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Abstract

Sensing is the cornerstone of any functional structural health monitoring tech-

nology, with sensor number and placement being a key aspect for reliable

monitoring. We introduce for the first time a robust methodology for optimal

sensor configuration based on the value of information that accounts for

(1) uncertainties from updatable and nonupdatable parameters, (2) variability

of the objective function with respect to nonupdatable parameters, and (3) the

spatial correlation between sensors. The optimal sensor configuration is

obtained by maximizing the expected value of information, which leads to a

cost-benefit analysis that entails model parameter uncertainties. The proposed

methodology is demonstrated on an application of structural health monitor-

ing in plate-like structures using ultrasonic guided waves. We show that

accounting for uncertainties is critical for an accurate diagnosis of damage.

Furthermore, we provide critical assessment of the role of both the effect of

modeling and measurement uncertainties and the optimization algorithm on

the resulting sensor placement. The results on the health monitoring of an alu-

minum plate indicate the effectiveness and efficiency of the proposed method-

ology in discovering optimal sensor configurations.
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1 | INTRODUCTION

Structural health monitoring (SHM) refers to the development of online and automated damage detection, localization, and
identification capability for aerospace, civil, and mechanical infrastructures. Sensing is the cornerstone of any functional
SHM technology, with sensor number and positioning being a decision of great importance not only for reliable monitoring
but also for cost efficiency. Indeed, despite the additional redundancy of acquired information, which is desirable to a certain
degree, employing more sensors than the required minimum increases the monitoring cost, weight, volume, and complexity
implied by the SHM system.1 Thus, the minimum number of sensors along with their optimal positioning on the structural
ensemble need to be decided during the design stage of an efficient SHM system. However, this decision cannot be reached
without accounting for operational, environmental, and manufacturing-induced variability of the inspected system. The
accuracy of the health monitoring is influenced by uncertainty associated with measurement errors and the relative size
of damage in relation to the accuracy of the sensing system.2,3 Therefore, a comprehensive methodology accounting for
these uncertainties is required if a robust optimization of the number and positioning of sensors is desired.1

In the literature, a number of SHM approaches have been proposed in the last three decades,4 including automated
visual inspection techniques,5 vibration response methods,6 acoustic response approaches,7 local stress, strain and
admittance measurement approaches,8 ultrasonic testing,9,10 and temperature and chemical response methods.11

Among them, ultrasonic guided waves have emerged as one of the most prominent candidates for continuous inspec-
tion of large plate-like structures and have attracted substantial industrial and academic attention.12,13 The advantages
of guided wave-based techniques include the employment of relatively cheap and light transducers able to interrogate
large structural areas with a limited number of actuators and sensors. These active sensing techniques typically have a
controllable frequency bandwidth whose signal features lie outside those from the environmental and operational
regimes. This implies that no data normalization is required for the obtained measurements and no false alarms may
arise due to external vibrations. Moreover, the excitation frequency can be tuned to be high enough to ensure interac-
tion with small damage sizes14 and low enough to avoid interference with stopbands15 and inhomogeneities. Tempera-
ture variations with respect to baseline measurements can also be compensated by signal stretching.16

Notwithstanding, the drawbacks of guided-wave deployment are mainly related to added complexity and weight
implied by the utilization of cables, electronic management units, and power sources, as well as to the postprocessing
complexity that is exacerbated when higher order modes are excited.17 Minimizing these drawbacks can be tackled
through a precise understanding of the wave characteristics and judicious selection and placement of transducers.

The optimization of sensor layouts for ultrasonic guided wave-based SHM systems has been addressed, for both
active and passive sensing diagnosis, by maximizing specific performance indexes.18–20 One relevant example is the area
of coverage index, which typically relies on geometrical and physical properties of the plate and the guided waves.21–23

This index has proven its effectiveness by combining numerical, experimental, and analytical information24 for the opti-
mization procedure. The typical optimization procedure used in these works relies on combinatorial algorithms such as
genetic algorithms,19,25 simulated annealing,18,26 or particle swarm optimization,27 which provide a suboptimal sensor
layout with no indication of its accuracy. The probability of detection is another performance index which typically uses
ad hoc features within the optimization methodology such as the distance of the damage from the sensor28 or the strain
caused by an impact.29 More recently, a methodology to optimize the sensor location for both predictable and
unpredictable damage locations has been provided based on the minimization of the scattered wave attenuation.30

Nonetheless, none of these approaches have considered the uncertainty present in the data and also in the guided
wave-related model, thus limiting its robustness against noise or parameter uncertainty.

Alternatively, Bayesian approaches have been proven to address the optimal sensor placement problem by quantify-
ing uncertainty using the Kullback–Leibler (KL) divergence between the prior and posterior distribution as a measure
of the information gain,31,32 the Shannon information entropy of the posterior distribution as an estimate of the uncer-
tainty of posterior information,33–35 and the mutual information36,37 between data and model parameters. It is impor-
tant to remark that the aforementioned information theoretic approaches imply the definition of complex numerical
optimization problems.37 More recently, an efficient optimization of sensors and actuators in number and position has
been proposed by using a convex entropy-based objective function.38 Moreover, the value of information39,40 has been
adopted to optimize spatially distributed sensor systems, since it allows us accounting for information propagation
among sensors (i.e., one location provides information used to update the other locations),41 although with known sub-
modularity issues, which make that the benefit of adding new measurements to a smaller set is comparatively higher
than adding them to a greater set. The latter drawback is of particular importance when using greedy optimization
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strategies along with different sets of information, as it might lead to suboptimal solutions far from the optimal one.42

More recently, a framework based on the value of information that rigorously proposes a cost-benefit analysis for opti-
mal sensor configuration has been reported in Cantero-Chinchilla et al,1 where a trade-off between cost and informa-
tion gain is provided whilst avoiding far from optimal solutions. Notwithstanding, although the aforementioned
methodologies account for parameter uncertainties, these are usually limited to a specific set of updatable parameters
(e.g., damage position coordinates). Other (nonupdatable) model parameters, such as stiffness, density, or wave speed,
are usually regarded as constant input variables. However, these parameters are uncertain by nature and their uncer-
tainties should be rigorously accounted for in a comprehensive robust methodology.

In recent years, the problem of optimization of sensors with nonupdatable parameter uncertainties has been explored
by a number of researchers. Note that these parameters are not updated in a model-based inverse problem. In Argyris
and Papadimitriou,43 the expectation of the KL divergence (i.e., information gain) over the nonupdatable parameters was
proposed as objective function, while the associated multidimensional integrals were addressed using asymptotic approxi-
mations. Using the same objective function, Papadimitriou44 solved the multidimensional integrals analytically, given that
a linear model of a quantity of interest (QoI) was available, except for the nonupdatable parameters which were approxi-
mated using Monte Carlo (MC) or grid sampling. In addition to the aforementioned expectation of the KL divergence, the
objective function has also been robustly formulated by including the standard deviation of the KL with respect to the
nonupdatable parameters in Ercan et al.45 Nevertheless, there remains a need for a framework for optimal sensor place-
ment considering nonlinear relations between the output QoI and the model parameters using the value of information
as optimization criterion while avoiding biased results due to simplifications such as asymptotic approximations.

In this paper, a novel and robust methodology for optimal sensor configuration based on the value of information is pro-
posed. This framework builds upon the work previously developed in Cantero-Chinchilla et al,1 where a value of
information-based approach for the optimization of SHM sensor configurations was proposed without accounting for uncer-
tainties related to nonupdatable model parameters. Three major methodological contributions are provided in this paper:

(1) the uncertainty related to both updatable and nonupdatable model parameters is rigorously quantified here using
information theoretic foundations and the value of information;

(2) the variability of the objective function with respect to the nonupdatable parameters for each candidate sensor loca-
tion is quantified; and

(3) the spatial correlation between neighbor sensors 35 —assuming that nearby extra sensors add little information—is
taken into account in the context of the value of information.

The proposed methodology is generic, but here, it is specialized for ultrasonic guided wave-based SHM for which
uncertainties have demonstrated to play a significant role in the accuracy of damage diagnosis. Multiple sources of uncer-
tainty are accounted for updatable and nonupdatable parameter uncertainties (e.g., uncertain material properties or dam-
age characteristics), measurement and modeling error uncertainties, and value of information variability with respect to
the nonupdatable parameters. In addition, this work comprehensively explores the influence of (1) modeling and experi-
mental uncertainties and (2) the sensor optimization method by comparing the forward sequential sensor placement algo-
rithm46 based on a exhaustive search with the covariance matrix adaptation evolutionary strategy (CMA-ES)47 (which has
already proven effective for optimal sensor placement48,49). The results demonstrate the effectiveness of the proposed
approach in providing robust optimal sensor configurations under modeling and measurement errors.

The remainder of this paper is organized as follows: Section 2 describes the value of information-based robust meth-
odology for optimal sensor configuration and proposes an efficient algorithmic implementation for the objective func-
tion. Section 3 describes the chosen application on ultrasonic guided waves and illustrates the methodology throughout
a number of case studies. In Section 4, a discussion is provided to comparatively explore the performance between opti-
mization strategies; and finally, Section 5 provides concluding remarks.

2 | METHODOLOGY

2.1 | Robust objective function based on the expected value of information (EVI)

In this section, a robust objective function is proposed for the optimization of the number and location of a set of sen-
sors. This function, based on the concept of the value of information and also on information theoretic principles,
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measures the expected value added by a sensor configuration while trading-off information gain and cost. Further
details on the mathematical derivation of the formulation of the optimal sensor configuration problem using the value
of information are provided in Cantero-Chinchilla et al.1 Mathematically, the EVI of a candidate sensor configuration
Cn given a set of uncertain parameters ξ�Ξ�ℝNξ (e.g., model hypotheses such as wave propagation velocity or material
density) whose inference is not required in the SHM problem can be defined as follows1:

EVIðξ, CnÞ¼ f ðn00
optÞ
Z
D

KLðpðθjD, ξ, CnÞkpðθjξ, CnÞÞpðDÞdD�α � ½f ðn0
optÞ� f ðn00optÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RCI

, ð1Þ

where D¼fyðCnÞg�D�ℝND denotes the available dataset in one damage scenario within the space of all possible
measurements D in all possible damage scenarios of a QoI (e.g., natural frequencies, mode shapes, or time of flight
[ToF]) for an arbitrary sensor configuration Cn; f ðn00optÞ and f ðn0

optÞ are the cost saving functions, that is, stemming from
an inverse of the cost function f ðnÞ of the optimal number of sensors (n00opt) under posterior and prior information (n0opt),
respectively. The term KLðpðθjD, ξ, CnÞkpðθjξ, CnÞÞ¼ RΘ log pðθjD, ξ, CnÞ=pðθjξ, CnÞ½ �pðθjD, ξ, CnÞdθ is the KL diver-
gence between the prior pðθjξ, CnÞ and posterior pðθjD, ξ, CnÞ probability density functions (PDFs) of the set of
updatable model parameters, namely, θ�Θ�ℝNθ ; and finally, α>0 is a constant that establishes a weight to the relative
cost of implementation (RCI). Both sets of parameters, that is, θ and ξ, constitute the input of a model gðθ, ξ, CnÞ of the
QoI used to infer damage diagnosis information θ (e.g., damage location). The inference considers certain mechanical
properties contained in ξ (e.g., wave propagation velocity) and is done based on the data D acquired by the sensor con-
figuration Cn. In the SHM problem, the posterior pðθjD, ξ, CnÞ is obtained by updating the prior PDF pðθjξ, CnÞ using
the data D and considering additional hypotheses about the value of ξ. On the other hand, the optimal sensor configu-
ration problem looks for the sensor layout Cn that maximizes the value of the information gained through its EVI.

Equation (1) is obtained by assuming a benefit function formed by a cost saving function along with the information
gain between prior and posterior PDFs (refer to Cantero-Chinchilla et al1 for further details). Note that the optimal
design of the sensor configuration is conducted in a stage where the experimental data D are unavailable. Therefore,
the posterior PDFs are treated as preposterior PDFs50 depending on modeled data that stem from the likelihood func-
tion, rather than experimental data. Details on the formulation of the likelihood function and the stochastic embedding
of a deterministic model about a QoI, are provided in Appendix A.

Notice that Equation (1) depends on a set of parameters ξ which are usually assumed as constants. These parame-
ters may include physical properties of the system, prediction error quantities such as the standard deviations of the
measurement and modeling errors (σ and ~σ, respectively), and the correlation length λ (refer to Appendix A). To pro-
vide a robust optimal configuration considering the uncertainties of ξ, an expectation of the EVI with respect to ξ,
namely, Eξ½EVIðξ, CnÞ�, is formulated as follows:

Eξ½EVIðξ, CnÞ� ¼ f ðn00optÞ
Z
Ξ

Z
D

KL pðθjD, ξ, CnÞkpðθjξ, CnÞð ÞpðDÞpðξÞdDdξ�RCI: ð2Þ

Note that the resulting equation involves multidimensional integrals that, in general, lack analytical solution;
hence, approximation methods are required to obtain an estimate of the mathematical expectation. These may include
MC or numerical integration methods, depending on the dimensionality of the sets of θ, D, and ξ.1,51,52

Note also that Equation (2) conveys the definition a robust estimator of the EVI with respect to ξ. However, the
resulting optimal configuration could still be prone to further variations of the EVI with respect to changes in the value
of ξ. To account for this variability and provide a further robust optimal sensor placement, the standard deviation of the
EVIðξ, CnÞ is formulated as

Stdξ½EVIðξ, CnÞ� ¼
Z

Ξ
EVIðξ, CnÞ�Eξ½EVIðξ, CnÞ�� �2

pðξÞdξ
� �1=2

: ð3Þ

Finally, by combining Equations (2) and (3), the robust objective (or utility) function for optimal sensor configura-
tion UðCnÞ is formulated as follows:

UðCnÞ¼Eξ½EVIð�Þ��A �Stdξ½EVIð�Þ�, ð4Þ

where A>0�ℝþ is a constant that balances the importance of the EVI standard deviation within the utility function.
Therefore, UðCnÞ is considered here as the robust objective function that measures the utility of the candidate sensor
configuration Cn considering uncertainties stemming from (1) preposterior parameters, (2) nonupdatable parameters,
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and (3) the EVI. Observe that Equation (4) penalizes sensor configurations whose variability is high should the value of
ξ change and establishes a trade-off between EVI and its variability. For example, if there are two candidate sensor con-
figurations with same value of Eξ½EVIðξ, CnÞ�, the proposed objective function will prioritize the one with smaller
Stdξ½EVIðξ, CnÞ�, since it is more robust to variations in the values of the nonupdatable model parameters ξ.

2.2 | Algorithmic implementation

The calculation of the objective function UðCnÞ in Equation (4) involves three multidimensional integrals without triv-
ial analytical solution. These integrals can be expressed, after the expansion of the KL divergence term (refer to
Section 2.1) in Equation (2), as follows:

Eξ½EVIðξ,CnÞ� ¼ f ðn00
optÞ
Z
Ξ

Z
D

Z
Θ
log

pðθjD, ξ, CnÞ
pðθjξ, CnÞ

� �
pðθjD,ξ,CnÞpðDÞpðξÞdθdDdξ�RCI: ð5Þ

MC methods can be used to approximate each of the integrals of the Equation (5); however, the numerical approxi-
mation can be unstable unless significant amounts of samples are used.53 As an alternative, integration methods such
as the trapezoidal rule54 are preferred since they can reach higher accuracy with a lower number of samples. The main
limitation with numerical integration lies on the increasing dimensionality of the integral. Thus, in this work, a mixed
rule is applied to compute the integrals with a numerical quadrature used when the dimension is no higher than two;
otherwise, the MC integration is applied. Note that the standard deviation of the EVI (recall Equation 3) needs to be
addressed after the expectation is obtained. Therefore, the samples used to estimate the expectation of the EVI can be
reused to approximate the standard deviation, thus avoiding extra computational cost.

In this context, it is worth assessing the dimensionality of the variables that are integrated in Equation (5). In partic-
ular, the dimension of D equals the number of sensors considered in the candidate sensor configuration Cn, which typi-
cally exceeds two. In this case, the integral of the KL divergence term over D is approximated using the Bayes' theorem,
total probability theorem, and the MC method, based on the derivation proposed by Huan and Marzouk.55 Conversely,
the dimension of the other two variables, namely, θ and ξ, will depend on the complexity of the model used for infer-
ence. The aforementioned dimension-related rule applies for the estimation of their corresponding integrals, such that
if Nθ >2 and Nξ >2, Equation (5) rewrites as1,55

Eξ½EVIðξ, CnÞ�≈
f ðn00

optÞ
N s

ξ

XN s
ξ

m¼1

1
Ns

D

XN s
D

j¼1

XN s
θ

i¼1

logpðyði,j,mÞjθðiÞ, ξðmÞ, CnÞ� log
XNs

θ

k¼1

pðyði,j,mÞjθðkÞ, ξðmÞ, CnÞ
 !" #" #

�RCI, ð6Þ

where θðiÞ and ξðmÞ are samples drawn from the prior distribution pðθjξ, CnÞ and pðξÞ, respectively; and yði,j,mÞ is a data
sample drawn from the stochastic embedding of the deterministic model (see Appendix A) so that
yði,j,mÞ ¼ gðθðiÞ, ξðmÞ, CnÞþeðjÞðCnÞ. Note that the samples of the prediction error eðjÞ can be obtained as:
eðjÞ ¼ 0þΦ

ffiffiffiffi
Λ

p
ωðjÞ, where ω�Nð0,IÞ, and Φ and Λ are the eigenvector and diagonal eigenvalue matrices of the covari-

ance matrix of e (i.e., Σ). Alternatively, if Nθ ≤ 2 and N ξ ≤ 2, Equation (5) rewrites as

Eξ½EVIðξ,CnÞ� ≈ f ðn00optÞ
PNs

ξ

m¼1

wmpðξðmÞÞ
1
Ns

D

PNs
D

j¼1

PNs
θ

i¼1

wipðθðiÞÞ logpðyði,j,mÞjθðiÞ, ξðmÞ, CnÞ�½
�

� log
PNs

θ

k¼1

wkpðθðkÞÞpðyði,j,mÞjθðkÞ, ξðmÞ, CnÞ
� 	��

�RCI; ð7Þ

where wm,wi, and wk are the coefficients used in the trapezoidal rule. Finally, note that if Nθ ≤ 2 or N ξ ≤ 2, then only its
corresponding integral is approximated by the trapezoidal rule (this case is not shown in Algorithm 1). Therefore, the
optimal sensor problem is defined by the maximization of the robust objective function as follows:

maximize
n,C

UðCnÞ ¼ Eξ ½EVIð�Þ� � A � Stdξ ½EVIð�Þ�

subject ton≤Ns:

ð8Þ

Observe from the last equation that the main constraint is that the number of sensors n for a given configuration
should be less or equal than the maximum number of sensors (Ns). Additional constraints can be introduced related to
the position of the sensor location, for example, the sensors are placed within the area of the structure. However, these
constraints are case specific, and they are not formulated in Equation (8).
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The optimization is addressed using a forward sequential sensor search.46 Here, two strategies are considered for
the identification of the optimal location of the nth sensor: (1) the CMA-ES,47 in cases where the objective function
UðCnÞ is computationally heavy, and (2) an exhaustive search over a discrete grid of the ns,max possible sensor locations.
The CMA-ES algorithm is a state-of-the-art stochastic optimization algorithm adopted in this paper due to its efficiency
in solving optimization problems with computationally expensive and complex utility functions. The algorithm aims to
identify adaptively the probability distribution of the optimal system parameters. It assumes a Gaussian probability dis-
tribution and uses the sequentially available optimization data in order to construct its mean and covariance matrix.
The algorithm has been shown to require less number of function evaluations than other optimization algorithms in
several benchmark problems and applications.47 This makes CMA-ES particularly suitable to maximize the objective
function (Equation 8) due to its high computational cost. Besides, its stochastic nature allows dealing with noisy cost
functions. A pseudoalgorithm of the proposed methodology is provided in Algorithm 1 considering both strategies for
the search of the optimal sensor location and the different integration methods (i.e., MC and the trapezoidal rule). Note
that the optimal design is dependent on uncertainties associated with the updatable and nonupdatable parameters as
well as the experimental and modeling errors (σ and ~σ), which are defined using prior or engineering knowledge.

We emphasize that the maximization of the objective function (Equation 8) requires the use of the same samples
either from a PDF or a grid, depending on the approximation method, for every candidate sensor configuration

6 of 21 CANTERO-CHINCHILLA ET AL.
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Cn.31,51,56 This prevents the objective function from becoming stochastic, which would happen if different samples were
used for every function evaluation, thus enabling the identification of a reliable optimum. Note also that the forward
sequential sensor search algorithm reduces the computational complexity for relatively high number of sensors,46

which would be intractable should an exhaustive combinatorial optimization strategy be adopted.

3 | VALIDATION FOR ULTRASONIC GUIDED WAVE-BASED DAMAGE
LOCALIZATION

The proposed methodology is generic but here it is applied to the optimization of piezoelectric sensor configurations of an
ultrasonic guided wave-based SHM system for damage localization. The monitored structure is a 500 mm� 400mm alu-
minum plate with 1.5mm thickness. Damage is assumed to exist at any location within a specified area of the plate, thus
the damage coordinates comprise the set of updatable parameters (which would be inferred in a model-based inverse prob-
lem) in this example. Note that single events of damage are considered only since these initial stages of damage is what can
be expected in reality in maintenance-intensive industries. Additional physics-based variables, which are usually assumed to
be uncertain, are considered here with quantified uncertainty as nonupdatable parameters. These variables encompass the
frequency of excitation or the mechanical properties of the plate (both directly affecting the wave propagation velocity).

The problem of damage localization is addressed here by a model-based Bayesian inverse problem using an ellipse-based
ToF model,57 which was previously published in Cantero-Chinchilla et al.58 The ToF can be obtained as the difference
between the time to obtain the first energy peak of the excitation signal and the one from the scattered signal. In mathemat-
ical terms, the ToF information of the scattered signals for a particular actuator-sensor pair is defined as follows59:

ToFða�sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd�Xað Þ2þ Yd�Yað Þ2

q
Va�d

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd�Xsð Þ2þ Yd�Ysð Þ2

q
Vd�s

, ð9Þ

where ðXd,YdÞ�ℝ2 are the coordinates of the damage position, ðXa,YaÞ�ℝ2 are the actuator transducer coordinates,
ðXs,YsÞ�ℝ2 are the coordinates of one particular sensor, and Va�d and Vd�s are the wave propagation velocities of the
actuator–damage and damage–sensor paths, respectively. Note that for isotropic materials, the velocity is independent
on the wave propagation direction, hence V ¼Va�d ¼Vd�s. We note that the ellipse is formed by the two foci actuator
and sensor and passes through the damage position. Thus, such an ellipse represents all the points of the plate with
same ToF, since the sum of distances between the foci and any point in the curve is constant. When additional sensors
are added to the system, the intersection between ellipses provides the most probable damage location.

The robust optimal sensor configuration is addressed using the ToF model in Equation (9) to generate the datasets
D for the optimization process.* The damage coordinates θ¼fXd,Ydg are the updatable model parameters whereas the
wave propagation velocity V is a nonupdatable (or nuisance) uncertain parameter, thus ξ¼fVg. The uncertainty about
of the wave velocity is assumed to be given by a Gaussian PDF, thus V �Nð2800,402Þ with units expressed in m/s. Note
that this velocity corresponds to the first antisymmetric wave mode at 300kHz in an aluminum alloy 2024. Furthermore, dam-
age may occur at any point within a closed designated area with the same probability. Note also that since the dimensionality
of both set of parameters is less than or equal to two, their corresponding integrals are computed with the trapezoidal rule
(refer to Equation 7 and Algorithm 1). For illustration purposes, the inverse of the cost function f ðnÞ is chosen here as a
decreasing monotonic function,1 as f ðnÞ¼ 100=ðn2þ100Þ; the constant A (Equation 4) is assumed to be A¼ 3; and α
(Equation 1) is considered as α¼ 1. The definition of inverse of the cost function f ðnÞ is case specific and depends on
multiple factors: the manufacturing processes of the sensors, how they are installed and maintained, data acquisition
costs, among others. Different features of the proposed robust methodology are investigated in the following subsection.

3.1 | Effect of the prediction errors on the optimal sensor placement

The effect of the two prediction error terms considered in the stochastic embedding process (see Appendix A) are
assessed by analyzing their influence in the optimal sensor placement for the first sensor. To this end, the number of
samples considered for the numerical integrals in Equation (7) are N s

θ ¼ 4, Ns
D ¼ 300, and N s

ξ ¼ 21. The samples for D

*Note that the ToFða�sÞ in Equation (9) corresponds to the term gðθ, ξ, CnÞ in Equation (A1) of Appendix A.
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are used within the MC approximation, while those from θ and ξ are adopted for the trapezoidal rule. In this example,
a small area of damage, represented by N s

θ ¼ 4 grid samples, is considered in order to provide more insight into the sen-
sor placement and the effect of model and measurement errors. An exhaustive sensor search approach is adopted here
over a grid of ns,max ¼ 4141 possible sensor locations with coordinates Xs � f0,0:005,…,0:5g and Ys � f�0:2,�
0:019,…,0:2g in meters. The actuator is assumed to be placed at two locations, one at a time, that is, (0.35m, 0.16m)
and (0.15m, �0.05m) in (Xa,Ya) coordinate pairs.

First, we show the geometrical aspects of the ToF (or ellipse-based) model as a consequence of a sensor configura-
tion based on information gain. To facilitate the understanding of this relation, a very low value for the measurement
error is adopted, that is, σ¼ 1e-9 s, while the actuator is placed at (0.35m, 0.16m). With this low-error scenario, the best
and worst sensor locations (given by the maximum and minimum value of UðC1Þ, respectively) are almost entirely pro-
vided by model-related aspects. Indeed, if we focus on a low-informative sensor location (e.g., along the blue dashed
lines in Figure 1) and draw the four ellipses formed by the foci pair actuator–sensor that pass through the four samples
in the damage area (i.e., each corner of the blue rectangle), we notice that at least two of the ellipses overlap—green
ellipses in Figure 1. As these two ellipses are unable to differentiate between the two damage locations, the information
gain is lower than in any other case where ellipses do not overlap, in which case would produce higher information
gain and lower evidence (refer to Appendix B.1).

Next, the effect of the measurement error in the optimal sensor placement is investigated. The optimal location for
the first sensor C1opt and its corresponding objective function value UðC1Þ are shown in Figure 2 for different values of
the measurement error σ � f1e-7,1e-6,1e-5,1e-4,1e-3g with units in seconds, neglecting the modeling error contribution,
that is, ~σ¼ 0. Note that the optimal sensor placements for the lowest level of noise σ¼ 1e-7 s show a uniform gray area
where the objective function is maximized (see Figure 2a,c). In these cases, the sensor could be placed anywhere within
this region while providing the optimal value of UðC1Þ. This result is qualitatively repeated even when the actuator loca-
tion varies (see Figure 2c), which means that for very accurate sensors and measurement equipment (i.e., low σ values),
the optimal sensor location may not be unique and that it is related to geometrical aspects stemming from the ellipse-
based model. When σ increases, that is, by increasing measurement error, the optimal placement tends to collapse to a
single point for higher values of σ (see Figure 2a,c and refer to Appendix B for additional details). This optimal location
is placed farther from the damage area (i.e., at the edge of the plate) in the same side of the actuator. The increased dis-
tance between the optimal sensor location and the damage area is related to the magnitude of both the ToF and σ. We
conclude that the farther the sensor is placed from the damage, the higher the ToF prediction and the less influence
from the measurement error is obtained on the stochastic embedding (Equation A1).

Furthermore, the EVIs for each of the previous optimal solutions with respect to σ are analyzed. These are depicted
in Figure 2b,d for both alternative actuator locations. It can be observed that UðC1Þ sharply decreases between σ values
of 1e-6 s and 1e-5 s, tending to a horizontal asymptote for higher values of σ as there is a negligible level of information
gain. This happens when the values of the modeling error are similar in magnitude to the ToF model predictions. Note
that for both actuators, the ToF predictions lie in the interval ½5:68e-05,2:65e-04� s, depending on the sensor location

FIGURE 1 Optimal sensor placement for σ¼ 1e-9 s represented as gray areas. Blue dashed lines represent least informative sensor

locations. Examples of best and worst ellipses (purple and green dashed lines, respectively) considering optimal and nonoptimal sensor

locations, are also shown
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and the value of V . Therefore, when σ is higher or of the same order of magnitude as the model predictions, the uncer-
tainty of the preposterior PDFs is relatively high, and hence, the optimal sensor placement provides very low
information.

We remark that the sensors are repeatedly optimally placed in the same side of the plate as the actuator. In fact, the
opposite side (with respect to the damage) becomes the least informative location, as shown in Figure 3. Notice that the
optimal sensor location is the one that provides the highest information gain, which, from an information theoretic per-
spective (whereby the information gain equals the difference between goodness-of-fit and evidence60), means that the
optimal location has either a better fitness with the data or provides the lowest evidence. Given that the fitness to the
data is relatively similar for any sensor location, then we can assert that it is the evidence the reason of such a high
information gain, which takes the smallest value at the most informative location.

FIGURE 2 (a) Optimal sensor placement for the first sensor (C1) with regard to several values of σ >0 s assuming ~σ¼ 0 and the actuator

at (0.35m, 0.16m). (b) The objective function value with respect to σ. (c,d) Analogous results for a different actuator location at (0.15m,

�0.05m). Area of possible damage occurrence is represented as a blue rectangle

FIGURE 3 Map of the objective function using the exhaustive search of the first sensor location for the case of σ¼ 1e-5 s, ~σ¼ 0, and the

actuator at (0.35m, 0.16m)

CANTERO-CHINCHILLA ET AL. 9 of 21
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A sensitivity study is carried out by assuming the modeling error term as ~σ¼ 0:05 s with a correlation length
λ¼ 0:02m (see Appendix A). The results in Figure 4 show that the optimal sensor location depends on the modeling
error term, being located nearby of the damage area for low values of σ, that is, 1e-7 s, 1e-6 s, and 1e-5 s. When
σ¼ 1e-4 s, the optimal sensor location lies somewhere between the actuator and the damage area. In the case of
σ¼ 1e-3 s, the sensor is placed at a boundary coinciding with the case previously shown in Figure 2. The shape of UðC1Þ
with respect to σ shows, in Figure 4b,d, a similar trend to the curves obtained for ~σ¼ 0 in Figure 2.

The results of this sensitivity investigation suggest that a trade-off between the measurement and modeling error
terms is taking place, which dictates the optimal position of the sensor. Note that the error covariance is assumed to be
defined by a combination of (1) a measurement error term that remains constant, that is, ΣD ¼ σ2I, and (2) a modeling
error term that is dependent on the model prediction and whose kℓth element of its covariance matrix is given by
Σkℓ
M¼ ~σ2gkgℓ expð�jxk�xℓj=λÞ (refer to Appendix A). When ~σ¼ 0 and σ>0 s, the information gain is maximized for a

sensor placed at a location far from the damage, since the magnitude of the model prediction g is considerably larger
than the σ>0 s, as observed in Figure 2. However, when ~σ is nonzero and constant, and σ>0 s, several scenarios may
appear:

• The influence of ~σ is greater than σ in the optimal sensor placement. In this case, the modeling error, which is pro-
portional the ToF model (Equation 9), is minimized when the sensor is very close to the damage as the magnitude of
the model prediction is the smallest. Thus, the information gain is maximized, and the optimal sensor is placed
nearby of the damage area. This behavior can be observed in Figure 4 for a measurement error of σ � ½1e-7,1e-5� s
and modeling error of ~σ¼ 0:05 with λ¼ 0:02m.

• The influence of ~σ is smaller than σ in the optimal sensor placement. In this scenario, the measurement error term is
predominant and therefore sensor locations that provide higher values of the ToF will be preferred, as previously dis-
cussed. This is evident from the results shown in Figure 2 (with σ>0 s and ~σ¼ 0) given that the sensors are located
relatively far from the damage area.

FIGURE 4 (a) Optimal sensor placement for the first sensor (C1) with regard to several values of σ >0 assuming ~σ¼ 0:05,λ¼ 0:02m, and

the actuator at (0.35m, 0.16m). (b) The objective function value with respect to σ. (c,d) Analogous results for a different actuator location at

(0.15m, �0.05m). Area of possible damage occurrence is represented as a blue rectangle

10 of 21 CANTERO-CHINCHILLA ET AL.

 15452263, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stc.3143 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [11/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



• The influence of ~σ is similar to σ in the optimal sensor placement. A balance takes place in this case and the optimal
sensor location is found to be neither in the nearby of the damage nor the boundary of the plate but at in an interme-
diate point. This is observed in Figure 4 for σ¼ 1e-4 s and ~σ¼ 0:05 with λ¼ 0:02m.

In this context, the importance of choosing an appropriate value for both error terms has been revealed. An inadequate
value of ~σ or σ could lead to a biased optimal sensor location and an over or under estimation of the EVI. These results
suggest that in practice, with larger modeling errors due to modeling simplifications, the sensors should be placed as
close as possible to the area of possible damage occurrence. On the other hand, when the accuracy of the model is rela-
tively high, cheaper sensors with less quality can be chosen and placed at a farther location from the damage area.

4 | DISCUSSION

4.1 | Performance comparison between optimization strategies

A comparison of the chosen sensor placement strategies using the CMA-ES and the exhaustive search is addressed in
this section for different actuator locations and several values of both measurement and modeling error terms.
Figure 5d shows the results for an actuator placed at (0.35 m, 0.16 m) using two values of the prediction error terms,
namely, (1) σ¼ 1e-6 s and ~σ¼ 0, shown in Figure 5a,b, and (2) σ¼ 1e-6 s, ~σ¼ 5e-4, and λ¼ 0:02m in Figure 5c,d. For
the case of (1), Figure 5a reveals that both optimization strategies provide similar sensor placements. The slight sensor
placement variations stem from the capability of CMA-ES to deal with continuous variables, while the exhaustive sea-
rch is based on a grid of discrete sensor locations. Note that the absence of correlation in the modeling error (recall that
~σ¼ 0) makes the fourth and fifth sensors locations to coincide in the plate, which manifests the sensor clustering effect

FIGURE 5 (a) Comparison of exhaustive search and CMA-ES through the optimal sensor placement for five sensors (C5) with
σ¼ 1e-6 s, ~σ¼ 0, and the actuator at (0.35m, 0.16m). The number inside the markers represents the order of sensor selection. (b) The

objective function (gray scale) in comparison with the information gain (blue scale). (c,d) Analogous results for ~σ¼ 5e-4. The blue rectangle

represents the damage area
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already discussed in Papadimitriou and Lombaert.35 The values of the objective function are also very similar for the
two strategies as depicted in Figure 5b. For the case of (2), the resulting sensor distributions are different from (1), as
shown in Figure 5c, which also shows that the optimal location varies depending on the search algorithm. This is cau-
sed by the appearance of several local (and near-global) maxima in the objective function because of the addition of the
modeling error term. This makes the CMA-ES to focus on local maxima and find suboptimal locations compared to the
exhaustive search. However, notice that both the information gain and objective function values are very similar for
both configurations. This similarity suggests that the CMA-ES only provides one of the multiple near-global solutions,
which is almost identical to the one provided by the exhaustive search.

To further investigate the large difference in the optimal location of the second sensor, Figure 6 is provided to show
a map of the objective function values obtained when the exhaustive search is used. The optimal location of the first
sensor is provided from the initial step in the forward sequential sensor search algorithm. Besides, we observe that there
are three separate areas with relatively similar values of UðC2Þ (represented by similar gray tones), which causes the
CMA-ES to find a local optimum in one of them since they share similar objective function values.

Also, by comparing the information curves, we find that the first sensor is the most informative. From the second
sensor onward, the relative information gain is relatively small, which causes the sensor placement to be less sensitive.
Additionally, it is worth highlighting that the optimal sensor locations are highly sensitive to the value of ~σ. Even when
introducing a relatively small value of ~σ¼ 0:05%, the optimal sensor layout is considerably affected. In this case, both
the information gain and the objective function curves are slightly smaller when introducing ~σ>0. This is caused by
increment in uncertainty in the model error, which causes a smaller information gain about the damage localization.
In summary, CMA-ES provides near-optimal sensor configurations that are almost equally informative to the ones
found by the exhaustive search. Note that for the optimization of SHM systems, the designer usually seeks near-most
informative and valuable configurations that are far from the worst scenarios, and in this context, both the CMA-ES
and exhaustive search strategies have been successful.

The computational efficiency of both optimization approaches is relatively similar. The chosen plate dimensions and
grid of possible sensor locations, with a resolution in the X coordinate of 0.005m and 0.01m for Y , results in 4141 candi-
date locations that are evaluated with the objective function in the exhaustive search. This number is maintained at every
stage of the forward sequential sensor search algorithm. The CMA-ES shows a higher efficiency with a number of func-
tion evaluations that varies between 300 and 1500 depending on the chosen tolerances. However, the CMA-ES needs to
be repeated several times due to its stochastic nature specially when multiple local minima appears in the objective func-
tion, thus reducing its apparent computational advantage. Nonetheless, the CMA-ES would be a preferred method in
cases where the possible number of sensor locations is very large, making the exhaustive search strategy unfeasible.

4.2 | Optimal sensor placement over a greater area of damage

In engineering practice, the optimal sensor placement is usually addressed for a larger area of possible damage occur-
rence. To show the behavior of the optimal sensor layout in such a scenario, the area of damage is now considered as a

FIGURE 6 Map of the objective function using the exhaustive search for the second sensor location using σ¼ 1e-6 s, ~σ¼ 5e-4. The

actuator, in red diamond, is placed at (0.35m, 0.16m)
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rectangle from (0.3 m, �0.1 m) to (0.5 m, 0.1 m) with the actuator being placed at (0.15 m, �0.05 m), as shown in
Figure 7a. The number of samples used for the numerical integrals remain the same except for the updatable parame-
ters θ, which is increased to Ns

θ ¼ 121. The samples are uniformly distributed over the rectangular area. The measure-
ment error part is assumed to be σ¼ 1e-6 s while the modeling error is defined by ~σ¼ 0:05 and λ¼ 0:02m. The optimal
sensor locations are expected to be close to the area of damage, according to Section 3.1. In this section, the relative
position with respect to the area of damage (e.g., inside or at the boundary) is investigated.

Figure 7 depicts the resulting optimal sensor layouts obtained by applying both the exhaustive search and CMA-ES.
The optimal number of sensors under the robust value of information criterion is found to be n00opt ¼ 3 as observed in
Figure 7b, and their corresponding layouts are shown in Figure 7a. It is worth highlighting that both algorithms provide
very similar objective function values and sensor layouts. This is revealed clearly in the information gain curve shown
in Figure 7b, since each additional sensor provides a relatively high amount of information. Compared to the previous
case of a very small damage area, a higher number of sensors is now required to fully recover the maximum amount of
information that the data can provide. Then, there is no clear optimal number of sensors from the amount of informa-
tion criterion alone. Conversely, the value of information renders a clear maximum stemming from the concave curve
in Figure 7b. Notice that the sensors are placed at the boundary of the area of damage, except for the first one, which is
placed slightly within such an area.

In order to provide more insight into the optimal sensor placement, Figure 7c shows the objective function in the
exhaustive search of the third optimal sensor location. We observe that given the correlation part of the modeling error,
the areas that surround the two previous optimal sensor locations are penalized in the utility function to avoid sensor
clustering and they hold the minimum utility values. The third sensor is then placed at the bottom part of the area of
damage. Note that the coincidence of optimal placement for both sensor search approaches is partially due to the
absence of local maxima in the objective function (as observed for a small area of damage in Figure 6), thus making it
easier for the CMA-ES to identify the global optimum.

FIGURE 7 (a) Optimal sensor placement obtained for a greater area of possible damage occurrence using the exhaustive search and

CMA-ES, (b) comparison between value and amount of information, and (c) map of UðC3Þ
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4.3 | Effectiveness of the optimal sensor layout

The effectiveness of the optimal sensor configuration is demonstrated by showing the dispersion of the damage recon-
struction of one sample within the possible area of damage with respect to three sensor distributions. To this end, we
consider the optimal sensor layout obtained in Section 4.2 with UðC3optÞ¼ 4:2312 and two additional suboptimal layouts
with utility UðC3Þ¼ 3:1860 and UðC3Þ¼ 2:6317. These distributions are represented by circles, squares, and pentagons,
respectively, and are shown in Figure 8a. The damage sample is assumed to be at (0.4 cm, 0 cm), and it is reconstructed
using the Bayesian damage localization approach proposed in Cantero-Chinchilla et al.58 The posterior distributions of
the damage coordinates for the chosen sensor layouts are shown in Figure 8b–d. Observe that the information provided
by the optimal configuration is more accurate than the suboptimal ones, hence highlighting the importance of optimiz-
ing any SHM system in the design stage to obtain accurate and robust results.

4.4 | On the comparison with other techniques

This paper has introduced a novel methodology for robust optimal sensor configuration of SHM systems based on the
value of information criterion. The approach is based on a previous paper,1 where the optimal sensor placement was
addressed using the EVI, but presents the following significant novel and key properties with respect to the EVI formu-
lation in Cantero-Chinchilla et al.1: (1) It is able to quantify uncertainties related to nuisance parameters ξ; (2) the util-
ity function allows the quantification of the variability of the EVI due to to the uncertainty of the nuisance parameters
ξ at each candidate sensor location through the standard deviation of the EVI, which penalizes designs highly sensitive
to changes in the value of ξ; and (3) the method considers the spatial correlation error between multiple sensors, hence
avoiding sensor clustering (as shown in Figures 5 and 7c). These points make the proposed methodology more immune
to uncertainties compared to Cantero-Chinchilla et al,1 thus providing more robust sensor configurations.

FIGURE 8 (a) Geometrical distribution of the three sensor layouts and (b–d) their corresponding damage reconstruction. The color bar

represents the probability density
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The aforementioned features have an effect on the optimal location and number of sensors, as shown in Figure 9
for a direct comparison against Cantero-Chinchilla et al1 under the assumptions made in Section 4.2. Note that the non-
robust EVI formulation in Cantero-Chinchilla et al1 provides the optimal design with sensors at the boundary of the
plate, while the proposed robust EVI methodology locate them close to the area of damage. This difference is princi-
pally caused by the assumption made about the modeling error (~σ¼ 0:05 and λ¼ 0:02m), which was not present in
Cantero-Chinchilla et al.1 (equivalent to ~σ¼ 0). Both designs are obtained using the exhaustive search for the sake of
simplicity and to not introduce further variability in the solution. Note also that the optimal number of sensors (two for
the nonrobust formulation and three for the robust one) and the value of the objective function result to be different for
the two approaches. This comparison manifests the importance of considering most sources of uncertainty present in
the optimal sensor placement problem, namely, updatable and nonupdatable parameter uncertainties, measurement
and modeling error uncertainties, and EVI variability with respect to the nonupdatable parameters.

FIGURE 9 (a,b) Optimal sensor placement and objective function value obtained with the proposed robust methodology and using the

one in Cantero-Chinchilla et al.1 Damage reconstruction with different values of the nuisance parameter V using (c–e) the optimal EVI

criterion Cantero-Chinchilla et al1 and (f–h) the robust EVI criterion. True parameters: Xd ¼ 0:32m, Yd ¼ 0:08m, and V ¼ 2800m/s. The

color bar represents the probability density
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In terms of damage reconstruction, the robust optimal solution provides a larger area of possible damage occurrence,
which makes it more robust against changes or errors in the nuisance (or nonupdatable) parameter. A simulated damage
is considered to be located at Xd ¼ 0:32m, Yd¼ 0:08m for the aluminum plate with a true wave propagation velocity of
V ¼ 2800m/s. Three cases are addressed by using the optimal designs obtained by the proposed robust methodology
and Cantero-Chinchilla et al.1 (refer to Figure 9a) with different nuisance parameter values: the true wave velocity and
a �5% variation. Figure 9c–h shows that the sensor layout given by Cantero-Chinchilla et al1 is more sensitive to possi-
ble errors in the nuisance parameter and fails to localize the damage using erroneous velocity values. The robust sensor
placement provides a posterior PDF that is always overlapping with the true damage location. This example illustrates
the advantages of accounting for uncertainties of the nuisance parameters in the optimal design of SHM systems.

5 | CONCLUSIONS

We present a robust framework for identifying optimal sensor configurations using the value of information. This
framework takes into account the uncertainty of the updatable model parameters in an inverse problem, as well as the
uncertainty related to the nonupdatable parameters (e.g., physical properties of the system). We investigated two alter-
natives for computing the integrals associated with the robust objective function: numerical quadrature and MC
approximation. Additionally, two sensor search strategies are compared: the exhaustive search over a grid of possible
sensor locations and an evolution strategy (the CMA-ES). The proposed method is validated for ultrasonic guided wave-
based damage localization and the following conclusions are drawn:

• There exists a trade-off between measurement noise and modeling error in the optimal sensor placement, which sug-
gests that (1) when the modeling error is relatively high, the sensors should be optimally placed near the damage
area, and (2) when the measurement error is predominant, the sensors are to be placed farther away from the dam-
age area.

• The sensors are optimally placed at the boundary of the damage area when a relatively high value of the modeling
error is considered.

• The identification of damage location for three different sensor configurations, from the optimal one to subsequently
worse suboptimal configurations, has revealed the importance and effectiveness of optimizing SHM systems with the
appropriate modeling of the uncertainty.

• The robust optimal sensor layout is more immune to potential errors on the assumption of these nuisance parameter
values.

• The CMA-ES as an optimal sensor search algorithm is proven to be almost as effective and in any case more efficient
than the exhaustive search. When a number of multiple near-global solutions may exist, the CMA-ES can provide a
different optimal sensor configuration from the one provided by the exhaustive search. Nonetheless, these different
configurations correspond to almost identical objective values and hence near-optimal sensor configurations.
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APPENDIX A: STOCHASTIC EMBEDDING OF THE DETERMINISTIC MODEL

We assume a deterministic model gðθ, ξ, CnÞ that provides predictions of a QoI, for which a dataset yðCnÞ�ℝND is avail-
able for an arbitrary sensor configuration Cn of n sensors. The model gðθ, ξ, CnÞ depends on both a set of uncertain
parameters θ�Θ�ℝNθ , which are subsequently estimated in a Bayesian inverse problem framework, and also on a set
of uncertain parameters ξ�Ξ�ℝNξ that are assumed to be deterministic (i.e., constant). Given that the model is just a
representation of the reality, a certain degree of discrepancy between the model predictions and the measurements will
appear, so

yðCnÞ¼ gðθ,ξ,CnÞþeðCnÞ, ðA1Þ

where eðCnÞ is the set of prediction model errors, which are assumed to be represented by a multivariate Gaussian dis-
tribution with zero-mean and a covariance matrix ΣðσÞ, so e�Nð0,ΣÞ. This covariance matrix can be separated into
two independent sources of error35: (1) the modeling error ΣM and (2) the measurement error ΣD, thus: Σ¼ΣMþΣD.
Given the stochastic independence between measurement errors and sensor locations, the covariance matrix of the
measurement error can be defined as follows: ΣD ¼ σ2I, where I denotes the identity matrix and σ is its standard devia-
tion. On the other hand, the covariance matrix of the modeling error ΣM is assumed here to be spatially correlated with
regard to the sensors location to avoid sensor clustering and its kℓth position is given by

Σkℓ
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σkk
MΣℓℓ

M
q

RðηkℓÞ, ðA2Þ

where RðηkℓÞ is the spatial correlation structure and is selected to be exponential as follows:

RðηkℓÞ¼ exp �jxk�xℓj
λ

� 	
, ðA3Þ

where xk is the coordinates of the kth sensor position and λ is a measure of the spatial correlation length. In addition,
the variance Σkk

M of the model prediction error at the kth sensor location is defined by Σkk
M ¼ ~σ2g2kðθ, ξ, CnÞ, which repre-

sents the dependence of the covariance of the modeling error on the intensity of the model output, where ~σ is the stan-
dard deviation of the modeling error normalized by such intensity. In this context, the probabilistic description of the
prediction error, that is, the likelihood function p yjθ, ξ, Cnð Þ, is defined as follows:

p yjθ, ξ, Cnð Þ¼ 1ffiffiffiffiffi
2π

p� �n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ΣðσÞp exp �1

2
yðCnÞ� gðθ, ξ, CnÞ½ �TΣðσÞ�1 yðCnÞ�gðθ, ξ, CnÞ½ �

� 	
: ðA4Þ

This function provides an estimate of the discrepancy between the data and model predictions.

APPENDIX B: RELATIONSHIP BETWEEN ToF MODEL, INFORMATION GAIN, AND OPTIMAL SENSOR
LOCATION

B.1 | Low value of the measurement error
To demonstrate the results shown in Figure 1 (with σ¼ 1e-9 s and ~σ¼ 0), we assume only one sample for the nuisance
parameter N ξ ¼ 1 along with a single data sample ND ¼ 1, which allows Equation (7) to be simplified as follows:
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Eξ½EVI�≈ f ðn00optÞ
XN s

θ

i¼1
wipðθðiÞÞ logpðyðiÞjθðiÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Log-Likelihood

� log
XNs

θ

k¼1

wkpðθðkÞÞpðyðiÞjθðkÞÞ
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Log-Evidence

2
66664

3
77775

2
66664

3
77775�RCI: ðB1Þ

Considering Equation (B1), the information gain can be viewed as a trade-off between data fitting (likelihood) and
evidence. Moreover, if we consider that the measurement error is very low (as for the results shown in Figure 1), we
can assume that the data fitting term will be almost the same for every sensor location. As a result, the information gain
will be dictated by the value of the evidence for each candidate sensor location, which is in turn related with the ToF
ellipses. Let us illustrate this trade-off in practice using the following examples:

Example 1. If we consider a sensor located at (0.25 m, 0.06 m) and an actuator at (0.35 m, 0.16 m), we can
build the ellipses from the ToF model that passes through the four damage samples, as shown in
Figure B1a. Note that in this case, there are two ellipses overlapping. When this happens, two of the
addends in the evidence summation (Equation B1) have nonzero likelihood values pðyðiÞjθðkÞÞ, which corre-
spond to the damage samples θ that have been crossed by the same ellipse. This fact makes the evidence
term to be relatively high when compared to any other sensor location and therefore makes the information
gain lower.

Example 2. Considering the same locations for the actuator and damage samples as in the previous exam-
ple, but with a different sensor location (0.33 m, 0.20 m), the new nonoverlapping ellipses are shown in
Figure B1b. In this case, only one of the addends in the evidence summation (recall Equation B1) is non-
zero, which makes the evidence term smaller. Given that the likelihood or data fitting remains almost the
same as in Example 1 (due to the very small measurement error) and that the evidence is lower in this case,
this candidate sensor location have a higher information gain.

B.2 | Intermediate value of the measurement error
When the measurement error has an intermediate value, the optimal sensor location is given by a single point, which is
different from the optimal location from very low or very high values of the measurement error. To better understand
the reasons why this occurs, we consider the optimal sensor placement shown in Figure 2a for σ¼ 1e-6 s, which is
located at the coordinates (0.27m, 0.20m). Additionally, we consider another suboptimal sensor location for the same
measurement error scenario for comparison purposes, for example, (0.335m, 0.20m).

FIGURE B1 Decomposition of the evidence summation term of Equation (B1) for two candidate sensor locations. (a) For a low-

informative sensor location and (b) for an high-informative sensor location
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In this context, and based on the previous subsection, the new ellipses are shown in Figure B2. It can be observed
that the optimal sensor location provides elliptic bands that are almost equidistant (Figure B2a). Note that in this sce-
nario, the elliptic curves are transformed into elliptic bands given that the measurement error, hence, the uncertainty,
has increased. These elliptic bands depict the increased width of the likelihood function. Therefore, when the evidence
term is evaluated (recall Equation B1), that is, by considering one ellipse (yðiÞ) and evaluating all the samples (θðkÞ), the
result is smaller for the case where these elliptic bands are farther between them (see Figure B2a). Besides, as the likeli-
hood term of Equation (B1) is relatively similar for different sensor locations, the information gain is higher when the
elliptic bands are the farthest between each other. Any other suboptimal sensor location provides a higher term of the
evidence given that the elliptic bands are closer, if not overlapping, as shown in Figure B2b. This, in turn, produces a
higher evidence and lower information gain.

B.3 | High value of the measurement error
Finally, when the measurement error is relatively high, the elliptic bands shown above end up overlapping for all candi-
date sensor locations as depicted in Figure B3. In these cases, the evidence is higher for the sensor located at (0.27 m,
0.20 m) (Figure B3a), as the contribution for each damage sample (θðkÞ) when evaluating one ellipse (yðiÞ) is higher, and
consequently, the information gain is smaller.

Conversely, the previous suboptimal sensor location for an intermediate value of the measurement error, that is,
(0.335 m, 0.20 m), provides here the most informative scenario, hence being the optimal location for higher values of
measurement error (i.e., σ ≥ 1e-5 s as shown in Figure 2a). As depicted in Figure B3b, this candidate sensor location also
provides elliptic bands that are overlapping; however, there is a higher difference between two of them, which causes
them to have a smaller evidence and hence the highest information gain.

FIGURE B2 Schematic representation of elliptic bands for an intermediate value of the measurement error

FIGURE B3 Schematic representation of elliptic bands for a high value of the measurement error
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