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Simultaneous Approximation via Laplacians
on the Unit Ball

Misael E. Marriaga, Teresa E. Pérez and Marlon J. Recarte

Abstract. We study the orthogonal structure on the unit ball Bd of Rd

with respect to the Sobolev inner products

〈f, g〉Δ = λL (f, g) +

∫
Bd

Δ[(1 − ‖x‖2)f(x)] Δ[(1 − ‖x‖2)g(x)] dx,

where L (f, g) =
∫
Sd−1 f(ξ) g(ξ) dσ(ξ) or L (f, g) = f(0)g(0), λ > 0,

σ denotes the surface measure on the unit sphere Sd−1, and Δ is the
usual Laplacian operator. Our main contribution consists in the study
of orthogonal polynomials associated with 〈·, ·〉Δ, giving their explicit
expression in terms of the classical orthogonal polynomials on the unit
ball, and proving that they satisfy a fourth-order partial differential
equation, extending the well-known property for ball polynomials, since
they satisfy a second-order PDE. We also study the approximation prop-
erties of the Fourier sums with respect to these orthogonal polynomials
and, in particular, we estimate the error of simultaneous approximation
of a function, its partial derivatives, and its Laplacian in the L2(Bd)
space.
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Keywords. Approximation on the ball, inner product via Laplacians,
Fourier expansions.

1. Introduction

In [2], Atkinson and Hansen studied the problem of finding the numerical
solution of the nonlinear Poisson equation −Δu = f(·, u) with zero boundary
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FEDER, Una manera de Hacer Europa. TEP also thanks IMAG-Maŕıa de Maeztu Grant
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conditions on the unit ball Bd on R
d, and asked the question of finding an

explicit orthogonal basis for the Sobolev inner product

〈f, g〉 =
1
π

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx, (1.1)

where Δ denotes the usual Laplace operator.
Y. Xu answered that question in [11], where he constructed such basis

in terms of spherical harmonics and classical Jacobi polynomials of varying
parameter. In addition, he studied the orthogonal expansion of a function in
that basis, and proved that it can be computed without using the derivatives
of the function.

Sobolev orthogonal polynomials, that is, families of polynomials that
are orthogonal with respect to inner product involving both values of func-
tions as well as derivative operators, such as partial derivatives, gradients,
normal derivatives, Laplacians, and others, have been recently studied. A re-
cent survey on this topic can be found in [7]. A clear range of application of
orthogonal polynomials is the field of approximation of functions, with mul-
tiple technological applications within the multivariate case. Recently, there
has been a renovated interest for approximants based on multivariate Sobolev
orthogonal polynomials, showing that it is not necessary to use the deriva-
tives of the function. Examples of this kind of studies can be find in [8,9,13],
among others.

In this paper, we modify the inner product (1.1) by introducing a term
on the spherical border of the ball taking into account the possible informa-
tion that may be observed from some modification of the nonlinear Poisson
equation

〈f, g〉Δ =
λ

σd−1

∫
Sd−1

f(ξ) g(ξ) dσ(ξ)

+
1

8σd−1

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx.

This term is introduced by means of a real positive constant λ > 0 to mod-
ulate the influence of that term in the problem, and the normalization con-
stants are chosen to simplify expressions in the sequel.

In addition, following the ideas in [12], we also modify the inner product
(1.1) by introducing a mass point at the origin:

〈f, g〉∗
Δ =

λ

σd−1
f(0) g(0)

+
1

8σd−1

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx.

Our main objective is to study the influence of the additional term in
the study of the basis and its impact into the Fourier coefficients and the
errors for a given function.

The work is structured in the following way. Section 2 is devoted to es-
tablishing the main tools and basic results that we will need for the rest of
the paper, including a brief introduction about spherical harmonics, classical
orthogonal polynomials in the unit ball of R

d, Fourier coefficients, among
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others facts. Section 3 describes the first considered Sobolev inner product,
deducing a Sobolev basis for that inner product, and proving that they satisfy
a fourth-order partial differential equation, extending the well known prop-
erty for ball polynomials since they satisfy a second order PDE. Section 4 is
devoted to analyse the Sobolev Fourier orthogonal expansions and approx-
imation, giving explicit bounds for the errors. Finally, in Sect. 5, we study
the Sobolev inner product with a mass point at the origin, proving that this
second Sobolev inner product and the associated basis can be related with
the first one studied.

2. Preliminaries

In this section, we collect the basic background on the classical orthogonal
polynomials on the unit ball and orthogonal expansions that will be used
throughout this paper.

For x ∈ R
d, we denote by ‖x‖ the usual Euclidean norm of x. The unit

ball and the unit sphere in R
d are denoted by Bd =

{
x ∈ R

d : ‖x‖ � 1
}

and
Sd−1 =

{
ξ ∈ R

d : ‖ξ‖ = 1
}
, respectively.

For μ > −1, let Wμ be the weight function on the unit ball defined as

Wμ(x) =
(
1 − ‖x‖2

)μ
, x ∈ Bd.

This weight function can be used to define the inner product

〈f, g〉μ = bμ

∫
Bd

f(x)g(x)Wμ(x) dx, f, g ∈ L2(Wμ;Bd),

where bμ is the normalization constant, such that 〈1, 1〉μ = 1 given by

bμ =
(∫

Bd

Wμ(x) dx

)−1

=
Γ
(
μ + 1 + d

2

)
Γ(μ + 1)πd/2

.

This inner product, in turn, induces the norm ‖ · ‖μ defined by

‖f‖μ =
(

bμ

∫
Bd

f(x)2 Wμ(x)dx

)1/2

, f ∈ L2(Wμ;Bd).

For n � 0, let us denote by Πd
n the linear space of real polynomials in d

variables of total degree less than or equal to n, and by Πd =
⋃

n�0 Πd
n the

linear space of all real polynomials in d variables.
A polynomial P ∈ Πd

n is said to be an orthogonal polynomial of (total)
degree n if 〈P,Q〉μ = 0 for all Q ∈ Πd

n−1. For n � 0, let Vd
n(Wμ) denote

the space of orthogonal polynomials of total degree n. Then, dimVd
n(Wμ) =(

n+d−1
n

)
:= rd

n.
For n � 0, let {Pn

ν (x) : 1 � ν � rd
n} be a basis of Vd

n(Wμ). Notice that
every element of Vd

n(Wμ) is orthogonal to polynomials of lower degree. If the
elements of the basis are also orthogonal to each other, that is, 〈Pn

ν , Pn
η 〉 =

0 whenever ν �= η, we call the basis mututally orthogonal. If, in addition,
〈Pn

ν , Pn
ν 〉 = 1, we say that the basis is orthonormal.
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2.1. Spherical Harmonics

Let Hd
n denote the space of harmonic polynomials in d variables of degree n,

that is, homogeneous polynomials of degree n satisfying the Laplace equation
ΔY = 0, where Δ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

is the usual Laplace operator. It is well
known that

ad
n := dim Hd

n =
(

n + d − 1
n

)
−
(

n + d − 3
n

)
.

Spherical harmonics are the restriction of harmonic polynomials to the unit
sphere. If Y ∈ Hd

n, the linear space of spherical harmonics of degree n, then
in spherical-polar coordinates x = rξ where r > 0 and ξ ∈ Sd−1, we get

Y (x) = rn Y (ξ),

so that Y is uniquely determined by its restriction to the sphere.
We define the linear operator

x · ∇ =
d∑

i=1

xi
∂

∂xi
,

and, by Euler’s equation for homogeneous polynomials, we deduce that

x · ∇Y (x) = nY (x), ∀Y ∈ Hd
n.

The differential operators Δ and x · ∇ can be expressed in spherical-polar
coordinates as [5]

Δ = ∂2

∂r2 + d−1
r

∂
∂r + 1

r2 Δ0,

x · ∇ = r ∂
∂r , (2.1)

where Δ0 is the spherical part of the Laplacian, called the Laplace–Beltrami
operator. The operator Δ0 has spherical harmonics as eigenfunctions. More
precisely, it holds that [5]

Δ0 Y (ξ) = −n (n + d − 2)Y (ξ), ∀Y ∈ Hd
n, ξ ∈ Sd−1. (2.2)

We will also need the following family of differential operators, Di,j ,
defined by:

Di,j = xi ∂j − xj ∂i, 1 � i < j � d.

These are angular derivatives, since Di,j = ∂θi,j
in the polar coordinates of

the xi, xj–plane, (xi, xj) = ri,j (cos θi,j , sin θi,j). Furthermore, the angular
derivatives Di,j and the Laplace–Beltrami operator Δ0 are related by

Δ0 =
∑

1�i<j�d

D2
i,j .

Spherical harmonics are orthogonal polynomials on Sd−1 with respect
to the inner product

〈f, g〉Sd−1 =
1

σd−1

∫
Sd−1

f(ξ) g(ξ) dσ(ξ),
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where dσ denotes the surface measure and σd−1 denotes the surface area

σd−1 =
∫
Sd−1

dσ(ξ) =
2πd/2

Γ(d/2)
.

2.2. Mutually Orthogonal Polynomials on the Unit Ball

A mutually orthogonal basis of Vd
n(Wμ) can be given in terms of Jacobi

polynomials and spherical harmonics.
For α, β > −1, the Jacobi polynomial P

(α,β)
n (t) of degree n is defined as

[10]

P (α,β)
n (t) =

1
n!

n∑
k=0

(
n

k

)
(k + α + 1)n−k(k + α + β + 1)k

(
t − 1

2

)k

,

where, for a ∈ R, n � 0, (a)0 = 1, and (a)n = a (a+1) · · · (a+n− 1) denotes
the Pochhammer symbol. They are orthogonal with respect to the Jacobi
weight function wα,β(t) = (1 − t)α(1 + t)β on the interval [−1, 1].

The polynomials defined in the following proposition are known in the
literature as classical ball polynomials.

Proposition 2.1. [6] For n � 0 and 0 � j � n
2 , let {Y n−2j

ν (x) : 1 � ν �
ad

n−2j} denote an orthonormal basis of Hd
n−2j. For μ > −1, define the poly-

nomials
Pn,μ

j,ν (x) := P
(μ,n−2j+ d−2

2 )
j

(
2 ‖x‖2 − 1

)
Y n−2j

ν (x). (2.3)

Then, the set {Pn,μ
j,ν : 0 � j � n

2 , 1 � ν � ad
n−2j} constitutes a mutually

orthogonal basis of Vd
n(Wμ).

Moreover

〈Pn,μ
j,ν , Pm,μ

k,η 〉μ = Hμ
j,n δn,m δj,k δν,η,

where

Hμ
j,n =

(μ + 1)j (d/2)n−j (n − j + μ + d/2)
j! (μ + d/2 + 1)n−j (n + μ + d/2)

. (2.4)

The square of the L2(wα,β , [−1, 1]) norm of the Jacobi polynomial
P

(α,β)
j (t), given by

h
(α,β)
j :=

∫ 1

−1

(
P

(α,β)
j (t)

)2

wα,β(t) dt,

is related with Hμ
j,n as follows:

Hμ
j,n =

γμ,d

2n−2j
h

(μ,n−2j+ d−2
2 )

j , (2.5)

where γμ,d =
bμ σd−1

2μ+ d
2 +1

.

It is known [6] that the orthogonal polynomials with respect to Wμ are
eigenfunctions of the second-order differential operator Dμ. More precisely,
we have

Dμ P = −(n + d)(n + 2μ − 1)P, ∀P ∈ Vd
n(Wμ),
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where

Dμ := Δ −
d∑

j=1

∂

∂ xj
xj

(
2μ + 1 +

d∑
i=1

xi
∂

∂ xi

)
.

The following lemma will be useful in the sequel. For convenience, we
define Pn,μ

j,ν (x) = 0 if j < 0.

Lemma 2.2. [9] Let μ > −1. Then

ΔPn,μ
j,ν (x) = κμ

n−j Pn−2,μ+2
j−1,ν (x) and Δ0 Pn,μ

j,ν (x) = �n−2j Pn,μ
j,ν (x),

where

κμ
n = 4

(
n + μ +

d

2

) (
n +

d − 2
2

)
and �n = −n (n + d − 2).

2.3. Fourier Orthogonal Expansion and Approximation

With respect to the basis (2.3), the Fourier orthogonal expansion of f ∈
L2(Wμ;Bd) is defined by

f(x) =
∞∑

n=0

�n
2 �∑

j=0

ad
n−2j∑
ν=1

f̂ n,μ
j,ν Pn,μ

j,ν (x) with f̂ n,μ
j,ν :=

1
Hμ

j,n

〈
f, Pn,μ

j,ν

〉
μ

.

Since ‖f‖μ is finite, the Parseval identity holds: for μ > −1

‖f‖2
μ =

∞∑
n=0

�n
2 �∑

j=0

ad
n−2j∑
ν=1

∣∣∣f̂ n,μ
j,ν

∣∣∣2 Hμ
j,n.

Let projμn : L2(Wμ;Bd) → Vd
n(Wμ) and Sμ

n : L2(Wμ;Bd) → Πd
n denote

the projection operator and the partial sum operator, respectively. Then

projμmf(x) =
�m

2 �∑
j=0

ad
m−2j∑
ν=1

f̂ m,μ
j,ν Pm,μ

j,ν (x) and Sμ
nf(x) =

n∑
m=0

projμmf(x).

By definition, Sμ
nf = f if f ∈ Πd

n. Moreover, for f ∈ L2(Wμ;Bd), we
have 〈f − Sμ

nf,Q〉μ = 0 for all Q ∈ Πd
n.

We consider the error, En(f)μ, of best approximation by polynomials in
Πd

n in the space L2(Wμ;Bd), defined by

En(f)μ = inf
pn∈Πd

n

‖f − pn‖μ,

and notice that the infimum is achieved by Sμ
nf .

We define the non-uniform Sobolev space. For m ∈ N
d
0, let |m| = m1 +

· · · + md and ∂m = ∂m1
1 · · · ∂md

d . For μ > −1 and s � 1, we denote by
Ws

2(Wμ;Bd) the Sobolev space

Ws
2(Wμ;Bd) =

{
f ∈ L2(Wμ;Bd); ∂mf ∈ L2(Wμ+|m|;Bd), |m| � s, m ∈ N

d
0

}
.

We say that this Sobolev space is non-uniform, since each derivative of the
function belongs to a different L2 space.
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The following estimate was proved in [9]: for n � 2 s and f ∈ W2 s
2

(Wμ;Bd),

En(f)μ � c

n2s

[
En−2s(Δsf)μ+2s + En(Δs

0f)μ

]
, (2.6)

and for n � 2 s + 1 and f ∈ W2 s+1
2 (Wμ;Bd)

En(f)μ � c

n2s+1

[ d∑
i=1

En−2s−1(∂i Δsf)μ+2s+1 +
∑

1�i<j�d

En(Di,j Δs
0f)μ

]
.

Here and in the sequel, c is a generic constant independent of n and f but
may depend on μ and d, and its value may be different from one instance to
the next. As pointed out in [9], each term involving Δ and Δ0 on the right-
hand side of the above inequalities is necessary, since the first term deals
with the radial component of f and the second one deals with the harmonic
component of f defined on the ball.

3. Sobolev Orthogonal Polynomials

This section is devoted to the study of the orthogonal structure on the unit
ball with respect to the Sobolev inner product

〈f, g〉Δ =
λ

σd−1

∫
Sd−1

f(ξ) g(ξ) dσ(ξ)

+
1

8σd−1

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx, λ > 0.

(3.1)
The normalization constants are chosen to simplify expressions in the sequel.
Orthogonal polynomials with respect to inner products involving derivatives
are called Sobolev orthogonal polynomials. Let us denote by Vd

n(Δ) the space
of Sobolev orthogonal polynomials of degree n with respect to (3.1). We point
out that when λ = 0, we recover the inner product studied in [11] up to a
normalization constant.

We need the following lemma.

Lemma 3.1. Let β = n − 2j + d−2
2 and Y n−2j

ν ∈ Hd
n−2j. Then, for any poly-

nomial q(s),

Δ[(1 − ‖x‖2) q(‖x‖2)Y n−2j
ν (x)] = 4 (Jβq)(‖x‖2)Y n−2j

ν (x), (3.2)

where

(Jβq)(s) = s (1 − s) q′′(s) + (β + 1 − (β + 3) s)q′(s) − (β + 1) q(s).

Proof. Using spherical-polar coordinates, we can use (2.1) and (2.2) for the
radial and spherical part of Δ, respectively. After a tedious calculation, we
get that
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Δ

[
(1 − ‖x‖2) q(‖x‖2)Y n−2j

ν (x)

]
= Δ

[
(1 − r2) q(r2) rn−2j Y n−2j

ν (ξ)

]

= 4

[
r2(1 − r2)q′′(r2) + (β + 1 − (β + 3) r2)q′(r2) − (β + 1) q(r2)

]
Y n−2j

ν (x).

Setting s 
→ r2 gives the desired result. �

Inspired by the explicit expression (2.3) for the basis of classical ball
polynomials and Theorem 2.4 in [11], we use the univariate Jacobi polyno-
mials and the spherical harmonics to construct the following multivariate
polynomials defined on Bd.

Definition 3.2. For n � 0 and 0 � j � n
2 , let {Y n−2j

ν (x) : 1 � ν � ad
n−2j}

denote an orthonormal basis of Hd
n−2j . We define the polynomials

Qn
0,ν(x) := Y n

ν (x),

Qn
j,ν(x) := (1 − ‖x‖2)P

(2,n−2j+ d−2
2 )

j−1 (2‖x‖2 − 1)Y n−2j
ν (x), 1 � j � n

2
.

It turns out that these polynomials are eigenfunctions of a fourth-order
linear partial differential operator.

Proposition 3.3. The polynomials Qn
j,ν satisfy

Δ
[
(1 − ‖x‖2)Qn

j,ν(x)
]

= cj,n Pn,0
j,ν , n � 0, (3.3)

with

cj,n =

{−4
(
n + d

2

)
, j = 0,

4 j (j + 1), 1 � j � n
2 ,

and
(1 − ‖x‖2)ΔPn,0

j,ν (x) = dj,n Qn
j,ν(x), n � 0, (3.4)

with

dj,n =

{
0, j = 0,

4
(
n − j + d

2

) (
n − j + d−2

2

)
, 1 � j � n

2 .

Proof. For j = 0, by (3.2), we have

Δ
[
(1 − ‖x‖2)Qn

0,ν(x)
]

= Δ
[
(1 − ‖x‖2)Y n

ν (x)
]

= −4
(

n +
d

2

)
Y n

ν (x).

Now, we deal with 1 � j � n
2 . The Jacobi polynomials satisfy the following

property ([10, p. 71]):

(1−s)P
(2,β)
j−1 (2s−1) =

1
2j + β + 1

[
(j + 1)P

(1,β)
j−1 (2s − 1) − j P

(1,β)
j (2s − 1)

]
.

(3.5)
Furthermore, the Jacobi polynomials P

(1,β)
j−1 (2s − 1) satisfy the differential

equation

s (1 − s) y′′ + (β + 1 − (β + 3) s)y′ = −(j − 1) (j + β + 1) y.



MJOM Simultaneous Approximation via Laplacians on the Unit Ball Page 9 of 22   316 

Using these two facts, we can easily deduce that

(2j + β + 1)Jβ

[
(1 − s)P

(2,β)
j−1 (2s − 1)

]

= (j + 1)JβP
(1,β)
j−1 (2s − 1) − j JβP

(1,β)
j (2s − 1)

= (j + 1)
[

− (j − 1) (j + β + 1) − (β + 1)
]

P
(1,β)
j−1 (2s − 1)

− j

[
− j(j + β + 2) − (β + 1)

]
P

(1,β)
j (2s − 1)

= −j(j + 1)
[
(j + β)P

(1,β)
j−1 (2s − 1) − (j + β + 1)P

(1,β)
j (2s − 1)

]
.

We need yet another formula for Jacobi polynomials ([1, p. 782,
(22.7.18)])

(2j + β + 1) P
(0,β)
j (2s − 1) = (j + β + 1) P

(1,β)
j (2s − 1) − (j + β) P

(1,β)
j−1 (2s − 1),

which implies immediately that

Jβ

[
(1 − s)P

(2,β)
j−1 (2s − 1)

]
= j (j + 1)P

(0,β)
j (2s − 1). (3.6)

Then, by Eqs. (3.2) and (3.6) with β = n − 2j + d−2
2 ,

Δ
[
(1 − ‖x‖2)Qn

j,ν(x)
]

= 4 j (j + 1)Pn,0
j,ν (x).

This proves (3.3).
Using ΔY n

ν (x) = 0, we get

(1 − ‖x‖2)ΔPn,0
0,ν = 0 = d0,n Qn

0,ν(x).

From Lemma 2.2 and Definition 3.2, we obtain

(1 − ‖x‖2)ΔPn,0
j,ν = dj,n (1 − ‖x‖2)Pn−2,2

j−1,ν (x) = dj,n Qn
j,ν(x),

proving (3.4). �

Combining Eqs. (3.3) and (3.4), we get a partial differential equation
for the Sobolev orthogonal polynomials.

Corollary 3.4. The polynomials Qn
j,ν satisfy

(1 − ‖x‖2)Δ2
[
(1 − ‖x‖2)Qn

j,ν(x)
]

= �n,j Qn
j,ν(x), 0 � j � n

2
, (3.7)

where

�n,j = 16 j (j + 1)
(

n − j +
d

2

) (
n − j +

d − 2
2

)
.

The following relation follows readily from (2.3) and (3.5).
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Proposition 3.5. The polynomials Qn
j,ν satisfy

Qn
0,ν(x) = Pn,1

0,ν (x),

Qn
j,ν(x) =

1
n + d

2

[
(j + 1)Pn−2,1

j−1,ν (x) − j Pn,1
j,ν (x)

]
, 1 � j � n

2
.

(3.8)

In the following proposition, we show that the polynomials in Definition
3.2 constitute a mutually orthogonal basis with respect to the inner product
(3.1).

Proposition 3.6. For n � 0, {Qn
j,ν : 0 � j � n

2 , 1 � ν � ad
n−2j} constitutes

a mutually orthogonal basis of Vd
n(Δ). Moreover〈

Qn
j,ν , Qm

k,η

〉
Δ

= H̃Δ
j,n δn,m δj,k δν,η,

where,

H̃Δ
j,n =

⎧⎪⎨
⎪⎩

λ + n + d
2 , j = 0,

j2 (j + 1)2

2n−2j+ d
2

h
(0,n−2j+ d−2

2 )
j , 1 � j � n

2 .
(3.9)

Proof. If j = k = 0, then using the formula∫
Bd

f(x) dx =
∫ 1

0

rd−1

∫
Sd−1

f(r ξ) dσ(ξ) dr,

and (3.2), we get

〈Qn
0,ν , Qm

0,η〉Δ = δn,m δν,η

[
λ + (β + 1)2

∫ 1

0

sβds

]
= δn,m δν,η [λ + β + 1] ,

where β = n − 2j + d−2
2 . If j = 0 and k � 1, then

〈Qn
0,ν , Qm

k,η〉Δ = − (β + 1) k (k + 1) δn,m−2k δν,η

∫ 1

0

P
(0,β)
k (2s − 1)sβds = 0,

since the factor (1 − ‖x‖2) vanishes on Sd−1.
For 1 � j, k � n

2 , applying Green’s identity∫
Bd

(uΔv − vΔu) dx =
∫
Sd−1

(
∂v

∂n
u − ∂u

∂n
v

)
dσ(ξ) (3.10)

with v(x) = (1 − ‖x‖2)Qn
j,ν(x) and u = (1 − ‖x‖2)Qm

k,η(x), we get

〈Qn
j,ν , Qm

k,η〉Δ =
λ

σd−1

∫
Sd−1

Qn
j,ν(ξ)Qm

k,η(ξ) dσ(ξ)

+
1

8σd−1

∫
Bd

(1 − ‖x‖2)Qm
k,η(x)Δ2

[
(1 − ‖x‖2)Qn

j,ν(x)
]
dx.

Then, by (3.7) and Definition 3.2, we can write

〈Qn
j,ν , Qm

k,η〉Δ =
�n,j

8σd−1

∫
Bd

Pn−2,2
j−1,ν (x)Pm−2,2

k−1,η (x)W2(x) dx

=
�n,j

8σd−1 b2
H2

j−1,n−2 δn,m δj,k δν,η.
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Using (2.4), we get

H2
j−1,n−2

H0
j,n

=
1
2
j (j + 1)

(d
2 + 1) (d

2 + 2)
(n − j + d

2 ) (n − j + d−2
2 )

.

Moreover, using (2.5) and the fact that b2 = (d
2 + 1) (d

2 + 2) b0, we obtain

〈Qn
j,ν ,Qm

k,η〉Δ =
j2 (j + 1)2

2β+1
h

(0,β)
j δn,m δj,k δν,η.

�

Corollary 3.7. For n � 2

Vd
n(Δ) = Hd

n ⊕ (1 − ‖x‖2)Vd
n−2(W2).

Proof. Using the basis (2.3) for Vd
n−2(W2), it follows that we actually have

Qn
j,ν(x) = (1 − ‖x‖2)Pn−2,2

j−1,ν (x),

for j � 1, from which the stated result follows. �

4. Sobolev Fourier Orthogonal Expansions and Approximation

Consider the Sobolev space

Hs(Bd) =
{
f ∈ C(Bd); ∂mf ∈ L2(Bd), |m| � s, m ∈ N

d
0

}
,

where L2(Bd) = L2(W0;Bd).
For f ∈ H2(Bd), let us denote by f̂ n,Δ

j,ν the Fourier coefficients with
respect to the basis of Vd

n(Δ) defined in (3.2), that is

f̂ n,Δ
j,ν =

1

H̃Δ
j,n

〈
f,Qn

j,ν

〉
Δ

,

where H̃Δ
j,n is given in (3.9).

Let projΔm : H2(Bd) → Vd
m(Δ) and SΔ

n : H2(Bd) → Πd
n denote the

projection operator and partial sum operators

projΔmf(x) =

m
2∑

j=0

ad
m−2j∑
ν=1

f̂ m,Δ
j,ν Qm

j,ν(x) and SΔ
n f(x) =

n∑
m=0

projΔmf(x).

We denote by ‖ · ‖Δ the norm induced by the inner product (3.1), and by
En(f)Δ the error of best approximation in H2(Bd) given by

En(f)Δ = ‖f − SΔ
n f‖Δ.

It turns out that the orthogonal expansion can be computed without
involving the derivatives of f .
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Proposition 4.1. For j � 1, let βj = n − 2j + d−2
2 . Then

f̂n,Δ
j,ν =

2 j (j + 1)

σd−1H̃Δ
j,n

[
(βj + j) (βj + j + 1)

∫
Bd

f(x)Qn
j,ν(x) dx

− 1
2

∫
Sd−1

f(ξ)Y n−2j
ν (ξ) dσ(ξ)

]
;

furthermore, for j = 0

f̂n,Δ
0,ν =

1
σd−1

∫
Sd−1

f(ξ)Y n
ν (ξ) dσ(ξ).

Proof. Applying Green’s identity (3.10) with v(x) = (1 − ‖x‖2) f(x) and
u = Δ

[
(1 − ‖x‖2)Qn

j,ν(x)
]

= 4 j (j + 1)Pn,0
j,ν (x), j � 1, shows

f̂n,Δ
j,ν =

1

σd−1H̃Δ
j,n

[
λ

∫
Sd−1

f(ξ)Qn
j,ν(ξ) dσ(ξ)

+
1
8

∫
Bd

Δ
[
(1 − ‖x‖2) f(x)

]
Δ
[
(1 − ‖x‖2)Qn

j,ν(x)
]

dx

]

=
1

8σd−1H̃Δ
j,n

[∫
Bd

(1 − ‖x‖2) f(x)Δ2

[
(1 − ‖x‖2)Qn

j,ν(x)
]

dx

− 8 j (j + 1)
∫
Sd−1

f(ξ)Y n−2j
ν (ξ) dσ(ξ)

]
,

where we have used (3.2) and P
(0,β)
j (1) = 1. The stated result for j � 1

follows from (3.7). The proof of j = 0 is similar but easier, in which we need
to use Δ

[
(1 − ‖x‖2)Y n

ν (x)
]

= −4 (n + d
2 )Y n

ν (x) and H̃Δ
0,n = λ + n + d

2 . �

We point out that the linear operator D defined by

D[P (x)] = Δ
[
(1 − ‖x‖2)P (x)

]
, P ∈ Πd,

is a bijection on Πd. Indeed, by Proposition 3.3, D[Qn
j,ν(x)] = cj,n Pn,0

j,ν with
cj,n �= 0. Therefore, for each n � 0, D is a one-to-one correspondence between
the classical basis for Vd

n(W0) and the Sobolev basis for Vd
n(Δ) defined in

Definition 3.2.
The following results will be used to estimate the error of approximation

of the Sobolev orthogonal expansion with respect to the basis in Definition
3.2.

Proposition 4.2. For f ∈ H2(Bd) and m � 0, we have

D projΔmf(x) ∈ Vd
m(W0).

Furthermore, for m � 0, we have

Δ0 projΔmf(x) ∈ Vd
m(Δ).
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Proof. By the definition of projΔmf(x) and (3.3), we have

D projΔmf(x) =

m
2∑

j=0

ad
m−2j∑
ν=1

f̂ m,Δ
j,ν Δ

[
(1 − ‖x‖2)Qm

j,ν(x)
]

=

m
2∑

j=0

ad
m−2j∑
ν=1

cn,j f̂ m,Δ
j,ν Pm,0

j,ν (x).

Therefore, D projΔmf(x) ∈ Vd
m(W0).

The second part of the proposition is a direct consequence of identity
(2.2). �

We use the previous result to show that D commutes with the partial
Fourier sum SΔ

n .

Proposition 4.3. For f ∈ H2(Bd)

D SΔ
n f = S0

n(Df) and Δ0S
Δ
n f = SΔ

n (Δ0f).

Proof. By the definition, f −SΔ
n f =

∑+∞
m=n+1 projΔmf . From Proposition 4.2,

we get that 〈D [f − SΔ
n f ], P 〉0 = 0 for all P ∈ Πd

n. Consequently, S0
n(Df −

D SΔ
n f) = 0. Since S0

n reproduces polynomials of degree at most n, then
S0

n(D SΔ
n f) = D SΔ

n f , which implies that

0 = S0
n(Df − D SΔ

n f) = S0
n(Df) − D SΔ

n f,

and the commutation relation is proved.
The second part can be established in a similar way taking into account

that Δ0 maps Hd
n to itself. �

The relation in the proposition above passes down to the Fourier coef-
ficients.

Proposition 4.4. For f ∈ H2(Bd)

D̂f
n,0

0,ν = −4
(

n +
d

2

)
f̂

n,Δ

0,ν ,

D̂f
n,0

j,ν = 4 j (j + 1) f̂
n,Δ

j,ν , 1 � j � n

2
,

and

Δ̂0f
n,Δ

j,ν = −(n − 2j) (n − 2j + d − 2) f̂
n,Δ

j,ν , 0 � j � n

2
.

Proof. Using the identity projΔn f = SΔ
n f − SΔ

n−1f and Proposition 4.3, we
obtain D projΔn f = proj0n(D f). Then, the first two identities follow from
(3.3). The last one is a direct consequence of (2.2). �

Theorem 4.5. For f ∈ H2(Bd)

En(f)Δ = c En(Df)0, n � 0.
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Proof. The Parseval identity reads

En(f)2Δ = ‖f − SΔ
n f‖2

Δ =
∞∑

m=n+1

�m
2 �∑

j=0

∑
ν

∣∣∣f̂ m,Δ

j,ν

∣∣∣2 H̃Δ
j,m = Σ1 + Σ2,

where we split the sum as

Σ1 =
∞∑

m=n+1

�m
2 �∑

j=1

∑
ν

∣∣∣f̂ m,Δ

j,ν

∣∣∣2 H̃Δ
j,m,

Σ2 =
∞∑

m=n+1

∑
ν

∣∣∣f̂ m,Δ

0,ν

∣∣∣2 H̃Δ
0,m.

We estimate Σ1 first. Using Proposition 4.4, we get
∣∣∣f̂ m,Δ

j,ν

∣∣∣2 =
1

16 j2 (j + 1)2

∣∣∣D̂ f
m,0

j,ν

∣∣∣2 .

Furthermore

H̃Δ
j,m

H0
j,m

=

j2 (j + 1)2

2n−2j+ d
2

h
(0,n−2j+ d−2

2 )
j

b0 σd−1

2n−2j+ d
2 +1

h
(0,n−2j+ d−2

2 )
j

=
2 j2 (j + 1)2

b0 σd−1
.

Consequently, it follows that:

Σ1 =
1

8 d

∞∑
m=n+1

�m
2 �∑

j=1

∑
ν

∣∣∣D̂ f
m,0

j,ν

∣∣∣2 H0
j,m.

Next, we estimate Σ2. Using Proposition 4.4 again, we obtain
∣∣∣f̂ m,Δ

0,ν

∣∣∣2 =
1

16 (m + d
2 )2

∣∣∣D̂ f
m,0

0,ν

∣∣∣2 .

Moreover

H̃Δ
0,m

H0
0,m

=
(m + d

2 ) (m + d
2 + λ)

d
2

.

Consequently, it follows that:

Σ2 = c

∞∑
m=n+1

∑
ν

∣∣∣D̂ f
m,0

j,ν

∣∣∣2 H0
j,m.

Putting these estimates together completes the proof of the theorem. �

The main result of this section is stated in the following theorem.
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Theorem 4.6. For f ∈ H2(Bd) and n � 1
∥∥∥∥D f − D SΔ

n f

∥∥∥∥
0

= En(Df)0, (4.1)
∥∥∥∥∂i

[
(1 − ‖x‖2)

(
f − SΔ

n f
) ]∥∥∥∥

0

� c

n
En(Df)0, 1 � i � d,

∥∥∥∥(1 − ‖x‖2)
(
f − SΔ

n f
) ∥∥∥∥

0

� c

n2
En(Df)0. (4.2)

Proof. By Proposition 4.3

‖D f − D SΔ
n f‖0 = ‖D f − S0

n(D f)‖0 = En(D f)0,

which proves (4.1).
Now, we deal with (4.2). We use the well-known duality argument, the

so called Aubin–Nitsche technique [4]. We use the characterization
∥∥∥∥(1 − ‖x‖2)

(
f − SΔ

n f
) ∥∥∥∥

0

= sup
‖g‖0 	=0

|〈g, (1 − ‖x‖2)
(
f − SΔ

n f
)〉0|

‖g‖0
. (4.3)

We introduce the following auxiliary boundary-value problem:⎧⎪⎪⎨
⎪⎪⎩

Δ2 ϕg = g, in Bd,

Δϕg = 0, on Sd−1,

ϕg = 0. on Sd−1.

(4.4)

Observe that, by Green’s identity, for h ∈ H2(Bd), we have

1
8σd−1

∫
Bd

Δ
[
(1 − ‖x‖2)h

]
Δϕg dx =

1
8σd−1

∫
Bd

(1 − ‖x‖2)h Δ2 ϕg dx

=
1

8σd−1

∫
Bd

(1 − ‖x‖2)h g(x) dx

=
1

8 d
〈g, (1 − ‖x‖2)h 〉0,

(4.5)
where we have used b0 = d/σd−1. Moreover, since ϕg = 0 on Sd−1, there is a
function ϕ̃g, such that ϕg = (1−‖x‖2) ϕ̃g. If g = 0, then ‖ϕ̃g‖2

Δ = 〈ϕ̃g, ϕ̃g〉Δ =
0, which implies that ϕ̃g ≡ 0. This shows that the homogeneous version of
(4.4) has a unique solution ϕg = 0 and, by the linearity of the problem (4.4),
we also have that the non-homogeneous problem with g ∈ L2(Bd) has a
unique solution.

Using (4.5), we get

〈
f − SΔ

n f, ϕ̃g

〉
Δ

=
1

8 d

〈
g, (1 − ‖x‖2) (f − SΔ

n f)
〉
0
.

Since SΔ
n reproduces polynomials of degree n, it follows that:

〈f − SΔ
n f, SΔ

n ϕ̃g〉Δ = 0.
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Consequently

|〈g, (1 − ‖x‖2)
(
f − SΔ

n f
)〉0| � 〈f − SΔ

n f, ϕ̃g − SΔ
n ϕ̃g〉Δ

� ‖f − SΔ
n f‖Δ‖ϕ̃g − SΔ

n ϕ̃g‖Δ.

Therefore, by (4.3), we have
∥∥∥∥(1 − ‖x‖2)

(
f − SΔ

n f
) ∥∥∥∥

0

� ‖f − SΔ
n f‖Δ

(
sup

‖g‖0 	=0

‖ϕ̃g − SΔ
n ϕ̃g‖Δ

‖g‖0

)
.

Moreover, by Theorem 4.5 and (2.6)

‖ϕ̃g − SΔ
n ϕ̃g‖Δ = c En(Dϕ̃g)0 = c En(Δϕg)0

� c

n2

[
En−2(Δ2 ϕg)2 + En(Δ0 Δϕg)0

]
.

(4.6)

Let us bound the term En(Δ0Δϕg)0. Since Pn,0
0,ν and Pn,0

n
2 ,1 are harmonic and

radial functions, respectively, then Δ0 ΔPn,0
0,ν = 0 and Δ0 ΔPn,0

n
2 ,1 = 0. This

means that

En(Δ0Δϕg)20 =
∞∑

m=n+1

�m−2
2 �∑

j=1

ad
m−2j∑
ν=1

∣∣∣Δ̂0Δϕg

m,0

j,ν

∣∣∣2 H0
j,m.

We need the following identities (see (3.5) in [9]):

Δ̂0Δϕg

m,0

j,ν = λm−2j Δ̂ϕg

m,0

j,ν and Δ̂2 ϕg

m−2,2

j−1,ν = κ0
m−j Δ̂ϕg

m,0

j,ν ,

for 0 � j � m
2 in the first identity and 0 � j � m−2

2 in the second identity,
where λm−2j and κ0

m−j are defined in Lemma 2.2. Using these identities, we
get

En(Δ0Δϕg)20 =
∞∑

m=n+1

�m−2
2 �∑

j=1

ad
m−2j∑
ν=1

|λm−2j |2
|κ0

m−j |2
∣∣∣∣Δ̂2 ϕg

m−2,2

j−1,ν

∣∣∣∣
2

H0
j,m.

Moreover
H0

j,m

H2
j−1,m−2

=
2 (m − j + d−2

2 ) (m − j + d+2
2 )

(d+2
2 ) j (j + 1)

.

Therefore, for 1 � j � m−2
2

|λm−2j |2
|κ0

m−j |2
H0

j,m

H2
j−1,m−2

� c
m + d

m + d−2
2

.

Consequently

En(Δ0Δϕg)20 � c

∞∑
m=n+1

m + d

m + d−2
2

�m−2
2 �∑

j=1

ad
m−2j∑
ν=1

∣∣∣∣Δ̂2ϕg

m−2,2

j−1,ν

∣∣∣∣
2

H2
j−1,m−2

� c En−2(Δ2ϕg)22.
(4.7)
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Putting together (4.6) and (4.7), we get

‖ϕ̃g − SΔ
n ϕ̃g‖Δ � c

n2
En−2(Δ2ϕg)2 � c

n2
‖Δ2ϕg‖2 � c

n2
‖Δ2ϕg‖0 =

c

n2
‖g‖0,

where we have used (4.4) and the fact that (1 − ‖x‖2)2 � 1 on Bd. This
implies that

sup
‖g‖0 	=0

‖ϕ̃g − SΔ
n ϕ̃g‖Δ

‖g‖0
� c

n2
,

and, therefore, by Theorem 4.5 again, we have∥∥∥∥(1 − ‖x‖2)
(
f − SΔ

n f
) ∥∥∥∥

0

� c

n2
En(Df)0,

which proves (4.2).
The intermediate case follows from the multivariate Landau–Kolmogorov

inequality [3]: for i = 1, 2, . . . , d∥∥∥∥∂i

[
(1 − ‖x‖2)

(
f − SΔ

n f
) ]∥∥∥∥

0

� c

∥∥∥∥(1 − ‖x‖2)
(
f − SΔ

n f
) ∥∥∥∥

1/2

0

∥∥∥∥D f − D SΔ
n f

∥∥∥∥
1/2

0

.

�

This kind of result has not been proved yet for the inner product with
a mass point at the origin studied in the next section, and will be analysed
in the near future.

5. A Sobolev Inner Product with a Mass Point at the Origin

In this section, we consider a Sobolev inner product obtained from 〈·, ·〉Δ by
replacing the integral over Sd−1 with a mass point at the origin. That is, this
new inner product is given by

〈f, g〉∗
Δ =

λ∗

σd−1
f(0) g(0)

+
1

8σd−1

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx, λ∗ > 0.

(5.1)
As in Definition 3.2, orthogonal polynomials with respect to this inner prod-
uct can be constructed in a similar way using classical ball polynomials (2.3)
and Theorem 2.4 in [11], but, in this case, there is a small modification.

Definition 5.1. For n � 0 and 0 � j � n
2 , let {Y n−2j

ν (x) : 1 � ν � ad
n−2j}

denote an orthonormal basis of Hd
n−2j . We define the polynomials

Rn
0,ν(x) := Y n

ν (x),

Rn
j,ν(x) := (−1)j ‖x‖2 P

(n−2j+ d−2
2 ,2)

j−1 (1 − 2‖x‖2)Y n−2j
ν (x), 1 � j � n

2
.
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The following proposition is useful in studying the orthogonality of these
polynomials with respect to the inner product (5.1).

Proposition 5.2. The polynomials Rn
j,ν satisfy

Δ
[
(1 − ‖x‖2)Rn

j,ν(x)
]

= cj,n Pn,0
j,ν , n � 0, (5.2)

where cj,n are constants defined in (3.3).

Proof. For j = 0, by (3.2), we have

Δ
[
(1 − ‖x‖2)Rn

0,ν(x)
]

= Δ
[
(1 − ‖x‖2)Y n

ν (x)
]

= −4
(

n +
d

2

)
Y n

ν (x).

Now, we deal with 1 � j � n
2 . The Jacobi polynomials satisfy the following

properties ([10, p.71]):

sP
(β,2)
j−1 (1 − 2s) =

1
2j + β + 1

[
(j + 1)P

(β,1)
j−1 (1 − 2s) + j P

(β,1)
j (1 − 2s)

]
,

and ([10, p.59]):

P
(β,1)
j (1 − 2s) = (−1)j P

(1,β)
j (2s − 1).

Therefore

sP
(β,2)
j−1 (1 − 2s) =

(−1)j−1

2j + β + 1

[
(j + 1)P

(1,β)
j−1 (2s − 1) − j P

(1,β)
j (2s − 1)

]
.

(5.3)
As in the proof of Proposition 3.3, this implies that

Jβ

[
sP

(β,2)
j−1 (1 − 2s)

]
= (−1)j j (j + 1)P

(0,β)
j (2s − 1). (5.4)

Then, by (3.2) and (5.4) with β = n − 2j + d−2
2

Δ
[
(1 − ‖x‖2)Rn

j,ν(x)
]

= 4 j (j + 1)Pn,0
j,ν (x).

This proves (5.2). �

The following relation follows readily from (2.3), (5.3), and (3.8).

Proposition 5.3. The polynomials Rn
j,ν satisfy

Rn
0,ν(x) = Pn,1

0,ν (x),

Rn
j,ν(x) =

1
n + d

2

[
j Pn,1

j,ν (x) − (j + 1)Pn−2,1
j−1,ν (x)

]
, 1 � j � n

2
.

In particular, Rn
0,ν = Qn

0,ν and Rn
j,ν = −Qn

j,ν for 1 � j � n
2 .

Let us denote by Vd,∗
n (Δ) the space of Sobolev orthogonal polynomials

of degree n with respect to (5.1).
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Proposition 5.4. For n � 0, {Qn
j,ν : 0 � j � n

2 , 1 � ν � ad
n−2j} constitutes

a mutually orthogonal basis of Vd,∗
n (Δ). Moreover〈

Qn
j,ν , Qm

k,η

〉∗
Δ

= H̃∗
j,n δn,m δj,k δν,η,

where,

H̃∗
j,n =

⎧⎪⎨
⎪⎩

λ∗ δn,0 + n + d
2 , j = 0,

j2 (j + 1)2

2n−2j+ d
2

h
(0,n−2j+ d−2

2 )
j , 1 � j � n

2 .

Proof. The proof is similar to that of Proposition 3.6, but the fact that
Qn

j,ν(0) = −Rn
j,ν(0) = 0 for n � 0 must be taken into account. �

Following the proof of Proposition 4.1 and using Proposition 5.1, we can
obtain the Fourier coefficients of a function relative to (5.1) given by

f̂ n,∗
j,ν =

1

H̃∗
j,n

〈
f,Rn

j,ν

〉∗
Δ

.

Proposition 5.5. For n � 1

f̂ n,∗
j,ν = f̂ n,Δ

j,ν , 0 � j � n/2�,
and

f̂ 0,∗
0,1 =

1
σd−1 (λ∗ + d

2 )

[
λ∗ f(0) +

d

2

∫
Sd−1

f(ξ) dσ(ξ)
]

.

Proposition 3.6 together with Proposition 5.4 yields the following result.

Proposition 5.6. Define the inner product

〈f, g〉∗∗
Δ =

λ∗

σd−1
f(0) g(0) +

λ

σd−1

∫
Sd−1

f(ξ) g(ξ) dσ(ξ)

+
1

4σd−1

∫
Bd

Δ[(1 − ‖x‖2)f(x)]Δ[(1 − ‖x‖2)g(x)] dx, λ∗, λ > 0,

(5.5)
and let Vd,∗∗

n (Δ) be the space of Sobolev orthogonal polynomials of degree n
with respect to (5.5). For n � 0, {Qn

j,ν : 0 � j � n
2 , 1 � ν � ad

n−2j}
constitutes a mutually orthogonal basis of Vd,∗∗

n (Δ). Moreover
〈
Qn

j,ν , Qm
k,η

〉∗∗
Δ

=
(
H̃Δ

j,n + H̃∗
j,n

)
δn,m δj,k δν,η,

Conclusions

In this work, we analyse the impact of an additional term in the Sobolev in-
ner product introduced by Y. Xu in [11] used to find the numerical solution
of the Poisson equation −Δu = f(·, u) on the unit disk with zero bound-
ary conditions (Atkinson and Hansen [2]). Each of the two Sobolev inner
products considered in this paper includes an additional term that takes into
account the values of the functions on the boudary of the unit ball of R

d

(see (3.1)), or the evaluation of the functions at the origin (see (5.1)). These
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new Sobolev inner products contemplate the prospect of knowing some ad-
ditional values of the involved functions and offer the possibility of taking
into account more characteristics of the functions that can be approximated.
The additional terms are multiplied by a positive real constant λ generalizing
the inner product considered by Y. Xu in [11]. Appart from the exhaustive
description of the orthogonal structure in both cases, giving explicit expres-
sions for the bases, we provide the Fourier coefficients of the approximations
in both cases and related them with the Fourtier coefficients for the origi-
nal case. We must remark that the spherical term in the first Sobolev inner
product has influence over the angular part of the orthogonal expansion, that
is, the terms associated with the index value j = 0 (see (3.9)), and, in the
second Sobolev inner product, that is, when the value of the functions at the
origin is added, only the first coefficient in the Fourier expansion is affected
by the new conditions (Proposition 5.4). Moreover, the error of approxima-
tion for the orthogonal expansions with respect to the Sobolev inner products
appearing in this work (in particular, the one introduced in [11]) have not
been previously studied in the literature.
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