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Less is different: Why sparse networks with inhibition differ from complete graphs
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In neuronal systems, inhibition contributes to stabilizing dynamics and regulating pattern formation. Through
developing mean-field theories of neuronal models, using complete graph networks, inhibition is commonly
viewed as one “control parameter” of the system, promoting an absorbing phase transition. Here, we show that,
for low connectivity sparse networks, inhibition weight is not a control parameter of the absorbing transition. We
present analytical and simulation results using generic stochastic integrate-and-fire neurons that, under specific
restrictions, become other simpler stochastic neuron models common in literature, which allows us to show that
our results are valid for those models as well. We also give a simple explanation about why the inhibition role
depends on topology, even when the topology has a dimensionality greater than the critical one. The absorbing
transition independence of the inhibitory weight may be an important feature of a sparse network, as it will
allow the network to maintain a near-critical regime, self-tuning average excitation, but at the same time have
the freedom to adjust inhibitory weights for computation, learning, and memory, exploiting the benefits of
criticality.
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I. INTRODUCTION

The absorbing phase transition (AT) is the most explored
type of transition in the brain criticality hypothesis [1], which
proposes that biological neuronal networks operate around a
critical regime to optimize information processing and stim-
uli sensibility [2]. To increase the biological plausibility of
neuronal models, inhibitory coupling is needed and, in do-
ing so, a rich dynamical behavior emerges even in simple
models [3]. In the literature, the use of complete graph (CG)
topology is common for deriving analytical results for ex-
citatory-inhibitory neuronal models [4–6]. However, there is
evidence that topologies other than CG give different network
dynamics when inhibition is present [7–9]. Even in a random
sparse graph, when inhibition is considered, the richness of
neuronal dynamics greatly increases and some unexpected
behaviors emerge. Some of these interesting phenomena are
the “ceaseless activity” [7], the activity rebirth [8], and the
low-activity intermediate (LAI) phase [9], with all of them
caused by the introduction of inhibition into a system with a
sparse topology (low connectivity).

In a now classic article [10], Brunel explores the dynamics
of sparse excitatory-inhibitory neuronal networks present-
ing a classification for neuronal dynamical regimes. In this
seminal work, a mean-field-like theory was developed for
a sparse network and it was shown that different oscilla-
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tory regimes emerge controlled, among others, by relative
synaptic inhibitory currents g. One of the regimes described
by Brunel, the asynchronous irregular (AI) dynamics, is the
center of a discussion about whether the cortex neuronal
activity is critical or AI. Shew et al. [11] show in a simi-
lar model used by Larremore et al. [7] and Buendia et al.
[9] that increasing g could turn a critical regime into an AI
regime. This and other results will be discussed in this article
through the lens of a simple but generic stochastic neuron
model.

In recent articles, such as [12,13], an extended discussion
of the dynamics of inhibitory-excitatory neuronal sparse net-
works was presented. Mean-field theories of high and low
connectivity were developed, with homogeneous and hetero-
geneous coupling distributions, showing how the interaction
between topology and excitatory-inhibitory dynamics yields a
rich dynamical repertoire. These papers do not focus on the
absorbent or silent phase and do not discuss the behavior of
the absorbing phase transition in sparse networks, which is
relevant in the context of the brain criticality hypothesis. Here,
using a far more straightforward mathematical approach, we
will develop a treelike mean-field theory to study AT in a
sparse neuronal network model when both excitatory and
inhibitory neurons are present.

II. DISCRETE-TIME STOCHASTIC LEAKY
INTEGRATE-AND-FIRE NETWORK MODEL

We consider here a network of N discrete-time stochastic
leaky integrate-and-fire neurons [7,14–17] considering both
excitatory and inhibitory neurons [18]. A Boolean indicator
X E -I

i ∈ {0, 1}, i = 1, . . . , NE or NI denotes silence (X E -I
i = 0)
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TABLE I. Transition probability matrix of the neuron states.

�����t
t + 1

X E -I = 0 X E -I = 1

X E -I = 0 1 − �(V E -I [t]) �(V E -I [t])
X E -I = 1 ϕ(V E -I [t]) 1 − ϕ(V E -I [t])

or the firing of an action potential (spike, X E -I
i = 1), where

the superscripts E -I indicate the excitatory-inhibitory nature
of the neuron.

When a neuron i is inactive (X E -I = 0), the membrane
potential evolves according to

V E -I
i [t + 1]

=
[
μiV

E -I
i [t] + Ii + 1

K

⎛
⎝ KE∑

j=1

Ji jX
E
j [t] −

KI∑
j=1

Wi jX
I
j [t]

⎞
⎠
⎤
⎦

× [
1 − X E -I

i [t]
]
, (1)

where 0 � μi � 1 are leakage parameters and Ii are external
inputs. We use the [t] notation for discrete time. Each neuron
has KE excitatory and KI inhibitory neighbors, totaling K =
KE + KI incoming links. Outgoing links, by this construction,
have a binomial distribution with an average K and a standard
deviation σ = √

K[1 − K/(N − 1)].
If in time step t the neuron fires, its voltage is reset

V E -I
i [t + 1] = 0. The transition between states from state X [t]

to X [t + 1], in general, will depend on the voltage Vi following
a transition probability matrix (Table I).

This means a firing occurs with probability

P
(
X E -I

i [t + 1] = 1
∣∣X E -I

i [t] = 0,V E -I
i [t]

) ≡ �i
(
V E -I

i [t]
)
,

(2)

where �(V ) is the so-called firing function. When a neuron
fires, it will return to the inactive state (inactivation probabil-
ity) with a probability

P
(
X E -I

i [t + 1] = 0
∣∣X E -I

i [t] = 1,V E -I
i [t]

) ≡ ϕi
(
V E -I

i [t]
)
. (3)

The probability of staying inactive (not firing) and staying ac-
tive (double firing) is the complement of the firing probability
and the inactivation probability, respectively.

This model will incorporate an absolute refractory period
of one-time step after a spike if we impose ϕ(V E -I [t]) = 1
and �(0) = 0. This condition makes the probability of double
firing equal zero, so the generic model becomes the Gerstner-
Galves-Löcherbach (GGL) model [14–16,19].

Otherwise, if we impose the probability of inactivation
ϕ(V E -I [t]) = 1 − �i(V E -I [t]), the normalization requirement
makes the probability of double firing equal to �i(V E -I

i [t]) and
we will not have a refractory period so that the generic model
becomes the Larremore et al. model [7].

Finally, we can also obtain a model with n time-step re-
fractory period if we use a firing probability with a refractory
period control factor like �̃(V E -I [t], tsp) = �(V E -I )�(t −
tsp − n), where tsp is the time of the last spike.

As for the GGL model, for the generic model, there are
no strong requirements on the firing function � besides a

FIG. 1. Firing function �(V ). In red the Eq. (5); in black is
shown the inclination in the threshold point θ controlled by the
gain �.

sigmoid shape [19] and a firing threshold; the minimum volt-
age value needs to have a nonzero firing probability. One
example of this is the so-called rational firing function; see
Fig. 1:

�i
(
V E -I

i

) = �i
(
V E -I

i − θi
)

1 + �i
(
V E -I

i − θi
) �

(
V E -I

i − θi
)
, (4)

where θi is the firing threshold, �i is the gain, and �(x) is
the Heaviside step function. Another commonly used function
in the literature is the linear saturating function [7,9,18]. In
general, the firing function has a form like

�i(V
E -I

i ) = f
(
V E -I

i − θi
)
�
(
V E -I

i − θi
)
, (5)

where f is a continuous increasing function that tends to zero
in the limit of (V E -I

i −θi )→0+ and to 1 when (V E -I
i −θi ) � 1.

The order parameter of the systems is the time average
of the fraction of spiking neurons (firing density) ρ[t] =
〈Xi[t]〉 ≡ 1

N

∑N
i=1 Xi[t]. In the simulations, its time average

ρ∗ = 〈ρ[t]〉t is calculated after disregarding transients.

III. COMPLETE GRAPH MEAN FIELD

As shown in [18], it is possible to derive a mean-field (MF)
calculation that is exact for complete graph networks with
self-averaging parameters. This calculation predicts an AT.
The leakage parameter μ does not change the properties of the
phase transition, such as the critical exponents, universality
class, etc.—only the location of the transition point [20]. So,
we examine the case μ = 0, where MF leads to the exact self-
consistent equation (full analytical derivation of the CGMF
self-consistent equation is presented in Appendix A):

ρ = −2�W̄ ρ2 + (�W̄ − 2�h)ρ + �h, (6)

where W̄ = pJ − qW , h = I − θ , p = NE/N , and q =
NI/N = 1 − p are the fractions of excitatory and inhibitory
populations. Here, we define J = 〈Ji j〉, W = 〈Wi j〉, and I =
〈Ii〉, θ = 〈θi〉 as the average over neurons.
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FIG. 2. Steady-state activity ρ∗ as a function of (a) synaptic coupling ratio g and (b),(c) product between excitatory weights and gain.
Simulations of the model in (a), (b) random K-regular network and (a), (c) complete graphs (K = N − 1) with N = 10000, � = 1, I = θ = 0,
and μ = 0. Complete graph MF [18] (solid line) and simulations (dots). (a) The complete graph MF does not accurately describe the behavior
of sparse networks (K 
 N); the activity becomes independent of g for g > 1 when K is small. (b) In random sparse networks, the intensity
of activity is modulated by W in the active phase, but the absorbing transition line does not depend on it. (c) In the complete graph, W affects
the critical point value, so it is a control parameter given a fixed value of J and �.

Solving Eq. (6) yields the stationary activity [18]:

ρ∗ = �W̄ − 2�h − 1

4�W̄
±

√
[�W̄ − 2�h − 1]2 + 8�2W̄ h

4�W̄
.

(7)

An active (ρ > 0) to absorbing (ρ = 0) phase transition
occurs in the limit of zero effective external field h → 0.
In this case, Eq. (7) yields to an absorbing (“silent”) phase
(ρ∗ = 0) and an active phase

ρ∗ = 1

2

(
W̄ − 1

�

)
W̄

∼ (W̄ − W̄c)β. (8)

Previous work shows that the critical exponent β = 1
obtained from the mean-field approximation belongs to the
directed percolation mean-field universality class [18]. The
critical surface W̄c = 1/� can be expressed in terms of the
synaptic coupling ratio g = W/J [18], which gives

gc = p

q
− 1

q�J
. (9)

The use of the control parameter g is usual in the literature
on balanced networks [10]. This result indicates that, given p,
q, �, and J values, there is an inhibitory strength Wc where
the AT takes place. This leads us to think that inhibition
is a control parameter of the AT, an assumption that seems
intuitive and general. However, we will show here that it is
only valid in the limit K → N − 1 (complete graph).

The absorbing transition of this model is common in the
brain criticality literature [21]. In pure excitatory networks,
random graphs were explored and agreed with the analytical
results of the simple complete graph mean field [16]. But
when inhibition is added to the networks, the literature on the
GGL model typically only shows agreement with complete
graph simulations [18,22].

IV. TREELIKE MEAN FIELD

Using a directed K-regular topology, we show that the
complete graph MF result presented in Eq. (9) does not agree
with the simulations. As shown in Fig. 2(a), for sparse net-
works, increasing the inhibitory weight does not promote the

phase transition. Increasing the network in degree K , we see
how the simulation results slowly converge to the complete
graph mean field as K → N − 1, but the absorbing phase
only emerges when the neurons of the network reach all-to-all
interaction.

In Fig. 2(b) we can see that the inhibitory weights W
modulate the network activity only in the active phase, but
do not have any influence on the location of the critical point.
This must be compared with CG networks [Fig. 2(c)], where
the same parameter W drastically affects the critical point.

To understand this behavior, we use a treelike mean-field
approximation [23]. The important presumption for this mean
field is that transition probabilities are translationally invariant
in the thermodynamic limit and beyond the upper critical
dimension, so we can use a representative arbitrary neuron and
its KE and KI neighbors to describe the mean behavior of the
network. Considering that in sparse networks the probability
of having loops in the neighborhood of a node is low, we can
assume that the network is locally a tree and thus the activity
of the neighbors of a neuron is statistically independent. These
same intuitions were used before to study sparse neuronal
networks as in [9,10].

From Eq. (1), when μ = 0 and h = 0, we estimate the
stationary value V ∗ of an inactive random neuron i as

V ∗ = 1

K

⎛
⎝J

KE∑
j

X E
j − W

KI∑
j

X I
j

⎞
⎠. (10)

Defining the number of active excitatory and inhibitory neigh-
bors as

∑KE
j Xj

E = mE and
∑KI

j Xj
I = mI , γ = �J/K and

g = W/J , the firing function (generic) of a random inactive
neuron is

�(mE , mI ) = f (γ (mE − gmI ))�(mE − gmI ). (11)

Now, the independence between neighbors’ states allows
us to express the probability of finding a combination of
{mE , mI} active neighbors as the product of binomial proba-
bilities,

P ({mE , mI})

=
(

KI

mI

)
ρmI (1 − ρ)KI −mI

(
KE

mE

)
ρmE (1 − ρ)KE −mE . (12)
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Here, we assume that the probability of finding an active
neighbor is equal to the frequency of active neurons in the
network, which is the same as the network activity ρ defined
before.

The mean value of the state of a neuron in the network at
time t is

〈X [t]〉 =
∑

x∈{0,1}
xP (X [t] = xi ) = P (X [t] = 1) (13)

≈ ρ[t].

The probability P (X [t + 1] = 1) of having an arbitrary
neuron active in time t + 1 has two contributions—one from
the jump 0 → 1 (inactive at time t to active at time t + 1) and
the other from the probability of staying active 1 → 1, given
all possible combinations of neighbor states {mE , mI}. Using
the transition probabilities (Table I), Eq. (13), and the fact
that neuron states are independent at the same time t (causal
locality), the activity dynamics can be described by

ρ[t + 1] =
∑

{mE ,mI }
[(1 − ρ[t])�({mE , mI})

+ ρ[t][1 − ϕ({mE , mI})]]P ({mE , mI}). (14)

A complete derivation of Eq. (B3) is presented in
Appendix B.

Equation (B3) allows us to express the self-consistent
equation (ρ = ρ[t + 1] = ρ[t]) as

ρ =
∑

{mE ,mI }
[(1 − ρ)�({mE , mI})

+ ρ[1 − ϕ({mE , mI})]]P ({mE , mI}) . (15)

On one hand, if we impose ϕ({mE , mI}) = 1 and �(0) = 0
the model incorporates an absolute refractory period of one-
time step and becomes the GGL model,

ρ =
∑

{mE ,mI }
(1 − ρ)�({mE , mI})P ({mE , mI}) . (16)

On the other hand, if we impose ϕ({mE , mI}) = 1 −
�({mE , mI}) the model becomes the Larremore et al. model
and the self-consistency equation will be

ρ =
∑

{mE ,mI }
�({mE , mI})P ({mE , mI}) . (17)

The only difference is the factor 1 − ρ related to the existence
of a one-time step absolute refractory period in the GGL
model.

A. GGL case

To obtain a meaningful analytical result from Eq. (16),
having defined all factors, we can specify values of KE and
KI , then expand Eq. (16) to the second order to explore the
transition region (ρ → 0+). Doing this for different values
of KE and KI it is possible to infer the general result of
the second-order expansion. However, we will do some more
approximations to derive an analytical critical curve for the
GGL model (16).

First, we can rewrite the sum relative to active excitatory
neighbors exploiting the Heaviside function, then reindexing

the excitatory sum using m′
E = mE − �gmI� and K ′

E = KE −
�gmI�, and approximating �gmI� ≈ gmI . Following these
steps, we obtain

ρ = (1 − ρ)
KI∑

mI =0

(
KI

mI

)
ρmI (1 − ρ)KI −mI

×
K ′

E∑
m′

E =0

(
K ′

E

m′
E

)
ρm′

E +gmI (1 − ρ)K ′
E −mE f (γ m′

E ), (18)

where m′
E can be viewed as being the active effective excita-

tory neighbors (AEEN). To simplify the expression, we define
the probability of firing under the influence of one AEEN as
η = f (γ ), and η̄ = 1 − η will be the probability of staying
inactive under the same influence. Then, consider that the
firings caused by different neighbors are mutually exclusive
events, which is not true, but is valid for low activity. We can
express the probability of firing when having m′

E AEEN as
1 − η̄m′

E , so the firing function factor f (γ m′
E ) will be reduced

to 1 − η̄m′
E . Using this, we can simplify the excitatory sum of

Eq. (18) as follows:

K ′
E∑

m′
E =0

(
K ′

E

m′
E

)
ρm′

E +gmI + (1 − ρ)K ′
E −m′

E (1 − η̄m′
E )

= ρgmI

⎡
⎣1 −

K ′
E∑

m′
E =0

(
K ′

E

m′
E

)
(ρη̄)m′

E (1 − ρ)K ′
E −m′

E

⎤
⎦

= ρgmI [1 − (1 − ηρ)K ′
E ] = ρgmI [1 − (1 − ηρ)KE −gmI ].

(19)

Substituting Eq. (19) in Eq. (18), doing some algebra, and
writing 1 − a = ρg and 1 − b = [ρ/(1 − ηρ)]g, we obtain a
simplified self-consistency equation:

ρ = (1 − ρ)[(1 − ρa)KI − (1 − ηρ)KE (1 − ρb)KI ]. (20)

The reader must notice that the Larremore et al. model will
have almost the same expression, with the only difference
being that the first factor (1 − ρ) will not be present.

When g > 1, substituting the original expressions for a and
b and expanding (20) to second order about ρ = 0 yields

ρ2

(
KEη + KEη2(KE − 1)

2
+ KI KEη

)
+ ρ(1 − KEη) = 0.

(21)

The terms that depend on g disappear, signaling that the phase
transition does not depend on g. Solving Eq. (21) we find the
absorbing phase ρ∗ = 0 and

ρ∗ ≈ G(η, KE , KI )(KEη − 1), (22)

where G(η, KE , KI ) = 2
ηKE

[ 1
2+KI +η(KE −1) ].

Substituting η for the original firing function factor f (γ ),

ρ∗ ≈ G(γ , KE , KI )[KE f (γ ) − 1]. (23)
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FIG. 3. Phase diagram. Simulations in random K-regular network with K = 20, N = 10 000, and different relative inhibitory weights
g = W/J with fixed J = 1. The heat map shows the stationary activity of the network ρ∗, the dashed lines are the critical curve obtained
analytically by the treelike MF approximation, and the solid black lines are the critical curves obtained by complete graph MF calculation. The
absorbing transition is controlled by excitatory weight J , gain �, and the proportion of inhibitory neurons q = KI/K , but not by the relative
intensity of inhibitory weights g = W/J as predicted by the complete graph MF. The blue line is the contour curve of ρ∗ = 5 × 10−4. Both
mean-field approximations agree when there is no inhibition g = 0.

If the rational firing function were used, f (γ ) = γ

1+γ
, where

γ = �J
K . Then we find that

ρ∗ ∝
(

�J − K
KE −1

K
KE −1

)
∼

(
�J − (�J )c

(�J )c

)β

, (24)

with β = 1. The critical line is �J = K/(KE − 1) = K/[(K −
1) − KI ]. The line is independent of g and, therefore, indepen-
dent of synaptic inhibitory weights, as seen in the simulations.
When g < 1, the same critical line appears, but the function G
depends on g. The dependence on g for g < 1 and the indepen-
dence for g > 1 is exactly what we found in the simulations
with K 
 N [Fig. 2(a), for K = 5].

When the linear saturating firing function is used, in the
linear part of the function, we have f (γ ) = γ = �J

K . This
yields a critical line �J = K

KE
. An interesting fact here is that

when there are no inhibitory neurons (K = KE ) the critical
line is �J = 1. A peculiar regime in which AT is independent
of local topology (critical curve independent of degree K) is
shown in [20].

Although inhibitory weight is not essential for AT, we can
see that the proportion of excitatory and inhibitory neurons
plays an important role in AT. This is consistent with the liter-
ature, where connectivity between excitatory and inhibitory
populations is considered a relevant control parameter to
regulate the dynamic transitions of the neuronal network
[24,25].

In Fig. 3 we explore the phase diagram using the control
parameter �J and the local proportion of inhibitory neu-
rons q = KI/K . We can see how the derived critical line
(dashed white curve) accurately describes the AT, while the
CGMF critical line (solid white curve) does not. The sim-
ulation results presented by Buendia et al. [9] show that
the CGMF theory begins to agree with the system behav-
ior when the ratio K/N > 0.03, which is not incompatible
with what we observe here; we can use this as a crite-

rion to differentiate low connectivity from high connectivity
networks.

We can explore what happens with the phase diagram in
terms of the control parameter �J and the relative inhibitory
current g for different increasing values of K (Fig. 4). We can
see the AT independence of g in a low connectivity sparse
network, but this independence begins to break for a highly
connected network until we reach the complete graph.

In the classical Brunel article [10], some analytical ap-
proximations required a large degree K (on the order of 103)
and simulations were done with networks of size N = 10 000,
which combined with large K considerably reduces the spar-
sity of the network, making it a highly connected network.
However, in the same publication of Brunel and also in an-
other publication of the same year [26], the author shows
a phase diagram of a sparse neuron, where KE/N 
 1 is
guaranteed. In this phase diagram, the bifurcation line where
the almost quiescent state (equivalent to our absorbing tran-
sition) loses stability is also independent of g, in agreement
with what happens in our model. In some sense, our results
are already present in the Brunel model, but no discussion
about it was done there, as the author focuses on the different
oscillatory regimes that emerge in the active phase, which are
controlled by g, but not in the effects of g and network topol-
ogy over AT, which is the main contribution of our present
article.

In the Larremore et al. model case, a similar Bethe-Peierls
mean-field approximation was developed in [9]. In that ar-
ticle, the authors focus mainly on a model with the linear
firing function, but also explored different nonlinear transfer
functions, exploring how the LAI phase is affected by it and
showing that, in all cases, the LAI phase is always present and
therefore is a robust phenomenon. Here, we support their re-
sults, showing that, in all the models we explored and using a
rational firing function, which was not explored in that article,
the LAI phase always emerges as described in [9] [in Fig. 2(b),
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FIG. 4. Phase diagram of the GGL model (J vs g) from low to the high connected sparse network until reaching a complete graph:
stationary activity obtained in simulations with T = 10 000 time steps on a K-regular random network with N = 10 000, I = θ = 0, � = 1,
and inhibitory fraction q = KI/K = 0.2. (a) Low connectivity K/N < 0.03 (b) High connectivity K/N > 0.1 (c) Complete graph K/N ≈ 1.
White dashed line is the AT critical curve �Jc = K

KE −1 , the white solid line is the CGMF critical curve Jc = 1
(1−q)−qg , and the blue curve is

the level curve of ρ∗ = 10−3. Between the blue and green curves, we observed remnants of the LAI phase. The critical line for AT does not
correctly describe the transition as the system has a high connectivity. The inhibitory current begins to control the AT as can be seen in the
inclination of the blue line in (b). (c) In the complete graph, the LAI phase disappears and becomes part of the absorbing phase, and the AT
transition is described by the CGMF.

Figs. 3, and 4(a), we describe the LAI phase as the region
where inhibition profusely modulates neuronal activity after
AT takes place]. Furthermore, in that article, the authors derive
a critical curve, which already shows that the AT transition
depends only on excitatory weights. However, they did not
address this fact explicitly nor discuss its implications, as it
was not the focus of their paper.

B. Larremore et al. case

For completeness, we will also explore our results in the
Larremore et al. model. The simplified self-consistency equa-
tion for the Larremore et al. model is

ρ = (1 − ρa)KI − (1 − ηρ)KE (1 − ρb)KI . (25)

As done in the GGL case, expanding to second order at
ρ = 0 yields

ρ2

[
KEη2(KE − 1)

2
+ KI KEη

]
+ ρ(1 − KEη) = 0 (26)

and, therefore,

ρ∗ ≈ G(η, KE )(KEη − 1), (27)

which shows us that the AT transition occurs exactly as in
the GGL model and is independent of inhibitory coupling
strength. To test our analytical result, we simulate the Lar-
remore et al. model with linear and rational firing functions,
for different J , W , �, and K , maintaining the relation between
the excitatory and inhibitory population and the local connec-
tivity in 8 : 2. The results with the rational firing function are
presented in Appendix C 1.

Our results are compatible with those obtained in [7],
where it was shown that the so-called branching function
of the system is independent of the inhibitory contributions,

besides some topology aspect (fraction of inhibitory neurons).
Nonetheless, here we offer a complementary point of view of
the phenomenon by deriving the AT critical curve in terms of
the different parameters of the model. We extend the results
showing its validity in a more general model and address the
impact of topological supposition over the absorbing phase
control parameters and the AT transition.

In Fig. 5 we show that the Larremore et al. model has the
same behavior as the GGL. When the system is in the active
phase, increasing g is not capable of silencing network activity
unless the network has a complete graph topology [Fig. 5(a)].
Modifying the inhibitory weight does not affect the critical
point [Fig. 5(b)] unless the network has a complete graph
topology [Fig. 5(c)].

Finally, the phase diagram of the Larremore (Fig. 6) model
obtained by simulations shows that the critical line of AT de-
pends on the inhibitory proportion (q) and the product of gain
and excitatory weights (�J̇), but not on the inhibitory weight
expressed here as the relative inhibitory weight or the E -I
ratio g. However, as described by [9], increasing inhibitory
weights has an effect after the transition, causing an LAI phase
between the absorbing phase and the fully “active phase.” A
similar phase diagram of Fig. 4 is presented for Shew and Lee
[11] with a modified Larremore et al. model, where activity is
measured by varying synaptic weight and relative inhibitory
weight g. In that case, the authors use g as a control parameter
of a continuous transition, which seems to contradict our
results. However, given a closer look at the Shew and Lee
results, they are dealing with small networks (N = 1000) with
a high mean connectivity degree (〈K〉 = 200), which leads its
results closer to a complete graph than to a low connectivity
sparse network.

Nevertheless, analyzing Shew and Lee models using our
results, we find that the authors are focusing not on the AT, but

024315-6



LESS IS DIFFERENT: WHY SPARSE NETWORKS WITH … PHYSICAL REVIEW E 108, 024315 (2023)

FIG. 5. Larremore et al. model with linear firing function. Steady-state activity ρ∗ as a function of (a) synaptic coupling ratio g and
(b),(c) product between excitatory weights and gain. Simulations of the model in (a),(b) random K-regular network and (a),(c) complete
graphs (K = N − 1) with N = 10 000, � = 1, and I = θ = 0. (a) Complete graph MF does not correctly describe the behavior of sparse
networks (K 
 N); activity becomes independent on g for g � 1 when K is small. (b) In random sparse networks, the intensity of activity is
modulated by W in the active phase, but the absorbing transition line does not depend on it. (c) In the complete graph, W affects the critical
point value, so it is a control parameter given a fixed value of J and �.

on what seems the remnant of the LAI phase to a fully active
transition. The authors affirm that the Buendia [9] results on
the LAI phase do not apply in their case, because of the high
connectivity, but using the insights learned from our results,
we can see that the asynchronous irregular state studied by
Shew and Li does seem to occur in the LAI phase or what
is left of it. More details of this discussion are presented in
Appendix C 2.

C. General case

After discussing our results in the GGL model and different
versions of the Larremore et al. model, we will now focus
on the general case. For an arbitrary ϕ({mE , mI}) function,
Eq. (28) will have the same first term, but will also have

a second term related to the transition 1 → 0. Looking at
the meaning of ϕ({mE , mI}), it is plausible to propose that
this probability will be independent of the neighbor states
({mE , mI}). So, in the simplest case, we will have a constant
probability ϕ and the simplified self-consistency equation
will be

ρ = (1 − ρ)[(1 − ρa)KI − (1 − ηρ)KE (1 − ρb)KI ]

+ ρ(1 − ϕ). (28)

Then, the expanded expression will be

ρ2

(
KEη + KEη2(KE − 1)

2
+ KI KEη

)
+ ρ(KEη − ϕ) = 0.

(29)

FIG. 6. Phase diagram of the Larremore et al. model with linear firing function. Simulations in random K-regular network with K = 20,
N = 10000, and different relative inhibitory weights g = W/J with fixed J = 2. The heat map shows the stationary activity of the network ρ∗

and the dashed lines are the critical curve obtained analytically by the treelike MF approximation. The solid black line is the CGMF obtained
for the GGL model Eq. (9), which is also valid for the Larremore et al. model. The absorbing transition is controlled by excitatory weight J ,
gain �, and the proportion of inhibitory neurons q = KI/K , but not by the relative intensity of inhibitory weights g = W/J . The blue line is the
contour of activity ρ∗ = 5 × 10−4 obtained from the simulated data. It is possible to see the emergence of the LAI phase as shown in [9] when
there is an inhibitory current, but the region of the stable absorbing state is not affected by it. The LAI phase is contained between the CGMF
critical line and the treelike MF; both curves were obtained analytically.
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FIG. 7. Intuitive explanation of how topology influences system control parameters. Excitatory and inhibitory “events” are fundamentally
different: the first one could be propagated by the network by successive excitations, while the second one acts only locally, in first neighbors,
and never propagates. However, when a complete graph topology is imposed, we artificially impose the same range of activities for both types
of events; any excitatory or inhibitory event acts over all elements of the system, which will transform the inhibitory current into the control
parameter of the absorbing phase transition, which will never happen in low connectivity networks.

Solving Eq. (29) we find the absorbing phase fixed point
ρ∗ = 0 and, one more time,

ρ∗ ≈ G(η, ϕ, KE )

(
KEη

ϕ
− 1

)
. (30)

The critical curve one more time is independent of the in-
hibitory coupling strength, but now it presents a dependence
on the probability of inactivation after firing ϕ, which must be
greater than zero.

V. CONCLUSION

In conclusion, based on the analysis presented, we can
affirm that our results are general, at least for this kind of
stochastic neuron model, and also seem to hold for Brunel’s
model when a careful look at the phase diagram is done.

From a statistical physics point of view, there are some
interesting details that we must be aware of: although both
the sparse (K > 4) and the complete graph networks have a
dimensionality larger than the critical dimension dc, and thus
the critical exponents and scaling relations will be the same
for the AT, the control parameters are not the same. Topo-
logical details affect the role of parameters in the network,
as intuitively explained in Fig. 7. The main reason is that
excitatory events can propagate through the network, gener-

ating neuronal cascades of activity, whereas inhibitory events
have only a local effect, acting just over the nearest neighbors.
Therefore, when all-to-all interactions are imposed, we artifi-
cially equate the effects of inhibitory and excitatory events
by giving both a global range of action (each event has ac-
cess to all neurons), which is a specific property of the CG
topology.

The explicit disappearance of the inhibitory-excitatory ra-
tio g in low-connectivity networks is our main result. In
any spiking model, CG will artificially change the role of
inhibitory weights. The mean field derived from the CG as-
sumption leads to erroneous conclusions about the system
phase diagram.

Finally, it is important to realize that the most connected
neurons in biological systems have on the order of 104

synapses but are immersed in networks with more than 106

neurons, leading to a ratio K/N 
 1. This fact makes low-
connectivity sparse network models more relevant from the
neuroscience point of view, adding relevance to the result
presented here.

The independence of AT on inhibitory weights should be
viewed as an important feature of sparse networks, as it will
allow the system to self-tune properties such as average exci-
tatory weights or neuronal gain to reach a near-critical regime,
and, at the same time, have the freedom to adjust inhibitory
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weights to do computation or learning. As shown here, in
sparse networks, less is different.
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APPENDIX A: COMPLETE GRAPH MEAN FIELD
(CURIE-WEISS MEAN-FIELD APPROXIMATION)

The following mean field follows the derivation presented
in [18], with the only difference being that here we use the
rational firing function instead of the linear used in the refer-
enced paper.

In the case of a complete graph in the thermodynamic limit,
K = N − 1 → ∞, Eq. (1) of the main text becomes

V E -I
i [t + 1]

=
⎡
⎣μiV

E -I
i [t] + Ii + 1

N

⎛
⎝ NE∑

j=1

Ji jX
E
j [t] −

NI∑
j=1

Wi jX
I
j [t]

⎞
⎠
⎤
⎦

× [
1 − Xi

E -I [t]
]
. (A1)

As in the case of Bethe-Peierls approximation in the
main text, assuming that our parameters are self-averaging,
we define J = 〈Ji j〉 and W = 〈Wi j〉, � = 〈�i〉, and θ = 〈θi〉.
The activities of the populations are ρE [t] = 1

NE

∑NE
i X E

i [t]

and ρI [t] = 1
NI

∑NI
i X I

i [t] and the fraction of excitatory and
inhibitory neurons is p = NE/N and q = 1 − p = NI/N , re-
spectively. Therefore, taking the average of Eq. (A1) in the
case of μ = 0, we have

V E -I [t + 1] = [I + J pρE [t] − W qρI [t]](1 − ρE -I [t]).

(A2)

This system has two types of stationary states: one active,
where ρE = ρI ≡ ρ∗ > 0, and the silent state, where
ρE = ρI ≡ ρ∗ = 0. At any instant t + 1 the active fraction is
given by

ρE -I [t + 1] =
∫ ∞

θ

�(V )P [t](V )dV, (A3)

where �(V ) is the firing function and P [t](V ) is the probabil-
ity of having a neuron with membrane potential V at time t .

In the complete graph, the reset of the potential causes
the kth subpopulation of neurons that fire together to evolve
together until the next fire, which allows us to write
P [t](V ) as

P [t](V ) =
∞∑

k=0

ηE -I
k δ

(
V − U E -I

k

)
, (A4)

with δ(V ) the Dirac’s delta function, U E -I
k the membrane po-

tential of the kth population of excitatory or inhibitory neurons

that fired k time steps before t , and ηE -I
k [t] the proportion

of such neurons concerning the total excitatory or inhibitory
population. This term evolves in time as

ηE -I
k+1[t + 1] = (

1 − �
(
U E -I

k [t]
))

ηE -I
k , (A5)

U E -I
k+1[t + 1] = I[t] + pJρE [t] − qW ρI [t]. (A6)

With this, Eq. (A3) becomes

ρE/I [t + 1] =
∞∑

k=0

�
(
U E/I

k [t]
)
η

E/I
k [t]. (A7)

If a neuron fires k steps before time t , at time t + 1 it can fire
with probability �(U E -I

k ) or become part of the population
that fires k + 1 time steps ago, which has density ηE -I

k+1[t].
When the stationary state is reached we have

ρ =
∞∑

k=1

ηk�(Uk ), (A8)

ηk = ηk−1[1 − �(Uk−1)], (A9)

Uk = I + pJρE − qW ρI , (A10)

remembering that U0 = 0. From now on we will use (A9) in
(A8) and resetting the index we find

ρ =
∞∑

k=0

ηk[1 − �(Uk )]�(Uk+1)

= �(U )
∞∑

k=0

ηk[1 − �(Uk )]

= �(U )

( ∞∑
k=0

ηk −
∞∑

k=0

ηk�(Uk )

)
. (A11)

Notice that, as we considered μ = 0 from the beginning, Uk+1

is not dependent on the history of the system, so we can
discard the index k + 1; we cannot do the same with Uk ,
because k = 0 makes U0 = 0. Using the fact that

∑∞
k=0 ηk = 1

and �(U0) = 0, we obtain the self-consistency equation of the
complete graph mean field,

ρ = �(U )(1 − ρ). (A12)

Substituting the rational firing function in the second
factor,

ρ = (1 − ρ)
�(W̄ ρ + I − θ )

1 + �(W̄ ρ + I − θ )
, (A13)

using h = I − θ , and doing some algebra,

ρ = −2�W̄ ρ2 + (�W̄ − 2�h) + �h = 0. (A14)

APPENDIX B: ACTIVITY DYNAMICS DERIVATION
IN THE TREELIKE MEAN-FIELD APPROXIMATION

The probability of having an arbitrary neuron active in
the time t + 1 has two contributions, one from the jump
0 → 1 (inactive at time t to active at time t + 1) and the
other from the probability of staying active 1 → 1, given
all possible combinations of neighbor states {mE , mI}, which
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FIG. 8. Steady-state activity ρ∗ as a function of (a) synaptic coupling ratio g and (b),(c) product between excitatory weights and gain.
Simulations of the Larremore et al. model with rational firing function in (a),(b) random K-regular network and (a),(c) complete graphs
(K = N − 1) with N = 10 000, � = 1, I = θ = 0, and μ = 0. Complete graph MF simulations (black line dots). (a) Complete graph MF does
not correctly describe the behavior of sparse networks (K 
 N); activity becomes independent on g for g > 1. (b) As seen for the GGL model,
activity intensity is modulated by W only after AT, but the AT critical point does not depend on W . (c) Similar to what was observed in GGL.
In the complete graph, W affects the value of the critical point, so it is a control parameter given a fixed value of J and �. The LAI phase
effect can be noticed in the sparse network. The presence of inhibition modifies the activity curve, making it more linear concerning the control
parameter, a phenomenon not observed in the complete graph.

yields to

P (X [t + 1] = 1) =
∑

{mE ,mI }
P (X [t + 1] = 1|X [t] = 0, {mE , mI})P (X [t] = 0, {mE , mI})

+
∑

{mE ,mI }
P (X [t + 1] = 1|X [t] = 1, {mE , mI})P (X [t] = 1, {mE , mI}). (B1)

As neuron states {X [t]} are independent of each other in the same instant of time t (causal location), P ({X [t]}) = ∏
i P (Xi[t]),

so the joint probability P (X [t] = x, {mE , mI}) = P (X [t] = x)P ({mE , mI}); in other words, the state of a neuron at time t is
independent of the state of its neighbors at the same time t . With this, we have the following:

P (X [t + 1] = 1) =
∑

{mE ,mI }

[
P (X [t + 1] = 1|X [t] = 0, {mE , mI})︸ ︷︷ ︸

�({mE ,mI })

P (X [t] = 0)︸ ︷︷ ︸
1−ρ[t]

+ P (X [t + 1] = 1|X [t] = 1, {mE , mI})︸ ︷︷ ︸
1−ϕ({mE ,mI })

P (X [t] = 1)︸ ︷︷ ︸
ρ[t]

]
P ({mE , mI}). (B2)

A good estimation of the mean value is the empirical average of the state, which in the case of Boolean states is equal to the
frequency of active neurons and therefore equal to the network activity. Thus, at an arbitrary time t , we have P (X [t] = 1) = ρ[t]
and P (X [t] = 0) = 1 − ρ[t]. This said, from Eq. (B2) we obtain the activity dynamics as

ρ[t + 1] =
∑

{mE ,mI }
[(1 − ρ[t])�({mE , mI}) + ρ[t][1 − ϕ({mE , mI})]]P ({mE , mI}). (B3)

APPENDIX C: LARREMORE et al. MODEL

1. Larremore et al. model with rational firing function

Simulations were performed with the rational firing func-
tion in the Larremore et al. model. The critical line in this
case is the same as in the GGL model when the rational firing
function is used. But the discontinuous transition observed
in pure excitatory networks disappears, given its place in a
smooth transition similar to what is observed in the GGL
model. In Fig. 8 we observed the same behavior presented in
the main text for GGL and Larremore with the linear firing
function. From Fig. 8(a), sparse network activity becomes
independent of g for g � 1. In Fig. 8(b), inhibition modulates

activity only after the absorbing phase becomes unstable (after
the AT occurs), generating a low intermediate activity phase
(LAI phase [9]). From Fig. 8(c), inhibition becomes a control
parameter of AT in the complete graph limit.

The phase diagram of the Larremore et al. model with
the rational firing function (Fig. 9) shows that the critical
curves of CGMF and treelike MF agree approximately when
W = g = 0 and K > 4. In this case, K = 20, which leads to
a dimensionality higher than the critical one. However, only
the treelike MF correctly captures the AT transition when
inhibition is present. Between the CGMF and the treelike
MF, we observe the LAI phase, a region where the activity
is modulated by inhibition.
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FIG. 9. Phase diagram of the Larremore et al. model with rational firing function. Simulations in random K-regular network with K = 20,
N = 10000, and different relative inhibitory weights g = W/J with fixed J = 2. The heat map shows the stationary activity of the network ρ∗

and the dashed lines are the critical curve obtained analytically by the treelike MF approximation. The solid black line is the CGMF obtained
for the GGL model Eq. (9), which is also valid for the Larremore et al. model. The absorbing transition is controlled by excitatory weight J ,
gain �, and the proportion of inhibitory neurons q = KI/K , but not by the relative intensity of inhibitory weights g = W/J . The blue line is
the contour of activity ρ∗ = 5 × 10−4 obtained from the simulated data. Due to the rational function, there is no saturation and the system will
never reach ρ∗ = 1. The delimitation of the LAI phase boundary is not as clean as with the linear function, but using the CGMF and treelike
MF critical curves, we can define the LAI phase boundaries.

2. Shew and Li model

Shew and Li [11] present a modified Larremore et al.
model, with a difference—it does not include a normalization
factor for the inputs. The absence of a normalization factor
may be problematic, causing values such as the nontrivial
eigenvalue of the connectivity matrix and the eigenvalues’
radius to explode in the thermodynamic limits, as they present

a dependence on the size of the system N . The absence of
a normalization factor will also cause the absorbent phase
to disappear in the thermodynamic limit in a pure excitatory
network because the critical value of the synaptic strength will
tend to zero in this limit. Nevertheless, it is possible to use our
analytical derivation to obtain a critical curve for this model.
In our general model, the normalization factor for synaptic
inputs is K , the critical curve for the case of a linear firing

FIG. 10. Phase diagram of the Shew and Li model in an increasingly highly connected sparse network to complete graph: stationary activity
obtained in simulations with T = 10 000 time steps on a K-regular random network (a), (b) with N = 1000 and inhibitory fraction q = 0.2,
where (b) is the same as that used by Shew and Li [11] and (c) is a complete graph. The white dashed line is the AT critical curve derived for the
Shew and Lee model Jc = 1

KE
, the blue curve is the level curve of ρ∗ = 1/N = 10−3, and the green curve is the level curve ρ∗ = 0.8 presented

as an estimate of the LAI phase–full active phase transition. Between the blue and green curves, we observed what seem to be remnants of the
LAI phase. The critical line for AT does not correctly describe the transition as the system has a high connectivity and the inhibitory current is
starting to control the AT transition as can be seen in the inclination of the blue line in (b). (c) In the complete graph, the LAI phase disappears,
becoming part of the absorbing phase, and the AT transition is described by the CGMF.
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function is (�J )c = K
KE

, Shew and Li use � = 1, and, since
there is no normalization factor, the critical curve becomes
Jc = 1

KE
.

The authors use the same approach as Larremore to
study the criticality, measuring the higher eigenvalue of the
connectivity matrix and observing when the eigenvalue be-
comes equal to 1. But this approach seems to have the
limitation of not being able to distinguish the LAI phase
transition to the full active state (correctly described for
the CGMF) from the absorbing phase transition (AT), cor-
rectly described by the treelike MF in the low connectivity
limit.

Our derived critical curve correctly captures the region
where the absorbing phase loses stability, as shown in
Fig. 10(a). However, as we increase connectivity K with

respect to network size N , the system slowly begins to ap-
proach the CGMF results. As shown by Buendia [9], for a high
enough connectivity, the LAI phase should disappear and the
LAI phase to a full active phase transition will become the AT,
which in these limits will be controlled by the g. Shew and Li
[11] discuss the Buendia article explaining that the LAI phase
only appears for K/N < 0.01; in fact, in Buendia’s article, the
authors claim that the LAI phase exists until K/N � 0.03,
which is the moment from which their interpolated critical
curve coincides with their analytic critical curve. However,
as we show here, it seems that this modified Larremore et al.
model has an extended region of the LAI phase, so the asyn-
chronous irregular activity described by Shew and Lee could
be a property of the LAI phase. A more detailed study is
required to address these questions.
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