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Analytic saddle spheres in S3 are equatorial
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Abstract
A theorem by Almgren establishes that any minimal 2-sphere immersed in S

3 is
a totally geodesic equator. In this paper we give a purely geometric extension of
Almgren’s result, by showing that any immersed, real analytic 2-sphere in S

3 that is
saddle, i.e., of non-positive extrinsic curvature, must be an equator of S3. We remark
that, contrary to Almgren’s theorem, no geometric PDE is imposed on the surface.
The result is not true for C∞ spheres.

Mathematics Subject Classification 53A10 · 53C42

1 Introduction

A theorem of Almgren [4], sometimes also called the Calabi-Almgren theorem after
[6], establishes that any minimal 2-sphere � immersed in the unit round sphere S
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must be equatorial, i.e., a totally geodesic 2-sphere of S3. In this paper we show that
the Calabi-Almgren theorem is a particular case of a much more general geometric
result, in which one does not ask the surface to be minimal or to satisfy any other
geometric PDE. We will merely impose that � be diffeomorphic to S

2, real analytic
and saddle, i.e., κ1κ2 ≤ 0 at each point of �, where κ1, κ2 are the principal curvatures
of �. Note that this is indeed a wide generalization of the Calabi–Almgren theorem,
since anyminimal surface in a real analytic Riemannian 3-manifold (M3, g) is trivially
saddle and real analytic.

Theorem 1.1 Any immersed, real analytic saddle sphere in S3 is equatorial.

It is important to remark that there exist non-equatorial C∞-smooth saddle spheres in
S
3; see Sect. 3. Thus, the real analyticity condition of Theorem 1.1 is necessary and

sharp. Moreover, since there exist compact minimal surfaces in S3 of arbitrary genus
[18], the topological hypothesis in Theorem 1.1 is also necessary.

We also remark that the saddle condition κ1κ2 ≤ 0 for a surface � in S3 is actually
a purely geometric one, since it is equivalent to imposing locally on � the convex
hull property, i.e., that for any sufficiently small neighborhood W ⊂ � of any point
p ∈ �, the setW is contained in the convex hull in S3 of the boundary curve ∂W . A
way to see this is to note that, as it will be explained in the proof of Theorem 5.1, any
saddle surface in S

3 can be locally seen with respect to totally geodesic coordinates
(x, y, z) of S3+ as a graph z = h(x, y) with hxxhyy − h2xy ≤ 0; for such Euclidean

saddle graphs, this convex hull property in R
3 is well known, and equivalent to its

spherical counterpart.
The proof of Theorem 1.1 relies on controlling the umbilic set U of any non-

equatorial saddle sphere � in the conditions of Theorem 1.1, and on the description
around U of the cross field on � determined by its principal directions. We will show
that, even though the umbilic set U can contain in principle a number of real analytic
arcs, maybe crossing at somemeeting points, the cross field generated by the principal
directions of the surface on � \ U extends analytically to define two orthogonal real
analytic line fields F1,F2 with a finite number of singularities {q1, . . . , qk} on �.
Then, we will prove that the topological index of any of these extended line fields F j

is non-positive at each singularity qi . Since � has genus zero, this will contradict the
Poincaré-Hopf theorem applied to F j , showing that � must be equatorial.

Theorem 1.1 is related to a number of uniqueness problems of classical surface
theory, and also to more recent advances. Some of them will be discussed in Sect. 2.
In Sect. 3 we will produce a simple example of a C∞ saddle sphere immersed in S

3.
In Sect. 4 we will prove an analytic result that controls, up to a rotation in the (x, y)-
coordinates, the index of the line field generated by the vector field ∇hx around the
origin for any real analytic function h(x, y) satisfying the saddle condition hxxhyy −
h2xy ≤ 0. In Sect. 5, this result will be used to describe, for any real analytic saddle
surface � in S

3, the analytic extension and the topological index around any umbilic
point p of � of the cross field generated by the principal directions of � around p.
Theorem 1.1 will follow from this description.
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2 Discussion of the result

The Calabi–Almgren theorem is related to the classification problem of minimal 2-
spheres inside Riemannian 3-spheres (S3, g). By the Smith-Simon theorem in [24],
the space of minimal 2-spheres immersed in some Riemannian (S3, g) is always non-
empty, but the actual classification of such minimal 2-spheres is a hard problem.
Regarding uniqueness, one has as a particular case of the uniqueness theory developed
by the first two authors in [8] that if a family of minimal 2-spheres M := {�α}α in
some (S3, g) has the property that their generalizedGaussmaps foliate the unit tangent
bundle TU (S3) of S3, then any minimal 2-sphere immersed in (S3, g) is an element
of this canonical family M. In a recent paper, Ambrozio, Marques and Neves [5]
called such a familyM a Zoll family of minimal surfaces, and proved the existence of
non-homogeneous Riemannian 3-spheres (S3, g) for which a Zoll family M exists,
and thus the uniqueness theorem in [8] applies.

Note that when g is the round metric on S3, the family of totally geodesic equators
S
2 ⊂ S

3 constitutes a Zoll family on (S3, g). More generally, we have:

(1) Any homogeneous metric g on S3 has the property that, in suitable coordinates, all
the equators S2 ⊂ S

3 are minimal 2-spheres in (S3, g); they are totally geodesic
only when g is the round metric. See [25] for the case of Berger 3-spheres, and [5]
for the general case.

(2) There exist non-homogeneous metrics g on S
3 such that all the equators S2 ⊂ S

3

are minimal 2-spheres in (S3, g). These metrics were classified in [5].
(3) For any metric g in S3 with minimal equators, any minimal 2-sphere immersed in

(S3, g) is an equator, by [8] and item (1). See also [5], and [20] for the homogeneous
case.

Theorem 1.1 gives a wide generalization of assertion (3) above. Indeed, if (S3, g)
has the property that all the equators ofS3 areminimal, it follows immediately from the
maximum principle applied to the minimal surface equation (for g) that any minimal
2-sphere � in (S3, g) is also saddle when viewed as a surface in the round sphere S3.
Moreover, by the classification in [5] of metrics g on S

3 with minimal equators, we
obtain that g, and so�, is real analytic. Hence, by Theorem 1.1,� must be an equator
of S2.

Almgren conceived his uniqueness theorem in [4] as the natural spherical version
in S

3 of Bernstein’s theorem according to which entire minimal graphs in R
3 are

planes. Similarly, Theorem 1.1 gives the natural spherical version in S
3 of another

related, famous theorem byBernstein which establishes that any entire, bounded graph
z = z(x, y) in R3 that is saddle, i.e. zxx zyy − z2xy ≤ 0, must be flat.

Alexandrov was the first to study the extension of this second Bernstein theorem to
S
3. In [2], he showed that any real analytic ovaloid in R

3 whose principal curvatures
satisfy the Weingarten inequality (κ1 − c)(κ2 − c) ≤ 0 for some c > 0 must be a
round sphere of radius 1/c. Using a projective equivalence, this implies that any real
analytic saddle sphere in S3 ⊂ R

4 that is an entire graph over S2 must be an equator;
here by an entire graphwe mean that� intersects transversally all geodesic arcs of S3

joining the north and south poles. Alexandrov conjectured in [3] that the analyticity
hypothesis could be removed from this theorem. This conjecture was also formulated
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Fig. 1 Left: the saddle annulusA inR3 joining S∗
1 \D1 and S

∗
2 \D2. Right: schematic view of the immersed

saddle sphere � in S3

later on by Koutrofiotis and Nirenberg [17]. In 2001, Martinez-Maure [19] found a
striking, beautiful C2 counterexample to this conjecture. Based on this construction,
Panina found later on C∞ counterexamples [22]. The umbilic set of the examples by
Martinez–Maure is the union of four disjoint great semicircles. In [10], the first two
authors showed the converse statement, i.e., that anyC2 ovaloid inR3 that satisfies the
Weingarten inequality must be totally umbilic along four disjoint great semicircles.
For other uniqueness theorems of ovaloids, or immersed spheres in R3, satisfying the
Weingarten inequality, see [8, 11–13, 21].

3 Smooth saddle spheres in S
3

Let (x0, x1, x2, x3) be Euclidean coordinates in R
4, and view S

3 ⊂ R
4 as the unit

sphere. Then, it is classically known that the map

ϕ(x0, x1, x2, x3) = 1

x0
(x1, x2, x3) : S3+ → R

3 (3.1)

defines a totally geodesic diffeomorphism from the open hemisphereS3+ := S
3∩{x0 >

0} into the Euclidean space R3. That is, ϕ takes geodesics of S3+ into geodesics of R3.
From this property, one sees directly that if � is an immersed surface in S

3+ and
p ∈ �, then the extrinsic curvature Ke := κ1κ2 of � at p has the same sign as the
Gauss curvature of ϕ(�) in R

3 at ϕ(p). In particular, ϕ takes saddle surfaces of S3+
into saddle surfaces of R3, and vice versa.

The same construction also works for the hyperbolic 3-space H3 when viewed in
its hyperboloid model H3 = {x ∈ L

4 : 〈x, x〉 = −1, x0 ≥ 1} of Minkowski 4-space
L
4 ≡ (R4, 〈, 〉), where 〈, 〉 = −dx20 + ∑3

i=1 dx
2
i . In this case, the map (3.1) gives a

totally geodesic diffeomorphism between H3 and the unit ball of R3.
We will use the map (3.1) to construct a simple saddle sphere immersed in S

3.
We note that there is a more sophisticated construction by Panina [22] of embedded
saddle spheres in S

3. To start, consider the equatorial 2-spheres in S
3 given by S1 =
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S
3 ∩ {x0 = x3} and S2 = S

3 ∩ {x0 = −x3}. Then, by (3.1),

S∗
1 := ϕ(S1 ∩ S

+
3 ), S∗

2 := ϕ(S2 ∩ S
+
3 )

are, respectively, the planes z = 1 and z = −1 inR3, where here (x, y, z) are the usual
Euclidean coordinates of R3. We next remove from S∗

i , i = 1, 2, the disk Di given
by the points that satisfy x2 + y2 < 1, and glue together C∞-smoothly the remaining
exterior domains S∗

1 \ D1 and S∗
2\D2 through an embedded saddle annulus A ⊂ R

3

such that ∂A = ∂D1 ∪ ∂D2. See Fig. 1.
Note that each Si \ ϕ−1(Di ) is homeomorphic to a disk. Then, the union in S

3 of
S1 \ ϕ−1(D1) and S2 \ ϕ−1(D2) through the annulus ϕ−1(A) defines a C∞-smooth
immersed sphere� in S3. Since ϕ preserves saddleness and S1, S2 are totally geodesic
in S3, it is clear that � is a C∞ saddle sphere in S3.

The same process using a finite number of compact saddle annuliA1, . . . ,Ag+1 in
R
3 clearly creates simple examples of compact saddle surfaces in S

3 of any genus g.

4 Analytic saddle functions and topological index

Lemma 4.1 Let h = h(x, y) be a nonlinear real analytic function that satisfies
hxxhyy − h2xy ≤ 0. Assume that the Hessian matrix D2 h vanishes along a curve

� ⊂ R
2. Then, � is a line segment.

Proof Since D2h is identically zero along �, we have that ∇h ≡ (a, b) ∈ R
2 along

�. Therefore, after changing h by h(x, y) − ax − by − c for an adequate c ∈ R (note
that this function has the same Hessian as h), we can assume that (a, b) = (0, 0) and
that h ≡ 0 along �.

We want to show that � is a line segment. Arguing by contradiction, assume that
� has non-zero curvature at some p ∈ �. Since h is real analytic and not identically
zero, the nodal set h−1(0) is, around p, a finite union of real analytic planar curves
passing through p. Thus, by choosing a different nearby point in � as p if necessary,
we can assume that the set h−1(0) around p is just a piece of the curve �.

Up to a translation and a rotation in the (x, y)-coordinates, we can assume that
p = (0, 0), and so h(0, 0) = 0, and that � is tangent to the x-axis at (0, 0). Moreover,
since � has non-zero curvature at p, we can also assume that for some sufficiently
small r0 > 0, the set � ∩ D(0; r0) lies in the half-plane {y ≤ 0}, and only intersects
the y = 0 axis at the origin.

Consider next the half-disk H := {(x, y) : x2 + y2 ≤ r20 , y ≤ 0} and the compact
saddle graph with boundary

�H := {(x, y, h(x, y)) : (x, y) ∈ H} ⊂ R
3.

Note that the tangent plane to �H at the origin is the z = 0 plane. Also, h(x, y) �= 0
for any point in the interior of H . Assume for definiteness that h(x, y) < 0 in int(H).
Let m0 < 0 denote the maximum value of h over the closed half-circle S contained
in ∂H . Then, ∂�H lies below the closed half-space in R3 determined by the plane �
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Fig. 2 The saddle graph �H and the plane � in the argument of Lemma 4.1

of equation z = −m0
r0

y. See Fig. 2. Note that � contains the x-axis, and lies below the
plane z = 0 for negative values of y. Since �H is saddle, it follows from the convex
hull property for saddle surfaces that �H must lie in the convex hull of its boundary
values ∂�H : in particular, �H must lie below �. But this contradicts that z = 0 is the
tangent plane to �H at the origin. This completes the proof. ��

Inwhat followswewill use the notationhν := 〈∇h, ν〉,where ν ∈ R
2.We recall that

a line field on a surface� continuously assigns to each p ∈ � a line L p ⊂ Tp� passing
through the origin. In particular, a line field L defined on a punctured neighborhood
of a point q ∈ � has a topological index at q, which is a half-integer that measures the
total variation of L along any small positively oriented Jordan curve in � surrounding
q. See Hopf [16].

Theorem 4.2 Let h(x, y) be a real analytic, nonlinear function defined on a neigh-
borhood of (0, 0), that satisfies hxxhyy − h2xy ≤ 0. Then:

(1) There exists a direction ν = (cos θ, sin θ) ∈ S
1 and a (possibly empty) finite

collection of line segments � j passing through the origin such that ∇hν �= (0, 0)
on�∗\∪ j� j , and D2h vanishes identically along each� j . Here,� is a sufficiently
small disk centered at the origin, and �∗ := �\{(0, 0)}.

(2) The line field generated by ∇hν in �∗\ ∪ j � j extends to a real analytic line field
F defined in �∗, that is orthogonal to each segment � j .

(3) The topological index of the line field F at (0, 0) is non-positive.

Remark 4.3 The proof will actually show that the statement of Theorem 4.2 is true
for any ν ∈ S

1 except for a finite number of directions ν1, . . . , νs ∈ S
1. The radius of

the related disk � = �(ν) depends on the choice of ν ∈ S
1\{ν1, . . . , νs}.

Proof Along the proof we will assume that � is a sufficiently small disk around the
origin, of radius r0 > 0.Alsowithout loss of generalitywewill assume that h(0, 0) = 0
and ∇h(0, 0) = (0, 0), changing h by h − ax − by − c as in Lemma 4.1 if necessary.

To start, we consider an arbitrary direction ν ∈ S
1. Then, ∇hν defines a real

analytic line field Lν in�\Zν , whereZν is the set of critical points of hν in�. Taking
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a smaller � if necessary, we have by the analytic implicit function theorem that either
Zν = {(0, 0)}, or Zν = �, or Zν is the union of a finite set of regular, embedded
analytic curves that pass through (0, 0) and intersect only at the origin. Obviously, any
umbilical segment � along which the Hessian matrix of h vanishes (see Lemma 4.1)
is contained in Zν . In these conditions, we have:

Lemma 4.4 Let � be an umbilical segment of h. Then, for every direction ν ∈ S
1

transverse to �, it holds Zν �= �, and the line field Lν generated by ∇hν extends
analytically across�\{(0, 0)}, so thatLν(p) is orthogonal to� at each p ∈ �\{(0, 0)}.
Proof Wemay assume without loss of generality that � is a segment of the line x = 0.
Since � is umbilical and h is not identically zero, we can then write

h(x, y) = xnw(x, y), (4.1)

where n > 2 and w(x, y) is real analytic, with w(0, y) �= 0 for y �= 0 small enough.
If we write ν = (cos θ, sin θ), a calculation from (4.1) shows that

∇hν(x, y) = xn−2{(n(n − 1) cos θw(x, y), 0) + x(· · · )}. (4.2)

In particular, since cos θ �= 0, ∇hν does not vanish identically, i.e. Zν �= �. Thus, it
follows from (4.2) that for x �= 0 and y �= 0 small enough so that w(0, y) �= 0, we
have ∇hν(x, y)

|∇hν(x, y)| → (±1, 0) as (x, y) → (0, y) (4.3)

with either x > 0 or x < 0. Here, the sign ± only depends on the signs of cos θ , of
w(0, y) and of xn−2. In particular, if n is odd, we have a sign for x > 0 and another
one for x < 0. In any case, (4.3) shows that the line field Lν extends analytically
across � \ {(0, 0)}, while being orthogonal to � at any p ∈ � \ {(0, 0)}. This proves
Lemma 4.4. ��
Lemma 4.5 Theorem 4.2 holds if hxxhyy − h2xy ≡ 0.

Proof Let ω(x, y) be the homogeneous polynomial of lowest degree n ≥ 2 in the
series expansion of h(x, y) at the origin. It is then clear that ωxxωyy − ω2

xy = 0. So,
z = ω(x, y) is a complete flat graph in R

3. By the well known classification of such
graphs due to Pogorelov [23], see also [14], we deduce that ω(x, y) depends only on
one variable, i.e., ω(x, y) = f (αx + β y), for adequate constants α, β and a certain
function f (v). Sinceω is a homogeneous polynomial,we haveω(x, y) = a(αx+β y)n

for some a �= 0 and n ≥ 2.
If n = 2, then D2h is different from zero at the origin, and in that case the result

is immediate since either ∇hx or ∇hy is non-zero at the origin. The topological index
of F at (0, 0) in this case is trivially zero.

Assume next n > 2. After a rotation in the (x, y) coordinates, we can then write

h(x, y) = âxn + · · · , â �= 0. (4.4)
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Fig. 3 The curves β j , including
the umbilical segments � j , ofK

The graph � given by z = h(x, y) is flat and real analytic in R3. It is then classically
known that � is foliated by straight lines, which are principal directions for the null
principal curvature κ = 0 of �. It is also classically known that if γ ⊂ � is any such
straight line, then either all points of γ are umbilical (i.e., the second fundamental
form of � vanishes along γ ), or γ has no umbilical points. See Sect. 5.8 in [7].

In the language of Theorem 4.2, and since we are assuming that n > 2 and so D2h
vanishes at (0, 0), we deduce that there exists a unique line segment � passing through
the origin such that D2h vanishes identically along �, and D2h has rank one in � \�.
By (4.4), � is contained in the x = 0 axis. In particular, (4.1) holds, and (4.4) implies
thatw(0, 0) �= 0 in (4.1). Thus, the argument in Lemma 4.4 shows that for any ν ∈ S

1

that is transverse to �, the line field Lν extends analytically across the origin, and in
particular has index zero at (0, 0). This proves Lemma 4.5. ��

In the rest of the proof we will assume that, by Lemma 4.5, hxxhyy − h2xy �≡ 0.

Lemma 4.6 There exists a direction ν ∈ S
1 such that the line field Lν extends analyt-

ically to �∗. In particular, it has a well defined topological index at the origin.

Proof LetK ⊂ �be the set of pointswherehxxhyy−h2xy = 0. Sincehxxhyy−h2xy �≡ 0,
we have by the analytic implicit function theorem that eitherK∩�∗ is empty, orK is
the union of a finite number of regular, embedded, real analytic curves that intersect
only at the origin. Note that the umbilical segments � j , in case they exist, are trivially
among such curves of K. See Fig. 3. Making � smaller, we can assume that D2h has
rank one (except maybe at the origin) along any curve β j ofK that is not an umbilical
segment.

Let ν ∈ S
1 be an arbitrary direction. By analyticity, and making � smaller if

necessary, we have by det(D2 h) �≡ 0 that the set of critical points of hν is either empty,
or the origin, or a finite union of regular, real analytic curves passing through (0, 0).
Moreover, along any curve over which ∇hν ≡ (0, 0) holds, one has det(D2 h) = 0,
i.e., the curve is one of the curves β j that compose K. On the other hand, if β j is not
an umbilic segment � j , then for any direction ν0 ∈ S

1 linearly independent from ν, it
holds ∇hν0(p) �= (0, 0) at any p ∈ β j ∩ �∗, since D2h has rank one at every point
of β j ∩ �∗.
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In particular, there is at most a finite number of directions ν = ν j ∈ S
1 for which

∇hν ≡ (0, 0) holds along some non-umbilical curve β j ∈ K. Moreover, by the
above discussion, any ν ∈ S

1 linearly independent to these directions ν j satisfies that
∇hν �= (0, 0) in �∗ \ ∪ j� j . Choose now such ν so that, additionally, it is transverse
to all the umbilical segments � j . Then, the line field Lν generated by ∇hν , which is
at first only defined in �∗\ ∪ j � j , extends analytically to �∗, by Lemma 4.4, and is
orthogonal to each � j . This proves Lemma 4.6. ��

Observe that, once here, we have already proved the first two assertions of The-
orem 4.2. So, to finish, we now need to show that the topological index of the line
field F := Lν is ≤ 0 at the origin. We will do it in two steps: (a) when there are no
umbilical segments � j , i.e., if D2 h is never zero in a punctured neighborhood �∗ of
the origin, and (b) if there exist umbilical segments � j .

We start with the first case.

Lemma 4.7 Assume that D2h does not vanish at any point of the punctured disk �∗.
Then, the topological index of F at (0, 0) is ≤ 0.

Proof Assumewithout loss of generality, after a rotation in the (x, y)-coordinates, that
ν = (1, 0), i.e., hν = hx . Arguing by contradiction, assume that F has positive index
at the origin. This means that the vector field∇hx has positive index at the origin (note
that (0, 0) is an isolated critical point of hx in the present case).

In that situation, it follows that hx has a strict local maximum or minimum at (0, 0)
(see Lemma 3.1 in [1]), i.e. either hx > 0 or hx < 0 in�∗, maybe choosing� smaller
if necessary. For definiteness, let us assume that hx > 0 in �∗. Then, the mapping

σ = (hx , hy) : � → R
2

has its image contained in the extended half-plane {(p, q) : p > 0} ∪ {(0, 0)}.
Since hxxhyy − h2xy ≤ 0, we have det(Jσ) ≤ 0, where Jσ denotes the Jacobian

matrix of σ . Thus, we are in the conditions of Hartman–Nirenberg [14], which yields
that

∂(σ (�)) ⊆ σ(∂�).

That is, the boundary of the image σ(�) is contained in the image of the boundary
∂�.

In our situation, σ(∂�) is contained in the open half-plane {(p, q) : p > 0}, and
so it does not pass through (0, 0). Since σ(0, 0) = (0, 0) and σ(�) ⊂ {(p, q) : p >

0} ∪ {(0, 0)}, we have (0, 0) ∈ ∂(σ (�)). This contradicts the result by Hartman and
Nirenberg, what proves Lemma 4.7. ��

Wefinally study the case inwhich there exist umbilical segments� j . It is instructive
to compare Lemma 4.8 below with the topological arguments used in the proof of
Hoffman-Martin-White [15, Theorem 36].

Lemma 4.8 Assume that D2h does not vanish at any point in�∗ \{�1, . . . , �k}, where
each � j is a segment passing through the origin along which D2h vanishes. Then, the
topological index of F at (0, 0) is ≤ 0.
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Fig. 4 The curves α j that

compose the nodal set h−1
x (0),

and the associated nodal regions

Proof Assume, up to a rotation in the (x, y)-coordinates, that ν = (1, 0) for the
direction ν ∈ S

1 in Lemma 4.6. Thus, ∇hν = ∇hx . Then, as shown in the proof of
Lemma 4.6, we have that∇hx �= (0, 0) in�∗ \{�1, . . . , �k}. By analyticity, the nodal
set h−1

x (0) of hx in � is the union of (see Fig. 4)

(1) A finite set of regular, embedded analytic curves γ1, . . . , γs passing through the
origin, and along which ∇hx �= (0, 0) except at (0, 0) (note that ∇hx is normal to
any such curve), and

(2) The umbilical segments �1, . . . , �k .

By Lemma 4.4, the line field F generated by ∇hx extends to �∗, and F(p) is
orthogonal to � j at each p ∈ � j ∩ �∗.

Let us denote by α1, . . . , αr to the union of the curves γ j and� j , see Fig. 4. Clearly,
the curves α j divide �∗ into an even number of disjoint open sectors D1, . . . , D2r .
For each such sector Dj , we will let s1, j , s2, j denote the two endpoints of the circular
arc ∂� ∩ ∂Dj , ordered with respect to the positive orientation of ∂�.

Observe that hx has a sign on each Dj . Moreover, since ∇hx �= (0, 0) in ∪ j D j ,
each Dj is foliated by regular, analytic level curves of hx , with normal directions given
by ∇hx .

We will next define a Jordan curve ϒ ⊂ � that encloses (0, 0), in order to compute
later on the total variation of the line field F along ϒ .

First, for each Dj , the intersection ϒ ∩ Dj is defined by choosing some non-empty
level curve h−1

x (ε j )∩ Dj . Clearly, we can take ε j small enough so that the level curve
h−1
x (ε j ) ∩ Dj is connected. We denote then by t1, j , t2, j the two intersection points of

this curve with ∂�, again ordered with respect to the positive orientation of ∂�; see
Fig. 5, left. Second, we add to these level curves the circular arcs in ∂Dj ∩ ∂� that
joint s1, j with t1, j and s2, j with t2, j . The union of these elements define a piecewise
analytic Jordan curve ϒ that encloses the origin. See Fig. 5, right.

Note that the variation of the vector field ∇hx along each level arc h−1
x (ε j )∩ Dj of

ϒ coincides with θ2, j − θ1, j , where θi, j is the angle that ∇hx makes with the positive
x-axis at ti, j . Now, when ε j → 0, the set h−1

x (ε j ) ∩ Dj converges to the union of the
two arcs β1, j , β2, j in ∂Dj that join the origin with the vertices s1, j , s2, j . Moreover,
around any p ∈ βi, j ∩ �∗, i ∈ {1, 2}, the unit normal of h−1

x (ε j ) ∩ Dj that points in
the ∇hx direction converges as ε j → 0 to the interior (resp. exterior) unit normal of
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Fig. 5 The definition of the curve ϒ

∂Dj at p if hx > 0 (resp. hx < 0) in Dj . Indeed, this is immediate if βi, j lies in one
of the nodal curves γ1, . . . , γs , and it follows from Lemma 4.4 and its proof if βi, j is
a piece of an umbilical segment �1, . . . , �k .

In this way, when both ε j and the radius r0 of � converge to zero, the variation of
∇hx along h−1

x (ε j ) ∩ Dj converges to � j − π ≤ 0, where � j ∈ [0, π ] is the angle
that the analytic arcs β1, j , β2, j make at the origin.

Therefore, choosing r0 and max(|ε j | : j ∈ {1, . . . , 2r}) small enough, we can
assume that the variation of ∇hx (or equivalently, of the line field F) along h−1

x (ε j )∩
Dj is smaller than � j − π + π/(8r).

Besides, for such small r0 fixed, the lengths of the circular arcs of ϒ contained in
∂� converge to zero as max j {|ε j |} → 0. Since at any p ∈ α j ∩ �∗ the line field F
is orthogonal to α j , we deduce that the variation of F along each of the 2r circular
arcs of ϒ is smaller than π/(8r), choosing max j {|ε j |} small enough. In this way, for
the resulting Jordan curve ϒ = ϒ(ε j , r0), the total variation δ(F) of F along ϒ is
smaller than 2(1 − r)π + π/2 ≤ π/2: for this, note that

∑2r
j=1 � j = 2π . Now, the

quantity δ(F)/(2π) gives the topological index Ind(F) of F at (0, 0), that must be
a half-integer. Thus, since δ(F) < π/2, we conclude that Ind(F) ≤ 0. This proves
Lemma 4.8 and Theorem 4.2. ��

5 Topological index of principal line fields

Let M3 denote a space form R
3,H3 or S3. Then, for an immersed surface � in M

3,
its principal line fields L1,L2 associated to the principal curvatures κ1 ≥ κ2 are well
defined and smooth in � \ U , where U is the set of umbilic points of �.

Theorem 5.1 Let� be an immersed real analytic surface inM3, with κ1κ2 ≤ 0 at each
point, and let q0 ∈ U ⊂ �. Assume that � is not totally geodesic. Then, there exist
two orthogonal real analytic line fields F1,F2 defined on a punctured neighborhood
D∗ ⊂ � of q0 with the following properties:

(1) At any non-umbilic point p ∈ D∗, we have F1 ∪ F2 = L1 ∪ L2. That is, F1,F2
point at the principal directions of � at p.
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(2) The topological index at q0 of F1,F2 is ≤ 0.

Proof We will prove the result for M = S
3, i.e., the case in which we are most

interested. The case M = H
3 is proved similarly, with an adequate change of sign,

using the totally geodesic model for H3 (see Sect. 3), while the caseM = R
3 follows

from the same argument, but simplified.
After an isometry of S3, we assume q0 = (1, 0, 0, 0). Then, using the totally

geodesic model of S3+ described in Sect. 3, there exist adequate local coordinates
(x, y) in a neighborhood � ⊂ R

2 of (0, 0) such that � can be parametrized locally
around q0 as ψ(x, y) : � ⊂ R

2 → S
3,

ψ(x, y) = 1
√
1 + x2 + y2 + h(x, y)2

(1, x, y, h(x, y)),

where h(x, y) is a real analytic function in�with h(0, 0) = 0 and Dh(0, 0) = (0, 0);
note that in this parametrization ψ(0, 0) = q0. We will also assume that � is not
totally geodesic. In the rest of the argument, we will always consider that � is a disk
centered at (0, 0), as small as necessary.

Denoting p = hx , q = hy , r = hxx , s = hxy , t = hyy , the first fundamental form
I of � in these (x, y)-coordinates is given by

(
E F
F G

)

= 1

(1 + x2 + y2 + h2)2
M, (5.1)

where

M :=
⎛

⎝
(h − px)2 +

(
1 + p2

) (
1 + y2

)
p

(
q

(
1 + x2 + y2

)
− hy

)
− x(hq + y)

p
(
q

(
1 + x2 + y2

)
− hy

)
− x(hq + y) (h − qy)2 +

(
1 + q2

) (
1 + x2

)

⎞

⎠ .

Similarly, the coefficients of the second fundamental form I I of � with respect to
(x, y) are

(
e f
f g

)

= 1
√
1 + x2 + y2 + h2

√
1 + p2 + q2 + (xp + yq − h)2

(
r s
s t

)

.

(5.2)
In particular, as κ1κ2 ≤ 0, we have hxxhyy − h2xy ≤ 0. Note that the umbilical points
of � near q0 correspond to the points (x, y) ∈ � where D2h vanishes. Since � is not
totally geodesic, it follows from Lemma 4.1 and the analyticity of � that either q0 is
an isolated umbilical point of �, and in this case D2h is never zero in the punctured
disk �∗, or else the set of umbilical points around q0 corresponds to the union of a
finite number of segments �1, . . . , �k ⊂ � passing through the origin. In particular,
this time D2h vanishes only on ∪ j� j .

The principal line fields L1,L2 in the (x, y)-coordinates are given by the solutions
to

− α12dx
2 + (α11 − α22)dxdy + α21dy

2 = 0, (5.3)
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where (αi j ) := I I · I−1, with I , I I being the first and second fundamental forms (5.1),
(5.2) of �. The line fields given by (5.3) are well defined at first only in �∗ \ ∪ j� j .
We show next that they admit analytic extensions to �∗.

Assertion 5.2 There exist two real analytic line fields F1,F2 in �∗ that solve (5.3) at
every point of �∗. Moreover, for every p ∈ � j ∩ �∗, one of F1(p),F2(p) is tangent
to � j at p, and the other one is normal.

Proof If there are no umbilical segments � j , the result is immediate, taking Fi = Li

for i = 1, 2. So, from now on, we assume that there exists at least one umbilical
segment � that passes through (0, 0). Up to a rotation in the (x, y) coordinates, we
will assume that such segment is contained in the x = 0 axis. So,

h(x, y) = xnη(x, y) (5.4)

for some n > 2 and some real analytic function η(x, y) with η(0, y) �= 0 for y �= 0
sufficiently small. We remark that the number n measures the vanishing order of h
along �, and is independent of the performed rotation in the (x, y) coordinates.

A direct computation using (5.1), (5.2) and (5.4) shows that αi j = xn−2α̂i j , where

(
α̂11 α̂12
α̂21 α̂22

)

=
(
n(n − 1)η(0, y)(1 + y2)−2 0

0 0

)

+ x

(∗ ∗
∗ ∗

)

. (5.5)

As η(0, y) �= 0 for y �= 0 small enough, we deduce that the equation

− α̂12dx
2 + (α̂11 − α̂22)dxdy + α̂21dy

2 = 0, (5.6)

for α̂i j in (5.5), defines two real analytic line fields Fa,Fb around every point of the
form (0, y) with y �= 0, with the following properties:

i) When x = 0 and y �= 0, the equation (5.6) is reduced to dxdy = 0. This means
that the line fields {Fa,Fb} that solve (5.6) are one tangent and the other normal
to the segment � at the points in � ∩ �∗.

ii) When x �= 0, the cross field given at each (x, y) by Fa ∪ Fb coincides with the
cross field determined by the principal lines given by (5.3), i.e., with L1 ∪ L2.

Let Fa denote the analytic line field that solves (5.6) and is tangent to the x-axis
(i.e., to �) at (0, y). Since the solutions to (5.6) are eigenlines of the matrix (α̂i j ) in
(5.5), we see that Fa is associated to the non-zero eigenvalue of (α̂i j ) at (0, y), which
has the same sign as η(0, y).

Let us detect next if, for (x, y) close to (0, y) with x �= 0, we have Fa = L1 or
Fa = L2 at (x, y). For this, let us recall that κ1 ≥ κ2 by convention, so L1 (resp. L2)
is the principal line field associated to the non-negative (resp. non-positive) principal
curvature κ1 (resp. κ2). By our previous discussion on Fa , we have:

(a) If n is even, then at any (x, y) sufficiently close to (0, y) it holds Fa = L1 if
η(0, y) > 0 and Fa = L2 if η(0, y) < 0. In particular, each of the principal line
fields L1,L2 extends analytically across �.
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Fig. 6 Awell-defined analytic cross fieldK = F1 ∪F2, with an isolated singularity at the origin, that does
not split into two global analytic line fields. As we travel around the origin following the highlighted curve,
starting from the upper right corner, the analytic continuation of the red local line field of K becomes the
blue one after one turn (color figure online)

(b) If n is odd, then at any (x, y) sufficiently close to (0, y) it holds Fa = L1 if
xη(0, y) > 0 and Fa = L2 if xη(0, y) < 0. In particular, L1,L2 do not extend
analytically across �, and Fa changes from L1 to L2 (or vice versa) as we cross
�.

Note that it follows from properties i) and ii) above that, making � smaller if
necessary, the cross field of principal linesL1∪L2, at first only defined on�∗\∪ j � j ,
can be analytically extended to a cross fieldK in�∗.We can locallywriteK = F1∪F2
where F1,F2 are real analytic line fields. We want to show next that K can also be
globally split as the union of two real analytic line fields in �∗, i.e., we seek to prove
that these local line fieldsF1,F2 can be analytically extended to�∗. For that, we need
to rule out the possibility depicted in Fig. 6. That is, sinceK is well defined on �∗, we
need to check that if C is a small circle in �∗ enclosing the origin and parametrized
by α : [0, 1] → �∗, with α(0) = α(1), then the analytic continuation along α(t) of
the line field F1 at α(0) ends up being F1 (and not F2) when t = 1.

For this, assume without loss of generality that p0 = α(0) = α(1) ∈ �∗ \ ∪ j� j ,
and let F1 be one of the local line fields for which K = F1 ∪ F2 holds around p0.
For any t ∈ [0, 1], we denote by F(t) the analytic continuation of F1 along α(t),
and want to show that F(0) = F(1). First of all, note that the umbilical segments
�1, . . . , �r divide �∗ into 2r circular open sectors D1, . . . , D2r . By item ii) above,
on each circular arc C ∩ Dj we have either F(t) = L1(α(t)) or F(t) = L2(α(t)).
Moreover, as α(t) crosses an umbilic segment � separating Dj from Dj+1, we have
two possibilities:

(1) If the number n > 2 associated to � by (5.4) is even, then it follows from item
(a) above that we have one of either F(t) = L1(α(t)) or F(t) = L2(α(t)) at
Dj ∪ Dj+1.

(2) If n is odd, then by item (b) above we have F(t) = L1(α(t)) in Dj and F(t) =
L2(α(t)) in Dj+1, or vice versa.
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Since the circle C intersects each segment � exactly twice, we deduce from items
(1), (2) above that if F(0) = Li (p0) for some i ∈ {1, 2}, then F(1) = Li (p0) for the
same i . This proves the desired equality F(0) = F(1) and prevents the situation in
Fig. 6.

As a consequence, K = F1 ∪ F2, where F1,F2 are analytic line fields in �∗.
Moreover, for every p ∈ � j ∩ �∗, one of F1(p),F2(p) is tangent to � j at p, and the
other one is therefore normal. This proves Assertion 5.2. ��

We are going to prove next that the index at (0, 0) of the analytic line fields F1,F2
defined by Assertion 5.2 is ≤ 0.

To start, let ν ∈ S
1 be a direction for which Theorem 4.2 holds. Up to a rotation

in the (x, y)-coordinates, and taking into account Remark 4.3, we can assume that
ν = (0, 1), i.e., that

hν = hy, (5.7)

and that none of the umbilical segments� j is horizontal, i.e., all of them are transverse
to (1, 0).

For these (x, y)-coordinates we define next a matrix homotopy

(mi j (t)) = (1 − t)(αi j ) + t(hi j ), (5.8)

where (hi j ) = D2h, and consider for each t ∈ [0, 1] the equation

− m12(t)dx
2 + (m11(t) − m22(t))dxdy + m21(t)dy

2 = 0. (5.9)

Note that (5.9) coincides with (5.3) for t = 0, while for t = 1 is given by

− hxy(dx
2 − dy2) + (hxx − hyy)dxdy = 0. (5.10)

We are going to show in Assertion 5.3 below that the solutions to (5.9) define, for each
t ∈ [0, 1], a pair of real analytic line fields F t

1,F t
2 in �∗. This result is in analogy

with Assertion 5.2, that actually corresponds to Assertion 5.3 in the particular case
t = 0. Once we prove this, such line fields will have an associated index at the origin
that, by topological invariance of the index, must be the same for every t ∈ [0, 1].
Subsequently, we will prove in Assertion 5.4 that the index of the solutions to (5.10),
i.e. of (5.9) for t = 1, is ≤ 0. From there, we obtain the desired result that the index
at the origin of the line fields F1 = F0

1 and F2 = F0
2 is ≤ 0.

We start with:

Assertion 5.3 For each t ∈ [0, 1], there exist two real analytic line fields F t
1,F t

2 in
�∗ that solve (5.9) at every point of �∗. Moreover, for every p ∈ � j ∩ �∗, one of
F t
1(p),F t

2(p) is tangent to � j at p, and the other one is normal.

Proof By its own construction, and taking into account (5.2), the matrix (mi j (t)) is of
the form

(mi j (t)) = (hi j ) · P(t), (5.11)
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where P(t) is positive definite. Equation (5.9) defines a pair of straight lines passing
through the origin except at the points p ∈ � where

det(mi j (t)) = 0 = trace(mi j (t)). (5.12)

Let λ1, λ2 be the eigenvalues of (hi j ), Q a matrix that diagonalizes (hi j ), and � :=
QP(t)Q−1. Since P(t) is positive definite, we have from (5.11) that

trace(mi j (t)) = trace(Q(hi j )Q
−1QP(t)Q−1) = λ1�11 + λ2�22, (5.13)

with�11 > 0,�22 > 0. In particular, if det(mi j (t)) = 0, we have λ1λ2 = 0 by (5.11),
and so from (5.13), trace(mi j (t)) = δ2 trace(hi j ) for some δ > 0. This shows that
(5.12) can only happen at some p ∈ � if (hi j ) vanishes at p. Therefore, we conclude
that the solutions to (5.9) define a real analytic cross field on �∗ \ ∪ j� j .

Along the umbilical segments � j , the same analytic continuation argument used
in the proof of Assertion 5.2 still works in this case. For instance, assume that � j is
contained in the line xθ = 0, where we are denoting

xθ := cos θx + sin θ y, yθ := − sin θx + cos θ y.

Then, similarly to (5.4), we have h(x, y) = xnθ η(xθ , yθ ) for some n > 2, and the
equation corresponding to (5.5) in this more general context is, by (5.8) and (5.5),

(mi j (t)) = xn−2
θ

[(
n(n − 1)η(0, yθ )

(
(1 − t)(1 + y2θ )−2 + t

)
0

0 0

)

+ xθ

(∗ ∗
∗ ∗

)]

.

From here, and arguing as in Assertion 5.2 using this time (5.9), we can deduce that,
for each t ∈ [0, 1], the solutions to (5.9) can be extended to define an analytic cross
field Kt on �∗. Since we had previously shown that the cross field K = K0 can be
described asK = F1 ∪F2 where bothFi are analytic line fields on�∗, it follows by a
continuity argument that for all t ∈ [0, 1]we haveKt = F t

1∪F t
2, for two analytic line

fields F t
1,F t

2 in �∗. Note that F0
i = Fi , where F1,F2 are the line fields constructed

above.Moreover, similarly to item i) in Assertion 5.2, at each p ∈ � j ∩�∗ one of these
line fields F t

i (p) is tangent to � j and the other one is orthogonal to � j . In particular,
this holds for (5.10), making t = 1. ��

Assertion5.3 shows that all the analytic linefieldsF t
i have awell defined topological

index at the origin. We next apply Theorem 4.2 to control this index for t = 1.

Assertion 5.4 The topological index of the line fields F1
1 ,F1

2 at the origin is ≤ 0

Proof We start by considering the vector field

Z = (−2hxy, hxx − hyy
)
, (5.14)

which has no zeros on �∗ \ ∪ j� j since hxxhyy − h2xy ≤ 0. In order to understand the
behavior of Z along an umbilic segment � j , we assume that � j is contained in a line
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cos θx + sin θ y = 0, and so h can be written as

h(x, y) = (cos θx + sin θ y)n η(x, y)

for some n > 2, with η(x, y) �= 0 for (x, y) ∈ � j ∩ �∗. Then, arguing as in Lemma
4.4, we obtain a similar formula to (4.3) in this context:

Z(x, y)

|Z(x, y)| → ±(− sin(2θ), cos(2θ)) (5.15)

as (x, y) approaches a point p ∈ � j ∩ �∗ through a trajectory that lies on one side of
� j . Here, as in (4.3), the ± sign depends on the parity of n, the sign of η(p) and the
sign of cos θx + sin θ y along the chosen trajectory.

Let now LZ denote the line field generated by Z . While LZ is at first only defined
when Z �= 0, i.e., in �∗ \ ∪ j� j , the behavior of Z at each � j given by (5.15) implies
that LZ can be extended to a real analytic line field in �∗, that we still denote by LZ .
Let Ind(Lz) denote the topological index of LZ at the origin. We next relate Ind(LZ )

with the topological index of F1
1 and F1

2 .
Let ν = (cos τ, sin τ) ≡ (dx, dy) be a solution to (5.10) at a point p ∈ �∗ \∪ j� j ,

and let (cosφ, sin φ) denote Z(p)/|Z(p)|. Then, (5.10) can be rewritten using (5.14)
as

cos(φ − 2τ) = 0. (5.16)

By the analyticity of LZ and F1
i in �∗ we deduce then from (5.16) that

Ind(LZ ) = 2 Ind(F1
1 ) = 2 Ind(F1

2 ).

Next, recall that for our choice of (x, y)-coordinates, the vector field ∇hy is in the
conditions of Theorem 4.2, see (5.7). In particular, by Theorem 4.2, ∇hy generates
a line field F in �∗ that has non-positive topological index at the origin. We next
compare Z with ∇hy . First, by hxxhyy − h2xy ≤ 0 we have

〈Z ,∇hy〉 ≤ −|∇hy |2 ≤ 0.

By Theorem 4.2, the set of critical points of hy coincides with∪ j� j , so 〈Z ,∇hy〉 < 0
on �∗ \ ∪ j� j . That is, F and LZ are never orthogonal in �∗\ ∪ j � j .

Consider now some umbilical segment � j , that we assumed contained in cos θx +
sin θ y = 0, and take p ∈ � j ∩�∗. By Theorem 4.2, the line fieldF(p) is orthogonal to
� j at p, and by (5.15) the line fieldLZ (p) points in the direction (− sin(2θ), cos(2θ))

at p. Since � j is not horizontal (see our working conditions after (5.7)), we deduce
that F and LZ are still not orthogonal at p. Thus, F and LZ are never orthogonal in
�∗, and so they have the same rotation index at (0, 0) and we conclude that

2 Ind(F1
1 ) = 2 Ind(F1

2 ) = Ind(LZ ) = Ind(F) ≤ 0,

where the last inequality comes from Theorem 4.2. This proves Assertion 5.4. ��
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We can now finish the proof of Theorem 5.1. By Assertion 5.3, all the line fields
F t
i , i = 1, 2, have a well defined topological index at the origin. By the topological

invariance of the index and Assertion 5.4, we have Ind(F t
i ) ≤ 0 for all t ∈ [0, 1] and

i = 1, 2. Since F0
i = Fi , we conclude that Ind(Fi ) ≤ 0. This completes the proof of

Theorem 5.1. ��
Corollary 5.5 (Theorem 1.1)Any real analytic sphere� immersed in S3 with κ1κ2 ≤ 0
at every point is totally geodesic.

Proof Since κ1κ2 ≤ 0, the umbilical points of � are those where I I = 0. Assume
that� is not totally geodesic. Then, by analyticity, its umbilic set U is a finite union of
isolated points and closed, regular embedded real analytic curves in �. These curves
are actually geodesics of S3 contained in �, by Lemma 4.1 and Eq. (5.2). We denote
them by � j , as usual.

Let K = L1 ∪ L2 denote the cross field on � \ U defined by the two principal
line fields L1,L2 of �. We proved in Theorem 5.1 that for any p ∈ � there exists a
punctured neighborhood D∗(p) to which K can be analytically extended as a cross
field. By compactness of �, we deduce then that K can be extended to an analytic
cross field on � \ {q1, . . . , qs}, for a certain finite number of points qi ∈ �.

Let now p ∈ � \ U be an arbitrary non-umbilic point. Let α, γ be two trajectories
from p to some point p′ ∈ � \ {q1, . . . , qs}, and let Fα

1 (resp. Fγ
1 ) be the analytic

continuation of L1(p) along α (resp. γ ). We assume for simplicity that α, γ intersect
transversely all geodesics � j , and that p′ /∈ ∪ j� j . In these conditions, we claim that

Fα
1 (p′) = Fγ

1 (p′). (5.17)

Indeed, each of the totally geodesic circles � j separates � into two connected
components, since� is diffeomorphic toS2. In particular, by transversality, the number
of points in α ∩ � j is odd (resp. even) if and only if so is the number of points in
γ ∩ � j . In addition, we proved in Theorem 5.1 that, for each � j , one of the following
two possibilities holds (see (a) and (b) in the proof of Theorem 5.1):

A) L1 and L2 extend analytically across � j . In particular, Fα
1 is equal to one of L1

or L2 along a small arc of α around each p ∈ α ∩ � j , and the same holds for γ

and Fγ
1 .

B) L1 and L2 do not extend analytically across � j . In that case, for any small arc of
α containing p ∈ α ∩ � j , the line field Fα

1 is equal to L1 on one side of p, and to
L2 on the other side of p. The same property holds for Fγ

1 .

In this way, it follows fromA), B) and the equal parity of the sets α∩� j and γ ∩� j

for every � j that (5.17) holds.
The path independence property (5.17) clearly implies that the local line fields

L1,L2 around p can be extended analytically to define respective global line fields
F1,F2 on � \ {q1, . . . , qs}, with the property thatK = F1 ∪F2 at every point. These
line fieldsF1,F2 obviously agree with the analytic line fields defined on Theorem 5.1
around each singularity qi . So, by Theorem 5.1, the topological index of both F1,F2
around each qi is ≤ 0. This contradicts that, by Poincaré-Hopf,

∑s
i=1 Ind(F1, qi ) =
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Ind(F2, qi ) = 2, since � is diffeomorphic to S
2. This contradiction shows that �

must be totally geodesic, and completes the proof. ��
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