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ABSTRACT. We call an algebra A commutator-simple if [4, A] does not contain
nonzero ideals of A. After providing several examples, we show that in these
algebras derivations are determined by a condition that is applicable to the
study of local derivations. This enables us to prove that every continuous
local derivation D: L'(G) — L'(G), where G is a unimodular locally compact
group, is a derivation. We also give some remarks on homomorphism-like maps
in commutator-simple algebras.

1. INTRODUCTION

This paper is a continuation of [4] in which derivations and Jordan automor-
phisms of semisimple finite-dimensional algebras A were determined by certain
conditions involving [A, A], the linear span of all commutators in A. As a byprod-
uct, new results on local derivations and local Jordan automorphisms were obtained.
We recall that a linear map D from an algebra A to itself is called a local derivation
if for every & € A there exists a derivation D,: A — A such that D(z) = D,(z).
Other “local maps” such as local automorphisms are defined similarly. The ob-
vious problem of whether a local derivation is necessarily a derivation (or a local
automorphism is necessarily an automorphism, etc.) has been an active research
area since the early 1990s when it was proposed independently by Kadison [13] and
Larson and Sourour [I4].

We will consider similar conditions in arbitrary, not necessarily finite-dimensional
algebras, as well as in Banach algebras. Our main motivation behind the latter has
been an open question whether every continuous local derivation D of L!(G), the
group algebra of a locally compact group G, is a derivation.

The following definition introduces a class of algebras to which our methods are
applicable.

Definition 1.1. An algebra A is said to be commutator-simple if [A, A] does not
contain nonzero ideals of A.
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Section 2] is devoted to examples of commutator-simple algebras and Banach
algebras.

In Section [3] we first show that if A is a commutator-simple semiprime algebra
A (over a field of characteristic not 2), then a linear map D: A — A satisfying

D(x)z, D(z)z? € [A, A]

for every x € A is a derivation. Using this, we then prove that continuous lo-
cal derivations on L!'(G) are derivations, provided that G is a unimodular locally
compact group. While this does not completely solve the aforementioned question
since we still need some conditions on G, it does generalize and unify several known
results (see the final part of Section [3] for details). Besides, the approach we take
is entirely different from those used earlier.

The final Section [ discusses the condition that a linear map T: A — A, where
A is a commutator-simple algebra, satisfies

T(x)® — 23 € [A, A

for every z € A. Under suitable assumptions, T is shown to be a Jordan homomor-
phism. Some applications to local automorphisms are also given.

2. COMMUTATOR-SIMPLE ALGEBRAS

By an algebra we mean an associative algebra which does not necessarily possess
a unity. When it does, we call it a unital algebra. We use F' to denote a field, and
we assume that our algebras are over F. When speaking of Banach algebras, we
assume that F' = C.

The purpose of this section is to provide examples and constructions of commuta-
tor-simple algebras. Our first proposition is trivial, but we record it since one
can construct new commutator-simple algebras from old ones (see Propositions [2.4]

and [ZF]).

Proposition 2.1. Every commutative algebra is commutator-simple.

If there exists a linear functional 7 on A?, the linear span of all elements of the
form zy with x,y € A, such that for all z,y € A,

(2.1) T(zy) = T(yz),
and for all x € A,
(2.2) 7(zA) ={0} = z=0,

then A is obviously a commutator-simple algebra. The simplest example is the
trace on the matrix algebra M, (F). Slightly more generally, we have the following.

Proposition 2.2. The algebra of all finite rank linear operators on a (finite or
infinite dimensional) vector space X is commutator-simple.

Proof. This algebra has a trace 7. If z is a finite rank linear operator on X, then

T(2(€® f)) = f(x(8))

for each £ € X and each linear functional f on X. This clearly implies that 7
satisfies (22]). O

Proposition 2.3. For any (not necessarily finite) group G, the group algebra F|G]|
is commutator-simple.
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Proof. For any element x = deg Agg € F[G], we define 7(z), the trace of z, as A,
the coefficient of the identity e € G. Taking another element y = »_  py9 € F[G],

we have
T(zy) = Z Aglig—1 = Z PgAg-1 = T(yx).
9eG g€eq
Thus, 7 satisfies ). Since 7(zg™!) = A, it also satisfies ([22]). O

Proving that the ordinary group algebra F[G] is commutator-simple is thus very
easy. However, we are more interested in group algebras L!(G) where G is a locally
compact group. We will discuss this at the end of the section.

The following proposition needs no proof.

Proposition 2.4. If (A4;)icr is a family of commutator-simple algebras, then the
direct product ;1 A; is also commutator-simple.

We remark that a simple algebra A is obviously commutator-simple if and only

if A#[A, A

Proposition 2.5. Every finite-dimensional semisimple algebra A is commutator-
simple.

Proof. In light of Proposition 2.4 we may assume that A is simple. The property
that a unital F-algebra A is commutator-simple does not depend on the field F,
so there is no loss of generality in assuming that A is a central F-algebra (i.e.,
the center of A is F). Let F be the algebraic closure of F. It is easy to see that
A = [A, A] implies that A = F @ A, the scalar extension of A to F, also satisfies
A = [A, A]. However, A is isomorphic to the matrix algebra M, (F) which, by
Proposition 22 does not have this property. Therefore, A # [A, A], meaning that
A is commutator-simple. ([l

Proposition 2.5l does not hold for infinite-dimensional simple algebras, in fact not
even for division algebras — see, for example, [10]. One may therefore ask what are
examples of infinite-dimensional algebras that are both simple and commutator-
simple.

The classical Weyl algebra A; is simple, but not commutator-simple (as it is
equal to [A1, A1]). However, many generalized Weyl algebras A(F[z],a,0) are
commutator-simple. These algebras were introduced by V. V. Bavula [2] to whom
the authors are thankful for providing the relevant information. We recall the def-
inition. Let a be an element of the polynomial algebra F[z], where F is a field of
characteristic 0, and let o be an automorphism of F[z]. The generalized Weyl alge-
bra A = A(F|[z],a,0) is the algebra obtained by adjoining to F'[z] the new variables
x and y subject to the relations

yr =a, vy = o(a),
and
af =o(f)z, fy=yo(f)
for all f € F[z]. This algebra is simple if and only if the difference of two roots of
the polynomial a is not an integer [2]. Further, if o is defined by o(f) = f — X\ with

0 # X € F and the degree of a is greater than 1, then A # [A, A] by [7]. Therefore,
the following holds.
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Proposition 2.6. Let a € F[z] be a polynomial of degree at least 2 such that the
difference of two roots of a is not an integer, and let o be the automorphism of
F[z] defined by o(f) = f — X with 0 £ X € F. Then the generalized Weyl algebra
A(F[z],a,0) is commutator-simple (and simple).

Algebras from the next example are not simple.

Proposition 2.7. Let F be with char(F) =0 and let A = F(X) be a free algebra
on at least two indeterminates. Then [A, A] does not contain nonzero subalgebras.
In particular, A is commutator-simple.

Proof. Suppose there exists a nonzero f € F(X) such that f/ € [A, A] for every

j > 1. By [0, Theorem 1.7.2], we can pick a positive integer n such that f =

f(z1,...,2m) is not a polynomial identity of M,,(F)). For any Ay,..., A, € M,(F),
f(Ar, .. AR) € [Mn(F), My (F)]

and therefore f(Ay,...,A;)? has trace 0. It is well known that this implies that
the matrix f(Ay,..., A,,) is nilpotent. This means that f™ is a polynomial identity.
However, this contradicts Amitsur’s theorem [0, Theorem 1.12.4]. ]

Besides the direct product, we can also use the tensor product to obtain new
examples of commutator-simple algebras.

Proposition 2.8. Let A and B be commutator-simple unital algebras. If A is
simple and central, then the algebra A @ g B is commutator-simple.

Proof. Set T = A®p B. Suppose [T, T] contains a nonzero ideal I. Take a nonzero
W=u @u1+ -+ Uy vy, € 1.

Without loss of generality, we may assume that uq, ..., u,, are linearly independent
and v; # 0. Pick a € A\ [4, 4]. By the Artin-Whaples Theorem (see [3, Corol-
lary 5.24]), there exist s;,t; € A such that

Zsiulti:a and Zsiu]—tizo,j:Z,...,m.
i i

This gives
a®U1:ZSi®1'w‘ti®1€I,
i

which readily implies that a ® J C I where J is the ideal of B generated by v;.
By assumption, there exists a b € J\ [B, B]. Since a® b € I C [T, T], there exist
Tp,Yr € A and z, w € B such that

a®b= Z[Ik ® 2k, Yo @ wi] = Zxkyk @ 2K Wk — YrTh & Wk 2k,
k k
which can be written as
a@b+ Y [yp Tk @ 2w = Y YkT @ [k, wi].
k k

Considering >, [yk, Zr] ® 2wy, as an element of the vector space [A, A]® B, we can
rewrite it as ), ¢; ® d; for some linearly independent ¢, € [A, A] and some dy € B.
Since a ¢ [A, A], a does not lie in the linear span of the elements ¢,. Therefore,

a@b+Y a®d =Y Yk ® [z, wy]
¢ k
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implies that b lies in the linear span of the elements [zx, wi] (see [3, Lemma 4.9]).
However, this is a contradiction since b ¢ [B, B]. O

Taking A to be the matrix algebra M, (F'), we obtain the following.
Corollary 2.9. If B is a commutator-simple unital algebra, then so is M, (B).

We now turn our attention to Banach algebras. We start with some of those in
which the argument involving the trace is applicable.

Proposition 2.10. Let X be a normed space. Then the algebra F(X) of all con-
tinuous finite rank linear operators on X is commutator-simple.

Proof. As in Proposition this algebra has a trace 7, and for any continuous
linear operator = on X, we have 7(z({ ® f)) = f(z(£)) for each £ € X and each
continuous linear functional f on X. It follows from the Hahn-Banach theorem
that 7 satisfies (22)). O

Proposition 2.11. Let H be a complex Hilbert space. Then each of the following
operator algebras is commutator-simple:

(i) The algebra S*(H) of all trace class operators on H;
(ii) The algebra S*(H) of all Hilbert-Schmidt operators on H.

Proof. Let 7 be the natural trace on the trace class operators (see [I7, Defini-
tion 9.1.34]). By [17, Theorem 9.1.35], F(H) C S*(H) C S?(H) and 7(zy) = 7(yx)
for all z, y € S?(H). This shows that 7 satisfies [2.]) in both cases (i) and (ii).
Further,

T(z(E@n7)) =7({@) @) = (@)

for each continuous linear operator z and all £, € H, which gives [22)). O

Let G be a locally compact group. We write L'(G) for the usual Banach L!-
space with respect to the left Haar measure on G. It becomes a Banach algebra
with respect to the convolution product defined by

(f )t /f (1) d

If G is a discrete group, then the Haar measure is the counting measure, and the
corresponding group algebra is usually written as £*(G). This algebra coincides
with the purely algebraic group algebra C[G] in the case where G is a finite group.
The group G is called unimodular if the left Haar measure is also a right Haar
measure. This is a very important and wide class of groups, which includes Abelian
groups, compact groups, discrete groups, and many others (we refer the reader
to [I7, Chapter12] for examples and a thorough discussion of this class of groups).
We confine our attention to unimodular locally compact groups. In this case we

have
/ft_ )dt = /f

for each f € L'(G), and the group algebra L' (G) turns into a Banach x-algebra by
defining

fr@) = fi1)
for all f € L*(G) and t € G.
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Proposition 2.12. Let G be a unimodular locally compact group. Then each of
the following subalgebras of the group algebra L*(G) is commutator-simple:

(i) The algebra Coo(G) of continuous functions on G of compact support.
(ii) The algebra L*(G) N L*(G).

Proof. Let e be the identity of the group G.
(i) It is easy to check that Cpo(G) is a x-subalgebra of L!(G). We define a linear
functional 7: Cyo(G) — C by
7(f) = f(e).

Using the unimodularity of G, for each f, g € Cyo(G), we have
T(fxg) = (f*g)(e /f (tte)dt = /f t 1) d
= [ s gtdt= [ g )it = (g5 Pie) = (g 1)
G G

which shows that 7 is a trace on COO(G) Further, suppose that f € Cyo(G) is such
that 7(f * g) = 0 for each g € Cyo(G). We have

=7(f*f*) = /f “(tte) dt = /|f ()2 dt,

whence f = 0.

(i) Write A = L' (G)NL?(G). Since G is unimodular, [8, Proposition 2.40] shows
that A is a subalgebra of L*(G), and it is easily seen that it is x-invariant. Further,
if f,g € A, then [8, Proposition 2.41] shows that f x ¢ is defined everywhere on G
and it is a continuous function vanishing at infinity. This implies that we can define
a linear functional 7: A2 — C by 7(f) = f(e) for each f € A%2. We can check that
both 1) and [22) hold for 7 as in (i). O

Proposition 2.13. Let G be a locally compact group. Then the group algebra
LY(G) is commutator-simple in each of the following cases:

(i) The group G has small invariant neighborhoods, i.e., every neighborhood
of the identity contains a compact neighborhood of the identity which is
invariant under all inner automorphisms;

(ii) The group G is maximally almost periodic, i.e., the are enough continuous
finite-dimensional unitary representations to separate the points of G.

Proof. (i) Let (ex)rea be a bounded approximate identity for L!(G) consisting
of central elements of L!'(G) and such that ey € L'(G) N L*(G) for each A € A
(see [16] Page 530]).

Suppose that I is an ideal of L'(G) with I C [LY(G), L*(G)]. Then, for each
AEA,

LY(G) x ey C LY(G) N L*(G)
and so
Ixeyxey C[LYG) xex, LY(G) xey] C [LY(G) N LA(G), LY (G) N L¥(G)].

Further, I x ey ey is an ideal of L*(G) N L*(G). From Proposition we see
that I xey*xey = {0}. Finally, since (ex)xea is a bounded approximate identity for
LY(G), for each f € I we have

f=1lim fxeyxey=0.
AEA ———

=0
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(ii) Suppose that I is an ideal of L!(G) such that I C [LY(G), L}(G)], and take
fel.

Let 7 be a continuous, unitary representation of G on a finite-dimensional Hilbert
space H. Then 7 gives rise to a representation of L*(G) on the algebra B(H) of all
continuous linear operators on H, still denoted by m, defined by

w(f) = /G F(tym(t) dt

for all f € L'(G). Since H is finite-dimensional we can define a linear functional
7.+ LY(G) — C by
Tx(g) = trace(r(g))

for all ¢ € LY(G@). Tt is immediate to check that 7, is a trace. Consequently,
T=(I) = {0} and hence

0=7.(f = f*) = trace(w ()7 (f)*),

which implies that = (f) = 0.
We thus get 7(f) = 0 for each finite-dimensional, continuous, unitary represen-
tation 7 of GG, and since G is an MAP-group, it may be concluded that f =0. O

For a comprehensive treatment of the classes of groups, [SIN] and [MAP], ap-
pearing in Proposition 2.13] we refer the reader to [I7, Chapter 12]. It should be
pointed out that all of these groups are unimodular. Further, each discrete group G
has small invariant neighborhoods and therefore the algebra ¢(G) is commutator-
simple.

3. DERIVATIONS

Let A be an algebra. A linear map D: A — A is called a Jordan derivation if it
satisfies

D(z?) = D(z)x + zD(z)

for all x € A. If A is a semiprime algebra, i.e., A has no nonzero nilpotent ideals,
and the characteristic of the underlying field is not 2, every Jordan derivation is
automatically a derivation [6], meaning that it satisfies

D(zy) = D(x)y + xD(y)

for all z,y € A.
We remark that there are many algebras in which every derivation D is of the
form

D(x) = [a,m]

where m is a fixed element from A, or, sometimes, from a larger algebra M that
contains A as an ideal. These are the derivations that are of particular interest to
us. Observe that they satisfy

(3.1) D(z)z" = [z, m]|z" = [x,mz"] € [A, 4]

for all z € A and all positive integers n. We will actually need this only for n = 1
and n = 2.

We now state our basic result on derivations in commutator-simple algebras. Its
proof is short and uses an idea from [4].
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Theorem 3.1. Let A be a commutator-simple semiprime algebra over a field F
with char(F) # 2. If a linear map D: A — A satisfies

D(x)x, D(z)2? € [A, A]

for every x € A, then D is a derivation.
Proof. For any x,y € A, we write z = y if z — y € [A, A]. Our assumption can thus
be read as D(x)x = 0 and D(x)x? =0 for every z € A. Writing x + y for  in the
first relation we obtain
(3.2) D(z)y = —D(y)
for all z,y € A, and writing x + y for = in the second relation, we obtain
(3:3) D(x)(zy + yx) + D(y)a® = 0
for all ,y € A (here we used the assumption that char(F') # 2). In light of (3.2,
B3) can be written as
(3.4) D(@)(wy + yz) — D()y =0,
Since

D(z)yr — zD(x)y = [D(x)y, =] = 0,
B4) further gives
(3.5) (D(z)z + 2D(z) — D(z*))y = 0.

Suppose D is not a derivation. By the aforementioned result, D is neither a
Jordan derivation, so

a = D(z)x +xD(x) — D(z*) #0

for some x € A. By B3), ay = 0 for all y € A. Since zay = [z,ay] + a(yz) it
follows that zay = 0 for all y,z € A. This means that [A, A] contains the ideal
AaA, which is nonzero since A is semiprime. This contradicts our assumption that
A is commutator-simple. a

Theorem [Blis of course applicable to most algebras mentioned in Section 2] but
we will not list them here and rather focus on local derivations of group algebras
LY(G). For this purpose, we need the following technical corollary to Theorem [B.11

Corollary 3.2. Let A be a semiprime algebra over a field F with char(F) # 2.
Suppose A is an ideal of an algebra M such that every derivation from A to A is
of the form x — [z, m] for some m € M. Then every local derivation D: A — A is
a derivation on each commutator-simple ideal I of M contained in A.

Proof. Take x € I. Since x € A, by our assumption there exists an m, € M such
that D(z) = [z, m,] € I. Therefore, D maps I into itself, and just as in BI) we
see that

D(z)z" = [x,mg]a" = [z,mza"] € [I,I]
for every positive integer n. As an ideal of a semiprime algebra, I itself is semiprime.
Applying Theorem [3.1] to the algebra I it follows that D is a derivation on I. [

Theorem 3.3. Let G be a unimodular locally compact group. Then every contin-
uous local derivation D: L*(G) — LY(G) is a derivation.
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Proof. We will check that Corollary applies with A = L(G) and M = M(G),
the Banach algebra of complex Radon measures on G. Of course, A is a closed
ideal of M.

A remarkable property of the group algebra L!(G) is that each derivation from
LY(G) to itself is of the form f ~— fx pu — p* f for some u € M(G) (see [1L15]).
We take I = L'(G) N L?(G), which is an ideal of A and, by Proposition 212 I is
a commutator-simple algebra. From Corollary we see that D is a derivation on
I. Since I is dense in L'(G) and D is continuous on L!(G), we conclude that D is
a derivation on L'(G). O

In [I8[19], the author shows that every continuous (approximately) local deriva-
tion from L'(G) to any Banach L!'(G)-bimodule X is a derivation for a large class
of groups including PG-groups, IN-groups, MAP-groups, and totally disconnected
groups. In order to relate this result to Theorem B3] we mention that the class of
unimodular groups strictly contains the classes [PG], [IN], and [MAP] (we refer the
reader to [I7, Diagram 1, page 1486] for this fact), and, on the other hand, unlike
[T8I[19], we are confined to maps from L!(G) to itself. To the best of our knowledge,
Theorem [3.3] gives a new information.

4. JORDAN HOMOMORPHISMS
A linear map T from an algebra A to itself is called a Jordan homomorphism if
T(2?) = T()?

for every x € A. Basic examples are homomorphisms and antihomomorphisms and,
under suitable conditions, these are also the only examples. However, we shall not
go into this here.

The idea of the proof of the following theorem is also taken from [4]. However,
there are important differences in details.

Theorem 4.1. Let A be a commutator-simple unital algebra over a field F with
char(F) # 2,3. If a surjective linear map T: A — A satisfies T(1) = 1 and
T(z)® — 2 € [A, A] for every x € A, then T is a Jordan homomorphism.

Proof. As above, we write x = y for z — y € [A, A]. Since char(F) # 2, replacing z
by x &y in T(z)® = 2? gives

T(x)*T(y) + T(x)T(y)T(2) + T(y)T(x)* = 2y + xyz + yz*.
Observing that
T(x)*T(y) = T(2)T(y)T(z) = T(y)T(2)*,
22y = zyr = ya?,
and using char(F') # 3 it follows that
T(2)*T(y) = 2%y
for all x,y € A. Hence,
T(2)*T(y*) = 2y = y*a® = T(y)*T(2?) = T(«*)T(y)".
Replacing y by y + 1 in T'(x)?T(y?) = T(2)?*T(y)* and using T'(1) = 1 we arrive at
T(2)*T(y) = T(x*)T(y)
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for all x,y € A. Since T is surjective, this means that
(T(@?) - T(@)?) A C [A, 4,
which, by zay = [z, ay] + a(yz), implies that
A(T(2*) — T(z)*)A C [A, Al
Since A is commutator-simple, it follows that T'(x?) — T'(x)? = 0. O

Let A be a unital algebra. By a local inner automorphism of A we, of course,
mean a linear map T: A — A such that, for every x € A, there exists an inner
automorphism Ty, of A such that T'(x) = Ty (z); that is, T'(z) is always of the form
uzzu, ! for some invertible u, € A. Observe that such a map is automatically
injective and sends 1 to 1.

Corollary 4.2. If A is a commutator-simple unital algebra over a field F with
char(F) # 2,3, then every surjective local inner automorphism of A is a Jordan
automorphism.
Proof. Observe that
uru™t —x = [u,2u"] =0

for every invertible u € A and every x € A. Hence

T(x)® = (upzuy ')® = upzdu, ! = 23
for every x € A, and so Theorem [4.1] applies. a

Every matrix z is similar to its transpose x?, so x — 2! is an example of a surjec-

tive local inner automorphism of the matrix algebra M, (F) that is a Jordan auto-
morphism but not an automorphism. We also remark that since all automorphisms
of this algebra are automatically inner, the notion of a local inner automorphism
here coincide with the notion of a local automorphism.

We also need a technical refinement of this corollary that concerns algebras that
are not necessarily unital.

Corollary 4.3. Let A be a commutator-simple algebra over a field F with char(F’) #
2,3. Assume further that y € Ay for each y € A and that A is an ideal of a unital
algebra M. If T: A — A is a surjective linear map such that for each y € A there
exists an invertible element u, € M satisfying T(y) = uyyugl, then T is a Jordan
automorphism.

Proof. Write A; = F1 + A. We claim that A; is a commutator-simple algebra.
Indeed, let I be an ideal of A; such that I C [Ay, A]. Since [A;,A1] =[A4,A]C A
we see that I is an ideal of A contained in [A, A], and so I = {0}.

Define T:: A1 — A1 by

Ti(al+y) =al+T(y)

for all & € F and y € A. Observe that T3 is a well-defined linear map. Moreover,
it is surjective and T1(1) = 1. We claim that Ty (z)? = 23 for each © € A;. Set
x=al+ye€ A;. Take e € A such that y = ey and write v = u, € M. Then

Ti(2)’ —a® = (al +uyu™")® — (al +y)?
P y) +3a(uy’uTt — ) + (uytu T - yP)
= 3a2[ue, yu~ '] + 3a?[y, €] + 3afuy, yu ] + [uy, y*u"] € [A, A],

= 30 (uyu~
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as claimed. By Theorem [£.1]it follows that T3 is a Jordan automorphism and hence
T is a Jordan automorphism. ([l

Let A be an algebra of linear operators on a vector space that contains all finite
rank operator. As a local automorphism of A preserves the rank of any finite
rank operator, it seems likely that its form can be determined by using well known
results on rank preservers. What we will establish in the next lines could therefore
be obtained by other means, or may even be already known. However, our method
of proof is certainly new.

Corollary 4.4. Let A be the algebra of all finite rank linear operators on a vector
space X over a field F with char(F) # 2,3. Then every surjective local automor-
phism of A is a Jordan automorphism.

Proof. Let M be the algebra of all linear operators on X, and we will check that all
requirements in Corollary are satisfied. By Proposition 2.2] A is commutator-
simple. For each x € A, we can choose an idempotent operator P: X — X mapping
onto the range of z, which implies that P € A and « = Pz, so that x € Axz.
Further, M is a unital algebra and A is an ideal of M. For each x € A there exists
an automorphism ®,: A — A such that T'(z) = ®,(x), and [I2, Section IV.11]
shows that there exists an invertible linear operator u,: X — X such that ®,(y) =
uzyu, ! for each y € A. Proposition 3 gives the desired conclusion. O

Corollary 4.5. Let X be a normed space. Then every surjective local automor-
phism of F(X) is a Jordan automorphism.

Proof. Set A = F(X), and let M be the algebra of all continuous linear operators on
X. Then Proposition .10 shows that A is a commutator-simple algebra. If z € A,
then the range Y of x is finite-dimensional and therefore there exists a continuous
linear projection P of X onto Y. Consequently, P € A and z = Pz, which gives
x € Az. Moreover, M is a unital algebra and A is an ideal of M. Take x € A.
Then there exists an automorphism @, : F(X) — F(X) such that T(z) = ®,(z).
By [B, Theorem 3.1], there exists a continuous invertible linear operator u,: X — X
such that ®,(y) = u,yu;! for each y € F(X). From Proposition f3 we obtain
that T is a Jordan automorphism. ([l

Corollary 4.6. Let H be a Hilbert space, let 1 < p < oo, and let SP(H) be the
algebra of pth Schatten class operators on H. Then every continuous surjective
local automorphism T of SP(H) is a Jordan automorphism. Further, if H is an
infinite-dimensional separable Hilbert space, then T is an automorphism.

Proof. Our method consists in considering the restriction of 7' to the ideal F'(H)
of SP(H). Take x € F(H). Then there exists an automorphism ®,: SP(H) —
SP(H) such that T'(z) = ®,(x). By [B, Corollary 3.2], there exists a continuous
invertible linear operator u,: H — H such that ®,(y) = u,yu, ! for each y €
SP(H). Consequently, T'(x) = u,zu; ' € F(H) and hence T maps F(H) into F(H)
and is a local automorphism of F/(H). Further, ify € F(H), then there exists an z €
SP(H) with T(z) = y. Since T'(x) = uzzu, ', it follows that x = u, tyu, € F(H).
This shows that T is a surjective local automorphism of F(H). Corollary tells
us that T is a Jordan automorphism of F'(H). Since F'(H) is dense in SP(H) and T
is continuous on SP(H), it may be concluded that T is a Jordan automorphism of
SP(H). From [I1] we see that T is either an automorphism or an antiautomorphism.
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We now suppose that H is an infinite-dimensional separable Hilbert space, let
(&,) be an orthonormal basis of H, let s € SP(H) be the weighted shift operator
defined through

S(gn) = 2_n§n+1
for all n € N, so that

(&) =0, (&) =2""-1 n>2,

and let us: H — H be a continuous invertible linear operator such that T'(s) =
ussugy ', Assume towards a contradiction that T is an antiautomorphism. Take a
conjugation ¢ on H and define ® on SP(H) by ®(x) = T'(cz*c) for each z € SP(H).
Then @ is an automorphism of SP(H) and [5, Corollary 3.2] shows that there exists
a continuous invertible linear operator v: H — H such that ®(z) = vav—! for each
x € SP(H). We thus get

ugsug = T(s) = ®(cs*c) = ves*ev L.

1

Then the operator uj lvc is invertible, so that £ = u;tvcé; # 0 and, on the other

hand,
S DR S D
s€ =uy vesTev ug =uy ves € = 0.

This is a contradiction as s is injective. ([l
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