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Abstract

IMPORTANCE Prenatal perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to
adverse birth outcomes. Previous research showed that higher folate concentrations are associated
with lower blood PFAS concentrations in adolescents and adults. Further studies are needed to
explore whether prenatal folate status mitigates PFAS-related adverse birth outcomes.

OBJECTIVE To examine whether prenatal folate status modifies the negative associations between
pregnancy PFAS concentrations, birth weight, and gestational age previously observed in a
US cohort.

DESIGN, SETTING, AND PARTICIPANTS In a prospective design, a prebirth cohort of mothers or
pregnant women was recruited between April 1999 and November 2002, in Project Viva, a study
conducted in eastern Massachusetts. Statistical analyses were performed from May 24 and October
25, 2022.

EXPOSURE Plasma concentrations of 6 PFAS compounds were measured in early pregnancy
(median gestational week, 9.6). Folate status was assessed through a food frequency questionnaire
and measured in plasma samples collected in early pregnancy.

MAIN OUTCOMES AND MEASURES Birth weight and gestational age, abstracted from delivery
records; birth weight z score, standardized by gestational age and infant sex; low birth weight,
defined as birth weight less than 2500 g; and preterm birth, defined as birth at less than 37
completed gestational weeks.

RESULTS The cohort included a total of 1400 mother-singleton pairs. The mean (SD) age of the
mothers was 32.21 (4.89) years. Most of the mothers were White (73.2%) and had a college degree
or higher (69.1%). Early pregnancy plasma perfluorooctanoic acid concentration was associated with
lower birth weight and birth weight z score only among mothers whose dietary folate intake (birth
weight: β, −89.13 g; 95% CI, −166.84 to −11.42 g; birth weight z score: −0.13; 95% CI, −0.26 to
−0.003) or plasma folate concentration (birth weight: −87.03 g; 95% CI, −180.11 to 6.05 g; birth
weight z score: −0.14; 95% CI, −0.30 to 0.02) were below the 25th percentile (dietary: 660 μg/d,
plasma: 14 ng/mL). No associations were found among mothers in the higher folate level groups,
although the tests for heterogeneity did not reject the null. Associations between plasma
perfluorooctane sulfonic acid and perfluorononanoate (PFNA) concentrations and lower birth
weight, and between PFNA and earlier gestational age were noted only among mothers whose
prenatal dietary folate intake or plasma folate concentration was in the lowest quartile range. No
associations were found among mothers in higher folate status quartile groups.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In this large, US prebirth cohort, early pregnancy exposure to
select PFAS compounds was associated with adverse birth outcomes only among mothers below the
25th percentile of prenatal dietary or plasma folate levels.

JAMA Network Open. 2023;6(5):e2314934. doi:10.1001/jamanetworkopen.2023.14934

Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals with diverse
commercial and industrial applications, such as nonstick cookware, cosmetics, fire-fighting foams,
and food packaging.1 The PFAS are extremely persistent in the environment and have been detected
in populations worldwide.2-6 Exposure to PFAS has been associated with adverse reproductive end
points and other poor health outcomes.7-9

Prenatal PFAS exposure has been linked to lower birth weight, shorter gestational age, and
preterm birth in epidemiological studies,10-15 including the Project Viva, a large, prospective prebirth
cohort in the US.11 Despite adverse birth outcomes associated with prenatal PFAS exposure, we are
not aware of any study that has assessed potential modifiable factors that may reduce harmful
outcomes of PFAS exposure in vulnerable populations. Previous studies reported inverse
associations between folate and PFAS concentrations in a representative US population,16 and
protective effects of folate on PFAS–lower antibody associations in children.17 Folic acid
supplementation has been universally recommended to prevent neural tube defects.18 Folate plays a
critical role in DNA synthesis and methylation.19 Folate and PFAS may share common transporters in
the human body,20-28 thus resulting in potential biological interactions between folate and PFAS. This
study aimed to examine whether prenatal folate status modifies the association between PFAS
exposure and singleton birth outcomes.

Methods

Population
Mother-singleton pairs were recruited at their first prenatal visit between April 1999 and November
2002, in Project Viva, a large prebirth cohort in the US. Data analysis was performed from May 24 to
October 25, 2022. Details on the Project Viva study design and population are described
elsewhere.29 The institutional review board of Harvard Pilgrim Health Care approved the study
protocol. Participants provided written informed consent. This study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for
cohort studies.

In brief, sociodemographic characteristics, reproductive history, early pregnancy diet, and
nutrient supplementation were assessed by questionnaires and interviews. Participants provided a
nonfasting blood sample at recruitment (median gestational week, 9.6; IQR, 8.7-10.9).

There were 1400 mother-singleton pairs with plasma PFAS measurement, dietary folate intake,
and birth outcome data. Among these participants, a subpopulation of 898 mothers had plasma
folate concentrations quantified. We compared the study population with the original Project Viva
cohort. The participant inclusion diagram can be found in eFigure 1 in Supplement 1.

PFAS Measurements
The nonfasting blood samples obtained in early pregnancy were centrifuged and stored in non–PFAS-
containing cryovial tubes in liquid nitrogen freezers (�−130 °C). Plasma samples were sent to the
Division of Laboratory Sciences at the Centers for Disease Control and Prevention for quantification
of 8 PFAS compounds, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid
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(PFOS), perfluorohexane sulfonic acid, perfluorononanoate (PFNA), 2-(N-ethyl-perfluorooctane
sulfonamido) acetate (EtFOSAA), 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA),
perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonamide (PFOSA), using online solid-
phase extraction coupled to high-performance liquid chromatography isotope dilution tandem mass
spectrometry.30,31 Limits of detection were 0.2 ng/mL for PFOS and 0.1 ng/mL for all other PFAS
compounds. Concentrations below the limit of detection were imputed with the limit of detection
divided by the square root of 2.32,33 Detection rates for PFDeA (47.52%) and PFOSA (10.93%) were
low and were excluded because imputing values may incur bias.33 All other PFAS were detected in
more than 99% of the samples.

Folate Measurements
A semiquantitative food frequency questionnaire was used to assess diet from the last menstrual
period of the index pregnancy to the time of study recruitment.34,35 An interview was conducted at
recruitment to assess supplement intake for the 3-month period before the date of the index
pregnancy detection. Pregnancy dietary folate equivalent (DFE) intake (micrograms per day)
included both natural food folate and folic acid from fortification and supplement intake and was
estimated by multiplying the frequency of intake of standard portion sizes of each food item or
supplement times its folate or folic acid content, according to the Harvard nutrient composition
database.35 To account for the variations in folate intake by total energy consumption, we adjusted
the DFE intake for total energy intake via the residual method.36

Baseline plasma samples for a subpopulation were sent to Boston Children’s Hospital’s Clinical
and Epidemiological Research Laboratory for folate quantification (to convert from nanograms per
milliliter to millimoles per liter, multiply by 2.266) by an electrochemiluminescence binding assay
(Elecsys Folate III, Roche Diagnostic). The assay is approved by the US Food and Drug Administration
and has high reliability for plasma folate measurement (day-to-day imprecision <3%).

Birth Outcome Measurements
Date of birth and birth weight in grams were abstracted from medical records. Gestational age was
calculated using the date of the last menstrual period and corrected by ultrasonography (16-20
weeks) if the 2 estimates differed by more than 10 days (9%).11 We computed birth weight z score
standardized by gestational age and infant sex, using a US reference.37 Preterm birth was defined as
birth less than 37 completed gestational weeks (259 days) and low birth weight as less than 2500 g.

Covariates
Data on maternal characteristics were collected by questionnaires and interviews at recruitment.
Demographic and socioeconomic characteristics included maternal age, maternal and paternal
educational level, self-reported maternal race and ethnicity, and annual household income. Maternal
prepregnancy body mass index was calculated by self-reported weight in kilograms divided by the
square of self-reported height in meters. Smoking status was grouped as ever smokers, former
smokers, and early pregnancy smokers. Reproductive history included parity and infertility history
defined as having tried for more than 12 months (if age <35 years) or 6 months (if age �35 years) to
achieve the index pregnancy or having a diagnosis of infertility or claims for infertility treatments
and/or prescriptions in medical records.38,39 Index pregnancy was self-reported as planned or
unplanned. Breastfeeding history was estimated using parity and breastfeeding of the index birth as
previously described.11 We calculated the Alternative Healthy Eating Index for Pregnancy score as a
measure of diet quality in early pregnancy.40,41

Statistical Analysis
Primary Analyses
The study population was grouped by folate quartiles of DFE intake or plasma folate concentrations.
We conducted descriptive analyses on population characteristics and PFAS distributions by folate
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groups. Spearman correlation coefficients of 6 PFAS concentrations, DFE intake, and plasma folate
concentration were calculated.

Plasma PFAS concentrations were log-2 transformed to reduce the influence of outliers and
facilitate comparison with previous studies.12,14,42 Multivariable linear regression models were used
to assess differences in the continuous birth outcomes—gestational age (days), birth weight (grams),
and birth weight z score, per doubling of plasma PFAS concentrations—by DFE intake or plasma
folate concentration groups. Adjusted covariates were selected a priori using a directed acyclic graph
and included maternal age, educational level, race and ethnicity, body mass index, smoking history,
parity, breastfeeding history, infertility, planned pregnancy, infant sex, gestational age at recruitment,
and Alternative Healthy Eating Index for Pregnancy score as well as paternal educational level and
annual household income (eFigure 2 in Supplement 1).11,43,44

Quantile-based g computation (QGC) was used to assess the joint association of the total PFAS
mixture with birth outcomes by folate groups.45 Quantile-based g computation estimated the
differences in continuous birth outcomes per quartile increase in total PFAS mixture concentrations
(lowest quartile as reference), adjusting for the above-mentioned covariates.

The associational estimates in each folate group were obtained from regression models with the
interaction term of folate group × individual PFAS concentration. Likelihood ratio tests were used to
test statistical significance of interaction terms in models with meaningful associations.

Supplemental Analyses
The 2 binary outcomes—preterm birth and low birth weight—were examined using logistic
regressions (eMethods in Supplement 1). We additionally restricted DFE analyses to the
subpopulation who had both DFE and plasma folate measurements to have comparable samples
across both types of folate measures. We further adjusted for early pregnancy fish consumption
since it is an important source of PFAS and associated with birth outcomes.46 Generalized additive
models were used to explore nonlinear modification by folate (as DFE or plasma folate
concentration) in individual PFAS and birth outcome associations (eMethods in Supplement 1).

All tests were 2-sided at an α = .05 significance threshold, except for the likelihood ratio tests of
interaction terms (P < .20). All analyses were conducted in R, version 4.0.3 (R Foundation for
Statistical Computing). In the linear and logistic regressions, we used multiple imputation with
chained equations (MICE) to impute missing covariate values (missingness rates, 0.07%-6.93%)
(eFigure 1 in Supplement 1) and obtained pooled regression coefficients with the MICE package
(version 3.14.0). We used qgcompint (version 0.6.6) for quantile-based g computation models.
Because of the difficulties in applying MICE in mixture models, missing values were imputed with the
mean (continuous covariates) or the mode (categorical or binary covariates) in the mixture models
and results by imputation methods were compared.

Results

Population
In the overall population of 1400 mothers or pregnant women, the mean (SD) age was 32.21 (4.89)
years. Most mothers identified as White (1025 [73.2%]), had a college degree or higher (968
[69.1%]), had an annual household income greater than $70 000 (820 [58.6%]), planned for the
pregnancy (879 [62.8%]), and reported periconception folic acid supplement use (957 [68.4%])
(Table 1). The incidence of preterm birth was 7.1% (n = 99) and the incidence of low birth weight was
4.6% (n = 64). Characteristics of the subpopulation were similar to those of the study population
(Table 2). A comparison of the study population with the original Project Viva cohort can be found in
eTable 1 and the eResults in Supplement 1.

Across DFE groups, mothers in the lowest quartile were more racially and ethnically diverse, less
educated, reported lower annual household income, were more likely to smoke during pregnancy,
and were less likely to be nulliparous, plan for this pregnancy, have infertility, and use periconception
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folic acid supplements, compared with the other 3 DFE quartile groups (Table 1). However,
population characteristics were similar across quartile groups by pregnancy plasma folate
concentrations, except that the lowest plasma quartile group had a higher proportion of mothers
who were Black and of nonusers of periconception folic acid supplement than the other 3 groups
(Table 2).

PFAS and Folate Distributions
The 6 PFAS compounds were detected in more than 99% of the samples. Distributions of plasma
concentrations of the 6 PFAS compounds were similar in the study population and the subpopulation
with plasma folate measurements and were similar across folate groups (DFE or plasma) (eTable 2
and eTable 3 in Supplement 1). The median pregnancy DFE intake was 936.2 (IQR, 660.4-1187.3)
μg/d, and the median plasma folate concentration was 18.92 (IQR, 14.01-28.48) ng/mL.

Table 1. Characteristics of the Study Population in Project Viva

Characteristic

No. (%)

P valuea
Total population
(N = 1400)

First quartile
(n = 350)

Second quartile
(n = 350)

Third quartile
(n = 350)

Fourth quartile
(n = 350)

Dietary folate intake, range, μg/d 128.7-3497.2 128.7-660.4 660.4-936.2 936.2-1187.3 1187.3-3497.2 NA

Maternal age, mean (SD), y 32.21 (4.89) 30.67 (5.85) 32.20 (4.93) 32.82 (4.30) 33.15 (3.89) <.001

Prepregnancy BMI, mean (SD) 24.78 (5.39) 25.99 (6.31) 24.66 (5.51) 24.31 (4.64) 24.16 (4.74) <.001

AHEI-P score, mean (SD)b 60.46 (10.25) 55.67 (9.74) 58.53 (9.38) 63.09 (9.96) 64.56 (9.39) <.001

Maternal race and ethnicityc

Asian 68 (4.9) 22 (6.3) 16 (4.6) 16 (4.6) 14 (4.0)

<.001

Black 167 (11.9) 83 (23.7) 40 (11.4) 23 (6.6) 21 (6.0)

Hispanic 87 (6.2) 38 (10.9) 17 (4.9) 22 (6.3) 10 (2.9)

White 1025 (73.2) 183 (52.3) 265 (75.7) 285 (81.4) 292 (83.4)

Other 53 (3.8) 24 (6.9) 12 (3.4) 4 (1.1) 13 (3.7)

Maternal education ≥ college degree 968 (69.1) 173 (49.4) 246 (70.3) 261 (74.6) 288 (82.3) <.001

Paternal education ≥ college degreed 888 (63.4) 144 (41.1) 213 (60.9) 257 (73.4) 274 (78.3) <.001

Annual household income >$70 000e 820 (58.6) 149 (42.6) 201 (57.4) 222 (63.4) 248 (70.9) <.001

Prenatal smokingf

Never 932 (66.6) 228 (65.1) 225 (64.3) 233 (66.6) 246 (70.3)

<.001Former 296 (21.1) 53 (15.1) 82 (23.4) 81 (23.1) 80 (22.9)

Early pregnancy 168 (12.0) 68 (19.4) 43 (12.3) 35 (10.0) 22 (6.3)

Nulliparous 696 (49.7) 133 (38.0) 165 (47.1) 208 (59.4) 190 (54.3) <.001

Planned pregnancyg 879 (62.8) 124 (35.4) 215 (61.4) 255 (72.9) 285 (81.4) <.001

Infertility 306 (21.9) 40 (11.4) 73 (20.9) 82 (23.4) 111 (31.7) <.001

Periconception folic acid supplement useh 957 (68.4) 79 (22.6) 230 (65.7) 305 (87.1) 343 (98.0) <.001

Ever breastfeedingi 516 (36.9) 147 (42.0) 127 (36.3) 112 (32.0) 130 (37.1) <.001

Female infant 685 (48.9) 175 (50.0) 170 (48.6) 166 (47.4) 174 (49.7) .90

Gestational age, mean (SD), wk 39.49 (1.86) 39.30 (2.14) 39.56 (1.76) 39.72 (1.50) 39.36 (1.95) .01

Birth weight, mean (SD), g 3486.7 (572.8) 3427.6 (637.6) 3503.6 (571.3) 3522.4 (493.6) 3493.1 (577.6) .14

Birth weight z score, mean (SD)j 0.21 (0.95) 0.14 (1.03) 0.22 (0.96) 0.20 (0.90) 0.27 (0.90) .38

Preterm birth 99 (7.1) 33 (9.4) 22 (6.3) 15 (4.3) 29 (8.3) .04

Low birth weight 64 (4.6) 21 (6.0) 16 (4.6) 9 (2.6) 18 (5.1) .16

Abbreviations: AHEI-P, Alternative Healthy Eating Index in Pregnancy; BMI, body mass
index (calculated as weight in kilograms divided by height in meters squared); NA, not
applicable.
a P values obtained from χ2 tests for categorical variables and t tests for continuous

variables across folate groups.
b Higher AHEI-P score indicates better diet quality.
c Race and ethnicity was self-reported in the questionnaire. American Indian or Alaska

Native and other were collapsed into a single category to balance sample size.
d Missingness: 97 (6.93%) for paternal educational level.

e Missingness: 96 (6.86%) for household income.
f Missingness: 4 (0.29%) for prenatal smoking.
g Missingness: 27 (1.93%) for planned pregnancy.
h Periconception folic acid supplement use was defined by any use of prenatal vitamin or

folic acid supplement during gestational weeks 0 to 4. Missingness: 1.
i Missingness: 78 (5.57%) for ever breastfeeding.
j Birth weight z score standardized by gestational age and sex, using a US national

reference.
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Correlation coefficients for the 6 PFAS compounds ranged between 0.18 (PFNA and EtFOSAA)
and 0.74 (PFOA and PFOS). Dietary folate intake had a low correlation (r = 0.24) with plasma folate
(eFigure 3 in Supplement 1). Negative correlations with DFE were noted for MeFOSAA (r = −0.10)
and EtFOSAA (r = −0.12), and no other correlations were found (eFigure 3 in Supplement 1).

Associations of PFAS With Birth Outcomes Across Folate Groups
Early pregnancy plasma PFOA, PFOS, and PFNA concentrations were associated with lower birth
weight only among mothers in the lowest quartile of plasma folate concentrations (PFOA: −87.03 g;
95% CI, −180.11 to 6.05 g; PFOS: −100.23 g; 95% CI, −199.06 to −1.40 g; PFNA: −91.34 g; 95% CI,
−186.84 to 4.15 g), and no associations were found for the other plasma folate quartile groups (PFOA:
P = .54, PFOS: P = .60, PFNA: P = .20 for heterogeneity) (Figure 1). Higher plasma PFOA
concentrations were associated with lower birth weight among mothers with the lowest DFE intake

Table 2. Characteristics of the Subpopulation in Project Viva

Characteristic

No. (%)

P valuea
Subpopulation
(n = 898)

First quartile
(n = 225)

Second quartile
(n = 225)

Third quartile
(n = 224)

Fourth quartile
(n = 224)

Plasma folate concentration range, ng/mL 7.08-359.80 7.08-14.01 14.01-18.92 18.92-28.48 28.48-359.80

Dietary folate intake range, μg/d 128.7-2874.3 128.7-676.1 676.1-941.9 941.9-1194.3 1194.3-2874.3

Maternal age, mean (SD), y 32.68 (4.62) 32.25 (5.57) 32.91 (4.23) 32.71 (4.46) 32.86 (4.06) .42

Prepregnancy BMI, mean (SD) 24.76 (5.25) 25.37 (6.13) 24.39 (5.21) 24.71 (5.14) 24.59 (4.35) .22

AHEI-P score, mean (SD)b 61.10 (10.28) 59.91 (10.93) 60.72 (10.19) 61.96 (10.03) 61.81 (9.86) .11

Maternal race and ethnicityc

Asian 39 (4.3) 15 (6.7) 8 (3.6) 8 (3.6) 8 (3.6)

.05

Black 86 (9.6) 28 (12.4) 25 (11.1) 22 (9.8) 11 (4.9)

Hispanic 57 (6.3) 18 (8.0) 11 (4.9) 14 (6.2) 14 (6.2)

White 678 (75.5) 150 (66.7) 173 (76.9) 175 (78.1) 180 (80.4)

Other 38 (4.2) 14 (6.2) 8 (3.6) 5 (2.2) 11 (4.9)

Maternal education ≥ college degree 663 (73.8) 154 (68.4) 164 (72.9) 170 (75.9) 175 (78.1) .11

Paternal education ≥ college degreed 596 (66.4) 131 (58.2) 151 (67.1) 155 (69.2) 159 (71.0) .006

Annual household income >$70 000 580 (64.6) 138 (61.3) 145 (64.4) 156 (69.6) 141 (62.9) .07

Prenatal smoking

Never 611 (68.0) 151 (67.1) 152 (67.6) 147 (65.6) 161 (71.9)

.19Former 194 (21.6) 45 (20.0) 50 (22.2) 60 (26.8) 39 (17.4)

Early pregnancy 93 (10.4) 29 (12.9) 23 (10.2) 17 (7.6) 24 (10.7)

Nulliparous 431 (48.0) 103 (45.8) 99 (44.0) 113 (50.4) 116 (51.8) .29

Planned pregnancye 580 (64.6) 142 (63.1) 142 (63.1) 140 (62.5) 156 (69.6) .27

Infertility 210 (23.4) 51 (22.7) 55 (24.4) 50 (22.3) 54 (24.1) .94

Periconception folic acid supplement usef 629 (70.0) 132 (58.7) 152 (67.6) 169 (75.4) 176 (78.6) <.001

Ever breastfeedingg 381 (42.4) 103 (45.8) 100 (44.4) 92 (41.1) 86 (38.4) .22

Female infant 437 (48.7) 113 (50.2) 108 (48.0) 115 (51.3) 101 (45.1) .56

Gestational age, mean (SD), wk 39.55 (1.79) 39.40 (1.88) 39.49 (1.84) 39.50 (2.01) 39.81 (1.35) .09

Birth weight, mean (SD), g 3519.5 (559.2) 3451.6 (585.6) 3499.5 (573.0) 3513.2 (592.6) 3613.9 (467.1) .02

Birth weight z score, mean (SD)h 0.26 (0.95) 0.17 (0.99) 0.22 (0.93) 0.27 (0.95) 0.37 (0.90) .14

Preterm birth 56 (6.2) 24 (10.7) 12 (5.3) 15 (6.7) 5 (2.2) .003

Low birth weight 34 (3.8) 14 (6.2) 10 (4.4) 9 (4.0) 1 (0.4) .01

Abbreviations: AHEI-P, Alternative Healthy Eating Index in Pregnancy; BMI, body mass
index (calculated as weight in kilograms divided by height in meters squared).

SI conversion: To convert plasma folate to millimoles per liter, multiply by 2.266.
a P values obtained from χ2 tests for categorical variables and t tests for continuous

variables across folate groups.
b Higher AHEI-P score means better diet quality.
c Race and ethnicity were self-reported in the questionnaire. American Indian or Alaskan

Native and other were collapsed into a single category to balance sample size.

d Missingness: 53 (5.90%) for paternal education.
e Missingness: 14 (1.56%) for planned pregnancy.
f Periconception folic acid supplement use was defined by any use of prenatal vitamin or

folic acid supplement during gestational weeks 0 to 4. Missingness: 1.
g Missingness: 17 (1.89%) for ever breastfeeding.
h Birth weight z score standardized by gestational age and sex, using a US national

reference.
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(β, −89.13 g; 95% CI, −166.84 to −11.42 g), but not among the other 3 DFE quartile groups (P = .49 for
heterogeneity) (Figure 1). No associations with birth weight were found for the remaining PFAS
compounds or PFAS mixture among either the DFE or plasma folate groups (eTable 4 in
Supplement 1).

Consistent with birth weight findings, plasma PFOA concentration was associated with a lower
birth weight z score among the lowest DFE quartile (β, −0.13; 95% CI, −0.26 to −0.003) and the
lowest plasma folate quartile groups (β, −0.14; 95% CI, −0.30 to 0.02), but not in the higher quartile
groups (DFE: P = .57, plasma folate: P = .55 for heterogeneity) (Figure 2). The remaining PFAS
compounds or PFAS mixture were not associated with birth weight z scores (eTable 5 in
Supplement 1).

Similarly, PFNA concentration was associated with lower gestational age among mothers in the
lowest plasma folate quartile (β, −2.28 days; 95% CI, −4.48 to −0.08 days), while no associations
were found for higher quartiles (P = .13 for heterogeneity) (Figure 3). No associations with
gestational age were found for the remaining PFAS compounds or PFAS mixture in any of the other
folate groups examined (eTable 6 in Supplement 1).

Figure 1. Associations of Early Pregnancy Plasma Polyfluoroalkyl and Polyfluoroalkyl Substances Concentrations With Birth Weight by Quartiles of Early Pregnancy
Dietary Folate Intake (DFE) or Plasma Folate Concentrations Among Mother-Singleton Pairs in Project Viva
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Models were adjusted for maternal age (continuous), educational level (�college
graduate vs not college graduate), race and ethnicity (Asian, Black, Hispanic, White,
other), prepregnancy body mass index (continuous), smoking history (never, former,
early pregnancy), nulliparous (yes vs no), breastfeeding history (yes vs no), paternal
educational level (�college graduate vs not college graduate), annual household income

(>$70 000 vs �$70 000), infertility (yes vs no), planned pregnancy (yes vs no), infant
sex (male vs female), gestational age at recruitment (continuous), and Alternative
Healthy Eating Index in Pregnancy score in early pregnancy (continuous). PFNA indicates
perfluorononanoate; PFOA, perfluorooctanoic acid; and PFOS, perfluorooctane
sulfonic acid.
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Supplemental Analyses
Plasma PFOS concentration was associated with a higher risk of low birth weight among mothers in
the lowest plasma folate quartile (odds ratio, 2.46; 95% CI, 1.05-5.80; P = .15 for heterogeneity)
(eTable 7 in Supplement 1). There was no association between PFAS concentrations and preterm
birth in any of the folate groups examined (eTable 7 and eTable 8 in Supplement 1).

Restricting the DFE analyses to the subpopulation in which we quantified plasma folate
concentrations did not materially change the results from the total study population (eTable 9 in
Supplement 1). Further adjusting for early pregnancy fish consumption only slightly attenuated the
estimates (eTable 10 and eTable 11 in Supplement 1). The generalized additive models showed
consistent modification by folate status with findings from primary analyses (eFigures 4-9 and
eResults 2 in Supplement 1). Results obtained from single-value imputation were similar to those
using MICE (eTables 12-16 in Supplement 1).

Discussion

In this large, prospective prebirth cohort, we found that early pregnancy exposure to select PFAS
compounds was associated with lower birth weight, birth weight z score, and gestational age, and
higher risk of low birth weight only among mothers whose prenatal dietary folate intake or plasma
folate concentrations were in the lowest quartile range (cutoff: <660 μg/d for dietary folate intake,

Figure 2. Associations of Early Pregnancy Plasma Perfluorooctanoic Acid Concentrations With Birth Weight z
Score (Standardized by Gestational Age and Sex) by Quartiles of Early Pregnancy Dietary Folate Equivalent (DFE)
Intake or Plasma Folate Concentrations Among Mother-Singleton Pairs in Project Viva
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pregnancy), nulliparous (yes vs no), breastfeeding
history (yes vs no), paternal educational level
(�college graduate vs not college graduate), annual
household income (>$70 000 vs �$70 000),
infertility (yes vs no), planned pregnancy (yes vs no),
infant sex (male vs female), gestational age at
recruitment (continuous), and Alternative Healthy
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Figure 3. Associations of Early Pregnancy Plasma Perfluorononanoate Concentrations With Gestational Age by
Quartiles of Early Pregnancy Dietary Folate Equivalent (DFE) Intake or Plasma Folate Concentrations Among
Mother-Singleton Pairs in Project Viva
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<14 ng/mL for plasma folate), but not among mothers with higher dietary folate intake or plasma
folate concentrations in early pregnancy. No consistent associations were found between PFAS
exposure and risk of preterm birth or between PFAS mixture exposure and any of the birth outcomes
in any of the folate groups.

Our findings of early pregnancy PFAS exposure and lower birth weight, lower gestational age,
and higher risk of low birth weight among women with the lowest folate status are consistent with
findings from several birth cohorts.42,47-52 A previous study with 1645 mothers from Project Viva
reported inverse associations between early pregnancy plasma PFNA concentration and birth weight
z score and gestational age in the total population, but the study did not examine birth weight as an
outcome.11 In the present study, the associations between PFNA and lower gestational age were only
seen in the lowest quartile group of plasma folate concentrations. A lower birth weight z score was
associated with PFOA instead of PFNA only among mothers whose early pregnancy folate status was
in the lowest quartile range. We additionally found associations of prenatal PFOA, PFOS, and PFNA
concentrations with lower birth weight, and of PFOS with higher risk of low birth weight only in
mothers with the lowest folate status. The early pregnancy plasma PFAS concentrations in our study
population were similar to those in women of reproductive age in the general US population during
similar time periods.53

To our knowledge, this is the first study to examine prenatal folate status as a modifiable factor
for the associations between prenatal PFAS exposure and birth outcomes. We examined folate as
both dietary intake and as a plasma biomarker, representing complementary folate assessments. The
early pregnancy dietary folate intake crudely reflected folate intake from the last menstrual period
up to the first trimester,54 which may not be representative of folate status over the entire pregnancy
due to changes in food preferences in very early pregnancy. In contrast, plasma folate concentrations
measure the internal dose of folate in circulation within a short time frame (days) before the time of
sample collection in early pregnancy,55 when 86% of the Project Viva population reported using
prenatal vitamin or folic acid supplements. Mothers in the lowest dietary folate quartile generally had
lower socioeconomic status (SES) compared with mothers with higher folate status. However, SES
in general was similar across quartile groups by plasma folate concentrations. Drawing similar
conclusions from the 2 different folate measurements showing the PFAS associations with adverse
birth outcomes were only found in mothers whose dietary folate intake or plasma folate levels were
lower than the 25th percentiles supported our interpretation that these findings were not primarily
due to residual confounding by SES. Furthermore, models were adjusted for parental educational
level and household income. These results support our hypothesis that higher prenatal folate status
could reduce or counteract PFAS exposure in birth outcomes. A recent study reported that higher
PFAS concentrations were associated with lower antibody levels to rubella and mumps among
adolescents with lower red blood cell folate levels but not in adolescents with higher folate levels in
the US general population.17 In addition to neural tube defect prevention, these cumulative findings
suggest that adequate folate status may counteract PFAS adverse effects and possibly the adverse
effects associated with other environmental pollutants, as reported in experimental research.56-58

The mechanisms by which folate interacts with PFAS in birth outcomes are unclear and need
further experimental investigation. Folate plays an important role in DNA synthesis and methylation,
both critical to fetal growth.59,60 Sufficient folate supply in pregnancy has been associated with a
decreased risk of low birth weight and small for gestational age.61,62 Evidence also shows that both
folate and PFAS are substrates for several shared transporters in the human placenta, specifically the
organic anion transporter family22,63; solute carrier family, such as folate receptor α; and the
adenosine triphosphate–binding cassette family, including the breast cancer resistance protein and
P-glycoprotein.20,21,64-66 Folate might compete with PFAS on shared transporters and thus reduce
the placental transport of PFAS to the fetus. Furthermore, prenatal PFAS exposure is related to
epigenetic changes in cord blood.67 Sufficient folate status might counteract PFAS-related epigenetic
changes through its critical methyl-donor role in DNA methylation, thus mitigating the deleterious
health effects.68-70
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Strengths and Limitations
This study examined prenatal folate as a modifiable factor for the associations between PFAS
exposure and birth outcomes. The first strength of the study is its relatively large sample size,
permitting stratified analyses by folate status. Second, PFAS concentrations were measured in
plasma samples collected in early pregnancy, precluding potential confounding by hemodynamic
changes occurring in late pregnancy.11 Third, dietary intake and plasma folate concentrations were
both used to facilitate comparison and interpretation.

The study has limitations. Although both dietary and plasma folate status were evaluated, data
on red blood cell folate, which reflects medium- to long-term folate intake, were not available.55

Mothers in Project Viva were folate replete; the 25th percentiles of the sample had dietary folate
intake and plasma folate concentration above the recommended levels for neural tube defect
prevention (dietary folate intake: 660 μg/d in Project Viva vs 600 μg/d in recommendations; plasma
folate concentration: 14 ng/mL in Project Viva vs 11.26 ng/mL in recommendations).18,71 Further
studies are needed to replicate the present findings in other populations with lower prenatal folate
intake. Multiple comparisons were conducted that could result in inflated type I error. However, tests
were based on prior hypotheses and consistent patterns of heterogeneity by folate status were
identified that were unlikely due to chance. Dietary folate intake measured by food frequency
questionnaires could have nondifferential measurement errors. However, food frequency
questionnaires perform well in measuring the relative dietary intake (ie, ranks) in the population.54

While covariate adjustment included overall diet quality, residual confounding by diet cannot be ruled
out. Because of the observational nature of this cohort study, causal effects of folate status on PFAS-
related birth outcomes cannot be inferred. Selection bias is also possible given the differences in SES
factors in the study sample with the original population in the Project Viva cohort. However,
differences were subtle and several SES factors were included as covariates in the models. In
addition, because of the complexity of the data analyses, we did not further examine sex-specific
heterogeneities in the infants or nonlinear associations.

Conclusions

In this prebirth cohort study, higher early pregnancy PFAS concentrations were associated with lower
birth weight, birth weight z score, and gestational age, and higher risk of low birth weight only among
mothers whose early pregnancy dietary folate intake or plasma folate levels were below the 25th
percentiles. Findings suggest that mothers with the lowest folate status were more susceptible to
PFAS-related adverse birth outcomes. Folate might be used as a PFAS prevention measure during
preconception and pregnancy. If confirmed in other settings, the findings may have important
implications for identifying vulnerable populations and implementing intervention studies.
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