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On sets related to integer partitions with quasi-required elements
and disallowed elements
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Abstract. Given a set A of non-negative integers and a set B of positive integers, we are
interested in computing all sets C (of positive integers) that are minimal in the family of
sets K (of positive integers) such that (i) K contains no elements generated by non-negative
integer linear combinations of elements in A and (ii) for any partition of an element in B
there is at least one summand that belongs to K. To solve this question, we translate it into
a numerical semigroups problem.
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1. Introduction

Let us recall that an integer partition (or simply a partition) of a positive
integer b is a way of writing b as a sum of positive integers. If two sums
differ only in the order of their summands, then they are considered the same
partition. For example, the seven partitions of 5 are 5, 4 + 1, 3 + 2, 3 + 1 + 1,
2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.

The beginnings of partition theory can be dated back to 1676, when G. W.
Leibniz asked J. Bernouilli how many partitions are associated to a positive
integer (see [2]). In the middle of the 18th century, the same question was posed
by P. Naudé to L. Euler, who gave the first results relevant to this question
with the help of so-called generating functions. Since then, many works have
studied several topics related to partitions (see [1]).

In most cases, those works study the number of possible partitions. How-
ever, our purpose is different. More specifically, we will generalise an earlier
work by the second author. For a non-empty finite subset B of N \ {0} (where
N = {0, 1, 2, . . .} is the set of non-negative integers), in [10] an algorithm is
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given to compute all sets C ⊆ N\{0} which are minimal (with respect to the
inclusion order) in the family of sets that satisfy the following condition: if
x1 + · · · + xn is a partition of an element in B, then at least one summand of
this partition belongs to C. Let us observe that, in a sense, the elements of the
partitions are quasi-required because at least one of these elements belongs to
a prefixed set.

Now, we add a second condition over the partition in order to, in a sense,
exclude some elements. As usual, 〈A〉 is the monoid generated by A (see Sect. 2,
third paragraph).

Problem 1.1. If A is a non-empty subset of N and B is a non-empty finite
subset of N\{0}, then compute all subsets C ⊆ N\{0} that are minimal (with
respect to the inclusion order) in the family of sets K ⊆ N \ {0} that satisfy
the following properties:

(i) K ∩ 〈A〉 = ∅.
(ii) If x1 + · · · + xn is a partition of an element of B, then at least one of the

summands of the partition belongs to K.

To achieve our aim, we use the theory of numerical semigroups. In particu-
lar, we consider the family of irreducible numerical semigroups and the concept
of Apéry set of a numerical semigroup. In Sect. 2 we recall some preliminaries
on numerical semigroups and, moreover, we relate Problem 1.1 to a question
on numerical semigroups.

Let S be the set of all numerical semigroups. If A is a non-empty subset
of N, F ∈ N\{0}, and F(S) is the Frobenius number of a numerical semigroup
S (see Sect. 2, first paragraph), then we use the notation

S (A,F ) = {S ∈ S | A ⊆ S and F(S) = F}
and

I (A,F ) = {S ∈ S (A,F ) | S is irreducible}.

In Sect. 3, we show that I (A,F ) �= ∅ if and only if S (A,F ) �= ∅ if and only
if F /∈ 〈A〉.

In [6] there is an algorithmic process described, implemented in the function
IrreducibleNumericalSemigroupWithFrobeniusNumber(·) of [7], which computes
all the irreducible numerical semigroups with a given Frobenius number.

Let us observe that we can compute all the elements of I (A,F ) quite sim-
ply: by using IrreducibleNumericalSemigroupWithFrobeniusNumber(F ) we ob-
tain all the irreducible numerical semigroups with Frobenius number equal to
F and, after that, we remove those that do not contain the set A.

The main purpose of Sect. 3 is to show an algorithm for computing I (A,F )
(see Algorithm 3.13) that improves the one described in the previous para-
graph.
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As a first application of Algorithm 3.13, in Sect. 4, we show another al-
gorithm for computing S (A,F ) (see Algorithm 4.5 and Remark 4.6). Such
an algorithm is a generalisation of the one shown in [5] for computing all the
numerical semigroups with a given Frobenius number.

Let us observe that Sect. 4 can be considered a by-product result and, in a
first reading, it can be omitted without losing the thread.

If A is a non-empty subset of N and B is a non-empty finite subset of
N \ {0}, then we use the notation

S (A,B) = {S ∈ S | A ⊆ S and S ∩ B = ∅}.

We begin Sect. 5 by showing that S (A,B) �= ∅ if and only if B ∩ 〈A〉 = ∅.
With the notation

M (A,B) = Maximal
(
S (A,B)

)
,

in Sect. 5 we use the results of Sect. 3 in order to show an algorithm for
computing M (A,B) (see Algorithm 5.9). Such an algorithm is a generali-
sation of the one shown in [10] for computing the maximal elements of the set
{S ∈ S | S ∩ B = ∅}.

Finally, in Sect. 6 we show an algorithm as an answer to Problem 1.1 (see
Algorithm 6.1). As one might expect, the algorithm described is a generalisa-
tion of the one shown in [10].

2. Preliminaries

A submonoid of (N,+) is a subset M ⊆ N that is closed under addition and
contains the zero element. A numerical semigroup is a submonoid S of N such
that N \ S is finite. The finiteness of N \ S allows us to define two relevant
invariants of S. Namely, the greatest integer that does not belong to S, called
the Frobenius number of S and denoted by F(S), and the cardinality of N\S,
called the genus of S and denoted by g(S).

Following the notation of [9], a numerical semigroup is irreducible if it can
not be expressed as the intersection of two numerical semigroups containing
it strictly. In [9] it is shown that a numerical semigroup S is irreducible if
and only if it is maximal (with respect the inclusion order) in the set of all
numerical semigroups with Frobenius number equal to F(S). Moreover, from
[4] and [8], we can state that the set of all irreducible numerical semigroups is
the union of two interesting families of numerical semigroups: the symmetric
and the pseudo-symmetric ones.

If X is a non-empty subset of N, then we denote by 〈X〉 the submonoid of
(N,+) generated by X, that is,

〈X〉 =
{
λ1x1 + · · · + λnxn | n ∈ N \ {0}, {x1, . . . , xn} ⊆ X,

{λ1, . . . , λn} ⊆ N
}
.
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It is well known (see Lemma 2.1 of [11]) that 〈X〉 is a numerical semigroup if
and only if gcd(X) = 1.

If M is a submonoid of (N,+) and M = 〈X〉, then we say that X is a
system of generators of M . Moreover, if M �= 〈Y 〉 for any subset Y � X, then
we say that X is a minimal system of generators of M .

The following result is [11, Corollary 2.8].

Lemma 2.1. If M is a submonoid of (N,+), then M has a unique minimal
system of generators that in addition is finite.

We denote by msg(M) the minimal system of generators of M . The next
result is [11, Corollary 2.9].

Lemma 2.2. If M is a submonoid of (N,+) generated by {m1 < · · · < me}
(with m1 �= 0), then msg(M) = {m1 < · · · < me} if and only if mi+1 /∈
〈m1, . . . , mi〉 for all i ∈ {1, . . . , e − 1}.

Let S be a numerical semigroup and n ∈ S \ {0}. The Apéry set of n in S
(named so in honour of [3]) is Ap(S, n) = {s ∈ S | s − n /∈ S}. The next result
is [11, Lemma 2.4].

Lemma 2.3. Let S be a numerical semigroup and let n ∈ S\{0}. Then Ap(S, n)
= {w(0) = 0, w(1), . . . , w(n−1)}, where w(i) is the least element of S congru-
ent with i modulo n, for all i ∈ {0, . . . , n − 1}.

If S is a numerical semigroup and Ap(S, n) = {w(0), w(1), . . . , w(n − 1)},
then we use the notation θn(S) = (w(1), . . . , w(n−1)). Moreover, if (x1, . . . , xr)
and (y1, . . . , yr) belong to N

r, then we define the operation

(x1, . . . , xr) ∨ (y1, . . . , yr) = (max{x1, y1}, . . . ,max{xr, yr})

and we consider the usual product order

(x1, . . . , xr) ≤ (y1, . . . , yr) if xi ≤ yi for all i ∈ {1, . . . , r}.

The following result is [10, Corollary 4.5] and useful for proving Theo-
rem 5.8.

Proposition 2.4. Let n be a positive integer and let Sn = {S ∈ S | n ∈ S}.
Then:

1. θn : Sn → N
n−1 is an injective application.

2. If (x1, . . . , xn−1) ∈ Im(θn), then S = 〈x1, . . . , xn−1, n〉 ∈ Sn and θn(S) =
(x1, . . . , xn−1).

3. If {S, T} ⊆ Sn, then S ⊆ T if and only if θn(T ) ≤ θn(S).
4. If {S, T} ⊆ Sn, then θn(S ∩ T ) = θn(S) ∨ θn(T ).

Now, let A be a non-empty subset of N and let B be a non-empty finite
subset of N \ {0} such that 〈A〉 ∩ B = ∅. Let us consider the notation

• P(B) = {(x1, . . . , xn) | x1+· · ·+xn is a partition of some element of B},
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• G(A,B) = {{x1, . . . , xn}\〈A〉 | (x1, . . . , xn) ∈ P(B)},
• L(A,B) = {K ⊆ N\{0} | K ∩ X �= ∅ for all X ∈ G(A,B)},
• m(A,B) = Minimal

(
L(A,B)

)
.

Observe that, with this notation, the question proposed in Problem 1.1 is
equivalent to giving an algorithm for computing m(A,B).

Our next purpose is to prove that C ∈ m(A,B) if and only if N \ C ∈
M (A,B). To do so, we need the following three results.

Lemma 2.5. If C ∈ m(A,B), then the following conditions are satisfied.

1. B ⊆ C ⊆ {1, . . . ,max(B)} \ 〈A〉.
2. If c ∈ C, then there exists X ∈ G(A,B) such that C ∩ X = {c}.
3. If x, y are positive integers and x + y ∈ C, then C ∩ {x, y} �= ∅.
4. If {x, y} ⊆ N \ C, then x + y ∈ N \ C.

Proof. 1. It is trivial from the definitions.
2. If C ∈ m(A,B) and c ∈ C, then C \ {c} �∈ L(A,B). Therefore, there exits

X ∈ G(A,B) such that (C\{c}) ∩ X = ∅. Moreover, since C ∈ m(A,B),
we have C ∈ L(A,B) and, consequently, C∩X �= ∅. Thereby, we conclude
that C ∩ X = {c}.

3. Let x, y be positive integers such x + y ∈ C. By applying the previous
item, there exists (x1, . . . , xn) ∈ P(B) such that x1 + · · · + xn = b ∈ B
and

C ∩ ({x1, . . . , xn} \ 〈A〉) = {x + y}. (1)

Now, without loss of generality, we can suppose that x1 = · · · = xk = x+y

and xi �= x + y for all i ∈ {k + 1, . . . , n}. Thus, (x + y)+
(k)· · · +(x + y) +

xk+1+· · ·+xn = b, that is, {x, y, xk+1, . . . , xn}\〈A〉 ∈ G(A,B) and, since
C ∈ L(A,B), we have that

C ∩ ({x, y, xk+1, . . . , xn} \ 〈A〉) �= ∅. (2)

From (1)-(2) (and as xi �= x + y if k + 1 ≤ i ≤ n}), it is clear that
C ∩ {x, y} �= ∅.

4. This is a reformulation of the statement in the previous item.
�

Proposition 2.6. If C ∈ m(A,B), then N\C ∈ S (A,B). Moreover, we have
that 〈A〉 ⊆ N\C and (N\C) ∩ B = ∅.
Proof. First of all, by item 1 of Lemma 2.5, we know that N \ C is a finite set
such that 0 ∈ N\C. Secondly, by item 4 of Lemma 2.5, we have that N \ C is
closed under addition. Therefore, N \ C is a numerical semigroup.

Finally, and again by item 1 of Lemma 2.5, we can conclude that 〈A〉 ⊆ N\C
and (N\C) ∩ B = ∅. �
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Proposition 2.7. If S is a numerical semigroup such that A ⊆ S and S∩B = ∅,
then N\S ∈ L(A,B).

Proof. If we take K = N \ S, then it is clear that K ⊆ N\{0}. Thus, to finish
the proof, it is enough to see that, if X ∈ G(A,B), then K ∩ X �= ∅.

Let X = {x1, . . . , xn}\〈A〉 ∈ G(A,B). By hypothesis, if x1 + · · · + xn is a
partition of b ∈ B, then x1+· · ·+xn �∈ S. Thus, there exists i ∈ {1, . . . , n} such
that xi �∈ S, that is, xi ∈ N \ S = K. In addition, xi �∈ 〈A〉 and, consequently,
xi ∈ X. Thereby, xi ∈ K ∩ X. �

We are now ready to show the result that allows us to translate Problem 1.1
into a question on numerical semigroups.

Theorem 2.8. Let C be a subset of N \ {0}. Then C ∈ m(A,B) if and only if
N\C ∈ M (A,B).

Proof. (Necessity.) From Proposition 2.6, we know that N \ C ∈ S (A,B).
Now, let us suppose that there exists S ∈ S (A,B) such that N\C ⊆ S. Then,
by Proposition 2.7, we have that N\S ∈ L(A,B). But, since C ∈ m(A,B) and
N \ S ⊆ C, we have that C = N \ S or, equivalently, that N \ C = S. Thus, we
conclude that N\C ∈ M (A,B).

(Sufficiency.) By applying Proposition 2.7, we have that, if N\C ∈ M (A,B),
then C ∈ L(A,B). Now, let us assume that there exists D ∈ m(A,B) such that
D ⊆ C. Then, N\C ⊆ N\D and, by Proposition 2.6, N\D ∈ S (A,B). There-
fore, N\C = N\D and, consequently, C = D. Thus, C ∈ m(A,B). �

As an immediate consequence of Theorem 2.8, we have the following result.

Corollary 2.9. Let A be a non-empty subset of N and let B be a non-empty
finite subset of N \ {0}. Then m(A,B) = {N\S | S ∈ M (A,B)}.

3. The set I (A,F )

In this section A is a non-empty subset of N and F is a positive integer.

Proposition 3.1. S (A,F ) �= ∅ if and only if F /∈ 〈A〉.
Proof. (Necessity.) If S (A,F ) �= ∅, then there exists S ∈ S (A,F ). Therefore,
〈A〉 ⊆ S and F /∈ S. Consequently, F /∈ 〈A〉.

(Sufficiency.) If F /∈ 〈A〉, then it is clear that S = 〈A〉 ∪ {F +1,→} (where
the symbol → means that every integer greater than F + 1 belongs to the set
S) is a numerical semigroup with Frobenius number equal to F . Therefore,
S (A,F ) �= ∅. �

The next result is [9, Theorem 1].
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Lemma 3.2. If S is a numerical semigroup, then the following conditions are
equivalent.

1. S is irreducible.
2. S is maximal in the set of all numerical semigroups with Frobenius num-

ber equal to F(S).
3. S is maximal in the set of all numerical semigroups that do not contain

F(S).

Let us observe that, if S is a numerical semigroup, then N\S is a finite set.
Therefore, there exists a finite number of numerical semigroups containing S.
This fact, together with Proposition 3.1 and Lemma 3.2, allows us to state the
next result.

Proposition 3.3. I (A,F ) �= ∅ if and only if F /∈ 〈A〉.
The following result is [5, Lemma 4].

Lemma 3.4. If S is a numerical semigroup with Frobenius number equal to F ,
then:

1. If h = max
{
x ∈ N\S | F − x /∈ S and x �= F

2

}
, then S ∪{h} is a numer-

ical semigroup with Frobenius number equal to F .
2. S is irreducible if and only if

{
x ∈ N\S | F − x /∈ S and x �= F

2

}
= ∅.

From the above lemma, we can easily deduce the next result.

Lemma 3.5. If S is a numerical semigroup with Frobenius number equal to F ,
then

Δ(S) = S ∪
{

x ∈ N \ S | F − x /∈ S and x >
F

2

}

is an irreducible numerical semigroup with Frobenius number equal to F .

From the proof of Proposition 3.1, we know that, if F /∈ 〈A〉, then 〈A〉 ∪
{F +1,→} ∈ S (A,F ). Now, by applying Lemma 3.5, we have that C(A,F ) =
Δ(〈A〉 ∪ {F + 1,→}) ∈ I (A,F ).

The following result says that C(A,F ) is the unique element of I (A,F ) in
which all its minimal generators less than F

2 belong to A.

Proposition 3.6. If F /∈ 〈A〉, then
{

S ∈ I (A,F ) | {
x ∈ msg(S) | x < F

2

} ⊆ A
}

= {C(A,F )}.

Proof. If x ∈ C(A,F ) and x < F
2 , then x ∈ 〈A〉. Since C(A,F ) ∈ I (A,F ), by

applying Lemma 2.2, we have that

{C(A,F )} ⊆
{

S ∈ I (A,F ) | {
x ∈ msg(S) | x < F

2

} ⊆ A
}

.
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If S ∈ I (A,F ) and
{
x ∈ msg(S) | x < F

2

} ⊆ A, then we deduce from
Lemma 2.2 that S = (〈A〉 ∪ {F + 1,→}) ∪ X, where X ⊆ {x ∈ N | F

2 < x <
F}. Now, by applying item 2 of Lemma 3.4, we easily get that S = C(A,F ).
�

The next result is well known (for instance, see [11]).

Lemma 3.7. If S is a numerical semigroup and x ∈ S, then S\{x} is a nu-
merical semigroup if and only if x ∈ msg(S).

Let Z and Q be the sets of integers and rational numbers, respectively. If
q ∈ Q, we use the notation 
q� = min{z ∈ Z | q ≤ z}. The following result can
be deduced from [6, Lemma 2.4].

Lemma 3.8. If S is a numerical semigroup, then S is irreducible if and only if
g(S) =

⌈
F(S)+1

2

⌉
.

Note that, as a consequence of Proposition 3.6, if S ∈ I (A,F )\{C(A,F )},
then there exists α(S) = min

{
x ∈ msg(S) | x /∈ A and x < F

2

}
.

Proposition 3.9. If S ∈ I (A,F ) \ {C(A,F )}, then S̄ = (S\{α(S)}) ∪ {F −
α(S)} ∈ I (A,F ).

Proof. First of all, let us observe that the cardinality of N \ S̄ is equal to g(S).
Therefore, from Lemma 3.8, we can state that S̄ ∈ I (A,F ) if and only if S̄ is
a numerical semigroup.

Now, from Lemma 3.7, we have that S \ {α(S)} is a numerical semigroup.
Thus, in order to assert that S̄ is a numerical semigroup, it suffices to verify
that F − α(S) + s ∈ S̄ for s = F − α(S) or for all s ∈ S\{0, α(S)}.

Firstly, and from its definition, α(S) < F
2 and then F −α(S) > F

2 . Thereby,
2(F − α(S)) > F and, consequently, 2(F − α(S)) ∈ S̄.

Secondly, if s ∈ S \ {0, α(S)} and F − α(S) + s /∈ S, then, by item 2 of
Lemma 3.4, we deduce that F − (F − α(S) + s) ∈ S or F − α(S) + s = F

2 .
But, if F − (F − α(S) + s) ∈ S, then α(S) − s ∈ S and, in consequence,
α(S) /∈ msg(S), which is a contradiction. And, if F − α(S) + s = F

2 , then
α(S) = F

2 + s > F
2 , which is once again a contradiction. �

If S ∈ I (A,F ), then Proposition 3.9 allows us to define the following
sequence of elements in I (A,F ).

• S0 = S;

• Sn+1 =
{

(Sn \ {α(Sn)}) ∪ {F − α(Sn)}, if Sn �= C(A,F ),
C(A,F ), otherwise.

It is clear that there exists k ∈ N such that Sk = C(A,F ).
In order to compute the elements of I (A,F ), we use a tree structure on

that set. To do so, let us recall some definitions and results.
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A graph G is a pair (V,E) where V is a non-empty set (whose elements are
called the vertices of G) and E is a subset of {(v, w) ∈ V ×V | v �= w} (whose
elements are called the edges of G). A path (of length n) connecting the vertices
x and y of G is a sequence of different edges (v0, v1), (v1, v2), . . . , (vn−1, vn)
such that v0 = x and vn = y. We say that a graph G is a (directed rooted)
tree if there exists a vertex r (known as the root of G) such that, for any other
vertex x of G, there exists a unique path connecting x and r. If (x, y) is an
edge of the tree, then we say that x is a child of y. (For more details about
trees, see [12, Chapter 9].)

We define the graph G
(
I (A,F )

)
in the following way: I (A,F ) is the set

of vertices and (S, T ) ∈ I (A,F ) × I (A,F ) is an edge if T = (S \ {α(S)}) ∪
{F − α(S)}.

The next result is an immediate consequence of the definition of the se-
quence {Sn | n ∈ N} ⊆ I (A,F ) given after Proposition 3.9.

Theorem 3.10. If F /∈ 〈A〉, then G
(
I (A,F )

)
is a tree with root C(A,F ).

It is clear that a tree can be built in a recurrent way by starting from its
root and connecting each vertex with its children. Our next purpose is to show
who are the children of a vertex of G

(
I (A,F )

)
.

The following result is [6, Proposition 2.5].

Lemma 3.11. Let S be an irreducible numerical semigroup with Frobenius num-
ber equal to F and let x be an element of msg(S) such that x < F , 2x−F /∈ S,
3x �= 2F , and 4x �= 3F . Then S̄ = (S \ {x}) ∪ {F − x} is another irreducible
numerical semigroup with Frobenius number equal to F .

It is obvious that
{
x ∈ msg (C(A,F )) | x /∈ A and x < F

2

}
= ∅. Thus, there

does not exist min
{
x ∈ msg (C(A,F )) | x /∈ A and x < F

2

}
. By definition, we

consider that α (C(A,F )) = +∞.
Let us build the children set of a numerical semigroup S belonging to the

tree G
(
I (A,F )

)
.

Proposition 3.12. If S ∈ I (A,F ), then the children set of S, in the tree
G

(
I (A,F )

)
, is

{(
S \ {x}) ∪ {F − x} | x ∈ msg(S),

F

2
< x < F, x /∈ A, 2x − F /∈ S,

3x �= 2F, 4x �= 3F, and F − x < α(S)
}

.

Proof. Let x ∈ msg(S) such that F
2 < x < F , x /∈ A, 2x − F /∈ S, 3x �= 2F ,

4x �= 3F , and F − x < α(S). By Lemma 3.11, we have that T = (S\{x}) ∪
{F − x} ∈ I (A,F ). Moreover, since F − x < α(S), we have α(T ) = F − x
and, as a result, S = (T\{α(T )}) ∪ {F − α(T )}. Consequently, and having in
mind that α(T ) ∈ msg(T ), we conclude that T is a child of S.
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Let us see the other inclusion. If T is a child of S, then S = (T \ {α(T )})∪
{F − α(T )}. Therefore, T = (S\{F − α(T )}) ∪ {F − (F − α(T ))}. It is clear
that F −α(T ) ∈ A, F

2 < F −α < F , and F − (F − α(T )) < α(S). In addition,

• if F − α(T ) ∈ A, then F ∈ T ;
• if 2(F − α(T )) − F ∈ S, then F − 2α(T ) ∈ S and, since 2α(T ) ∈ S, we

have that F ∈ S;
• if 3(F − α(T )) − F = 2F , then F = 3α(S) ∈ S;
• if 4(F − α(T )) − F = 3F , then F = 4α(S) ∈ S;

which are four contradictions and, thus, the proof is complete. �

We are now in a position to show the algorithm for computing I (A,F ).

Algorithm 3.13. INPUT: A ⊆ N and F ∈ N \ {0} such that F /∈ 〈A〉.
OUTPUT: I (A,F ).

(1) X = {C(A,F )}.
(2) Y =

{(
C(A,F )\{x}) ∪ {F − x} | x ∈ msg(C(A,F )), F

2 < x < F, x /∈ A,

2x − F /∈ C(A,F ), 3x �= 2F, and 4x �= 3F
}

.
(3) If Y = ∅, then return X.
(4) X := X ∪ Y .
(5) For each S ∈ Y , compute YS =

{(
S\{x}) ∪ {F − x} | x ∈ msg(S),

F
2 < x < F, x /∈ A, 2x − F /∈ S, 3x �= 2F, 4x �= 3F, and F − x < α(S)

}
.

(6) Y :=
⋃

S∈Y Ys and go to (3).

Let us illustrate how the above algorithm works by means of an example.

Example 3.14. Using Algorithm 3.13, let us compute I ({4}, 11).

• X = {C({4}, 11)} = {〈4, 6, 9〉}.
• Y =

{(〈4, 6, 9〉\{6}) ∪ {11 − 6},
(〈4, 6, 9〉\{9}) ∪ {11 − 9}} ⇒

Y = {〈4, 5〉, 〈2, 13〉}.
• X = {〈4, 6, 9〉, 〈4, 5〉, 〈2, 13〉}.
• Y〈4,5〉 = ∅, Y〈2,13〉 = ∅.
• Y = ∅.
• Return I ({4}, 11) = {〈4, 6, 9〉, 〈4, 5〉, 〈2, 13〉}.

Remark 3.15. Observe that, if we take A = {0}, then I ({0}, F ) is the set of
irreducible numerical semigroups with Frobenius number equal to F . There-
fore, Algorithm 3.13 is a generalisation of the algorithm described in [6] for
computing the irreducible numerical semigroups with fixed Frobenius number.
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4. The set S (A,F )

As in the previous section, in this one A is a non-empty subset of N and F is
a positive integer. Our main purpose here is to show an algorithm that allows
us to compute S (A,F ).

Recall that, by Proposition 3.1, we know that S (A,F ) �= ∅ if and only if
F /∈ 〈A〉. Moreover, by Lemma 3.5, we know that, if S is a numerical semigroup
with Frobenius number F , then Δ(S) = S∪{

x ∈ N\S | F − x /∈ S and x > F
2

}

is an irreducible numerical semigroup with Frobenius number equal to F .
Let us define on S (A,F ) the equivalence relation

S rT if Δ(S) = Δ(T ).

If S ∈ S (A,F ), then [S] =
{
T ∈ S (A,F ) | S rT

}
and it is well known that

the quotient set S (A,F )/r =
{
[S] | S ∈ S (A,F )

}
is a partition of S (A,F ).

In the following result we establish that there is a one-to-one correspondence
between the sets I (A,F ) and S (A,F )/r.

Proposition 4.1. If F /∈ 〈A〉, then S (A,F )/r =
{
[S] | S ∈ I (A,F )

}
. More-

over, if {S, T} ⊆ I (A,F ) and S �= T , then [S] ∩ [T ] = ∅.
Proof. From Lemma 3.5, if S ∈ S (A,F ), then Δ(S) ∈ I (A,F ). Moreover, it
is clear that Δ(S) = Δ(Δ(S)). Therefore, S (A,F )/r =

{
[S] | S ∈ I (A,F )

}
.

Now, if {S, T} ⊆ I (A,F ) and [S]∩ [T ] �= ∅, then Δ(S) = Δ(T ). But, since
S and T are irreducible, we have S = Δ(S) and T = Δ(T ). Thus, we conclude
that S = T . �

As a consequence of Proposition 4.1, we have that, in order to build all the
elements of S (A,F ), it is sufficient to have

(i) an algorithm to build I (A,F ) and
(ii) an algorithm that, given S ∈ I (A,F ), builds [S].

Since Algorithm 3.13 solves (i), we focus our attention on describing a proce-
dure for solving (ii).

The next result has an easy proof and is therefore omitted.

Lemma 4.2. If S ∈ I (A,F ), then the following facts are true.

1. max([S]) = S and min([S]) =
〈
A ∪ {

x ∈ S | x < F
2

}〉 ∪ {F + 1,→}.
2. If T is a numerical semigroup, then T ∈ [S] if and only if min([S]) ⊆

T ⊆ S.

If S ∈ I (A,F ), then we use the notation Γ(S) = min([S]) and D(S) =
S\Γ(S). Moreover, as usual, if A,B ⊆ Z, then A+B = {a+ b | a ∈ A, b ∈ B}.

In the next result, for fixed S ∈ I (A,F ), we describe all the elements of
[S].
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Proposition 4.3. Let S ∈ I (A,F ) and let B be a subset of D(S). Then Γ(S)∪((
B + Γ(S)

) ∩ D(S)
) ∈ [S]. Moreover, all the elements of [S] are built in this

way.

Proof. Let S̄ = Γ(S) ∪ ((
B + Γ(S)

) ∩ D(S)
)
. Then Γ(S) ⊆ S̄ ⊆ S and there-

fore, from Lemma 4.2, if we see that S̄ is a numerical semigroup, then we will
get that S̄ ∈ [S].

First of all, since Γ(S) ⊆ S̄, we have that 0 ∈ S̄ and N\S̄ ⊆ N\Γ(S). Thus,
0 ∈ S̄ and N\S̄ is finite.

Secondly, we have to see that S̄ is closed under addition. For this we have
three possibilities.

• If x, y ∈ Γ(S), then x + y ∈ Γ(S) ⊆ S̄.
• If x, y ∈ (

B + Γ(S)
) ∩ D(S), then x, y ∈ D(S) and, thereby, x, y > F

2 .
Thus, x + y > F and, consequently, x + y ∈ Γ(S) ⊆ S̄.

• Let us take x ∈ Γ(S) and y ∈ (
B + Γ(S)

) ∩ D(S). Then we have that
y = y1+y2, with y1 ∈ B and y2 ∈ Γ(S), and, therefore, x+y ∈ B +Γ(S).
Now,

* on the one hand, if x+y ∈ D(S), then x+y ∈ (
B+Γ(S)

)∩D(S) ⊆ S̄,
* and, on the other hand, if x + y �∈ D(S), then x + y ∈ Γ(S) ⊆ S̄

(observe that x + y ∈ S because x ∈ Γ(S) ⊆ S and y ∈ D(S) ⊆ S).
Now, let T be a numerical semigroup such that T ∈ [S]. From Lemma 4.2,

we have that Γ(S) ⊆ T ⊆ S and, therefore, T = Γ(S) ∪ B for some set
B ⊆ D(S). Then, having in mind that T is a numerical semigroup, we get
that T = Γ(S) ∪ ((

B + Γ(S)
) ∩ D(S)

)
. Effectively, it is clear that B ⊆ (

B +
Γ(S)

) ∩ D(S), but
(
B + Γ(S)

) ∩ D(S) ⊆ T ∩ D(S) =
(
Γ(S) ∪ B

) ∩ D(S) =
(
Γ(S) ∩ D(S)

) ∪ (
B ∩ D(S)

)
= ∅ ∪ B = B.

Thus, we have completed the proof. �

Let us note that, if Γ(S) = S for some S ∈ I (A,F ), then D(S) = ∅.
Otherwise, if d ∈ D(S), then we use the notation T(d) = ({d} + Γ(S))∩D(S).
Moreover, if B ⊆ D(S), then T(B) = ∪b∈BT(b). The following result is a
reformulation of Proposition 4.3 using this new notation.

Proposition 4.4. If S ∈ I (A,F ) and K(S) = {T(B) | B ⊆ D(S)}, then
[S] = {Γ(S) ∪ X | X ∈ K(S)}.

We are ready to show the algorithm for computing [S] when S ∈ I (A,F ).

Algorithm 4.5. INPUT: S ∈ I (A,F ).
OUTPUT: [S].
(1) Compute Γ(S) and D(S).
(2) Compute K(S) = {T(B) | B ⊆ D(S)}.
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(3) Return [S] = {Γ(S) ∪ X | X ∈ K(S)}.

Remark 4.6. The results of this section allow us to have an algorithmic process
to compute S (A,F ). Specifically, S (A,F ) = ∪S∈I (A,F )[S]. Moreover, since
S ({0}, F ) is the set of numerical semigroups with Frobenius number equal to
F , this process is a generalisation of the algorithm shown in [5] for computing
all the numerical semigroups with a given Frobenius number.

Let us illustrate with an example how the above algorithmic process works.

Example 4.7. Let us compute S ({4}, 11).
• From Example 3.14, we have that I ({4}, 11) = {〈2, 13〉, 〈4, 5〉, 〈4, 6, 9〉}.
• If S = 〈2, 13〉, then Γ(S) = S and D(S) = ∅. Thus, [〈2, 13〉] = {〈2, 13〉}.
• If S = 〈4, 5〉, then Γ(S) = S and D(S) = ∅. Thus, [〈4, 5〉] = {〈4, 5〉}.
• If S = 〈4, 6, 9〉, then Γ(S) = 〈4, 13, 14, 15〉 and D(S) = {6, 9, 10}.

* If B = ∅, then T(B) = ∅.
* If B = {6}, then T(B) = {6, 10}.
* If B = {9}, then T(B) = {9}.
* If B = {10}, then T(B) = {10}.
* If B = {6, 9}, then T(B) = T({6}) ∪ T({9}) = {6, 9, 10}.
* If B = {6, 10}, then T(B) = T({6}) ∪ T({10}) = {6, 10}.
* If B = {9, 10}, then T(B) = T({9}) ∪ T({10}) = {9, 10}.
* If B = {6, 9, 10}, then T(B) = T({6})∪T({9})∪T({10}) = {6, 9, 10}.

Thus, K(S) = {∅, {9}, {10}, {6, 10}, {9, 10}, {6, 9, 10}}.
* If X = ∅, then Γ(S) ∪ X = 〈4, 13, 14, 15〉.
* If X = {9}, then Γ(S) ∪ X = 〈4, 9, 14, 15〉.
* If X = {10}, then Γ(S) ∪ X = 〈4, 10, 13, 15〉.
* If X = {6, 10}, then Γ(S) ∪ X = 〈4, 6, 13, 15〉.
* If X = {9, 10}, then Γ(S) ∪ X = 〈4, 9, 10, 15〉.
* If X = {6, 9, 10}, then Γ(S) ∪ X = 〈4, 6, 9〉.

Thereby,

[〈4, 6, 9〉] = {〈4, 6, 9〉, 〈4, 6, 13, 15〉, 〈4, 9, 10, 15〉,
〈4, 9, 14, 15〉, 〈4, 10, 13, 15〉, 〈4, 13, 14, 15〉}.

In conclusion,

S ({4}, 11) = {〈2, 13〉, 〈4, 5〉, 〈4, 6, 9〉, 〈4, 6, 13, 15〉, 〈4, 9, 10, 15〉,
〈4, 9, 14, 15〉, 〈4, 10, 13, 15〉, 〈4, 13, 14, 15〉}.

5. The set M (A,B)

In this section A is a non-empty subset of N and B is a non-empty finite subset
of N \ {0}.

Firstly, we give an easy result.
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Proposition 5.1. S (A,B) �= ∅ if and only if B ∩ 〈A〉 = ∅.
Proof. If S ∈ S (A,B), then 〈A〉 ⊆ S and B ∩ S = ∅. Therefore, B ∩ 〈A〉 = ∅.

For the other implication, it is enough to note that, if B ∩ 〈A〉 = ∅, then
〈A〉 ∪ {max(B) + 1,→} ∈ S (A,B). �

As a consequence of Proposition 5.1 we have the following result.

Corollary 5.2. M (A,B) �= ∅ if and only if B ∩ 〈A〉 = ∅.
In the next result we see how S (A,B) can be built from the elements of

B.

Proposition 5.3. If B = {b1, . . . , br}, then

S (A,B) = {S1 ∩ . . . ∩ Sr | Si ∈ S (A, {bi}), 1 ≤ i ≤ r} .

Proof. Firstly, it is clear that, if Si ∈ S (A, {bi}) for all i ∈ {1, . . . , r}, then
S1 ∩ . . . ∩ Sr ∈ S (A,B).

Secondly, if S ∈ S (A,B), then S ∈ S (A, {bi}) for all i ∈ {1, . . . , r}.
Consequently, by setting S1 = · · · = Sr = S, we have that S = S1 ∩ . . . ∩ Sr

with Si ∈ S (A, {bi}) for all i ∈ {1, . . . , r}. �

The following lemma is clear from the definitions.

Lemma 5.4. If b is a positive integer, b /∈ 〈A〉, and S ∈ S (A, {b}), then there
exists T ∈ M (A, {b}) such that S ⊆ T .

Let us now see how M (A,B) can be built from the elements of B.

Theorem 5.5. If B = {b1, . . . , br}, then

M (A,B) = Maximal
( {S1 ∩ . . . ∩ Sr | Si ∈ M (A, {bi}), 1 ≤ i ≤ r} )

.

Proof. If S ∈ M (A,B), then S ∈ S (A,B) and, by Proposition 5.3, there
exists Si ∈ S (A, {bi}), i ∈ {1, . . . , r}, such that S = S1 ∩ . . . ∩ Sr. Moreover,
from Lemma 5.4, there exists Ti ∈ S (M, {bi}), i ∈ {1, . . . , r}, such that
Si ⊆ Ti. Thus, if T = T1 ∩ . . . ∩ Tr, then S ⊆ T and, again by Proposition 5.3,
we have that T ∈ S (A,B). Thereby, since S ∈ M (A,B), we conclude that
S = T and, consequently,

M (A,B) ⊆ {S1 ∩ . . . ∩ Sr | Si ∈ M (A, {bi}), 1 ≤ i ≤ r} .

Now, from Proposition 5.3, we have that

{S1 ∩ . . . ∩ Sr | Si ∈ M (A, {bi}), 1 ≤ i ≤ r} ⊆ S (A,B).

From here, the conclusion follows immediately. �

The next result is easy to verify.

Lemma 5.6. If S and T are numerical semigroups, then F(S ∩ T ) is equal to
max{F(S),F(T )}.



On sets related to integer partitions

In the following result we determine M (A, {b}).

Proposition 5.7. If b is a positive integer such that b /∈ 〈A〉, then M (A, {b}) =
I (A, b).

Proof. If S ∈ M (A, {b}), then we can easily deduce that A ⊆ S and F(S) = b.
Let us suppose now that S is not irreducible. In such a case, there exist two
numerical semigroups, T1 and T2, such that S � T1, S � T2, and S = T1 ∩ T2.
From Lemma 5.6, we know that F(S) = max{F(T1),F(T2)}. In particular,
and without loss of generality, we can assume that F(S) = F(T1). Thus, T1 ∈
S (A, {b}), S � T1, and hence S /∈ M (A, {b}), which is a contradiction.

For the reverse inclusion, let us take S ∈ I (A, b) and T ∈ S (A, {b}) such
that S ⊆ T . Then, by item 3 of Lemma 3.2, we get that S = T and, thereby,
S ∈ M (A, {b}). �

As a consequence of Theorem 5.5 and Propositions 2.4 and 5.7, we have
the next result. Recall that, if Ap(S, n) = {w(0), w(1), . . . , w(n − 1)}, then we
use the notation θn(S) = (w(1), . . . , w(n − 1)).

Theorem 5.8. If B = {b1, . . . , br} and n = max(B) + 1, then

M (A,B) =
{
S ∈ Sn | θn(S) ∈ Minimal(Θ(A,B))

}

where Θ(A,B) = {θ(S1) ∨ · · · ∨ θ(Sr) | Si ∈ I (A, bi), 1 ≤ i ≤ r}.
If S is a numerical semigroup and n ∈ S \ {0}, then we can obtain a

list [x0, . . . , xn−1] such that Ap(S, n) = {w(0) = x0, . . . , w(n − 1) = xn−1} by
using the function AperyListOfNumericalSemigroupWRTElement(S,n) of [7].
Thus, we have an algorithmic procedure for computing θn(S) from a minimal
system of generators of S and an element n ∈ S \ {0}.

Let us now show the algorithm for computing M (A,B).

Algorithm 5.9.
INPUT: A (non-empty subset of N) and B = {b1, . . . , br} (non-empty finite

subset of N \ {0}) such that 〈A〉 ∩ B = ∅.
OUTPUT: M (A,B).
(1) Using Algorithm 3.13, compute I (A, bi) for all i ∈ {1, . . . , r}.
(2) n = max(B) + 1.
(3) For each i ∈ {1, . . . , r}, compute Ei = {θn(S) | S ∈ I (A, bi)}.
(4) E = {α1 ∨ · · · ∨ αr | αi ∈ Ei for all i ∈ {1, . . . , r}}.
(5) E = Minimal(E).
(6) Return

{〈{x1, . . . , xn−1, n}〉 | (x1, . . . , xn−1) ∈ E
}
.

Remark 5.10. In [10] there is an algorithm given that allows us to compute
all the numerical semigroups which are maximal in the set of numerical semi-
groups whose intersection with B is empty. Considering that this set is
M ({0}, B), we have that Algorithm 5.9 is a generalisation of the algorithm
seen in [10].
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Let us see, in an example, how Algorithm 5.9 works.

Example 5.11. Let us compute M ({4, 9}, {11, 14}).

• From Algorithm 3.13, we have that
* I ({4, 9}, 11) = {〈4, 15〉, 〈4, 6, 9〉}.
* I ({4, 9}, 14) = {〈4, 9, 11〉}.

• n = max({11, 14}) + 1 = 15.
• Let b1 = 11 and b2 = 14.

* E1 = {α11, α12} = {(16, 17, 18, 4, 20, 6, 22, 8, 9, 10, 26, 12, 13, 14),
(16, 17, 18, 4, 5, 21, 22, 8, 9, 10, 26, 12, 13, 14)}.

* E2 = {α2} = {(16, 17, 18, 4, 20, 21, 22, 8, 9, 25, 11, 12, 13, 29)}.
• E = {α11 ∨ α2, α12 ∨ α2} = {(16, 17, 18, 4, 20, 21, 22, 8, 9, 25, 26,

12, 13, 29)}.
• E = {(16, 17, 18, 4, 20, 21, 22, 8, 9, 25, 26, 12, 13, 29)}.
• M ({4, 9}, {11, 14}) = {〈15, 16, 17, 18, 4, 20, 21, 22, 8, 9, 25, 26, 12, 13, 29〉}.

In conclusion,

M ({4, 9}, {11, 14}) = {〈4, 9, 15〉} .

6. The algorithm

We are now in a position to show the algorithm for computing m(A,B) and,
in this way, give an answer to Problem 1.1.

Algorithm 6.1. INPUT: A (non-empty subset of N) and B (non-empty finite
subset of N \ {0}) such that 〈A〉 ∩ B = ∅.

OUTPUT: m(A,B).
(1) Using Algorithm 5.9, compute M (A,B).
(2) Return {N \ S | S ∈ M (A,B)}.

Remark 6.2. In [10] there is an algorithm given that computes all sets C ⊆
N \ {0} that are minimal with the condition that, if (x1, . . . , xn) ∈ P(B),
then {x1, . . . , xn} ∩ C �= ∅. Let us observe that such sets are nothing but
the elements of m({0}, B). Therefore, Algorithm 6.1 is a generalisation of the
algorithm seen in [10].

Example 6.3. From Example 5.11 we deduce that a set K satisfies the condi-
tions

• K ∩ 〈4, 9〉 = ∅,
• for every partition of 11 or 14, there is at least one summand that belongs

to K,

if and only if K contains the set N\〈4, 9, 15〉 = {1, 2, 3, 5, 6, 7, 10, 11, 14}.
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