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Abstract. Using two different warped five-dimensional (5D) models with two
branes along the extra dimension, we study the Green’s functions and the spec-
tral properties of some of the fields propagating in the bulk. While the first
model has a discrete spectrum of Kaluza-Klein (KK) modes, the second one
has a continuous spectrum above a mass gap. We also study the positivity of the
spectral functions, as well as the coupling of the graviton and the radion with
SM matter fields.

1 Introduction

The Standard Model (SM) of particle physics has passed all the tests at past and present
experiments (Tevatron, LHC, . . . ), and no clear deviation has been found so far. However,
the SM fails to describe a number of observational and theoretical aspects (dark matter, hi-
erarchy problem, . . . ), so that it is believed that the SM is an effective theory that should
be completed in the ultraviolet (UV). One of the most fruitful completions is provided by
the Randall-Sundrum (RS) model [1], in which the hierarchy between the Planck and the
electroweak (EW) scales is generated by a warped extra dimension in anti-de Sitter (AdS5)
space. This theory predicts a discrete spectrum of Kaluza-Klein (KK) states associated with
each SM field, with masses mKK ∼ TeV. The elusiveness of isolated and narrow resonances
in direct new physics searches at colliders motivated to study different solutions, including
the clockwork models [2] and the linear dilaton (LD) models [3, 4]. Partly motivated by these
works, a new kind of warped models, characterized by the existence of a continuum of states
heavier than a TeV mass gap, have been recently proposed [5–7]. These models have recently
been shown to have implications not only for particle physics, but also for cosmology [8, 9].
The physics behind models with a gapped continuum spectrum is related to unparticles and
unhiggs theories [10, 11].

In the present work we study the Green’s functions of several kind of fields in two different
warped models: i) the RS model, and ii) the LD model. Thus, we will be able to provide
details on the spectral properties of theories with either discrete or continuous spectra.
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2 The extra-dimensional model

The warped extra-dimensional models are based on a 5D space-time with line element

ds2 = gMNdxMdxN = ḡµνdxµdxν − dy2 , (1)

where y is the extra dimension, and ḡµν = e−2A(y)ηµν is the 4D induced metric. Let us consider
a scalar-gravity system with two branes located at y = y0 (UV brane) and y = y1 (IR brane),
where we are fixing y0 = 0 and A(y0) = 0. The 5D action of the model reads [12]

S =
∫

d5x
√
|g|

[
−

1
2κ2

R +
1
2
gMN(∂Mϕ)(∂Nϕ) − V(ϕ)

]
−

∑
α

∫
Bα

d4x
√
|ḡ|λα(ϕ) + SGHY , (2)

where V(ϕ) is the bulk scalar potential, λα(ϕ) are the UV (α = 0) and IR (α = 1) 4D brane
potentials, and κ2 = 1/(2M3

5) with M5 being the 5D Planck scale. The equations of motion
(EoM) of the scalar field in the bulk can be written in terms of the superpotential as [13]

ϕ′(y) =
1
2

W ′(ϕ) , A′(y) =
κ2

6
W(ϕ) , (3)

where the prime stays for derivative with respect to the corresponding argument, while the
brane potentials are responsible for boundary or jumping conditions of the fields in the branes.
Simple brane potentials satisfying these conditions are given by λα(ϕ) = (−1)αW(ϕ)+ 1

2γα(ϕ−
vα)2 for α = 0, 1. Moreover, by using the EoM, one can express the on-shell action as the 4D
integral S = −

∫
d4xUeff, where the effective potential Ueff is 1

Ueff =
[
e−4AU0(ϕ)

]
y0
+

[
e−4AU1(ϕ)

]
y1
, (4)

with Uα(ϕ) = λα(ϕ) − (−1)αW(ϕ) = 1
2γα(ϕ − vα)

2. The potential Ueff fixes dynamically
the brane distance and the values of ϕ at the branes, i.e. vα ≡ ϕ(yα). Solving the hierarchy
problem demands that the brane dynamics fixes A(ϕ1) − A(ϕ0) ≈ 35, so that MPl ≃ 1015 · ρ
where MPl is the 4D Planck scale and ρ is a scale O(TeV) [14].

3 Discrete spectra: Randall-Sundrum model

The RS1 model is defined by the constant superpotential

W(ϕ) =
6k
κ2
, (5)

where k = 1/ℓ, and ℓ is the radius of AdS5. The solution of the EoMs gives A(y) = ky and
ϕ(y) = cte for (y0 ≤ y ≤ y1), thus corresponding to the AdS5 geometry.

3.1 Gauge bosons

The 4D Lagrangian for massless gauge bosons, in the gauge A5 = 0, writes

L4D =

∫ y1

y0

dy
[
−

1
4

tr FµνFµν +
1
2

e−2A tr ∂yAµ∂yAµ
]
, (6)

1We are providing in Sec. 2 formulas that are valid for the RS model with two branes (RS1), a model defined in the
domain y ∈ [y0, y1], cf. Sec. 3. In the LD model of Sec. 4, the domain is larger: y ∈ [y0, ys) with y1 < ys; and in this
case the bulk contribution in Ueff vanishes at the singularity, ys, and one has instead U1(ϕ) = λ1(ϕ) = 1

2γ1(ϕ − v1)2.
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where the gauge fluctuations can be written as Aµ(p, y) = f (y)Aµ(p)/
√
y1. By using confor-

mal coordinates, ds2 = e−2A(z)(ηµνdxµdxν −dz2) where z = eky/k, and defining a rescaled field
by f (z) = eA(z)/2 f̃ (z), the EoM of the fluctuations is expressed in the Schrödinger-like form

− f̃ ′′(z) + VA(z) f̃ (z) = p2 f̃ (z) with VA(z) =
3

4z2 , (z0 ≤ z ≤ z1) , (7)

with z0 = 1/k and z1 = 1/ρ, while ρ = k e−A(z1). The fact that the model is defined in a compact
domain, z ∈ [z0, z1], leads to a discrete spectrum of KK modes. Then, the wave functions can
be normalized to ⟨ fm| fn⟩ =

∫ y1

y0
dy f ∗m(y) fn(y) = y1δmn, and {| fn⟩} forms an orthonormal basis

of the space. We have used the Dirac notation: ⟨y| fn⟩ = fn(y) and ⟨ fn|y⟩ = f ∗n (y).

3.2 Green’s functions for gauge bosons

The Green’s functions for gauge bosons propagating in the bulk from y to y′ are given by
GµνA (y, y′; p) = [ηµν − (1 − ξ)pµpν/p2]GA(y, y′; p), where GA obeys the following EoM

p2GA(y, y′; p) + ∂y
(
e−2A(y)∂yGA(y, y′; p)

)
= δ(y − y′) . (8)

We are using a mixed representation where only the 4D coordinates xµ are Fourier trans-
formed into 4D momenta pµ. This equation can be solved analytically by imposing Neumann
boundary conditions in the UV and IR branes, i.e. (∂yGA)(y0) = 0 and (∂yGA)(y1) = 0, as well
as the matching conditions ∆GA(y′) = 0 and ∆(∂yGA)(y′) = e2A(y′). In these expressions GA(y)
means GA(y, y′) and ∆F(y) ≡ limϵ→0 (F(y + ϵ) − F(y − ϵ)). The result is given by

GA(y, y′; p) =
π

2k
ek(y+y′)

[
Y0

( p
k

)
J1

(
eky↓ p

k

)
− J0

( p
k

)
Y1

(
eky↓ p

k

)]
×

Z1(p, y↑)
ΦA(p)

, (9)

with Zα(p, y) = J0 (p/ρ) Yα
(
ekyp/k

)
− Jα

(
ekyp/k

)
Y0 (p/ρ) andΦA(p) ≡ Z0(p, y0), while Jn(z)

and Yn(z) are the Bessel functions of the first and second kind, respectively. We have defined
the variables y↓ = min(y, y′) and y↑ = max(y, y′). The Green’s functions have poles at the
zeros of ΦA(p), and these correspond to the discrete KK mass spectrum. The lowest-lying
states of the spectrum are at pn ≡ mn with mn/ρ ≃ 0, 2.45, 5.57, 8.70, 11.84, 14.98, · · · .
Notice that there is a zero mode and an infinite tower of massive modes.

3.3 Spectral properties of gauge bosons

The spectral functions are defined as

ρA(y, y′; s) = −
1
π

Im GA(y, y′; s + i0+) , s ≡ p2 . (10)

It would be clarifying to study these functions in an eigenvalue decomposition. The Green’s
functions and spectral functions can be understood as matrix elements of the operators 2

ĜA(s) =
1
y1

∑
n

| fn⟩⟨ fn|
s − m2

n + i0+
, ρ̂A(s) =

1
y1

∑
n

| fn⟩⟨ fn| δ(s − m2
n) , (11)

where fn(y) are the wave functions defined in Sec. 3.1, i.e. GA(y, y′; s) = ⟨y|ĜA(s)|y′⟩ and
ρA(y, y′; s) = ⟨y|ρ̂A(s)|y′⟩. Then, by using the Dirac notation of quantum mechanics, one has

GA(y, y′; s) =
1
y1

∑
n

fn(y) f ∗n (y′)
s − m2

n + i0+
, ρA(y, y′; s) =

1
y1

∑
n

fn(y) f ∗n (y′) δ(s − m2
n) . (12)

2The operators of Eq. (11) are related by ρ̂A(s) = − 1
π Im ĜA(s), where Im ĜA(s) = 1

2i

(
ĜA(s) − Ĝ†A(s)

)
.
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Figure 1. Density of states λA (normalized by ρ2), as a function
of s/ρ2, for the KK modes of the gauge bosons in the RS model,
cf. Eq. (13). We have used A1 = 35.

From these two expressions one obtains the spectral representation of the Green’s function
GA(y, y′; s) =

∫
dm2 ρA(y,y′;m2)

s−m2+i0+ . One can see from Eq. (12) that while ρA(y, y; s) is positive
definite, ρA(y, y′; s) with y , y′ is not, as fn(y) has n nodes and so it has n changes of sign
in (y0, y1). This apparent contradiction challenges the physical interpretation of the spectral
functions in 4D QFT. Let’s point out that what should be positive semidefinite is the operator
ρ̂A(s), so that while this implies that all its eigenvalues are positive semidefinite, this does not
mean that all its matrix elements ⟨y|ρ̂A(s)|y′⟩ are. This will be briefly addressed now in the
context of the RS model, and more generically in Sec. 4.2 within a model with continuous
spectrum. By using Eq. (11), one gets that | fn⟩ is an eigenvector of the spectral operator ρ̂A(s)
with eigenvalue δ(s−m2

n), i.e. ρ̂A(s)| fn⟩ = δ(s−m2
n)| fn⟩. Then, we find that in the off-shell case

(s , m2
n ∀n) all the eigenvalues of ρ̂A(s) are vanishing, while in the on-shell case (s = m2

n)
there is a single non-vanishing eigenvalue which is infinite δ(0), and the others are vanishing.
Moreover, the trace of the spectral operator, which is the summation of all its eigenvalues,

λA(s) ≡ tr ρ̂A(s) =
∑

n

δ(s − m2
n) ≥ 0 , (13)

can be interpreted as the density of states in momentum s. Finally, the integral∫ ∞

0
ds λA(s) =

∫ ∞

0
ds

∑
n

δ(s − m2
n) = Nstates → ∞ (14)

is the number of states, a quantity that turns out to be divergent as there are infinite states in
the spectrum. We display in Fig. 1 the density of states in the RS model as a function of s/ρ2.

Notice that each KK mode contributes with a Dirac delta function with
∫ m2

n+ϵ

m2
n−ϵ

ds λA(s) = 1.

4 Gapped continuous spectra: linear dilaton model
When new physics consists in heavy Breit-Wigner resonances, their presence is detected by
bumps in the invariant mass of the final states, corresponding to the mass of the exchanged
particle. The lack of detection of bumps associated with states not present in the SM mo-
tivated the study of models with a continuum of KK states beyond a mass gap, mg. In this
scenario, new physics is associated with an excess in the measured cross section with respect
to the SM prediction [5, 6]. The Green’s functions that we will study in this section generalize
the particle propagators with isolated poles (p2 −m2 + i0+)−1 = P(p2 −m2)−1 − iπδ(p2 −m2),
to Green’s functions with an isolated pole (zero mode) and a continuum of states above mg,

G(p2,m2
g) = Re G(p2,m2

g) + i
[
c0δ(p2) + η(p2,m2

g)Θ(p2 − m2
g)
]
. (15)

This is the behavior of gapped unparticles [11, 15]. In the extra-dimensional model, the gap
mg ∼ ρ ∼ TeV is linked to the solution of the hierarchy problem as discussed in Sec. 2.
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4.1 The linear dilaton model

The LD model is defined by the superpotential [16]

W(ϕ̄) =
6k
κ2

eϕ̄ , (16)

where ϕ̄ ≡ κϕ/
√

3. The warped factor and scalar field have a linear behavior in conformal
coordinates, i.e. A(z) = ρ · (z − z0) and ϕ̄(z) = A(z) + v̄0 for (z0 ≤ z < ∞), with z0 = 1/k and
ρ = ±1/ys. 3 This model leads to continuous or discrete spectra (depending on the sign of ρ)
for all the fields, with gaps mg ∼ ρ. We can consider two situations:

• The case ρ = −1/ys is dual to Little String Theories [3, 4]. Using κ2M2
Pl =

∫ z1

z0
dz e−3A, the

relationship between the 5D and 4D Planck scales is M5 ≃
(

3
2 |ρ|M

2
Pl

)1/3
e−|A1 | ∼ |ρ| ∼ TeV,

while A1 ≡ A(z1) ≃ 23. In this theory the hierarchy problem has to be entirely solved
by a string theory which should set the cutoff scale at the TeV. In this case no continuum
spectrum is allowed, as an infinite value of z1 would imply MPl → ∞, so that gravity would
be decoupled. Then, the spectrum is discrete and it has a gap, m2

n = m2
g +

π2n2

A2
1
ρ2 , (n ∈ Z).

• The model for ρ = +1/ys can be defined in z ∈ [z0,+∞). This leads to M5 ≃
(

3
2ρM

2
Pl

)1/3
≃

1010 · ρ for ρ ∼ TeV and A1 ≃ 23. This theory solves the hierarchy problem between M5
and the TeV scale, and a UV completion of the theory given by a string theory that would
solve the hierarchy problem between MPl and M5 would be needed. This case leads to a
gapped continuous spectrum, m2 ≥ m2

g.
In the following we will assume ρ = +1/ys. Within the LD model, propagation of gauge

bosons in the bulk produces a violation of EW precision observables, so that in the following
we will consider that: i) SM fields (gauge bosons, fermions and Higgs boson) are located in
the IR brane (z = z1), and ii) the graviton and the radion can propagate in the bulk [16, 17].

4.2 Graviton

The graviton is a transverse traceless fluctuation of the metric of the form [12]

ds2 = e−2A(y)(ηµν + 2κhµν(x, y))dxµdxν − dy2 . (17)

By using the ansatz hµν(x, y) = h(y)hµν(x), one can obtain the EoM of the graviton fluctuation,
which in conformal coordinates and after defining the rescaled graviton fluctuation by h(z) =
e3A(z)/2h̃(z), turns out to be −h̃′′(z) + Vh(z)h̃(z) = p2h̃(z) with Vh(z) = (3ρ/2)2. The value
mg = 3ρ/2 corresponds to the mass gap in the spectrum. The Green’s function for hµν(x, y)
in the transverse, traceless gauge, obeys the EoM

p2Gh(y, y′; p) + e2A(y)∂y
(
e−4A(y)∂yGh(y, y′; p)

)
= e2A(y′) · δ(y − y′) , (18)

for y0 ≤ y, y
′ < ys. The boundary and matching conditions are (∂yGh)(y0) = 0 and

∆(∂yGh)(y′) = e4A(y′), where Gh(y) ≡ Gh(y, y′). We should also impose continuity of Gh(y) in
y = y′, y1, and (∂yGh)(y) in y = y1, as well as regularity in the IR (y→ ys). The result is [16]

Gh(y, y′; p) =
(1 − ȳ↑)

3
2∆
+(p)

3ρδ(p)

(
−(1 − ȳ↓)

3
2∆
−(p) +

∆−(p)
∆+(p)

(1 − ȳ↓)
3
2∆
+(p)

)
, (19)

where ∆±(p) = ±δ(p) − 1 and δ(p) =
√

1 − (4/9) · p2/ρ2, and we have defined ȳ = ρy. We
display in Fig. 2 (left) the absolute value of the UV-UV Green’s function with the zero mode
subtracted out, i.e. Gh(y0, y0) ≡ Gh(y0, y0) −G0

h
with G0

h
=

3ρ
p2 = limp→0 Gh(y, y′; p).

3In proper coordinates, the solution is A(y) = − log (1 − y/ys) and ϕ̄(y) = − log
[
k(ys − y)

]
for (y0 ≤ y < ys),

where y = ys is an admissible singularity in the IR.

, 08002 (2022) https://doi.org/10.1051/epjconf/202227408002
t h Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

 
5



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

p�Ρ

Ρ
×È

G
h

Hy
0,

y 0
LÈ

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

p�Ρ

Ρ
×

Ρ h
Hy

0,
y 0

L

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

s�Ρ2

Ρ2
×Λ

h
Hs

L

Figure 2. Plots of the Green’s function |Gh(y0, y0; p)| (left panel), spectral function ρ̄h(y0, y0; p) (middle
panel), and density of states λh(s) (right panel), as a function of the momentum, for a continuous
graviton, cf. Eqs. (19) and (21). The dashed vertical line in the right panel corresponds to s = m2

g. We
have used ϵ̄ = 0.1, A1 = 23 and assumed time-like momenta p2 > 0.

The spectral function in the LD model, defined as in Eq. (10), is related to a disconti-
nuity of the Green’s function at the branch cut s ∈ [m2

g,+∞). Working in the basis with
flat extra-dimensional coordinate y, i.e. h̄µν(x, y) = e−A(y)hµν(x, y), an explicit evaluation
leads to ρ̄h(y, y′; s) = 3ρe−A(y)−A(y′) δ(s) + η̄h(y, y′; s)Θ(s − m2

g), where the terms ∝ δ(s) and
∝ η̄h(y, y′; s) are the contributions from the zero mode and the continuum, respectively. It can
be proved that the operator ρ̂h(s), with matrix elements (ρ̂h)yy′ ≡ ⟨y|ρ̂h(s)|y′⟩ = ρ̄h(y, y′; s), is
positive semidefinite, something discussed in Sec. 3.3 for gauge bosons within the RS model.
To see that, let us point out that the infinite dimensional matrix ρ̂h has a factorizable form
(ρ̂h)yy′ = ρyρy′ where ρy =

√
(ρ̂h)yy. Then, ρ̂h has the following properties: i) det ρ̂h = 0, and

ii) all the eigenvalues of ρ̂h are vanishing, except one of them, which is given by its trace,

λh(s) = tr ρ̂h(s) =
∫ ys

0
dy ρ̄h(y, y; s) =

∫ ys

0
dy ρ2

y ≥ 0 . (20)

This finishes the proof. The integral of Eq. (20) is divergent at y = ys, and it can be regularized
by performing the integral up to y = ys · (1 − ϵ̄), where ϵ̄ is a regulator. The result is [16]

λh(p) = δ(p2) +
[
−

log ϵ̄
2πρ
λun(s) + O(ϵ̄0)

]
, λun(s) = (s − m2

g)
−1/2 , (21)

where λun(s) corresponds to an unparticle contribution with dimension dun = 3/2 [18].
Within the LD model, we are assuming that the SM matter fields are located in the IR

brane y = y1. Then, the interaction Lagrangian in the 4D effective theory is given by

L5D = −
1

√
2M3/2

5

hµν(x, y)Tµν(x, y)δ(y − y1) , (22)

where Tµν(x, y1) is the energy-momentum tensor (EMT) of matter. The zero mode, h0
µν(x, y) =

h0(y)h0
µν, couples as − 1

MPl
T µν(x, y1)h0

µν(x). The coupling of the continuum KK modes with
matter leads to an effective field theory (EFT) for p ≪ ρ, which is LEFT(y1) = ch(y1)Oh(x, y1),
where Oh(x, y1) = T µνT νµ −

1
3 (T µµ)2 and ch(y1) = −g2

eff(y1)/ρ2 with geff(y1) = 1/(
√

6ρ).

4.3 Radion

The radion field F(x, y) is defined as the scalar perturbation of the metric [19]

ds2 = e−2(A(y)+F(x,y))ηµνdxµdxν − (1 + 2F(x, y))2dy2 , ϕ(x, y) = ϕ(y) + φ(x, y) , (23)
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Figure 3. Plots of the Green’s function |GF(y0, y0; p)| (left panel), spectral function ρF(y0, y0; p) (middle
panel), and dependence of the radion mass with U′′0 , in the LD model. To guide the eye, we display in
the right panel horizontal lines for values mF =

√
2ρ (dot-dashed black) and mF = mg (dashed black).

In the first two panels we have normalized the functions by G00
F ≡ limp→0 GF(y0, y0; p) = −1/(2ρ). We

have used A1 = 23, and U′′0 = k (left panel) and U′′0 = ρ (middle panel).

with F(x, y) = F(y)R(x). The effective potential for the fluctuations is VF(z) = (3ρ/2)2, so
that the radion spectrum has the same mass gap as the graviton. The EoM and boundary/mat-
ching conditions of the radion Green’s function are the same as for the graviton, cf. Eq. (18),
except for the boundary condition in the UV brane which is affected by the brane potential,

(∂yGF)(y0) =
(

1
3
κ2W(ϕ(y)) −

2p2e2A(y)

U′′0 (ϕ(y))

)
GF(y)

∣∣∣∣∣∣
y=y0

, (24)

where GF(y) ≡ GF(y, y′). Finally, the Green’s function for the radion turns out to be [16]

GF(y, y′; p) =
(1 − ȳ↑)

3
2∆
+(p)

3ρδ(p)

[
−(1 − ȳ↓)

3
2∆
−(p) +

(
1 +

3U′′0
2ρ

δ(p)
ΦF(p)

)
(1 − ȳ↓)

3
2∆
+(p)

]
, (25)

where ΦF(p) = p2/ρ2 − (U′′0 /(4ρ)) · (1 + 3δ(p)). The results for the UV-UV Green’s function
and spectral function for the radion are displayed in the left and middle panel of Fig. 3,
respectively. Unlike the graviton case, GF(y, y′; p) does not have an isolated massless mode,
but a single massive mode corresponding to the zero of the functionΦF(p), which is identified
with the radion. We display in the right panel of Fig. 3 the dependence of the radion mass,
mF , with the parameter U′′0 . Notice that the radion appears as a Dirac delta contribution in
the spectral function. The radion couples to the SM fields through the trace of the EMT, i.e.

L5D = −
1

√
2M3/2

5

F(x, y)T δ(y − y1) , T ≡ tr T µν(x, y1) . (26)

This gives rise, upon integration of the radion continuum, to the EFT Lagrangian with dimen-
sion eight operators LEFT = cF(y1)T 2, with Wilson coefficient cF(y1) = ch(y1).

5 Conclusions

We have studied 5D warped models with two different geometries: i) AdS5 and ii) linear dila-
ton. These models generate a hierarchy between the Planck scale and the EW scale by means
of a warp factor, and a mechanism of dynamical stabilization of two branes, known as the
Goldberger-Wise mechanism which, in the case of the RS model, is supposed not to appre-
ciably backreact on the 5D metric. The KK spectra of all the particles are either: i) discrete,
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or ii) continuous with a mass gap; depending on the domain of the theory in conformally
flat coordinates: i) compact and ii) non-compact, respectively. We have computed in these
models the Green’s functions and spectral functions for the relevant fields: i) massless gauge
bosons, and ii) graviton and radion; and identified the isolated poles of the Green’s functions
with the discrete modes in the spectrum. We have also studied the positivity of the spectral
functions, as well as the couplings of the continuum KK modes with the SM matter fields.

This work can be extended to the computation of the Green’s functions of other fields
(fermions, . . . ), and to the analysis of the phenomenological implications of the existence of
continuum spectra in the searches of new physics at colliders, as these will eventually increase
the cross sections σ(pp→ QQ̄) with respect to the SM prediction [5, 6]. These applications,
some of them inspired on unparticle phenomenology, will be addressed in future works.
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