.1 96.4 100 100 100

300 97.9 99.2 99.4 100 100 100

400 99.6 99.8 99.9 100 100 100

500 100 100 100 100 100 100

1000 100 100 100 100 100 100

2000 100 100 100 100 100 100

5000 100 100 100 100 100 100

Note: Q: Test based on the odds ratios. 𝜒2: Pearson test. G2: Likelihood ratio test.

error) than those of the Q test. In general terms, there is no important difference (less than 1% on average) between the
powers of the three methods when n ≥ 300–400, and it is necessary to have a sample size between moderate (n = 125)
and large (n ≥ 500) so that the power is high (over 80%), depending on the values of the odds ratios.

From the results of the Monte Carlo experiments, it follows the Q test has an adequate asymptotic behavior for its
practical application: its type I error does not exceed the nominal error and its power is high when the sample size is not
excessively large (depending on the value of the odds ratios). The 𝜒2 and G2 tests should not be applied when n = 125–150
(moderate sizes) since their type I errors can exceed the nominal error, giving rise to too many false significances. When
the sample size is large, the three methods have a very similar asymptotic behavior.

5 ILLUSTRATIVE EXAMPLE

To illustrate the performance of the model, we have analyzed a data set from Weiner et al.16 on the diagnosis of coronary
disease. In particular, here we are focused on the exercise stress testing (EST) for the diagnosis of coronary disease, using
a coronary arteriography as the GS. The proposed model has been implemented in R and the script and data set to repro-
duce this application are available as supplementary material. Table 3 shows the results obtained when applying the two
medical tests to a sample of 2045 people, in which the row profiles are formed by the categories of the variables of sex,
Resting ST’s & T-Waves (RST-TW) and EST, and in this order. Therefore, the sub-index r of the table refers to sex (r = 1
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VERA and ROLDÁN-NOFUENTES 11

T A B L E 3 Study of Weiner et al.

Profile (r, s, t) Diseased Non-diseased 𝜶i

1 (1, 1, 1) 224 35 1.4022564

2 (1, 1, 2) 32 41 0.4018787

3 (1, 2, 1) 591 80 3.6367663

4 (1, 2, 2) 176 286 2.5196283

5 (2, 1, 1) 59 75 0.7378854

6 (2, 1, 2) 8 43 0.2601560

7 (2, 2, 1) 69 74 0.7911212

8 (2, 2, 2) 33 219 1.2751462

𝛽j 0.954 1.05 𝜇 = 175.6074

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
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0

Dimension 1
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 2

GS1 GS2
111 112121 122211 212221 222

F I G U R E 1 Representation of associations of the profiles of individuals regarding coronary disease.

for men and r = 2 for women), sub-index s refers to RST-TW (s = 1 abnormal and s = 2 normal) and sub-index t refers to
the result of EST (t = 1 positive and t = 2 negative).

The estimated expected values when applying the proposed two-step procedure in one dimension, along with the
estimated values of the row, column, and overall effects are shown in Table 3. The saturated model perfectly recovers
the observed values (3), as is to be expected. Figure 1 shows the representation in one dimension of the associations
between the profiles in terms of having or not the disease (this is displayed in two dimensions for easy viewing). As can
be appreciated; (1) profiles (1,2,1) (man with normal RST-TW and positive EST) and (1,1,1) (man with abnormal RST-TW
and positive EST) are the two profiles most closely associated with having coronary disease; (2) profiles (2,1,2) (woman
with abnormal RST-TW and negative EST) and (2,2,2) (woman with normal RST-TW and negative EST) are the profiles
most closely associated with not having coronary disease; (3) the rest of the profiles are associated in a similar way with
having or not having the disease and also to a similar degree.

The test statistic of the independence test is Q = 524.5237 and P-value = 0. If we set 𝛼 = 5% then we reject the null
hypothesis that all of the log-odds ratios are equal to 0 (ie, that all of the odds ratios are equal to 1). Since the independence
test is significant, the unfolding solution for the representation of the associations is not degenerate. Table 4 shows the
estimations of the odds ratios between each two profiles and the results of the comparison in pairs (test statistics, P-values
and adjusted P-values). For 𝛼 = 5% the adjusted P-values using the Holm’s method indicate that:

1. The odds of having coronary disease in profile 1 (man with abnormal RST-TW and positive EST) is significantly greater
than in profiles 2 (man with abnormal RST-TW and negative EST), 4 (man with normal RST-TW and negative EST), 5
(woman with abnormal RST-TW and positive EST), 6 (woman with abnormal RST-TW and negative EST), 7 (woman
with normal RST-TW and positive EST) and 8 (woman with normal RST-TW and negative EST). We do not reject that
the odds of having coronary disease in profile 1 is equal to the odds of having the disease in profile 3 (man with normal
RST-TW and positive EST). Therefore, a man with positive EST (whatever the status of the RST-TW) has an odds of
having coronary disease which are significantly greater than the rest of profiles.
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12 VERA and ROLDÁN-NOFUENTES
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VERA and ROLDÁN-NOFUENTES 13

T A B L E 5 Estimations of the parameters.

Covariate patterns (r,s)

Estimators
Man, abnormal
RST-TW (1, 1)

Man, normal
RST-TW (1, 2)

Woman, abnormal
RST-TW (2, 1)

Woman, normal
RST-TW (2, 2)

𝜓̂rs 0.7711 0.6770 0.3622 0.2582

̂Sers 0.8750 0.7705 0.8806 0.6765

̂Sprs 0.5395 0.7814 0.3644 0.7474

L̂R
+
rs 1.9 3.5252 1.3855 2.6785

L̂R
−
rs 0.2317 0.2937 0.3277 0.4328

P̂PVrs 0.8649 0.8808 0.4403 0.4825

N̂PVrs 0.5616 0.6190 0.8431 0.8690

P̂PVrs∕
(

1 − P̂PVrs

)
6.4 7.3875 0.7867 0.9324

N̂PVrs∕
(

1 − N̂PVrs

)
0.7805 0.6154 0.1860 0.1507

2. The odds of having the disease in profile 2 (man with abnormal RST-TW and negative EST) is significantly lower than
the odds of having the disease in profiles 3 (man with normal RST-TW and positive EST), and significantly higher than
in profiles 6 (woman with abnormal RST-TW and negative EST) and 8 (woman with abnormal RST-TW and negative
EST). We do not reject that the odds of having coronary disease in profile 2 is equal to the odds of having the disease
in profiles 4 (man with normal RST-TW and negative EST), 5 (woman with an abnormal RST-TW and positive EST)
and 7 (woman with normal RST-TW and positive EST).

3. The odds of having the disease in profile 3 are significantly higher than the odds of having the disease in profiles 2, 4,
5, 6, 7 and 8.

4. The odds of having the disease in profile 4 are significantly higher than the odds of having the disease in profiles 6
and 8. We do not reject that the odds of having coronary disease in profile 4 is equal to the odds of having the disease
in profiles 5 and 7.

5. The odds of having the disease in profile 5 is significantly higher than the odds of having the disease in profiles 6 and
8. Therefore, a woman with abnormal RST-TW and positive EST has a greater odds of having coronary disease than a
woman with negative EST (whether or not the RST-TW is normal). We do not reject that the odds of having the disease
in profile 5 is equal to the odds of having the disease in profile 7, and therefore we do not reject that a woman with
positive EST has the same odds of having coronary disease whatever the status of the RST-TW.

6. The odds of having the disease in profile 6 is significantly lower than the odds of having the disease in profile 7, and
therefore a woman with abnormal RST-TW and negative test has a lower odds than a woman with normal RST-TW and
positive EST. We do not reject that the odds of having coronary disease is equal among profiles 6 and 8, and therefore
we do not reject that a woman with negative EST has the same odds of having coronary disease whatever the status of
the RST-TW.

7. The odds of having the disease in profile 7 are significantly higher than the odds of having the disease in profile 8, and
therefore a woman with normal RST-TW and positive EST has a greater odds of having the disease than a woman with
normal RST-TW and negative EST.

Therefore, the results obtained lead to the following conclusions:

1. Profiles 1 and 3 (non-significant test) both have greater odds of having the disease than the rest of the profiles, and
therefore they are the profiles with the greatest disease of coronary disease.

2. Profiles 6 and 8 (non-significant test) are those with the lowest odds of having the disease, and therefore they are the
profiles with the lowest risk of coronary disease.

3. For profiles 2, 4, 5, and 7, the individual tests between them are not significant and, therefore, there is no evidence
of any differences regarding their positions in the unfolding representation and thus of their associations with the
coronary disease.
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14 VERA and ROLDÁN-NOFUENTES

Regarding the disease prevalence and the parameters of the EST, Table 5 shows their estimations in the different
patterns of the covariates. Applying the equations of appendix D we obtain the estimations of the odds ratios given in
Table 4. For those profiles which are more associated with having the disease, it is obtained that: (a) the odds of a man
with an abnormal RST-TW and a positive EST having the disease is 6.4, and (b) the odds of a man with a normal RST-TW
and a positive EST having the disease is approximately 7.4. In both cases, the odds are calculated as P̂PVrs∕

(
1 − P̂PVrs

)

since the result of the BDT is positive in the two profiles. The rest of the odds are interpreted in a similar way.

6 DISCUSSION

In this paper, a two-step log-linear procedure to estimate and represent associations in full dimension is proposed. The
log-linear model is shown to be equivalent to a distance association model in full dimension, after an appropriate param-
eterization, which enables the direct representation of associations between rows and columns in a two-way contingency
table resulting from cross-classified data sets.

When one of the two variables involved in the contingency table is binary, as is usually the case in the diagnosis of
a disease, the relation between independency and equality of localization of the points in the unfolding representation
is shown. Therefore, the interpretation of close positions in the representation can be made in terms of equal degrees
of association from a statistical point of view. This also enables the statistical identification of a degenerate solution in
unfolding in terms of the odds ratio.

In general, the low-dimensional distance association model is not equivalent to the related log-linear model. There-
fore, a procedure is considered for testing independence in terms of the observed frequencies, these being the expected
values estimated by the DA model in full dimension, which is based on testing that the values of the odds ratio are all
equal to one. The test statistic Q is distributed asymptotically according to a chi-squared distribution with I − 1 degrees of
freedom, since only I − 1 odds ratio must be considered, and its performance is compared with that of classical indepen-
dence tests. From the results obtained in the simulation experiments, it can be appreciated that, in general, the proposed
Q statistic has a good asymptotic behavior, its performance being better than the classical tests for moderate samples.

Consideration of the natural logarithmic transformation of the odds ratio for the test statistic ensures its invariance in
the face of a change in the baseline profile. Although other transformations have been proposed in this framework, such
as the inverse hyperbolic sine or the inverse sine,17,18 it is easy to show that these are not invariant for a change in the
baseline profile, which is a clear drawback.

To determine the causes of a significant test, individual hypothesis tests on each odds ratio have been proposed using
Holm’s method to adjust the P-values obtained. The situation of independence is not precisely what is of interest here,
since we are mainly focused on the analysis of associations. Indeed, to analyze global independence, the classic tests
based on the chi-square distribution (Pearson and likelihood ratio) can also be used, as well as Fisher’s exact test, all of
them based on the observed frequencies since the model is saturated. Nevertheless, there are certain aspects that should
be highlighted in this regard. The hypothesis tests based on the chi-square distribution, that is, 𝜒2 test and G2 test, require
certain conditions on the expected frequencies in order to be applied, which means that their use is somewhat limited
for small or even moderate samples (see, for instance, Cochran14 and McDonald15). On the other hand, when the test
is significant, the investigation of the causes of significance is done by partitioning the table, which is computationally
expensive as the number of profiles increases. Although partitioning the table of observed frequencies into I − 1 subtables,
the test statistic G2 is the sum of the I − 1 test statistics G2, this property does not hold for the Q statistics, nor is it true
for the 𝜒2 statistics.

The same occurs with Fisher’s exact test, which may even be computationally unfeasible, as well as the subsequent
investigation of the causes of the lack of independence. The global test based on the odds ratio has advantages over the
previous tests in this framework: (a) it can always be applied (for zero frequencies it is enough to simply add 0.5), and (b)
if the test is significant, the causes of the significance are investigated simple and fast, since all the parameters involved
have been estimated when solving the global test.

In particular, the clinical situation in which the profiles are composed of two binary covariates and a BDT has been
widely described, given its great interest in medical research. In this situation, the relation of the odds ratio for two profiles
with measures of quality of the BDT in the different patterns of covariates is set. In addition, simulation experiments
have been carried out to study the asymptotic behavior of the independence test for the case of eight profiles, and the
hypothesis test showed good performance both in terms of type I error and power.
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VERA and ROLDÁN-NOFUENTES 15

An interesting topic to investigate is the relationship between equality of odds ratio and location of points when the
model is estimated in low dimension. This is particularly interesting for tables in which the large number of profiles
induces the use of a combined latent class distance association model such as the LCDA.3 In addition, given the relation-
ship with the RC(M) model, the study of this methodology in the RC(M) framework in low dimension, and also in related
models collapsing categories such as the Kateri and Iliopuolos model,19 is of great interest.
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APPENDIX A

The logarithm of the estimated expected frequencies, log
(
𝜇ij
)
, in a log-linear model can be written as

log
(
𝜇ij
)
= 𝜆 + 𝜆R

i + 𝜆
C
j + 𝜆

RC
ij , (A1)

where 𝜆 is the mean of the logarithm of the expected frequencies, 𝜆R
i and 𝜆C

j are the row and column deviation values
with respect to the mean, respectively, and 𝜆RC

ij is the logarithm of the estimated interaction effect (see, eg, Everit20). Hence,

considering the singular value decomposition of the matrix of interaction values we can write ̂𝛌
RC
= U𝚪𝚲t = 2XYt, and

therefore, (A1) can be written as follows:

log
(
𝜇ij
)
= 𝜆 +

(
𝜆

R
í + x′ixi

)
+
(
𝜆

C
j + y′jyj

)
− d2(xi, yj

)
,

where xi and yj are the ith row of X and the jth row of Y, respectively, in full dimension. Hence, we have in (2) that 𝜇 =

exp(𝜆), 𝛼 = exp
(
𝜆

R
i − x′ixi

)
, and 𝛽 = exp

(
𝜆

C
j − y′jyj

)
, and we will assume the association parameters 𝜃ij can be expressed

in full dimension in terms of the Euclidean distances d2
ij = d2(xi, yj

)
,

d2(xi, yj
)
=

M∑

m=1

(
xim − yjm

)2
,

using the exponential form 𝜃ij = exp
(
−d2

ij

)
. Thus, in full dimension, taking the logarithm of (2) we can express the model

in log-linear terms as follows,

log
(
𝜇ij
)
= 𝜆 + 𝜆i + 𝜆j − d2

ij
(
xi, yj

)
,

where log
(
𝜃ij
)
= −d2

ij.

APPENDIX B

For cross classified data involving a dichotomous variable in the two-way table, the unfolding representation is in one
dimension. Then, denoting by J and j the two column categories in the table, it follows that for any i, i′ = 1, … , I row
categories,

Oij = Oi′j ⇔ diJ − dij = di′J − di′j (B1)

which only occurs when the distance between both row categories i and i′ is zero. This is true since, Oij = Oi′j if and only
if
(

diJ − dij
)(

diJ + dij
)
=
(

di′J − di′j
)(

di′J + di′j
)
. Thus, if the solution is not degenerate (djJ ≠ 0) and Oij = Oi′j for any two

row categories i and i′, one of the following three situations can occur between the location of these four points on a
straight line:
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VERA and ROLDÁN-NOFUENTES 17

• The two column categories are located at the ends of the graph, for example, J, i, i′, j. Then,
(

diJ + dij
)
=
(

di′J + di′j
)
=

djJ, and therefore diJ − di′J = dij − di′j, that is, −dii′ = dii′ , if and only if dii′ = 0.
• There is a column category located between the two row categories, for example i, j, i′, J. Then, diJ − di′J = dij + di′j =

dii′ . If we suppose that dii′ ≠ 0, then diJ − dij = di′j − di′J , that is, diJ = −diJ, which is a contradiction. Hence, dii′ = 0.
• Row categories are placed together, as are column categories, for example, i, i′, j, J. Then, diJ − dij = di′J − di′j = djJ, and

therefore, diJ − di′J = di′j − dij, that is, dii′ = −dii′ , if and only if dii′ = 0.

APPENDIX C

To simplify the demonstration, let us suppose that the global hypothesis test is solved taking profile 1 as the baseline

profile, then Û1 =
(

Û12, Û13, … , Û1I

)T
and the test statistic is

Q1 = Û
T
1
∑̂−1

Û1
Û1.

Let us now consider that the global hypothesis test is solved taking profile 2 as the baseline profile. As the odds ratios
verify that Oii = 1 and that Oii′ = Oi′′i′∕Oi′′i, with i′ ≠ i′′, then Uii = 0 and Uii′ = log(Oii′ ) = log(Oi′′i′∕Oi′′i) = Ui′′i′ − Ui′′i.
Applying these properties, vector U2 is written in terms of the components of vector U1 as

U2 = (U21,U23, … ,U2I)T = (−U12,U13 − U12, … ,U1I − U12)T.

Then, the variance-covariance matrix of Û2 can be estimated from the variance-covariance matrix of Û1 applying the
delta method, that is,

∑̂
Û2
=
(
𝜕U2

𝜕U1

)∑̂
Û1

(
𝜕U2

𝜕U1

)T

,

where
(
𝜕U2
𝜕U1

)
is a matrix of a dimension (I − 1) × (I − 1) whose elements are constant, that is,

𝜕U2

𝜕U1
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 … 0

−1 1 0 0 … 0

−1 0 1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−1 0 0 0 … 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In this matrix, the elements of the first column are equal to−1, the rest of the elements in the main diagonal are equal
to 1 and all of the other elements of the matrix are equal to 0. It is easy to verify that

𝜕U2

𝜕U1
=
(
𝜕U2

𝜕U1

)−1

and that
(
𝜕U2

𝜕U1

)−1

Û2 = Û1.

Then the test statistic for the global test is

Q2 = Û
T
2
∑̂−1

Û2
Û2 = Û

T
2

[(
𝜕U2

𝜕U1

)∑̂
Û1

(
𝜕U2

𝜕U1

)T
]−1

Û2
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18 VERA and ROLDÁN-NOFUENTES

= Û
T
2

[(
𝜕U2

𝜕U1

)−1
]T∑̂−1

Û1

(
𝜕U2

𝜕U1

)−1

Û2

= Û
T
1
∑̂−1

Û1
Û1 = Q1.

The demonstration is similar for the rest of profiles i ≥ 3. In general, for any other profiles i and i′, it holds that.

Ui = (Uii′′ )T,with i′′ = 1, … , I and i′′ ≠ i,

and

Ui′ = (Ui′i′′ )T,with i′′ = 1, … , I and i′′ ≠ i′.

The elements of Ui′ are written in terms of the elements of Ui as.

Ûi′i′′ =
⎧
⎪
⎨
⎪
⎩

− Ûii′ , i = i′′

Ûii′′ − Ûii′ , i ≠ i′′
,with i′′ = 1, … , I.

The matrix of partial derivatives 𝜕Ui′∕𝜕Ui has the following elements: the elements of column i are all equal to −1,
the rest of the elements in the main diagonal are all equal to 1, and the rest of the elements in the matrix are all equal to
0. A matrix of this type always verifies that 𝜕Ui′∕𝜕Ui = (𝜕Ui′∕𝜕Ui)−1 and that (𝜕Ui′∕𝜕Ui)−1Ui′ = Ui.

APPENDIX D

In clinical practice, it is common for the diagnosis of a disease to be made based on the result of a BDT and the observation
of binary covariates (eg, sex, family history, the presence of a risk factor, etc.). Here, we will consider that two binary
covariates are observed, although extending this to more than two covariates is simple. Moreover, the extension to two (or
more) BDTs is also simple, and in this case it is necessary to consider the covariance between the two (or more than two)
BDTs when calculating the probabilities of the profiles. In the situation of a single BDT and two binary covariates (and
also with a single covariate), the odds ratio between two profiles is written, as detailed further on, in terms of measures
of the quality of the BDT in each pattern of covariates (or of the single covariate in such a situation).

Let us consider that for all of the n individuals in a random sample a gold standard and a BDT are applied, and
that for all of these individuals we observe two binary covariates. This situation leads to the profiles and the fre-
quencies given in Table D1. The theoretical probabilities are defined as prst = P(GS = 1,A1 = r,A2 = s,T = t) and qrst =
P(GS = 2,A1 = r,A2 = s,T = t), with r, s, t = 1, 2 and verifying that

∑2
r,s,t=1prst +

∑2
r,s,t=1qrst = 1. These probabilities are

expressed in terms of the sensitivity and the specificity of the BDT as

T A B L E D1 Profiles and observed frequencies when I = 8.

Profile (r, s, t) Diseased (GS = 1) Non-diseased (GS = 2)

1 (1, 1, 1) a111 b111

2 (1, 1, 2) a112 b112

3 (1, 2, 1) a121 b121

4 (1, 2, 2) a122 b122

5 (2, 1, 1) a211 b211

6 (2, 1, 2) a212 b212

7 (2, 2, 1) a221 b221

8 (2, 2, 2) a222 b222
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VERA and ROLDÁN-NOFUENTES 19

prs1 = P(GS = 1,A1 = r,A2 = s,T = 1) = 𝜏rs𝜓rsSers,

prs2 = P(GS = 1,A1 = r,A2 = s,T = 2) = 𝜏rs𝜓rs(1 − Sers),

qrs1 = P(GS = 2,A1 = r,A2 = r,T = 1) = 𝜏rs(1 − 𝜓rs)
(
1 − Sprs

)

and

qrs2 = P(GS = 2,A1 = r,A2 = r,T = 2) = 𝜏rs(1 − 𝜓rs)Sprs,

where 𝜏rs = P(A1 = r,A2 = s), 𝜓rs = P(GS = 1|A1 = r ,A2 = s), Sers = P(T = 1|GS = 1,A1 = r,A2 = s ) is the sensitivity of
the BDT for individuals with A1 = r and A2 = s, and Sprs = P(T = 2|GS = 2,A1 = r,A2 = s ) is the specificity of the BDT for
individuals with A1 = r and A2 = s. The maximum likelihood estimators of prst and qrst are p̂rst = arst∕n and q̂rst = brst∕n,
where n =

∑2
r,s,t=1arst +

∑2
r,s,t=1brst, and the maximum likelihood estimators of the disease prevalence and of the sensitivity

and the specificity of the BDT in the different patterns of covariates are

𝜓̂ij =
ars1 + ars0

ars1 + brs1 + ars0 + brs0
,

̂Sers =
ars1

ars1 + ars0
and ̂Sprs =

brs0

brs0 + brs1
.

The above 16 probabilities are arranged in vector form as follows:

𝛑 = (p111, p112, … , q221, q222)T,

and the odds ratio between profile i = (r, s, t) and profile i′ =
(

r′, s′, t′
)

is expressed as follows:

Oii′ =
prst∕qrst

pr′s′t′∕qr′s′t′
.

The odds that profile i = (r, s, t) has the disease when the BDT is positive is

prst

qrst
= 𝜓rs

1 − 𝜓rs
× Sers

1 − Sprs
= 𝜓rs

1 − 𝜓rs
× LR+rs,

and the odds that profile i = (r, s, t) has the disease when the BDT is negative is

prst

qrst
= 𝜓rs

1 − 𝜓rs
× 1 − Sers

Sprs
= 𝜓rs

1 − 𝜓rs
× LR−rs,

where LR+rs =
Sers

1−Sprs
is the positive likelihood ration of the BDT in the pattern of covariates A1 = r and A2 = s, and LR−rs =

1−Sers
Sprs

is the negative likelihood ratio is the negative likelihood ratio of the BDT in the pattern of covariates A1 = r and
A2 = s. The product 𝜓rs

1−𝜓rs
× LR+rs is the post-test odds when the BDT is positive in the pattern of covariates A1 = r and

A2 = s, that is,
𝜓rs

1 − 𝜓rs
× LR+rs =

PPVrs

1 − PPVrs
,

where PPVrs is the positive predictive value of the BDT when A1 = r and A2 = s. In an analogous way, the product 𝜓rs
1−𝜓rs

×
LR−rs is the post-test odds when the BDT is negative and A1 = r and A2 = s, that is,

𝜓rs

1 − 𝜓rs
× LR−rs =

1 − NPVrs

NPVrs
,

where NPVrs is the negative predictive value of the BDT when A1 = r and A2 = s. Based on these expressions, the odds
ratio between profile i and profile i′ is written in terms of the parameters of performance of the BDT as follows:
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20 VERA and ROLDÁN-NOFUENTES

Oii′ =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

LR+rs
LR−rs

, r = r′, s = s′, t = 1, t′ = 2

LR−rs
LR+rs

, r = r′, s = s′, t = 2, t′ = 1

𝜓rs
1−𝜓rs

LR+rs ×
1−𝜓rs′

𝜓rs′

1
LR−

rs′
, r = r′, s ≠ s′, t = 1, t′ = 2

𝜓rs
1−𝜓rs

LR−rs ×
1−𝜓rs′

𝜓rs′

1
LR+

rs′
, r = r′, s ≠ s′, t = 2, t′ = 1

𝜓rs
1−𝜓rs

LR+rs ×
1−𝜓rs′

𝜓rs′

1
LR+

rs′
, r = r′, s ≠ s′, t = t′ = 1

𝜓rs
1−𝜓rs

LR−rs ×
1−𝜓rs′

𝜓rs′

1
LR−

rs′
, r = r′, s ≠ s′, t = t′ = 2

𝜓rs
1−𝜓rs

LR+rs ×
1−𝜓r′s
𝜓r′s

1
LR−

r′s
, r ≠ r′, s = s′, t = 1, t′ = 2

𝜓rs
1−𝜓rs

LR−rs ×
1−𝜓r′s
𝜓r′s

1
LR+

r′s
, r ≠ r′, s = s′, t = 2, t′ = 1

𝜓rs
1−𝜓rs

LR+rs ×
1−𝜓r′s
𝜓r′s

1
LR+

r′s
, r ≠ r′, s = s′, t = t′ = 1

𝜓rs
1−𝜓rs

LR−rs ×
1−𝜓r′s
𝜓r′s

1
LR−

r′s
, r ≠ r′, s = s′, t = t′ = 2

.

The quotient LR+rs
LR−rs

= SersSprs

(1−Sprs)(1−Sers) , called the diagnostic odds ratio, is the odds ratio between the BDT and gold standard
when A1 (A2) has the same value in both profiles and the BDT is positive in the first profile and negative in the second.
Furthermore, when r ≠ r′ and/or s ≠ s′, the odds ratio between profile i and profile i′ is equal to the product of the post-test
odds (or of its opposite) of the BDT in each profile.

Regarding the variance-covariance matrix, applying the delta method it is obtained that

V̂ar
(

Ûii′
)
= V̂ar

(
Ûi′i

)
= 1

arst
+ 1

brst
+ 1

ar′s′t′
+ 1

br′s′t′
, with i, i′ = 1, … , I, i < i′,

and

̂Cov
(

Ûii′ , Ûii′′
)
= 1

arst
+ 1

brst
, with i′ ≠ i′′

Expression of V̂ar
(

Ûii′
)

is equal to the one given in Agresti.9 Hypothesis test (12) is then solved as shown above. Since
the test statistic has a long and complicated expression, we use the R statistical software to calculate it. If the independence
test is significant to 𝛼 error, then the causes of the significance are investigated solving the 28 individual tests (I = 8) and
the Holm’s method is applied.
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