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MOTIVATION The acquisition ofmulti-modal biological data for the same sample, such asRNA sequencing
andwhole-slide imaging (WSI), has increased in recent years, enablingstudyinghumanbiology frommultiple
angles.However, despite theseemergingmulti-modal efforts, for themajority of studies, only onemodality is
typically available,mostly due to financial or logistical constraints. Given thesedifficulties, cross-modal data
imputation and cross-modal synthetic data generation are appealing as solutions for the multi-modal data
scarcity problem. Currently, most studies focus on generating a single modality (e.g., WSI), without
leveraging the information provided by additional data modalities (e.g., gene expression profiles).
SUMMARY
In this work, we propose an approach to generate whole-slide image (WSI) tiles by using deep generative
models infused with matched gene expression profiles. First, we train a variational autoencoder (VAE) that
learns a latent, lower-dimensional representation of multi-tissue gene expression profiles. Then, we use
this representation to infuse generative adversarial networks (GANs) that generate lung and brain cortex
tissue tiles, resulting in a new model that we call RNA-GAN. Tiles generated by RNA-GAN were preferred
by expert pathologists compared with tiles generated using traditional GANs, and in addition, RNA-GAN
needs fewer training epochs to generate high-quality tiles. Finally, RNA-GAN was able to generalize to
gene expression profiles outside of the training set, showing imputation capabilities. A web-based quiz is
available for users to play a game distinguishing real and synthetic tiles: https://rna-gan.stanford.edu/,
and the code for RNA-GAN is available here: https://github.com/gevaertlab/RNA-GAN.
INTRODUCTION

Biomedical data have become increasingly multi-modal, which

has allowed us to better capture the complexity of biological pro-

cesses. In themulti-modal setting, several technologies are used

to obtain data from the same patient, providing a richer repre-

sentation of their biological status and disease state. In current

clinical practice, often demographic, clinical, molecular, and im-

aging data are collected on patients. Making these data modal-

ities available helps advance the goals of precision medicine.1,2
Cell Rep
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For example, DNA and RNA sequencing are now widely used for

the characterization of patients with cancer.3,4 Somatic mutation

and gene expression profiles can be used to improve diagnosis,

define disease subtypes, and determine the treatment regimen

for patients with cancer.5,6 Similarly, in pathology, tissue slides

are the cornerstone for a variety of tasks. This includes primary

diagnosis based on visual examinations by pathologists as well

as treatment recommendations based on insights revealed by,

e.g., immunohistochemistry stains.7 Specifically for oncology,

tissue slides are a valuable resource to observe morphological
orts Methods 3, 100534, August 28, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and texture changes, which reflect the tumor and its microenvi-

ronment.7–9 Since the digitization of tissue slides to whole-slide

image (WSI) data (specifically hematoxylin and eosin [H&E]-

stained images), they have become a key data source for training

deep learning models in a wide range of clinically relevant

endpoints.10

The association of molecular and morphologic patterns is also

gaining interest in the research community, especially in the area

of computational pathology.11 In particular, the relationship be-

tween genomic features and WSI features has recently been

demonstrated, with several studies showing that these two mo-

dalities are complementary. For example, morphological fea-

tures fromWSI data have been shown to associate with genomic

mutations, gene expression profiles, and methylation pat-

terns.5,12,13 The effect of these variations are visually examined

and can be spotted in the tissue both by pathologists and

deep learning models.5,14 However, some genomic variations

are utterly rare,15 limiting the available data. This fact slows

downs the creation of machine learning models for their detec-

tion using a routinely obtained data source, such as H&E images.

Furthermore, the variety of morphologic patterns that can be

found is limited to the small pool of patients, losing a global

perspective of the disease. Moreover, in terms of machine

learning models, studies have shown that the integration of

both modalities leads to an improvement in the performance of

diagnostic and prognostic tasks in cancer when sufficient data

are available.5,16–19

However, both modalities are not always available due to

financial or logistical constraints. For example, the Genome

Express Omnibus (GEO) database20 has numerous RNA

sequencing (RNA-seq) datasets available, but few datasets

have the corresponding WSIs. Similarly, most medical centers

have large archives of tissue slides but not yet the means to

generate matched gene expression data. New multi-modal

datasets are being created to deal with these issues,21 yet the

problem still occurs for most clinical datasets. Thus, opportu-

nities for training models that require multi-modal data are

missed, slowing down progress in advancing precision

medicine.22,23

Data scarcity is a concerning problem in the machine learning

community, especially in the context of recent successes for

non-medical applications where huge amounts of data are avail-

able.24,25 Specifically in biomedical problems, large and diverse

cohorts are necessary to develop accurate clinical decision sup-

port systems that depend on machine learning algorithms.26 To

overcome the scarcity of heterogeneous annotated data in real-

world biomedical settings, synthetic data are increasingly being

considered.27 Generative models, which impute synthetic data

that are indistinguishable from real data, potentially offer a solu-

tion to deal with this issue. Within generative models, generative

adversarial networks (GANs) and variational autoencoders

(VAEs) have been widely used for multiple data generation tasks

and have obtained exceptional performances in previous

studies.28,29 In both cases, the models learn a latent space to

draw samples that cannot be discerned from real data. VAEs

learn a latent space by solving the task of accurately reconstruct-

ing the original data using an encoder and a decoder,30 and

GANs are unsupervised generative models based on a game
2 Cell Reports Methods 3, 100534, August 28, 2023
theoretic scenario where two different networks compete

against each other.31 The synthetic data generated by these

models can expand the diversity of samples that a model is

trained on, potentially increasing the predictive performance

and also improving the model generalization capabilities. It is

important to emphasize that this comes at almost zero cost

once the model is trained, contrary to generating new data. In

addition, synthetic data have the advantage that, when they

can serve as a faithful representation of real patient data, they

can be easily sharedwithout any regulatory hurdles for protected

health information.

Several studies have focused on the generation of single-mo-

dality synthetic data for both RNA gene expression and WSI

data. For example, the generation of gene expression data has

been mainly in the context of data imputation and has been

researched by leveraging the latent space of VAEs. Qiu et al.

showed that b-VAEs, a special case of VAEs, can impute RNA-

seq data.32 Similarly, Way et al. proposed a VAE trained on

pan-cancer TCGA data that is able to encode tissue characteris-

tics in the latent space and also leverages biological signals.33

Recently, Vinas et al. presented an adversarial methodology

for the generation of synthetic gene expression profiles that

closely resemble real profiles and capture biological informa-

tion.34 The generation of high-quality WSI tiles has also been

researched in recent years given the success of GANs in gener-

ating natural images.35,36 For example, Quiros et al. showed that

GANs are able to capture morphological characteristics of can-

cer tissues, placing similar tissue tiles closer in the latent space,

while generating high-quality tiles.37,38

However, current research focuses on generating or imputing

single modalities without leveraging the information provided

from other data types. For non-medical applications, cross-

modal data generation has made enormous progress thanks

to the availability of large paired data, e.g., paired text and

image data. Unsupervised learning methods such as GANs,

transformers,39 and diffusion models40 have been developed to

leverage the relationship between these twomodalities, enabling

the generation of images based on their textual description41–43

or generating textual descriptions of given images.44

While cross-modal generation has proven successful for natu-

ral images in non-medical applications,41,42 the relation between

WSIs and gene expression needs yet to be explored for cross-

modal synthetic data generation. For this use case, we were

inspired by the observation that the relation between textual de-

scriptions and their corresponding images is similar to the rela-

tion between WSIs and genomic data, as they are describing

the same phenomenon from two different perspectives.

Therefore, in this work, we develop an architecture for

cross-modal synthetic data generation using WSIs and genomic

information for heterogeneous healthy tissues as a use case.

Specifically, we explore the generation of WSI tiles using gene

expression profiles of healthy lung and brain cortex tissue (Fig-

ure 1). First, we train a VAE that reduces the dimensionality of

the RNA-seq data. Then, using the latent representation of the

gene expression as input, we present a GAN-based architecture

(named RNA-GAN) that generates image tiles for healthy lung

and brain cortex tissues. Based on evaluations of blinded

pathologists, we show that the quality of generated WSIs can



Figure 1. Model architecture for gene

expression, WSIs, and combined data using

VAE and GANs

(A) b-VAE architecture for the generation of syn-

thetic gene expression data. The model uses as

input the expression of 19,198 genes. Both the

encoder and the decoder are formed by two linear

layers of 6,000 and 4,096, respectively. The latent

m and s vectors have a feature size of 2,048.

(B) GAN architecture for generating tiles by sam-

pling from a random normal distribution. The ar-

chitecture chosen was a deep convolutional GAN

(DCGAN),45 using as input a feature vector of size

2,048. The final size of the tiles generated is 2563

256, the same as the size of the real tiles.

(C) RNA-GAN architecture where the latent repre-

sentation of the gene expression is used for

generating tiles. The gene expression profile of the

patient is used in the b-VAE architecture to obtain

the latent representation. Then, a feature vector is

sampled from a scaled random normal distribution

(values ranging between [�0.3,0.3]) and added to

the latent representation. A DCGAN is trained to

use this vector as input and generate a 256 3 256

sample. The discriminator receives synthetic and

real samples of that size.
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be significantly improved when the GAN is infused with gene

expression data.

RESULTS

A b-VAE model can build a representative latent space
that discriminates between healthy tissues
As a first step, we aimed to create an accurate, distinguishable

latent representation of healthy multi-tissue gene expression us-

ing a b-VAE architecture (Figure 1A). The goal was to reduce the

dimensionality of the gene expression profile while maintaining

the differences among the tissues. To do so, we use the tradi-

tional approach for training a b-VAE, i.e., reconstructing the input

from the latent space (see STAR Methods). The b-VAE model

was able to accurately reconstruct the gene expression by for-

warding the latent representation through the decoder and ob-

taining a mean absolute error percentage of 39% (root-mean-

square error [RMSE] of 0.631) on the test set for multiple tissues.

To verify that the latent representation learnt by the b-VAE

accurately maps to the different tissues, the uniform manifold

approximation and projection (UMAP) algorithm45 was used to

visualize the real gene expression data as well as reconstruc-

tions of latent representations on the test set. For lung and brain

samples, two separated clusters can be distinguished, showing

how the model is characterizing the two tissues in the latent

space (Figure 2A, ‘‘real’’ versus ‘‘reconstruction’’).
Cell Repo
To further validate the learned latent

space, we tested what happens when

interpolating data in it. By interpolating in

the latent space, we should be able to

‘‘transform’’ a randomly drawn sample

to a gene expression profile that looks
like it originated from one of the tissues (i.e., synthetic gene

expression generation). To do so, we need to calculate the clus-

ter centroid vector over the real data latent representations of the

desired tissue and add this centroid vector to randomly drawn

samples from the b-VAE latent distribution. This procedure al-

lows us to generate synthetic gene expression data that look

like real brain or lung gene expression data. When projecting

these synthetic samples in the UMAP space, they indeed fall in

the same clusters as the original data (Figure 2A, ‘‘generated’’

versus ‘‘real’’).

We can also perform other operations in the latent space.

For example, we should be able to ‘‘shift’’ the gene expression

from one tissue into what it would look like if it originated from

another tissue. In this case, we need to add the difference

vectors between the cluster centroids of the respective

tissues to the latent representation of a given sample gene

expression. For example, we can shift a real brain gene

expression profile to a lung gene expression profile, and

vice versa. Visualizing these new samples in the UMAP space

verifies that these operations can indeed be successfully per-

formed (Figure 2B). Next, the representation capabilities of the

b-VAE can also be extended to multiple tissues, showing a

diverse representation with well-differentiated clusters and

maintaining the generative capabilities across the multiple tis-

sues (Figure 2C). The RMSE value distribution of the tissues is

presented in Figure S3.
rts Methods 3, 100534, August 28, 2023 3



Figure 2. UMAP visualization of b-VAE

embedding of multi-tissue expression pro-

files

(A) UMAP visualization of the real and re-

constructed gene expression profiles of lung and

brain cortex healthy tissues. Generated gene

expression profiles, by sampling from the latent

space and interpolating to the respective tissue,

are also plotted.

(B) Shifting real gene expression profiles between

the two tissues. The latent representation of all the

available samples is obtained, and the difference

vectors between the cluster centroids are

computed.

(C) UMAP visualization of real gene expression

profiles of multiple tissues and generated one from

brain cortex tissue.
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GANs generate quality synthetic WSI tiles preserving
real data distribution differences
Next, we developed a traditional GAN model to generate syn-

thetic WSI tiles for brain cortex and lung tissue. The model was

able to generate good-quality images, preserving the morpho-

logical structures and showing few artifacts (Figures 3A and

S1A). In some tiles, checkerboard artifacts are noticeable, which

is a known problem in GANs.46

Despite the artifacts, the main cell types can be observed in

the tiles, such as epithelial, connective, and muscle tissues. In

addition, there is a clear distinction between the tiles generated

for the brain cortex and for the lung, preserving the characteris-

tics of the corresponding real tiles. Specifically, the brain cortex

tissue is grouped in a set of layers that form a homogeneous and

continuous layer (the outer plexiform layer, outer granular layer,

outer pyramidal cell, inner granular layer, inner pyramidal layer,

and polymorphous layer).47 These characteristics can be

observed in the synthetic brain tiles, i.e., they appear more ho-

mogeneous and contain less white spaces compared with the

synthetic lung tissue tiles. The synthetic lung tissue tiles also pre-

sent the characteristics of real tiles, showing the terminal bron-

chioles, respiratory bronchioles, alveolar ducts, and alveolar

sacs in some cases.

To test if the generated tiles have the same distribution as the

real ones, the feature vectors outputted from one of the last con-

volutional layers of an Inception V3 network pretrained on

ImageNet were obtained for the 600 generated tiles. Then, these

feature vectorswere projected and visualized using theUMAPal-
4 Cell Reports Methods 3, 100534, August 28, 2023
gorithm, showing a similar distribution be-

tween the tissues for both real (Figure 3B)

and synthetic samples (Figure 3C).

Using latent gene expression
profiles as input on GANs improves
synthetic H&E tile quality and
reduces training time
Next, we used latent gene expression

profiles as input instead of a random

normal distribution for a GAN model

generatingWSI tiles. The gene expression
was first forwarded through the pretrained b-VAE to reduce the

dimensionality and to encode it in the latent space. Then, that

representation plus noise sampled from a narrowed random

normal distribution (values between [�0.3,0.3]) was used as

input to the generator, which outputs the synthetic tile (Fig-

ure 1C). This model generates synthetic tiles with fewer artifacts

and better quality of the morphological structures (Figures 4A

and S1B). To demonstrate that the gene expression latent repre-

sentation provides actual information to generate the tiles and

that the model does not mainly focus on the random signal (as

with conventional GANs), we also created a GAN that samples

only from a scaled random normal distribution (values between

[�0.3,0.3]). This model was not able to produce quality samples

of any tissue (Figure 4C), even when sufficient training time was

used. Hence, the RNA-seq data in the RNA-GAN is the main

signal that guides its generation process and shows that the

latent RNA-seq distribution is enough to generate synthetic tiles.

The scaled normal distribution only adds sufficient noise to vary

the generated tiles.

We also obtained the feature vectors from one of the last con-

volutional layers of the Inception V3 architecture pretrained on

ImageNet to observe if the distribution of the synthetic tiles

was similar to that from real patients. The differences between

the tissues were preserved, as well the tissue inner-cluster distri-

bution (Figure 4B).

To test the generalization capabilities of the trained models,

we also used as input external brain cortex and lung

tissue RNA-seq data (GEO: 120795). The model was able to



Figure 3. A GAN generates realistic lung and brain cortex tiles maintaining the distribution of the real tiles

(A) Tiles generated by the GAN model for brain tissue on the top and for lung tissue on the bottom.

(B) UMAP representation of the real patients in the lung and brain cortex dataset.

(C) UMAP representation of generated tiles using the GANmodel. 600 tiles are generated per patient and then used to compute the feature vectors and the UMAP

visualization.
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successfully generate tissue samples with characteristics similar

to those obtained with the training data (Figure 4D). We then

tested whether a model trained on real data can distinguish the

synthetic generated tiles from this GEO cohort. This model

reached an accuracy of 80.5%, an F1 score of 79.7%, and an

area under the curve (AUC) of 0.805, showing that a model

trained on real tiles can accurately classify the synthetic tiles.

Finally, we observed that the RNA expression-infused GAN

model needed fewer training epochs compared with the regular

GAN model (Figure 5).

To show the usefulness of these synthetic tiles in a clinical appli-

cation, we decided to use them paired with self-supervised

learning to show the improvements that can be obtained in a clas-

sification task between glioblastoma (GBM) and lung adenocarci-

noma (LUAD) tiles. We firstly generated 10,000 tiles (5,000 per

class) and trained a ResNet-50 architecture in a self-supervised

learning (SSL) manner using the SimCLR framework.48 SimCLR

isacontrastive learningmethod thatmaximizes the agreement be-

tween two different augmented versions of the same image,

learning a relevant feature representation of the image. Once the

pretraining has been performed, the learned weights are used as

the initialization weights for the downstream task and compared

with training themodel from scratch. Then, we took 1,000 real tiles

frompatientswithGBMandLUAD fromTheCancerGenomeAtlas
(TCGA) project, respectively, andperformed a 5-fold cross-valida-

tion in two settings: training from scratch, and using the SSL

weights as initialization. The details of the SSL training are pre-

sented in the STAR Methods section. The model using SSL

weights outperformed the one training from scratch in both terms

of accuracy and F1 score. Themodel using SSL weights obtained

ameanaccuracyof 85.50%± 1.54%andanF1 score of 85.49%±

1.54%, while the model trained from scratch obtained amean ac-

curacy of 76.71% ± 4.51% and an F1 score of 76.67% ± 4.52%.

Both the accuracy and F1 score obtained across the splits and

the confusion matrices are presented in Figure S4.

Expert evaluation of synthetic tiles
Next, we asked a panel of board-certified anatomic pathologists

with different subspecialty expertise (M.G.O., H.V., R.B.W.,

C.S.K., Matt Van den Rijn, J.S.) to rate the quality of brain cortex

and lung cortex tiles (N = 18) on a scale from 1 (worst) to 5 (best).

These pathologists were not informed about the presence of

synthetic data in the examples to prevent any bias when exam-

ining the tiles. Instead, they were told that the tiles presented

were going to be used to train machine learning models and

that wewanted to score their quality of that task. The set of ques-

tions asked and the procedure are further described in the STAR

Methods section.
Cell Reports Methods 3, 100534, August 28, 2023 5



Figure 4. A gene expression-infused GAN improves tile quality

(A) Tiles generated using the RNA-GAN model for lung and brain cortex healthy tissues.

(B) UMAP visualization of the patients by generating tiles using their gene expression. The model preserves the distribution differences between the two tissues.

(C) Generated tiles of model trained using only random Gaussian data on a small range ([�0.3,0.3]) does not generate high-quality tiles, showing that the gene

expression distribution is essential for synthetic tile generation.

(D) Brain cortex and lung tissue tiles generated using an external dataset (GEO: GSE120795), showing the generalization capabilities of the model.

Article
ll

OPEN ACCESS
The pathologists’ evaluations of the morphological structures

resulted in a mean score of 3.55 ± 0.95 for real brain, 2.88 ±

0.62 for GAN brain, and 2.94 ± 0.64 for RNA-GAN brain. For the

lung tissue, the mean score for the real samples was 2.26 ±

1.14, 1 ± 0.55 for the GAN lung, and 1.73 ± 0.79 for the RNA-

GAN lung. Hence, the pathologists rated the real samples as

best quality, with second-best ratings for the samples from the

RNA-GAN and the worst ratings for those from the conventional

GAN. In the case of the RNA-GAN lung generated tiles, one of

the pathologists scored the generated tiles higher than the real

tiles in terms of quality (mean value of 1.2 comparedwith the score

of real tiles, 0.8). Nevertheless, the rest of the pathologists scored

the synthetic tiles lower than the real ones, but this difference was
6 Cell Reports Methods 3, 100534, August 28, 2023
never greater than one point (real lung scores: [4,1.4,2,0.8,2.4,3];

RNA-GAN lung scores: [3,1,1.2,1.2,1.6,2.4]). The difference was

greater in the GAN lung generated tiles, where the scores ob-

tained were (1,0.6,1.2,0.6,0.6,2). This was not the case for the

brain tissue, where pathologists scored similarly GAN and RNA-

GAN tiles, even though they scored slightly better the RNA-

GAN-generated tiles (real brain tile scores: [2.3,3.3,3,4.3,3.3,5];

RNA-GAN brain tiles scores: [2,3,3,3,2.7,4]; GAN brain tiles

scores: [2.3,2.7,3,3,2.3,4]).

The preference in the pathologists’ evaluations for the RNA-

GAN lung over GAN synthetic tiles is statistically significant

(p = 0.025), while there was no statistically significant difference

in ratings between the real and RNA-GAN lung tiles scores



Figure 5. A gene expression profile-infused

GAN converges faster: Brain cortex and

lung tissue tiles generated at the same

epoch during training for the model with

and without gene expression profiles

The visualized epoch is the last epoch of training

for the models using RNA-seq data.

(A) Brain cortex generation at training epoch 24 for

GAN and RNA-GAN models, with similar perfor-

mance and quality between the generated tiles;

however, less diversity is obtained when not using

gene expression profiles.

(B) Lung tissue generation at training epoch 11 for

both the GAN and RNA-GAN models. A compari-

son of both models shows noticeable differences

in the quality of the generated tiles. The model

using gene expression profiles outputs better

morphological features and less artifacts and has a

higher overall quality.
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(p = 0.052). On the contrary, generated brain tissue tiles were

significantly different from real tiles both for GAN (p = 0.043)

and RNA-GAN (p = 0.038), and no significant difference in ratings

was found between RNA-GAN and GAN (p = 0.305). However, a

bigger mean evaluation score difference was found between real

and GAN tiles than between real and RNA-GAN tiles, again con-

firming that the quality of RNA-GAN synthetic tiles is closer to the

quality of real tiles (Figure 6A). In addition, the mean difference in

the evaluation betweenGAN andRNA-GAN tiles was bigger than

zero, showing the preference of pathologists for the RNA-GAN

tiles over GAN tiles (Figure 6B).

Finally, pathologists detected the tissue of origin of the tiles

with a 100% ± 0% accuracy for both real and RNA-GAN tiles,

while this drops to 74.98% ± 20.40% accuracy for the GAN tiles.

DISCUSSION

Previously, in biomedical problems, imputed samples and syn-

thetic data were generated in an isolatedway, not using the infor-

mation provided by other modalities. In contrast, in this work, we

studied the generation of WSI tiles of lung and brain cortex tis-

sues by leveraging the corresponding gene expression profiles.

This idea was inspired by recent advances in cross-modal data

generation for non-medical images, including the generation or

modification of images based on text prompts (e.g., DALL-E

2,42 Imagen,48 Parti,49 and related models41,42,44). Here, we

extrapolated this idea to biomedical data by treating RNA-seq

data as prior text to contextualize image generation.50,51 This dif-

fers from other approaches presented in literature, where cost-

and time-expensive transcriptomic profile levels were predicted
Cell Repo
from an easy- and cheap-to-obtain paired

H&E sample.12 However, our approach

can be situated in the digital biomarker

study area and serve as a general pur-

pose framework for other modalities. In

addition, there is a growing archive of

RNA-seq samples for which the H&E tis-

sue samples have not been digitized
missing that modality, and there are existing databases with

publicly available gene expression data. Our proposed method-

ology can serve as an imputation method for generating the

paired tissue slide from the RNA-seq profile of the patient.

Several studies have been reported using GTEx data where

gene expression variations have been studied across tissues

and characterized several genetic variations.52–55 These studies

investigate how genetic variants affect gene regulation and com-

plex traits in humans at the transcriptomic level, as well as the

genetic bases of diseases. Thus, our proposed model can pro-

vide a solution to study those variations on tissues where only

RNA-seq is available and model the effect that they might have

on its morphology.

Moreover, even thoughwe are using healthy tiles as a use case

to show ourmethodology capabilities, it can be further applied to

other applications. The use of our method is potentially useful for

rare diseases. In this context, synthetic data generation can be

used as a tool to increase the availability of samples in scarce

settings and can be used to study the variations between healthy

and diseased H&E tiles. It is widely known that scarce data are

one of the bottlenecks in the development of deep learning tech-

niques56 in medicine, and our proposed methodology can serve

as a solution in this context. By pretrainingmodels using recently

developed SSL techniques,57 global features can be learned

with the synthetically generated data and then fine-tuned on

the real samples. In addition, data quality has been presented

in the literature as essential to obtain powerful machine learning

models,58 and in this work, we have shown how RNA-GAN-

generated tiles have higher quality both in terms of pathologists’

evaluations and image quality metrics (e.g., Fréchet inception
rts Methods 3, 100534, August 28, 2023 7



Figure 6. Expert evaluation of synthetic slides

(A) Difference in morphological structure quality of synthetic (generated by GAN and RNA-GAN) and real tissues based on the pathologists’ evaluations. The

difference between real tiles and generated tiles was bigger for GAN than for RNA-GAN.

(B) Difference in morphological structure quality between the synthetic generated tiles by the GAN and RNA-GAN based on the pathologists’ evaluations. Pa-

thologists evaluated the tiles generated using RNA-GAN better compared with only GAN.
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distance [FID]) than those generated by a traditional GAN. In

addition, the proposed generative framework could be further

adapted to other imaging modalities including gene expression

and computed tomography scans.

The use of deep learning techniques is revolutionizing medi-

cine, allowing the creation of systems that can accurately detect

genetic variants or perform prognosis prediction. Nevertheless,

for training these models, enough data are required, which can

be especially challenging for rare mutation variants or rare can-

cer types (e.g., pediatric cancers).56 Synthetic data generation

can be used as a tool to increase the availability of samples in

scarce settings, augmenting the number of samples. Using the

generated data and SSL techniques, models can learn global

features that can be further fine-tuned in downstream tasks

with only a few samples.57 However, with traditional generative

approaches, it is not possible to regulate the effect of certain fac-

tors in tissue generation, apart from performing label guidance.

This limits its potential in cases where wewant to study the effect

of an up- or downregulated gene in tissue morphology, expand-

ing the diversity of samples. In this work, we proposed amethod-

ology, RNA-GAN, that can be used under this assumption when

trained on the required data, creating in silico simulations of spe-

cific genomic variations and studying their effect on the tissue.

An example would be the generation of prostate cancer tiles

where the TP53 mutation can be found, helping to increase the

performance of detection models.14 Moreover, the effect of spe-

cific mutations in a specific gene on morphologic characteristics

of tissue has been studied but not from the expression ofmultiple

genes.59,60 Given that the latent representation of the gene

expression is being used, the effect of thousands of genes can

be reflected in the generated tissue tile, not limited to specific

expression values.

From a machine learning perspective, since biomedical data

are becoming increasingly multi-modal, there is a growing inter-

est in developing multi-modal predictive models for advancing

the goals of precision medicine. However, obtaining multi-modal

biological data is a slow and costly process. Multimodal data are

sometimes available for widely studied diseases, but this is not
8 Cell Reports Methods 3, 100534, August 28, 2023
common and definitely not the case for pediatric and rare dis-

eases. In addition, not all medical facilities have the required

expertise or instruments to collect each data modality for a pa-

tient. Therefore, cross-modal data imputation32,61,62 and gener-

ation of cross-modal synthetic data is a promising approach to

complete datasets by leveraging the potential of deep learning

models.27

As a first step in our work, we developed a b-VAE model that

reduces the dimensionality of gene expression data. We have

shown that the b-VAE model is able to capture the latent repre-

sentation of multiple human tissues and that it obtains a repre-

sentative latent feature vector that accurately distinguishes be-

tween the tissues (Figure 2). To test the accuracy, practicality,

and capabilities of the learned latent space, we performed

certain sanity checks. For example, we tested the ability to

generate synthetic gene expression profiles and to interpolate

samples between classes. Our analysis shows that the b-VAE

model indeed allows us to obtain a compact, accurate represen-

tation of tissue gene expression profiles. We later use the

encoder part of the b-VAE to reduce the dimensionality of gene

expression profiles, which in turn will guide the generation of

the WSI tiles. Note that this compact representation could also

be used for downstream tasks including prognosis or treatment

outcome prediction, but this analysis was out of the scope of

this work.

Next, we trained a traditional GAN model on brain cortex and

lung tissue data to generate WSI tiles. We explored the possibil-

ity of using the same architecture to generate both tissues, but

the model collapsed and only generated brain cortex tiles. We

hypothesize that this could be due to the homogeneity of brain

tissue compared with lung tissue, making it easier for the model

to generate brain cortex tiles and reduce the loss. This can also

be observed in the number of necessary epochs to generate

quality tiles for each tissue. While the model only needs 34

epochs for training convergence for brain cortex tissue, it re-

quires 91 epochs for lung tissue. Clearly, it is more difficult

to generate the lung tiles, probably because lung tissues are

more heterogeneous compared with the brain cortex.
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Importantly, the synthetic tiles preserved the distribution of real

tiles, showing twowell-differentiated clusters using a UMAP pro-

jection of the feature vectors (Figure 3C). Pathologists were

asked if they could observe any kind of artifact on the synthetic

tissue (e.g., image aberrations). From the presented GAN tiles, in

70% of cases, pathologists detected certain artifacts (mean per-

centage across pathologists), while this was only the case for

17% of the real tiles.

Finally, we trained the gene expression profile-infused GAN

model, both on brain cortex and lung tissue data. The quality

of the generated tiles improved significantly compared with tiles

from a regular GAN, based on the evaluation of expert patholo-

gists. In addition, pathologists reported significantly fewer arti-

facts in RNA-GAN images (56%comparedwith 70% for GAN im-

ages), even though pathologists scored RNA-GAN tiles for brain

and tissue lower than real tiles. Thus, this could affect their use in

a downstream task. However, the score was better still than

GAN-generated tiles. While a decreased quality compared with

real tiles is expected, our model can provide data in a situation

that is unfeasible to obtain (if the histology sample has been de-

stroyed or is not available anymore) and therefore serves as a so-

lution for data imputation and augmentation purposes.

Another advantage of the RNA-GAN model over the GAN

model is that it needed less training epochs for reaching

high-quality results (using the same amount of training tiles).

While the GAN lung model was trained during 94 epochs for

obtaining tiles without major artifacts and good tissue struc-

ture, the RNA-GAN lung model only needed 11 epochs. This

reduces the number of training epochs by 88%. We computed

the FID 60k for both models, where the GAN model obtained a

value of 87.85 and the RNA-GAN a value of 83.89. While the

RNA-GAN model obtains a lower FID value than the traditional

GAN model, these values are still high compared with other

generative models,38 yet future work is warranted to further

improve these results.

In both cases, checkerboard artifacts were present in the

generated tiles. This effect is usually produced by the deconvo-

lution operation, which is used to go from a lower-resolution

image to a higher-resolution one.63 The problem relies on an un-

even overlap that is produced with the operation, which is even

more extreme in a two-dimensional space. This produces a

checkerboard-like pattern of varying magnitudes since the un-

even overlap of the two axes (taking into account the kernel

size and stride of the convolution operation) are multiplied

together. We refer to the reader to this work for a visual example

of the phenomenon causing the problem.64 Other factors can

also produce such artifacts, like the image compression algo-

rithm used to save the images. We tried different alternatives

to mitigate this effect, such as firstly resizing the image using

interpolation and then applying a traditional convolution opera-

tion. However, while the artifacts were reduced, they were still

present in our case. We hypothesize that since H&E lung images

contain a higher quantity of white space, themodel tries to ‘‘fill’’ it

with color even when the uneven overlap is avoided, producing

the observable checkerboard effect. Newer architectures and

models might reduce this effect, and having a model that is

trained with a variety of tissues. The panel of expert pathologists

was not aware of this typical effect in synthetic image generation,
and, being unbiased to this issue and thinking that all images

were real, they just gave a lower quality score if artifacts were

present. However, this effect can have an effect on the down-

stream task due to the model associating these features to spe-

cific classes. This would not be a problem if the images were be-

ing used for pretraining purposes, where more general features

are learned. However, more work is needed to get rid of the

checkerboard effect in future models.

Once we have a trained generative model, generating or

imputing missing values with synthetic data comes at very

low cost. Adding these low-cost synthetic samples to real

data can help to train more complex deep learning models,

which are data hungry. While the synthetic generation of

WSIs and imputation of RNA-seq data has been studied in

the literature,32,33,37 to our knowledge, generation of synthetic

WSI tiles using gene expression profiles has not yet been

explored. Here, we showed that infusing GANs with gene

expression data for WSI tile generation not only increases

the quality of the resulting tiles but additionally requires less

compute time compared with the regular, single-modality

approach. We further study the implication of these healthy

tiles for pretraining machine learning models. We used

RNA-GAN synthetically generated tiles for pretraining a

ResNet-50 architecture using SSL, specifically the SimCLR

framework. We showed how pretraining on the synthetically

generated tiles improves the performance over training from

scratch for the classification task of distinguishing between

GBM and LUAD on a stratified 5-fold CV while also reducing

the standard deviation. When the confusion matrices obtained

across the five test set splits are compared (see Figure S4),

we can observe how the correctly classified samples are

improved for the two classes, and the misclassifications are

reduced when training using the SSL weights. These results

show the promise of using synthetic data in scarce data set-

tings, where there is not sufficient data to learn. In addition,

it has been shown in previous studies that fine-grained data

might be more suitable for medical tasks compared with using

natural images for pretraining purposes.65

We further showed how our model was able to generalize to

gene expression profiles outside of the training dataset, still

generating realistic synthetic tiles. While a vast number of gene

expression datasets are publicly available, most of these data-

sets do not provide matching WSIs. This limits their use in

multi-modal classification models.16,18,23,57,66 With our model,

WSI tiles can be imputed from the gene expression, which opens

new possibilities in publicly available datasets.

Even though we have used healthy samples to show the capa-

bilities of the proposed methodology, it can be further expanded

to cancer tissue. In this work, we aimed to test the advances in

cross-modality synthetic generation of natural images and

show that they can be applied in a gene expression profile to

H&E tile setting. We focused on two well-differentiated tissues,

such as lung and brain, to facilitate the task of observing tissue

characteristics and limiting the non-detection factor based on

the lack of expertise in a given tissue. Detecting the tissue of

origin based on a single tile can be an arduous task, and there-

fore the tile quality and tissue characteristics can be occluded

by the diversity of tissues when presented against a pathologist
Cell Reports Methods 3, 100534, August 28, 2023 9
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panel for visual quality examination. In addition, given that

different architectures needed to be trained per tissue, we

decided to focus on two of the most prominent ones in order

to reduce computational requirements.

In summary, our work shows the promise of cross-modal syn-

thetic biological data generation to obtain better-quality multi-

modal data for training complex, data-hungry deep learning

models. This is especially useful for multi-modal problems16,18

and datasets with missing modalities but also for problems

with small datasets restricted by expensive data collection or

rare diseases. In future work, we intend to extend this approach

to more heterogeneous tissues and complex diseases and also

explore cross-modal synthetic data generation with different ar-

chitectures. We will also explore other GAN architectures35,36,67

and diffusion models.40,68

Limitations of the study
RNA-GAN needs to be independently trained per tissue, which

increases the number of models that are required if multiple tis-

sues are generated. The VAE is dependent on the protein-coding

genes selected based on those sequenced in theGTEx project. If

other genes have been sequenced, it could give a worse perfor-

mance when the latent representation is obtained.
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Data and code availability
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table.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. The URL and an archival

DOI are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHODS DETAILS

Data
Data was obtained from The Genotype-Tissue Expression (GTEx) project.69 The GTEx project aims to build a public resource of

healthy tissue-spefic characteristics, providing gene expression and WSI among other data types. The data was collected from

54 non-disease tissue and across almost 1,000 individuals. We collected the RNA-Seq and WSIs from brain cortex, lung, pancreas,

stomach and liver tissues. There were a total of 246 samples of brain cortex tissue, 562 samples of lung tissue, 328 samples of

pancreas tissue, 356 of stomach tissue, and 226 samples of liver tissue. To validate the generalization capabilities in generating tiles

from the gene expression of other cohorts, the GEO series 120795 was used.70

RNA-seq data preprocessing
Gene expression data from the GTEx project contains a total of 56,201 genes. This number would require huge computational ca-

pabilities, and it difficulties the training of the machine learning models. Therefore, we reduced the feature dimension and obtained

the expression of 19,198 protein coding genes for further experiments. The data was log transformed, and the Z score normalization

was applied to the gene expression using the training set data, in order to not include the validation or the test set information on the

normalization process.

In the generalization experiments, the gene expression from lung and brain cortex tissue of theGEO series 120795was used. How-

ever, not all the previously selected protein coding genes where among those sequenced in this dataset. Therefore, for thosemissing

in this external cohort, we initialized them as zero for the generation of the tiles. Data was normalized using the mean and standard

deviation from the training set of the GTEx data and log transformed.

WSI data preprocessing
GTEx WSIs were acquired in SVS format and downsampled to 203 magnification (0.5mm px�1). The size of WSIs is usually over

10k 3 10k pixels, and therefore, cannot be directly used for training machine learning models to generate the data. Instead, tiles
e1 Cell Reports Methods 3, 100534, August 28, 2023
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of a certain dimension are taken from the tissue, and they are used to train the models, which is consistent with related work in state-

of-the-art WSI processing.5,71,72 In our work we took nonoverlapping tiles of 256 3 256 pixels. Firstly, a mask of the tissue in the

higher resolution of the SVS file was obtained using the Otsu threshold method.73 Tiles containing more then 60% of the background

and with low-contrast were discarded. A maximum of 4,000 tiles were taken from each slide. For the preprocessing of the images we

relied on the python package openslide,74 that allows us to efficiently work with WSI images. The tiles were saved in an LMDB data-

base using as index the number of the tile. This approach enables to reduce the number of generated files, and structure the tiles in an

organized way for a faster reading while training.

bVAE architecture for synthetic gene expression generation and experiments
Wechose the bVAEmodel for the generation of synthetic gene expression data.75 The bVAEmodel is an extension of the VAEwhere a

b parameter is introduced in the loss function. The original auto-encoder is formed by two networks, the encoder and the decoder.

The encoder encodes the input into a lower dimensionality representation, and then it is used to reconstruct the input using the

decoder, by learning the function hq(x)z x being q the parameters of the neural network. To learn this function, we want to minimize

the reconstruction error between the input and the output. The most common loss function is the root mean squared error (RMSE).

However, for the VAEwewant to learn a probability distribution of the latent space, which allows us to later sample from it to generate

new samples. The assumption of the VAE is that the distribution of the data x, P(x) is related to the distribution of the latent variable z,

P(z). The loss function of the VAE, which is the negative log likelihood with a regularizer is as follows:

Liðq;4Þ = � Ez�qqðzjxiÞ½log p4ðxijzÞ�+KLðqqðzjxiÞkpðzÞÞ (Equation 1)

where the first term is the reconstruction loss and the second term is the Kullback-Leibler (KL) divergence between the encoder’s

distribution qq(z|x) and p(z) which is defined as the standard normal distribution p(z) = N(0,1).

For the bVAE we introduce the parameter b, which controls the effect of the KL divergence for the total loss:

Liðq;4Þ = � Ez�qqðzjxiÞ½log p4ðxijzÞ� + b3KLðqqðzjxiÞkpðzÞÞ (Equation 2)

If b = 1, we have the standard loss of the VAE. If b = 0, wewould only focus on the reconstruction loss, approximating themodel to a

normal autoencoder. For the rest of the values, we are regularizing the effect of the KL divergence on the training of themodel, making

the latent space smoother and more disentangled.75

For the final architecture, we empirically determined to use two hidden layers of 6,000 and 4,096 neurons each for both the encoder

and the decoder, and a size of 2,048 for the latent dimension. Given that we were going to use the latent representation for the gen-

eration of the tiles, we followed the same dimensionality as the output of the convolutional layers of state-of-the-art convolutional

neural networks.76 We used batch norm between the layers and the LeakyReLU as the activation function. A b = 0.005 was used

in the loss function. We used the Adam optimizer for the training with learning rate equal to 5 3 10�5, along with a warm-up and a

cosine learning rate scheduler. We trained themodel for 250 epochs with early stopping based on the validation set loss, and a batch

size of 128. A schema of the architecture is presented in Figure 1A.

We divided the dataset in 60-20-20% training, validation and test stratified splits. We trained two different models, one for brain

cortex and lung tissue data, and the other with all the tissues described in previous subsections (lung, brain cortex, stomach,

pancreas, and liver).

GAN architecture for synthetic WSI tiles generation and experiments
GANs have been succesfully used for generating high-fidelity images. In this work we use the Deep Convolutional GAN architecture

presented by Radford et al.77 On early experiments we used the minmax loss function described on the original Godfellow et al.31

work. However, this loss function led to a lack of diversity in the generation of the samples, and a diminished quality. Therefore,

we decided to use the Wasserstein loss introduced by Arjovsky et al.,78 also adding the gradient penalty proposed by Gulrajani

et al.79 In this case the discriminator (or critic, as called in the paper) does not classify between real and synthetic samples, but

for each sample it outputs a number. The discriminator training just tries to make the output bigger for real samples and smaller

for synthetic samples. This simplifies the loss function of both networks, where the discriminator tries to maximize the difference be-

tween its output on real instances and its output on synthetic instances as follows:

LD = E~x�Pg ½Dð~xÞ� � Ex�Pr ½DðxÞ�+ lEx̂�Px̂

h�kVx̂DðbxÞk2 � 1
�2i

(Equation 3)

and the generator tries to maximize the discriminator’s output for its synthetic instances as follows:

LG = E~x�Pg ½DðGð~xÞÞ� (Equation 4)

We trained two DCGANs, one per tissue, by sampling from a normal random distribution (scheme depicted in Figure 1B). We sam-

ples different number of tiles per image for the training of the network, finally selecting 600 tiles per image because the quality of the

image and the artifacts were highly improved by augmenting the number of tiles. We used the Adam optimizer for both the generator

and the discriminator, with a learning rate equal to 13 10�3 for the generator, a learning rate equal to 43 10�3 for the discriminator

and betas values (0.5,0.999) in both cases. Data augmentations such as color jitter and random vertical and horizontal flips were used
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during training. The brain tissue GAN was trained during 39 epochs while the lung tissue GAN was trained during 91 epochs. For the

training of the GANs, the Python package Torchgan was used.80

RNA-GAN architecture for synthetic WSI tiles generation and experiments
After the successful generation of the tiles using a traditional GANapproach, we explored the generation of synthetic tiles by using the

gene expression profile of the patient. We combined the pretrained bVAE with the DCGAN architecture, using the encoding in the

latent space as the input for training the generator. To generate different tiles from the same gene expression profile, we sample

a noise vector from a narrowed random normal distribution (values ranging between [�0.3,0.3]) and add it to the latent encoding.

Therefore, the input to the generator would be:

~x = qq ðz j xÞ+Nð0;1Þ (Equation 5)

We trained two DCGANs, one per tissue, and the pipeline is depicted in Figure 1 C). We finally selected 600 tiles per image to train

the generator. We used the Adam optimizer for both the generator and the discriminator, with a learning rate equal to 13 10�3 for the

generator, a learning rate equal to 43 10�3 for the discriminator and betas values (0.5,0.999) in both cases. Data augmentations such

as color jitter and random vertical and horizontal flips were used during training. The brain tissue GAN was trained during 24 epochs

while the lung tissue GAN was trained during 11 epochs. For the training of the GANs, the Python package Torchgan was used.80

To validate the generalization capabilities of the trained model, the GEO series 120795 was used. It contains gene expression pro-

files from healthy tissues, where we took the expression of lung and brain cortex tissues. For obtainingmachine learning performance

metrics, one hundred imageswere generated per tissue. Then, a Resnet-18was trained from scratch using 10 epochs and early stop-

ping based on a 20% of data as validation set. A learning rate value of 3e�5 and AdamW optimizer were used. Finally, the model was

tested on the GEO synthetically generated data, and accuracy, F1-Score and AUC was computed.

To test the use of the synthetic tiles for pretraining machine learning models, we used SimCLR to train a Resnet-50 backbone on

10000 synthetically generated tiles (5000 per class). We trained the model for 100 epochs, using the SGD optimizer with a learning

rate equal to 63 10�2, a momemtum value of 0.9 and aweight decay equal to 53 10�4, and we used a cosine annealing learning rate

scheduler. For both training from scratch and fine-tuning the SSL weights, we used AdamW as the optimizer, with a weight decay of

0.01 and a learning rate value of 33 10�5. Both models were trained for 40 epochs using a batch size of 4, and a stratified 5--Fold CV

was used.

We release an online quiz where users can try to distinguish between real and synthetic samples, obtaining a score on how well

they performed. The quiz is available in the following URL: https://rna-gan.stanford.edu/. The code and checkpoints for the proposed

models is available in this Github repository: https://github.com/gevaertlab/RNA-GAN.

Expert pathologist evaluation form
To evaluate the quality of the synthetic tiles, we presented a form to expert pathologists (Figure S2). The pathologists were not

informed that some presented tiles were synthetic, to omit any kind of biases in the evaluation. Instead, we informed the pathologists

that these tiles were going to be used to create machine learning classifiers, and we wanted to evaluate their quality for this task.

Three questions were asked to the experts.

1. Is the tile from brain cortex or lung tissue?

2. Quality of themorphological structures: Being 1 very bad and 5 very good, howwould you rate the morphological features pre-

sent in the tile for an assessment of the tissue?

3. Do you find artifacts in the image? (e.g. image aberrations) (Yes/No)

Ten tiles were randomly selected from 600 synthetically generated tiles per architecture. Then, tiles were visually inspected and the

three with the highest quality were selected, leaving with a total of 18 tiles (between real, GAN generated, and RNA-GAN generated).

This number of tiles was selected to enable clinicians to complete the form in less than 10min.We used the same selection criteria for

both cases (traditional GAN and RNA-GAN), and we manually selected them so both synthetic tiles could be reviewed in the best

condition possible. Since synthetic tiles generated by the networks could present checkerboard artifacts (in less extend in

RNA-GAN generated tiles), it was something that we wanted to omit therefore we used the following criteria.

d No checkerboard artifacts were present in the tile.

d Tissue characteristics were clearly visible in the tile.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model performance was primarily assessed using expert pathologist’s evaluations, FID scores, Accuracy, and F1-Score. Further de-

tails can be found in the methods details and Figure Legends.
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