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Abstract. Front-Form Hamiltonian dynamics provides a framework in which QCD’s vacuum is simple and

states are boost invariant. However, canonical expressions are divergent and must be regulated in order to

establish well-defined eigenvalue problems. The Renormalization Group Procedure for Effective Particles

(RGPEP) provides a systematic way of finding counterterms and obtaining regulated Hamiltonians. Among its

achievements is the description of asymptotic freedom, with a running coupling constant defined as the coefficient

in front of the three gluon-vertex operators in the regulated Hamiltonian. However, the obtained results need a

deeper understanding, since the coupling exhibits a finite dependence on the regularization functions, at least

at the third-order term in the perturbative expansion. Here we present a similar derivation using a different

regularization scheme based on massive gluons. The procedure can be extended to incorporate contributions

from virtual fermions.

1 Introduction

Front-Form Hamiltonian dynamics [1, 2] is a candidate tool

to characterize bound states in QCD [3, 4] and to investi-

gate the relation between the parton and constituent quark

models aiming to obtaining results that are invariant under

certain boost transformations [5]. However, these long-

term goals have important challenges to overcome. One of

them is the regularization of highly divergent canonical ex-

pressions. Another one is the introduction of counterterms

to describe aspects related to vacuum physics [5]. In this

context, the similarity renormalization group, developed

by Głazek and Wilson [6, 7], together with the concept of

effective particle introduced by Głazek [8–10], known as

RGPEP, stands for a systematic procedure to handle these

divergences and to find counterterms.

The RGPEP is in a developing stage and the way to

obtain non-perturbative solutions to the renormalization-

group equation is still unknown. However, it is possible

to use perturbative expansions in powers of the coupling

constant instead [9]. The bound state equation has been

considered in heavy-flavor QCD and numerical results for

the spectrum of heavy quarkonia and baryons have been

obtained using a simplified sketch [11, 12]. Initially, the

new version of the method was used to describe the running

coupling and, more precisely, the phenomenon of asymp-

totic freedom. Published works in this direction [13–15]

reproduce the asymptotic-freedom result obtained from

renormalization group techniques in Euclidean space [16].

A finite dependence on the regularization functions used

to regulate small momentum fractions (small-x) usually

∗e-mail: jj.galvezviruet@ugr.es
∗∗e-mail: mgomezrocha@ugr.es

remains [14, 15]. Such dependence needs further under-

standing.

A regularization provided by a canonical gluon mass [5]

seems to be more adequate for various reasons1: first of

all, the same regulating function is used to remove both

ultraviolet- and small-x divergences; furthermore, we use

the same type of function as the ones introduced by the

RGPEP procedure; and finally, it allows one to include a

large range of +-component momenta near zero [20, 21].

In the following, we study the impact of introducing such a

parameter and its consequences as a ragulator. At the end

of the procedure, the limit of zero mass is applied, with no

need of introducing new fields or interactions to recover

gauge invariance. The result is qualitatively the same as

the one obtained earlier [15]: a function of the momentum

fraction of external particles h (x0) appears as a side product
of regularization and dumps asymptotic freedom for values

of x0 � 0.13.

This article is organized in the following way. In Sec-

tion 2 we present the basic elements involved in front-form

quantization and the notation employed along this doc-

ument. Section 3 is dedicated to introduce the RGPEP

method and its application to the QCD Hamiltonian for

gluons up to third order. It includes the regularization

procedure. Section 4 defines the running coupling as a co-

efficient in the three-gluon-vertex Hamiltoian term. Finally,

Section 5 concludes the article.

1Regularization issues related to the introduction a gluon-mass param-

eter have been also considered in the context of other approaches to QCD

(see e.g. Refs. [17–19]).
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2 Front-Form Hamiltonian dynamics

Relativistic dynamics obeys the Poincaré algebra, a set of

commutation relations between the ten fundamental dynam-

ical quantities: the generators of space-time translations

and rotations. In its original work [1], Dirac found three

ways of satisfying these relations, giving rise to the Instant-,

Front- and Point Forms of dynamics.

The RGPEP is built on the Front Form of dynamics

for reasons we shall not discuss here (see the first sections

of [5]). In this form, four-vectors in Minkowski space are

defined as xμ =
(
x+, x−, x⊥

)
, where x+ = x0 + x3, x− =

x0 − x3, and x⊥ =
(
x1, x2

)
. The inner product is

p · q = pμqνgμν =
1

2
p+q− +

1

2
p−q+ − p⊥ · q⊥ , (1)

and

p− =
p⊥2 + m2

p+
, (2)

represents the energy of the particle. The dynamics is not

entirely specified by Dirac forms, and the Hamiltonian of

interest is usually obtained from the T+− component of

the energy-momentum tensor associated to the Lagrangian

density considered. To describe pure-gluonic QCD we

use the Yang-Mills theory of the non-Abelian gauge group

SU(3). Details can be found in [2, 15], here we just quote

the final expressions Eq. (9)-(14) of [15]:

P− =
1

2

∫
Ω

dx− d2x⊥ H , (3)

where H is the Hamiltonian density and Ω denotes the

surface of quantization, in this case, the plane defined by

x+ = const. The Hamiltonian of pure-gluonic QCD has

four terms

H = HA2 +HA3 +HA4 +H[∂AA]2 , (4)

the subscripts on each of the four terms denote the number

of fields involved in the term: HA2 is the free Hamiltonian,

HA3 is the first-order vertex,HA4 is a four-gluon vertex and

H[∂AA]2 appears due to the constraint equation

A− = 2
1

∂+
∂⊥A⊥ − g 2i

∂+2

[
∂+A⊥, A⊥

]
, (5)

in the gauge A+ = 0. This sets A− = 2 1
∂+
∂⊥A⊥ for free

fields. The theory is quantized using the canonical ex-

pansion of field Aμ in terms of creation and annihilation

operators with commutation relations

[
akσc, a

†
k′σ′c′

]
= k+δ̃

(
k − k′

)
δσσ

′
δcc′ , (6)

where σ and c are spin and color indices, respectively,

and δ̃ (p) = 16π3δ (p+) δ
(
p1

)
δ
(
p2

)
. These relations and

normal ordering of operators (denoted by : H :) are used to

obtain the Hamiltonian in terms of creation and annihilation

operators:

H11 =
1

2

∫
Ω

dx−d2x⊥ : HA2 : =
∑
1

∫
[1]

k⊥21 + ξ2

k+
1

a†
1
a1,

(7)

and

H21+H12 =
1

2

∫
Ω

dx−d2x⊥ : HA3 :

= g
∑
123

∫
[123] ftr δ̃

(
k† − k

)
Y123a

†
1
a†
2
a3 + h.c., (8)

HA4 andH[∂AA]2 give rise to Hamiltonian terms with four

operators. The subscripts on the Hamiltonians denote the

amount of creation and annihilation operators in the term,

respectively; numbers 1, 2, 3 in sums and integrals refer

to the respective degrees of freedom of particles 1, 2 and

3, e.g., [123] = [k1] [k2] [k3], and ki = dk+i dk⊥i /(16π
3k+i );

the argument of the delta function
(
k† − k

)
is a shortcut for

the difference between momenta of created particles minus

momenta of annihilated particles in the term. Finally, Y123

is a polarization function whose concrete expression can be

found in Eq. (B3) of [15]. The parameter ξ is the canonical
gluon mass and ftr is a regularization function, introduced

in the next section. The subscript tr is a cutoff parameter.

3 Renormalization Group Procedure for
Effective Particles

Canonical expressions with regulators such as Eq. (8) are

transformed in order to produce results independent of

regularization. RGPEP takes them as initial conditions and

sets a family of equivalent Hamiltonians that depend on a

parameter t:
H0 (a0) = Ht (at) , (9)

the new operators at create and annihilate effective particles

of size s = 4
√

t and are related to the initial or bare operators
by a unitary transformation (cf. Ref. [9])

at = Uta0U†
t , (10)

whose anti-hermitian generator is

Gt =
[
Hf ,HPt

]
. (11)

This expression, Hf is the free part of the Hamiltonian

which does not evolve with t; HPt is the final Hamiltonian

multiplied by half the sum of total momentum created

and annihilated in that term. The generator gives rise to a

differential equation with a double-commutator of the type

of that introduced by Wegner [22]:

dHt

dt
=

[[
Hf ,HPt

]
,Ht

]
. (12)

Note that Eq. (9) forces functions multiplying operators

in Hamiltonian terms to also change with t. In order to

distinguish the change of these functions with the change

of operators we will use normal fonts Ht (at) when both

are at the scale t and calligraphic font Ht (a0) when the

operators are at the bare scale.

Eq. (12) can be solved order by order in a perturbative

expansion on the coupling constant g. Taking into account
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Figure 1. Third-order contributions to the running coupling, including the counterterm. Terms (a)-(i) correspond to γ (a) − γ (i) of
Eq. (29), term (j) is the third-order counterterm corresponding to γ ( j). External effective particles are labeled 1, 2 and 3 and are

represented with bold gluonic lines.

only those terms relevant to the derivation of the running

coupling, Eq. (27)-(33) of [15] we have:

Ht =H11,0,t + H21,g,t + H12,g,t

+ H11,g2,t + H22,g2,t + H31,g2,t + H13,g2,t

+ H21,g3,t + H12,g3,t, (13)

in order to alleviate notation and build intuition we follow

[15] and define

H11,0 → E, (14)

H11,g2 → g2μ̂2, (15)

H22,g2 → g2X22, (16)

H31,g2 + H13,g2 → g2Ξ31 + g
2Ξ13, (17)

H21,g + H12,g → gY21 + gY12, (18)

H12,g3 + H21,g3 → g3K21 + g
3K12, (19)

These expressions are then introduced in Eq. (12) and give

rise to successive expressions in powers of g. Counterterms

are introduced order by order in the initial Hamiltonian to

make physical results independent of regularization.

3.1 First-order solution

Let us introduce some important concepts before analyzing

the three-gluon vertex and the running coupling. The equa-

tion in first power of g has two terms: one corresponding

to Y21t, the other to its Hermitian conjugate Y12t. For the

first one we have

Y′
21t =

[[E,Y21Pt
]
,E]
. (20)

The solution Y21 is represented graphically by figure 2

and it is similar to Eq. (8)

Y21t = g
∑
123

∫
[123] ft,ab ftr ,abδ̃

(
k† − k

)
Y123a

†
1
a†
2
a3 ,

(21)

Figure 2. Diagrammatic representation of Y21t. Letters denote

configurations of particles before and after the interaction, a refers

to particles 1 and 2 and b to particle 3. For more details about

notation see Ref. [9].

with

ft,ab = exp
[
−t

(
M2

a −M2
b

)2]
, (22)

whereMi is the invariant mass of configuration i. In this

case we have:

M2
a =
κ⊥212 + ξ2

x1/3x2/3
, (23)

M2
b = ξ

2 , (24)

x1/3 and x2/3 are the longitudinal momentum fractions of

particles 1 and 2, respectively, and κ⊥12 is the relative trans-
verse momentum of particles in configuration a. More

generally, we call parent momenta P to the sum of mo-

menta created or annihilated through a given interaction,

the longitudinal momentum fraction of particle p involved

in such interaction is then

xp/P = p+/P+, (25)

and the transverse momentum is

κp/P = p⊥ − xp/PP⊥ , (26)
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corresponding to figure 2 we have P = p3 and κ⊥12 = κ
⊥
1/3 =−κ⊥

2/3.

Eq. (21) justifies the name effective particles of size
s = 4

√
t. Namely, form factors like Eq. (22) prevent particles

of size s to change their relative kinetic energy by more

than about λ = 1/s through a single interaction. Note

that the notion of size is inherent to interactions; momenta

of free particles are not constrained in this formalism no

matter the value of s.
Finally, the canonical expressions are regularized by the

introduction of a canonical gluon mass ξ and a regulating
function defined through Eq. (22) t = tr, where tr is a small

value that acts as a cutoff. Frequently, the notation ft+tr ,ab

is used instead of ft,ab ftr ,ab, since it allows to clearly see

that for any finite value of t the regularization parameter is

“muted” in the limit tr → 0 [21].

3.2 The three-gluon vertex

The three-gluon vertex can be analyzed by considering the

third-order solution to the RGPEP equation and it has the

following structure

V21t = gY21t + g
3K21t =

(∑∫ )
123

δ̃
(
p† − p

)
ft+tr ,ab

×
{
gỸ21t + g

3
(
K̃21t + K̃210

)}
(27)

where Y21,t and K21,t are the first and third order contri-

butions respectively. Caligraphic letters with tildes are

introduced to make explicit the common factors within in-

tegrals. K̃21,0 is the third order counterterm. We focus on

terms which can be factorized in the following way:

K̃21t (x1, κ12, σ) = ct (x1, κ12)Y123 (x1, κ12, σ) , (28)

where Y123 (x1, κ12, σ) is the canonical spin and color struc-

ture of the first-order interaction of the initial Hamiltonian.

ct is the function obtained from the RGPEP procedure that

multiplies the operator structure defining the three gluon

vertex, i.e. a†a†a + h.c. It can be written as the sum of

diagrams a to i of figure 1, denoted by γ (a) , γ (b) , ..., γ (i):

K̃21t = ct (x0, κ12) =
∑

n γ (n)
2 · 16π3 , (29)

each one of these functions involve three-dimensional loop

integrals characterized by the Front-Form momentum frac-

tions x and relative transverse momenta κ⊥ of the internal

virtual particles, and would diverge in the limits κ → ∞
and x → 0, 1 in the absence of form factors and regulators.

3.3 Regularization

RGPEP form factors suppress interactions if the differences

of invariant masses
(
M2

f −M2
i , M2 = κ2+m2

x(1−x)

)
between the

initial and final states in a given interaction are greater than

the effective size parameter s =
4
√

t, and thus indirectly

avoid the appearance of large κ divergences. However,

the regularization is incomplete: at t = 0 the effective

expressions must reduce to the ones of the initial theory,

which translates to differences such as ft − 1, with ft a form
factor and f0 = 1. Contributions coming from −1 factors

are not regularized and give rise to loop divergences. To

avoid such divergences we introduce functions ftr in the

initial HamiltonianH0.

Counterterms are necessary to avoid dependence on

the regularization factor tr in physical results. To find

them we notice that the effective HamiltoniansHt become

independent of t in the ultraviolet limit κ → ∞, and only

form factors with vanishingly small tr remain. Thus the

difference between two scalesHt −Ht0 is ultraviolet finite

regardless the values of t and t0. The ultraviolet divergent
part of the counterterm can then be considered to be that

of −Ht0 , and its finite (in the limit κ → ∞) part should be

then fixed by experimental considerations, for more details

see [13, 14].

We have now justified the following equation for the

third order counterterm:

K̃210 = − (
ct0 (x1, κ12) − c0 (x1, κ12, σ)

)
Y123 (x1, κ12, σ) ,

(30)

where the function ct0 is the same that we introduced in

Eq. (29) with t changed to t0, c0 is a finite and in principle
unknown contribution necessary because in general the

finite part of the counterterm is not equal to the finite part

of ct0 .

The situation for small-x divergences (x → 0, 1) is
somehow different: In the massless case, invariant masses

remain finite if κ → 0 in addition, avoiding form factors

to regulate these x divergences. Several strategies are now

possible: in [14, 15] one introduces different regularization

functions and considers the impact of their choice in the

running coupling. Here, in contrast, a gluon mass ξ and
initial functions ftr are used. With a gluon mass invariant

masses diverge if momentum fractions x approach their lim-

iting values for any κ, and thus form factors avoid also these

divergences. It is still necessary to consider a parameter tr
different from zero, but we do not need extra regularization

functions whose explicit forms are in principle arbitrary. At

the end of the procedure we take the limit ξ → 0 to recover

QCD massless gluons.

4 Running coupling

We use the definition of the running coupling introduced

in [14, 15]: the running coupling is defined as the coeffi-
cient in front of the canonical color, spin and momentum
dependent factor Y123 (x1, κ12, σ) in the limit κ12 → 0 for
some value of x1 denoted x0. Therefore, we first factorize
the function Y123 (x1, κ12, σ) in Eq. (27):

Ṽ21t (x1, κ12, σ) = Y123 (x1, κ12, σ)

×
{
g + g3

[
ct (x1, κ12) − ct0 (x1, κ12) − c0 (x1, κ12, σ)

]}
.

(31)

By definition, the running coupling reads

gt = g+g
3 lim
κ12→0

[
ct (x0, κ12) − ct0 (x0, κ12) − c0 (x0, κ12, σ)

]
,

(32)
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setting its value to be g0 at the scale t0, one has

gt = g0 + g
3
0 lim
κ12→0

[
ct (x0, κ12) − ct0 (x0, κ12)

]
, (33)

where

ct (x0, κ12) =
∑

n γ (n)
2 · 16π3 , (34)

and n runs from a to i. Eq. (33) can now be written in terms

of the difference of γs at scales t and t0:

gt = g0 + g
3
0 lim
κ12→0

∑
n
(
γt (n) − γt0 (n)

)
2 · 16π3 . (35)

Explicit expressions for γs can be obtained from Ap-

pendix C of [15], changing the RGPEP factors Bt as de-

scribed in appendix A. These equations usually involve

integrals in momentum fraction x and relative transverse

momenta κ of internal virtual particles. They are evaluated

as explained in Appendix B. Finally, relevant results are

obtained after applying limits ξ → 0 and tr → 0.

4.1 Term a

The triangle term a is obtained from the product of three

first-order vertices Yt. Introducing (barred) dimensionless

variables defined in Eq. (48), we can express it as

γt (a) − γt0 (a) = Ncπ log

(
t
t0

) [
−11

3
+
1

6
ha (x1)

]

− 16πNc

x1x2

t̄ − t̄0
x2
1
+ x2

2

ξ̄

t̄r
, (36)

where

1

6
ha (x1) = −3 log

(
ξ̄4

√
t̄t̄1eγE

)
− 5 − 2

1 − x2
2

log

⎛⎜⎜⎜⎜⎝1 + x22
x1x2

⎞⎟⎟⎟⎟⎠
− 2

1 − x2
1

log

⎛⎜⎜⎜⎜⎝1 + x21
x1x2

⎞⎟⎟⎟⎟⎠ − log (2) +
1 − x21x22(

1 + x2
1

) (
1 + x2

2

)

+

⎛⎜⎜⎜⎜⎝1 − 1

1 − x2
1

− 1

1 − x2
2

⎞⎟⎟⎟⎟⎠ log
⎡⎢⎢⎢⎢⎢⎢⎣

(
x21 + x22

)
x21x22

2
(
1 + x2

2

) (
1 + x2

1

)
⎤⎥⎥⎥⎥⎥⎥⎦ , (37)

with x2 = 1 − x1, and γE the Euler-Mascheroni constant.

4.2 Term b

Term b is obtained from the product of the first-order vertex

Yt and the second-order term Xt

γt (b) − γt0 (b) =
16πNc

x0x2

(t̄ − t̄0)
x2
1
+ x2

2

ξ̄

t̄r
. (38)

this contribution exactly cancels the term proportional to

t̄ − t̄0 in Eq. (36).

4.3 Terms d and f

Term d is obtained from the product of the second order

self-energy term μ̂t and the first-order vertex Yt; while

term f from the second-order counterterm and the first

order vertex Yt. Their sum gives the following result

γt (d) − γt0 (d) = πNc log

(
t
t0

) (
11

3
+
1

6
hd+ f (x1)

)
, (39)

where

1

6
hd+ f (x1) = 2 log

(
eγE ξ̄4

√
t̄t̄0

)
+ 2 log 2 + 4

− 2
x22

1 − x2
2

log

⎛⎜⎜⎜⎜⎝1 + x22
2x2

2

⎞⎟⎟⎟⎟⎠ − 2
x21

1 − x2
1

log

⎛⎜⎜⎜⎜⎝1 + x21
2x2

1

⎞⎟⎟⎟⎟⎠ . (40)

4.4 Terms g and i

Terms g and i are obtained in a similar way that terms d
and f :

γt (g + i) − γt0 (g + i) =
πNc

6
log

(
t
t0

) (
11 + hg+i (x1)

)
,

(41)

with

1

6
hg+i (x1) = log

(
eγE ξ̄4

√
t̄t̄0

)
+ log 2 + 1 . (42)

4.5 Terms c, e and h

Term c is obtained from the product of the first-order vertex

Yt and the second-order interaction Ξt. The result turns

out to be negligible in the limits ξ → 0 and tr → 0. Terms

e and h are also derived from the same vertices, and do

not contribute to the running coupling since there are no

linear terms in κ12 that could give rise to the canonical

polarization structure Y123 of Eq. (31).

5 Results and conclusions

Eqs. (37), (40) and (42) give the final expression for the

running coupling constant

gt = g0 − Nc
g3
0

48π2
log

(
λ

λ0

)
[11 + h (x1)] , (43)

with λ = 1/
4
√

t and

h (x1) = −6
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + x22
1 − x2

2

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
1 + x22

)2
x2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
1 + x21
1 − x2

1

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
1 + x21

)2
x2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
1 − x21x22(

1 + x2
1

) (
1 + x2

2

)

+

⎛⎜⎜⎜⎜⎝1 − 1

1 − x2
1

− 1

1 − x2
2

⎞⎟⎟⎟⎟⎠ log
⎡⎢⎢⎢⎢⎢⎢⎣
8
(
1 + x22

) (
1 + x21

)
(
x2
1
+ x2

2

)
⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(44)

Eq. (43) is represented in figure 3 for values of x1 = x0
ranging from 0.5 to 0.1. The result exhibits asymptotic

freedom for x0 down to 0.13 and it coincides with the anal-

ysis of Feynman diagrams in pure gluonic QCD [16] if
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Figure 3. Running coupling for different values of x0, the black
line (h (x0) = 0) represents the result obtained from the renormal-

ization group equations in Euclidean space. The function exhibits

asymptotic freedom from x0 = 0.5 down to values of x0 ≈ 0.13.

the factor λ is interpreted as the scale of the renormaliza-

tion group equations in Euclidean space and if h (x0) = 0

(cf. [14, 15]).

In figure 4 the contributions from different terms are

considered separately. The self-energy ones, corresponding

to d+f and g+i increase as the energy scale diminishes

and thus contribute to asymptotic freedom. In contrast,

a decreases with the energy scale, and thus the loss of

asymptotic freedom for low values of x0 is entirely due to

the triangle term a.
There is no dependence on the mass parameter ξ in the

final result in the limit ξ → 0 even though separate contri-

butions diverge in this limit. Thus a mass term for gluons

seem to provide an adequate regularization of small-x di-

vergences, producing a function of h (x1) that controls the
strength of the running of the coupling constant for differ-

ent values of the external longitudinal momentum fraction,

with the same qualitative behaviour obtained in [14, 15].

Finally, as noted in appendix B, the methods developed

here can also be used to evaluate fermion integrals when

particles’ masses are small compared to the scales settled

by t and t0.
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A Introduction of a mass term for gluons

As described in Subsection 3.2 each γ (n) consists on a

three dimensional integral over momentum fractions x and

relative transverse momenta κ of internal virtual particles.
RGPEP factors in integrands depend on the order in the

perturbation expansion, on how these particles are con-

nected, and on polarization functions that encode the spin

and color of these internal degrees of freedom. In the case

of massless gluons, explicit expressions for these factors

are found in Appendix C of [15]. The addition of a gluon

mass alter these equations, changing invariant masses that

appear there for:

M2
χ,i j =M2

i j − ξ2 =
κ2i j + ξ

2
(
1 − xix j

)
xix j

:=
κ2i j + χ

2
i j

xix j
, (45)

M2
χ,16 =M2

16 − ξ2 = x1
κ2 + ξ2

(
x2−x1x6

x2
1

)
(x − x1)

:= x1
κ2 + χ2

16

(x − x1)
,

(46)

Mχ,168 − ξ2 =
M2
χ,68

x2
+M2

χ,12, (47)

with ij= {68, 78, 12}. Note that they may be regarded as in-

variant massesMχ with x-dependent “masses” χ (x). Num-

bers denote variables of particles in the various interactions

of the third-order diagrams of figure 1.

B Integration method

To evaluate the expressions that are solutions to the RGPEP

equation we use dimensionless variables:

t̄ =
t

tN
, κ̄⊥ = κ⊥t1/4N , ξ̄ = ξt

1/4
N , (48)

where tN is an arbitrary scale. The integrals over momen-

tum fractions x are then divided in three intervals or regions

lim
ξ̄→0

⎡⎢⎢⎢⎢⎣
∫ ξ̄

0

+

∫ 1−ξ̄

ξ̄

+

∫ 1

1−ξ̄

⎤⎥⎥⎥⎥⎦ dx
∫ ∞

ξ̄

d2κ̄⊥G
(
x, κ̄⊥, t̄, t̄0; t̄r, ξ̄

)
,

(49)

called region I, region II, and region III respectively;

G
(
x, κ̄⊥, t̄, t̄0; t̄r, ξ̄

)
is usually a function of invariant masses,

form factors and polarization vectors that is simplified as

follows:

• In region II the polarization fraction x is bounded ξ̄ <
x < 1 − ξ̄ and no integral diverges because the ultra-

violet κ → ∞ have been already regularized. Thus

we set the regularization parameters to zero in the in-

tegrand: G
(
x, κ̄⊥, t̄, t̄0; 0, 0

)
= G

(
x, κ̄⊥, t̄, t̄0; t̄r, ξ̄

)
|II and

apply Eq. (E17) of [15]

∫
d2κ̄⊥

ft − ft0
κ̄⊥2

=
π

2
ln

t̄0
t̄
. (50)

Integrals over x are then easily evaluated and only diver-

gent and constant terms in the limit ξ → 0 are kept.

• Region I is more involved because invariant masses do

diverge even in the limit ξ → 0. Nevertheless, since x <
ξ̄, it is enough to factorize the poles in x = 0 and expand

around this point the remaining terms to obtain the most

strongly-divergent results. For example, a typical integral

to evaluate would be

∫ 1

0

dx
1

x (1 − x)

[
Γ

(
0,
α (x) t̄ ξ̄4

x2 (1 − x)2

)
− Γ

(
0,
α (x) t̄0 ξ̄4

x2 (1 − x)2

)]
,

(51)

where Γ (0, x) is the incomplete gamma function and

α (x) is finite in x = 0 and x = 1. In region I we can

, 02006 (2022) https://doi.org/10.1051/epjconf/202227402006
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Figure 4. Relevant contributions from terms a, d + f and g+ i to the running coupling (terms linear in the difference t̄− t̄0 and logarithms

log
(
eγE

√
t̄t̄0ξ̄4

)
are not taken into account because they cancel in the final expression). Self-energy terms contribute to asymptotic

freedom, the triangle term does not, and dominates over the other two for low values of x0.

evaluate the main contribution in the limit ξ → 0 by

considering

∫ ξ̄

0

dx
1

x

[
Γ

(
0,
α (0) t̄ ξ̄4

x2

)
− Γ

(
0,
α (0) t̄0 ξ̄4

x2

)]
, (52)

which yields

1

4
log

(
t̄
t̄0

) (
2 log (eγE ) + 2 log (α) + log

(
t̄ξ̄4

))
+ O

(
ξ̄2

)
.

(53)

The cutoff tr usually appears added to t or t0 in form

factors, ft+tr and ft0+tr ; in these cases it is “muted” and

can be discarded. However, special care should be taken

when this is not the case, as there are contributions de-

pending on tr in equations Eq. (36) and Eq. (38). Region

I is different for the triangle terms a, b and c, since the
low limit of integration over x changes from zero to x1.
In these cases the poles at x1 are factorized instead and
the remaining expressions expanded around this point.

• For terms d − i of figure 1 results of region I can also be

applied to region III because the integrals are symmetric

under the change of variables y = 1 − x. For triangle

terms a − c the simplification of region I can be applied
factorizing poles in x = 1 and expanding around this

point instead of x = x1.

Finally, contributions of light fermions beyond the ultra-

violet counterterm already found in [14] can be evaluated

using this method replacing the gluons mass parameter

ξ with the fermion mass mf if the scales settled by the

parameters t and t0 are much greater than mf .
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49 (2017)

[11] S.D. Głazek, M. Gómez-Rocha, J. More, K. Serafin,

Phys. Lett. B 773, 172 (2017), 1705.07629

[12] K. Serafin, M. Gómez-Rocha, J. More, S.D. Głazek,

Eur. Phys. J. C 78, 964 (2018), 1805.03436

[13] S.D. Głazek, Physical Review D 60, 105030 (1999)

[14] S.D. Głazek, Physical Review D 63, 116006 (2001)

[15] M. Gómez-Rocha, S.D. Głazek, Physical Review D

92, 065005 (2015)

[16] D.J. Gross, F. Wilczek, Physical Review Letters 30,
1343 (1973)

[17] J.M. Cornwall, Nucl. Phys. B 157, 392 (1979)

[18] M. Tissier, N. Wschebor, Phys. Rev. D 84, 045018
(2011), 1105.2475

[19] M. Peláez, U. Reinosa, J. Serreau, M. Tissier,

N. Wschebor, Rept. Prog. Phys. 84, 124202 (2021),

2106.04526

[20] S.D. Głazek, Acta Physica Polonica B 50, 5 (2019)

[21] S.D. Głazek, Physical Review D 101, 034005 (2020)

[22] F. Wegner, Annalen der Physik 506, 77 (1994)

[23] D. Binosi, L. Theußl, Computer Physics Communica-

tions 161, 76 (2004)

, 02006 (2022) https://doi.org/10.1051/epjconf/202227402006
t h

 Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

 

7


