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ABSTRACT 

The human body harbors at least as many microorganisms as own cells that 

synergistically coexist and regulate several physiological functions supporting host life. 

Much is known on how the gut microbiome influences human physiology and has a deep 

influence on human metabolism. These gut microbial communities are shaped by host 

genetic and lifestyle factors, such as diet, physical activity or medications, among others. 

Because an imbalance in the gut microbial communities (that is, dysbiosis) has been 

linked to numerous pathological states, microbiome modulation by lifestyle factors 

emerges as a promising therapeutic strategy. Conversely, little is known about the 

presence and composition of the microbiome along the female reproductive tract and its 

role in the development of gynecological diseases. Thus, despite of the strong correlation 

between the microbiome and human health and disease, there is still lack in characterizing 

and understanding the compositional and functional profiles of the host-associated 

microbes. 

The present Doctoral Thesis examines the relationships of the microbiome with 

female health in association with physical activity and reproductive health performing 

meta-omics analyses. Thus, the specific aims of this Doctoral Thesis were: 1) to 

summarize and meta-analyze the state-of-the-art of the association of physical activity 

and sedentary behavior with the microbiome across different body sites in different 

human populations; 2) to study the associations between accelerometer-measured 

sedentary behavior and physical activity on different intensities (light and moderate-to-

vigorous) with the gut microbiome using a compositional data analysis in middle-aged 

women; 3) to characterize the endometrial and Fallopian tubes’ microbial composition in 

fertile women in order to identify the female upper reproductive tract microbiome; 4) to 

profile and compare the gut microbiome in women with and without endometriosis in a 
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large cohort in order to identify microbes and microbial pathways associated with the 

development of the disease. To address the objectives of the Thesis, four studies were 

performed, which were organized into two sections. Section I, Physical activity and 

microbial composition (Studies I and II); and section II: The microbiome in female 

reproductive health (Studies III and IV). 

The main findings of this Doctoral Thesis were: 1) a systematic review of 91 

studies and meta-analyses uniting more than 2600 participants, where we gathered the 

current knowledge of the association of physical activity and sedentary behavior with the 

microbiome. Most studies reported higher abundances of short-chain fatty acids-

producing microbes in more active individuals or after a physical activity intervention. 

While influence of physical activity on the microbial diversity is unclear, athletes seem 

to have a richer microbiome compared to non-athletes (Study I); 2) physical activity and 

sedentary behavior did not associate with the gut microbial diversity in the middle-aged 

women, however, several butyrate-producing microbes were significantly more abundant 

when increasing time of moderate-to-vigorous physical activity from light physical 

activity/sedentary behaviors (Study II); 3) the endometrium and Fallopian tubes harbor 

an endogenous microbiome with high inter-individual variability, which share around 

70% of microbes and have specific bacteria of each anatomical site (Study III); 4) the 

gut microbiome profiles were not significantly different between the women with and 

without endometriosis, suggesting that the gut microbiome imbalance does not seem to 

directly impact the pathogenesis of the disease, nevertheless further research considering 

endometriosis severity stage and treatment strategies is warranted (Study IV). 
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RESUMEN 

El cuerpo humano alberga al menos tantos microorganismos como células propias 

que coexisten sinérgicamente y regulan varias funciones fisiológicas sustentando la vida 

del hospedador. Se conoce bien cómo el microbioma intestinal influye en la fisiología 

humana y tiene una profunda influencia en el metabolismo humano. Estas comunidades 

microbianas intestinales están influenciadas por factores genéticos y de estilo de vida del 

hospedador, como la dieta, la actividad física o los medicamentos, entre otros. Dado que 

el desequilibrio de las comunidades microbianas intestinales (es decir, la disbiosis) se ha 

relacionado con numerosos estados patológicos, la modulación del microbioma mediante 

factores del estilo de vida se postula como una prometedora estrategia terapéutica. Por el 

contrario, poco se sabe sobre la presencia y composición del microbioma a lo largo del 

tracto reproductivo femenino y su papel en el desarrollo de enfermedades ginecológicas. 

Por lo tanto, pesar de la fuerte correlación entre el microbioma y la salud y la enfermedad 

humanas, sigue habiendo carencias en la caracterización y comprensión de los perfiles 

composicionales y funcionales de los microbios asociados al huésped. 

La presente Tesis Doctoral examina las relaciones del microbioma con la salud 

femenina en asociación con la actividad física y la salud reproductiva realizando análisis 

meta-ómicos. De esta forma, los objetivos de esta Tesis Doctoral fueron: 1) resumir y 

meta-analizar la evidencia existente respecto a la asociación de la actividad física y el 

sedentarismo con el microbioma de diferentes sitios corporales en diferentes poblaciones 

humanas; 2) estudiar las asociaciones entre el sedentarismo y la actividad física de 

diferente intensidad (ligera y de moderada a vigorosa) medidos por acelerometría con el 

microbioma intestinal, utilizando un análisis de datos composicional en mujeres de 

mediana edad; 3) caracterizar la composición microbiana del endometrio y las trompas 

de Falopio en mujeres fértiles para identificar el microbioma del tracto reproductor 
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superior femenino; 4) perfilar y comparar el microbioma intestinal en mujeres con y sin 

endometriosis en una gran cohorte para identificar microbios y rutas microbianas 

asociadas al desarrollo de la enfermedad. Para abordar los objetivos de esta Tesis, se 

realizaron cuatro estudios, organizados en dos secciones. Sección I, Actividad física y 

composición microbiana (Estudios I y II); y sección II: El microbioma en la salud 

reproductiva femenina (Estudios III y IV). 

Los principales hallazgos de esta Tesis Doctoral fueron: 1) una revisión 

sistemática de 91 estudios y meta-análisis que reunieron más de 2600 participantes, donde 

recogimos el conocimiento actual de la asociación de la actividad física y el sedentarismo 

con el microbioma. La mayoría de los estudios reportaron una mayor abundancia de 

microbios productores de ácidos grasos de cadena corta en individuos más activos o tras 

una intervención de actividad física. Aunque la influencia de la actividad física en la 

diversidad microbiana no está clara, los deportistas tienden a mostrar un microbioma más 

diverso en comparación con no deportistas (Estudio I); 2) la actividad física y el 

sedentarismo no se asociaron con la diversidad microbiana intestinal en las mujeres de 

mediana edad, sin embargo, varios microbios productores de butirato fueron 

significativamente más abundantes al aumentar el tiempo de actividad física de intensidad 

moderada a vigorosa respecto a la actividad física ligera/sedentarismo (Estudio II); 3) el 

endometrio y las trompas de Falopio albergan un microbioma endógeno con una gran 

variabilidad interindividual, compartiendo alrededor del 70% de los microbios y 

presentando bacterias específicas de cada lugar anatómico (Estudio III); 4) los perfiles 

del microbioma intestinal no fueron significativamente diferentes entre las mujeres con y 

sin endometriosis, lo que sugiere que el desequilibrio del microbioma intestinal no parece 

influir directamente en la patogénesis de la enfermedad; no obstante, se justifica la 
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realización de nuevas investigaciones que tengan en cuenta el estadio de gravedad de la 

endometriosis y las estrategias de tratamiento (Estudio IV). 
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1. GENERAL INTRODUCTION 

1.1. The microbiome in human 

Early predictions of the human genome estimated that ~100,000 genes would be 

discovered. However, after finalizing the Human Genome Project, many researchers were 

surprised by the finding that it contains only ~25,000 protein-coding genes. If the view of 

what constitutes a human is extended, this estimate is probably underestimated, which 

brought the microscopic world that humans harbor into a research topic of increasing 

interest. After the Human Microbiome Project (HMP) was launched in 2007 1, a new sight 

of the human being as a combination of microbial and mammalian cells has emerged 

leading to the picture of a human as a “holobiont” 2 (Figure 1). 

Figure 1. Microbial composition at phylum-level across different body sites. Data resulting from 
the NIH Human Microbiome Project (HMP). Distinct sites of the body were collected and 
analyzed separately: oral samples; skin specimens; nares specimens; stool samples; and in 
females, vaginal specimens. Figure adapted from Gilbert et al. 2018 3 under a Copyright 
Clearance Center’s RightsLink® service (License number 5575971072526). 
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The collection of microorganisms encompasses bacteria, archaea, viruses, 

protozoa and fungi that inhabits the human surfaces and all body cavities is defined as the 

microbiota. According to last estimates, the microbial cells equal to that of the human 4, 

however, these estimates only take into consideration bacteria, while viruses and phages 

could equal or outnumber bacterial estimates 5. The collection of all microbial genes, 

termed as microbiome, represents a genetic repertoire that is more than one order of 

magnitude higher in genes than the human genome 6,7. Therefore, it has been considered 

“our second genome” and “our last organ” due to its important role in human physiology 

8,9. As a result of billions of years of coevolution, the vast majority of these microbial 

communities are balanced through symbiotic relationships with the host and support 

human life. Some relevant microbial activities include promoting different physiological 

functions such as gut barrier protection, energy production, neurologic signaling, 

endocrine and immune functions 10,11, that ultimately shape our health and resistance to a 

disease 3,12.  

Over the past two decades, fast advances in the next-generation sequencing (NGS) 

technologies have driven microbiology into a new microbiome era based on “meta-

omics” approaches, including 16S ribosomal RNA (rRNA) gene sequencing, 

metagenomics, meta-transcriptomics, meta-proteomics, and meta-metabolomics 13. 

Collectively, these approaches have vastly improved our understanding about the impact 

of microbes on human health and disease. 

1.1.1. The gut microbiome 

In humans, the gastrointestinal tract is the most diverse microbial environment, 

harboring several trillions of microbes that are influenced by the nutrition, lifestyle, 

medication and host genetics, among others factors 14,15. A large number of these 

microbes reside in the distal gut and have a profound influence on the human metabolism 
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and nutrition, contributing to essential amino acids and vitamins biosynthesis, dietary 

components digestion, immune and endocrine function, or drug and exogenous toxins 

metabolism, among others 10,11,16. Consequently, the gut microbiome has been proposed 

as a new biomarker of overall health and emerges as the most thoroughly studied 

ecosystem within the human body. Indeed, the Metagenomics of the Human Intestinal 

Tract (MetaHIT) Consortium, created by the European Commission in 2008, united 13 

academic and industry partners from 8 countries with the aim to establish a catalogue of 

the gut microbial genes and to discover the associations between the bacterial genes and 

different health conditions 17. 

Figure 2. Temporal dynamics of the human gut microbiome. During childhood, the rapid rate of 
expansion in bacterial diversity observed in infancy slows and becomes more stable, with a high 
abundance of butyrate-producing microbes from Bacteroidetes phylum. In preadolescents, 
Anaerovorax, Bifidobacterium, Faecalibacterium, and Lachnospiraceae as well as pathways 
involved in vitamin B12 and folate biosynthesis increase. The healthy adult microbiome is 
dominated by Bacteroidetes and Firmicutes phyla, showing functional pathways involved in 
amino acids, vitamins and hormones biosynthesis, among others. This figure is reproduced with 
permission from Lynch & Pedersen, 2016 12, Copyright Massachusetts Medical Society. 
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Shaping of the gut microbiome starts at birth, when it is noted for lacking diversity 

and stability, with 500–1000 species colonizing the gastrointestinal tract. After weaning, 

the gut microbiome becomes consolidated in a stable way leading to a lifelong adult gut 

microbiome where fluctuations are infrequent and normally related to the pathological 

processes 18. In the elderly, it becomes compositionally unstable and less diverse 19 

(Figure 2). Despite these fluctuations in the microbial dynamics, diversity and 

composition during the lifespan, it is generally considered that the higher the microbial 

diversity the better for a healthy state 20.  

Regardless of the active research of the gut microbiome and its role in health and 

disease, there is a lack of integrating gut microbiome profiles with host, clinical and 

environmental factors associated with inter-individual taxonomic variation 21. Hence, 

while it is widely demonstrated that the gut microbiome consists of app. 90% of bacteria 

belonged to Bacteroidetes and Firmicutes phyla, with other less predominant bacteria 

from Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia, a universal 

healthy microbiome profile has not been established at more profound taxonomic levels 

14. 

1.1.2. The microbiome in the female reproductive tract 

Unlike the high microbial diversity of the gut, the lower reproductive tract is 

characterized by a low diversity of bacterial species and it fluctuates dynamically during 

the menstrual cycle 22. In the vagina, Lactobacillus spp. represent 90-95% of the total 

bacteria in reproductive-aged women (Figure 3) and create a low pH (3.4-4.5) 

environment through lactic acid production, which provides hostile conditions for 

opportunistic pathogens. Scientific knowledge identifies a healthy vaginal microbiome 

through the dominance by four lactobacilli species: Lactobacillus crispatus, 

Lactobacillus iners, Lactobacillus jensenii, and Lactobacillus gasseri 23. In 2011, Ravel 
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et al. identified 5 vaginal microbial community state types (CST); four of them (I, II, III 

and V) dominated by L. iners, L. crispatus, L. gasseri, or L. jensenii, whereas CST-IV 

was characterized by increased abundance of strictly anaerobic bacteria and reduced 

Lactobacillus spp. 24. Indeed, Lactobacillus species depletion and increased microbial 

diversity are biomarkers of the pathological processes including bacterial vaginosis, 

increased risk of sexually transmitted infections, infertility and adverse pregnancy 

outcomes 25. Hence, the Vaginal Human Microbiome Project was launched in order to 

reveal the diversity of microbial communities in human vagina and investigate their 

associations with physiological and infectious states (http://vmc.vcu.edu/vahmp). 

Figure 3. Microbiome of the female reproductive tract. CL – lower third of the vagina; CU – 
posterior fornix; CV – cervical mucus drawn from cervix; ET – endometrium; FL – Fallopian 
tubes; PF – peritoneal fluid from the pouch of Douglas 26. This figure is reproduced under a 
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Creative Commons Attribution 4.0 International License, 
http://creativecommons.org/licenses/by/4.0/. 

 

In contrast to the lower reproductive tract (vagina), the upper reproductive tract 

(uterus, Fallopian tubes -FT- and ovaries) remains scarcely explored. Traditionally, the 

uterus was considered sterile with the presence of microorganisms only in the context of 

infection or pathological states 27, which is now confirmed with the culture-independent 

NGS techniques to present its own microbial communities that differ from that of the 

vagina 26. Growing evidence supports that the endometrium harbors its own functionally 

active microbiome, hosting 100-10,000 times fewer bacteria than the vagina 28. Despite 

its potential role in maintaining female reproductive health, the composition of the 

endometrial microbiome is still inconclusive due to differences in study design and 

absence of proper negative and positive controls 29,30. Furthermore, FT and ovaries are 

less studied due to the difficulty in samples collection, especially in fertile women in 

disease-free conditions. 

1.2. The microbiome in health and disease 

Epidemiological studies have reported a global burden of human multifactorial 

diseases through the past two centuries 31. This increasing rate of incidence makes it 

unlikely that these disorders can be exclusively explained by genetic factors, and has 

driven attention to investigate the influence of other factors, including the coexisting 

microbes that inhabit our body and, more extensively, the gut microbiome 11. Contrary to 

a healthy balanced microbiota (a state also called eubiosis), dysbiosis refers to 

compositional and functional alterations of the microbial communities that lead to a 

disruption in the host homeostasis. A dysbiotic environment has been associated with the 

development of several clinical conditions such as obesity, type-2 diabetes, cancer, bowel 

diseases, cardiovascular, and neurological disorders, among others 12,32. This avenue of 
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research raises the prospects for developing new diagnostic and therapeutic strategies 

through determining the composition of a healthy core microbiome, identifying 

specifically those factors that induce alterations, and manipulating the microbial 

composition for improved health 13. A summarized overview of the microbial effects 

along the human systems in health and disease is shown in Figure 4. 

Figure 4. Microbiome physiological effects on human health and disease. The contribution of 
host-associated microbes to the maintenance of homeostasis in the major organ systems is 
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represented according to germ-free animal models 33. This figure is reproduced under a Copyright 
Clearance Center’s RightsLink® service (License number 5573020733330). 

 

Nevertheless, large inter- and intra-individual microbial variability even in the 

absence of a disease, hampers the establishment of a core microbial profile and, therefore, 

the identification of specific microbial imbalances that either cause or reflect a 

pathological process 34. Indeed, only a third of the microbial genes are shared between 

healthy individuals 35, which means that the integration of evidence from microbiome 

studies in different populations remains a challenge. Host genetics and lifestyle factors 

are known to influence microbial composition and play a role in this variability. For 

example, diet, physical activity (PA), lack of sleep, exposure to drugs, and stress 

conditions may induce changes in the gut microbial ecosystem and impact host health 3. 

Thus, it is necessary to recognize first which microbial signatures are relevant to health 

and as a next step, which ones contribute to the disease development. 

 
1.2.1. The microbiome association with physical activity 

There is robust evidence that habitual moderate PA (i.e., any body movement 

produced by skeletal muscles which demands a higher energy expenditure than in resting 

conditions) has multiple benefits on human health, and it has been described as a polypill 

that offers protection to almost every chronic disease 36,37. Contrary, sedentary lifestyle, 

including physical inactivity and more time spent in sedentary behavior (SB) (i.e., a 

behavior characterized by an energy expenditure of 1.5 or fewer metabolic equivalents -

METs), is one of the leading causes of numerous diseases and is associated with all-cause 

mortality 38,39. 

More recently, growing evidence supports that PA also influences the gut 

microbiome by increasing microbial diversity and functional activity in both humans and 
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animal models 40–42. However, much less is known about the molecular mechanisms 

underlying this interaction and whether SB has an impact on microbial composition. As 

diet is one of the most important modulators of the gut microbiome, the isolated effect of 

PA on the gut microbiome independently from dietary habits is difficult to discern 43. 

Although numerous observational studies have investigated the association between PA 

and the gut microbiome in the last years, highly heterogeneous study designs, lack of 

controlling for relevant covariates and wide use of self-reported PA data complicate 

obtaining conclusive findings. Self-reported methods such as questionnaires relies on 

recall, have poor reliability and validity, and tend to homogenize PA of different 

intensities (i.e., light PA -LPA, moderate-to-vigorous PA -MVPA) 44,45. Otherwise, the 

reference or "gold-standard" methods (e.g., direct and indirect calorimetry, doubly label 

water) have limited use to research studies, being expensive, complex and not very viable 

in most circumstances 46. As an alternative, accelerometry is an objective and continuous 

measuring method of PA and SB, that allows to collect the entire range of PA intensities 

during the day 47 (Figure 5).  
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Figure 5. Methods to evaluate physical activity. Representation of reference methods such as 
indirect and direct calorimetry, and measurement of energy expenditure using doubly labeled 
water; objective methods including techniques such as measuring heart rate or acceleration by 
sensors; and subjective methods consisting of self-reported questionnaires. Figure adapted from 
Gil Hernández et al. 2017 46. 

 

First evidence for the role of PA in shaping the human gut microbiome emerged 

from cross-sectional studies in athletes 48,49, where greater microbial diversity and several 

differentially abundant gut microbes were found in athletes compared to lean sedentary 

controls 48. In non-athletes, cross-sectional studies in different human populations show 

inconclusive results 50–54, although findings reporting a positive association of butyrate-

producing bacteria with PA have been described in several studies 50,51,54. However, all 

these studies were limited by their inability to control for dietary effects and variability 

of PA modality and intensity. These limitations highlight the need for future well-

designed studies to determine whether PA independently alters the gut microbiome 

composition. 

To date, previous studies have analyzed PA or SB as isolated components, without 

taking into consideration the interplay between these behaviors 55. However, the newer 

methods to assess PA with accelerometers, allow to record continuously the 24 hours of 

the day, and classify the time into sleep time and movement at different intensities. In 

fact, in a 24-hour day, the time is spent across movement behaviors of PA of different 

intensities, SB and sleep, which means that spending more time in one behavior directly 

reduces the time in the others. Hence, there has been a shift of paradigm in the PA research 

field towards the investigation of the composition of the entire day spent on the different 

behaviors and its association with health related outcomes 56,57. 

Compositional data analysis (CoDA) emerges as a novel analytic approach to 

study the codependency between different movement behaviors and how their interaction 
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may synergistically impact health. In this context, a scientific workshop was held in 

Granada in 2019 to discuss advances in accelerometer-based methods and provide 

recommendations about the most appropriate analytical approach for analyzing 

accelerometry data 58. This Granada consensus importantly highlighted the need of 

extending future investigations to understand the interplay of physical behaviors (PA, SB 

and sleep) and their relationship with health 58. 

The CoDA approach has not been applied in PA-microbiome studies and the effect 

of 24-hour activity/sedentary behavior in totality is utterly unexplored in association with 

the microbial composition. Future research on CoDA would provide a holistic picture of 

the PA/inactivity effects on the microbiome in human. 

1.2.2. The microbiome association with reproductive health 

The “microbiome revolution” has arrived at the human reproduction field. Strong 

evidence links the vaginal and endometrial microbiome with female reproductive health 

as well as pregnancy outcomes 29,30,59,60. Indeed, microbial dysbiosis have been widely 

associated with different gynecological diseases, including endometriosis, chronic 

endometritis, polycystic ovary syndrome (PCOS), dysfunctional menstrual bleeding, 

endometrial cancer, and infertility 61–63. Importantly, many of these conditions have no 

cure so far, and require invasive procedures for diagnosis confirmation. Particularly, the 

estrobolome term emerges to define the gene repertoire encoding estrogen-metabolizing 

enzymes, specifically in the gut microbiome. Since hormonal fluctuations, especially 

estrogens, drive the proliferative state of many of these pathologies, an involvement of 

the gut microbial communities in the development of female reproductive diseases has 

been proposed 64,65. However, identifying the composition of a healthy female 
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reproductive tract microbiome is the first step before applying therapeutic strategies based 

on microbiome modulation to diagnose and treat gynecological disorders. 

1.2.2.1. Endometriosis 

Endometriosis is a chronic inflammatory disease characterized by the growth of 

endometrial-like tissue (glands and endometrial stroma) outside the uterus, causing a wide 

range of associated symptoms, including dysmenorrhea, pelvic pain, dyspareunia and 

infertility, among others 66. Although it is one of the most prevalent female reproductive 

disorders, affecting 5-10% of reproductive-aged women, it has been historically 

understudied and is challenging to diagnose and treat 67. The most well-accepted 

hypothesis for endometriosis is based on the retrograde menstruation where adhesion and 

growth of endometrial tissue occur after migration from the uterus toward the peritoneal 

cavity 68. Other proposed models include coelomic metaplasia (transformation of 

peritoneal mesothelium into endometrial-like cells) and Müllerian remnants, among 

others 69. However, none of these theories explain the etiology of all the different 

phenotypes of endometriosis (i.e., superficial, ovarian and deep infiltrating 

endometriosis). Consequently, to date, the etiology of endometriosis remains unknown, 

although it seems to have a multi-factorial origin due to the interplay of genetic 

predisposition, environmental factors, inflammation, immune dysregulation, hormonal 

imbalance and possibly the microbiome 70.  

The influence of the microbes on immunomodulation and the development of 

several inflammatory diseases is well established 71. Much is known how the gut 

microbial composition maintains the integrity of the gastrointestinal epithelial lining as 

well as immune homeostasis, preventing bacterial translocation, which can cause low-

grade systemic inflammation 72. Endometriosis is considered a chronic inflammatory 

disease, and the role of the microbiota in possibly driving local and systemic 
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inflammation and the relationship to the pathophysiology of endometriosis is proposed 

65. Women with endometriosis have higher incidence of chronic endometritis, more 

severe pelvic inflammatory disease, a higher risk of surgical site infection after 

hysterectomy, and a higher incidence of lower genital tract infection 73. In fact, a new 

concept of “bacterial contamination hypothesis” in endometriosis has been proposed 74, 

where the lipopolysaccharide inflammatory mediator could be the initial trigger and 

bacterial contamination its source in the intrauterine environment that could lead to the 

growth regulation of endometriosis 74. Nevertheless, little is known about the presence 

and composition of the microbes along the female reproductive tract and in the gut in 

endometriosis 63,65,75. 

Figure 6. Role of the gut microbiome and estrobolome in endometriosis. A) A healthy diverse 
gut microbiome sustains homeostatic levels of β-glucuronidase activity that maintains circulating 
estrogen, resulting in menstrual cycle regulation. B) Gut dysbiosis negatively impacts the 
estrobolome and the female reproductive tract through altering circulating estrogen levels, 
increasing systemic inflammation and immune dysregulation. Figure adapted from Sallis et al. 
202265 under a Copyright Clearance Center’s RightsLink® service (License number 
5573050626405). 
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Furthermore, estrogen metabolism has been described as a keystone factor to the 

development of proliferative disorders, including endometriosis 76–78 (Figure 6). 

Particularly, estrobolome alters the estrogen circulating levels through deconjugation 

from its conjugate (glucuronic acid) by the β-glucuronidase action 79. Considering the 

estrogen-driven and inflammatory state of endometriosis, a dysbiotic microbiome has 

been postulated as a contributing factor in the development of endometriosis 80. Indeed, 

recent evidence suggests that the gut dysbiosis may lead to hyperestrogenic conditions 

mediated by the estrobolome through the increased abundance of β-glucuronidase-

producing bacteria 65,80. Although in the last years intense research is reporting 

associations of several microbes from the vagina, cervix, endometrium, follicular fluid 

and gut with endometriosis 81,82, small-sample sizes hampers to reach definite 

conclusions. Future investigations on bigger sample size and well-controlled studies are 

warranted to explore the complex relationship between the microbiome and 

endometriosis. 

1.3. Methods of microbiome analysis 

Rapid advances in the NGS technologies have enhanced our knowledge in the 

field of the microbiome in human and its association with host health 13. These 

developments have brought the microbiomics to a golden era as a research field, via the 

combination of molecular biology methods, analytical platforms and in silico approaches 

83. 

Microbial analysis methods have been drastically evolved in the past few years 

7,84, being primarily classified into different levels of meta-omics analysis: DNA-, RNA-

, protein- and metabolite-level analyses (Figure 7). DNA-based approaches are currently 

well characterized for studying the compositional and functional capacity of the human 
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microbiomes, since DNA is easy to extract, preserve, and sequence. The commonly used 

DNA-based methods are amplicon sequencing (also called marker gene, e.g., 16S rRNA 

gene) and shotgun metagenomics (sequencing the microbial whole genomes) 85. At RNA-

level, meta-transcriptomics surpasses the limitation of amplicon and metagenomics 

approaches (since the mere presence of DNA sequences is not a sufficient indication of 

microbial activity), and detects living and functional microorganisms using RNA 

sequencing to snapshot a transcriptionally active microbiome profile 86. Complementary 

to these microbiome analysis methods, meta-proteomics and meta-metabolomics identify 

and quantify the microbial proteins and metabolites in a sample, which provides new 

insights into the functional microbiota and to the understanding of host-microbes 

interactions 87,88. 

Figure 7. Methodologies used in human microbiome studies: amplicon, metagenomics, meta-
transcriptomics, meta-proteomics, and meta-metabolomics analyses. Created with BioRender. 
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Despite the rapid growth of microbiome analysis, challenges arise from the 

statistical and experimental design issues. Since microbiome data is high dimensional and 

heterogeneous, a major concern for the field is the integration of different databases and 

multiple meta-omics approaches. Therefore, recent efforts are being directed to 

standardize computational frameworks to combine different cohorts and to integrate and 

interpret different molecule-level data in light of each other, paving the way for future 

multi-omics studies in microbiome research 89.  

1.3.1. Amplicon analysis 

Amplicon or marker gene sequencing, the most common method for microbiome 

analysis, uses primers that target a specific sequence of a gene to identify the taxonomic 

composition in a sample. The major marker genes used in amplicon sequencing include 

16S rRNA gene for prokaryotes (bacteria and archaea) and 18S rDNA and internal 

transcribed spacers (ITS) for eukaryotes 90. The 16S rRNA gene comprises both 

conserved and hypervariable regions (V1-9). Analysis of the hypervariable regions 

provides a deep classification of the microorganisms into kingdoms, phyla, classes, 

orders, families and genera, although lacking accuracy at the species level 91 (see Figure 

7 for further details). 

1.3.2. Metagenomics analysis 

Metagenomics, also called shotgun metagenomics, consists of the sequencing of 

all microbial genomes within a sample. This method provides a deeper detection of 

taxonomic composition than marker gene sequencing, detecting viral and eukaryotic 

DNA. Contrary to marker gene, metagenomics sequencing allows to reach species level 

resolution, can be used to profile the functional activity of the microbial communities and 

makes it possible the assembly of microbial genomes from short reads 92. However, 
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shotgun metagenomics has limitations due to the relatively high sequencing cost and the 

introduction of potential bias during experimental protocols 93. Furthermore, it does not 

perform well for samples with high risk of host genome contamination such as low-

biomass samples 85 (Figure 7). 

1.3.3. Controlling for contamination 

A crucial step in microbiome analysis is to deal with cross-contamination during 

sample collection or processing, especially regards to low microbial biomass sites. As a 

result, it is still under debate whether several body sites such as the placenta 94, upper 

reproductive tract 95 and blood 96, in fact, possess their own microbiomes. Indeed, it has 

been demonstrated that bacterial contaminant DNA of extraction and sequencing reagents 

can dominate the composition of low microbial biomass samples 97. This highlights the 

importance of including negative and positive controls in the study design. Additionally, 

applying in silico analyses are becoming mandatory to remove contaminating taxa. For 

example, Decontam and microDecom are recommended packages to generate cleaner 

data in low-biomass tissues 98. 

1.3.4. Statistical analysis and visualization 

Microbiome composition analysis mainly comprises of three steps: 1) data 

preprocessing, which consists of filtering and quality control of the raw sequences, 2) 

quantification and taxonomy annotation, and 3) statistical analysis and visualization 99. In 

the final step, multiple statistical methods are used to explore the diversity and 

composition of the human microbiomes. Compared with many software developed for 

raw microbiome data analysis, the downstream analysis relies basically on the R language 

environment.  
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The vast majority of statistics and visualization methods use the most important 

output files from amplicon and metagenomics analysis pipelines: the taxonomic and 

functional tables 85. Downstream analysis of these outputs usually includes alpha- and 

beta-diversity, taxonomic composition, differential abundance analysis, and additionally 

deeper correlation, network and machine learning analyses (Figure 8).  

Figure 8. Overview of microbial diversity and compositional analyses commonly used in 
microbiome studies. Most commonly statistics and visualization methods resulted from the 
taxonomic and functional tables are represented 85. This figure is reproduced under a Creative 
Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/. 

 

Alpha-diversity evaluates the microbial diversity (number [richness] and 

distribution [evenness]) within a sample. Another different concept is beta-diversity, that 
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measures differences in the microbial communities among samples and is normally 

represented by dimensional reduction methods such as principal coordinate analysis 

(PCoA) or non-metric multidimensional scaling (NMDS). Both analyses can be 

performed in different sequences analysis software, such as Qiime2 or USEARCH, and 

they are also implemented in the R vegan package. Differential abundance analysis is 

based on statistical comparison methods (e.g., Mann Whitney U test, Kruskal-Wallis test) 

or tools (ALDEx2, LEfSe or ANCOMBC) to compare the abundance of different features 

(phyla, genera, species, pathways) and identify those that significantly differ between the 

groups of interest 85,99. 

Due to the rapid emergence of this great variety of computational pipelines and 

analysis tools, there is a need to perform detailed studies based on well-informed choices. 

To ensure reproducibility and comparability of the results, standardized practices for 

performing a microbiome study, including experimental design, choice of molecular 

analysis technology and pipeline for analysis, and integration of multiple meta-omics data 

sets are warranted for future studies 84. 
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2. AIMS 

The overall aim of this Doctoral Thesis was to increase our understanding of the 

microbial composition in women, with a focus on its association with PA and female 

reproductive health. This general aim is divided into specific aims and addressed in four 

studies organized into two sections: 

SECTION I. Physical activity and microbial composition 

Aim 1. To study the associations of PA and SB with the microbial communities across 

human tissues.  

Specific aim 1.1. To summarize and meta-analyze the current knowledge about 

PA, SB and the microbiome across different body sites and in different human 

populations through marker gene and metagenomics approaches (Study I). 

Specific aim 1.2. To study the associations between accelerometer-assessed 

behaviors (i.e. SB, LPA and MVPA) with the gut microbiome using CoDA in 

middle-aged women (Study II). 

SECTION II. The microbiome in female reproductive health  

Aim 2. To characterize the microbial composition in different body sites and investigate 

its association with female reproductive health. 

Specific aim 2.1. To analyze the microbial composition of endometrium and FT 

in fertile women in order to identify the female upper reproductive tract 

microbiome in the absence of a disease (Study III). 

Specific aim 2.2. To analyze and compare the gut microbiome profiles in women 

with and without endometriosis in a large cohort with the objective to identify 

microbial species and pathways potentially associated with the pathogenesis of 

the disease (Study IV). 
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3. MATERIAL AND METHODS 

This section summarizes the methodology applied along this Doctoral Thesis. A 

methodological summary of the four studies is presented in Table 1. A detailed 

methodological explanation can be found in each respective study. 
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4. RESULTS AND DISCUSSION 
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SECTION I. Physical activity and microbial composition 
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Study I: Physical Activity, Sedentary Behavior and Microbiome: A Systematic 
Review and Meta-analysis 
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ABSTRACT 

Background. The effects of physical activity and sedentary behavior on human health 

are well known, however, the molecular mechanisms are poorly understood. Growing 

evidence points to physical activity as an important modulator of the microbial 

composition, while evidence of sedentary behavior is scarce. We aimed to synthesize and 

meta-analyze the current evidence about the effects of physical activity and sedentary 

behavior on microbiome across different body sites and in different populations. 

Methods. A systematic search in PubMed, Web of Science, Scopus and Cochrane 

databases was conducted until September 2022. Random-effects meta-analyses including 

cross-sectional studies (active vs. inactive / athletes vs. non-athletes) or trials reporting 

the chronic effect of physical activity interventions on gut microbiome alpha-diversity in 

healthy individuals were performed. 

Results. Ninety-one studies were included in this systematic review. Our meta-analyses 

of 2632 participants indicated no consistent effect of physical activity on microbial alpha-

diversity, although there seems to be a trend toward a higher microbial richness in athletes 

compared to non-athletes. We observed an increase in short-chain fatty acids-producing 

bacteria such as Akkermansia, Faecalibacterium, Veillonella or Roseburia in active 

individuals and after physical activity interventions. 

Conclusions. Physical activity levels were positively associated with the relative 

abundance of short-chain fatty acids-producing bacteria. Athletes seem to have a richer 

microbiome compared to non-athletes. However, high heterogeneity between studies 

avoids to obtain conclusive information on the role of physical activity in microbial 

composition. Future multi-omics studies would enhance our understanding of the 

molecular effects of physical activity and sedentary behavior on the microbiome. 
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1. INTRODUCTION 

It is well-known that physical activity (PA) (i.e., any movement produced by 

skeletal muscles which demands a higher energy expenditure than in resting conditions) 

can improve different health-related outcomes such as insulin resistance, adiposity, and 

fitness, among others 1,2. A related yet different construct is sedentary behavior (SB) (i.e., 

a behavior characterized by an energy expenditure of 1.5 or fewer metabolic equivalents 

[METs]), and is associated with a higher risk of different diseases 3,4. Thus, increasing 

PA and reducing SB have been considered to prevent and treat multiple chronic diseases 

5. However, the molecular mechanisms underlying the health benefits of PA (acute or 

chronic effects) and the adverse effects of SB on health are poorly understood 6. 

In the last decades, a new sight of the human being as a set of microbial and human 

cells has emerged 7. The collection of microorganisms encompasses bacteria, viruses, 

fungi and archaea that inhabits our body is defined as the microbiota and is at least as 

abundant as the number of human cells 8. The genomes of the abovementioned 

microorganisms (i.e., microbiota) are called the microbiome, which is considered “our 

second genome” and “our last organ” due to its important role in human physiology 9,10. 

Metagenomics studies (e.g., marker gene sequencing and whole metagenome sequencing) 

led characterization of microbiome composition using three common analyses: (1) alpha-

diversity, that characterizes the microbial diversity within a sample considering richness 

and evenness (i.e., the number and the relative abundance of microbes); (2) beta-diversity, 

which measures the diversity between samples assigning a numerical value for every pair 

of samples to determine microbial community-level dissimilarities; (3) differential 

abundance analysis, that identifies those microorganisms that differ in abundance when 

compared different samples. 
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There is evidence indicating that environmental and lifestyle factors such as 

pollutants, antibiotics, diet, lack of PA and increased SB, among others, may have a 

negative impact on microbiome composition and function leading to the disruption of the 

microbial homeostasis (i.e., dysbiosis) 11–13. In fact, microbial dysbiosis has been 

associated with the development of multiple diseases such as obesity 14,15, type-2 diabetes 

16, and cancer 17,18, among others. Thus, there is a growing interest to determine the 

composition of the “healthy core” microbiome and the factors that could shape the 

microbial communities, such as PA and SB, in order to design new therapeutic 

interventions 19,20.  

Particularly, PA has been described as one of the most important modulators of 

the microbiome, while little is known about the effect of SB on microbial communities 

due to the limited number of studies 21,22. Recent advances in meta-omics-based studies 

(i.e., marker gene sequencing, metagenomics, meta-transcriptomics, meta-proteomics, 

and meta-metabolomics) allow the identification of the molecular pathways regulated by 

PA 23. Thus, the effect of PA on the microbiome, especially on the gut microbial 

communities, is a research topic of increasing interest 24,25. In the last years, several 

systematic reviews reported the effects of PA on the gut microbiome of healthy adults 26–

29, older adults 30 and adults with obesity and type-2 diabetes 31,32. In addition, a systematic 

review on the effect of aerobic athletic performance has been recently published 33. 

However, the aforementioned systematic reviews showed inconsistent findings from 

observational and intervention studies 26–32. Therefore, there is a need to synthesize the 

whole body of knowledge about the effect of PA and SB on the microbiome including 

healthy (e.g. non-athletes and professional athletes), unhealthy populations (e.g. obesity, 

diabetes, cancer), different stages of life (i.e., children, young and older adults), and 

different body niches (e.g. gut, saliva, vaginal, etc.) through metagenomics approaches. 
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The current study aimed: 1) to summarize all the studies available about the 

relationship of PA and SB (observational and intervention studies) with microbiome 

performing metagenomics in humans and 2) meta-analyse the available data. 

 

2. MATERIAL AND METHODS 

This systematic review and meta-analysis was conducted following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) 34. 

The review protocol was registered in the International Prospective Register of 

Systematic Reviews (PROSPERO; http://www.crd.york.ac.uk/PROSPERO) with the 

reference number:  CRD42022298526. 

2.1. Search strategy 

A systematic search was conducted in PubMed, Web of Science, SCOPUS, and 

Cochrane electronic databases from inception to September 29, 2022. Search terms were 

included based on the sports science and microbiome terms of interest. Table 1 includes 

a list with the main terms and their definitions related to microbiome field used in this 

systematic search. Supplementary Table S1 illustrates the search terms and strategy for 

each database. 

Table 1. Definition of main microbiome-related terms used in this systematic review. 

Term Definition 
Microbiota Collection of microorganisms, including bacteria, 

arquea, viruses and fungal communities, that 
collectively inhabit a particular environment (eg., 
gut, blood, vagina, etc.) 
 

Microbiome Collection of genomes of the microorganisms 
inhabiting a particular environment 
 

Healthy core microbiota Set of microbial taxa universally present in healthy 
individuals who lack overt disease phenotypes 
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Alpha-diversity  Diversity within a sample taking into account both 

the number of microorganisms in a sample (richness) 
and their distribution (evenness) 
 

Shannon Diversity Index Alpha-diversity estimator of microbial richness and 
evenness within a sample or niche 
 

Chao1 Index Alpha-diversity abundance-based estimator of 
microbial richness within a sample or niche 
 

Beta-diversity Diversity between samples taking into account a 
distance matrix that reflects how compositionally 
different the samples are from one another (i.e., 
dissimilarity between samples) 
 

Meta-omics Refers to those techniques, including marker gene 
sequencing, metagenomics, meta-transcriptomics, 
meta-proteomics, and meta-metabolomics, which 
directly examine the phylogenetic markers, genes, 
transcripts, proteins, or metabolites from a microbial 
community 
 

Marker gene sequencing (e.g. 
16S rRNA gene sequencing) 

DNA sequencing method to identify the microbes 
present in a given microbial community through the 
analysis of a sequence variation (i.e., hypervariable 
region) of a single ubiquitous gene (e.g. 16S 
ribosomal RNA gene)  
 

Metagenomics (or shotgun 
metagenomics) 

DNA sequencing method to assess the entire 
functional gene content of a given microbial 
community. It provides a much greater specific 
identification of the microbes compared to marker 
gene analysis (e.g. 16S rRNA gene), in which 
classification is normally limited to the genus level 
as multiple species may have the same sequence 
within the studied hypervariable region 
 

Meta-transcriptomics RNA sequencing method to assess the 
transcriptionally active microbes of a given 
microbial community, providing knowledge of the 
functional activity of these microorganisms 
 

Meta-proteomics Shotgun method to characterize the entire microbial 
protein complement of a sample 
 

Meta-metabolomics Shotgun method to identify the microbial 
metabolites present in a sample 
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2.2. Study selection criteria 

The inclusion criteria were as follow: (1) all observational studies (longitudinal or 

cross-sectional) that report the association of PA and/or SB with microbiome; (2) all 

original studies that included the effect of PA (acute and/or chronic effects) on 

microbiome. The exclusion criteria were: (1) studies addressing the effect of PA (acute 

or chronic effects) on microbiome containing diet modifications, probiotics and prebiotics 

supplements or caloric restriction, in which it was not possible to isolate the independent 

effect of PA, (2) non-eligible publication types, such as editorials, study protocols, letters 

to the editors, meeting abstracts, or review articles, (3) studies written in any language 

other than English or Spanish. 

The selection process of the studies resulting from the literature search was 

performed using the software “Covidence” (https://www.covidence.org/), which detected 

duplicates. After removing the duplicates, the articles were first independently filtered by 

title/abstract screening by two researchers (I.P.P and A.P.F). Those articles that met the 

inclusion criteria were selected for the full-text review. Conflictive articles were solved 

through common consensus by the same researchers (I.P.P and A.P.F). Any article that 

did not meet the eligibility criteria was excluded. The quality assessment of the included 

studies was independently conducted by I.P.P and A.P.F (see Supplementary Material 

Appendix S1). 

2.3. Data extraction 

For each study, one researcher (I.P.P) conducted the data extraction including the 

following information: (1) author’s name and date of publication, (2) study design, (3) 

characteristics of the population (number of participants, sex, age and ethnicity), (4) 

characteristics of the exposure (i.e., PA or SB), (5) sample origin, (6) dependent outcome 
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(i.e., DNA extraction method, detection method of the microbiome and sequencing 

platform), (7) dietary record, (8) main findings and (9) raw data availability. A second 

researcher (A.P.F) performed a double-check for data correction. 

2.4. Data synthesis and meta-analysis 

We conducted three meta-analyses including cross-sectional studies (active vs. 

inactive / athletes vs. non-athletes) or trials reporting the chronic effect of PA 

interventions on gut microbiome diversity (specifically alpha-diversity, expressed by the 

Shannon diversity and Chao1 indexes) in healthy individuals (see Supplementary 

Material Appendix S1 for detailed explanation). 

Statistical analyses were performed using the Comprehensive Meta-Analysis 

software (version 3; Biostat Inc.,1385, NJ, USA). The effect size was calculated using 

Cohen’s d and 95% confidence intervals (CIs) for standardized mean difference (SMD). 

Pooled SMD was estimated using a random-effects model. Heterogeneity between studies 

was assessed using the I2 statistics, which represents the percentage of total variation 

across studies, considering I2 values of 25%, 50%, and 75% as low, moderate and high 

heterogeneity, respectively 35. A p value of less than 0.05 was considered statistically 

significant. 

 

3. RESULTS 

3.1. General overview 

PRISMA checklist 2020 reflects the appropriateness of the methods performed in this 

systematic review and meta-analysis (Supplementary Tables S2 and S3). Figure 1 

illustrates the PRISMA flow diagram of the search process.  
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Figure. 1 Search process according to the Preferred Reporting Items for Systematic Reviews and 
Meta‐Analyses (PRISMA) 2020 flow diagram 

 
A total of 12503 articles were detected across the four databases, and after 

removing the duplicates and non-eligible articles, 91 studies were included in this 

systematic review: 50 observational studies (all cross-sectional) 36–85, 9 studies reported 

the acute effects of PA (e.g., following a marathon, rowing, etc.) on microbiome 23,86–93, 

and 32 studies reported the chronic effects of PA on microbiome (17 non-RCT, 13 RCT 

and 2 randomized controlled cross-over trials) 94–125. Of the 50 cross-sectional studies, 8 

were eligible (based on availability of microbiome diversity data and healthy participants) 

for the first meta-analysis comparing groups of high and low PA levels in non-athletes 

44,66,69,70,78,81,83,85, and 11 were included in the second meta-analysis comparing athletes 

vs. non-athletes 47,49,51,56,60,74,76,78,79,81,104. Of the 32 intervention studies, 7 were selected 
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for the third meta-analysis, to evaluate the chronic effects of PA on microbiome alpha-

diversity 96,97,99,109,112,119,124.  

Seventeen studies reported significant associations between PA 38,41,43,44,59,63,65–

68,72,83–85 or SB 48,64,70 and microbial diversity (i.e., alpha- and/or beta-diversity), and 19 

studies found significant differences in the relative abundance of specific bacteria in 

active vs. inactive participants 36,38,39,41,42,44–46,48,59,63,66,68–71,78,84,85 (Supplementary Table 

S4). Sixteen studies found significant differences in microbial diversity 47,49,51,52,54–

58,61,62,74–76,79,80 and 13 in the abundance of specific microbial taxa 47,52,53,55–58,74–76,78,79,104 

between athletes vs. non-athletes, professional vs. amateur or athletes from different 

sports. Three studies detected significant differences in alpha-diversity 89,90,92, while 8 

studies described significant changes in the relative abundance of certain bacteria after 

acute PA interventions 23,86,87,89–93. Seventeen studies detected significant differences in 

alpha- and/or beta-diversity 94,95,98,101,102,104,108,111,112,114,115,117–120,123,125, and 24 studies 

described significant changes in the relative abundance of certain bacteria after chronic 

PA interventions 94,95,97–99,101,102,105,107–109,111–117,119,121–125. 

The sample sizes ranged from 1 90 to 2183 65 (Supplementary Table S4). Fifty-

three studies involved both male and female participants 23,36,38,39,41,42,45,46,50,54–57,59,63–73,77–

81,83,85–87,92,94,96,98,100,103–108,114,115,117,119–121,123,125, while 12 were exclusively conducted on 

women 37,43,48,51,58,74,82,88,95,99,110,118 and 25 on men 40,44,47,49,52,53,60–62,75,76,84,89–

91,93,97,101,102,109,112,113,116,122,124. One study did not report the gender of the participants 111. 

Regarding age, 5 studies recruited children (i.e., 7-12 years) and/or adolescents (i.e., 13-

17 years) 59,64,68,73,123, 67 included young and middle-aged adults (i.e., 18-64 years) 

23,36,40,42–55,60–62,65,66,70,71,74,76–80,82,85–96,98,100–113,115–118,120–122,124,125, 12 older adults (i.e., ≥65 

years) 37–39,41,57,63,69,72,84,97,99,114, 3 studies combined adolescents and adults 56,58,119 and 4 

adults of different age 67,75,81,83. Fifty-nine studies were performed on healthy individuals 
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23,36,37,40,42–45,47–50,52–62,64–66,68,70,71,74–76,78–81,83,85,87,89–93,96–100,103–105,109–113,116,119, while 32 

studies included participants with different diseases such as obesity or breast cancer, 

among others 38,39,41,46,51,63,67,69,72,73,77,82,84,86,88,94,95,101,102,106–108,114,115,117,118,120–125. 

Regarding the exposure, 26 cross-sectional studies recorded PA using self-

reported questionnaires 36–46,48,59,65–68,70–73,78,81,83–85, whereas 8 studies included PA data 

registered by accelerometry 42,48,63,66,69,82,84,85 (Supplementary Table S4). Additionally, 

four studies reported SB data expressed as time per sedentary breaks/bouts or screen time 

48,64,70,73. Twenty-two cross-sectional studies recruited athletes from different sports such 

as rugby, athletics or football, among others 47,49–58,60–62,74–80,104. Six studies analyzed the 

effects of a marathon, footrace or rowing race on microbiome 23,87,89,90,92,93, three reported 

the effect of a single bout of PA (i.e., no sport competition) on microbiome 86,88,91 and 32 

conducted a long-term PA intervention ranged from two weeks 121 to thirty-four weeks 

115, mostly consisting of aerobic training 94,95,97,98,103,105,107,109,111–113,115,119–121 or a 

combination of aerobic and resistance training 96,99–102,104,106,108,110,114,116–118,122–125. 

Most of the studies analyzed the gut microbiome, with the exception of ten which 

collected saliva, oral, oropharyngeal, muscle, blood or vaginal samples 

36,43,52,64,80,86,88,102,113,116 (Supplementary Table S4). Concerning the detection method, 

78 studies conducted the 16S rRNA gene sequencing approach to characterize the 

microbiome 23,36–48,51–53,55,56,58–64,66–87,90–95,97–100,102–105,107–113,115,116,118–121,123–125, 16 

performed metagenomics analyses 23,49,50,54,57,60,65,89,95,96,101,106,114,115,117,122 and two studies 

focused on meta-transcriptomics (i.e., microbial RNA-sequencing) 50,88. Twenty-one 

studies did not report dietary data for all the participants 

36,39,74,76,79,80,86,88,98,99,102,104,106,111,113,115–117,119,121,123. One study performed a control of diet 

(each participants received the same kind of food) during the PA intervention 87. 
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Figure 2 shows a graphical summary of the main findings. Specific outcomes of 

microbial composition identified in the articles are discussed and interpreted in the 

context of the current knowledge in the Discussion section. For further details, see 

Supplementary Appendix S2. 

Figure. 2 Summary of the main characteristics and findings of the studies included in this 
systematic review. A) Exposure: in cross-sectional studies, the effect of physical activity (PA), 
sedentary behavior (SB) or athletic performance on microbiome was analyzed. In intervention 
studies, the acute or chronic effects of PA on microbiome were evaluated. B) Microbiome 
outcomes: samples from different body sites (gut, saliva, blood, muscle and vagina, among others) 
were analyzed by distinct detection methods (16S rRNA sequencing and whole metagenome 
sequencing [WMGS] for DNA-based microbiome analysis; meta-transcriptomic [RNA 
sequencing] for RNA-based microbiome analysis). C: Main findings: relevant results concerning 
alpha- and beta-diversity and differential abundance analysis are shown. D) Metabolic effects of 
PA-microbiome interaction. Growing evidence indicates that PA increases the abundance of 
members of the Firmicutes phylum, bacteria able to produce short-chain fatty acids (SCFAs). 
SCFAs produced by the gut microbiome by processing nutrients from diet may have positive 
effects in the intestine, improving barrier function and inflammation state. A crosstalk between 
the gut microbiome and skeletal muscle through lactate (generated during PA) and its conversion 
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to SCFAs may improve athletic performance. SCFAs have been also linked to promoting 
neurogenesis (through brain-derived neurotrophic factor [BDNF]), improving hypothalamic–
pituitary–adrenal (HPA) axis control, reducing inflammation and the risk of psychological 
diseases (e.g. depression, anxiety). A microbiome-dependent gut-brain connection mediated by 
microbial metabolites (i.e., fatty acid amides [FAAs], such as N-oleoylethanolamide [OEA]) has 
been discovered in mice, which enhances exercise performing and motivation by increasing 
dopamine signaling during PA. Recent studies suggest that dysbiosis may lead to the growth of 
proteolytic microbes able to produce trimethylamine-N-oxide (TMAO), an important metabolite 
that in elevated concentration has been linked to adverse cardiac events and chronic kidney 
diseases (CKD). This figure was created with BioRender.com 

 

3.2. Quality assessment 

Among the 50 cross-sectional studies, 26 were categorized as high quality (quality 

score≥75%), whereas 24 as low quality (quality score<75) (Supplementary Table S5). 

Regarding the 9 studies about the acute effects of PA, 8 studies were considered to have 

a high quality and 1 showed a low quality (Supplementary Table S6). Concerning the 

32 studies (15 RCTs and 17 non-RCTs) that reported the chronic effects of PA 

interventions, one RCT presented a high quality and 14 a low quality (Supplementary 

Table S7), while 12 non-RCTs were categorized as high quality and 5 as low quality 

studies (Supplementary Table S8). 

3.3. Meta-analysis 

3.3.1. First meta-analysis (cross-sectional studies): high vs. low PA levels 

This meta-analysis united 1814 participants from 8 studies, where 1157 belonged 

to the high PA and 657 participants to the low PA groups. No significant differences were 

reported between the groups of high and low PA levels on alpha-diversity represented by 

the Shannon diversity index (SMD=-0.101, 95% CI -0.386-0.184, p=0.488, I2=33.581) 

and Chao1 index (SMD=-0.127, 95% CI -0.563-0.309, p=0.568, I2=13.774) (Figure 3A). 

3.3.2. Second meta-analysis (cross-sectional studies): athletes vs. non-athletes 
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This meta-analysis comprised 651 participants from 11 studies, including 329 

athletes and 322 non-athletes. No significant differences were reported between the 

groups of athletes and non-athletes on alpha-diversity using the Shannon diversity index 

(SMD=-0.113, 95% CI -0.441-0.215, p=0.501, I2=0.000). However, athletes tended to 

present a higher alpha-diversity compared to non-athletes’ when Chao1 index was used 

as an indicator of microbial alpha-diversity (SMD=0.482, 95% CI -0.026-0.991, p=0.063, 

I2=0.000) (Figure 3B). 
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Figure 3. Panel A) shows the meta-analysis of the high-PA vs. low-PA level’s effects on Shannon 
diversity and Chao1 indexes (i.e., alpha-diversity metrics). Eight studies were finally included 
(Shannon diversity index 44,66,69,78,81,83,85; Chao1 index 44,70,78,81,85). Panel B) indicates the meta-
analysis of the athletes vs. non-athletes’ effects on both alpha-diversity metrics, i.e., Shannon 
diversity (8 studies 47,49,51,60,76,78,79,81) and Chao1 indexes (9 studies 47,51,56,74,76,78,79,81,104).  
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3.3.3. Third meta-analysis (intervention studies): chronic effects of PA 

The third meta-analysis united 167 participants from 7 studies, where 118 were 

allocated to a PA group and 49 to a control group. No significant differences were found 

between the PA and control groups on alpha-diversity using the Shannon diversity index 

(PA group: SMD=0.132, 95% CI -0.124-0.388, p=0.312, I2=0.000; control group: 

SMD=0.110, 95% CI -0.288-0.508, p=0.587; I2=0.000) or Chao1 index (PA group: 

SMD=-0.080, 95% CI -0.454-0.295, p=0.677, I2=0.000; control group: SMD=0.001, 95% 

CI -0.454-0.457, p=0.995; I2=0.000) (Figure 4). 

 

Figure 4. Meta-analysis of the PA intervention (up) vs. control’s effects (down) on the Shannon 
diversity (7 studies 96,97,99,109,112,119,124) and Chao1 index (3 studies 97,99,112). Due to the lack of 
studies, we included both RCTs 96,97,99,109,119 and non-RCTs 112,124 in the same meta-analysis. The 
bottom meta-analyses reflect the effect of time in the absence of PA intervention since only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error limit limit p-Value

Taniguchi et al. 2018 0,020 0,254 -0,478 0,518 0,938
Zhong et al. 2020 -0,020 0,577 -1,151 1,112 0,973
Donati Zeppa et al. 2021 -0,273 0,335 -0,929 0,384 0,416

Random -0,080 0,191 -0,454 0,295 0,677

-2,50 -1,25 0,00 1,25 2,50
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in means error limit limit p-Value
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Zhong et al. 2020 -0,084 0,578 -1,216 1,049 0,885
Resende et al. 2021 0,094 0,408 -0,707 0,895 0,818
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includes the control groups that were available from the RCTs. We did not use the control groups 
of Cronin et al. 2018 and Bielik et al. 2022, as they consumed a protein or probiotic supplement 
96,119 

 

4. DISCUSSION 

The main findings of this systematic review and meta-analysis were: 1) there was 

no consistent effect of PA on modifying microbial alpha-diversity, although most of 

studies support that PA (observational and intervention studies) induces changes in 

microbiome composition with the increase of short-chain fatty acids (SCFAs)-producing 

bacteria such as Akkermansia, Roseburia or Veillonella, among others; 2) there is very 

limited evidence of the effect of SB on microbiome; 3) few studies assessed PA data by 

objective methods (i.e., accelerometry); 4) there are few studies about the acute effect of 

PA on microbiome; 5) available studies are hardly comparable due to heterogeneity of 

the participants (i.e., age, sex, health status), wide use of different self-reported 

questionnaires to record PA, lack of standardized criteria to stratify participants in 

active/sedentary groups in cross-sectional studies and different characteristics of PA 

interventions (e.g., type, intensity, duration); 6) most of studies did not include diet as a 

confounder in their statistical analyses; 7) well-designed multi-omics studies (i.e., 

metagenomics, meta-transcriptomics, meta-proteomics and meta-metabolomics) are 

warranted to clarify the effect of PA and SB on microbiome. 

4.1. Cross-sectional studies: physical activity and sedentary behavior (non-athletes) 

Microbiome diversity is considered a direct measure of gut health, and a loss of 

diversity has been linked to a higher risk of obesity, type-2 diabetes, and cancer, among 

others 126. In this systematic review, four studies found that the gut microbiome of 

children and adults with higher PA levels showed higher alpha-diversity, compared to 
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those who rarely or never exercised 59,65,66,85. Similarly, two studies reported a positive 

association between PA level and gut alpha-diversity in participants with different 

diseases 38,67. A positive correlation between average PA intensity and vaginal 

microbiome alpha-diversity was also found in healthy college-aged women 43. However, 

other studies in individuals with different age and health conditions reported negative or 

no associations 36,39,41,44,48,63,68–71,78,81–84, as is also detected in our meta-analysis of 1814 

participants (Figure 3A). Heterogeneity in study population (i.e., health status, sex, age), 

methodological aspects (i.e., use of diverse self-reported questionnaires, different 

pipelines to analyze the microbiome, etc.), varying criteria to stratify participants based 

on PA level and lack of control of relevant covariates (e.g. diet) in statistical analyses 

may contribute to the discrepant findings across studies. In fact, Langsetmo et al. 

demonstrated different results depending on the method for measuring PA, where self-

reported PA was positively associated with beta-diversity 84, while objectively measured 

PA recorded by accelerometry (expressed as step counts) showed no associations 84. 

Regarding SB, Bressa et al. reported that less time in sedentary bouts was 

positively associated with alpha-diversity (Shannon and Chao1 indexes) in 

premenopausal women 48. In contrast, there were no significant differences in alpha-

diversity when compared the gut microbiome of physically active women (those who 

perform at least 3 hours of PA per week) and sedentary women (i.e., those who perform 

<3 hours) 48. Whisner et al. did not find any significant differences in alpha-diversity 

parameters across quartiles of SB in a cohort of college students 70. However, a later study 

detected an increased alpha-diversity in the saliva of children who reported less screen 

time 64. Interestingly, recent evidence indicates a positive association between SB and 

Streptococcus, detected in feces and saliva 63,64. Streptococcus has been described as a 

key bacteria in disease such as old-onset colorectal cancer 127. The existence of an oral-
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gut microbiome crosstalk has been proposed, highlighting a possible association between 

oral dysbiosis, oral–gut microbiome axis and the pathogenesis of different diseases such 

as gastrointestinal disease or colorectal cancer 128. Thus, more future research is needed 

to unravel the role of SB as a potential modulator of microbial communities. 

There are more consistent findings about the associations between PA and the gut 

microbiome, mostly at lower taxonomic categories. At phylum level, Firmicutes seems 

to be more abundant in the gut of those individuals with higher PA levels 41,59, although 

several studies found the inverse association 44–46. Since Firmicutes has been associated 

with fiber 129, different dietary habits may be partially explaining variability between the 

studies. Interestingly, growing evidence supports that PA increases the abundance of a 

Firmicutes-belonging group of commensal bacteria able to produce SCFAs from non-

digestible carbohydrates ingested through diet, such as butyrate, propionate and acetate 

130. Most of the included studies reported higher abundances of SCFAs-producing 

bacteria from Lachnospiraceae and Erysipelotrichaceae families 42,59,63,66,70, and 

Roseburia, Coprococcus, Lachnospira, Blautia and Faecalibacterium genera, among 

others, in more active individuals compared to those with lower PA levels 42,59,70,71,84,85. 

Particularly, Bressa et al. quantified the relative abundance of Akkermansia muciniphila, 

Faecalibacterium prausnitzii and Roseburia hominis by real-time PCR (qPCR) and 

detected higher abundances in physically active compared to inactive women 48. SCFAs 

have been linked to good health due to their role on metabolic function, being substrates 

for energy metabolism as well as important signaling molecules implicated in the gut-

microbiota axis and in the regulation of the immune response 131,132. Since the availability 

of SCFAs are influenced by both, the ingestion of nutritional components and their 

digestion directed by the gut microbes 130, the previous results could indicate SCFAs as 

the key molecular link between PA, diet and microbiome.  
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4.2. Cross-sectional studies: athletes vs. non-athletes 

Available evidence generally agrees on a trend towards the increase of the gut 

microbial diversity in athletes of different sports disciplines compared to non-athletes (see 

our meta-analysis of 651 participants; Figure 3B). Further, a recent meta-analysis 

evaluated microbial alpha-diversity of shotgun metagenomics data of the gut 

microbiomes of 207 athletes of different sports and 107 non-athletes and found a 

significantly higher species richness in athletes compared to non-athletes 133. However, it 

is also well known that specific dietary requirements are usually implemented based on 

the duration and intensity of PA training 134, which makes difficult to determine the 

isolated effect of athletic performance on the microbial communities. In 2014, Clarke et 

al. reported, for the first time, a positive association between athletic performance and 

alpha-diversity parameters, when compared the gut microbiome by 16S rRNA 

sequencing of a group of professional rugby players and sedentary participants with low 

and high BMI (i.e., BMI≤25 or >28, respectively) 47. However, the athletes’ enhanced 

diversity was also associated with high protein consumption in this group. Barton et al. 

49 re-analyzed the participants from Clarke et al. to evaluate the microbiome diversity 

with the whole metagenome shotgun sequencing, confirming the previous results 47. More 

recently, Penney et al. analyzed the combined effects of diet and athletic performance in 

the gut microbiome of those participants, and found a significant association with alpha-

diversity when combined the effect of both athletic performance and dietary habits 60. 

Later studies described an enriched microbial diversity in athletes with special diets, 

compared to sedentary participants 61,62, and others did not find any significant differences 

between athletes and non-athletes with similar dietary patterns 52,53,57. In contrast, 2 

studies reported a higher alpha-diversity in athletes compared to sedentary participants 

with similar dietary habits 51,56. Large variety of sports disciplines included in the 
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abovementioned studies (marathon runners, bodybuilders, cross-country skiers, rugby 

players, etc.) can be also contributing to inconsistency of the results. So far, the isolated 

effect of athletic performance, independently of diet, is still unclear. 

Since diet is one of the most important modulators of the microbiome, differences 

in nutritional habits may also affect the relative abundance of specific microorganisms 

135. In fact, high-digestible carbohydrate diets have been related to the growth of SCFAs-

producing bacteria. Clarke et al. reported a higher abundance of Firmicutes phylum and 

a decreased abundance of Bacteroidetes in rugby players compared to sedentary 

individuals with high BMI 47. Both groups presented a distinct nutritional profile, with an 

increased consumption of protein, fiber, carbohydrate and monounsaturated and 

polyunsaturated fat in the athletes group. A later study also described a higher abundance 

of Firmicutes and lower levels of Bacteroidetes in rugby players compared to non-athletes 

76. Accordingly to these findings, animal and human studies have positively associated 

Firmicutes to fiber intake but negatively to fat consumption, while Bacteroidetes showed 

the opposite association 129. Additionally, later metabolic pathway analyses revealed that 

rugby players had an enriched profile of SCFAs 49. Other SCFAs-producer, F. 

prausnatzii, was also found to be more abundant in senior athletes compared to older 

sedentary participants after adjusting for different covariates, including diet 57. Morishima 

et al. found an increase of Faecalibacterium in female runners compared to non-athletes, 

and a higher abundance of succinate, a SCFA that can be produced by Faecalibacterium 

74. 

Liang et al. reported that professional martial arts athletes had an enriched 

microbiome compared to amateurs, and identified changes in the abundance of several 

bacteria after adjusting for different confounders including diet 55. Furthermore, one study 

found higher diversity and Firmicutes/Bacteroidetes ratio in female elite compared to 
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non-elite athletes 58. However, metagenomics and meta-transcriptomics analyses 

conducted by Petersen et al. only detected differences at transcriptomic (RNA) level, 

highlighting the need for more microbiome studies at functional level 50. 

Few studies have identified significant microbial shifts in relation with the type of 

sport 53,54,56. Interestingly, O’Donovan et al. compared athletes from 16 different sports 

and found specific bacterial taxa such as Anaerostipes hadrus, F. prausnitzii and 

Bacteroides caccae, differently abundant between sports with a moderate-dynamic 

component (e.g. fencing), high-dynamic and low-static components (e.g. field hockey), 

and high-dynamic and static components (e.g. rowing) 54. 

4.3. Acute effects of PA 

Most of the studies aimed to analyze potential changes in the gut microbial 

composition following a marathon 23,87,90. In this sense, two studies detected an increase 

in Firmicutes/Bacteroidetes ratio of the gut microbiome in long-distance runners post-

race 90,92. Significantly, Grosicki et al. also detected a higher abundance of Veillonella, 

accordingly to the results obtained by Scheiman et al. 23,90. The last study proposed a 

microbiome-encoded enzymatic mechanism that could partially explain how microbiome 

and its metabolites (i.e., SCFAs) may contribute to enhance athletic performance 23. After 

detecting a higher abundance of Veillonella in runners after the race, they observed that 

administration of Veillonella atypica in a mouse model improved run time and 

demonstrated its capability of metabolically converting the exercise-induced lactate into 

propionate in the colon to subsequently re-enter the systemic circulation. In search of 

confirming these findings, Moitinho-Silva et al. quantified the relative abundance of V. 

atypica by qPCR and sequencing in a subset of elite athletes (mainly cyclists and 

triathletes) and sedentary participants, but failed to find any significant differences 

between the groups 104. These contrasting results could be partially explained by several 
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limitations of the last study such as the lack of dietary data for the athletes group. Other 

studies have detected an increase in several SCFA-producing bacteria, including 

Coprococcus_2, Dorea or Roseburia after a marathon or a transoceanic rowing race 87,89. 

Although the number of human studies is still limited, these findings support emerging 

evidence of the existence of a crosstalk between the gut microbiota and skeletal muscle 

through lactate (generated during exercise) and its conversion to SCFAs by the gut 

microbes which, consequently, could improve athletic performance 25. In fact, SCFAs 

have been recently defined as “biotics” (substances able to modulate the microbiome by 

increasing the abundance of beneficial microbes) that could be used as an exogenous 

microbiome modulation approach for improving health and athletic performance 136. 

Interestingly, a recent study discovered a gut–brain connection in mice that enhances 

athletic performance by increasing dopamine signaling during PA 137. These results 

indicate that motivation for PA is influenced by the gut microbes derived-metabolites, 

suggesting a microbiome-dependent mechanism for explaining inter-individual 

variability in PA motivation and performance. 

On the other hand, the acute effect of a bout of PA on the microbiome continues 

to be a scarcely investigated topic. Tabone et al. followed this approach analyzing fecal 

samples from athletes who underwent a moderate‑intensity treadmill session until 

volitional exhaustion and detected changes in six bacteria (Romboutsia, Escherichia coli 

TOP498, Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and Clostridium 

phoceensis) 91. Overall, acute interventions collect serum samples where potential 

changes can be detected earlier compared to fecal ones. In this context, one study 

collected blood and fecal samples of myalgic encephalomyelitis / chronic fatigue 

syndrome participants and detected changes at major bacterial phyla such as 

Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, in both samples after a 
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cycle ergometer maximal exercise test 86. A later study exclusively analyzed viral reads 

(i.e., virome) from blood samples by RNA-seq and did not detect any differences after 

acute PA 88. Thus, more research directed to analyze blood microbiome is needed to 

accurately assess the short-term effect of PA, specially, meta-transcriptomics and meta-

metabolomics could be a novel and useful approach to study the active microbiome in the 

context of acute effects of PA. 

4.4. Chronic effects of PA 

To further deepen the overall knowledge of the chronic effects of PA on human 

microbiome and, generally, the host health, several clinical trials have been published in 

the last years 94–125. Our meta-analysis of 167 participants is the first analysis that 

quantifies those trials in healthy participants, indicating that controversial results for 

alpha-diversity are consistently found (Figure 4). Two studies performed in healthy 

adults that underwent a 12-week aerobic PA intervention (3 sessions of 30 min per week) 

or 7-week high-intensity interval training (consisting of swimming lengths) reported an 

increase in microbial alpha-diversity 111,119. Conversely, Moitinho-Silva et al. detected a 

slight decrease in alpha-diversity after an aerobic PA intervention (6 weeks; 3 sessions of 

30 min per week) in healthy adults, although no differences were observed in another 

group subjected to a strength training 104. Another study recruited healthy adults to 

undergo a PA intervention (aerobic and resistance training; 8 weeks; 3 sessions of 90 min 

per week), but no significant changes in alpha-diversity were detected after the 

intervention 96. Most of the studies in unhealthy individuals did not report any significant 

changes in alpha-diversity after a PA intervention 94,95,102,106–108,114,115,118,121,122,124,125. 

However, the chronic effect of PA on microbiome composition becomes clearer in the 

beta-diversity analysis, where more studies agree on a significant dissimilarity in the 

microbial communities of the individuals after long-term PA 



67 
 

94,95,98,101,102,108,111,112,114,115,118–120,123,125. Interestingly, Allen et al. observed how 

differences in the beta-diversity detected at baseline between the participants with 

normal-weight and obesity disappeared after an aerobic PA intervention (6 weeks; 3 of 

30-60 min sessions per week) 94. Different study designs (17 non-RCT, 13 RCT and 2 

randomized controlled cross-over trials), health status of participants (15 studies with 

healthy and 17 with unhealthy populations), characteristics of PA interventions (type, 

duration, and intensity), and methodological differences in microbiome analysis, diet, 

among other factors, might partially influence the varying results obtained. 

In accordance with observational studies 38,48,59,63,66,69,71,74,85, an increase in 

SCFAs-producing bacteria such as Lachnospiraceae, Verrucomicrobiaceae, 

Lachnospira, Akkermansia, Veillonella, Faecalibacterium, Bifidobacterium and 

Roseburia was also reported in participants with different age and health conditions 

(including obesity, prediabetes and insulin resistance, among others) after PA 

interventions ranging from 2 to 34 weeks 94,95,101,102,107,108,112,114,115,121–124. More 

specifically, Liu et al. described an increase in A. muciniphila and an improvement in 

insulin sensitivity after a 12 weeks-concurrent PA intervention in men with prediabetes 

that were classified as responders compared to non-responders 122. Later studies have also 

reported an increase in A. muciniphila in participants with overweight/obesity or type-2 

diabetes after long-term PA 101,114. A. muciniphila has been related to prevention of 

multiple metabolic diseases such as obesity, metabolic syndrome and type-2 diabetes 138. 

In a recent publication, a multi-omics approach (transcriptomics, proteomics, 

metabolomics and lipidomics) investigated the underlying molecular mechanism of A. 

muciniphila in obesity. It concluded that A. muciniphila reduced lipid accumulation and 

downregulated the expression of genes related to adipogenesis and lipogenesis in 

adypocites 139. These studies point to A. muciniphila as a promising microbial target 
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(potentially modulated by PA) with therapeutics effects in obesity and other metabolic 

diseases. At genus level, Akkermansia has also been widely found to be positively 

associated with PA in cross-sectional studies 47,48 and increased after PA interventions 

95,122. 

4.5. Future Directions  

Our understanding about the effect of PA (little research is conducted on SB) on 

microbial communities is still in its infancy, vastly limited to the amplicon sequencing 

approach (i.e., 16S rRNA sequencing) and is highly variable between the studies. This 

heterogeneity highlights the need to perform well-designed studies focusing on specific 

detailed populations and establishing reference pipelines to ensure the accuracy and 

comparability of the results. To ensure the reproducibility and comparability of the future 

studies in the field, we recommend the researchers to follow the recent good practice 

guidelines 140,141 when microbiome analyses are performed. 

Most of cross-sectional studies in this systematic review recorded PA measures 

by self-reported questionnaires. Accelerometry has been widely demonstrated to be a 

more valid and comparable method for objectively collecting participants' PA and SB 

levels 142. Therefore, more accelerometry-based studies will allow researchers to apply 

standardized criteria to classify participants based on the use of cut-points for PA and SB 

which will reduce the inconsistency between study findings and reveal the accurate 

association of PA and SB with microbiome. In intervention studies that assess the chronic 

effects of PA on microbiome, we detected a low quality in the RCTs. These results could 

be partially explained by the use of a checklist 143 with a stricter scale for the quality 

assessment. 
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Since most of the studies analyzed DNA sequences regardless of microbial 

variability or functionality (only two studies performed a meta-transcriptomic analysis), 

we are not close to determine the functional microbes susceptible to PA. Moreover, future 

multi-omics analyses (i.e., combining metagenomics, meta-transcriptomics, meta-

proteomics and meta-metabolomics) would further unravel the complex host-microbial 

molecular pathways implicated in the molecular response to PA. In this regard, the 

Molecular Transducers of Physical Activity Consortium (MoTrPAC) 6 will provide a 

powerful source of information to advance our understanding of PA's effects on the 

microbiome in humans and animal models performing multi-omics analyses. 

4.6. Limitations and strengths 

Due to the lack of available information, an important limitation of our meta-

analysis was the use and transformation of directly reported data from the articles instead 

of re-analyzing raw data to reduce potential bias introduced by applying different 

methodologies and pipelines across studies. Besides, limited information prevented us 

from additionally analyzing other microbiome outcomes of interest, such as the 

differential abundance of key bacteria. Future studies should make publicly available raw 

sequences generated from sequencing platforms to allow future meta-analyses to cover 

these gaps in the literature. Nevertheless, our meta-analysis has been performed including 

specifically those studies in healthy population and conducting sub-groups analysis 

according to study design to gain homogeneity. Moreover, we followed a rigorous and 

reliable methodology previously validated 144,145 to obtain numerical data when they were 

unavailable. Additional strengths of our systematic review are the elaboration according 

to PRISMA guidelines, use of four different search databases (PubMed, Web of Science, 

SCOPUS and Cochrane), and performance of quality assessment with validated tools 

specific for each study design, which ensure the scientific rigor. 
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5. CONCLUSIONS 

Our systematic review summarizes the available knowledge about the relationship 

between PA and SB and the microbiome from multiple body sites and across different 

human populations. So far, growing evidence points to higher abundances of SCFAs-

producing bacteria in more active individuals or after a PA intervention. Our meta-

analysis uniting 2632 participants indicated no consistent effect of PA on microbial alpha-

diversity, although there seems to be a trend toward a higher richness in athletes compared 

to non-athletes. Thus, accelerometry-based observational studies and RCTs are needed to 

face this inconsistency. Additionally, there are scarce information about the effect of SB 

on microbiome. In conclusion, precisely-designed, well-controlled and multi-omics 

studies are needed to reduce heterogeneity, obtain comparable results and, therefore, gain 

reliable knowledge about the effect of PA and SB on the human microbiome.  

 

SUPPLEMENTARY MATERIAL 
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ABSTRACT 

Introduction. The beneficial effects of physical activity (PA) on gut microbiome have 

been previously reported, nevertheless the findings are inconsistent, with main limitation 

of using subjective methods for assessing PA. It is well-accepted that using an objective 

assessment of PA will reduce the measurement error of this complex behavior and will 

allow also objective assessment of sedentary behavior (SB). We aim to study the 

associations between the accelerometer-assessed behaviors (i.e. SB, light-intensity 

physical activity -LPA- and moderate-to-vigorous physical activity -MVPA) with the gut 

microbiome using compositional data analysis, a novel approach in the field that enables 

to study these behaviors accounting for their inter-dependency. 

Methods. This cross-sectional study included 289 women from the Northern Finland 

Birth Cohort 1966. Microbiome analysis was performed on fecal samples collected at age 

46. Movement behaviors were measured during 14 days by wrist-worn accelerometers. 

Univariate analyses on a single behavior and compositional data analyses on MVPA, LPA 

and SB in association with the gut microbiome data were performed. 

Results. The microbial alpha- and beta-diversity in the gut were not significantly different 

between the higher vs. lower MVPA or SB groups, and no differentially abundant 

microorganisms were detected. Accordingly, compositional data analysis did not show 

any statistically significant associations between increasing one behavior while 

proportionally reducing the others on microbial alpha-diversity (all p-values>0.05). 

Butyrate-producing microbes such as Agathobacter and Lachnospiraceae CAG56 were 

significantly more abundant when reallocating time from LPA or SB to MVPA (γ=0.609 

and 0.113, both p-values=0.007). A sensitivity analysis on a subset of samples 

corroborated our results of the whole cohort. 
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Conclusions. While PA of different intensities and SB did not seem to have a significant 

effect on microbial diversity, we found associations of these behaviors with specific gut 

bacteria, suggesting that PA of at least moderate intensity (i.e., MVPA) could exert 

synergistic effects on short-chain fatty acids-producing microbes. 

 

1. INTRODUCTION 

Strong scientific evidence supports that regular physical activity (PA) exerts 

beneficial effects on different health conditions, such as cardiovascular, insulin resistance 

and physical fitness, among others 1,2. In 2020, the World Health Organization (WHO) 

approved the new guidelines on PA and sedentary behavior (SB) to enable people of all 

ages and conditions to maintain healthy levels of PA and mitigate diseases 3. In the last 

decades, epidemiological studies detected a decrease in the levels of PA in adolescence, 

with one-third of adults not meeting the minimum WHO recommendations 4,5. This 

emergence of physical inactivity has been defined as a “pandemic” and prevails as the 

fourth leading cause of death worldwide with 3.9–5.3 million annual premature deaths 

6,7. Therefore, implementation of PA promotion strategies is a global health priority to 

reverse this trend and reduce the health risks and economic burden associated with 

physical inactivity 8. 

PA consists of a wide range of different intensity behaviors, such as moderate-to-

vigorous PA (MVPA) and light intensity PA (LPA), both domains associated with lower 

risks of chronic diseases and all-cause mortality 9. Meanwhile, the detrimental 

consequences of SB on health are well-reported 10,11. To date, most studies independently 

investigate the associations of SB, LPA, or MVPA without considering the interplay 

between these behaviors 12. Since the hours of the day are limited to 24h or to the wake 
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up time, increase in the time spent in one behavior necessarily comes with a reduction in 

the time spent in other behaviors that day, and this closure effect and inter-dependency of 

the variables should be mathematically modelled, which has not been done in the past.  In 

this context, compositional data analysis (CoDA) emerges as a shift from a univariate to 

a 24-hour time-use paradigm that analyzes how the daily time spent in different 

codependent movement behaviors (i.e., MVPA, LA, SB) synergistically impacts our 

health (since dedicating more time in one of these behaviors means a reduction of time in 

the others) 13,14. This new analytic tool provides a more advanced approach of the time 

spent on each activity during the day and whether a single ideal combination of these 

movements actually exists in the context of a study outcome 9,15.  

Humans are host to trillions microbes, including bacteria, viruses, fungi and 

archaea, where the gut presents the most diverse microbiome (i.e., the collection of 

genomes from the microorganisms) within the human body 16. The human gut 

microbiome consists of app. 90% of bacteria belonging to Bacteroidetes and Firmicutes 

phyla, with other less predominant bacteria from Actinobacteria, Proteobacteria, 

Fusobacteria and Verrucomicrobia 17. These microbes are balanced through symbiotic 

relationships and support human life by promoting gut barrier protection, energy 

production, endocrine and immune function 18,19. Thus, gut microbiome imbalance (i.e., 

dysbiosis) can lead to a disruption in the gastrointestinal homeostasis and drive the 

development of several diseases such as obesity, type-2 diabetes, cancer, bowel diseases, 

cardiovascular, and neurological disorders, among others 20–23.  

Given the importance of the gut when it comes to maintain human health status 

and prevention of disease, the gut microbiome has been proposed as a new biomarker of 

overall health 24. More research is currently focusing on studying the factors that influence 

its composition in order to alter the microbiome deliberately for preventive or therapeutic 
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purposes 25. Particularly, there is evidence indicating that PA (little is known about SB) 

seems to be a cornerstone in promoting an optimal ecosystem for a healthy diverse gut 

microbiome, which in turn may benefit overall host health 26,27. Although numerous 

studies have investigated the association between PA and the gut microbiome, 

heterogeneous study populations and the prevalence of using self-reported PA data 

provide contrasting and inconclusive results 28. Thus, there is a need for studies on bigger 

sample size and homogenous study groups with rigorous PA data (objectively measured 

PA using accelerometry). Furthermore, the association of a movement behavior (relative 

to the others) with microbiome diversity and composition and whether there is an ideal 

combination of PA of different intensities associated with a healthy gut microbiome 

remains unexplored.  

In the present study, we aimed to determine the joint associations between the 

accelerometer-measured MVPA, LPA and SB with microbiome diversity and 

composition in a subset of women from a wide population-based birth cohort study from 

Northern Finland, using CoDA. To the best of our knowledge, this is the first study 

investigating the associations of combinations of daily time spent in PA of different 

intensities and SB using CoDA in relation to the gut microbiome.  

 

2. MATERIAL AND METHODS 

2.1. Study population 

This cross-sectional study analyzed a subset of women of the Northern Finland 

Birth Cohort 1966 (NFBC1966), a longitudinal population-based cohort study which 

includes all expected births in the year 1966 in the two northernmost provinces of Finland 
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29. During the follow-up, anthropometric measures, clinical examinations, health and 

personal information and blood and fecal samples were collected. Our study population 

consisted of a total of 304 women, where 102 women had been diagnosed with polycystic 

ovary syndrome (PCOS) and 202 were age- and BMI-matched controls with no PCOS at 

46 years of age 30. Women with hormonal contraceptive or antibiotic, antimycotic, 

letrozole or tamoxifen treatment within the last 3 months preceding sample collection 

were excluded. Since a previous study in this subset did not find any statistically 

significant differences in the gut microbiome profile of women with PCOS and controls 

30, we included the whole population in a single group, considering diagnosis as a 

covariate for statistical analyses. The study has been approved by the ethical committee 

of Northern Ostrobothnia hospital district. All participants of the NFBC1966 provided 

informed consent for the data and samples to be used for scientific purposes. 

2.2. Accelerometer assessed physical activity 

Accelerometry has been widely demonstrated to be a more valid and comparable 

method to obtain a more precise estimation of each PA and SB components, compared to 

self-reported questionnaires 31,32. Accelerometers are wearable monitors that allow to 

objectively and continuously measure the composition of the accelerations (movements) 

of the body segment in which the devices are attached during the entire day. Participants 

were asked to wear a wrist-worn accelerometer (Polar Electro Oy, Kempele, Finland) 

during 24 h/day for at least 14 days on the non-dominant hand. Polar Active is a 

waterproof activity monitor that records MET values every 30 s based on daily PA, and 

using clinical data (height, weight, age) as predefined inputs 33. Accelerometers were 

blinded during the data collection period, and participants were asked to mail it back after 

clinical examinations ended. Briefly, these devices categorize PA according to five levels: 

very light: 1–2 metabolic equivalents of task (METs), light: 2–3.5 METs, moderate: 3.5–
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5 METs, vigorous: 5–8 METs, and vigorous ≥8 METs) 34,35. For the present study, very 

LPA was considered the SB component and PA level of ≥3.5 was classified as MVPA. 

Daily duration spent in each PA category was calculated in min/day for all participants. 

The first accelerometer monitored day was not included in the analysis. Women with less 

of 4 valid days (those with a wear time of at least 600 min/day) were excluded from the 

analyses. 

2.3. Sample collection and DNA extraction 

The fecal samples were collected at home by the study participants. It was 

recommended that the fecal sample should be delivered in a cooler on the day of 

collection. When it was not possible, the sample was stored for 1-2 days in a freezer at -

20ºC until delivery. After delivery, the fecal samples were initially stored at -20ºC and 

then at -70ºC until analyses were performed. 

For microbial DNA isolation, the fecal samples were first homogenized in a 

Stomacher-400 blender. DNA was extracted using QIAamp Stool Mini Kit (Qiagen, 

Venlo, The Netherlands) according to the manufacturer’s instructions, except for the 

incubation step where samples were mixed with lysis buffer and incubated at 95ºC instead 

of 70ºC in order to ensure the lysis of both Gram-negative and Gram-positive bacteria. 

The extracted DNA was quantified using a NanoDrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific, DE, USA). DNA yield was determined by measuring the 

absorbance ratios spectrophotometrically, adjusting A260/280 nm for protein and 

A260/230 nm for salt and phenol contamination. 

2.4. 16S rRNA gene sequencing 

Gut microbiome analysis was profiled by amplifying the hypervariable V3-V4 

regions of the 16s rRNA gene using the forward 5’-CCTACGGGNGGCWGCA-3’ and 
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reverse 5’-GACTACHVGGGTATCTAATCC-3’ primers pair and sequencing on a 

MiSeq Illumina instrument. All PCR reactions were carried out in a 25 µl final reaction 

volume containing 12.5 μl 2X KAPA HiFi Hotstart ready mix (KAPA Biosystems, 

Woburn, MA, USA), 5 μL of each primer (1 μM), and 2.5 μL of extracted DNA (10 ng) 

under the following cycling conditions: initial denaturation at 95ºC for 3 min, 35 cycles 

of denaturation at 95ºC for 30 s, annealing at 55ºC for 30 s, and elongation at 72ºC for 30 

s, with a final extension step at 72ºC for 5 min. PCR clean-up was done with AMPure XP 

beads (Beckman Coulter, Indianapolis, IN, USA). Next, a PCR to index the amplicons 

was performed using the Nextera XT Index Kit (Illumina, San Diego, CA, USA) with 

conditions: 95ºC for 3 min; 8 cycles of 95ºC for 30 s, 55ºC for 30 s, 72ºC for 30 s, with a 

final extension of 5 min at 72ºC, and hold at 4ºC. The pooled PCR products were purified 

with AMPure XP beads (Beckman Coulter) before quantification. The final library was 

paired-end sequenced (2 x 300 bp) using a MiSeq Reagent Kit v.3 on the Illumina MiSeq 

sequencing platform (Illumina).  

2.5. Microbiome analysis 

Raw sequences were demultiplexed with Illumina bcl2fastq2 Conversion 

Software v2.20 and imported to Qiime2 software v.2022.11 with a 

PairedEndFastqManifestPhred33 input format. DADA2 was used for the denoising step. 

Low-quality regions were trimmed considering a quality score below 25 to create high 

quality forward and reverse reads, using the “q2-dada2” function with the following 

parameters: trunc_len_f=288, trunc_len_r v=241, trim_left_f=16, and trim_left_r=0. 

Taxonomy assignment of amplicon sequence variants (ASVs) was performed using the 

“classify-sklearn” function against the SILVA 16S v132_99 database, along with a 

similarity threshold of 99%. 
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2.6. Statistics 

Descriptive characteristics of the study participants were reported as mean and 

standard deviation (SD) or geometric mean and covariance, as appropriate. Since fiber 

intake is well-known to influence the gut microbiome 36,37, a fiber score based on the 

weekly frequency consumption of fresh/boiled vegetables, fruits and grain-contained 

products was calculated. Six women did not provide any information about the fiber 

consumption. As such, we estimated these values using multiple imputation method in 

SPSS v.28.0.1.0. Body mass index, accelerometer wear time, PCOS diagnosis and fiber 

score were considered confounders in our statistical analyses. 

All statistical analyses were performed in R (v.4.2.1) under RStudio (v.2022.07). 

Statistically significance was set to 0.05 (i.e., p-value or q-value<0.05 for analyses using 

Benjamini-Hochberg false discovery rate [FDR] for multiple correction). To compare the 

microbial profile between groups, we categorized participants into groups (higher vs. 

lower) according to time spent in MVPA and SB (min/day). CoDA captures a more real 

approach of the movement composition of the day, quantifying the effect of increasing a 

specific behavior while reducing the others on a continuous scale. Hence, we investigated 

the cross-sectional associations of increasing time spent in one single behavior (while 

proportionally reducing the others) with microbiome outcomes (i.e., Shannon diversity 

index, richness and relative abundances of bacteria >0.1%). For this purpose, one time-

use composition was defined and included SB, LPA, and MVPA. Isometric log ratios 

were calculated in sequential binary partition and included as explanatory variables as 

previously reported 38. Compositional models were adjusted by BMI, PCOS diagnosis, 

fiber score and accelerometer wear time. The strength and direction of each association 

were indicated by gamma (γ) coefficients. Prediction analyses for specific time 

reallocations were additionally performed for each behavior. 
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Microbiome diversity analyses were conducted and visualized using phyloseq, 

vegan, microviz and ggplot2 packages. Microbial taxa were aggregated to phylum and 

genus level in further analysis. Within-sample microbiome diversity (i.e., alpha-diversity) 

was estimated by Shannon diversity index and richness (i.e., number of microbial taxa), 

using the “diversity” and “specnumber” functions from the vegan package. Between-

sample microbiome dissimilarity (beta-diversity) was visualized using nonmetric 

multidimensional scaling (NMDS) ordination, based on the Bray Curtis distance. For 

alpha-diversity comparisons, linear-mixed effect models (LME) were used for 

significance testing among MVPA and SB groups with the function “aov” from the stats 

package, to include BMI, PCOS diagnosis and fiber score as potential covariates. For beta 

diversity significance testing, PERMANOVA was permuted using the “adonis2” function 

from vegan package. Differential abundance analysis was performed in those bacterial 

taxa with a relative abundance >0.1% using an Analysis of Compositions of Microbiomes 

with Bias Correction (ANCOM-BC) from the ancombc2 package. ANCOM-BC models 

the microbial absolute abundances using a linear regression framework 39, providing 

statistically significant differentially abundant taxa between MVPA and SB groups. 

Furthermore, sensitivity analyses were conducted by excluding women with PCOS to 

corroborate the previous analyses. 

 

3. RESULTS 

Of the initial study population of 303 women, a total of 289 presented valid 

objectively measured PA data. All these participants wore the devices for at least 4 days 

and provided valid accelerometer data whose mean daily wear time (SD) was 971.5 min 

(57.0). Descriptive characteristics and accelerometer data of study participants are 

summarized in Table 1.  
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Table 1. Descriptive characteristics of the study participants.   

Variables Study participants  
N=289 women 

Age, mean±SD 46±0.0 

BMI, mean±SD 27.9±5.4 

Accelerometer valid days, mean±SD 13.5±1.8 
Accelerometer wear time, mean±SD 
(min/day) 971.5±57.0 

Moderate-to-vigorous PA, mean±SD 
(min/day) 61.1±29.7 

Light PA,  mean±SD (min/day) 297.5±72.0 

Sedentary behavior,  mean±SD (min/day) 612.9±85.7 

Note: Data presented as mean±SD. Abbreviations: BMI: body mass-index, min: minutes; PA: 
physical activity 

 

3. 1. Microbiome composition across the study population 

After 16S rRNA gene sequencing, 72742 ASVs were detected, with a total of 20 

phyla and 523 genera. The most dominant phyla were Firmicutes (53.8%) and 

Bacteroidetes (32.6%), followed by other sub-dominant phyla such as Proteobacteria 

(6.7%), Actinobacteria (3.2%), and Verrucomicrobia (2.0%), representing >98% of the 

gut microbiome. At genus taxonomic level, 103 taxa were present in a relative abundance 

over 0.1%, where Bacteroides (18.4%), Alistipes (7.0%), Faecalibacterium (4.5%), 

Blautia (2.4%) and Ruminococcaceae UCG-002 (2.4%) and Roseburia (2.2%) were the 

most abundant bacteria in the gut. 

3.2. Microbiome analysis in groups of MVPA and SB 

As the first descriptive step, we compared the gut microbiome profile of women 

with different MVPA and SB levels (as independent components). Therefore, we 

stablished two study groups based on the median of each behavior (median [q1; q3] of 

MVPA: 57.6 [39.7; 73.5]; SB: 616.8 [561.0; 673.3]). Women in the higher MVPA group 
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presented a lower BMI compared to the other group (25.6 [5.6] vs. 27.2 [7], p=0.018). 

The frequency of PCOS diagnosis and fiber score was similar in the higher vs. lower 

groups of MVPA and SB (all p-values>0.05). 

Figure 1. Microbial diversity measures in MVPA (A, B, C) and SB groups (D, E, F). Panels A, 
B, D and E represent alpha-diversity analysis (i.e. Shannon diversity index and richness). Higher 
(N=145) and lower (N=144) study groups were stablished based on the median of each behavior 
(MVPA: 57.6 min/day; SB: 616.8 min/day). Groups comparisons indicate no significant 
differences between higher and lower groups (Linear-mixed effects: all p-values>0.05). Panels C 
and F represent beta-diversity analysis: Principal coordinate analysis of Bray-Curtis distances. 
There is no significant dissimilarity between higher and lower groups (Adonis PERMANOVA: 
MVPA: R2=0.003, p=0.765; SB: R2=0.004, p=0.330). Abbreviations: MVPA: moderate-to-
vigorous physical activity; SB: sedentary behavior 

 
Alpha-diversity evaluated by Shannon diversity index and richness indicated no 

significant differences between the MVPA or SB groups (Figure 1A, B, D and E, 
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Shannon: MVPA groups: p=0.245; SB groups: p=0.316. Richness: MVPA groups: 

p=0.845; SB groups: p=0.498. All models included BMI, PCOS diagnosis and fiber score 

as potential confounders). Beta-diversity analysis based on Bray Curtis distances did not 

detect any significant dissimilarity between the microbial populations of each group 

(Figure 1C and F, PERMANOVA test accounting for covariates, MVPA: R2=0.003, 

p=0.765; SB: R2=0.004, p=0.330). 

Next, we performed a differential abundance analysis using ANCOM-BC to 

detect specific taxa that could be differentially abundant in the gut microbiome of higher 

relative to lower MVPA and SB groups. Intestinimonas, Rikenellaceae RC9 gut group 

and a member of Ruminococcaceae family were slightly more abundant in the higher 

MVPA group compared to the lower group. Dorea was increased in the higher SB group, 

while Bifidobacterium, Sutterella and Collinsella were less abundant compared to the 

lower SB group. However, these bacteria did not remain statistically significantly 

different after FDR correction (all p-values>0.05, Supplementary Tables S2 and S3). 

3.3. Compositional data analysis 

Movement composition behavior of the women included in this study was 

visualized in a ternary plot illustrated in Figure 2. The geometric mean for each behavior 

was 54 min/day of MVPA, 289 min/day of LPA and 608 min/day of SB. Multiple 

regression models over compositional data were conducted to investigate the effect of 

increasing MVPA, LPA or SB while decreasing the rest of behaviors on multiple 

microbiome outcomes, adjusting for BMI, PCOS diagnosis, fiber score and the total 

amount of accelerometer wear time.  
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Figure 2. Ternary plot for the daily time-use in the movement behaviors in the study participants. 
The crosshair marks represent the geometric mean of the behaviors (i.e., MVPA: 54 min/day, 
LPA: 289 min/day, SB: 608 min/day). Concentric rings represent the 25, 50 and 75% confidence 
regions. MVPA: moderate-to-vigorous physical activity, LPA: light physical activity, SB: 
sedentary behavior 

  
Figure 3 represents the curves relative to increasing one behavior while 

proportionally reducing others on microbial diversity. MVPA, LPA or SB (relative to the 

remaining behaviors) were not associated with any alpha-diversity metric (all p-

values>0.05). Next, we investigated the associations between compositional data and the 

relative abundance of bacteria present in a relative abundance >0.1% (Figure 4). At 

phylum level, increasing time spent in LPA while reducing proportionally the other 

behaviors was negatively associated with Tenericutes (γ=-0.844, p=0.035). For example, 

increasing 30 min per day of LPA was associated with a 0.09% decrease in its relative 

abundance (expected change [CI]: -0.089 [-0.195; 0.017]). 
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Figure 3. Joint associations of the movement behavior (i.e., MVPA, LPA and SB) composition 
with alpha-diversity metrics, i.e., Shannon diversity index and richness, both p>0.05. The models 
are adjusted by BMI, PCOS diagnosis, accelerometer wear time and fiber score consumption. 
Each line represents time in a behavior while proportionally reducing the others. Shaded areas 
represent the 95% confidence intervals. 

 
At genus level, 10 bacteria showed significant associations with accelerometer-

assessed behaviors. Reallocating time from LPA or SB to MVPA was positively 

associated with the relative abundance of Agathobacter (γ=0.609, p=0.007), 

Lachnospiraceae CAG56 (γ=0.113, p=0.007) and an unidentified bacterium from 

Muribaculaceae family (γ=0.473, p=0.015). For example, increasing 30 min per day of 

MVPA was associated with a 0.2% (expected change [CI]: 0.164 [0.048; 0.280]), 0.03% 

(expected change [CI]: 0.030 [0.009; 0.052]), and 0.1% (expected change [CI]: 0.127 

[0.027; 0.227]) higher relative abundance of Agathobacter, Lachnospiraceae CAG56 and 

Muribaculaceae’s bacterium, respectively. However, increasing time in MVPA was 

negatively associated with Asteroleplasma (γ=-1.329, p=0.041). Reallocating 30 min per 

day to MVPA at expenses of the other behaviors was associated with a 0.4% decrease in 

the relative abundance of this genus (expected change [CI]: -0.379 [-0.713; -0.045]). 

Next, increasing time in LPA while proportionally reducing the other behaviors 

was positively associated with Asteroleplasma (γ=3.387, p=0.001), while negatively 
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associated with Agathobacter (γ=-0.892, p=0.014), Lachnospiraceae CAG56 (γ=-0.157, 

p=0.020), the bacterium from Muribaculaceae family (γ=-0.662, p=0.035), Eubacterium 

xylanophilum (γ=-0.409, p=0.009) and two members belonged to the Clostridiales vadin 

BB60 group (γ=-0.546, p=0.026 and γ=-0.565, p=0.020). For example, an increment of 

30 min per day in LPA was associated with a 0.4% increase in Asteroleplasma (expected 

change [CI]: 0.407 [0.132; 0.683]), and lower decreases in the relative abundance of 

Agathobacter (expected change [CI]: -0.142 [-0.238;-0.046]), Lachnospiraceae CAG56 

(expected change [CI]: -0.026 [-0.044; -0.008]), Muribaculaceae (expected change [CI]: 

-0.108 [-0.191; -0.026]), Eubacterium xylanophilum (expected change [CI]: -0.052 [-

0.093; -0.011]), and Clostridiales vadin BB60 group’s bacteria (expected changes [CI]: -

0.071 [-0.136; -0.007] and -0.058 [-0.123;0.006]). 

Finally, increasing time in SB was significantly associated with higher 

abundances of two bacteria from Clostridiales vadin BB60 group (γ=0.415, p=0.037) and 

Izimaplasmatales order (γ=0.636, p=0.028), while demonstrating an inverse association 

with Asteroleplasma (γ=-2.058, p=0.016), Eubacterum ventriosum (γ=-0.134, p=0.033) 

and Intestinibacter (γ=-0.151, p=0.040). Prediction analysis from reallocating 30 min per 

day from LPA or MVPA to SB reported slightly higher abundances of Clostridiales vadin 

BB60 group (0.004 [-0.038; 0.047]) and Izimaplasmatales (0.031 [-0.030; 0.094]), while 

0.05% and 0.01% decreases in Asteroleplasma (0.047 [-0.135; 0.229]), Eubacterum 

ventriosum (-0.014 [-0.027; -0.001]) and Intestinibacter (-0.014 [-0.030; 0.002]). 
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Figure 4. Joint associations of the movement behavior (i.e., MVPA, LPA and SB) composition 
with bacteria with a relative abundance >0.01%. Only statistically significant models (p<0.05) 
are shown. The models are adjusted by BMI, PCOS diagnosis, accelerometer wear time and fiber 
score consumption. Each line represents time in a behavior while proportionally reducing the 
others. Shaded areas represent the 95% confidence intervals. 

 

 

 

 

 

 



99 
 

3.4. Sensitivity analysis 

A sensitivity analysis excluding those women who have been diagnosed with 

PCOS was performed to corroborate the obtained results. A total of 190 control women 

had valid accelerometry data and were included. The results are in line with those of the 

whole sample analyses, with no statistically differences detected in the microbial alpha- 

(Shannon: MVPA groups: p=0.430; SB groups: p=0.591; Richness: MVPA groups: 

p=0.640; SB groups: p=0.923) and beta-diversities (PERMANOVA test, MVPA: 

R2=0.005, p=0.605; SB: R2=0.006; p=0.265), after adjustment by BMI and fiber score 

(Supplementary Figure S1). Additionally, we did not detect any significantly different 

abundant taxon after correcting by multiple comparisons (Supplementary Tables S4 and 

S5). 

Concerning sensitivity analyses on compositional data, the previous findings were 

confirmed with no significant associations between accelerometer assessed time of 

MVPA, LPA or SB and alpha-diversity metrics (p-values>0.05, Supplementary Figure 

S3). Results from analyzing the association of movement behaviors with relative 

abundances of specific bacteria although, in agreement, were attenuated. Specifically, 

Agathobacter, E. ventriosum, E. xylanophylum, Intestinibacter, Lachnospiraceae CAG56 

and the unidentified member of Izimaplasmatales order showed similar expected-change 

curves compared to the main analysis, but the associations did not reach the statistical 

significance. Additionally, increasing SB time (while reducing the other behaviors) was 

significantly associated with higher abundance of Bifidobacterium (Supplementary 

Figure S4). 
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4. DISCUSSION 

To our knowledge, this is the first study investigating the joint associations of 

MVPA, LPA or SB (relative to the others behaviors) with the gut microbiome outcomes. 

CoDA represents a more real approach of the time spent in each behavior during the entire 

day, since increasing time in one activity means commensurately reducing time in other 

behaviors. Our findings support that PA of different intensities and SB, although they did 

not seem to affect the general microbial diversity, have an impact on the abundance of 

specific gut microbes. 

In our first analysis, we characterized and compared the gut microbiome of 

women with different MVPA and SB levels. A greater alpha-diversity has been related to 

an overall gut stability and health, while a low diversity has been linked to several 

diseases such as obesity, diabetes, bowel diseases or colon cancer, among others 40. We 

did not detect any significant association of MVPA and SB with the gut microbiome 

diversity in the middle-aged women. Also, a previous study failed to find any significant 

differences in the alpha- or beta-diversities when compared the gut microbiome profile 

of 40 active and sedentary women categorized according to WHO recommendations (i.e., 

active were those who performed at least 3 hours of PA per week, while sedentary were 

those who did not practice at least 3 days of PA per week for 30 minutes at a moderate 

intensity) 41. While, they found significant correlations between the accelerometer 

assessed sedentary parameters (i.e., sedentary time and breaks) and alpha-diversity 

metrics (Shannon diversity and Simpson indexes) 41. Similarly, numerous studies did not 

find any associations between the alpha-diversity and PA levels of individuals of different 

gender, age and health conditions 41–50, while other studies described an increased gut 

microbiome diversity among participants with higher PA levels 39,51–55.  
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It is noteworthy to mention that most of the current cross-sectional studies have 

used self-reported PA data. Self-reported questionnaires generally rely on subjective 

information, lack of detail when assessing behaviors (since they do not usually 

differentiate PA of different intensities, e.g., LPA and MVPA), and do not allow to 

perform analyses on a continuous scale. These studies are forced to analyze groups of 

different PA levels, while there is no consensus about which standard and valid criteria 

to use for categorizing participants into one or the other group. As a consequence, 

researchers face challenges to make right decisions of determining the appropriate criteria 

for specific populations which turns difficult to obtain conclusive results. Contrastingly, 

few studies have analyzed the association between the accelerometer assessed-PA and 

the gut microbiome 45,56,57. Carter et al. recorded PA patterns over a 10-day period by a 

hip-worn triaxial accelerometer in 37 breast cancer survivors 56. They quantified MVPA 

(min/day) to perform multiple regression analysis and examined the associations between 

MVPA and alpha-diversity. Their results showed that cardiorespiratory fitness (a genetic 

component modifiable by PA), while not MVPA, correlated positively with gut 

microbiome diversity 56. These results are in accordance to those obtained by Zhong et 

al., where they analyzed whether different accelerometer movement behaviors (i.e., SB, 

LPA and MVPA) were associated with microbiome outcomes in 100 older female and 

male participants. Multiple regression analysis did not detect any relationship between 

physical behaviors and alpha-diversity, however, associations were identified for MVPA 

and beta-diversity and the relative abundance of specific gut microbes 57. In our study, 

where we analyzed 304 women at the same age and considered BMI matching together 

with fiber score and accelerometer wear time as confounders, no gut microbial diversity 

indices associated with PA and SB. 
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In our cohort, we integrated SB, LPA and MVPA as intrinsically codependent 

behaviors by using CoDA. Traditionally, researchers have analyzed movement behaviors 

as isolated components which leads to an unreal approach of the time distribution during 

a 24-hour day 58. To our knowledge, this is the first CoDA study investigating the inter-

relationships between physical behaviors and the gut microbiome. We did not find 

enough evidence of a significant association of MVPA, LPA or SB with any alpha-

diversity metrics (Shannon diversity index and richness), which is in line with previous 

studies. It has been argued whether the type, dose and duration of PA is determining to 

produce considerable influence on the gut microbiome 59. Therefore, there is a need for 

clarifying how much and what type of PA would be sufficient to increase microbial 

diversity in the gut 41,60. Specially, several studies including participants from sports 

which demand high intensity level of exercise and usually require considerable fitness 

and dietary requirements, generally report a more diverse gut microbiome changes in 

athletes compared to non-athletes 61–64. In this context, a recent meta-analysis of the 

metagenomics sequencing data of 207 fecal samples aimed to compare the gut 

microbiome between athletes and individuals with reduced PA, where athletes showed 

significantly more diverse microbiome compared to non-athletes 60.  

Our differential abundance analysis detected statically significant bacteria 

associated with MVPA, LPA and SB. Particularly, Agathobacter and Lachnospiraceae 

CAG56 (both belong to Lachnospiraceae family) were positively associated with MVPA 

(relative to the other behaviors). Since there is a discrepancy in the taxonomic annotation 

of Agathobacter, Roseburia and Eubacterium rectale, the Agathobacter levels in our 

study may correspond to the Roseburia or E. rectale levels in others 65,66. 

Lachnospiraceae family members are among the main producers of short-chain fatty 

acids (SCFAs), particularly acetate and butyrate, in the gut 67. SCFAs are metabolic 
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products originated from dietary non-digestible carbohydrates and have been linked to 

human physiology, being substrates for energy metabolism and important signaling 

molecules implicated in the gut-microbiome axis, the regulation of the immune response 

and the skeletal muscle lipid metabolism 68–70. In fact, a decrease in the relative abundance 

of Lachnospiraceae has negative health consequences due to the loss of relevant 

beneficial functions performed by members of this family 67, such as colonization 

resistance or butyrate-conducted pleiotropic beneficial effects for the host metabolism 

and immune regulation 71,72. In line with our study results, numerous human observational 

43,51,52,54,57 and experimental 73–79 studies have associated higher abundances of SCFAs-

producing gut bacteria from Lachnospiraceae family, such as Roseburia, Coprococcus, 

Lachnospira and Blautia, among others, with higher PA levels or PA interventions 

ranging from 2 to 34 weeks. For example, Whisner et al. pointed to Lachnospiraceae and 

Lachnospira as important microbial markers for college students with greater MVPA 43. 

Similarly, Zhong et al. reported four unclassified bacteria from Lachnospiraceae family 

to be positively associated with accelerometer-assessed MVPA in older adults 57. 

Asteroleplasma was the only microbe associated with the three PA components, 

being positively associated with LPA while negatively with MVPA and SB. Several 

studies have been linked Asteroleplasma to chronic conditions, such as type-2 diabetes 

and tumor metastasis 80,81, although its biological role on human physiology has not been 

elucidated. Neither are the functional roles of Clostridiales vadin BB60 group and 

Izimaplasmatales in human health well-known, which we found to increase when 

reallocating time from MVPA or LPA to SB. Interestingly, the butyrate-producers 

Eubacterium ventriosum and Eubacterium xylanophilum showed a negative association 

with SB and LPA, respectively. E. ventriosum has been described to be important for the 

gut health and proposed as a biomarker of low risk of colorectal cancer 82,83. 
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Limitations and strengths 

The impact of PA on the gut microbiome independently from host and lifestyle 

factors such as gender, age or diet, among others, is still unclear since the current 

knowledge rely on heterogeneous studies 28. The performed studies are hardly comparable 

due to disparity of the participants (i.e., age, gender, health status), wide use of self-

reported PA questionnaires, lack of standardized criteria to define which PA level 

categorizes the study population as sufficiently active and relevant covariates missing, 

especially diet. Thus, studies on bigger sample size, with rigorous PA measurements 

(objectively obtained by accelerometry) and dietary well-controlled studies are warranted 

to study the real influence of PA on the gut microbial ecosystem. The strength of this 

study include a homogenous female population of representative sample size. A major 

strength is the use of accelerometers which enable to objectively register PA of different 

intensities and SB. Notably, PA behaviors were codependently analyzed (on a continuous 

scale) using CoDA by considering different time reallocations. CoDA mirrors more 

precisely “real life” of study participants, in contrast with the traditional univariate 

approach that analyzes movement behaviors as independent domains. 

A limitation in our CoDA was that we did not have available information on sleep 

time and, therefore, it was not included in the analyses. Therefore, we were not able to 

analyze the entire 24-h day, but just the waking hours of the day. While accelerometry is 

the best and most reliable measuring method, wrist-worn accelerometers have several 

limitations. For example, they do not capture all types of PA precisely, with an 

overestimation of upper-body movements while underestimating others activities such as 

cycling 35. Regarding microbiome analysis, fecal samples were analyzed by marker gene 

sequencing. This approach is a DNA-based method that identifies the microbes present 

in an environment through the analysis of a sequence variation (i.e., hypervariable region) 
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of a single ubiquitous gene (e.g. 16S rRNA gene). While the whole genome or RNA 

sequencing have several advantages: 1) They provide a much greater specific 

identification of the taxa at the species level, compared to marker gene analysis in which 

classification is normally limited to the genus level; 2) they are able to detect viral and 

eukaryotic genetic material, while 16S rRNA gene sequencing only identifies bacteria 

and archaea; 3) they provide information about the functional capability of the identified 

microorganisms. Hence, more research on metagenomics and meta-transcriptomics is 

needed to completely understand the molecular mechanisms underlying the relationship 

between PA, SB and the gut microbiome. 

 

5. CONCLUSIONS 

Our findings using CoDA do not support a significant association of PA on the 

gut microbial diversity. On the other hand, our data indicate that more time in MVPA 

(relative to LPA and SB) was associated with increase in the relative abundance of 

beneficial SCFAs-producing microbes. More studies on compositional data including 

sleep time are warranted to precisely analyze the entire 24-hour day and confirm our 

results. 

 

SUPPLEMENTARY MATERIAL 

Supplementary material can be downloaded in this link:  

https://osf.io/bepqc/  
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ABSTRACT 

Introduction. The female reproductive tract harbors unique microbial communities 

(known as microbiota) which have been associated with reproductive functions in health 

and disease. While endometrial microbiome studies have shown that the uterus possesses 

higher bacterial diversity and richness compared to the vagina, the knowledge regarding 

the composition of the Fallopian tubes (FT) is lacking, especially in fertile women without 

any underlying conditions.  

Methods. To address this gap, our study included 19 patients who underwent abdominal 

hysterectomy for benign uterine pathology, and 5 women who underwent tubal ligation 

as a permanent contraceptive method at Hospital Clínico Universitario Virgen de la 

Arrixaca de Murcia (HCUVA). We analyzed the microbiome of samples collected from 

the FT and endometrium using 16S rRNA gene sequencing.  

Results. Our findings revealed distinct microbiome profiles in the endometrial and FT 

samples, indicating that the upper reproductive tract harbors an endogenous microbiome. 

However, these two sites also shared some similarities, with 69% of the detected taxa 

being common to both. Interestingly, we identified seventeen bacterial taxa exclusively 

present in the FT samples, including the genera Enhydrobacter, Granulicatella, 

Haemophilus, Rhizobium, Alistipes, and Paracoccus, among others. On the other hand, 

10 bacterial taxa were only found in the endometrium, including the genera Klebsiella, 

Olsenella, Oscillibacter and Veillonella (FDR <0.05). Furthermore, our study highlighted 

the influence of the endometrial collection method on the findings. Samples obtained 

transcervically showed a dominance of the genus Lactobacillus, which may indicate 

potential vaginal contamination. In contrast, uterine samples obtained through 

hysterescopy revealed higher abundance of the genera Acinetobacter, Arthrobacter, 
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Coprococcus, Methylobacterium, Prevotella, Roseburia, Staphylococcus, and 

Streptococcus.  

Discussion. Although the upper reproductive tract appears to have a low microbial 

biomass, our results suggest that the endometrial and FT microbiome is unique to each 

individual. In fact, samples obtained from the same individual showed more microbial 

similarity between the endometrium and FT compared to samples from different women. 

Understanding the composition of the female upper reproductive microbiome provides 

valuable insights into the natural microenvironment where processes such as oocyte 

fertilization, embryo development and implantation occur. This knowledge can improve 

in vitro fertilization and embryo culture conditions for the treatment of infertility. 

 

1. INTRODUCTION 

As our understanding of the human microbiota continues to expand, it becomes 

increasingly evident that it is ubiquitous and exerts significant influence on human 

physiology and pathophysiology 1–3. Within the female reproductive tract, a growing 

body of evidence is associating microbial composition to reproductive functions in both 

healthy and diseased states 4–7.  

While numerous studies corroborate the important role of microbial communities 

in the female lower reproductive tract (vagina and cervix) in the defense against 

pathogens, the upper reproductive tract (endometrium, Fallopian tubes -FT, ovaries) was 

traditionally considered a sterile environment, with the cervix acting as a barrier against 

bacterial passage 8. However, with the advent of microbiome studies focusing on the 

human upper reproductive tract and analysis of microbial genomes, it is now evident that 
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this region possesses its own distinct microbial communities 7,9,10. Recent studies have 

consistently shown that the endometrium harbors greater bacterial diversity and richness 

compared to the lower reproductive tract. These microbial communities are mainly 

composed of bacteria belonging to the phyla Firmicutes, Bacteroidetes and 

Proteobacteria. The dominance of Lactobacillus in the uterus has been associated with a 

higher probability of live births, while the presence of Gardnerella or Streptococcus has 

been linked to early pregnancy loss or implantation failure in IVF treatment 1,11. However, 

due to differences in study design and the absence of proper negative and positive 

controls, there is a lack of consensus among studies examining the upper reproductive 

tract microbiota 9,12.  

The microbial composition of the FT is less studied, primarily due to challenges 

associated with sample collection which may affect future fertility. The characterization 

of the endogenous microbiome of the FT is of particular interest because this 

microenvironment provides a stable temperature, optimal pH and dynamic fluid 

secretions that support oocyte fertilization and the early stages of embryo development 

13–15. The limited studies analyzing samples from women with benign diseases or for 

prophylactic purposes suggest that the FT does indeed harbor an endogenous microbiome. 

Predominant bacterial taxa identified in these studies include Firmicutes (especially 

Staphylococcus spp., Enterococcus spp., and Lactobacillus spp.), Pseudomonas spp. 

Burkholderia spp., Propionibacterium spp. and Prevotella spp. 15–18. However, there is 

ongoing debate regarding whether the FT truly harbors an endogenous microbiome and 

to what extent it impacts oocyte fertilisation and the initial stages of embryo development. 

Given the anatomical connection between the uterus and the FT, with the intramural 

portion of the uterine tube preventing a complete physical separation between the two 
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sites, it is reasonable to hypothesize that the microbiome of the FT may be similar to that 

of the uterus 19–21. Therefore, comparative studies analyzing uterine and FT samples 

collected simultaneously from the same donor are necessary to evaluate whether the 

organs comprising the female upper reproductive tract possess specific endogenous 

microbial profiles. In the current study, we aimed to analyze the 16S rRNA gene V2-4 

and V6-9 regions of endometrial and FT samples obtained from fertile women, with the 

objective of identifying the microbiome of the female upper reproductive tract in disease-

free individuals.  

 

2. MATERIAL AND METHODS 

2.1. Study population 

This prospective study was conducted at the Service of Obstetrics and 

Gynaecology of the HCUVA in Murcia, Spain. Patients who underwent a planned 

laparoscopic hysterectomy with bilateral salpingo-oophorectomy or laparoscopic tubal 

ligation from January 2016 until June 2018 were recruited to participate in the study. 

Inclusion criteria were as follows: Caucasian women who had not received hormonal 

treatment for three months prior to surgery, regular menstrual cycles, and no history of 

fertility problems, endometriosis or other adnexal pathology detected by transvaginal 

ultrasound analysis and confirmed through histological examination. Nineteen 

participants underwent total laparoscopic hysterectomy with bilateral salpingo-

oophorectomy to remove the uterus, cervix, ovaries, and FT due to the presence of uterine 

fibroids and associated abnormal bleeding (see Figure 1 for the study design). 

Additionally, five participants underwent tubal ligation to remove the FTs as a permanent 
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contraception/sterilization measure. This study was approved by the Ethics Research 

Committee (CEIC) of HCUVA, Murcia, Spain (Approval No. EST: 04/16) and all 

participants provided written informed consent. Patient data and samples included in this 

study were registered, stored, and processed by the Biobanco en Red de la Región de 

Murcia, BIOBANC-MUR (registered on the Registro Nacional de Biobancos – ISCIII, 

no. B.0000859). 

Figure 1. Study design. In total 24 women participated in the study and 34 samples from the 
upper reproductive tract were retrieved. In the hysterectomy cohort (H), seven women provided 
both endometrial and Fallopian tube (FT) samples, and in the tubal ligation cohort (TL), three 
women provided both samples. The rest of the participants provided only one of the samples due 
to the tissue damage during laparoscopic procedure, non-sterile condition, or blood 
contamination.  
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2.2. Collection of FT and endometrial samples 

The collection method for the FT samples was standardized for all patients who 

underwent laparoscopic hysterectomy with bilateral salpingo-oophorectomy or 

laparoscopic tubal ligation. After the laparoscopic procedure, FTs were removed and 

transferred to ice-cold Petri dishes. Once dissected, FTs were clamped at both opposite 

ends to avoid sample waste. Manual mechanical pressure was applied between the 

extremities, the FT content that accumulated at the upper portion of the ampulla was 

aspirated through a sterile Mucat device (CDD Laboratorie, France). This class I medical 

device, complying with Directive 93/42/EEC, indicated for direct exocervical or 

endocervical aspiration and Hühner test, was adapted to be easily introduced into the 

tubes. Once introduced, aspiration of the content was performed with the integrated 

plunger, which slides up and down when pushed by a flexible acetal resin shaft, without 

a syringe. The content was immediately aliquoted in 1,5 ml Eppendorf Safe-Lock® 

Tubes, frozen in liquid nitrogen until further analysis. 

For the endometrial samples, the collection method varied depending on the type 

of surgery. During hysterectomy, when the entire upper reproductive tract was removed, 

direct access to the uterus was achieved using a sterile Mucat device (CDD Laboratorie, 

France). The device was carefully maneuvered to avoid sampling uterine fibroid tissue 

(clearly identified visually), as well as potential microbial contamination from the vagina 

or the cervix. In contrast, for patients undergoing tubal ligation without uterus removal, a 

speculum was inserted to gently separate the vagina, allowing visualization of the cervix. 

The cervix was cleaned with sterile saline solution and then the sterile Mucat device 

(CDD Laboratorie, France) was inserted into the cervix to reach the interior of the uterus. 

The aspiration of the uterine content was performed with the integrated plunger as 
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previously described 22. The collected content was stored in 1,5ml Eppendorf Safe-Lock® 

Tubes, and frozen in liquid nitrogen until further analysis.  

2.3. DNA extraction, amplification, library preparation, and sequencing 

DNA extraction from the stored samples was performed using the Maxwell® RSC 

PureFood GMO and Authentication Kit and Maxwell® RSC Equipment (Promega, 

USA). A NanoDrop spectrophotometer was used to determine the DNA yield (A260) and 

purity (A260/A280 ratio) (Supplementary Table S1). 

Bacterial identification was performed by Genomics Unit from Institute for 

Biomedical Research of Murcia IMIB-Arrixaca. The multiplex PCR using Ion Torrent 

16S Metagenomics kit (Thermo Fisher Scientific Inc., USA) was used to amplify the 16S 

rRNA gene. Two sets of primers to target the regions V2, V4, V8, and V3, V6-7, V9 

(Supplementary Table S2). Amplification was performed in a SimpliAmp thermal 

cycler (Applied Biosystems, USA) following the program: denaturation at 95°C for 10 

min, followed by a cyclic 3-step stage consisting of 25 cycles of denaturation at 95°C for 

30 s, annealing at 58°C for 30 s, and extension at 72°C for 20 s; at the end of this stage, 

the program concluded with an additional extension period at 72°C for 7 min and the 

reaction was stopped by cooling at 4°C. The resulting amplicons were tested by 

electrophoresis using 2% agarose gel in tris-acetate-EDTA (TAE) buffer, purified with 

AMPure® XP Beads (Beckman Coulter Inc., USA), and quantified using QubitTM 

dsDNA HS Assay Kit in a Qubit 3 fluorometer (Invitrogen, Thermo Fisher Scientific Inc., 

USA). Afterwards, the Ion Plus Fragment Library Kit (Thermo Fisher Scientific Inc., 

USA) was used to generate a library from each sample. Each library was indexed by 

ligating Ion Xpress ™ Barcode Adapters (Thermo Fisher Scientific Inc. USA) to the 

amplicons. Libraries were purified with AMPure® XP Beads and quantified using the 
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Ion Universal Library Quantitation Kit (Thermo Fisher Scientific Inc., USA) in a 

QuantStudio 5 Real-Time PCR Instrument (Applied Biosystems, USA).  

Next, the libraries were pooled and clonally amplified onto Ion Sphere Particles 

(ISPs) by emulsion PCR in an Ion OneTouch™ 2 System (Thermo Fisher Scientific Inc., 

USA) according to the manufacturer´s instructions. Sequencing of the amplicon libraries 

was carried out on an Ion 530™ Kit (Thermo Fisher Scientific Inc. USA) on an Ion S5™ 

System (Thermo Fisher Scientific Inc., USA).  

2.4. Data processing 

After sequencing, the individual sequence reads were filtered by the Torrent Suite 

™ Software v5.12.1 to remove the low quality and polyclonal sequences. The quality 

filtered data were analyzed using Ion Reporter™ Software version v5.16. Clustering into 

operational taxonomic units (OTUs) and taxonomic assignment were performed based on 

the Basic Local Alignment Search Tool (BLAST) using two reference libraries, 

MicroSEQ® 16S Reference Library v2013.1 and the Greengenes v13.5 database (Life 

Technologies Corporation, USA). For an OTU to be accepted as valid, at least ten reads 

with an alignment coverage ≥90% between the hit and query were required. 

Identifications were accepted at the genus level with sequence identity >97%.  

Given that characterization of the low microbial biomass site like the upper 

reproductive tract requires meticulous contamination control, in-silico decontamination 

approach using Decontam v.1.6.0 23,24 was applied to discern between the true bacterial 

sequences and potential contaminants. To use this method, a table of the relative 

abundances of OTUs (columns) in each sample (rows) was created from the raw data. 

Next, we included DNA concentration of each sample in the model (from 

Supplementary Table S1). The Decontam score threshold was set to 0.1 as a default 
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setting to define contaminating phylotypes 23. The relative abundance of the considered 

contaminant phylotypes was set to zero as described previously 24. Furthermore, for 

diversity and abundance analyses we additionally filtered out those taxa that were 

detected in less than 30% of the remaining samples, as previously described 25.  

2.5. Statistical analyses 

Statistical analyses were performed using the R statistical software v.4.2.1 under 

RStudio v.2022.07.2 and SPSS software 20.0 (SPSS, USA). Microbiome data were 

aggregated to genus level for diversity and abundance comparisons. All relative 

abundances were expressed as median and first and third quartiles (q1, q3). Normal 

distribution of the variables was tested by using the Shapiro-Wilk test. Relative 

abundances of identified genera did not meet normality and were analyzed using the 

nonparametric Mann-Whitney U test. Furthermore, the Analysis of Compositions of 

Microbiomes with Bias Correction (ANCOM-BC) was performed to validate our results. 

Benjamini-Hochberg method (false discovery rate [FDR]) was used to obtain adjusted p-

values in multiple comparisons. Differences were considered statistically significant 

between groups when p<0.05. Alpha-diversity indices (Shannon diversity index and 

OTUs number [i.e., richness]) were calculated using the diversity function of the vegan 

R package, both in FT and endometrial samples. Differences among the groups of 

samples' diversity indices were tested using Mann-Whitney U test. Additionally, alpha-

diversity was compared between women with both types of samples using a Wilcoxon 

signed-rank test for paired data. Bray-Curtis dissimilarity was calculated using vegdist R 

function and Permutational Analysis of Variance (PERMANOVA) was performed to 

analyze beta-diversity using adonis R function. 
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3. RESULTS 

3.1. Samples  

A total of 34 samples were collected from 24 enrolled patients. The patients’ 

characteristics are presented in Table 1 and Supplementary Table S3. As indicated in 

Figure 1, from the group that underwent laparoscopic tubal ligation, four FT samples and 

four transcervical endometrial samples were collected. In the hysterectomy group, which 

involved the extraction of the upper reproductive tract, 12 FT samples and 14 endometrial 

samples were obtained from the uterus, avoiding uterine fibroid tissue. It was not always 

possible to collect both types of samples from each patient because some anatomical 

pieces were damaged after being removed by laparoscopic techniques, and due to the 

impossibility of collecting some samples with the required sterile conditions and without 

blood contamination. Both FT and endometrial samples were successfully collected from 

seven out of 19 patients of the hysterectomy cohort, while three out of the five patients in 

the tubal ligation cohort provided both samples (Figure 1). 

Table 1. Demographic characteristics (age, body mass index -BMI and parity) of the study 
population and collected samples from two groups of patients: patients who underwent a total 
laparoscopic hysterectomy with bilateral salpingo-oophorectomy and patients who submitted to 
a laparoscopic tubal ligation.  

Study Population Groups Hysterectomy 
N=19 

Tubal ligation 
N=5 

Age (years) 45±3 37±4 
BMI 28,5±4,7 28,3±4 

Parity 1,8±0,9 2,2±0,5 
Fallopian tube samples 12 4 
Endometrial samples 14 4 
Both tissue samples 7 3 

 

3.2. Data processing 

A total of 245 and 252 bacterial genera were identified in the endometrial and FT 

samples, respectively. The average number of reads per FT sample was 
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25241,44±10845,46 (mean±SD). For the endometrial samples, the average number of 

reads per sample was 30845±18702,56 (mean±SD). Applying the decontamination 

method using Decontam, two genera, Aerococcus in FT samples and Acidovorax in the 

endometrial samples, were identified as contaminant phylotypes and removed from the 

analysis. Furthermore, to ensure the identification of the “core” microbiome of both sites, 

an additional filtering step was applied, eliminating bacterial taxa present in less than 30% 

of the participants, as previously described 25. As a result, a total of 77 bacterial genera 

were identified in the FT samples (Supplementary Table S4), and 70 bacterial genera 

were identified in the endometrial samples (Supplementary Table S5). 

3.3. Microbial profiles of FT samples 

The microbial composition at the genus level in FT samples exhibited variability 

across different samples (Figure 2, Supplementary Figure S1 at family taxonomic 

level). The most abundant genera among all samples were Lactobacillus (relative 

abundance=14.3 [3.48;24.4]), Prevotella (relative abundance=9.29 [0.31;12.7]), 

Acinetobacter (relative abundance=3.20 [1.36;11.7]), Propionibacterium (relative 

abundance=3.09 [2.45;5.86]) and Faecalibacterium (relative abundance=3.09 

[0.68;4.97]) (Supplementary Table S4).  
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Figure 2. The most abundant genera detected in the Fallopian tubes (FT) samples from patients 
underwent a total laparoscopic hysterectomy with bilateral salpingo-oophorectomy (patients 1, 2, 
3, 5, 9, 10, 11, 12, 13, 15, 16 and 17) or laparoscopic tubal ligation (patients 20, 21, 23 and 24). 
Percent-stacked barchart of those genera whose mean relative abundances were higher than 1% 
are represented. 

 

Since the fertile women undergoing tubal ligation had no associated pathology, 

while women undergoing hysterectomy were diagnosed with benign uterine fibroids, a 

comparative microbiome analysis was performed to investigate any potential influence 

of uterine fibroids on the microbial microenvironment in the tubes. No significant 

differences were revealed in microbial diversity, or in the differential abundance analysis 

between the two groups (Supplementary Table S6). 

3.4. Microbial profiles of endometrial samples 

The microbiome composition revealed heterogeneity among the endometrial 

samples. The genus Lactobacillus showed the highest average abundance (relative 

abundance=23.0 [6.89;49.8]), followed by Prevotella (relative abundance=4.13 
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[0.85;13.7]), Faecalibacterium (relative abundance=2.18 [0.24;4.12]), and Clostridum 

(relative abundance=2.08 [0.32;5.06]) (Figure 3, Supplementary Table S5, and 

Supplementary Figure S2 indicating family taxonomic level). 

Figure 3. The most abundant genera detected in the endometrial samples from patients 
undergoing a total laparoscopic hysterectomy with bilateral salpingo-oophorectomy (patients 1, 
2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 18 and 19) or laparoscopic tubal ligation (patients 20, 22, 23 
and 24). Percent-stacked barchart of those genera whose mean relative abundances were higher 
than 1% are represented. 

 

Unlike FT samples, the collection method for endometrial samples varied 

depending on the surgical procedure. In patients undergoing hysterectomy for benign 

uterine conditions, the entire upper reproductive tract was extracted, allowing direct 

access to the uterine cavity without passing through the vaginal and cervical canal. The 

fibroid tissue was visually identified and biopsied, focusing on tissue that presented 

unaltered morphological characteristics. On the other hand, in women undergoing to tubal 

ligation for contraceptive purposes and without underlying disease, endometrial biopsy 

was obtained transcervically. Therefore, we aimed to compare whether the uterine 

microenvironment could be influenced by the fibroids and whether the sampling method 
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via cervix (high bacterial contamination risk) could have an impact on the microbial 

composition in the endometrial samples. When comparing the microbiome of the two 

sampling techniques, 20 genera presented significantly different abundance 

(Supplementary Table S7). When applying the multiple testing correction, nine genera 

remained as marginally different between the groups, where Lactobacillus was more 

abundant while Acinetobacter, Arthrobacter, Coprococcus, Methylobacterium, 

Prevotella, Roseburia, Staphylococcus, Streptococcus were less abundant in samples 

obtained transcervically (Figure 4, Supplementary Table S7).   

Figure 4. Relative abundance of nine bacterial genera between samples obtained directly from 
the uterus (hysterectomy, H) (fertile women with fibroids) and transcervically when undergoing 
tubal ligation (TL) (fertile women without the disease). After multiple testing correction 
adjustment, the difference remained marginal (FDR=0.083 for all plots). 

 

3.5. Microbiome composition between endometrial and FT samples 

When comparing microbial composition between the endometrium and FT, the 

endometrial samples from the tubal ligation group were excluded from the analysis. This 

decision was made due to significant microbiome differences, potentially indicating 

vaginal or cervical contamination characterized by a high abundance of Lactobacillus). 
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Thus, 16 FT samples and 14 endometrial samples were compared. A considerable portion 

of the detected taxa (60 genera) was found in both sites, indicating shared microbial 

composition. Additionally, 17 bacterial genera were exclusively detected in the FT 

samples, while 10 genera were considered endometrial-specific (Figure 5, Table 2). Out 

of these detected genera (Supplementary Table S8), the relative abundance of 11 genera 

was significantly between uterine and FT samples, as confirmed by both the Mann-

Whitney U test and ANCOM-BC analysis. Specifically, Gardnerella (p=0.002; 

FDR=0.042), Klebsiella (p=0.004; FDR=0.042), Olsenella (p=0.004; FDR=0.042), 

Oscillibacter (p=0.004; FDR=0.042) and Veillonella (p=0.004; FDR=0.042) were found 

to be more prevalent in the endometrium. Conversely, Enhydrobacter (p=0.001; 

FDR=0.042), Granulicatella (p=0.001; FDR=0.042), Haemophilus (p=0.003; 

FDR=0.042), Rhizobium (p=0.003; FDR=0.042), Alistipes (p=0.006; FDR=0.048) and 

Paracoccus (p=0.006; FDR=0.048) were more abundant in FT samples (p-values 

obtained from the strict Mann-Whitney U test analysis). 

Figure 5. Venn diagram illustrating the bacterial genera present in the upper reproductive tract. 
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Table 2. Microbial composition of the endometrial and Fallopian tube (FT) samples. The asterisks 
(*) represent the differentially abundant microbial taxa between uterine and FT samples analyzed 
by the non-parametric Mann-Whitney U test (p<0.05). The crosses (†) represent the differentially 
abundant microbial taxa between the endometrial and FT samples analyzed by the Analysis of 
Compositions of Microbiomes with Bias Correction (ANCOM-BC) (p<0.05). P-values were 
adjusted for the multiple testing correction (False Discovery Rate, FDR). 

 

No significant differences were detected between the endometrial and FT samples 

in alpha-diversity metrics when comparing the microbiome diversity of endometrial and 

FT samples (i.e., Shannon, OTUs number [richness]) (Figure 6A). Also, beta-diversity 

represented by PCoA blot based on Bray-Curtis distances did not show any significant 

dissimilarities between the microbiome composition between the two sample types 

(Figure 6B). 

 

 

Fallopian tubes   Fallopian tubes and Endometrium   Endometrium 

Aeromonas †   Acinetobacter  Actinomyces Anaerococcus    Barnesiella † 

Alistipes*†    Arthrobacter  Bacillus  Bacteroides    Brachymonas†  

Bifidobacterium †   Bilophila  Blautia  Butyricimonas    Chryseobacterium†  

Brachyspira†    Campylobacter  Catenibacterium  Cloacibacterium    Gardnerella*†  

Brevundimonas†    Clostridium  Collinsella  Coprococcus    Klebsiella*†  

Burkholderia †   Corynebacterium  Desulfovibrio  Dialister    Olsenella*†  

Comamonas †   Dolosigranulum  Dorea  Enterococcus    Oscillibacter*†  

Enhydrobacter*†    Eubacterium  Eubacterium2  Faecalibacterium    Serratia † 

Flavonifractor †   Finegoldia  Gemella  Gemmiger    Veillonella*† 

Fusobacterium †   Helicobacter  Herbaspirillum  Kocuria    Vibrio† 

Granulicatella* †   Lachnoclostridium Lactobacillus  Lactococcus      

Haemophilus*†    Massilia  Megasphaera  Methylobacterium      

Paracoccus*†   Microbacterium Micrococcus  Mitsuokella      

Parasutterella †    Moraxella  Neisseria  Oxalicibacterium      

Rhizobium*†    Parabacteroides  Pelomonas  Phascolarctobacterium†      

Shewanella †   Porphyromonas  Prevotella  Propionibacterium      

Sutterella †   Pseudoflavonifractor  Pseudomonas  Ralstonia      

    Roseburia  Rothia  Ruminiclostridium      

    Ruminococcus  Ruminococcus2  Sphingomonas      

    Staphylococcus  Streptococcus  Subdoligranulum     
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Figure 6. Diversity indices in Fallopian tubes (FT) and endometrial (E) samples. A) Alpha-
diversity metrics (i.e., Shannon, OTUs number [richness]) of endometrial and FT samples. B) 
Beta-diversity represented by principal coordinate analysis (PCoA) based on Bray-Curtis 
distances (PERMANOVA, R2=0.024, p=0.720) between endometrial and FT samples. 

 

3.6. Sensitivity analysis in paired endometrial and FT samples 

A sensitivity analysis was performed using samples exclusively from patients who 

underwent hysterectomy (N=7) and had valid samples from both tissues (endometrium 

and FT) (Figure 1, Supplementary Table S3). This approach aimed to avoid the possible 

contamination effect from cervical bacteria.  

The comparison of microbial diversity between endometrial and FT samples 

revealed no significant differences in alpha- (Figure 7A) and beta- (Figure 7B) diversity 

metrics. (p >0,05). 

Figure 7. Diversity indices in paired endometrial and FT samples. A) Alpha-diversity metrics 
(i.e., Shannon, OTUs number [richness]) of endometrial and FT samples when the restricted group 
of patients with paired samples was selected. B) Beta-diversity represented by principal 
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coordinate analysis (PCoA) based on Bray-Curtis distances of patients with paired samples 
(PERMANOVA, R2=0.048, p=0.706). 

 

In this more restricted subset of samples, the previously observed statistical 

differences in the relative abundances of the 11 genera (Gardnerella, Klebsiella, 

Olsenella, Oscillibacter, Veillonella, Enhydrobacter, Granulicatella, Haemophilus, 

Rhizobium, Alistipes and Paracoccus) between endometrial and FT samples did not 

remain statistically significant after adjusting for the multiple testing correction (FDR) 

(Supplementary Table S9).    

As a next step, we performed an additional comparison considering each pair of 

samples from the same patient. Alpha-diversity analysis did not detect any statistically 

significant differences when comparing the paired tissue samples of each patient 

(Shannon diversity index and OTUs number with p>0.05; Supplementary Table S10 

and S11, respectively) (Figure 8A). However, beta-diversity analysis revealed a 

significant dissimilarity when comparing the paired samples from the same woman 

(PERMANOVA, p=0.044) (Figure 8B). This finding suggests that the microbiome 

within an individual, even from two different tissue types (endometrium and FT), is more 

similar than the same tissue type (e.g. endometrium) between different individuals.  

 Figure 8.  Diversity indices each pair of the tissue samples corresponding to their respective 
patient. A) Alpha-diversity metrics (i.e., Shannon, OTUs number) of paired endometrium and 
Fallopian tube (FT) samples from the same women (N=7), all values p>0.05. Each label indicates 
a patient (e.g. 1). B) Beta-diversity represented by principal coordinate analysis (PCoA) based on 
Bray-Curtis distances of patients with paired samples (PERMANOVA, R2=0.622, p=0.044). Each 
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patient is indicated with one colour, where the two dots of the same colour represent individuals’ 
endometrial and FT samples. 

 

4. DISCUSSION 

The female upper reproductive tract plays a critical role in oocyte fertilisation, early 

embryo development, and embryo implantation. Understanding the detailed 

microenvironment in the FT and endometrium is essential for manipulating and 

improving conditions in assisted reproduction technologies. Over 20% of couples at 

reproductive age suffer infertility, and with the socioeconomic situation where couples 

delay family planning and have children later in life, the demand for infertility treatment 

continues to rise worldwide 26.  

There is a growing awareness that the microbes colonizing our body are involved 

in various pathological processes. Therefore, studying the microbiome of female 

reproductive tract has become a hot topic in order to understand its role in crucial events 

such as  embryo development and pregnancy establishment 6. Imbalances in the uterine 

cavity microbiome have been associated with implantation failure, decreased success of 

assisted reproductive technologies, as well as conditions like endometriosis, endometritis, 

polyps, and endometrial cancer 10,27,28. However, very few studies have analysed FT 

microbiome due to ethical and technical challenges associated with obtaining FT sample 

without compromising future fertility. As a result, there is currently no consensus on the 

core microbial composition of the upper reproductive tract, whether in healthy or 

pathological conditions 10,12,29–31, and further research is needed. 

The current study analysed the microbial composition of the upper reproductive 

tract in women with confirmed fertility. We examined FT and endometrial samples from 
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patients diagnosed with benign uterine pathology or without the disease. Our findings 

revealed a shared (~70%) endogenous microbial community present in both sites of the 

upper reproductive tract, whith Lactobacillus, Prevotella, and Faecalibacterium being 

the most prevalent taxa. Considering that the intramural portion of the uterine tube in 

humans does not allow for physical separation between the FT and uterine environments, 

it is reasonable to assume that there is smooth communication between these anatomical 

regions, resulting in similar microbiomes. We detected 60 bacterial genera common to 

both tissues, while 17 bacterial genera were FT-specific and 10 were uniquely present in 

the endometrium. Gardnerella, Klebsiella, Olsenella, Oscillibacter, and Veillonella were 

significantly associated with the endometrial samples, while Enhydrobacter, 

Granulicatella, Haemophilus, Rhizobium, Alistipes, and Paracoccus were more abundant 

in FT samples. Although the presence of these genera in the upper reproductive tract has 

been previously described 8,16,32, the site specificity demonstrated in our results has not 

been reported before.  

When comparing the FT and endometrial samples obtained from the same women, 

although the sample size was limited, it seems that the two distinct tissue microbiomes 

were more similar within an individual than the same tissue sample between different 

individuals. These data support the hypothesis that each person has their own “microbial 

fingerprint”, with microbial residents tailored to their environmental conditions – namely 

their genetics, diet, and developmental history. These residents persist over time and help 

to defend against invaders 33. So, it is expected that there would be more microbial 

similarities between different body sites within an individual compared to specific body 

sites between different individuals. Similar results have been described previously 

,although with more heterogenous cohorts 18. Thus, establishing a ‘core’ microbiome 
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becomes challenging, as what might be considered healthy in one person may differ from 

another, adding complexity to the investigation of the human microbiome.   

Our study included fertile women with benign uterine conditions (fibroids) and 

women without the disease who underwent tubal ligation as a terminal contraceptive 

method. This led to two different methods for obtaining study material: hysterectomy and 

tubal ligation. The study evaluated the effect of fibroids-related uterine microenvironment 

on the FT microbiome. FT samples were obtained in both cohorts using the same method, 

allowing us to study this effect. Our findings showed no association between the fibroids-

free endometrial microbiome from women with uterine fibroids and the microbiome of 

FT. This suggests that fibroids-related uterine environment does not seem to affect the 

FT microenvironment. 

In contrast, the sampling method for obtaining endometrial samples differed 

considerably between the two cohorts.: In the hysterectomy cases, the reproductive 

organs were removed, and the endometrial samples were obtained directly by opening the 

uterus under sterile conditions. However, in the tubal ligation cases, the endometrial 

samples were obtained transcervically, posing a higher risk of bacterial contamination 

from the lower reproductive tract (vagina/cervix). Thus, when analysing the endometrial 

samples from these two cohorts, we cannot determine whether the significant differences 

observed in the endometrial microbial composition are due to the fibroids-associated 

uterine microenvironment or the sampling method itself. After applying multiple testing 

correction, nine genera remained marginally different between the groups. Lactobacillus 

was more abundant in samples obtained transcervically, while Acinetobacter, 

Arthrobacter, Coprococcus, Methylobacterium, Prevotella, Roseburia, Staphylococcus, 

Streptococcus were more abundant in hysterectomy samples. The difference in 

Lactobacillus abundance depending on the sampling method has been previously 
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reported, with lower dominance linked to surgeries carrying a lower contamination risk 

from the vagina and cervix, such as hysterectomy 30, laparoscopy 8 and/or cesarean section 

34 10. In line with these studies, the uterine samples collected transcervically in our study 

showed a clear dominance of Lactobacillus (abundance of 98,2%), while samples 

obtained during hysterectomy showed higher diversity and lower prevalence of 

Lactobacillus (abundance of 18,7%). Based on these findings, we believe that the 

sampling method had a stronger effect on the endometrial microbiome than the fibroids-

free uterine sample. A previous study by Winters et al. reported that the endometria of 

women with a median age of 45, who underwent hysterectomy for fibroids were 

dominated by Acinetobacter (abundance of 60%) 30. Other studies have suggested that 

Acinetobacter may be associated with a normal (or benign) endometrium, while 

Methylobacterium has been associated with endometrial cancer 35. In our study, disease-

free endometrial samples from women with uterine fibroids showed a small relative 

abundance of Acinetobacter and Methylobacterium. These two genera, however, along 

with Arthrobacter, Coprococcus, Prevotella, Roseburia, Staphylococcus, and 

Streptococcus, which showed differential presence in endometrial samples, are 

considered common contaminant genera 9. Therefore, further research is required to 

determine which genera are contaminant and which have a role in uterine health. This 

could involve enrichment analysis of metabolic pathways using RNAseq analysis or 

whole metagenomics analysis, as well as investigating the impact of factors like uterine 

fibroids and other pathologies on the microbial composition. Interestingly, a recent study 

has associated Clostridium, Ruminococcus, Blautia and Lactobacillus (which were found 

in both tissues in our study) with Tryptophan metabolism 12. This suggests a potential 

host–microbiota crosstalk in the biosynthesis of serotonin and melatonin, as well as 

serotonin degradation, where Tryptophan acts as a precursor. Specifically, dysregulation 
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of melatonin has been linked to altered uterine functions, including endometrial 

receptivity and recurrent spontaneous abortion 36. 

Our study is the first to analyze the endometrial and FT samples together from 

women with confirmed fertility. Nevertheless, some limitations should be acknowledged. 

Firstly, the relatively small sample size makes the study results preliminary and highlight 

the need for confirmation in a larger sample size. Secondly, the analysis focused on older 

reproductive-aged women, and therefore the results should not be generalized for younger 

women, as age might influence the microbial composition. Thirdly, the endometrial 

samples were obtained at different cycle phases, which restricts our ability to examine 

endometrial receptivity. Fourthly, despite taking utmost care to obtain fibroid-free tissue 

when sampling endometrial biopsies, the effect of fibroids on uterine microenvironment 

cannot be ruled out. Lastly, the study design lacked negative controls in the sampling 

process and separate validation, thus, stringent decontamination tools and strict data 

processing methods were applied.  

In conclusion, our study results corroborate that the female upper reproductive tract 

harbors an endogenous microbiome, although with low microbial biomass. We observed 

that a significant portion of the microbial profile is shared between the FT and the 

endometrium, with approximately ~70% of the detected taxa being shared. Interestingly, 

women have unique microbial profiles, wherein two distinct tissues (FT and 

endometrium) displayed greater bacterial similarities than the same tissue sample (e.g. 

endometrium) between two individuals. Unravelling the female upper reproductive 

microbiome, helps understanding the natural microenvironment where crucial processes 

of oocyte fertilisation and embryo development occur. This knowledge can be used to 

improve in vitro fertilisation and embryo culture conditions for the treatment of infertility.  
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SUPPLEMENTARY MATERIAL 

Supplementary material can be found online at journal website:  

https://www.frontiersin.org/articles/10.3389/fendo.2023.1096050/full#supplementary-

material  
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ABSTRACT 

Study question: Does the gut microbial composition and functionality differ between 

women with and without endometriosis? 

Summary answer: The gut microbiome diversity and composition (species and 

microbial pathways) were not significantly different between women with and without 

endometriosis. 

What is known already: Endometriosis, defined as the presence of endometrial-like 

tissue outside of the uterus, is one of the most prevalent gynecological disorders. 

Although different theories have been proposed, its pathogenesis is not clear. Novel 

studies indicate that the gut microbiome may be involved in the etiology of endometriosis, 

nevertheless, the connection between microbes, its dysbiosis and the development of 

endometriosis is understudied. This study aims to analyze and compare the gut 

microbiome profile in women with and without endometriosis in a large cohort to identify 

microbial targets potentially involved in the development of the disease.   

Study design, size, duration: This case-control study included a subsample of 1000 

women (age=45.61±10.36 years; BMI=25.67±5.59) of the Estonian Microbiome 

(EstMB) cohort, a volunteer-based sub-cohort of the Estonian Biobank created in 2017. 

136 women with endometriosis and 864 control women who have not been diagnosed 

with endometriosis or any of its most prevalent comorbidities (systemic lupus 

erythematosus, rheumatoid arthritis, autoimmune thyroiditis, celiac disease, multiple 

sclerosis and irritable bowel syndrome) were included in the study. 

Participants/materials, setting, methods: Microbial DNA from fecal samples was 

extracted and sequenced by paired-end metagenomic shotgun sequencing (Illumina 

Novaseq 6000 platform). Microbial functional pathways were annotated using the Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg/). 

Partitioning around medoids (PAM) algorithm was performed to cluster the microbial 

profile of the Estonian population. The alpha- and beta-diversity and differential 

abundance analyses were performed to assess the gut microbiome (species and KEGG 

orthologies [KO]) in both groups. 

Main results and the role of chance: The study population was stratified into two 

enterotypes: one characterized by a high abundance of Prevotella copri while the second 

presented a high abundance of Bacteroides spp. However, the enterotypes were not 

associated with the presence/absence of endometriosis. Microbial alpha-diversity 

(Shannon’s index and observed richness) was not significantly different between the 

women with and without endometriosis (all p-values>0.05). Beta-diversity analyses on 

the microbial and functional profile (species and KO profile) indicated no significant 

dissimilarity between the groups (PERMANOVA, both R2<0.07%, p-values>0.05). No 

differential species nor KO were detected after multiple testing adjustment (all FDR p-

values>0.05). Sensitivity analysis including only reproductive-aged women (<50 years) 

confirmed our study findings on big cohort. 

Limitations, reason for caution: This case-control study did not identify a distinct gut 

microbial profile in women with endometriosis. A deeper analysis considering different 

endometriosis subtypes and hormonal treatment is needed to further confirm our results. 

Wider implications of the findings: To the best of our knowledge, we present the biggest 

metagenome study on endometriosis. Our findings do not find evidence to support the 

existence of a gut microbiome-dependent mechanism directly implicated in the 

pathogenesis of endometriosis. 
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1. INTRODUCTION 

Endometriosis, defined as the growth of endometrial-like tissue outside of the 

uterine cavity, is a common gynecologic disease, affecting approximately 5-10% of 

reproductive-aged women 1. Endometrial lesions cause a chronic inflammatory condition 

associated with a wide range of reported symptoms, including dysmenorrhea, pelvic pain, 

dyspareunia and infertility 2,3. Because these symptoms are associated with other 

conditions, endometriosis requires laparoscopic examination with excisional biopsy for 

definite pathology confirmation, which leads to a long diagnostic delay or common 

misdiagnosis. Although endometriosis is a widespread and burdening reproductive 

disorder, it has been historically understudied. Notably, proposed hypotheses such as 

retrograde menstruation, coelomic metaplasia, and Müllerian remnants do not explain the 

etiology of all the different phenotypes of endometriosis (i.e., superficial, ovarian and 

deep infiltrating endometriosis) 4. Thus, endometriosis emerges as an important public 

health concern with substantial effects on the quality of life of millions of women globally 

5. 

The microbiome refers to the collection of genomes of the microorganisms 

(bacteria, viruses, fungi, protozoa and archaea) that inhabit a particular environment 6. 

Particularly, the human gastrointestinal system is the most diverse microbiome within the 

human body, being colonized by trillions of microbes that play key roles regulating host 

physiological functions 7,8. Indeed, a healthy balanced gut microbiome is crucial for 

nutrient absorption, gut epithelial barrier integrity and immune function 9,10. Nevertheless, 

compositional and functional perturbations in the microbiome could lead to an unstable 

state called dysbiosis, which is linked to the different chronic conditions such as obesity, 

type-2 diabetes, cancer, inflammatory bowel diseases, neurological and reproductive 

diseases, among others 11–15. 
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Extensive research associates the gut microbiome with estrogens circulating levels 

through the secretion of β-glucuronidase, an enzyme that deconjugates estrogen to its 

active metabolize form 16. The estrobolome term encapsulates the gut gene repertoire of 

microbial origin that is capable of metabolizing estrogens leading to epithelial 

proliferation stimulation throughout the female reproductive tract. Therefore, estrogen 

dysregulation has been shown to drive proliferative diseases such as endometriosis as well 

as comorbidities infertility and pelvic pain 17. Indeed, the use of estrogen-progestins and 

progestins is the first-line medical treatment due to their safety, tolerability and cost 

profile, although they are often ineffective and may produce unwanted side effects 18. 

Hence, to date, there is no cure for endometriosis and new non-hormonal therapeutic 

approaches become increasingly necessary 19. 

Given the influence of the gut microbiome on immunomodulation and estrogen 

metabolism, and considering the estrogen-driven inflammatory state in endometriosis, a 

potential role of the gut microbiome in the pathogenesis of the disease has been proposed 

17,20. Novel studies suggest that gut dysbiosis that induces an increment in the estrogen 

circulating levels may contribute to the hyper-estrogenic environment promoting the 

progression of endometriosis 21. Nevertheless, the connection between microbes, their 

dysbiosis and the development of endometriosis remains unexplored. Research on the gut 

microbiome in endometriosis would enable identification of novel biomarkers for 

noninvasive diagnostic and therapeutic approaches to identify and treat women with 

endometriosis earlier 22.  

In the present study, we set out to analyze and compare the gut microbiome 

profiles in women with and without endometriosis in a large cohort with the aim to 

identify microbial signatures and pathways potentially associated with the development 

of the disease. 
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2. MATERIAL AND METHODS 

2.1. Study population 

This case-control study included a subsample of 1000 women of the Estonian 

Microbiome (EstMB) cohort (age=45.61±10.36 years; BMI=25.67±5.59), a volunteer-

based sub-cohort of the Estonian Biobank (EstBB) created in 2017 with the objective of 

enriching the previous existing data with microbiome data 23. All participants included in 

the EstMB provided informed consent for the data and samples to be used for scientific 

purposes. This study was approved by the Research Ethics Committee of the University 

of Tartu (approval No. 266/ T10) and by the Estonian Committee on Bioethics and Human 

Research (Estonian Ministry of Social Affairs; approval No. 1.1-12/17). 

For the present study, we included 136 women with endometriosis and 864 control 

women who have not been diagnosed with endometriosis. Since endometriosis has been 

reported to have a high degree of comorbidity with other disorders 24–26, control women 

who were diagnosed with any of the most prevalent comorbidities of endometriosis 

(systemic lupus erythematosus, rheumatoid arthritis, autoimmune thyroiditis, celiac 

disease, multiple sclerosis and irritable bowel syndrome) were excluded. Endometriosis 

was confirmed by diagnostic laparoscopy. Self-reported data on diseases, medications, 

medical procedures, health-related behaviors in lifestyle, diet, physical activity, living 

environment, delivery mode, and stool characteristics (Bristol stool scale) were collected 

from each participant. 

2.2. Sample collection and DNA extraction 

The sample collection took place between 2017 and 2019. Fresh stool samples 

were collected by the participants immediately after defecation with a sterile Pasteur 
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pipette, placing the samples inside a polypropylene conical 15 ml tube and stored in the 

fridge (+4°C) until transportation. The sample was subsequently delivered to the study 

center where it was stored at -80°C until processing.  

For genomic DNA isolation, microbial DNA was extracted using QIAamp DNA 

Stool Mini Kit (Qiagen, Germany). Approximately 200 mg of stool was used as starting 

material for DNA extraction following the manufacturer’s instructions. Next, the 

extracted DNA was quantified using Qubit 2.0 Fluorometer with dsDNA Assay Kit 

(Thermo Fisher Scientific). Sequencing libraries were generated using NEBNext® 

Ultra™ DNA Library Prep Kit for Illumina (NEB, United States) following the 

manufacturer’s recommendations. Briefly, 1 μg DNA per sample was used as input 

material, and index codes were added to attribute sequences to each sample. Each DNA 

sample was fragmented by sonication to an average size of 350 bp, DNA fragments were 

end-polished, A-tailed, and ligated with the full-length adaptor for Illumina sequencing 

with further PCR amplification. Finally, PCR products were purified (AMPure XP 

system) and libraries were analyzed for size distribution by Agilent2100.  

2.3. Metagenomics analyses 

The shotgun metagenomic paired-end sequencing was performed by Novogene 

Bioinformatics Technology Co., Ltd. in the Illumina NovaSeq6000 platform, resulting in 

4.62 ± 0.44 Gb of data per sample (insert size, 350 bp; read length, 2 × 250 bp). First, the 

reads were trimmed for quality and adapter sequences. The host reads that aligned to the 

human genome were removed with SOAP2.21 (parameters: -s 135 -l 30 -v 7 -m 200 -x 

400) 27. Quality controlled data of each sample was then used for metagenomic assembly 

using SOAPdenovo (v. 2.04, parameters: -d 1 -M 3 -R -u –F) 28. Next, SOAP2.21 was 

used to map the clean data of each sample to the assembled scaftigs (i.e., continuous 
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sequences within scaffolds). Unutilized paired-end reads of each sample were compiled 

together for mixed assembly. MetaGeneMark (v.3.38) was used to carry out gene 

prediction (gene length>100 bp) based on the scaftigs (≥500 bp), which were assembled 

by single and mixed samples. CD-HIT (v.4.6) was used to dereplicate the predicted genes 

based on 95% identity and 90% coverage to generate the gene catalogues (parameters: -c 

0.95, -G 0, -aS 0.9, -g 1, -d 0) 29. The longest dereplicated gene was defined as the 

representative gene (i.e., unigene). SoapAligner 30 (v.2.21, parameters: -m 200, -x 400, 

identity≥ 95%) was then used to map the clean data to the gene catalogues and to calculate 

the quantity of the genes for each sample. The gene abundance was calculated based on 

the total number of the mapped reads and the normalized gene length. The taxonomic 

assignment of the metagenomes was performed by comparing the marker gene homologs 

to a NCBI nonredundant NCBI-nr (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) database 

(201810) of taxonomically informative gene families using DIAMOND (v0.9.9.110) 31. 

The homologs were annotated based on the sequence or phylogenetic similarity to the 

database sequences. The abundance of different taxonomic ranks was based on the gene 

abundance tables. As the last step, microbial functional pathways were annotated using 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(https://www.genome.jp/kegg/). 

2.4. Microbiome analysis 

Microbiome diversity analyses were performed and visualized using phyloseq, 

vegan, microviz and ggplot2 packages in R. Species and KEGG Orthology groups (KOs) 

presented in >10% of samples and with 0.01% or higher relative abundance were included 

in downstream analyses. Alpha-diversity was determined by Shannon diversity index and 

the observed number of unique species (i.e., observed richness), using the “diversity” and 

“specnumber” functions from the vegan package. Case-control comparisons were tested 
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by linear-mixed effect models (LME) to adjust for confounders with the function “aov” 

from the stats package. Beta-diversity was represented by nonmetric multidimensional 

scaling (NMDS) ordination, based on the Bray Curtis dissimilarity, and tested for 

significance by Permutational analysis of variance (PERMANOVA) using the “adonis2” 

function from vegan package. 

To identify the differential microbial species between cases and controls, 

differential abundance analysis was performed using an Analysis of Compositions of 

Microbiomes with Bias Correction (ANCOM-BC) from the ancombc2 package. 

ANCOM-BC models the absolute abundances using a linear regression framework 32. 

Herein, absolute abundance for identified species presented in >10% of samples with 

>0.01% within each phylogenetic domain (e.g., 861 bacteria, 3 archaea, 11 eukaryota and 

12 viruses) were included in the differential abundance analysis. 3 taxa were unclassified 

and removed from the analysis. Additionally, ANCOMBC was used to examine 

differential KOs between women with endometriosis and controls. 

2.5. PAM clustering 

Fecal samples were clustered by applying the Partitioning Around Medoids 

(PAM) algorithm, also simply referred to as k-medoids, using the “pam” function from 

cluster package. K-medoids consists in partitioning (clustering) the data into k clusters 

“around medoids”, a more robust version of K-means 33. The number of clusters that best 

fits the data was selected by looking at the highest Silhouette Index, since 1 denotes the 

best meaning that the data point is very compact within the cluster to which it belongs 

and far away from the other clusters. 
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2.6. Statistics 

Descriptive characteristics of the study participants were reported as median (q1; 

q3) or frequency, as appropriate. Body mass index (BMI), age, frequency of antibiotics 

consumption in the last year, gut empting frequency and stool characteristics (Bristol 

stool scale) were included as potential confounders in our analyses. Five women did not 

record data for age, 9 for antibiotics, 2 for gut empting frequency and 19 for stool 

consistency. Hence, we imputed missed data using multiple imputation method in SPSS 

v.28.0.1.0. For comparing non-parametric continuous data, Mann Whitney U test was 

performed, while categorical data was analyzed by χ2 test. 

Since alterations in the gut microbiome have been widely associated with specific 

menopausal symptoms 20, a sensitivity analysis excluding those women with age 50 or 

higher was conducted to corroborate our results. 

All statistical analyses were performed in R (v.4.2.1) under RStudio (v.2022.07). 

Statistical significance was set to 0.05 for all analyses (i.e., p-value or q-value<0.05 for 

analyses using Benjamini-Hochberg false discovery rate [FDR] for multiple correction).  

 

3. RESULTS 

Our study population of 1000 women consisted of a total of 136 women with 

endometriosis and 864 control women. Descriptive characteristics of study participants 

are summarized in Table 1. Study groups did not significantly differ for any characteristic 

except for age at sample collection that was significantly higher in women with 

endometriosis compared to controls (FDR p-value=0.005). 
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Table 1. Descriptive characteristics of the study participants.   

Note: Data presented as median [q1, q3] and frequency, as appropriate. P-values adjusted by 
Benjamini-Hochberg false discovery rate (FDR). Abbreviations: BMI: body mass-index 

 

3. 1. Microbial landscape of the study cohort 

The microbiome composition and functionality of the Estonian study population 

was characterized by metagenomics shotgun sequencing as previously described 34,35. A 

total of 17158 species and 7869 KOs were detected, with an average of 6942273 species 

reads and 4913880 KOs reads per sample. After filtering by a prevalence >10% and 

relative abundance >0.01% resulted, we identified 890 species and 1629 KOs. The 

Characteristics 
Endometriosis 

N=136 
Control 
N=864 p-value 

Age, median [q1; q3] 50.0 [40.8; 57.9] 45.0 [36.0; 54.0] 0.005 

BMI,  median [q1; q3] 25.1 [22.2; 29.5] 24.2 [21.6; 28.6] 0.367 

Frequency of antibiotics consumption, n (%) 
Not in the last year 
In the last year 
In the last 6 months 
In the last month 
In the last week 

79 (58.1%)   
 26 (19.1%)   
 23 (16.9%)   
  7 (5.15%)   
  1 (0.74%)   

 
 

555 (64.2%) 
139 (16.1%) 
128 (14.8%) 
33 (3.82%)  
 9 (1.04%) 0.776 

Gut empting frequency, n (%) 
More than 2 times a day 
Once a day 
3-6 times a week 
2 times a week 
1-2 times a week  
Less than once a week 
Irregular 

21 (15.4%) 
76 (55.9%) 
29 (21.3%) 
3 (2.21%) 
1 (0.74%) 
0 (0.00%) 
6 (4.41%) 

135 (15.6%) 
495 (57.3%) 
168 (19.4%) 
12 (1.39%) 
6 (0.69%) 
2 (0.23%)  
46 (5.32%)  0.940 

Stool consistency (Bristol scale), n (%) 
1 
2 
3 
4 
5 
6 
7 

12 (8.82%)   
 31 (22.8%)   
 22 (16.2%)   
 30 (22.1%)   
 12 (8.82%)   
 28 (20.6%)   
  1 (0.74%)   

 
63 (7.29%)  

138 (16.0%) 
146 (16.9%) 
241 (27.9%) 
114 (13.2%) 
147 (17.0%) 
15 (1.74%) 0.367 
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average relative abundance of bacteria was 98.14%, followed by 0.93% for taxa of viral 

origin, 0.66% for eukaryotic taxa, 0.15% for archaea and 0.13% for unclassified taxa. The 

most predominant phyla were Bacteroidetes (45.15%) and Firmicutes (39.86%), followed 

by Proteobacteria (7.07%), Actinobacteria (1.53%) and Verrucomicrobia (0.82%), 

among others (Figure 1A). The most abundant genera consisted of Bacteroides, 

Prevotella, Clostridium, Alistipes and Faecalibacterium (Figure 1B). More specifically, 

890 species presented >10% prevalence and >0.1% of relative abundance, being 

Prevotella copri, Bacteroides vulgatus, Faecalibacterium prausnitzii, Bacteroides 

prebeius and Alistipes putredinis the most abundant microbes (Figure 1C). 

PAM clustering stratified the study population into two enterotypes 

(Supplementary Figure S1), where P. copri and Bacteroides spp. drove the most 

significant differences in the gut microbiome (Figure 2A-B, Supplementary Figure S2). 

Seventy-two percent of the samples were within the Bacteroides spp. enterotype and the 

remaining 28% belonged to the P. copri enterotype. The identified enterotypes were not 

correlated with the presence/absence of endometriosis, although presented a negative 

correlation with BMI and positive with stool consistency (Figure 2C; Supplementary 

Table S1). 
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Figure 1. Microbial landscape in the Estonian study population. Circular stacked barplots (“iris 
plots”) show the most relatively abundant phyla (A), genera (B) and species (C) in the study 
population. The outer bicolor rings indicate the endometriosis and control groups. 
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Figure 2. Enterotypes identified in the Estonian study population. (A, B) Relative abundance of 
Prevotella copri and Bacteroides spp. within the enterotypes on the nonmetric multidimensional 
scaling (NMDS) ordination plot of the species-level microbiome profile based on the Bray-Curtis 
dissimilarity. (C) Distribution of women with and without endometriosis within the enterotypes. 
The dot’s shape indicates the cluster, while the colors highlight the relative abundances (A, B) or 
the endometriosis and control groups (C). 

 

3.2. Microbial diversity analysis 

Next, we aimed to compare the microbial alpha- (characterized by the Shannon 

diversity index and observed richness) and beta-diversity between women with and 

without endometriosis. No significant differences between cases and controls were 

detected in alpha diversity parameters, indicating that species richness was similar 

between both groups (all p-values>0.05; Figure 3A-B). Beta-diversity analyses on the 

microbial and functional profile (species and KOs profile) indicated no significant 

dissimilarity between the groups (PERMANOVA, both R2<0.07%, p-values>0.05; 

Figure 3C-D). Interestingly, the strongest associations with beta-diversity both with 

species and KOs (all p<0.004), were observed for the stool consistency (evaluated by the 

Bristol stool scale, both R2>2%), antibiotics frequency (both R2>0.5%), BMI (both 

R2=0.4%), age (both R2=0.4%) and gut emptying frequency (both R2>0.4%). 
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Figure 3. Microbial diversity measures in endometriosis and control groups. (A, B) Alpha-
diversity analysis (i.e. Shannon diversity index and observed richness). Groups comparisons 
indicate no significant differences (Linear-mixed effects: all p-values>0.05). (C, D) Beta-
diversity analyses on the nonmetric multidimensional scaling (NMDS) ordination of the species 
(C) and KOs (D) profile based on the Bray-Curtis dissimilarity (Adonis PERMANOVA, both 
R2<0.07%, both p-values>0.05).  

 

3.3. Differential abundance analysis of microbial species and KOs 

To detect specific species or microbial pathways that could be potentially involved 

in the pathogenesis of the disease, an ANCOMBC analysis was performed on the 

identified species and KOs. Overall, 34 bacteria seemed to be differentially abundant 

between groups, for example, Clostridium sp. CAG:307 (logFC=0.679, p=0.006) and 

Acinetobacter sp. CAG:196 (logFC=0.756, p=0.013) were enriched in the endometriosis 

group, whereas Ruminococcus sp. CAG:177 (logFC=-0.398, p=0.026) and Roseburia sp. 

CAG:45 (logFC=-0.324, p=0.011) were decreased compared to controls 

(Supplementary Table S2). Regarding functional analysis, 14 KOs associated with 

endometriosis, including nitrogen metabolism (logFC=-0.172, p=0.018) or oxidative 
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phosphorylation (logFC=-0.043, p=0.014) that were downregulated, while 4 KOs 

including fatty acid biosynthesis (logFC=0.138, p=0.039), aminoacids metabolism 

(logFC=0.048, p=0.014) and ATP-binding cassette (ABC) transporter system 

(logFC=0.184, p=0.033) were upregulated in women with endometriosis compared to 

controls (Figure 4). However, no bacteria and KOs remained significantly different after 

FDR correction (all p-values>0.05) (Supplementary Table S2). 

Figure 4. Functional differences in the microbial pathways in endometriosis and control groups. 
Volcano plot displaying log fold change differences in the expression of KEGG orthologs derived 
from the ANCOM-BC model. Points in blue and yellow represent KEGG orthologs which were 
downregulated and upregulated in endometriosis and statistically significant (p<0.05). Points in 
grey represent KEGG orthologs that were not differentially expressed (p>0.05). No KEGG 
orthologs remained statistically significantly expressed after Benjamini-Hochberg false discovery 
rate (FDR) correction (all adjusted p-values>0.05). 

 
3.4. Sensitivity analysis 

A sensitivity analysis including only women at their reproductive age (<50 years) 

and excluding women at menopause (>50 years) was performed to corroborate the 

previous results on whole cohort. A total of 66 women with endometriosis and 525 control 

women were finally included. The obtained results were similar to the whole cohort 

results, detecting no statistically significant differences between the groups in microbial 
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diversity and differential abundance analyses on the species and KOs profiles 

(Supplementary Figure S3 and Table S3). 

 

4. DISCUSSION 

Endometriosis is a widespread gynecological disorder, and regardless of the active 

research, there is a lack of understanding of the pathogenesis of the disease and its 

associated symptoms. Scientific evidence supports that estrogen drives the proliferation 

of endometrial-like lesions, although the reason why some women develop endometriosis 

and others do not is still unclear. Since the role of the gut microbiome in inflammatory 

and proliferative conditions as well as in estrogen metabolism is established 17,20, it is 

rational to propose an involvement of the gut microbiome in the development of the 

disease. Indeed, novel studies are focusing on the gut microbial communities as important 

candidates for investigation in reproductive health and several studies are associating 

uterine microbes with endometriosis 36–39. 

To the best of our knowledge, our study is the first whole metagenome study 

(identifying bacteria, viruses, fungi, protozoa and archaea) performed in women with 

endometriosis, while all previous studies have exclusively analyzed the 16S rRNA gene 

region of the bacteria. Our study results did not identify a distinct compositional or 

functional gut microbial profiles in women with endometriosis compared to controls, 

which has been observed also in a previous marker gene-based study (16S rRNA gene 

analysis) 40. While other marker gene-based studies have associated several gut microbes 

with endometriosis 41,42. The biggest study conducted up to date, analyzed the gut 

microbiome profile of 66 women with endometriosis and 198 control women 41, where a 

higher abundance of Parabacteroides genus and lower Paraprevotella in endometriosis 
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patients compared to controls were detected. In our study of 1000 participants, we 

detected decrease in Paraprevotella clara and Parabacteroides sp. D26 in women with 

endometriosis, although these differences disappeared after multiple testing correction. A 

recent study compared the gut microbiome in 12 patients with stage 3/4 endometriosis 

and 12 healthy women 42. Although they did not describe any statistically significant 

differences in alpha-diversity, several genera such as Blautia, Bifidobacterium, Dorea 

and Streptococcus, were significantly increased in the endometriosis group compared to 

controls, while Lachnospira and Eubacterium eligens group showed a decreased 

abundance in women with endometriosis. Another study built classification models with 

machine-learning on the vaginal and gut microbial composition to predict rASRM stages 

1–2 vs. rASRM stages 3–4 endometriosis, and found that the microbe that contributing 

the most to this prediction was Anaerococcus genus 43. In our study, species from the 

Anaerococcus genus, however, were not detected. Nonetheless, current studies are hardly 

comparable due to the different sample size and microbiome detection methods, proving 

contradicting and inconclusive results. Importantly, contrastingly to our study where we 

analyzed species level by shotgun sequencing, the previous studies performed a 16S 

rRNA gene analysis, which limits a reliable taxonomic assignment to genus level.  

Recently, a higher frequency of Fusobacterium in both the endometria and ovarian 

endometriotic tissues from 79 patients with endometriosis were detected when compared 

to endometria from 76 control women 44. Hence, they investigated further the pathogenic 

role of this bacteria in the development of endometriosis. Interestingly, we detected a 

higher relative abundance of Fusobacterium sp. CAG:815 in the gut in women with 

endometriosis, although the differences did not remain significant after adjustment for 

multiple comparisons. 
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While evidence supporting the role of the endometrial transcriptome in 

endometriosis development is accumulating 45,46, a new debate is whether there are 

microbial pathways involved in the pathogenesis of the disease. In this context, our study 

identified several KOs possibly dysregulated in the presence of endometriosis. We noted 

that a KO related to ABC transporters was enriched in women with endometriosis. Given 

the high regenerative capacity of the human endometrium at eutopic and ectopic sites, 

scientific evidence links the origin of endometriosis to stem cells 47 and supports the 

existence of endometrial cell subpopulations as candidate endometrial stem cells based 

on the side population phenotype 48. This characteristic is due to the differential potential 

of cells to efflux the Hoechst dye via the ABC family of transporter proteins expressed 

within the cell membrane 49. The ATP-binding cassette transporter G2 (ABCG2) 

expression analysis in samples of endometrium from patients with and without 

endometriosis found that ABCG2 was highly expressed in the endothelial cells of 

microvessels of eutopic endometria, and reduced in those of ectopic endometria except in 

cases of deep infiltrating endometriosis, suggesting that ABCG2+ microvessels may be 

crucial for the pathophysiology of deep infiltrating endometriosis 50. Our results are in 

line with this hypothesis, nevertheless, further research considering the different stages 

of endometriosis is warranted to analyze potential alterations of the gut microbes and 

microbial pathways that could be hidden in early endometriosis stages. 

Another KO of interest in endometriosis is the long-chain saturated fatty acids 

biosynthesis, a metabolic pathway catalyzed by fatty acid synthase (FASN). We detected 

a highly expressed KO related to long-chain saturated fatty acids biosynthesis in women 

with endometriosis. In some cancer cell lines, FASN has been found to be fused with 

estrogen receptor, and its overexpression is a common molecular feature in hormone-

sensitive cells and is regulated by both estradiol and progesterone 51. During the menstrual 
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cycle, FASN expression appears to be linked to endometrial cell proliferation 52,53. Thus, 

inhibiting fatty acid synthase has been proposed as a therapy targeting estrogen receptor 

signaling in breast and endometrial cancer 54. In fact, several studies associate the high 

prevalence of endometriosis with excessive lipid intake or a lipid intake imbalance and 

propose novel lipid metabolism-targeted approaches for the treatment of endometriosis 

due to the proliferative and inflammatory state of the disease 55. 

Our study provides pioneering results about the gut microbiome composition and 

association with endometriosis on a large-scale study population, however, it has several 

limitations that should be highlighted. First, the detection power in our study might have 

been influenced by including different subtypes of endometriosis. Endometriosis is 

defined as a heterogeneous disease broadly characterized into three phenotypes with 

different grade of severity: from superficial peritoneal as the least severe form, to ovarian 

and deep infiltrating endometriosis, the last being the most severe phenotype 4. Since the 

inclusion of the three phenotypes could mask the presence of microbial alterations in the 

most severe forms, additional analyses on the different subtypes are needed to confirm 

our results. Furthermore, hormonal imbalance has been demonstrated to have a negative 

impact on the gut microbiome, while it has been reported that hormonal treatment 

reverses the gut microbiome dysbiosis in reproductive disorders 56. Since the use of 

estrogen-progestins and progestins is the first-line medical treatment in endometriosis 18, 

patients with hormonal treatment may present similar gut microbial profiles than those 

without the disease. Hence, more studies on women with active endometriosis and no 

hormonal treatment are warranted to unravel the complex bidirectional relationship 

between the gut microbiome and endometriosis.  
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5. CONCLUSIONS 

The molecular mechanisms underlying the pathogenesis of endometriosis are not 

yet fully understood, making endometriosis a challenge to diagnose and treat. In this 

context, the gut microbiome emerges as a potential diagnostic tool and therapeutic target. 

We present the biggest whole metagenome study on endometriosis so far, and our study 

findings do not provide enough evidence to support the existence of a gut microbiome-

dependent mechanism implicated in the pathogenesis of endometriosis. More research on 

large-scale study populations with active endometriosis and no hormonal treatment are 

needed to provide better understanding of the endometriosis-associated microbiome, and 

to unravel its potential for diagnosis and treatment approaches.  

 

SUPPLEMENTARY MATERIAL 

Supplementary material can be downloaded in this link:  

https://osf.io/bepqc/  
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5. GENERAL DISCUSSION 

5.1. Main contributions of this Doctoral Thesis 

The present Doctoral Thesis aimed to advance the current knowledge of the 

microbiome composition in female population, with a focus on studying the associations 

of microbial communities with PA/SB and female reproductive health. The current Thesis 

provides novel insights into the host-microbe associations using meta-omics approaches 

at marker gene and metagenomics level. First, we provide a comprehensive overview of 

the relationship between PA, SB and human microbiome, and the first meta-analysis of 

the microbiome data in association with PA, where the current evidence by meta-

analyzing the data of over 2600 individuals is presented (Study I). Next, we perform a 

large study on the association of PA and SB and the gut microbial composition in middle-

aged women and investigate the joint association of PA on different intensities (LPA, 

MVPA) and SB using the novel compositional data approach (CoDA) in this 

homogeneous female cohort (Study II). This approach mirrors “real life” by considering 

differing time reallocations across movement behaviors, considering that a day has 24 

hours and, therefore, increasing one behavior means automatically a reduction in other 

activity, providing thereby more reliable knowledge of the PA/SB associations with the 

gut microbiome. Thirdly, we characterize the microbiome of the female reproductive tract 

in low microbial biomass tissues such as endometrium and FT in the absence of a disease 

(Study III). Ultimately, we performed the first metagenomics study (shotgun 

metagenomics) in the biggest endometriosis-controls cohort so far (1000 women), in 

order to identify microbial features (species, pathways) potentially involved in the 

development of the disease (Study IV). 

In section I of this Doctoral thesis, we identified several microbial taxa 

significantly associated with higher PA levels. To date, most studies support that PA alters 
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the microbiome composition (while evidence of SB on microbiome is scarce), mainly 

increasing the relative abundance of short-chain fatty acids (SCFA)-producing bacteria 

with health benefits (e.g., Lachnospiraceae, Erysipelotrichaceae, Roseburia, 

Coprococcus, Veillonella, Akkermansia municiphila and Faecalibacterium prausnitzii) 1–

7, while PA influence on microbiome diversity is unclear (Study I). Similarly, our meta-

analysis uniting 2632 participants indicated no consistent impact of PA on microbial 

diversity. However, at high sport performance level, our meta-analysis on athletes vs. 

non-athletes showed marginally higher gut microbial richness in athletes, as has been 

reported in previous studies and in a recent meta-analysis on athletes’ metagenomics data 

8–12. Therefore, there is a need for clarifying how much and what type of PA would be 

sufficient to increase microbial diversity in the gut. Additionally, our systematic review 

and meta-analyses provide future directions to increase homogeneity and comparability 

between the studies and obtain conclusive findings. We also highlight the need for more 

studies based on objectively measured PA data and the assessment of SB effects, 

standardized pipelines for microbiome analysis and inclusion of relevant covariates such 

as diet, which is often missed in statistical analyses. In this context, our CoDA of the 

objectively measured PA and SB in association with 16S rRNA gene sequencing (i.e. 

microbiome analysis) enhanced the study of the inter-relationships between the gut 

microbiome and accelerometer-measured LPA, MVPA and SB in a sub-cohort of 289 

women (Study II). Since the study group included women with diagnosed PCOS, a 

sensitivity analysis, where we excluded these patients, corroborated our results. After 

adjustments for different covariates (including body mass index –BMI, PCOS diagnosis, 

accelerometer wear time and fiber intake), we detected significantly positive associations 

between the MVPA (relative to the other behaviors) and the relative abundance of 

butyrate-producing bacteria such as Agathobacter and Lachnospiraceae CAG56 (both 
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taxa belong to Lachnospiraceae family). We did not find any significant associations 

between the PA and SB behaviors and microbial diversity, being in line with other cross-

sectional studies in women 3,13. Butyrate, among others SCFAs like acetate or propionate, 

has been related to better human metabolic health 14. Notably, a published meta-omics 

analysis proposed a microbiome-encoded enzymatic mechanism via lactate metabolism 

that could partially explain how microbiome and its metabolites (i.e., SCFAs) contribute 

to enhance athletic performance, linking Veillonella atypica with improved exercise 

performance in a mouse model 15. A more recent study discovered a microbiome-

dependent mechanism in mice that enhances athletic performance by increasing 

dopamine signaling during PA 16. These findings indicate that gut microbial communities 

may also impact exercise performance, which suggest a bidirectional relationship 

between the PA and the host microbiome. Our findings, collectively with previous 

studies, indicate SCFAs-producing bacteria as the possible link between the PA and the 

gut microbiome. Nevertheless, more studies on compositional data analysis including 

sleep time are warranted to precisely analyze the entire 24-hour day in the PA/SB-

microbiome interaction. Furthermore, future research on individual and combined effects 

of PA and diet on the gut microbiome is required to fully unravel the complex 

bidirectional associations between the PA and the gut microbiome. 

Section II of this Doctoral Thesis firstly aimed to characterize and compare the 

microbial profiles in the upper reproductive tract of the low microbial biomass sites as is 

endometrium and FT by applying 16S rRNA gene analysis approach (Study III). There 

seems to be a consensus among endometrial microbiome studies that uterus is a higher 

diverse microenvironment than is the vagina, although current knowledge of the FT 

microbial composition is limited. Since the first events of oocyte fertilization, embryo 

development and implantation take place in the female upper reproductive tract, 
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deciphering the microbial microenvironment in the FT and uterus would provide valuable 

knowledge to improve in vitro conditions in assisted reproductive technologies (ART) 

and manage infertility. We analyzed 24 women with confirmed fertility (submitted to 

abdominal hysterectomy due to benign uterine pathology or tubal ligation), corroborated 

the existence of an endogenous microbiome in the upper reproductive tract, and found 

that around 70% of the identified bacterial taxa is shared between both body sites, 

probably due to proximity and smooth communication of these sites. Further, 

endometrial-specific (e.g., Olsenella, Klebsiella, Veillonella) and FT-specific bacteria 

(e.g., Enhydrobacter, Haemophilus, Alistipes, Paracoccus) were identified. Previous 

studies have also detected the presence of microbes in the upper reproductive tract 17–19, 

however the microbial site-specificity shown in our results has not been reported before. 

Our study also demonstrated how the sampling method greatly affects microbiome 

composition in this low biomass sites, showing a Lactobacillus dominance in those 

samples that were obtained transcervically vs. the samples obtained at the hysterectomy. 

Further, our study results indicate intra-individual microbial similarity rather than inter-

individual tissue similarities, suggesting that endometrial and FT microbiome is unique 

for each individual. These findings support the existence of a “microbial fingerprint” in 

which co-existing microbial communities are shaped into our genetics and other 

environmental and lifestyle factors. Lastly, study IV analyzed the potential involvement 

of the gut microbiome in endometriosis in a sub-cohort of 1000 women by shotgun 

metagenomics. Our study did not report significant compositional or functional microbial 

differences between the women with endometriosis and women without the disease. 

Thus, our study does not provide enough evidence about the existence of a microbiome-

mediated mechanism in the pathogenesis of the disease on a cohort level. Since 

endometriosis is a heterogeneous gynecological condition, microbial alterations may 
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appear only in advanced stages or the most severe forms (i.e., deep infiltrating 

endometriosis). Indeed, a case-control study described a Shigella/Escherichia dominant 

gut microbiome in women with advanced stages 3/4 endometriosis 21. Other study has 

linked pathogenic role of Fusobacterium in the formation of ovarian endometriosis 22. 

Interestingly, we detected a higher relative abundance of Fusobacterium sp. CAG:815 in 

the gut among women with endometriosis, although it did not remain significant after 

adjustment for multiple comparisons. Regarding to functional composition, we detected 

an enrichment of fatty acids synthase (FASN)- and ATP-binding cassette transporters 

(ABC transporters)-related pathways among endometriosis patients, however, no 

significant differences remained after multiple correction. ABC transporters have been 

found highly expressed in eutopic endometrium, and linked to high proliferative capacity 

of endometrium 23. Previous evidence reported an increased in ABC transporters only in 

deep infiltrating endometriosis, suggesting a crucial role for the pathophysiology of this 

subtype in particular. Altogether, these findings point to the presence of microbial 

features that could be involved in the pathogenesis of specific subtypes of endometriosis, 

nevertheless a deeper analysis considering the endometriosis severity stage and disease 

management strategies are warranted. 

5.2. Overall limitations and strengths 

There are some limitations in this Doctoral Thesis that should be highlighted: 

• Our meta-analysis was performed on the analyzed data from the included studies 

due to the lack of available raw data (Study I). Meta-analysis approach re-

analyzing raw data through the same analysis pipeline would reduce potential 

biases introduced by different methodologies. 
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• In study II, sleep time was not included as a component in our CoDA. Therefore, 

we were not able to analyze the entire 24-hour day, but yes the composition of 

movement behaviors during walking hours. 

• The sample size was considerably small and we lacked of negative and positive 

controls in the Study III of this Doctoral Thesis, therefore the study results should 

be interpreted with caution.  

• Study IV should integrate the analysis of different subtypes of endometriosis. A 

sub-analysis on women with deep infiltrating endometriosis and no hormonal 

treatment would provide deeper knowledge of the microbiome-endometriosis 

associations.  

Despite these limitations, this Doctoral thesis presents several strengths that should 

be stated: 

• In study I, we present the most comprehensive systematic review in the PA-

microbiome field, including 91 studies in healthy (e.g. non-athletes and 

professional athletes), unhealthy populations, different stages of life (i.e., 

children, young and older adults), and different body niches (e.g. gut, saliva, 

vaginal, etc.). Additionally, we quantify the available evidence using meta-

analytics methods, following a previous validated methodology 24,25. 

• In study II, a novel approach (CoDA) was used to revisit the association of PA 

and SB with the gut microbiome, analyzing the inter-relationship of the 

accelerometry-assessed behaviors on a continuous scale and in a homogenous 

study population. This approach provides pioneering results in the microbiome 

field, adding to the existing evidence primarily based on self-reported PA data, 

which is subject to assessment bias. 
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•  Despite a small sample size, study III provides valuable knowledge to the 

existence of an endogenous microbiome in the hard-to-obtain body site such as 

FT and its microbial relationship with the proximal site, endometrium.  

• To our knowledge, study IV is the biggest microbiome study performed on 

endometriosis to date. Furthermore, the shotgun metagenomics analysis allowed 

us to analyze, for the first time, those species and microbial pathways that could 

be contributing to this widespread reproductive disorder, which is still a challenge 

to diagnose and treat. 

5.3. Future perspectives 

There are some points to take into consideration for future research: 

• In the PA research field, more studies performing CoDA that integrate co-

dependent accelerometer-measured behaviors are warranted to provide a holistic 

view of the molecular mechanism underlying the PA interactions with different 

health outcomes, including the gut microbial landscape. 

• The influence of SB on microbial composition is understudied, which might have 

even stronger and long-lasting effects on human health. 

• In regard to the reproductive health research, future investigation in bigger study 

populations of the low biomass regions along the female reproductive tract 

together with stringent negative controls are needed for identifying the “core” 

microbiome in health and disease. This knowledge is indispensable before 

developing any new therapeutic strategies targeted to modulate the microbiome 

(antibiotics, pro- and pre-biotic solutions) for diagnosing and treating 

gynecological diseases. 
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• Overall, future microbiome studies based on appropriate and standardized 

methodologies, including experimental design, choice of microbiome detection 

method and unified pipelines for data analysis, would provide well-designed and 

performed studies, and thereby would increase homogeneity and ensure 

reproducibility and comparability between studies. 

• Using additional meta-omics technologies, such as meta-transcriptomics, meta-

proteomics and meta-metabolomics, would provide new information critical for a 

better insight into microbial homeostasis and, therefore, provide an integrative 

view of the microbes-host interactions. Thus, advancing microbiome research 

using multi-omics approaches would enhance our understanding of the crucial 

crosstalk between the microbes and host and lifestyle factors, which would 

provide relevant knowledge for improving human health. 
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6. CONCLUSIONS 

Overall conclusion 

This Doctoral Thesis provides new insights into the compositional and 

functionality profiles of microbes in female health by increasing the current evidence of 

the associations between microbiome, PA and reproductive health. Through meta-omics 

analyses, altogether these findings provide step towards in the concept of microorganisms 

as important allies for female health. 

 

Specific conclusions 

SECTION I. Physical activity and microbial composition 

Study I.  There is a general consensus that points to higher abundances of SCFAs-

producing bacteria in physically more active individuals or after a PA 

intervention. Athletes seem to have a richer microbiome compared to non-athletes. 

Accelerometry-based observational studies and well-controlled trials are needed 

to face high heterogeneity between studies and obtain conclusive information on 

the role of PA in microbial composition. 

Study II. No associations were detected between the objectively measured PA 

and SB with the gut microbial diversity among middle-aged women. Also CoDA 

does not seem to support compositional effects on the gut microbial diversity. 

Butyrate-producing microbes such as Agathobacter and Lachnospiraceae CAG56 

were significantly more abundant when reallocating time from LPA or SB to 

MVPA. Integrating sleep measurement into the CoDA would provide a holistic 

understanding into the PA/SB effects on microbial composition in human. 
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SECTION II. The microbiome in female reproductive health  

Study III. The endometrium and FT seem to harbor endogenous microbial 

profiles. For the close proximity, the two sites shared around 70% of microbes, 

while endometrial-specific and FT-specific bacteria were also detected. Further, 

endometrial and FT samples obtained from the same individual demonstrated 

more microbial similarity than for the same tissue (endometrium or FT) from two 

different women. Nevertheless, the study results should be considered as 

preliminary due to the small sample size. 

Study IV. The gut microbial diversity was similar between women with and 

without endometriosis. No specific microbial features (species and pathways) 

were statistically different between cases and controls. Our findings do not find 

enough evidence to support the existence of a gut microbiome imbalance directly 

implicated in the pathogenesis of endometriosis. However, a deeper analysis of 

endometriosis severity scale and treatment/management strategies should be 

integrated into the analysis to gain a broader understanding of the microbiome 

involvement in the disease.  

 






