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Abstract: Home gardens play a transcendental role in food sovereignty, for which the management of
habitats above ground and underground are complementary strategies. This study aims to compare
the biodiversity of soil mesofauna groups between agroecosystems with a conventional and an
agroecological design. Through the combination of quantitative (plant inventories) and qualitative
(mobile interviewing and talking maps) techniques, the units of this study was described. Soil
samples were mounted in a Berlesse–Tullgren system, and the abundance, richness, diversity, and
equality of soil organisms were determined. The relationships between functional groups were
compared taxonomically and biocenotically. The results indicated higher equality in the conventional
home garden, while the communities studied present a medium taxocenotic similarity, without great
biocenotic differences. The diversity and richness of taxa, as well as the abundance in each group
identified, were higher in the agroecological garden, which had more medicinal and aromatic plants.

Keywords: agroecology; functional biodiversity; women farmer; ancestral knowledge

1. Introduction

Home gardens, both in their countryside and urban expressions, play an important
role in the preservation of agrobiodiversity as a basis of food sovereignty. Home gardens re-
flect the materialization of a series of transformation processes in the territory [1], which are
based on complex knowledge systems, their agricultural management and the capacity of
family agriculture to be a diversifying driver and a source of agrobiodiversity creation over
time [2]. Home gardens have become learning spaces for citizens in general [3] through for-
mal educational processes for students [4] and collective self-education territories through
a critical extension model that promotes the ecology of knowledges [5].

Home gardens are important for the generation of community [6]; the reconstruction of
the social fabric [7]; the development of strategies oriented to self-consumption [8]; and the
protection of the genetic heritage [9] of unique varieties of highly adaptive, culinary, ritual,
symbolic and agricultural value [10]. Home gardens are considered spaces for exploring the
territory [11] and occupying the public space, as well as for reconnection with nature. From
the perspective of aesthetics [12] and the appreciation of indigenous cultures [13], and in
relation to emotional aspects, life stories and work experiences, these systems promote an
ethical positioning of female farmers [14]. Home gardens are, definitely, a place of meeting
that strengthens the social fabric, nurtures spirituality and reflects the identity of women,
giving them sovereignty in their practices [15]. This diversity of purposes, motivations
and expressions that unfold in home gardens constitutes the resilience of agroecological
initiatives [16].
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From an agroecological perspective, the establishment of sustainable production
systems is conducted through the design of sites based on principles that encourage
ecological processes rather than mechanically repeated protocols, models or recipes. Within
these principles, the stimulation of soil biology stands out [17,18] considering that the
diversity—especially underground and part of the system—provides a variety of ecological
services that have an impact inside and outside the plot [19]. The diversity of soil life—as
an integral part of the agroecosystem—is closely related to the diversity of plants in the soil,
which allows for the generation of these optimal conditions. Both elements (diversity above
and underground) are considered ‘the pillars’ of a strategy for converting a conventional
production system into a sustainable one [20].

The management strategies of the aboveground and underground habitat are comple-
mentary, since by potentiating positive ecological interactions among their components,
ecosystem functions are potentiated through the development of emerging qualities that
mainly derive from diversity management.

In this sense, diversity planned by farmers plays a fundamental role. This is achieved
through multiple spatial and temporal designs, for example, through the arrangement
of intercropping, with crops combined in rows such as covers, barriers and living fences,
among others, using a diversity of multifunctional plants: medicinal, aromatic, culinary,
ecological service providers, and fodder [21].

The site design of an agroecological system follows some structural arrangements based
on the functional diversity of organisms (plants and animals) present in an agroecosystem—
aboveground and underground—and their contribution to an ecosystem function. This
functional diversity of redundant nature [22] gives resilience to an agroecosystem, which is an
essential attribute of sustainability [23].

The design of farms under more specific agri-environmental schemes requires concrete
spatial knowledge [24], as this is more important to understand the links between key
species or functional groups rather than focusing on species diversity [25]. In this sense,
the plant species most valued by farmers are those that fulfill multiple economic and
agricultural functions, including the positive influence on soil quality [26]. However, many
of the properties and ecosystem services of these multifunctional plants are unknown or
ignored in research on property designs [27].

The experimental designs used often do not allow for adequate generalizations; there-
fore, it is reasonable to suggest using coevolved communities to investigate the different
roles of functional groups [28]. At the plot and farm scale, biodiversity is unlikely to be
maintained for purposes other than direct use or benefit, except for traditional systems,
where intrinsic values, such as social customs, continue to provide reasons for maintaining
diversity [28].

For agroecological and more holistic agrarian systems, cropland is a specific ecosystem
that reflects the worldview and the environmental and human nature of each region where
agricultural activity is practiced. Like any system, it evolves over time, conditioned by
environmental factors that are present in a specific scenario, and generally, in crop soils,
it remains dynamic, being determined by its utilization imposed by socioeconomic and
cultural conditions [29].

Local ecological knowledge of communities about the effect of different species on
soil quality, species interactions and the role of vegetation in maintaining agricultural
productivity, is an important component of the adoption and success of agroecological
systems [26]. This highlights the relevance of sociocultural factors in farmers’ decisions in
the design of their farms and their influence on edaphic communities [30].

In recent studies, the importance of growing home gardens to increase agrobiodi-
versity has been highlighted. The authors of [31] note the small amount of information
available about agrobiodiversity in home gardens in Chile, specifically on topics such as
intraspecific diversity, preservation states, and the presence of wild plants and animals in
these biocultural areas. Regarding animals, research about soil mesofauna is much scarcer.
In this scenario, the present research seeks to answer the following question: Are there
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differences in soil communities derived from the agroecological practices carried out by
women farmers in the design of their farms? Therefore, the objective of this study is to
compare the biodiversity of soil fauna groups in home gardens found in agroecosystems
with a conventional and an agroecological design.

2. Materials and Methods

This study was conducted in the Juan Queupán community, within the framework
of the Global Program for the Preservation of Farming Biodiversity (in Spanish, CBDC)
that the Education and Technology Centre for the Development of the South (CETSUR)
created in the 1990s with indigenous (Mapuche) women in order to preserve the food
and agriculture heritage, the local biodiversity and the ancestral knowledge from an
agroecological perspective [32]. These actions were taken with the active participation
of female farmers in reflection, interaction and iteration spaces [33] through participative
methodologies that enabled the dialogue of knowledges [34,35].

The community is located 12 km from Temuco (route to Chanquín), in the Boyeco
area, Araucanía region (N 26, 22◦; S 78, 42◦; E 41, 29◦; O 43, 27◦) (Figure 1). The study was
conducted in three stages: (1) the selection and description of study units; (2) the collection
of soil samples in these units for their subsequent processing; and (3) the identification,
classification, and quantification of soil organisms.
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Figure 1. (A) Location of the study. (B) Productive systems.

2.1. Selection and Description of Study Units

The units of analysis were a conventional system (CS) and an agroecological system
(AS). The two study units correspond to Family Farming Units (FFU) integrated by nuclear
families whose main economic activity is the agricultural production of their land for
self-consumption, the partial and occasional commercialization of the surplus, and the
exchange of some products [32].

The ethnoecological description [36] was centred on the design of home gardens
(diversity of plants and their spatial and temporal arrangements, garden management
and technologies used). To this end, native categories were established (local or own) [37],
obtained from a previous reflective and critical ethnographic exercises [32]. Data collection
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was conducted with the female members of the two families owning each FFU [38] through
a mix of tools [39], namely quantitative tools (inventories) and qualitative tools (mobile
interviewing [40]; talking maps [41]) (Figure 2).
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Figure 2. Images of fieldwork to describe the gardens. (Source: Maricel Silva).

Both units (CS and AS) belong, from a climate perspective, to district No. 17 of Temuco,
with an average annual temperature of 11.7 ◦C (average maximum of 24.1 ◦C and minimum
of 3.9 ◦C). The average annual rainfall is 1209 mm, with a water deficit of 472 mm, which
implies a dry period with high risk of droughts between November and March. Regarding
geomorphological characteristics, soils are of volcanic origin, red clay of the Metrenco
series [42], whose main characteristics are their complex slope hills (4–15%), regular to
good drainage and a predominant use capacity of III and IV.

The physicochemical characteristics of the soil (Table 1) are similar for both units,
which according to [43] correspond to average values for this type of red clay soils of
volcanic origin.
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Table 1. Soil analysis for different plots (1 and 2) of AS (agroecological system) units and CS
(conventional system) units.

Parameters AS
Plot 1 Plot 2

CS
Plot 1 Plot 2

pH (−log[H+]) 6.20 5.55 5.06 5.58
Organic Matter (%) 10.85 5.74 12.03 7.86
CEC (MEQ/100 g) 17.23 6.14 9.52 6.14
Al Saturation (%) 0.03 4.69 0.93 2.51

Source: [36].

2.2. Collection of Soil Samples

Soil fauna communities were assessed and compared in both units. To this end,
samples were randomly collected within the first 10 cm of soil in different areas of the
garden with six replicas of 188.5 cm3 each, and 24 replicas on each farm [44]. The samples
were collected and stored in polyethylene bags and taken to the laboratory for processing.
In the lab, they were mounted in a Berlesse–Tullgren system for 7 days in order to ensure
the extraction of soil organisms [45]. Organisms were collected in 75% alcohol and stored
in glass vials.

2.3. Identification, Classification, and Quantification of Soil Organisms

Subsequently, organisms were identified at the order and sub-order levels and quanti-
fied under a Nikon SMZ 660 stereo (binocular) microscope. The soil communities of both
study units were assessed through the Shannon–Wiener Diversity Index (H’) and Evenness
Index (J), and then compared taxonomically and biocenotically through the Jaccard Sim-
ilarity Index (SJ) and Winer Index (SW), respectively. For the Winer Index, the following
formula was used:

SW =
Σxi ∗ yi√
Σxi2 ∗ Ξyi2

where xi are the individuals of species i in the location x, and yi are the individuals of
species i in the location y [46].

3. Results
3.1. Site Designs

The systems analysed are characterized by a design that, in the case of the conventional
system, presents different plots intended for the main monoculture of Avena sativa, Triticum
aestivum, Lens culinaris, Cirsium arvense, and Pisum sativum. In the agroecological system,
instead, plots are used for associated crops, mostly Chenopodium quinoa, Phaseolus vulgaris,
P. Coccineus, P. sativum, Avena sativa and Vicia faba, and for the polycropping of Zea mays-P
and vulgaris-Helianthus annus, especially the varieties and lines of the Phaseolus genus.

Fertilization in the conventional system is restricted to the use of manure in some crops
and, more commonly, the application of urea and triple superphosphate. Meanwhile, in
the agroecological system, compost made from home waste, harvest residues and manure
(poultry, rabbits and cattle) are employed.

Regarding the diversity of plants in the gardens, a larger number of plant species
and varieties is found in the Agroecological System (AS) compared to the Conventional
System (CS), with AS quadrupling CS (Supplementary Tables S1 and S2) despite the same
percentage of botanical families predominating in both systems (Figure 3).
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In addition, the uses (properties) of the plants mentioned by the female farmers have
a larger number of species and varieties in the AS for four out of five categories established,
in which culinary and medicinal/aromatic use stand out with the highest values (Figure 4).
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3.2. Underground Biodiversity

The agroecological system presents a higher total abundance (N) of individuals and in
each group identified (Figure 5 and Table 2), as well as a greater diversity (H’) and richness
of taxa (S) (Table 3). Equality (homogeneity, J), in turn, reports a higher value in CS (0.73),
indicating that in AS, relative abundance tends to be less equal and is determined, in this
case, by a higher abundance of acari groups (Table 2).
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Table 2. Total abundance, mean and standard deviation of each taxon and for each study unit (CS =
conventional system; AS = agroecological system); (A) = Acari, (C) = Collembola.

Taxa
CS AS

Total Mean Standard
Deviation Total Mean Standard

Deviation

Oribatida (A) 51 10.2 3.421 713 142.6 39.759
Mesostigmata (A) 17 3.4 1.673 209 41.8 13.864

Uropodina (A) 0 0 0 8 1.6 2.51
Prostigmata (A) 184 36.8 1.483 646 129.2 111.547
Astigmata (A) 68 13.6 14.502 4 0.8 1.304

Diplopoda 2 0.4 0.894 22 4.4 5.32
Entomobryomorpha (C) 36 7.2 4.207 73 14.6 7.092

Poduromorpha (C) 19 3.8 2.683 86 17.2 12.716
Symphypleona (C) 6 1.2 0.837 107 21.4 7.335

Homoptera 0 0 0 2 0.4 0.894
Thysanoptera 0 0 0 1 0.2 0.447

Scarabaeidae (Coleoptera) 0 0 0 8 1.6 3.578
Diptera larvae 0 0 0 13 2.6 3.05

Isopod (Crustacea) 0 0 0 18 3.6 2.191
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Table 3. Diversity indices for CS and AS. Biocenotic (SW) and taxocenotic (SJ) relationship between
CS and AS (CS = conventional system; AS = agroecological system).

Index CS AS CS/AS

Richness (S) 8 14
Abundance (N) 383 1910

Shannon-Wiener (H’) 2.21 2.31
H’ max 2.99 3.81

Evenness (J) 0.73 0.61
Jaccard (SJ) 0.57
Winer (SW) 0.79

The value of SJ (0.57) (Table 3) indicates that the AS and CS communities present a
medium taxocenotic similarity, among which acari the absence of uropodina stands out
in CS. This group, together with oribatida [47], is an indicator of a highly productive soil.
Therefore, the greater abundance of oribatida in AS compared to CS and the absence of
uropodina in CS indicate a better condition of the soil in systems that have been designed
under agroecological principles. The highest oribatida and diplopoda values in AS reflect a
better condition of the biological activity in the AS soil, as these organisms play the role
of decomposers.

The value of Sw (0.79) indicates little biocenotic differences between communities (CS
and AS), with a similarity in the acari/collembola ratio [48] of 5.25 for CS and 5.94 for AS.
However, the biocenotic relationships by the acari group show better soil conditions for
AS (Table 4). Concretely, the oribatida/astigmata balance [49] indicates a higher level of
soil disturbance in CS (0.75) than in AS (178.25) due to a higher abundance (absolute and
relative) of astigmata in CS. Regarding the oribatida/prostigmata ratio [50], values indicate
a higher imbalance in the SC community (0.27) than in the AS community (1.1) due to the
relative dominance of prostigmata organisms. In the case of the astigmata/mesostigmata
ratio [51], values are higher in CS than in AS (4.0 and 0.01, respectively), indicating a higher
alteration or instability of the soil medium in the CS community.

Table 4. Values derived from the ratio established between functional groups for CS and AS
(CS = conventional system; AS = agroecological system).

Ratio between Groups CS AS Author

Acari/Collembola 5.25 5.94 [47]
Oribatida/Astigmata 0.75 178.25 [48]

Oribatida/Prostigmata 0.27 1.1 [49]
Astigmata/Mesostigmata 4.0 0.01 [50]

4. Discussion

The differences and similarities in the biodiversity of the soil mesofauna associated
with system design can explain based on indirect interventions [52] performed by farmers
and agricultural works in their gardens: (a) plant diversity, (b) the spatial and temporal ar-
rangement of the same, and (c) the management through different techniques and practices.
These categories established from the results have a high agreement with those described
in recent similar studies [53].

4.1. Plant Diversity

A high diversity of plant species increases the diversity of soil microfauna [54]. The
biodiversity expressed above a complex ecosystem has its expression under, in the soil, in
the diversity of species that coexist, intertwine, interlock, alternate, overlap, ascend and/or
combine, forming a web [55]. In this case, the higher diversity, individual abundance and
taxa richness present in the AS soil community is directly related to the larger number
of plant species and varieties, with AS quadrupling CS. In this sense, species diversity
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aboveground in the agroecosystem is directly related to the species diversity underground,
which expresses as soil quality [55]. In this case, the different varieties of Ph. vulgaris
present in AS should be noted.

An increase in species richness in a farming system introduces the possibility of includ-
ing species that positively contribute to the general operation of the agroecosystem [56].
The direct introduction of new species as a way to manage agroecosystems and expand
ecosystem functions and services modifies the associated diversity, for example, between
soil biota and adventitious flora [57]. In this case, the higher flora diversity in AS, together
with the establishment of a direct relationship with higher levels of soil mesofauna diversity
and richness, is also associated with different levels of adventitious plants (Figure 4) and a
lower level of pest and/or disease incidence [36] than CS.

4.2. Spatial and Temporal Arrangement of Cropped Functional Biodiversity

Studies about agroecosystem biodiversity have established that functional diversity
is more relevant than species diversity itself [58]. Concretely, this is associated with the
ecological services that such biodiversity can offer agroecosystems [59]. In fact, the in-
crease in species richness in a crop system increases the possibility of including species
that positively contribute to the general operation of the ecosystem through ecological
services [56].

Agroecosystems can be managed to expand ecological functions and services through
the direct introduction of new species, thereby modifying the associated diversity, i.e., soil
biota and adventitious flora [57]. The intentional disturbance to the system (agroecosystem
management) should be designed in such a way that a system develops a mechanism
to recover from disturbances and continues with the main processes autonomously. If
management aims to support biodiversity so the desired functions of the agroecosystem are
achieved, both the biofunctionality and the functionality of biodiversity can contribute, i.e.,
biofunctionality implies species adapted to specific objectives, while diversity can increase
the number of species responsible for processes in the agroecosystem. This prevents the
system from being dominated by negative forms of biofunctionality such as weeds and
pests [60].

The diversification of the agroecosystem implies incorporating regenerative compo-
nents, such as the combination of plants in intercropping, agroforestry systems (crops and
trees), and silvopastoral systems (animals and trees), using legumes as cover or rotation
crops, etc. An organism community in an agroecosystem becomes more complex when a
larger number of different plants are incorporated, generating more interactions between
arthropods and associated microorganisms that are part above and under the soil food
webs. The integrity of an agroecosystem relies on synergies between plant diversity and the
soil microorganism community to optimize the decomposition and the renewal of organic
matter [61].

The agroecological system studied does not only present high flora diversity but
is also arranged in different ways spatially and temporally [62] through crop rotation
using legumes, associated crops, intercropping and polycropping, in which medicinal and
aromatic plants are located in different areas of the system, making it less vulnerable [36].
This interconnection between communities above and underground that is attributed to
the complex design of the agroecological system studied is in agreement with other recent
studies, in particular, the higher values in diversity and abundance in more complex
designs and the increased abundance of acari and entomobryomorpha [63–65].

4.3. Management through Different Techniques and Practices

One of the techniques employed in an agroecological system’s soil management is
the production of biopreparations and the application of compost. The incorporation of
compost has an effect on both microorganisms and fauna in the soil. The application of
compost accelerates the soil biological activity and generates changes in the population
density of collembola and acari, as well as in microbial activity [66]. As mentioned above,
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the changes in the plant community, driven by organic amendments and crops that provide
ecological services, can affect the underground community and vice versa [67].

The highest levels of oribatida and mesostigmata (acari) and of entomobryomorpha
(collembola) were found in the agroecological system, which incorporates compost in the
soil [68,69]. Regarding the relationships between oribatida/astigmata, oribatida/prostigmata
and astigmata/mesostigmata, the estimates suggest that in that soil groups that consti-
tute stability indicators (oribatids and mesostigmata) predominated in the agroecological
system [70]. These groups are favoured by the addition of organic matter and a larger
soil coverage, stimulating the recovery of more stable conditions by the mesofauna. In
this sense, the presence of uropodina in AS, despite being low, could be explained by the
application of compost—as a cultural practice for soil management—as these organisms
are common in these environments [71]. Conversely, in the conventional system, groups
indicating soil instability and infertility (astigmata and prostigmata) predominated.

Finally, the similarities found between the studied systems (AS and CS)—both at the
taxonomic and at the biocenotic levels—could be explained by the predominance of three
botanical families in both systems (Figure 3), which would make the plant communities
aboveground similar. Studies conducted in other agroecosystems in Chile indicate that
the similarities between mesofauna communities present lower values (Sj and Sw close to
0), which is associated with plant communities that are very different from one another
(naturalized prairie vs. monocrop) [72]. Conversely, mesofauna communities in the soil
of organic monocrops present Sj and Sw values close to 1 [73,74]. The results of this
study would confirm a tendency toward higher soil mesofauna diversity, abundance, and
richness values in agroecosystems with greater flora diversity, which is complementary with
increasing (taxo and biocenotic) similarity values in mesofauna communities associated
with monospecific designs [30].

The verification of more abundant biodiversity of soil mesofauna associated with a
more complex design contributes to the validation of a production form (peasant family
farming)—based on agroecological principles—which through biodiversified systems guar-
antee the functioning of agroecosystems, allowing for their adaptation and self-organization.

However, the high complexity in design observed in the HS and the skills deployed
are not only limited to a material dimension. The ethnic worldview, in this case, Mapuche,
conceives the garden as a space of socialization and approach to nature and not only as
a production plot [75]. The many ways of understanding the land from the perspective
of women imply a resignification of such relationships—among others, from the subsis-
tence approach where the essential element is the reproduction of life from which food
sovereignty is built [76].

The woman supposes greater relevance to understand the sociocultural environment
of the garden, since she is the one who dedicates more time to her work on the land and
grows her experience. The garden is a space from which others are excluded, it can be
considered the exclusive domain of a woman [77]. Therefore, the spatial and temporal
dispositions present in the HS described above obey different relational processes based on
the symbolic and, indeed, material experience of the garden.

The pluri-functionality that represents the design established in the SA and its complex
structure are those that allow the provision of different benefits both to its family, to the
community and to the ecosystems [78]. The establishment of complex designs based on
a high diversity of plants in the AS responds to a simultaneous participation in different
interrelated activities of production and care that depend directly on the surrounding
ecosystems. This situation coincides with what was reported in other studies [79], which
noted multitasking and a focus on managing biodiverse systems to fulfill production and
care roles and achieve different degrees of resilience.

The exchange of seeds and knowledge of the management techniques and practices
carried out by agriculture in the HS coincides with what was observed in recent similar
studies [15] regarding the zealous care of the garden and the flow of products between
friends and relatives.
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Finally, the sociocultural and material knowledge of natural resource management in
relation to local knowledge from a gender perspective has not been sufficiently valued.

These agroecosystems are the base of sustainable food systems, and therefore, the
acknowledgement of what they represent to rural communities [80] and the strategies
developed to manage agrobiodiversity [81] is fundamental in the scaling of these agroe-
cological experiences and in the fair and responsible allocation of the value of the food
we consume.

5. Conclusions

Based on the conditions under which this study was conducted, it is concluded that
an agroecology-based agroecosystem with a biodiverse design, functional spatial-temporal
arrangements and regenerative management presents higher values of soil mesofauna
diversity compared to an agroecosystem with a conventional design mainly based on
monocrops and the use of synthetic inputs.

Values of beta diversity for the communities assessed are similar for the acari/collembola
ratio in both systems, which is characteristic of agroecosystems. Similarities are attributed
to flora diversity, in which the same botanical families (Fabaceae, Lamiaceae, Asteraceae)
predominate in both units.

Differences in the balance between acari functional groups (oribata, astigmata, prostig-
mata and mesostigmata) indicate a lower level of disturbance, imbalance and instability in
the agroecological base system as this follows a more complex design that includes spatial
arrangements (polycropping, associated crops, biological corridors and adventitious flora
handling) and temporal arrangements (crop rotation), as well as soil fertility management
based on the incorporation of some legumes, green manures and compost.

The results reveal the value of small family farms, particularly with a solid agroeco-
logical base, since despite not having a design as complex as that of CS, AS presents as a
strategy that is very close to an agroecological proposal, which is distant from conventional
techniques of input substitution and predominant monocropping without rotation.
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