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Resumen

Esta tesis se ocupa del estudio de problemas eĺıpticos semilineales sobredetermi-
nados de la forma: 

∆u+ f(u) = 0 en Ω,

u > 0 en Ω,

u = 0 en ∂Ω,

∂νu = c en ∂Ω.

(1)

Aqúı Ω es un dominio regular en Rd, f es una función Lipschitz, c es una constante
y ∂νu es la derivada de u en la dirección del vector unitario normal exterior ν en
el borde ∂Ω. Estos problemas se denominan ”sobredeterminados” debido a las
dos condiciones de contorno. Por lo tanto no esperamos, en general, la existencia
de soluciones para cada dominio Ω, y aqúı la tarea es comprender para cuales
dominios Ω podemos tener una solución para este tipo de problema.

El objetivo de esta tesis es construir algunas nuevas soluciones mediante bifur-
cación local, véase [57, 72, 73], aśı como establecer un tipo de estimación de tipo
Modica, véase [74].

Motivación

Los problemas eĺıpticos sobredeterminados tienen aplicaciones en varios problemas
matemáticos y f́ısicos, como la geometŕıa espectral y la hidrodinámica. Comente-
mos brevemente algunas de las consecuencias del estudio de problemas eĺıpticos
sobredeterminados aplicados a problemas f́ısicos:

(1) cuando un fluido viscoso incompresible se mueve en ĺıneas de corriente rectas
y paralelas a través de una tubeŕıa de una sección transversal dada, la tensión
tangencial por unidad de área en la pared de la tubeŕıa es la misma en todos
los puntos si y solo si la sección transversal es circular;

(2) cuando un ĺıquido sube en un tubo capilar recto, el ĺıquido subirá a la misma
altura en la pared del tubo si y sólo si el tubo tiene una sección circular;

(3) una distribución de carga de equilibrio es constante si y solo si hay un solo
conductor, que es circular;

(4) cuando ponemos un tubo ciĺındrico sólido en un recipiente grande lleno de
ĺıquido, la superficie de contacto entre el ĺıquido y la pared del cilindro subirá
a la misma altura si y sólo si el tubo ciĺındrico sólido tiene una sección
circular;
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(5) la demostración de la existencia de una solución no trivial a una ecuación
eĺıptica semilineal con condiciones de contorno sobredeterminadas en el plano
permite la construcción de una solución débil de las ecuaciones de Euler
estacionarias.

Nos referimos a los trabajos [9, 80,82] para más detalles y otras aplicaciones.

El estudio de los problemas sobredeterminados se remonta al resultado clásico de
Serrin [76], donde el autor demostró que si Ω está acotado, f es C1 y el problema
(1) admite una solución, entonces Ω debe ser una bola. El método utilizado por
Serrin se conoce universalmente como método de los planos móviles, introducido
en 1956 por Alexandrov en [3] para demostrar que las únicas hipersuperficies com-
pactas, conexas y embebidas en Rd con curvatura media constante son las esferas,
y también funciona cuando f es solo lipschitziana [66]. Esta demostración mostró
una analoǵıa entre los problemas eĺıpticos sobredeterminados y las superficies de
curvatura media constante. Desde ese momento, el método de los planos móviles se
convertió en una herramienta muy importante en Análisis para obtener resultados
de simetŕıa para soluciones de ecuaciones eĺıpticas semilineales.

Cuando el dominio Ω es ilimitado, Berestycki, Caffarelli y Nirenberg [10] pro-
pusieron la siguiente conjetura:

Conjetura BCN. Supongamos que Ω es un dominio suave tal que Rd\Ω es conexo.
Entonces, la existencia de una solución acotada al problema (1) para alguna función
Lipschitz f implica que Ω es una bola, un semiespacio, un cilindro generalizado
Bk × Rd−k (Bk es una bola en Rk), o el complemento de uno de ellos.

La conjetura BCN ha motivado varios trabajos interesantes que daban una re-
spuesta afirmativa para algunas clases de problemas eĺıpticos sobredeterminados.
Describamos ahora brevemente algunos de estos resultados. En [37] los autores
obtienen una respuesta afirmativa bajo la hipótesis de que Ω es un epigrafo de
R2 o R3 y la función u satisface algunas hipótesis naturales. En [70] se prueba
la conjetura BCN en el plano para algunas clases de no linealidades f . Además,
el trabajo [68], prueba la conjetura BCN en dimensión 2 si ∂Ω es conexo y no
acotado.

Sin embargo, resulta que la conjetura es falsa y esto se ha probado con un contrae-
jemplo por Sicbaldi [77]. Se demostró que existen dominios periódicos de revolución
tales que el problema (1) admite una solución positiva para f(u) = λu con λ > 0.
Además, estos dominios bifurcan desde el cilindro recto B × R(B ⊂ Rd−1 es una
bola). Después de este primer resultado, se han dado diferentes construcciones en
la literatura, véase por ejemplo [54]. Otro tipo de contraejemplo a la conjetura,
de particular interés, ha sido encontrado en [69]. En ese trabajo se muestra que
(1) admite una solución para algunos dominios exteriores no radiales (es decir, el
complemento de una región compacta en Rd que no es una bola cerrada), para
una función adecuada f(u). En dimensión 2, esto representa la primera construc-
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ción de un contraejemplo a la conjetura BCN, que entonces resulta ser falsa en
cualquier dimensión.

En esta tesis abordaremos las siguientes cuestiones:

Problemas eĺıpticos sobredeterminados en dominios de tipo onduloide
con no linealidades generales

Como mencionamos antes, Sicbaldi en [77] encontró una perturbación periódica
del cilindro recto Bd−1×R que admite una solución periódica al problema (1) con
f(u) = λu, λ > 0. Más precisamente, tales dominios, como se muestra en [75],
pertenecen a una familia 1-paramétrica {Ωs}s∈(−ε,ε) y están dados por

Ωs =

{
(x, t) ∈ Rd × R : |x| < 1 + s cos

(
2π

Ts
t

)
+O(s2)

}
donde ε es una constante pequeña, Ts = T0+O(s) y T0 depende solo de la dimensión
d. Este resultado refuerza la analoǵıa entre dominios que permiten una solución
de (1) y superficies de curvatura media constante, ya que el borde del dominio Ωs

se puede poner en correspondencia con el onduloide (o superficie de Delaunay).

En [32] se demuestra el mismo tipo de resultado en el caso f ≡ 1.

Nuestro objetivo principal con respecto al problema (1) es realizar tal construcción
bajo supuestos minimales sobre la no linealidad f(u). Es claro que una hipótesis
obligatoria es la existencia de una solución del problema de Dirichlet en la bola
unitaria B en Rd. Por razones técnicas, necesitamos que la derivada normal en el
borde sea distinta de cero, lo cual es una situación t́ıpica en problemas eĺıpticos
semilineales sobredeterminados. Por lo tanto, asumimos la siguiente hipótesis:

Hipótesis 1: Existe una solución positiva φ1 ∈ C2,α(B) del problema{
∆φ1 + f(φ1) = 0 en B,

φ1 = 0 en ∂B,
(2)

con ∂νφ1(x) 6= 0 para x ∈ ∂B, donde ν es el vector normal exterior en ∂B.

Observemos que, gracias a [41], cualquier solución φ1 de (2) debe ser una fun-
ción radialmente simétrica. Por razones técnicas, debemos asumir también que
el operador lineal asociado al problema (1) en φ1 no es degenerado. Esta es una
suposición bastante natural si se pretende utilizar un argumento de perturbación.
Concretamente, nuestra segunda suposición es:

Hipótesis 2: Definimos el operador linealizado LD : C2,α
0,r (B)→ C0,α

r (B) por

LD(φ) = ∆φ+ f ′(φ1)φ ,

donde C2,α
0,r (B) y C0,α

r (B) denotan los espacios de funciones radiales en C2,α
0 (B) y

C0,α(B) respectivamente. Suponemos que el operador linealizado LD no es degen-
erado; en otras palabras, si LD(φ) ≡ 0 entonces φ ≡ 0.
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Ahora estamos en posición de enunciar nuestro primer resultado de la siguiente
manera:

Teorema 1. Si d ≥ 1, f : [0,+∞)→ R es C1,α y se cumplen las Hipótesis 1 y 2,
entonces existe un número positivo T∗ y una curva continua

(−ε, ε) → C2,α(R/Z)× R
s 7→ (vs, Ts)

para ε suficientemente pequeño, con vs = 0 si y sólo si s = 0. Además T0 = T∗ y
el problema sobredeterminado (1) tiene solución en el dominio

Ωs =

{
(x, t) ∈ Rd × R : |x| < 1 + vs

(
t

Ts

)}
.

La solución u = us del problema (1) es Ts-periódica en la variable t y por lo tanto
acotada. Además, ∫ 1

0

vs(t) dt = 0.

Señalemos que las Hipótesis 1 y 2 se cumplen por ejemplo en los siguientes casos
(entre muchos otros):

(1) Si f(0) > 0 y f ′(u) < λ1 para cualquier u ∈ (0,+∞), donde λ1 es el primer
valor propio del Laplaciano de Dirichlet en la bola unitaria de Rd. En este
caso se puede encontrar una solución positiva (por ejemplo, extendiendo
f(u) = f(0) si u < 0 y minimizando el funcional de Euler-Lagrange corre-
spondiente) y el operador LD tiene solo valores propios positivos.

(2) Si f(u) = up − u, 1 < p < d+2
d−2

si d > 2, p > 1 si d = 2. En este caso es bien
conocida la existencia de una solución, y se trata de una solución de paso
de montaña. Como consecuencia, LD tiene un valor propio negativo. Por el
análisis de [52], todos los demás valores propios son estrictamente positivos.

(3) Si f(u) = λeu y λ ∈ (0, λ∗) para algún λ∗ > 0 que recibe el nombre de valor
extremal. En este caso, φ1 es la llamada solución minimal y LD solo tiene
valores propios positivos (ver, por ejemplo, [26]).

En particular, (1) se cumple cuando f ≡ 1, y aśı recuperamos el resultado en [32].
Por otro lado, cuando f(u) = λu para algún λ > 0, la Hipótesis 1 implica que λ es
el primer valor propio del Laplaciano de Dirichlet en la bola unitaria de Rd, pero
entonces la Hipótesis 2 claramente no se cumple. Por lo tanto, nuestro teorema es
complementario a los resultados en [75,77].

El teorema 1 es un resultado de bifurcación en el esṕıritu de [77], ver tam-
bién [32, 75]. En resumen, se puede reformular la existencia de soluciones para
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(1) como los ceros de un operador no lineal de Dirichlet a Neumann, y se usa el
Teorema de Crandall-Rabinowitz para concluir la bifurcación local.

Dominios excepcionales en dimensiones superiores

El segundo problema que estudiamos en esta tesis tiene que ver con la existencia
de subdominios Ω ⊂ Rd × R donde el problema de contorno sobredeterminado

∆u = 0 en Ω,

u = 1 en ∂Ω,

lim|z|→∞ u(z, t) = 0 uniformemente en t ∈ R,
∂u

∂ν
= c en ∂Ω,

(3)

admite solución. Aqúı, hemos elegido las coordenadas (z, t) ∈ Rd−1 × R. Los
dominios Ω que queremos construir son subdominios excepcionales no triviales del
espacio euclideo Rd, d ≥ 4.

En la literatura clásica, un dominio suave Ω del espacio euclideo Rd se dice que es
un dominio excepcional si existe una función armónica positiva con dato de borde
de Dirichlet igual a cero y dato de borde de Neumann constante distinto de cero.
El problema de encontrar dominios excepcionales se remonta al trabajo pionero
de Hauswirth, Hélein y Pacard en [46], donde el dominio excepcional no trivial

Ω0 :=
{

(x, y) ∈ R2 : |y| < π

2
+ cosh(x)

}
fue descubierto en el plano. Notamos que una familia de dominios planos ex-
cepcionales infinitamente conectados ya fue descubierta en dinámica de fluidos
en [6, 19].

Hasta la fecha, la estructura del conjunto de dominios excepcionales en dimensiones
d ≥ 3 sigue siendo en gran parte desconocida. Con respecto a la existencia de
dominios excepcionales no triviales en dimensiones superiores, solo conocemos los
trabajos recientes [34,54].

El propósito principal aqúı es la construcción de subdominios Ω ⊂ Rd−1×R, d ≥ 4
de tal manera que el problema sobredeterminado (3) tiene solución. Los dominios
bajo consideración son complementos de cilindros perturbados de la forma

ΩT,ϕ :=

{
(z, t) ∈ Rd−1 × R : |z| > 1 + ϕ

(
2π

T
t

)}
⊂ Rd, (4)

donde T > 0, ϕ : R→ (0,∞) es una función 2π-periódica de clase C2,α, α ∈ (0.1).
El caso ϕ ≡ 0 en (4) corresponde al complemento del exterior del cilindro recto
B1 × R y la función u1(z) = |z|3−d resuelve (3) con c = d− 3.
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Nuestro resultado principal se puede expresar como sigue:

Teorema 2. Sea d ≥ 4. Entonces existe un número T∗ >
2π√
d− 2

y una curva

suave

(−ε, ε)→ (0,+∞)× C2,α(R), s 7→ (Ts, vs)

con T0 = T∗, v0 ≡ 0 y ∫ π

−π
vs(t) cos(t) dt = 0,

tal que para todo s ∈ (−ε, ε), siendo ϕs(t) = s cos(t)+svs, existe una única función
us ∈ C2,α(ΩTs,ϕs) que satisface:

∆us = 0 en ΩTs,ϕs ,

us = 1 en ∂ΩTs,ϕs ,

lim|z|→∞ us(z, t) = 0 en ∂ΩTs,ϕs ,
∂us
∂ν

= d− 3 en ∂ΩTs,ϕs .

(5)

Además, us es radial en z, aśı como Ts-periódica y par en t para cada s ∈ (−ε, ε).

Señalamos que, para cada s ∈ (−ε, ε), el dominio ΩTs,ϕs en el Teorema 2 es ex-
cepcional ya que ũs = 1− us es solución de (3) en ΩTs,ϕs . De hecho, esta función
es positiva en ΩTs,ϕs ya que la función armónica us no puede alcanzar un máximo
en ΩTs,ϕs a menos que sea constante, lo cual está excluido por las condiciones de
contorno en (5). Se sigue que 0 < us < 1 y por lo tanto 0 < ũs < 1 en ΩTs,ϕs .

En realidad, los dominios en el Teorema 2 tienen una forma similar a los encontra-
dos en el trabajo reciente [34] para el caso d = 3, pero la construcción subyacente
es completamente diferente. De hecho, el enfoque en [34] se basa en propiedades
espećıficas de una representación integral de un operador de Dirichlet a Neumann
asociado al problema, que solo está disponible en el caso d = 3. Por otro lado,
nuestro enfoque depende esencialmente del supuesto d ≥ 4. La diferencia entre
estos dos casos se refleja en la geometŕıa de las funciones de techo asociadas que
están acotadas por d ≥ 4 y tienen un crecimiento logaŕıtmico en la distancia desde
el eje del cilindro en el caso d = 3. Claramente, estas diferencias están relacionadas
con la diferente naturaleza de la solución fundamental de −∆ en las dimensiones
d = 2 y d ≥ 3.

La idea principal de la demostración es de nuevo aplicar el teorema de la bifur-
cación local de Crandall-Rabinowitz. Para ello es necesario calcular el operador
linealizado construido en nuestro trabajo y analizar sus propiedades espectrales.

Problemas eĺıpticos sobredeterminados en dominios contráıbles no triv-
iales de la esfera
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El tercer problema que estudiamos es mostrar la existencia de soluciones a proble-
mas eĺıpticos sobredeterminados (1) planteados en variedades riemannianas com-
pletas (M, g) en lugar de la configuración eucĺıdea (Rd, geucl). En este marco,
necesitamos reemplazar en (1) el Laplaciano clásico por el operador de Laplace-
Beltrami ∆g asociado a la métrica g de la variedad M:


∆gu+ f(u) = 0 en Ω,

u > 0 en Ω,

u = 0 en ∂Ω,

∂νu = c en ∂Ω,

(6)

donde Ω es un dominio de M, y ν es el vector normal unitario exterior sobre ∂Ω
con respecto a g. Aqúı estamos interesados en el caso de una esfera con la métrica
usual.

Un resultado análogo al de Serrin fue dado por Kumaresan y Prajapat [51], donde
se prueba que si Ω está contenido en un hemisferio y (6) admite una solución,
entonces el dominio es un disco geodésico. También aqúı la prueba se basa en el
método de los planos móviles.

Otros dominios naturales de Sd donde (6) tiene soluciones son los entornos simétricos
de cualquier ecuador. Tales anillos simétricos no son contráıbles y su existencia
proviene de la geometŕıa de Sd de la misma manera que existen en un cilindro
o en un toro. Además, se ha demostrado la existencia de soluciones de (6) en
dominios dados por perturbaciones de un entorn de un ecuador en Sd, véase [33],
de la misma manera que se ha hecho para el mismo tipo de dominios en cilindros
o en toros [77].

Teniendo en cuenta estos hechos, surge naturalmente la siguiente pregunta: ¿es
cierto que si Ω ⊂ Sd es contráıble y (6) tiene solución, entonces Ω debe ser una bola
geodésica? En [28], Espinar y Mazet dan una respuesta afirmativa d = 2 pero bajo
algunas hipótesis sobre el término no lineal f(u). La demostración de tal resultado
muestra nuevamente una analoǵıa entre problemas eĺıpticos sobredeterminados y
superficies de curvatura media constante, porque está inspirada en el Teorema
de Hopf que establece que las únicas superficies de curvatura media constante de
género cero inmersas en R3 son las esferas.

En este apartado mostramos que la respuesta a la pregunta anterior es, en general,
negativa: existen dominios contráıbles Ω ⊂ Sd, diferentes a las bolas geodésicas,
donde (6) admite solución para algunas no linealidades f(u). Esta construcción
funciona para cualquier dimensión d ≥ 2. En vista de [51], dichos dominios no
pueden estar contenidos en ningún hemisferio.

Para ser más espećıficos, probamos el siguiente teorema:
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Teorema 3. Sea d ∈ N, d ≥ 2 y 1 < p < d+2
d−2

(p > 1 si d = 2). Entonces existen
dominios D, que son perturbaciones de una pequeña bola geodésica, tales que el
problema 

−ε∆gu+ u− up = 0 en Sd \D ,

u > 0 en Sd \D ,

u = 0 en ∂D ,

∂νu = c en ∂D ,

admite una solución para algún ε > 0.

La idea principal de la demostración es la siguiente. Primero, se usa una dilatación
para pasar a un problema planteado en Ωk el complemento de una bola geodésica
de radio 1 en Sd(k), la esfera de radio 1/k. Cuando k → 0, el problema converge
(en cierto sentido) a un problema ĺımite en Rd \ B(0, 1), que se estudia en [69].
Luego usamos el teorema de bifurcación de Krasnoselskii para mostrar la existen-
cia de una rama de soluciones no triviales para (6).

Estimaciones de tipo Modica y resultados de curvatura

El último problema que abordamos en esta tesis consiste en dar una estimación
sobre el gradiente de la solución al problema (1) y proporcionar alguna información
sobre la curvatura de la frontera.

Dada una F primitiva de f , definimos la función P :

P (x) = |∇u(x)|2 + 2F (u(x)). (7)

En [58], Modica demostró que si F es una función no positiva y u : Rd → R es
una solución acotada C3 de

∆u+ f(u) = 0,

entonces P ≤ 0. La prueba de este resultado se basa en el hecho de que P satisface
L(P ) ≥ 0 para un cierto operador eĺıptico L, y por lo tanto la conclusión se
sigue (no inmediatamente) del principio máximo. Tal resultado se ha extendido a
operadores más generales en [13], donde Caffarelli, Garofalo y Segala demuestran
la siguiente afirmación:

P (x0) = 0 para algún x0 ∈ Rd ⇔ P (x) = 0 para todo x ∈ Rd ⇔ u es unidimensional.

Esos resultados son muy importantes en el estudio de la conjetura de De Giorgi
y problemas relacionados, y tienen consecuencias importantes (por ejemplo, se ha
derivado una fórmula de monotonicidad en [59]).
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Las estimaciones de tipo Modica para problemas sobredeterminados han sido es-
tudiadas en [89] bajo algunas condiciones sobre la no linealidad f y la constante
c. Nuestro objetivo aqúı es estudiar la validez de tales estimaciones en general.

Uno de los resultados es exactamente un resultado de rigidez para problemas
eĺıpticos sobredeterminados, que en términos generales es el siguiente: si f y c
satisfacen una determinada condición, entonces la curvatura media de ∂Ω es nega-
tiva, o Ω es un semi-espacio. Concretamente, si denotamos por H(p) a la curvatura
media de ∂Ω en p, se tiene el siguiente resultado:

Teorema 4. Sea u ∈ C3(Ω) una solución acotada del problema (1), con f ∈ C1.
Si existe una primitiva F no positiva de f tal que

c2 + 2F (0) ≥ 0 , (8)

entonces H(p) < 0 para cualquier p ∈ ∂Ω, o bien Ω es un semiespacio y u tiene
1-dimensional, es decir, existe x0 ∈ Rd, una función g : [0,+∞)→ R y ~a ∈ Rd, tal
que

Ω = {x ∈ Rd : ~a · (x− x0) > 0}, y u(x) = g(~a · (x− x0)), x ∈ Ω.

En particular, si se satisface (8), no se puede resolver el problema (1) en una
bola, ni en un cilindro, ni en la perturbación de un cilindro. Observe que estamos
considerando soluciones acotadas de (1), por lo que f se define en un intervalo
cerrado y siempre es posible elegir una primitiva no positiva de f , cambiando f
apropiadamente fuera de la imagen de u. Un caso particular del Teorema 4 es el
Teorema 2.13 en [70] para dominios periódicos dobles en el plano.

Obtendremos el Teorema 4 como corolario de resultados más generales, que rep-
resentan estimaciones tipo Modica para problemas sobredeterminados.

Teorema 5. Sea Ω ⊂ Rd, d ≥ 1, un dominio regular, F ∈ C2(Ω) una función no
positiva, F ′ = f, u ∈ C3(Ω) una solución acotada del problema (1) y P dado por
(7). Entonces

P (x) ≤ max{0, c2 + 2F (0)} para cada x ∈ Ω.

Además, si existe un punto x0 ∈ Ω tal que

P (x0) = max{0, c2 + 2F (0)},

entonces P es constante, u es 1-dimensional y Ω es un semi-espacio. Es decir,
existe x0 ∈ Rd, una función g : [0,+∞)→ R y ~a ∈ Rd, tal que

Ω = {x ∈ Rd : ~a · (x− x0) > 0}, y u(x) = g(~a · (x− x0)), x ∈ Ω.
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La demostración utiliza el principio del máximo junto con argumentos de escala y
un cuidadoso paso al ĺımite en los argumentos por contradicción.

Si P está acotado superiormente por c2 + 2F (0) podemos dar información extra
sobre la curvatura media de ∂Ω.

Teorema 6. Sea Ω ⊂ Rd, d ≥ 1, un dominio regular que admite una solución
acotada u ∈ C3(Ω) al problema (1) con c 6= 0. Asumimos que:

P (x) ≤ c2 + 2F (0) para cada x ∈ Ω.

Entonces, H(p) ≤ 0 para cualquier p ∈ ∂Ω. Además, si existe p ∈ ∂Ω tal que
H(p) = 0, entonces P es constante, u es 1-dimensional y Ω es un semi-espacio o el
dominio entre dos hiperplanos paralelos.

Señalemos que el Teorema 6 no requiere que F sea no positiva. Por el contrario,
requiere que la derivada normal sobre ∂Ω no sea cero. Como hemos comentado
anteriormente, existen soluciones del problema (1) en bolas, cilindros u onduloides
generalizados (ver por ejemplo [77]). El teorema 6 implica que en todos estos
casos,

sup
x∈Ω

P (x) > c2 + 2F (0) .
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Chapter 1

Introduction. Objectives.
Results.

This thesis is concerned with the study of semilinear overdetermined elliptic prob-
lems in the form


∆u+ f(u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

∂νu = c on ∂Ω,

(1.1)

where Ω is a regular domain in Rd, f is a Lipschitz function, c is a constant, and
∂νu is the derivative of u in the direction of the outward normal unit vector ν on
the boundary ∂Ω. These problems are called ”overdetermined” because of the two
boundary conditions. Hence we do not expect, in general, existence of solutions
for every domain Ω, and here the task is to understand for which domains Ω we
may have a solution to this kind of problem.

Being specific, the objective in this thesis is to construct some new bifurcating
solutions, see [57,72,73], and establish a kind of Modica type estimate, see [74].

1.1 Motivation

Overdetermined elliptic problems have applications in various mathematical and
physical problems, that we briefly describe below. We refer to the works [9,80,82]
for more details and further applications.

1
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1.1.1 Fluid moving in a straight pipe

We start with a viscous incompressible fluid moving through a straight pipe of a
given cross section. Fixing Cartesian coordinates (x, y, z) in space with the z axis
directed along the pipe, the section of the pipe is therefore a domain Ω in the
(x, y)-plane. The velocity of the fluid u can be seen as a function of (x, y) defined
in Ω.

With the adherence condition, the function u satisfies
∆u+ δ

ηl
= 0 in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.2)

where δ is the change of pressure between the two ends of the pipe, l is the length
and η is the viscosity. It turns out that the tangential stress at a point (x, y, z) of
the pipe wall is given by

∣∣η ∂u
∂ν

∣∣ .
An interesting question arises: when is such tangential stress the same at all points?
This leads to solutions to (1.2) that satisfy the Neumann type boundary condition

∂u

∂ν
= c on ∂Ω. (1.3)

If Ω is a ball with radius R, the unique solution to (1.2) is given by

u(x, y) =
δ

4ηl
(R2 − x2 − y2),

which satisfies (1.3). Actually, if Ω is not a ball, the solution to (1.2) does not
satisfy (1.3). This is a consequence of the classical result by Serrin [76].

1.1.2 The torsion problem.

We now consider the torsion of a solid cylindrical bar. Suppose we have a cylinder
of arbitrary cross-section Ω, made of an isotropic material, with the z-axis along
the axis of the cylinder as in the previous example. Generally, its cross-section
bends instead of remaining a plane after twisting. After rotating the bar, any
point P (x, y, z) on the bar will occupy a new point P ′(x′, y′, z′). If the rotation
angle is small, it is physically natural to modelize the displacements as

x′ = x− αzy, y′ = y + αzx, z′ = z + αϕ(x, y),

where ϕ is called the torsion function and α is a constant (the twist per unit
length).
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Using the generalized Hooke’s Law, it is possible to show that ϕ is harmonic,
see [82, Chapter 4, equations (29.1)]. Define ψ the complex harmonic conjugate
of ϕ.

Let us now consider the ”stress function” introduced by L. Prandtl as

u(x, y) = ψ(x, y)− 1

2
(x2 + y2),

which solves the following problem{
∆u+ 2 = 0 in Ω ,

u = c on ∂Ω .

It turns out that the magnitude of the tangential stress is given by τ(x, y) =
−∂u
∂ν
µα, where µ is the modulus of the stiffness of the bar, see [82, Chapter 4,

Sections 34, 35].

A natural question appears: for which shapes is the magnitude of the resulting
stress on the lateral surface of the bar constant?

1.1.3 The interior capillarity problem

Overdetermined problem can be also considered for more general elliptic operators
instead of Laplacian one. The next example involves a homogeneous and incom-
pressible liquid rising in a straight capillary tube. Taking the same setting as in
the previous examples, we define the height of liquid by u(x, y) with respect to the
level of Ω.

In this situation, the Euler-Laplace condition (reduced by Euler’s condition and
Laplace’s condition) and Dupré-Young condition for hydrostatic equilibrium can
be written as

div
∇u√

1 + |∇u|2
− bu− c = 0 in Ω ,

and
∂u

∂ν
= cosα

√
1 + |∇u|2 on ∂Ω ,

where b = ρg
σ
, ρ is the density of the fluid, σ is the surface tension, g is the gravity

and α is the contact angle between the liquid surface and the wall of the tube,
which is constant. The natural question that arises here is to study shapes Ω such
that the liquid reaches the same height on the tube wall.

Therefore, if u = a on ∂Ω, where a is a constant, then −∂u
∂ν

= |∇u|. Hence

∂u

∂ν
= cosα

√
1 +

∣∣∣∣∂u∂ν
∣∣∣∣2,
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which implies that ∂u
∂ν

= cotα. Therefore, u is the solution of the problem:
div ∇u√

1+|∇u|2
− bu− c = 0 in Ω ,

u = a on ∂Ω ,
∂u
∂ν

= cotα on ∂Ω .

Of course, a simple translation allows to change the Dirichlet boundary condition
by u = 0.

1.1.4 The electrostatics problem

We consider a smooth conducting body G in R3, which has a charge distributed
on the boundary, α ∈ C(∂G). The potential generated by α is

u(x) =

∫
∂G

α(y)γ(|x− y|)dσy

in G, where the function γ is given by

γ(t) = − 1

4πt
.

We consider the case in which α is constant. We say that the charge α is at
equilibrium if u is constant on the boundary. In this case, u solves the following
equation 

∆u = 0 in G , and Ω = R3\G ,

u = 0 on ∂G ,
∂u
∂ν

= α on ∂G.

We can also consider this problem in dimension d 6= 3. Notice that if G is a ball,
the potential u, which is rotationally invariant and harmonic, is constant on ∂G. A
natural question arises: are there other domains G with potential at equilibrium?
This question is answered negatively for d = 2 and d = 3 by Martensen [55] and
Reichel [67] respectively.

1.1.5 The exterior capillarity problem

Here, we consider an infinite reservoir filled with a homogeneous and incompress-
ible liquid, in which we submerge a solid right cylinder. We study the contact
surface between the liquid and the cylinder’s wall. This problem is dual to the
interior capillarity problem and leads to the same equation, but on the outside of
the cylinder.



1.1. MOTIVATION 5

More generally, we consider m solid cylindrical bodies of arbitrary (smooth) cross
sections Gi, i = 1, ...,m submerged in a reservoir, without touching each other.
This causes the liquid to rise around their walls to a certain level, greater than the
reference level of the liquid. The question here is: given such a set of cylinders, can
we add more cylinders to create an equilibrium system, with each contact surface
at a constant height?

Mathematically, as in the previous problem, assume that Gi, i = 1, ...,m are mu-
tually disjoint and bounded domains such that Rd\G is connected, being G the
union of all. We are interested in the solvability of the problem:

div ∇u√
1+|∇u|2

− bu− c = 0 in Rd\G ,

u ≥ u∞ in Rd\G ,

u→ u∞ as |x| → ∞ ,

u = ai > 0 on ∂Gi, i = 1, ...,m ,
∂u
∂ν

= cotαi on ∂Gi, i = 1, ...,m .

Note that the above overdetermined problem does not admit solutions, unless
m = 1 and G is a ball, see [79].

1.1.6 The Euler equations

The incompressible Euler equations are given by
∂v
∂t

+ (v · ∇)v = −∇p in Ω,

div v = 0 in Ω,

v · ν = 0 on ∂Ω,

where Ω ∈ R2 is a regular domain, v : R × Ω → R2 is the velocity vector field,
p : R× Ω→ R is the pressure, and the variable t stands for time. The stationary
Euler equations for an incompressible and inviscid flow v are:

(v · ∇)v = −∇p in Ω,

div v = 0 in Ω,

v · ν = 0 on ∂Ω.

(1.4)

To see the relation between the Euler equations and semilinear elliptic equation,
one needs to talk about the streamfunction. Taking φ = v⊥ = (−v2, v1), it follows
that there exists u : Ω̄→ R such that φ = ∇u since

∂φ2

∂x
− ∂φ1

∂y
= 0,
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and ∫
∂Ω

φ · τ =

∫
∂Ω

φ⊥ · ν =

∫
∂Ω

v · ν = 0,

where τ is the tangent vector to ∂Ω, since div v = 0 and v · ν = 0 on ∂Ω.

If ω = ∇× v is the vorticity of the fluid, then ∆u = ω. Applying ∇× to the first
equation of (1.4), we get

∇ω · v = 0.

Also the above equation can reduce to

∇(∆u) ‖ ∇u,

which is satisfied for any radially symmetric function u, for instance. One type of
solutions to this is any solutions of a semilinear equation ∆u+ f(u) = 0 since

−∇(∆u) = f ′(u)∇u⇒ ∇(∆u) ‖ ∇u.

Moreover, the boundary condition v·ν = 0 is equivalent to u = ci in each connected
component of the boundary Γi = (∂Ω)i, i ≥ 1.

We also consider the Bernoulli function B = |v|2
2

+ p.

Claim: B is constant on Γi.
We now compute the derivative of B and can get

∇B =
1

2
Dv · v⊥ +

1

2
v ·Dv⊥ +∇p.

Let us discuss two cases:
Case 1: v 6= 0.

∇B · v =
1

2
Dv · v⊥ · v +

1

2
v ·Dv⊥ · v +∇p · v = 0.

Therefore, ∇B ⊥ v. As a result, B is constant on streamlines, that is, |v|
2

2
+ p is

constant on Γi.
Case 2: v = 0.

∇B = ∇p = −(v · ∇)v = 0.

Again, |v|
2

2
+ p is constant on Γi.

Let us first give a definition of the weak solution v to the Euler equation in R2 by∫
R2

(v ⊗ v) : Dψ = 0,

∫
R2

v · ∇ϕ = 0

for any vector field ψ ∈ C1
0(R2)2 with div ψ = 0 and any scalar function ϕ ∈

C1
0(R2), see [15]. Here A : B =

2∑
i,j=1

AijBij for A = {Aij} and B = {Bij}.
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Lemma. Let Ω ⊂ R2 be a regular domain, p be of class C1 and v be a C1 solution
to (1.4), then

ṽ =

{
v, x ∈ Ω,

0, x /∈ Ω,

is a weak solution of the Euler equation in R2 if and only if |v| is constant on
Γi, i ≥ 1.

Proof. Taking an arbitrary vector field ψ ∈ C1
0(R2)2 with div ψ = 0, what we need

to verify is that ∫
R2

(ṽ ⊗ ṽ) : Dψ = 0.

It suffices to prove∫
Ω

(v ⊗ v) : Dψ = −
∫

Ω

div(v ⊗ v) · ψ +

∫
∂Ω

|v|2ψ · ν

=

∫
Ω

div(pψ) +

∫
∂Ω

|v|2ψ · ν

=

∫
∂Ω

(p+ |v|2)ψ · ν.

If p + |v|2 is a constant on Γi, then
∫
∂Ω

(p + |v|2)ψ · ν =
∑
i

ci
∫

Γi
ψ · ν = 0 since

div ψ = 0. It follows that ṽ is a weak solution of the Euler equation in R2.

Now we assume that p + |v|2 is not a constant on Γ1 to get a contradiction. Let
g = p + |v|2 6= constant on Γ1 with

∫
Γ1

(g − ḡ) = 0, where ḡ = 1
|Γ1|

∫
Γ1
g. Take G

such that Gτ = g− ḡ, where τ is the tangent vector. We extend G outside Γ1 with
compact support so that supp G ∩ Γi = ∅, i ≥ 2. Taking ψ = (∇G)⊥ ∈ C1 then
divψ = 0 and ψ has compact support. It follows∫
∂Ω

(p+ |v|2)ψ · ν =

∫
Γ1

g · ψ · ν =

∫
Γ1

g · (∇G)⊥ · ν =

∫
Γ1

g ·Gτ =

∫
Γ1

(g − ḡ)2 6= 0,

which is a contradiction.

Then p + |v|2 is a constant on Γi if ṽ is a weak solution of the Euler equation in
R2. Together with the claim that B is a constant on Γi, we have therefore get that
p and |v| are constant on Γi.

Finally, for all ϕ ∈ C1
0(R2),

0 =

∫
R2

ṽ · ∇ϕ =

∫
Ω

v · ∇ϕ = −
∫

Ω

ϕdiv v +

∫
∂Ω

ϕv · ν

since div v = 0 in Ω and v · ν = 0 on ∂Ω.
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One can refer to [25, Lemmas 1.1, 2.1] for other relations between overdetermined
elliptic problem and fluid equations.

From the above result, it is clear that the existence of a solution to a semilinear
elliptic equation with overdetermined boundary values in dimension 2 gives rise to
a weak solution of the steady Euler equations, which is 0 outside Ω.

1.2 Antecedents

The study of overdetermined boundary value problems can be traced back to
Serrin’s classical result [76], where the author proved that if Ω is bounded, f is
C1 and problem (1.1) admits a solution, then Ω must be a ball. The method
used by Serrin is universally known as the moving plane method, introduced in
1956 by Alexandrov in [3] to prove that the only compact, connected, embedded
hypersurfaces in Rd with constant mean curvature are the spheres, and also works
when f is only Lipschitz continuous [66]. This proof showed an analogy between
overdetermined elliptic problems and constant mean curvature surfaces. From that
moment, the moving plane method has become a very important tool in Analysis
to obtain symmetry results for solutions of semilinear elliptic equations.

When the domain Ω is unbounded, Berestycki, Caffarelli and Nirenberg [10] pro-
posed the following conjecture:

BCN Conjecture: Assume that Ω is a smooth domain such that Rd\Ω is con-
nected. Then the existence of a bounded solution to the problem (1.1) for some
Lipschitz function f implies that Ω is either a ball, a half-space, a generalized
cylinder Bk × Rd−k (Bk is a ball in Rk), or the complement of one of them.

Such conjecture was motivated first by the result of Serrin for bounded domains,
and for unbounded domains by some rigidity results obtained in epigraphs ( [10])
and exterior domains ( [2, 67]). The BCN Conjecture has motivated various in-
teresting works giving an affirmative answer for some classes of overdetermined
elliptic problems. Let us now briefly describe some of such results. In [37] the
authors get an affirmative answer under the hypothesis that Ω is an epigraph of
R2 or R3 and the function u satisfies some natural assumptions. In addition, the
BCN conjecture is proved in the plane for some classes of nonlinearities f in [70].
Moreover, the work [68] proves the validity of the BCN conjecture in dimension 2
if ∂Ω is connected and unbounded.

It turns out, however, that the conjecture has been answered negatively with a
counterexample by Sicbaldi [77]. It is shown that there exist periodic domains of
revolution such that the problem (1.1) admits a positive solution for f(u) = λu
where λ > 0. Moreover, these domains bifurcate from a straight cylinder B × R,
where B ⊂ Rd−1 is a ball. The construction in [77] relies on topological degree
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theory and therefore does not give rise to a smooth branch of domains. After
such first result, different constructions have been given in the literature, see for
instance [54].

The first problem that we address in this thesis is the validity of this perturbation
result for general nonlinearities f(u) (Chapter 3).

In the spirit of the corresponding results of Alexandrof and Serrin, a parallelism
between overdetermined elliptic problems and constant mean curvature surfaces
has attracted a lot of attention. Indeed, the boundary of the domain built in
[77] has a shape that looks like an unbounded constant mean curvature surface,
showing again an important analogy with the onduloid (or Delaunay surfaces).
Moreover, in [22] similar solutions are found for the Allen-Cahn nonlinearity, but
in domains that are perturbations of a dilated straight cylinder, i.e. perturbations
of (ε−1Bd) × R for ε small, or more in general domains that are perturbations of
a dilation of the region contained in an onduloid.

If Ω is an epigraph, the problem is also related to the famous De Giorgi’s conjecture
(see [20]):
De Giorgi conjecture: Let u : Rd → R be an entire solution of the Allen-Cahn
problem:

∆u+ u− u3 = 0.

Assume that for x ∈ Rd,
∂u

∂xd
> 0.

Then the level sets of u are hyperplanes, that is, u is one-dimensional, at least if
d ≤ 8.

The relationship between De Giorgi’s conjecture and overdetermined problems is
not surprising if we recall that this conjecture is the counterpart of Bernstein’s
conjecture on minimal surfaces (1914), which stated that all entire minimal graph-
s in Rd should be hyperplanes, and has been disproved by Bombieri, De Giorgi and
Giusti for d ≥ 9 ( [12]). Starting from the Bombieri-De Giorgi-Giusti entire mini-
mal graph, the entire nontrivial monotone solutions to the Allen-Cahn equation if
d ≥ 9 are built by Del Pino, Kowalczyk and Wei in [21]. In other words, they show
with an example that in the De Giorgi conjecture, ”at least if d ≤ 8” is indeed
necessary. In this spirit, Del Pino, Pacard and Wei have shown that there exist
nontrivial domains Ω that support solutions to (1.1) when f(u) is of Allen-Cahn
type (i.e. f(u) = u − u3 or other nonlinearities with similar behavior) if d ≥ 9,
see [22].

For the study of the De Giorgi’s conjecture, Modica estimates are useful. In [58],
Modica proved that if F is a nonpositive function and u : Rd → R is a bounded
C3 solution of

∆u+ F ′(u) = 0,
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then P (x) = |∇u(x)|2 + 2F (u(x)) ≤ 0. The proof of this result is based on the
fact that P satisfies L(P ) ≥ 0 for a certain elliptic operator L, and hence the
conclusion follows (not immediately) from the maximum principle.

One of the questions that we deal with in this thesis is to study to which point
this kind of inequalities hold also for overdetermined elliptic problems, and what
is its exact form, in general, (Chapter 6).

The harmonic case f = 0 has some intrinsic features and deserves a separate
discussion. In the classical literature, a smooth domain Ω of the Euclidean space
Rd is said to be an exceptional domain if there exists a positive harmonic function
with vanishing Dirichlet boundary data and constant nonzero Neumann boundary
data. Such a function is referred to as the roof function.

The problem of finding exceptional domains goes back to the pioneer work [46],
where the nontrivial exceptional domain

Ω :=
{

(x, y) ∈ R2 : |y| < π

2
+ cosh(x)

}
was discovered in the plane. Moreover, Traizet [88] was able to prove that the
only examples up to rotation and translation of planar exceptional domains hav-
ing finitely boundary components are the exterior of a disk, a halfplane and the
nontrivial domain Ω. In [88, Example 7.3], he further proved the existence of a
nontrial periodic exceptional domain corresponding to Scherk’s simply periodic
minimal bigraphs. In higher dimension, a catenoid-type solution has been recently
found, see [54].

In this thesis, we will show the existence of exceptional domains of Rd, d ≥ 4,
where such overdetermined problem admits a solution (Chapter 4).

For an exterior domain Ω = Rd \D, the first result was obtained by Reichel [67],
who proved that if there exists u ∈ C2(Ω) with

∆u+ f(u) = 0 in Ω,

u = 1 on ∂Ω,

lim|z|→∞ u(z) = 0,
∂u

∂ν
= c on ∂Ω,

0 < u ≤ 1 in Ω,

(1.5)

then D is ball and u is radially symmetric and radially decreasing with respect to
the center of D. Here t 7→ f(t) is a locally Lipschitz function, non-increasing for
non negative and small values of t. In the special case f ≡ 0, this result therefore
characterizes the ball as the only electric conductor such that the intensity of
the corresponding electric field is constant on the boundary. To prove his result,
Reichel used the moving plane method.
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Closely related to [67] is the work [2], where the authors studied (1.5) without the
decay at infinity and under different assumptions on f including the interesting
case f(t) = tp with d

d−2
< p ≤ d+2

d−2
. Moreover, Sirakov [79] proved that the result

in [67] holds without the assumption u < 1 in Ω and for possibly multi-connected
sets Di, i = 1, ...,m,m ∈ N.

In [69], it is shown that (1.1) admits a solution for some nonradial exterior do-
mains (i.e. the complement of a compact region in Rd that is not a closed ball),
for a suitable function f(u), which gives another type of counterexample to the
conjecture. In dimension 2, this represents this first construction of a counterex-
ample to the BCN conjecture, that turns to be false in any dimension. It is worth
pointing out that such result breaks the analogy with the theory of constant mean
curvature surfaces.

A case of interest is that in cones. Let D be a smooth domain on the unit sphere
Sd−1, d ≥ 2 and let Σ be the cone spanned by D, namely

Σ := {x ∈ Rd : x = st, t ∈ D, s ∈ (0,+∞)}.

For a domain Ω ⊂ Σ we set:

Γ := ∂Ω ∩ Σ, Γ1 := ∂Ω ∩ ∂Σ.

Then the overdetermined problem in the form

∆u+ f(u) = 0 in Ω,

u = 0 on Γ,
∂u

∂ν
= c on Γ,

∂u

∂ν
= 0 on Γ1 \ {0},

(1.6)

has been treated.

In [64] (see also [65]), the authors gave a rigidity result of Serrin type by showing
that the existence of a solution to the problem (1.6) for f(u) = 1 implies that Ω is
a spherical sector, under the assumption that the cone Σ is convex. Such result has
been extended to more general operators in [17]. The case of the nonconvex cones
is also considered in [16,47]. In [47], the authors proved that there exist nonradial
domains inside a nonconvex cone, in which the problem (1.6) admits a solution for
f(u) = 1. In [16], the authors presented that there is a nonradial positive solution
to the problem (1.6) for some locally Lipschitz continuous functions f.

Another natural field of research that has attracted considerable attention is to
study the overdetermined problem (1.1) in the case of domains of a Riemannian
manifold (M, g) instead of the Euclidean setting. In this framework, we need
to replace in (1.1) the classical Laplacian by the Laplace-Beltrami operator ∆g
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associated to the metric g of the manifold M:
∆gu+ f(u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

∂νu = c on ∂Ω,

(1.7)

where Ω is a domain of M.

For general Riemannian manifolds, solutions of overdetermined elliptic problems
of the form (1.7) are obtained in [23,24,36,61,63,78].

Here we are interested in the case of subdomains of the sphere Sd, where the
problem (1.7) can be solved (Chapter 5).

1.3 Onduloid type domains in Rd

The first study subject of this thesis is to understand the existence of the solution
to the problem (1.1) in Rd+1, d ≥ 1 for a very general class of functions f , where
the domain Ω we would like to construct is a perturbation of the straight cylinder.
This result is complementary to the results with linear source and gives another
counterexample to the BCN conjecture.

As we mentioned before, Sicbaldi in [77] found a periodic perturbation of the
straight cylinder Bd−1 × R that supports a periodic solution to the problem (1.1)
with f(u) = λu, λ > 0. More precisely, such domains, as shown in [75], belong to
a 1-parameter family {Ωs}s∈(−ε,ε) and are given by

Ωs =

{
(x, t) ∈ Rd × R : |x| < 1 + s cos

(
2π

Ts
t

)
+O(s2)

}
where ε is a small constant, Ts = T0 +O(s) and T0 depends only on the dimension
d. This result reinforces the boundary of domains that allow a solution of (1.1)
and CMC surfaces, as the domain Ωs can be put in correspondence to the onduloid
(or Delaunay surface). In [32] the same kind of result is proved in the case f ≡ 1.

1.3.1 Objectives and strategies of the proofs

Our principle objective with respect to the problem (1.1) is to perform such a
construction under somewhat minimal assumptions on the nonlinearity f(u). It is
clear that a mandatory assumption is the existence of a solution of the Dirichlet
problem in the unit ball B in Rd. For technical reasons we need the normal deriva-
tive at the boundary to be nonzero, which is a typical situation in overdetermined
semilinear elliptic problems. Hence, we will consider the following hypothesis:
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Assumption 1: There exists a positive solution φ1 ∈ C2,α(B) of the problem{
∆φ1 + f(φ1) = 0 in B,

φ1 = 0 on ∂B,
(1.8)

with ∂νφ1(x) 6= 0 for x ∈ ∂B, where ν denotes the exterior unit vector normal to
∂B.

Observe that by [41], any solution φ1 of (1.8) needs to be a radially symmetric
function. For technical reasons, we need to assume also that the linearized oper-
ator associated to problem (1.1) at φ1 is non-degenerate (in a radially symmetric
setting). This is a rather natural assumption if one intends to use a perturbation
argument. Precisely, our second assumption is:

Assumption 2: Define the linearized operator LD : C2,α
0,r (B)→ C0,α

r (B) by

LD(φ) = ∆φ+ f ′(φ1)φ ,

where C2,α
0,r (B) and C0,α

r (B) denote the spaces of radial functions in C2,α
0 (B)

and C0,α(B) respectively. We assume that the linearized operator LD is non-
degenerate; in other words, if LD(φ) ≡ 0 then φ ≡ 0.

We are now in position to state our main result, joint work with David Ruiz and
Pieralberto Sicbaldi ( [73]).

Theorem 1.1. If d ≥ 1, f : [0,+∞)→ R is C1,α and Assumptions 1 and 2 hold,
then there exist a positive number T∗ and a continuous curve

(−ε, ε) → C2,α(R/Z)× R
s 7→ (vs, Ts)

for some ε small, with vs = 0 if and only if s = 0. Moreover T0 = T∗ and the
overdetermined problem (1.1) has a solution in the domain

Ωs =

{
(x, t) ∈ Rd × R : |x| < 1 + vs

(
t

Ts

)}
.

The solution u = us of problem (1.1) is Ts-periodic in the variable t and hence
bounded. Moreover, ∫ 1

0

vs(t) dt = 0.

Let us point out that Assumptions 1 and 2 hold for example in the following cases
(among many others):

(1) If f(0) > 0 and f ′(u) < λ1 for any u ∈ (0,+∞), where λ1 is the first
eigenvalue of the Dirichlet Laplacian in the unit ball of Rd. In this case
a positive solution can be found (for instance, extending f(u) = f(0) if
u < 0 and minimizing the corresponding Euler-Lagrange functional) and the
operator LD has only positive eigenvalues.
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(2) If f(u) = up − u, 1 < p < d+2
d−2

if d > 2, p > 1 if d = 2. In this case the
existence of a solution is well known, and it is a mountain-pass solution. As
a consequence, LD has a negative eigenvalue. By the analysis of [52], all
other eigenvalues are strictly positive.

(3) If f(u) = λeu and λ ∈ (0, λ∗) for some λ∗ > 0 that receives the name of
extremal value. In this case φ1 is the so-called minimal solution and LD has
only positive eigenvalues (see for instance [26]).

In particular, (1) holds when f ≡ 1, and we recover in this way the result in [32].
On the other hand, when f(u) = λu for some λ > 0, Assumption 1 implies that
λ is the first eigenvalue of the Dirichlet Laplacian in the unit ball of Rd, but then
Assumption 2 is clearly not satisfied. Hence, our theorem is complementary to the
results in [75,77].

Theorem 1.1 is a bifurcation result in the spirit of [77], see also [32, 75]. In sum,
one can reformulate the existence of solutions to (1.1) as the zeroes of a nonlinear
Dirichlet-to-Neumann operator, and the Crandall-Rabinowitz Theorem is used to
conclude local bifurcation. But here the situation is more involved because of
the general term f(u). In fact, the operator LD may have negative eigenvalues,
and the bifurcation argument requires a finer spectral analysis. In particular, the
Dirichlet-to-Neumann operator can be built only for certain values of T , which
are related to the nondegeneracy of the Dirichlet problem in the cylinder. We are
able to show the existence of a bifurcation branch by taking advantage of the ideas
of [69], where the linearized problem has a negative eigenvalue.

1.4 Exceptional domains in Rd

The second problem that we study in this thesis is to deal with the equation
(1.1) with f(u) = 0, nonzero Dirichlet condition and additional decay condition
at infinity. More specifically, we are concerned with the existence of subdomains
Ω ⊂ Rd × R where the overdetermined boundary value problem

∆u = 0 in Ω,

u = 1 on ∂Ω,

lim|z|→∞ u(z, t) = 0 uniformly in t ∈ R,
∂u

∂ν
= c on ∂Ω,

(1.9)

is solvable. Here, we have chosen the coordinates (z, t) ∈ Rd−1 × R. The domains
Ω we would like to construct are actually nontrivial exceptional subdomains of the
Euclidean space Rd, d ≥ 4.
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The classification of planar exceptional domains was done by Traizet [88]. We
note that a family of infinitely connected planar exceptional domains was already
discovered in fluid dynamics in [6, 19].

Up to date the structure of the set of exceptional domains in dimensions d ≥ 3
remains largely unknown. We are only aware of the recent work [34,54].

1.4.1 Objectives and strategies of the proofs

The main purpose here is the construction of subdomains Ω ⊂ Rd−1×R, d ≥ 4 such
that the overdetermined boundary value problem (1.9) is solvable. The domains
under consideration are complements of perturbed cylinders of the form

ΩT,ϕ :=

{
(z, t) ∈ Rd−1 × R : |z| > 1 + ϕ

(
2π

T
t

)}
⊂ Rd, (1.10)

where T > 0, ϕ : R → (0,∞) is a 2π-periodic function of class C2,α, for some
α ∈ (0.1). The case ϕ ≡ 0 in (1.10) corresponds to the complement of the exterior
of the straight cylinder B1 × R and the function u1(z) = |z|3−d solves (1.9) with
c = −(3− d).

Our main result can be then stated as follows. This is joint work with Tobias
Weth and Ignace Aristide Minlend ( [57]).

Theorem 1.2. Let d ≥ 4. Then there exist a number T∗ >
2π√
d− 2

and a smooth

curve
(−ε, ε)→ (0,+∞)× C2,α(R), s 7→ (Ts, vs),

where T0 = T∗ and v0 ≡ 0 with∫ π

−π
vs(t) cos(t) dt = 0,

such that for all s ∈ (−ε, ε), letting ϕs(t) = s cos(t) + svs, there exists a unique
function us ∈ C2,α(ΩTs,ϕs) satisfying

∆us = 0 in ΩTs,ϕs,

us = 1 on ∂ΩTs,ϕs,

lim|z|→∞ us(z, t) = 0,
∂us
∂ν

= d− 3 on ∂ΩTs,ϕs .

(1.11)

Moreover, us is radial in z and Ts-periodic and even in t for every s ∈ (−ε, ε).

We point out that, for every s ∈ (−ε, ε), the domain ΩTs,ϕs in Theorem 1.2 is
exceptional with roof function given by ũs = 1−us in ΩTs,ϕs . Indeed this function
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is positive in ΩTs,ϕs since the harmonic function us cannot attain a maximum in
ΩTs,ϕs unless it is constant, which is excluded by the boundary conditions in (1.11).
It follows that 0 < us < 1 and therefore 0 < ũs < 1 in ΩTs,ϕs .

Actually, the domains in Theorem 1.2 have a similar shape as those found in the
recent work [34] for the case d = 3, but the underlying construction is completely
different. In fact, the approach in [34] relies on specific properties of an integral
representation of an associated Dirichlet-to-Neumann operator which is only avail-
able in the case d = 3. On the other hand, our approach depends essentially on
the assumption d ≥ 4 (see e.g. Theorem 4.4 and Proposition 4.11). The difference
between these two cases is reflected by the geometry of associated roof functions
which are bounded for d ≥ 4 and have a logarithmic growth in the distance from
the cylinder axis in the case d = 3. Clearly, these differences are related to the
different nature of the fundamental solution of −∆ in dimensions d = 2 and d ≥ 3.

Related to Theorem 1.2 are some recent results in [31, 60]. In [60], Morabito
obtained a family of bifurcation branches of domains which are small deformation
of the complement of a solid cylinder in R3. We note that in contrast to (1.11),
[60] considers a non-constant Neumann condition involving the mean curvature
of the boundary. Furthermore, it is shown in [31] the existence of a foliation
by perturbations of a large coordinate sphere whose enclosures solve (1.11) in an
asymptomatically flat manifold.

We now explain the construction of the domains in (1.10). First, we rephrase the
main problem (1.9) to an equivalent one on the fixed domain Ω1 = Bc

1 × R. We
emphasize that our analysis strongly relies on the decay assumption in (1.9) which
motivates the functional setting in weighted Hölder spaces. Furthermore, we need
the pull back operator in Lemma 4.1 to map between these spaces. We do this
by parametrizing the set ΩT,ϕ as in (4.3) with a suitably chosen diffeomorphism
which minimizes the effect of the perturbation away from the boundary. In this
functional analytic setting we are able to reformulate our problem as a nonlinear
operator equation of the form F (T, ϕ) ≡ 0, to which we then apply the Crandall-
Rabinowitz bifurcation theorem. For this it is necessary to compute the linearised
operator DϕF (T, 0) and analyze its spectral properties.

1.5 Nontrivial contractible domains in Sd

The third problem we study is to show that there exist solutions to overdetermined
elliptic problems (1.7) in subdomains of the sphere.

It is clear that any symmetry result on the solutions of (1.7) tightly depends on the
symmetry of the ambient manifold. In a given arbitrary manifold, geodesic balls
are not domains where (1.7) can be solved. As shown in [23], for small volumes it is
possible to construct solutions of (1.7) with f(u) = λu in perturbations of geodesic
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balls centered at specific points of the manifold, but such domains in general are
not geodesic balls. A similar approach was followed by Fall and Minlend [30] to
show the existence of solutions to (1.7) with f(u) = 1. In fact, one can expect
to obtain a Serrin-type result only for manifolds that are symmetric in a suitable
sense. More precisely (see also the introduction of [24]), the key ingredient for the
moving plane method is the use of the reflexion principle in any point and any
direction. For this we need that for any p ∈ M and any two vectors v, w ∈ TpM
there exists an isometry of M leaving p fixed and transporting v into w (i.e. M
is isotropic) and that such isometry is induced by the reflection with respect to
a hypersurface. Such last hypersurface must be totally geodesic, being the set of
fixed points of an isometry. But an isotropic manifold admitting totally geodesic
hypersurfaces must have constant sectional curvature (see for example [11], p. 295)
and the only isotropic Riemannian manifolds of constant sectional curvature are
the Euclidean space Rd, the round sphere Sd, the hyperbolic space Hd and the real
projective space RPd (see [86]). Now, domains in RPd arise naturally to domains
in its universal covering Sd, so we are left to consider our problem in Rd, Sd and
Hd.

Being the problem in Rd completely understood by Serrin, the framework of the
other two space form manifolds has been treated in 1998 in the paper by Kumare-
san and Prajapat [51]. In the case of Hd they obtained a complete counterpart of
the Serrin’s theorem: namely, by using the moving plane method, they show that
if Ω is a bounded domain of Hd and (1.7) admits a solution, then Ω must be a
geodesic ball. The case of Sd is different. In fact, even if the reflexion principle
is valid in any point, one needs to have a totally geodesic hypersurface that does
not intersect the domain in order to start the moving plane method. This is not a
problem in Rd or Hd, but it is in Sd. Since the totally geodesic hypersurfaces are
the equators, one can start the moving plane method if and only if the domain is
contained on a hemisphere. And this is exactly the case considered in [51]: if Ω is
contained in a hemisphere and (1.7) admits a solution, then Ω must be a geodesic
ball.

Other natural domains of Sd where (1.7) has solutions are symmetric neighbor-
hoods of any equator. Such symmetric annuli are not contractible and their exis-
tence comes from the geometry of Sd in the same way as they exist in a cylinder
or in a torus. Moreover, perturbations of neighborhoods of an equator in Sd where
(1.7) still admits a solution have been built in [33] in the same way as this has
been done for the same kind of domains in cylinders or in tori [77].

Taking these facts in account, the following question arises naturally: is it true
that if Ω ⊂ Sd is contractible and (1.7) can be solved, then Ω must be a geodesic
ball? In [28], Espinar and Mazet give an affirmative answer if d = 2 but under
some extra assumptions on the nonlinear term f(u). The proof of such result
shows again an analogy between overdetermined elliptic problems and constant
mean curvature surfaces, because it is highly inspired by the proof of the Hopf’s
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Theorem that states that the only immersed constant mean curvature surfaces of
genus zero in R3 are the spheres.

In this thesis we show that the answer to the previous question is negative, in
general: there exist contractible domains Ω ⊂ Sd, different from geodesic balls,
where (1.7) can be solved for some nonlinearities f . This construction works for
any dimension d ≥ 2. In view of [51], such domains cannot be contained in any
hemisphere.

1.5.1 Objectives and strategies of the proofs

To be more specific, we are going to prove the following theorem, joint work with
David Ruiz and Pieralberto Sicbaldi ( [72]) .

Theorem 1.3. Let d ∈ N, d ≥ 2 and 1 < p < d+2
d−2

(p > 1 if d = 2). Then there
exist domains D, which are perturbations of a small geodesic ball, such that the
problem 

−ε∆gu+ u− up = 0 in Sd \D ,

u > 0 in Sd \D ,

u = 0 on ∂D ,

∂νu = c on ∂D ,

admits a solution for some ε > 0.

Figure 1.1: The domain Sd \D

The main idea of the proof is the following. First, one uses a dilation to pass
to a problem posed in Sd(k), the sphere of radius 1/k, where k will be a small
parameter. We take a geodesic ball of radius 1 in Sd(k), and consider now Ωk the
complement of such ball in Sd(k). The main idea is that, as k → 0, the domain Ωk

converges (in a certain sense) to the exterior domain Rd \ B(0, 1). Thanks to the
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result in [69], we have the existence of nontrivial solutions of (1.1) for a suitable
choice of f , bifurcating from a family of regular solutions uλ of the problem:

−λ∆u+ u− up = 0 in Rd \B(0, 1) ,

u > 0 in Rd \B(0, 1) ,

u = 0 on ∂B(0, 1) ,

∂νu = c on ∂B(0, 1).

Firstly, we show that for k sufficiently small there exists a similar family of solutions
posed in Ωk. This is accomplished by making use of a (quantitative) Implicit
Function Theorem. Then we study the behavior of the linearized operator by
using a perturbation argument, and taking into account the case studied in [69].
In such way, we can use the Krasnoselskii bifurcation theorem to show the existence
of a branch of nontrivial solutions to (1.7) .

In our arguments, we rely on the study of the linearized operator given in [69]. At
a certain point the assumption p < d+2

d−2
is needed in [69], and hence our result is

also restricted to that case. Moreover, such assumption is needed also in order to
get L∞ uniform estimates on the solutions.

1.6 Modica type estimates and curvature results

Our final subject in this thesis is to build an estimate on the gradient of the
solution to the problem (1.1) and provide some information about the curvature
of the boundary.

Let u be a bounded C3 solution of ∆u + f(u) = 0 in Rd. Given a primitive F of
f , we define the P -function:

P (x) = |∇u(x)|2 + 2F (u(x)). (1.12)

Modica in [58], as mentioned in the Antecedents, proved that if F is nonpositive,
then P ≤ 0. Such result has been extended to more general operators in [13], where
Caffarelli, Garofalo and Segala prove the following result:

P (x0) = 0 for some x0 ∈ Rd ⇔ P (x) = 0 for all x ∈ Rd ⇔ u is 1-dimensional.

These results have many consequences (e.g. a monotonicity formula has been
derived in [59]), and are very important in the study of a famous conjecture of De
Giorgi and related questions.

Modica type gradient estimates has been extended to domains Ω, which are epigraph-
s with nonnegative mean curvature on the boundary in [38], and to compact man-
ifolds with nonnegative Ricci tensor, see [39] and the references therein.
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1.6.1 Objectives and strategies of the proofs

In this objective, we want to study to which point a Modica type estimate holds
also for overdetermined elliptic problems, and what its exact form is, in general. A
first result in this direction has been given in [89] under some assumptions on the
nonlinearity and also on the normal derivative at the boundary. The result of [89]
implies, in particular, that the mean curvature of ∂Ω is everywhere negative. Let
us point out that this cannot hold in general since there are examples of solutions
to (1.1) in spheres or onduloids, for instance. Here we plan to clarify this point
and give a general form of a Modica type estimate that generalizes that of [89]. It
is to be expected that the presence of the boundary will play a decisive role in the
description of the question. Of course, we are also interested in the equality case.

One of the results is exactly a rigidity result for overdetermined elliptic problems,
that roughly speaking is the following: if f and c satisfy a certain condition then
either the mean curvature of ∂Ω is negative, or Ω is a half-space. More precisely,
denoting by H(p) the mean curvature of ∂Ω at p, we will prove the following
rigidity result. This is joint work with David Ruiz and Pieralberto Sicbaldi ( [74]):

Theorem 1.4. Let u ∈ C3(Ω) be a bounded solution to the problem (1.1), with
f ∈ C1. If there exists a non positive primitive F of f such that

c2 + 2F (0) ≥ 0 , (1.13)

then either H(p) < 0 for any p ∈ ∂Ω, or Ω is a half-space and u is 1-dimensional,
i.e., there exists x0 ∈ Rd, a function g : [0,+∞)→ R and ~a ∈ Rd, such that

Ω = {x ∈ Rd : ~a · (x− x0) > 0}, and u(x) = g(~a · (x− x0)), x ∈ Ω.

In particular, if (1.13) is satisfied, one cannot solve the problem (1.1) in a ball, nor
in a cylinder, nor in the perturbation of a cylinder. Notice that we are considering
bounded solutions of (1.1), so f is defined in a closed interval and it is always
possible to choose a non positive primitive of f , by changing f appropriately
outside the image of u. A particular case of Theorem 1.4 is Theorem 2.13 in [70]
for double periodic domains in the plane.

We will obtain Theorem 1.4 as a corollary of more general results, that represent
Modica type estimates for overdetermined problems.

Theorem 1.5. Let Ω ⊂ Rd, d ≥ 1, be a regular domain, F ∈ C2(Ω) be a non-
positive function, F ′ = f, u ∈ C3(Ω) be a bounded solution to the problem (1.1)
and P be given by (1.12). Then

P (x) ≤ max{0, c2 + 2F (0)} for all x ∈ Ω.

Moreover, if there exists a point x0 ∈ Ω such that

P (x0) = max{0, c2 + 2F (0)},
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then P is constant, u is 1-dimensional and Ω is a half-space. Namely, there exists
x0 ∈ Rd, a function g : [0,+∞)→ R and ~a ∈ Rd, such that

Ω = {x ∈ Rd : ~a · (x− x0) > 0}, and u(x) = g(~a · (x− x0)), x ∈ Ω.

As a first ingredient for Theorem 1.5, we prove a uniform gradient bound on
u. This is based on a rescaling argument and a Harnack’s inequality, together
with regularity estimates. Once this is obtained, we make use of the fact that
the function P is a subsolution for a certain elliptic operator outside the critical
points of u. For the study of the supremum of P we need to study several cases,
depending on the behavior of the maximizing sequences. The proof concludes
again by a scaling argument and passing to a limit, in a certain sense. This part
of the proof is inspired by [48].

If P is bounded above by c2+2F (0) we can give information on the mean curvature
of ∂Ω.

Theorem 1.6. Let Ω ⊂ Rd, d ≥ 1, be a regular domain that supports a bounded
solution u ∈ C3(Ω) to the problem (1.1) with c 6= 0. Assume that

P (x) ≤ c2 + 2F (0) for all x ∈ Ω.

Then, H(p) ≤ 0 for any p ∈ ∂Ω. Moreover, if there exists p ∈ ∂Ω such that
H(p) = 0, then P is constant, u is 1-dimensional and Ω is either a half-space or
the domain between two parallel hyperplanes.

Let us point out that Theorem 1.6 does not require that F is nonpositive. On the
contrary, it requires that the normal derivative on ∂Ω does not vanish. As has
been commented before, there exist solutions of problem (1.1) in balls, cylinders,
or generalized onduloids. Theorem 1.6 implies that in all such cases,

sup
x∈Ω

P (x) > c2 + 2F (0) .

1.7 Local bifurcation theorems

Since our first three results are all proved by a local bifurcation argument and for
the sake of completeness, we end this chapter by recalling the bifurcation theorems
that will be used.

Let us first consider the the case of bifurcation from a simple eigenvalue. For
the proof and for many other applications we refer to [49, 81] and to the original
exposition [18, Theorem 1.7]
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Theorem 1.7. (Crandall-Rabinowitz Bifurcation Theorem) Let X and Y
be Banach spaces, and let U ⊂ X and Γ ⊂ R be open sets, where we assume 0 ∈ U .
Denote the elements of U by v and the elements of Γ by λ. Let G : U × Γ→ Y be
a C1 operator such that

i) G(0, λ) = 0 for all λ ∈ Γ;

ii) Ker DvG(0, λ∗) = Rw for some λ∗ ∈ Γ and some w ∈ X \ {0};

iii) codim Im DvG(0, λ∗) = 1;

iv) The cross derivative DλDvG exists and is continuous, and DλDvG(0, λ∗)(w) /∈
Im DvG(0, λ∗).

Then there is a nontrivial continuous curve

s→ (v(s), λ(s)) ∈ X × Γ , (1.14)

s ∈ (−δ,+δ) for some δ > 0, such that (v(0), λ(0)) = (0, λ∗), v(s) 6= 0 if s 6= 0
and

G
(
v(s), s

)
= 0 for s ∈ (−δ,+δ) .

Moreover there exists a neighborhood N of (0, λ∗) in X ×Γ such that all solutions
of the equation G(v, λ) = 0 in N belong to the trivial solution line {(0, λ)} or to
the curve (1.14). The intersection (0, λ∗) is called a bifurcation point.

Now, we shall present another theorem for the case of bifurcation from an eigen-
value with odd multiplicity due to Krasnoselskii, one can refer to [49,81] for more
details.

Theorem 1.8. (Krasnoselskii Bifurcation Theorem) Let Y be a Banach
space, and let U ⊂ Y and Γ ⊂ R be open sets, where we assume 0 ∈ U . Denote
the elements of U by w and the elements of Γ by λ. Let G : U × Γ → Y be a C1

operator such that

i) G(0, λ) = 0 for all λ ∈ Γ;

ii) G(w, λ) = w −K(w, λ), where K(w, λ) is a compact map;

iii) We denote by i(λ) the index of DwG(0, λ), i.e., the sum of the multiplicities
of all negative eigenvalues of DwG(0, λ). We assume that there exist λ̄ < λ̂
such that:

1. DwG(0, λ̄), DwG(0, λ̂) are non degenerate.

2. i(λ̄) and i(λ̂) have different parity.
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Then there exists λ∗ ∈ (λ̄, λ̂) a bifurcation point for G(w, λ) = 0 in the following
sense: (0, λ∗) is a cluster point of nontrivial solutions (w, λ) ∈ Y × R, w 6= 0, of
G(w, λ) = 0.

Remark 1.9. Let us point out that the above version of the Krasnoselskii theorem
is not the standard one, as usually one imposes the existence of an isolated point
where DwG(0, λ) is degenerate. However, the proof of the theorem works equally
well for the version stated above. See [69, Remark 6.3] on this regard.





Chapter 2

Methodology

These objectives are discussed from different perspectives and require different
methods in multiple mathematical areas, such as Analysis, Partial Differential
Equations and Geometry. The methodology for the development of this thesis can
be divided into several items:

i. Human-being Support. Under the joint supervision of David Ruiz and Pier-
alberto Sicbaldi at University of Granada, the basic research ideas of this
thesis are conceived by frequent working sessions. Many of them were made
online at the beginning of the pandemic. Pieralberto Sicbaldi is an expert
in the field, particularly in its geometric aspects, whereas David Ruiz is a
researcher specialized in PDEs.

There were also some short stays in Frankfurt, including a one-week visit
from 10/07/2022 to 15/07/2022 and a three-month stay from mid-March
to mid-June 2023. During the one-week stay, there were some talks about
the overdetermined elliptic problem for the harmonic function in the higher
dimension with Tobias Weth and Ignace Aristide Minlend. During the second
stay in Frankfurt, we first discussed the previous topic to complete it so that
we could submit it to a scientific journal. At the same time, we also had
some working sessions on a new project related to the Schiffer conjecture,
an important open question in this framework. So far, the exchange with all
these professors are of great significance for completing the thesis.

ii. Framework. The Ph.D. program ”Fisica y Matematicas” at University of
Granada had offered a wide range of high-level doctoral courses, conferences
and seminars by distinguished experts in different fields. These academic
training activities either had a direct and positive impact on the preparations
of this thesis or enhanced education in other disciplines.

Moreover, the libraries of the Faculty of Science and the Department of
Mathematical Analysis are well equipped with academic resources and the

25
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Institute of Mathematics of the University of Granada (IMAG) is staffed by a
sufficient number of outstanding mathematicians from Granada. IMAG was
awarded with the Excellence Seal ”Maŕıa de Maeztu” in 2021, and became an
associated center of the Banff International Research Station (BIRS) in 2022.
As a consequence, many activities such as conferences, workshops, seminars,
advanced courses, etc. have been carried out. These have created an ideal
framework for the formation of a P.h.D. student. It also hosts post-docs and
visiting researchers who collaborate with local or national researchers.

iii. Communication of the results obtained in this thesis. In addition to the
publications in several high-level mathematical journals, we take it seriously
to present our research findings in different seminars of scientific events, such
as:

(1) XXVI Congress of Differential Equations and Applications XVI Congress
of Applied Mathematics, June 2021, Gijón, Spain;

(2) Seminar of Young Researchers at the University of Granada, February
9, 2022, Granada, Spain;

(3) Applied Analysis Seminar at the University of Frankfurt, July 14, 2022,
Frankfurt, Germany;

(4) Seminar of Differential Equations at the University of Granada, Decem-
ber 2, 2022, Granada, Spain;

(5) VI Congress of Young Researchers of the Royal Spanish Mathematical
Society, February 2023, León, Spain.

I also participated in the following conferences:

(1) Workshop on PDEs: Modelling, Analysis and Numerical Simulation,
January 2020, Granada, Spain;

(2) Geometric PDEs@Caserta, September 2021, Caserta, Italy;

(3) Encuentro REAG, March 2022, Granada, Spain.

Due to the breakout of the pandemic, the realization of the conferences and
workshops was stopped. In addition, some planned research stays and visits
have been put on hold, which has had a major impact on our research.

iv. Use of online resources. The database of the electronic resources provided by
the institution, as well as some digital publishing portals, have been provided
free of charge, which are necessary for the completion of the project. In
addition, online seminars and conferences also play an important role in my
formation as a PhD student, such as:

(1) One World PDE seminar;

(2) Online Analysis and PDE seminar;
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(3) International Conference on Nonlinear Analysis and Nonlinear Partial
Differential Equations, August 2022, Xi’an, China;

(4) ICMC Summer Meeting on Differential Equations, February 2021, Sao
Carlos, Brazil.

As is well known, financial support is always of great importance for researchers
to conduct their academic activities and make contributions to their research field.
I have been awarded a scholarship from the State Scholarship Fund by the China
Scholarship Council, which is a non-profit organization formed by the Chinese
Ministry of Education and provides a primary vehicle through which the Chinese
government awards excellent students with international academic exchanges both
at home and abroad. This provides us with an excellent framework for producing
a high-quality doctoral dissertation.

Last but not least, the doctoral thesis at the University of Granada is also funded
by the Andalusian Commission Investigation Team (FQM-116), which has allowed
me to attend different international conferences and seminars to get in contact with
researchers in the field and exchange ideas in a natural research environment.





Chapter 3

Onduloid type domains in Rd

This chapter is devoted to the study of the problem (1.1). Firstly, we give some
basic preliminary results on the Dirichlet problem in a ball and a cylinder respec-
tively such that we can construct the nonlinear Dirichlet-to-Neumann operator.
Once this is done, we can compute the linearization of this operator and study the
properties of the linearized operator. With all those ingredients, a local bifurcation
argument can be used to prove Theorem 1.1.

3.1 Some preliminaries about related linear prob-

lems in the ball

Let B be the unit ball in Rd centered at the origin. It will be useful to define the
following Hölder spaces:

Ck,α
r (B) =

{
φ ∈ Ck,α(B) : φ(x) = φ(|x|), x ∈ B

}
,

Ck,α
0,r (B) =

{
φ ∈ Ck,α

0 (B) : φ(x) = φ(|x|), x ∈ B
}
.

We also define the following Sobolev spaces:

H1
r (B) =

{
φ ∈ H1(B) : φ(x) = φ(|x|), x ∈ B

}
,

H1
0,r(B) =

{
φ ∈ H1

0 (B) : φ(x) = φ(|x|), x ∈ B
}
.

We will write r = |x|, and for functions φ in such spaces we will use both notations
φ(x) and φ(r) according to the computations. We recall that φ1 is a radial solution
of (1.8), that is, {

φ′′1(r) + d−1
r
φ′1(r) + f(φ1(r)) = 0 in (0, 1] ,

φ1(1) = 0, φ′1(0) = 0.
(3.1)

29
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The operator LD defined in Assumption 2 has a diverging sequence of eigenvalues
γDj , hence there are only a finite number l of them which are negative:

γD1 < γD2 < · · · < γDl < 0, γDl+1
> 0.

Next result is rather standard, we include it here for the sake of completeness.

Lemma 3.1. The eigenvalues γDj are all simple.

Proof. Assume that ψ1, ψ2 are two nontrivial eigenfunctions corresponding to γDj ,
i.e.

LD(ψi) + γDjψi = 0 , i = 1, 2 .

Let us choose k1, k2 ∈ R, (k1, k2) 6= (0, 0), such that

k1ψ
′
1(1) + k2ψ

′
2(1) = 0 .

If ψ = k1ψ1 + k2ψ2, we have

LD(ψ) + γDjψ = 0, ψ(1) = 0, ψ′(1) = 0 .

By the uniqueness of the solution of the Cauchy problem for ODE, ψ ≡ 0. That
is, ψ1, ψ2 are linearly dependent.

We denote by zj ∈ C2,α
0,r (B) the eigenfunction with eigenvalue γDj , i.e.{

∆zj + f ′(φ1)zj + γDjzj = 0 in B ,

zj = 0 on ∂B ,
(3.2)

normalized by ‖zj‖L2 = 1.

As is well known, the operator LD is related to the quadratic form

QD : H1
0,r(B)→ R, QD(φ) :=

∫
B

(
|∇φ|2 − f ′(φ1)φ2

)
.

For instance, the first eigenvalue of LD is given by

γD1 = inf
{
QD(φ) : ‖φ‖L2(B) = 1

}
. (3.3)

Later, our computations will involve another quadratic form Q defined as

Q : H1
r (B)→ R, Q(ψ) :=

∫
B

(
|∇ψ|2 − f ′(φ1)ψ2

)
+ c̄ ωdψ(1)2 ,

where ωd is the area of Sd−1 and

c̄ = −φ
′′
1(1)

φ′1(1)
= d− 1 +

f(0)

φ′1(1)
. (3.4)
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To get the last equality we used (3.1). Observe that

Q|H1
0,r(B) = QD . (3.5)

Analogously we can define

γ1 = inf
{
Q(φ) : ‖φ‖L2(B) = 1

}
. (3.6)

It is rather standard to show that γ1 is achieved by a solution ψ1 of the problem:{
∆ψ1 + f ′(φ1)ψ1 + γ1ψ1 = 0 in B,

∂νψ1(x) + c̄ ψ1(x) = 0 on ∂B .
(3.7)

As in Lemma 3.1 one can show that γ1 is simple, so ψ1 is uniquely determined up
to a sign.

We finish this section with an estimate of the eigenvalue γ1.

Lemma 3.2. There holds: γ1 < min{0, γD1}.

Proof. We first show that γ1 < 0; for this it suffices to find ψ ∈ H1
r (B) such that

Q(ψ) < 0. Since Q is considered among radially symmetric functions, we can write
the quadratic form as

Q(ψ) =

∫
B

[
|∇ψ|2 − f ′(φ1)ψ2

]
+ c̄ ωdψ(1)2

= ωd

∫ 1

0

rd−1
[
ψ′(r)2 − f ′(φ1)ψ(r)2

]
dr + c̄ ωdψ(1)2.

Now we compute the derivative in (3.1) to obtain:

φ′′′1 (r) +
d− 1

r
φ′′1(r)− d− 1

r2
φ′1(r) + f ′(φ1)φ′1(r) = 0. (3.8)

If we multiply the equation (3.8) by rd−1φ′1(r) and integrate, we obtain∫ 1

0

rd−1
[
φ′′1(r)2 − f ′(φ1)φ′1(r)2

]
dr = φ′1(1)φ′′1(1)− (d− 1)

∫ 1

0

rd−3φ′1(r)2dr.

This last equality comes from the computation:∫ 1

0

rd−1φ′′′1 (r)φ′1(r)dr =

∫ 1

0

rd−1φ′1(r)dφ′′1(r)

= rd−1φ′1(r)φ′′1(r)
∣∣1
0
−
∫ 1

0

φ′′1(r)d
(
rd−1φ′1(r)

)
= φ′1(1)φ′′1(1)−

∫ 1

0

rd−1φ′′1(r)2dr − (d− 1)

∫ 1

0

rd−2φ′1(r)φ′′1(r)dr.
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We can take the test function φ′1(r) ∈ Hr(B) obtaining:

Q(φ′1(r)) = ωd

∫ 1

0

rd−1
[
φ′′1(r)2 − f ′(φ1)φ′1(r)2

]
dr + c̄ ωdφ

′
1(1)2

= −(d− 1)ωd

∫ 1

0

rd−3φ′1(r)2dr.

If d > 1, we have already found a radial function ψ such that Q(ψ) < 0. In the
case d = 1, Q(φ′1) = 0, and indeed φ′1 is a solution of the linearized problem:

{
ψ′′ + f ′(φ1)ψ = 0 in [−1, 1],

ψ′(1) + c̄ ψ(1) = 0, −ψ′(−1) + c̄ ψ(−1) = 0.

However this solution cannot correspond to the first eigenvalue γ1 since φ′1 changes
sign in [−1, 1]. As a consequence, γ1 is negative.

We now show that γ1 < γD1. From (3.3), (3.6) and (3.5), we have immediately
γ1 ≤ γD1 . Assume, reasoning by contradiction, that γ1 = γD1 . Hence the minimizer
z1 ∈ H1

0,r(B) works also for the minimizing problem defining γ1. In particular, z1

solves (3.7), and its boundary condition implies that ∂νz1(x) = 0 for x ∈ ∂B.
Summing up, z1 solves:

∆z1 + f ′(φ1)z1 + γ1z1 = 0 in B,

z1(x) = 0 on ∂B,

∂νz1(x) = 0 on ∂B.

But, by the uniqueness of the Cauchy problem for ODE we conclude that z1 = 0,
a contradiction.

3.2 Eigenvalue estimates for related linear prob-

lems in the cylinder

As commented in the introduction, the construction of the Neumann-to-Dirichlet
operator (which will be made in next section) can be performed only if the Dirichlet
problem in the cylinder is not degenerate. The main purpose of this section is to
study this question. We will show that we have nondegeneracy for all T ∈ (0, T ),
for some specific value of T . Hence the rest of the computations of the next sections
will always require T ∈ (0, T ).

Let us consider the Dirichlet problem for the linearized equation in a straight
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cylinder for periodic functions, namely,{
∆ψ + f ′(φ1)ψ = 0 in B × R,

ψ(x) = 0 on (∂B)× R,
(3.9)

where ψ(x, t) is T -periodic in the variable t. Define:

CT
1 = B × R/TZ.

Hence (3.9) is just the linearization of the problem:{
∆φ+ f(φ) = 0 in CT

1 ,

φ = 0 on ∂CT
1 .

(3.10)

We define the following Hölder spaces of radial functions:

Ck,α
r (CT

1 ) =
{
φ ∈ Ck,α(CT

1 ) : φ(x, t) = φ(|x|, t), (x, t) ∈ CT
1

}
,

Ck,α
0,r (CT

1 ) =
{
φ ∈ Ck,α

0 (CT
1 ) : φ(x, t) = φ(|x|, t), (x, t) ∈ CT

1

}
.

We also define the following Sobolev spaces:

H1
r (CT

1 ) =
{
φ ∈ H1(CT

1 ) : φ(x, t) = φ(|x|, t), (x, t) ∈ CT
1

}
,

H1
0,r(C

T
1 ) =

{
φ ∈ H1

0 (CT
1 ) : φ(x, t) = φ(|x|, t), (x, t) ∈ CT

1

}
.

For functions in such spaces sometimes we will write φ(r) and φ(r, t) instead of
respectively φ(x) and φ(x, t), with r = |x|. The reader will understand in each
case if we refer to the variable x or r.

If φ1 is the solution of the problem (1.8), then the function φ1(x, t) = φ1(x) (we
use a natural abuse of notation) solves (3.10). Define the linearized operator
LTD : C2,α

0,r (CT
1 )→ Cα

r (CT
1 ) (associated to the problem (3.10)) by

LTD(φ) = ∆φ+ f ′(φ1)φ,

and consider the eigenvalue problem

LTD(φ) + τφ = 0.

Then the functions zj(x, t) = zj(x) from (3.2) solve the problem{
∆zj + f ′(φ1)zj + τjzj = 0 in CT

1 ,

zj = 0 on ∂CT
1 .

(3.11)

Let us define the quadratic form QT
D : H1

0,r(C
T
1 )→ R related to LTD,

QT
D(ψ) :=

∫
CT1

(
|∇ψ|2 − f ′(φ1)ψ2

)
.
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We will also need to study the quadratic form QT : H1
r (CT

1 )→ R,

QT (ψ) :=

∫
CT1

(
|∇ψ|2 − f ′(φ1)ψ2

)
+ c̄

∫
∂CT1

ψ2.

The main result of this section is next proposition, where we study the behavior
of these quadratic forms:

Proposition 3.3. Define:

α = inf

{
QT
D(ψ) : ψ ∈ H1

0,r(C
T
1 ), ‖ψ‖L2 = 1,

∫
CT1

ψ zj = 0, j = 1, . . . l.

}
,

and

β = inf

{
QT (ψ) : ψ ∈ H1

r (CT
1 ), ‖ψ‖L2 = 1,

∫
∂CT1

ψ = 0,

∫
CT1

ψ zj = 0, j = 1, . . . l.

}
.

Then

α = min

{
γDl+1

, γD1 +
4π2

T 2

}
,

and

β = min

{
γDl+1

, γ1 +
4π2

T 2

}
.

Moreover, those infima are achieved. If γ1 + 4π2

T 2 < γDl+1
, the minimizer is equal to

ψ1(x) cos

(
2π

T
(t+ δ)

)
,

where ψ1 is the minimizer for (3.6) and δ ∈ [0, 1].

Proof. We prove the result for β; the result for α is analogous. First, it is rather
standard to show that β is achieved by a function ψ. By the Lagrange multiplier
rule, there exist θ1, θ2 and ζ1, . . . ζl real numbers so that for any ρ ∈ H1

r (CT
1 ),∫

CT1

(
∇ψ∇ρ− f ′(φ1)ψρ+ ρ

l∑
i=1

ζizi + θ1ψρ
)

=

∫
∂CT1

ρ(θ2 + c̄ψ).

By choosing ρ = zj we conclude that ζj = 0. If we now take ρ = ψ, we obtain that
θ1 = β. Hence ψ is a solution of the equation

∆ψ + f ′(φ1)ψ + βψ = 0 in CT
1 .

Define now:

ψ̄(x) =

∫ T

0

ψ(x, t)dt .
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It is immediate that ∫
B

ψ̄ zj =

∫
CT1

ψ zj = 0, j = 1, . . . , l . (3.12)

By direct computation

∆xψ̄ =

∫ T

0

∆xψ(x, t)dt

=

∫ T

0

∆ψ(x, t)dt−
∫ T

0

ψtt(x, t)dt

=

∫ T

0

∆ψ(x, t)dt− (ψt(x, T )− ψt(x, 0))

=

∫ T

0

∆ψ(x, t)dt

= −
∫ T

0

(f ′(φ1) + β)ψ(x, t)dt

= −(f ′(φ1) + β)ψ̄.

As a consequence, we have that ψ̄ solves the problem{
∆ψ̄ + f ′(φ1)ψ̄ + βψ̄ = 0 in B,

ψ̄ = 0 on ∂B.

Taking into account (3.12), there are two cases: either β = γDk , k ≥ l + 1, or
ψ̄ = 0. In the first case, by plugging zl+1 in the definition of β, we conclude that
k = l + 1. In the second case we have,∫ T

0

ψ(x, t)dt = 0 ∀x ∈ B.

Hence we can use the Poincaré-Wirtinger inequality for periodic functions to esti-
mate:

4π2

T 2

∫ T

0

ψ2dt ≤
∫ T

0

ψ2
t dt .

Then, recalling (3.6),

β = QT (ψ) =

∫ T

0

(∫
B

(
|∇xψ|2 − f ′(φ1)ψ2

)
+ c̄ωdψ(1, t)2

)
dt+

∫
B

∫ T

0

|ψt|2dt

≥ γ1

∫ T

0

dt

∫
B

ψ2 +
4π2

T 2

∫
B

∫ T

0

ψ2dt

=

(
γ1 +

4π2

T 2

)∫
CT1

ψ2 = γ1 +
4π2

T 2
.

Moreover, the above inequalities are equalities only if ψ(x, t) is proportional to
ψ1(x) cos

(
2π
T

(t+ δ)
)
.
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As a consequence, we can state the following:

Corollary 3.4. Define T as:

T =

{
2π√
−γD1

if γD1 < 0 ,

+∞ if γD1 > 0 .
(3.13)

Then, for any T ∈ (0, T ), we have that QT
D(ψ) > 0 for any ψ ∈ H1

0,r(C
T
1 ) satisfying

the orthogonality conditions:∫
CT1

ψzj = 0 , j = 1, 2, · · · , l .

As a consequence, LTD is nondegenerate for any T ∈ (0, T ).

3.3 Perturbations of the cylinder and formula-

tion of the problem

The main purpose of this section is to build a nonlinear Dirichlet-to-Neumann
operator G associated to (1.1) for any T ∈ (0, T ).

Given a positive number T and a C2,α function v : R/Z → R (i.e. periodic of
period 1) with small C2,α-norm, we define:

CT
1+v =

{
(x, t) ∈ Rd × R/Z : 0 ≤ |x| < 1 + v

(
t

T

)}
.

Such a domain is in fact a small perturbation of the straight cylinder of radius 1,
periodic in the vertical direction with period T . We look at the problem:

∆u+ f(u) = 0 in CT
1+v,

u > 0 in CT
1+v,

u = 0 on ∂CT
1+v,

∂νu = c on ∂CT
1+v.

(3.14)

Our aim will be to find a curve (v, T ) = (v(T ), T ), with v 6≡ 0, such that problem
(3.14) has a solution. We shall write it in the equivalent form:

∆λφ+ f(φ) = 0 in C1
1+v ,

φ > 0 in C1
1+v ,

φ = 0 on ∂C1
1+v,

|∇λφ| = c on ∂C1
1+v ,
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where ∆λφ = ∆xφ+ λφtt, and ∇λφ = (∇xφ,
√
λφt). Indeed, if we set T = 1√

λ
, we

have that

u(x, t) = φ

(
x,

t

T

)
(3.15)

is a solution of (3.14).

Since it is clear that (1.1) is invariant under translations, it is natural to require
that the function v is even. Moreover, sometimes it will be useful to assume the
function v has 0 mean. So, we introduce the Hölder spaces:

Ck,α
e (R/Z) =

{
v ∈ Ck,α(R/Z) : v(−t) = v(t)

}
,

Ck,α
e,m(R/Z) =

{
v ∈ Ck,α(R/Z) : v(−t) = v(t),

∫ 1

0

v dt = 0

}
for k ∈ N.

We start with the following result:

Proposition 3.5. Assume that λ > 1

T
2 , where T is given by (3.13). Then, for all

v ∈ C2,α
e (R/Z) whose norm is sufficiently small, the problem{

∆λφ+ f(φ) = 0 in C1
1+v ,

φ = 0 on ∂C1
1+v,

(3.16)

has a unique positive solution φ = φv,λ ∈ C2,α(C1
1+v). Moreover, φ depends smooth-

ly on the function v, and φ = φ1 when v ≡ 0.

Proof. Let v ∈ C2,α
e (R/Z). It will be more convenient to consider the fixed domain

C1
1 endowed with a new metric depending on v. This will be possible by considering

the parameterization of C1
1+v defined by

Y (y, t) :=
((

1 + v(t)
)
y, t
)
. (3.17)

Therefore, we consider the coordinates (y, t) ∈ C1
1 from now on, and we can write

the new metric in these coordinates as

g =
∑
i

[1 + v(t)]2dy2
i +

∑
i

[1 + v(t)]v′(t)yidyidt+ [v′(t)2y2 + 1]dt2.

Up to some multiplicative constant, we can now write the problem (3.16) as{
∆λ,gφ̂+ f(φ̂) = 0 in C1

1 ,

φ̂ = 0 on ∂C1
1 ,

(3.18)
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where ∆λ,g is the operator ∆λ rewritten in the metric g. As v ≡ 0, the metric

g is just the Euclidean metric, and φ̂ = φ1 is therefore a solution of (3.18). In
the general case, the expression between the function φ and the function φ̂ can be
represented by

φ̂ = Y ∗φ.

For all ψ ∈ C2,α
0,r (C1

1), we define:

N(v, ψ) := ∆λ,g(φ1 + ψ) + f(φ1 + ψ). (3.19)

We have
N(0, 0) = 0.

The mapping N is C1 from a neighborhood of (0, 0) in C2,α
e (R/Z)×C2,α

0,r (C1
1) into

Cα
r (C1

1). We point out that N could fail to be C2 with respect to v, since the
nonlinearity f is assumed only to be C1,α, but in any case it admits the double
cross derivative DλDv. The partial differential of N with respect to ψ at (0, 0) is

DψN |(0,0)(ψ) = ∆λψ + f ′(φ1)ψ.

Via the change of variables w(x, t) = ψ
(
x, t

T

)
, we can use Corollary 3.4 to

show that DψN |(0,0) is invertible from C2,α
0,r (C1

1) into Cα
r (C1

1). The Implicit Func-

tion Theorem therefore yields that there exists ψ(v, λ) ∈ C2,α
0,r (C1

1) such that
N(v, ψ(v, λ)) = 0 for v in a neighborhood of 0 in C2,α

e (R/Z). The function
φ̂ := φ1 + ψ solves (3.18), and moreover the dependence on λ is C1.

For any λ > 1

T
2 we define the nonlinear operator G as follows. After the canonical

identification of ∂C1
1+v with Sd−1 × R/Z, we define the following operator G :

U × ( 1

T
2 ,+∞)→ C1,α

e,m(R/Z), where U is a neighborhood of 0 in C1,α
e,m(R/Z), as:

G(v, λ)(t) = −|∇λφv,λ|∂C1
1+v

+
1

Vol(∂C1
1+v)

∫
∂C1

1+v

|∇λφv,λ|,

where φv,λ is the solution of (3.16) verified by Proposition 3.5. Clearly G is a
C1 operator, and admits also the crossed derivative DλDvG since the operator N
defined in (3.19) does.

Clearly, G admits the equivalent expression as the Dirichlet-to-Neumann operator:

G(v, T )(t) = ∂ν(uv,T )|∂CT1+v (T t)− 1

Vol(∂CT
1+v)

∫
∂CT1+v

∂ν(uv,T ),

where uv,T is related to φv,λ via the formula (3.15). Notice that G(v, T ) = 0 if
and only if ∂νu is constant on the boundary ∂CT

1+v. Obviously, G(0, T ) = 0 for all
T < T . Our goal is to find a branch of nontrivial solutions (v, T ) to the equation
G(v, T ) = 0 bifurcating from some point (0, T∗), T∗ ∈ (0, T ). To this aim, we will
use a local bifurcation argument. This leads to the study of the linearization of G
around a point (0, T ); this study is the purpose of the next section.
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3.4 The linearization of the operator G

We will next compute the Fréchet derivative of the operator G. For that aim, we
will need the following two lemmas.

Lemma 3.6. Assume that T < T , where T is given by (3.13). Then for all
v ∈ C2,α

e (R/Z), there exists a unique solution ψv,T to the problem{
∆ψv,T + f ′(φ1)ψv,T = 0 in CT

1 ,

ψv,T = ṽ on ∂CT
1 ,

(3.20)

where ṽ(t) := v
(
t
T

)
.

Proof. Let ψ0(x, t) ∈ C2,α(CT
1 ) such that (ψ0)|∂CT1 = ṽ. If we set ω = ψv,T−ψ0,

the problem (3.20) is equivalent to the problem{
∆ω + f ′(φ1)ω = −

(
∆ψ0 + f ′(φ1)ψ0

)
in CT

1 ,

ω = 0 on ∂CT
1 .

Observe that the right hand side of the above equation is in Cα
r (CT

1 ). Recall
that by Corollary 3.4, LTD is nondegenerate. Hence it is a bijection and the result
follows.

For the sake of clarity sometimes we will write ψv instead of ψv,T , when the de-
pendence on T is not relevant.

In next lemma we give some orthogonality results on ψv defined in Lemma 3.6.

Lemma 3.7. Let v ∈ C2,α
e,m(R/Z) and ψv ∈ C2,α

r (CT
1 ) be the solution of (3.20).

Then ∫
CT1

ψvzj = 0,

∫
∂CT1

∂νψv = 0 , j = 1, 2, · · · , l .

Proof. We multiply the equation in (3.11) by ψv, the equation in (3.20) by zj, and
integrate by parts to gain∫

∂CT1

(
∂νψv zj − ∂νzj ψv

)
=

∫
CT1

τjzjψv .

Then we can at once gain the first identity by the facts that zj = 0, ∂νzj is constant
and ψv = v(·/T ) has 0 mean on ∂CT

1 .

We now define κ ∈ C2,α
r (CT

1 ) as the unique solution of the problem{
∆κ+ f ′(φ1)κ = 0 in CT

1 ,

κ = 1 on ∂CT
1 .

(3.21)
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whose existence has been verified in Lemma 3.6 for T < T . Then we multiply the
equation in (3.21) by ψv, the equation in (3.20) by κ, and integrate by parts to
obtain ∫

∂CT1

(
∂νκψv − ∂νψv κ

)
= 0.

Then we can at once gain the second identity by the facts that κ = 1, ∂νκ is
constant and ψv(x, t) = v

(
t
T

)
on ∂CT

1 .

For T < T we can define the linear continuous operator HT : C2,α
e,m(R/Z) →

C1,α
e,m(R/Z) by

HT (v)(t) = ∂ν(ψv)|∂CT1 (Tt) + c̄ v,

where ψv is given in Lemma 3.6 and c̄ is given in (3.4). We present some properties
of HT .

Lemma 3.8. For any T < T , the operator

HT : C2,α
e,m(R/Z)→ C1,α

e,m(R/Z)

is a linear essentially self-adjoint operator and has closed range. Moreover, it is
also a Fredholm operator of index zero.

Proof. Given vi ∈ C2,α
e,m(R/Z), we define ṽi(t) = vi

(
t
T

)
, i = 1, 2. Let us compute:

T

(∫ 1

0

HT (v1)v2 −
∫ 1

0

HT (v2)v1

)
=

∫ T

0

(∂νψv1 ṽ2 + c̄ṽ1ṽ2)−
∫ T

0

(∂νψv2 ṽ1 + c̄ṽ2ṽ1)

=

∫ T

0

(∂νψv1 ṽ2 − ∂νψv2 ṽ1)

=

∫ T

0

(ψv2∂νψv1 − ψv1∂νψv2)

=
1

ωd

∫
CT1

(ψv2∆ψv1 − ψv1∆ψv2)

=
1

ωd

∫
CT1

(f ′(φ1)ψv2ψv1 − f ′(φ1)ψv1ψv2)

= 0.

Therefore, we know that the operator HT is self-adjoint. In addition, the first part
of the operator HT , the Dirichlet-to-Nenmann operator for ∆ + f ′(φ1), is lower
bounded since 0 is not in the spectrum of ∆ + f ′(φ1) (see [4]). This yields that
there is a constant C > 0 such that

‖v‖C2,α(R/Z) ≤ C‖HT (v)‖C1,α(R/Z),

for all v that are L2(R/Z)-orthogonal to Ker (HT ). It follows that the range of HT

is closed. Therefore, HT is a Fredholm operator of index zero (refer to [50]).
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We show now that the linearization of the operator G with respect to v at v = 0
is given by HT , up to a constant.

Proposition 3.9. For any T ∈ (0, T ),

Dv(G)|v=0 = −φ′1(1)HT .

Proof. By the C1 regularity of G, it is enough to compute the linear operator
obtained by the directional derivative of G with respect to v, computed at (v, T ).
Such derivative is given by

G′(w) = lim
s→0

G(sw, T )−G(0, T )

s
= lim

s→0

G(sw, T )

s
.

Let v = sw, for y ∈ Rd and t ∈ R, we consider the parameterization of CT
1+v given

in (3.17). Let g be the induced metric such that φ̂ = Y ∗φ (smoothly depending
on the real parameter s) solves the problem{

∆gφ̂+ f(φ̂) = 0 in CT
1 ,

φ̂ = 0 on ∂CT
1 .

Let w̃(t) = w
(
t
T

)
. We remark that φ̂1 = Y ∗φ1 is the solution of

∆gφ̂1 + f(φ̂1) = 0

in CT
1 , and

φ̂1(y, t) = φ1

(
(1 + sw̃)y, t

)
on ∂CT

1 . Let φ̂ = φ̂1 + ψ̂, we can get that{
∆gψ̂ + f(φ̂1 + ψ̂)− f(φ̂1) = 0 in CT

1 ,

ψ̂ = −φ̂1 on ∂CT
1 .

(3.22)

Obviously, ψ̂ is differentiable with respect to s. When s = 0, we have φ = φ1.
Then, ψ̂ = 0 and φ̂1 = φ1 as s = 0. We set

ψ̇ = ∂sψ̂|s=0.

Differentiating (3.22) with respect of s and evaluating the result at s = 0, we have{
∆ψ̇ + f ′(φ1)ψ̇ = 0 in CT

1 ,

ψ̇ = −φ′1(1)w̃ on ∂CT
1 .

Then ψ̇ = −φ′1(1)ψw where ψw is as given by Lemma 3.6 (with v = w). Then, we
can write

φ̂(x, t) = φ̂1(x, t)− sψ̇(x, t) +O(s2).
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In particular, in a neighborhood of ∂CT
1 we have

φ̂(y, t) = φ1

(
(1 + sw̃)y, t

)
− sψ̇(y, t) +O(s2)

= φ1(y, t) + s
(
w̃r∂rφ1 − ψ̇(y, t)

)
+O(s2).

In order to complete the proof of the result, it is enough to calculate the normal
derivation of the function φ̂ when the normal is calculated with respect to the
metric g. By using cylindrical coordinates (y, t) = (rz, t) where r := |y| > 0 and
z ∈ Sd−1, then the metric g can be expanded in CT

1 as

g = (1 + sw̃)2dr2 + 2srw̃′(1 + sw̃)drdt+
(
1 + s2r2(w̃′)2

)
dt2 + r2(1 + sw̃)2

◦
h,

where
◦
h is the metric on Sd−1 induced by the Euclidean metric. It follows from

this expression that the unit normal vector fields to ∂CT
1 for the metric g is given

by
ν̂ =

(
(1 + sw̃)−1 +O(s2)

)
∂r +O(s)∂t.

By this, we conclude that

g(∇φ̂, ν̂) = ∂rφ1 + s
(
w̃∂2

rφ1 − ∂rψ̇
)

+O(s2)

on ∂CT
1 . From the fact that ∂rφ1 is constant and the fact that the term w̃∂2

rφ1−∂rψ̇
has mean 0 on ∂CT

1 we obtain

G′(w) = −∂rψ̇(Tt) + φ′′1(1)w = φ′1(1) ∂rψw(Tt) + φ′′1(1)w = −φ′1(1)HT (w).

This concludes the proof of the result.

3.5 Study of the linearized operator HT

In view of Proposition 3.9, a bifurcation of the branch (0, T ) of solutions of the
equation G(v, T ) = 0 might appear only at points (0, T∗) such that HT∗ becomes
degenerate. This will be verified to be true for a precise value T∗ < T. Let us now
define the quadratic form associated to HT , namely:

JT : C2,α
e,m(R/Z)→ R, JT (v) =

∫ 1

0

HT (v)v.

We now study the first eigenvalue of the operator HT as

σ(T ) = inf

{
JT (v) : v ∈ C2,α

e,m(R/Z) ,

∫ 1

0

v2 = 1

}
.

Lemma 3.10. For any v ∈ C2,α
e,m(R/Z),

QT (ψv) = TωdJT (v) .
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Proof. By the divergence formula, we have

TωdJT (v) =

∫
∂CT1

ψv∂νψv + c̄

∫
∂CT1

(ψv)
2

=

∫
CT1

(
∇xψv∇xψv + ψv∆xψv

)
+ c̄

∫
∂CT1

(ψv)
2

=

∫
CT1

(
∇xψv∇xψv − ψv(ψv)tt − f ′(φ1)ψvψv

)
+ c̄

∫
∂CT1

(ψv)
2

=

∫
CT1

(
∇ψv∇ψv − f ′(φ1)ψvψv

)
+ c̄

∫
∂CT1

(ψv)
2

= QT (ψv).

Next lemma characterizes the eigenvalue σ(T ) in terms of the quadratic form QT .

Lemma 3.11. For any T < T , we have

σ(T ) = min

{
QT (ψ) : ψ ∈ E,

∫
∂CT1

ψ2 = 1

}
,

where

E =

{
ψ ∈ H1

r (CT
1 ) :

∫
∂CT1

ψ = 0,

∫
CT1

ψzj = 0, j = 1, . . . , l

}
.

Moreover, the infimum is attained.

Proof. Let us define

µ := inf

{
QT (ψ) : ψ ∈ E,

∫
∂CT1

ψ2 = 1

}
∈ [−∞,+∞).

We first show that µ is achieved. On that purpose, take ψn ∈ E such that
QT (ψn)→ µ.

We claim that ψn is bounded. Reasoning by contradiction, if ‖ψn‖H1 → +∞, we
define ξn = ‖ψn‖−1

H1ψn; we can suppose that up to a subsequence ξn ⇀ ξ0. Notice
that

∫
∂CT1

ξ2
n → 0, which yields that ξ0 ∈ H1

0,r(C
T
1 ). We also point out that∫

CT1

f ′(φ1)ξ2
n →

∫
CT1

f ′(φ1)ξ2
0 ,

∫
CT1

ξ0zj = 0, j = 1, . . . , l .

Let us consider the following two cases:
Case 1: ξ0 = 0. In this case

QT (ψn) = ‖ψn‖2

∫
CT1

(
|∇ξn|2 − f ′(φ1)ξ2

n

)
+ c̄→ +∞ ,
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which is impossible.
Case 2: ξ0 6= 0. In this case

lim inf
n→∞

QT (ψn) = lim inf
n→∞

‖ψn‖2

∫
CT1

(
|∇ξn|2 − f ′(φ1)ξ2

n

)
+ c̄

≥ lim inf
n→∞

‖ψn‖2QT
D(ξ0) + c̄ ,

but QT
D(ξ0) > 0 by Proposition 3.3. This is again a contradiction.

Thus, ψn is bounded, so up to a subsequence we can pass to the weak limit ψn ⇀ ψ.
Then, ψ is a minimizer for µ and in particular µ > −∞.

By the Lagrange multiplier rule, there exist θ1, θ2 and ζ1, . . . , ζl real numbers so
that for any ρ ∈ H1

r (CT
1 ),∫

CT1

(
∇ψ∇ρ− f ′(φ1)ψρ+ ρ

l∑
i=1

ζizi

)
=

∫
∂CT1

ρ((θ1 + c̄)ψ + θ2).

Taking ρ = zj above we conclude that ζj = 0. Moreover, if we take ρ = ψ and
ρ = κ (given by (3.21)), we conclude that θ1 + c̄ = µ and θ2 = 0, respectively. In
other words, ψ is a (weak) solution of{

∆ψ + f ′(φ1)ψ = 0 in CT
1 ,

∂νψ = µψ on ∂CT
1 .

By the regularity theory, ψ ∈ C2,α
r (CT

1 ). Define v(t) = ψ|∂CT1 (T t). Observe that:∫ 1

0

v2 =
1

Tωd
, JT (v) =

1

Tωd
QT (ψ) =

1

Tωd
µ .

In the second equality Lemma 3.10 has been used. After a suitable renormalization
we obtain that σ(T ) ≤ µ. But, again by Lemma 3.10, the reversed inequality is
trivially satisfied, and the proof is concluded.

We are now in conditions to prove the main result of this section:

Proposition 3.12. Define T∗ = 2π√
−γ1 , where γ1 is given in (3.6). Observe that by

Lemma 3.2, T ∗ is well defined and T∗ ∈ (0, T ). Then:

(i) if T ∈ (0, T∗), then σ(T ) > 0;

(ii) if T = T∗, then σ(T ) = 0;

(iii) if T ∈ (T∗, T ) then σ(T ) < 0.

Moreover, Ker(HT∗) = R cos(2πt). In particular, dim Ker(HT∗) = 1.

Proof. It follows from Lemma 3.11 and Proposition 3.3, taking into account that
C2,α
e,m(R/Z) contains only even functions.
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3.6 The bifurcation argument

In this section, we are in position to prove our main Theorem 1.1 by the bifurcation
argument. Theorem 1.1 follows immediately from the following proposition and
the Crandall-Rabinowitz Theorem 1.7.

Proposition 3.13. The linearized operator DvG(0, T∗) has a 1-dimensional kernel
spanned by the function w = cos(2πt), that is,

Ker DvG(0, T∗) = Rw.

The cokernel of DvG(0, T∗) is also 1-dimensional, and

DTDvG(0, T∗)(w) /∈ Im DvG(0, T∗).

Proof. Recall from the Proposition 3.9, we know that DvG(0, T∗) = −φ′1(1)HT∗ .
Then we have

Im DvG(0, T∗) = Im HT∗ .

By the Proposition 3.12, we have that the kernel of the linearized operatorDvG(0, T∗)
has dimension 1 and can be spanned by the function w(t) = cos(2πt):

Ker DvG(0, T∗) = Rw.

Then, codim Im (HT∗) = 1 follows from the fact that HT is a Fredholm operator
of index zero by Lemma 3.8.

Here, we are ready to prove DTDvG(0, T∗)(w) /∈ Im DvG(0, T∗). Taking ξ ∈
Im DvG(0, T∗) = Im (HT∗), ξ = HT∗(v), then we have∫ 1

0

ξw =

∫ 1

0

HT∗(v)w =

∫ 1

0

HT∗(w)v = 0,

because of the fact HT∗(w) = 0. By Lemma 3.8 we have

Im (HT∗) =

{
ξ :

∫ 1

0

ξw = 0

}
.

Recall that DTDvG(0, T∗)(w) = −φ′1(1)DT |T=T∗HT (w), then, in order to prove
DTDvG(0, T∗)(w) /∈ Im DvG(0, T∗), we just need to prove that∫ 1

0

(
DT |T=T∗HT (w)

)
w 6= 0.
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Actually, by Lemma 3.10,∫ 1

0

(
DT |T=T∗HT (w)w

)
=

d

dT

∣∣∣
T=T∗

∫ 1

0

HT (w)w

=
1

ωd

d

dT

∣∣∣
T=T∗

(
1

T
QT (ψw)

)
=

1

ωd

d

dT

∣∣∣
T=T∗

(
1

2
Q(ψ1) +

2π2

T 2

∫
B

ψ2
1

)
= − 4π2

ωdT 3
∗

∫
B

ψ2
1 6= 0,

where the passage from the second to third equality is given by the following
computation of QT (ψ) with the function ψw(x, t) = ψ1(x) cos

(
2πt
T

)
, with ψ1 as in

(3.7):

QT (ψ) = QT
D(ψ) + c̄

∫
∂CT1

ψ2

=

∫
CT1

(
|∇ψ|2 − f ′(φ1)ψ2

)
+ c̄

∫
∂CT1

ψ2

=

∫
CT1

[
|∇ψ1|2 cos2

(
2πt

T

)
+ ψ2

1

(
2π

T

)2

sin2

(
2πt

T

)
− f ′(φ1)ψ2

1 cos2

(
2πt

T

)]

+ c̄

∫
∂CT1

ψ2
1 cos2

(
2πt

T

)
=
[ ∫

B

(
|∇ψ1|2 − f ′(φ1)ψ2

1

)
+ c̄ ωdψ

2
1(1)

] ∫ T

0

cos2

(
2πt

T

)
+

(
2π

T

)2 ∫
B

ψ2
1

∫ T

0

sin2

(
2πt

T

)
= Q(ψ1)

∫ T

0

cos2

(
2πt

T

)
+

(
2π

T

)2 ∫
B

ψ2
1

∫ T

0

sin2

(
2πt

T

)
=
T

2
Q(ψ1) +

2π2

T

∫
B

ψ2
1.



Chapter 4

Exceptional domains in Rd

In this chapter, we prove the existence of exceptional domains, in which the overde-
termined problem (1.9) admits a solution. The pull-back problem corresponding
to the problem (1.9) is shown first such that we just need to study the equivalent
problem on a fixed domain. In order to do this, we need to analyze the pull-
back operator in weighted Hölder spaces because our analysis strongly relies on
the decay assumptions. Next, we reformulate our problem as a nonlinear opera-
tor equation and prove the existence of a unique solution to this problem under
such a functional analytic setting. After this, the computation of the linearised
operator and the study of its spectral properties are presented. Based on all these
results, the proof of Theorem 1.2 is then completed by making use of the Crandall-
Rabinowitz bifurcation theorem. We end this chapter with an appendix where we
collect some useful scale-invariant Hölder estimates for solutions of the Poisson
equation and properties of modified Bessel functions.

4.1 The pull-back problem

We begin by fixing some notations. For k ∈ N ∪ {0}, we let

Ck,α
p,e (R) :=

{
u ∈ Ck,α(R) : u is 2π-periodic and even

}
.

Moreover, we consider the open set

U := {ϕ ∈ C2,α
p,e (R) : ‖ϕ‖∞ < 1}.

Recalling our problem, we are looking for a number T > 0 and a 2π-periodic
positive function ϕ : R → (0,∞) of class C2,α such that the overdetermined

47
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problem 

∆u = 0 in ΩT,ϕ,

u = 1 on ∂ΩT,ϕ,

lim
|z|→∞

u(z, t) = 0 uniformly in t ∈ R,
∂u

∂ν
= d− 3 on ∂ΩT,ϕ,

(4.1)

is solvable in the perturbed domain ΩT,ϕ defined in (1.10).

In order to find a suitable variational framework for this problem, it is convenient
to pull-back (4.1) on the fixed domain Ω1 := Bc

1×R via a suitable diffeomorphism
of the form

Ω1 → ΩT,ϕ, (y, τ) 7→
(

(1 + ϕ(τ)|y|s)y, T
2π
τ
)
. (4.2)

Note that, since the function r 7→ (1 + crs)r is strictly increasing on (1,∞) for
|c| ≤ 1 and 0 ≥ s ≥ −2, it is easy to see that (4.2) defines a diffeomorphism
if T > 0, 0 ≥ s ≥ −2 and ‖ϕ‖∞ ≤ 1. It will turn out to be important in our
functional analytic framework to minimize the effect of ϕ for large values of |y|,
which leads us to choose s = −2 in the following. Hence we consider, for T > 0 and
a 2π-periodic positive function ϕ ∈ C2,α(R) with ‖ϕ‖∞ < 1, the diffeomorphism

ΨT,ϕ : Ω1 → ΩT,ϕ, (y, τ) 7→
(
κ(|y|2, ϕ(τ))y,

T

2π
τ

)
(4.3)

with

κ(a, b) = 1 +
b

a
, for a ≥ 1 and |b| ≤ 1 .

Furthermore,

z = κ(|y|2, b)y ⇐⇒ y = ζ(|z|2, b)z, (4.4)

where ζ is the unique function given by

ζ(a, b) =
1

2
+

√
1

4
− b

a
, for |b| ≤ 1 and a ≥ 4b. (4.5)

In order to pull back the problem (4.1) in Ω1, we consider the ansatz

u(z, t) = w

(
ζ

(
|z|2, ϕ

(
2π

T
t

))
z,

2π

T
t

)
= w(y, τ) (4.6)

for some functions w : Ω1 → R, and we look for the operator LT,ϕ such that

LT,ϕw(y, τ) = ∆u(z, t) for (z, t) ∈ ΩT,ϕ, (4.7)
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where τ = 2π
T
t. To write down the operator LT,ϕ explicitly, we need the partial

derivatives ζi = ∂iζ, ζii = ∂iiζ, i = 1, 2 of the function ζ in (4.5), which are given
as follows for |b| < 1 and a > 4b:

ζ1(a, b) =
b

2a2(ζ(a, b)− 1
2
)
,

ζ11(a, b) = − b

a3(ζ(a, b)− 1
2
)

(
1 +

b

4a(ζ(a, b)− 1
2
)2

)
,

ζ2(a, b) = − 1

2a(ζ(a, b)− 1
2
)
,

ζ22(a, b) = − 1

4a2(ζ(a, b)− 1
2
)3
,

Lemma 4.1. For every T > 0 and ϕ ∈ C2,α(R), the operator LT,ϕ in (4.7) is given
by

LT,ϕw = ζ2∆yw +

(
2π

T

)2
∂2w

∂τ 2
+

4

ζ2

(
ζ1

(
ζ + |y|2 ζ1

ζ2

)
+
(2π

T

)2

ζ2
2ϕ
′2

)
d−1∑
k,`=1

y`yk
∂2w

∂y`∂yk

+

(
2(N + 1)

ζ1

ζ
+ 4

ζ11

ζ3
|y|2 +

(2π

T

)2(ϕ′′ζ2 + ϕ′2ζ22

ζ

))
y · ∇yw

+

(
2π

T

)2
ζ2ϕ

′

ζ

d−1∑
`=1

y`
∂2w

∂y`∂τ
,

where, for abbreviation, we merely write ζ in place of the function

(y, τ) 7→ ζ(|κ(|y|2, ϕ(τ))y|2, ϕ(τ)) (4.8)

and similarly for the partial derivatives ζi, ζii, i = 1, 2.

Proof. We set

y`(z, t) := ζ

(
|z|2, ϕ

(
2πt

T

))
z`, ` = 1, · · · , d− 1.

Then, on ΩT,ϕ, we find after computation,

∂y`
∂zi

= 2ziζ1z` + ζδi`,

∂2y`
∂z2

i

= 2
ζ1

ζ
y` + 4y2

i

ζ11

ζ3
y` + 4

ζ1

ζ
δi`yi, (4.9)

where, here and in the following, we simply write ζ in place of the function

(z, t) 7→ ζ

(
|z|2, ϕ

(
2πt

T

))
(4.10)
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and similarly for ζi, ζii, i = 1, 2. We also have

∂

∂t

(ζ2(τ)

ζ(τ)

)
=
(2π

T

) ∂
∂τ

(ζ2(τ)

ζ(τ)

)
=
(2π

T

)ϕ′
ζ

(
ζ22 −

ζ2
2

ζ

)
,

and hence

∂y`
∂t

=
2π

T
ϕ′ζ2z` =

2π

T
ϕ′
ζ2

ζ
y`,

∂2y`
∂t2

=
(2π

T

)2(
ϕ′′
ζ2

ζ
+ ϕ′

∂

∂τ

(ζ2(τ)

ζ(τ)

)
+ϕ′2

ζ2
2

ζ2

)
y`

=
(2π

T

)2(ϕ′′ζ2 + ϕ′2ζ22

ζ

)
y`. (4.11)

Next we compute

∂u

∂zi
=

d−1∑
`=1

∂y`
∂zi

(
∂w

∂y`
◦Ψ−1

T,ϕ

)
,

∂2u

∂z2
i

=
d−1∑
`=1

∂2y`
∂z2

i

(
∂w

∂y`
◦Ψ−1

T,ϕ

)
+

d−1∑
k,`=1

∂y`
∂zi

∂yk
∂zi

(
∂2w

∂y`∂yk
◦Ψ−1

T,ϕ

)
=: (A) + (B).

Using (4.9), we find

(A) : =
(

2
ζ1

ζ
+ 4

ζ11

ζ3
y2
i

)
y ·
(
∇yw ◦Ψ−1

T,ϕ

)
+ 4

ζ1

ζ
yi

(∂w
∂yi
◦Ψ−1

T,ϕ

)
,

(B) : = ζ2
(∂2w

∂y2
i

◦Ψ−1
T,ϕ

)
+ 4

ζ1

ζ

d−1∑
k=1

yiyk

( ∂2w

∂yi∂yk
◦Ψ−1

T,ϕ

)
+ 4y2

i

ζ2
1

ζ4

d−1∑
k,`=1

y`yk

( ∂2w

∂y`∂yk
◦Ψ−1

T,ϕ

)
.

In addition,

∂u

∂t
=

d−1∑
`=1

∂y`
∂t

(∂w
∂y`
◦Ψ−1

T,ϕ

)
+

2π

T

(∂w
∂τ
◦Ψ−1

T,ϕ

)
,

∂2u

∂t2
=

d−1∑
`=1

∂2y`
∂t2

(∂w
∂y`
◦Ψ−1

T,ϕ

)
+

d−1∑
k,`=1

∂y`
∂t

∂yk
∂t

( ∂2w

∂y`∂yk
◦Ψ−1

T,ϕ

)

+
2π

T

d−1∑
`=1

∂y`
∂t

( ∂2w

∂τ∂y`
◦Ψ−1

T,ϕ

)
+

(
2π

T

)2 (∂2w

∂τ 2
◦Ψ−1

T,ϕ

)
=: (I) + (J) + (K).
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We now use (4.11) and find

(I) =
(2π

T

)2(ϕ′′ζ2 + ϕ′2ζ22

ζ

)
y ·
(
∇yw ◦Ψ−1

T,ϕ

)
,

(J) =
(2π

T

)2 ζ2
2ϕ
′2

ζ2

d−1∑
k,`=1

yky`

( ∂2w

∂yky`
◦Ψ−1

T,ϕ

)
,

(K) =
2π

T

d−1∑
`=1

∂y`
∂t

( ∂2w

∂τ∂y`
◦Ψ−1

T,ϕ

)
+

(
2π

T

)2 (∂2w

∂τ 2
◦Ψ−1

T,ϕ

)
=

(
2π

T

)2
[
ζ2ϕ

′

ζ

d−1∑
`=1

y`

( ∂2w

∂y`∂τ
◦Ψ−1

T,ϕ

)
+
(∂2w

∂τ 2
◦Ψ−1

T,ϕ

)]
.

Collecting these identities, which we have derived on the domain ΩT,ϕ in the vari-
ables (z, t), and passing to the variables (y, τ) ∈ Ω1, we obtain the claim. Note
here that we have to write (z, t) =

(
κ(|y|2, ϕ(τ))y, T

2π
τ
)

to pass from (4.10) to (4.8)
and similarly for the partial derivatives ζi, ζii, i = 1, 2.

We now use Lemma 4.1 and rephrase the original problem (4.1) and the fixed
domain Bc

1 × R.

We recall that the boundary ∂ΩT,ϕ of ΩT,ϕ is given by

∂ΩT,ϕ =

{(
(1 + ϕ(τ))σ,

T

2π
τ

)
: σ ∈ Sd−2, t ∈ R

}
(4.12)

and its outer normal vector field is given by

Υ

(
(1 + ϕ(τ))σ,

T

2π
τ

)
=

(
−σ, 2πϕ′(τ)/T

)
√

1 +
(

2π
T

)2

ϕ′2(τ)

. (4.13)

Let the metric gT,ϕ be defined as the pull back of the euclidean metric geucl under
the map ΨT,ϕ, so that ΨT,ϕ : (Ω1, gT,ϕ)→ (ΩT,ϕ, geucl) is an isometry. Denote by

νT,ϕ : ∂Ω1 → Rd

the unit outer normal vector field on ∂Ω1 with respect to gT,ϕ. Since ΨT,ϕ :
(Ω1, gT,ϕ)→ (ΩT,ϕ, geucl) is an isometry, we have

νT,ϕ = [dΨT,ϕ]−1Υ ◦ΨT,ϕ on ∂Ω1. (4.14)

Moreover, by (4.14) we have Υ(Ψϕ(y, τ)) = dΨϕ(y, τ)νϕ(y, τ) and therefore

∂νT,ϕw(y, τ) = dw(y, τ)νϕ(y, τ) = du(Ψϕ(y, τ))dΨϕ(y, τ)νT,ϕ(y, τ)

= du(Ψϕ(y, τ))Υ(Ψϕ(y, τ)) = 〈Υ(Ψϕ(y, τ)), (∇(z,t)u)(Ψϕ(y, τ))〉geucl .
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That is

∂νT,ϕw(y, τ) = 〈Υ(Ψϕ(y, τ)), (∇(z,t)u)(Ψϕ(y, τ))〉geucl , (4.15)

where u and w are related by (4.6).

Taking into account (4.12), our aim is to show that for some values of the parameter
T > 0 and ϕ > −1, we can find a solution w to the overdetermined boundary value
problem


LT,ϕw = 0 in Bc

1 × R,

w = 1 on ∂(Bc
1 × R),

lim
|y|→∞

w(y, τ) = 0 uniformly in τ ∈ R.

(4.16)

and

∂w

∂νT,ϕ
= d− 3 on ∂(Bc

1 × R). (4.17)

We start proving the existence of a solution to the problem (4.16) by analyzing
the operator LT,ϕ in weighted Hölder spaces.

4.2 Analysis of the operator LT,ϕ on weighted

Hölder spaces

Our setting in analysing the operator LT,ϕ is that of the weighted Hölder spaces
introduced by Pacard and Rivière [62]. We emphasise that Pacard and Rivière
performed their analysis on B1\{0} whereas in contrast we wish to carry our
study on the open set Ω1 = Bc

1 × R. More generally, we consider, for r > 0, the
sets

Ωr :=
{

(y, τ) ∈ Rd−1 × R : |y| > r} ⊂ Rd,

and we set Ω0 = Rd. Let α ∈ (0, 1) be fixed in the following.

Definition 4.2. Let µ < 0, k ∈ N.

(i) For a set K ⊂ Rd and a function v ∈ C0,α(K) we put

[v]C0,α(K) := sup
z,z′∈K

|v(z)− v(z′)|
|z − z′|α

and
‖v‖C0,α(K) := ‖v‖L∞(K) + [v]C0,α(K).
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(ii) We say u ∈ Ck,α
µ (Ωr) if u ∈ Ck,α

loc (Ωr) and

‖u‖k,α,µ = sup
s>r

(
s−µ[u]k,α,s

)
<∞,

where As = {(x, t) ∈ Rd−1 × R : s 6 |x| 6 2s} for s > 0 and

[u]k,α,s :=
k∑
i=0

si‖∇iu‖L∞(As) + sk+α[∇ku]Cα(As).

(iii) We also define the following function spaces:

Ck,α
µ,D(Ωr) :=

{
u ∈ Ck,α

µ (Ωr) : u|∂Ωr = 0
}
,

Ck,α
µ,p,e(Ωr) :=

{
u ∈ Ck,α

µ (Ωr) : u is 2π-periodic and even in the coordinate t
}
,

Ck,α
µ,D,p,e(Ωr) :=

{
u ∈ Ck,α

µ,D(Ωr) : u is 2π-periodic and even in the coordinate t
}
.

Remark 4.3. Let r ≥ 0 and u ∈ Ck,α
µ (Ωr). By definition, we then have

sup
As

|u| 6 [u]k,α,s 6 sµ‖u‖k,α,µ for all s > r

and therefore, in particular,

|u(y, τ)| 6 |y|µ‖u‖k,α,µ for all (y, τ) ∈ Ωr. (4.18)

Consequently,

|u(y, τ)| → 0 as |y| → ∞ uniformly in τ ∈ R if µ < 0. (4.19)

It can be deduced from the specific form of the operator LT,ϕ given in Lemma 4.1
that LT,ϕ maps C2,α

µ,D,p,e(Ω1) to C0,α
µ−2,p,e(Ω1). The following is the main result of

this section.

Theorem 4.4. Let 3− d < µ < 0. Then we have a smooth map

(0,+∞)× U → L(C2,α
µ,p,e(Ω1), C0,α

µ−2,p,e(Ω1)), (T, ϕ)→ LT,ϕ. (4.20)

Moreover, there exists an open neighborhood O ⊂ (0,+∞) × U of (0,∞) × {0}
with the property that

LDT,ϕ := LT,ϕ

∣∣∣
Ck,αµ,D,p,e(Ω1)

∈ I
(
C2,α
µ,D,p,e(Ω1), C0,α

µ−2,p,e(Ω1)
)

for (T, ϕ) ∈ O. (4.21)

Here and in the following, for two Banach spaces X and Y , we let L(X, Y ) denote
the space of bounded and linear operators from X to Y , and I(X, Y ) the subset
of topological isomorphisms X → Y .

The main ingredient in the proof of Theorem 4.4 is the following proposition.
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Proposition 4.5. Let 3− d < µ < 0 and T > 0. Then the operator

LDT,0 = ∆y +
(2π

T

)2 ∂2

∂τ 2
: C2,α

µ,D,p,e(Ω1)→ C0,α
µ−2,p,e(Ω1)

is a topological isomorphism.

Let us postpone the proof of Proposition 4.5 for a moment and first quickly finish
the proof of Theorem 4.4. Since

ζ1(a, b) = O(a−2), ζ11(a, b) = O(a−3), ζ2(a, b) = O(a−1) and ζ11(a, b) = O(a−2)

as a → +∞, it follows by a straightforward computation from Lemma 4.1 that
(4.20) defines a smooth map. Moreover, since, for any Banach spaces X, Y , the
set I(X, Y ) is open in L(X, Y ), it follows directly from Proposition 4.5 and the
continuity of the map (T, ϕ) → LT,ϕ that there exists an open neighborhood
O ⊂ (0,+∞)× U of (0,∞)× {0} with the property that (4.21) holds.

So the proof of Theorem 4.4 will be completed by proving Proposition 4.5, and
this will be done in the remainder of this section. Without loss of generality, we
may restrict our attention to the special case T = 2π, in which we have

L2π,0 = ∆

is merely the Laplace operator in the variables (y, τ) ∈ Rd. The general case will
then follow by rescaling the τ -variable. This will change the period length in the
spaces C2,α

µ,D,p,e(Ω1) and C0,α
µ−2,p,e(Ω1) but does not require further changes as the

arguments below do not depend on the period length.

We first note the following.

Lemma 4.6. Let µ < 0. Then the operator

∆ : C2,α
µ,D,p,e(Ω1)→ C0,α

µ−2,p,e(Ω1)

is injective.

Proof. Let w ∈ C2,α
µ,D,p,e(Ω1). Then w = 0 on ∂Ω1 and w(y, τ) → 0 as |y| → ∞

uniformly in τ by (4.19). Since w is continuous and also periodic in the τ -variable,
w attains its maximum and minimum on Ω1. Moreover, if ∆w = 0, then neither
the maximum nor the mimimum can be attained in Ω1 unless w is constant. In
any case, we therefore conclude that ∆w = 0 implies w = 0, and thus the the
lemma is proved.

As a consequence of the open mapping theorem, the proof of Proposition 4.5 is
completed once we have shown that

∆ : C2,α
µ,D,p,e(Ω1)→ C0,α

µ−2,p,e(Ω1) is surjective for 3− d < µ < 0.
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To prove this, we let 3− d < µ < 0 and f ∈ C0,α
µ−2,p,e(Ω1) be fixed in the following.

We are looking for a function w ∈ C2,α
µ,D,p,e(Ω1) such that ∆w = f . We shall find

this function in the form w = w1 − w2, where

w1 := ϕ ∗ f̃ : Ω1 → R,

where f̃ ∈ C0,α
µ−2,p,e(Rd) is an arbitrary τ -periodic, even and Hölder continuous

extension of f to Rd, and w2 is a τ -periodic and even solution of

∆w2 = 0 in Ω1, w2 = w1 on ∂Ω1.

Here x 7→ ϕ(x) = cd|x|2−d is the fundamental solution associated with −∆ in Rd,
where cd = 1

d−2
|Sd−1|. The surjectivity is therefore a consequence of the following

two lemmas.

Lemma 4.7. Let 3− d < µ < 0 and f̃ ∈ C0,α
µ−2,p,e(Rd) be as above. Then

1

| · |d−2
∗ f̃ ∈ C2,α

µ,p,e(Rd).

and therefore ( 1

| · |d−2
∗ f̃
)∣∣∣

Ω1

∈ C2,α
µ,p,e(Ω1).

Proof. By (4.18) we have

|f̃(y, σ)| ≤ |y|µ−2‖f̃‖0,α,µ−2 for y ∈ Rd−1, σ ∈ R.

For x ∈ Rd−1 \ {0} and t ∈ R we then find, by a change of variable, that∣∣∣( 1

| · |d−2
∗ f̃
)

(x, t)
∣∣∣ ≤ ∫

Rd−1

∫
R

(
|x− y|2 + (t− σ)2

) 2−d
2 |f̃(y, σ)| dσdy

≤ ‖f̃‖0,α,µ−2

∫
Rd−1

|y|µ−2|x− y|2−d
∫
R

(
1 +

( t− σ
|x− y|

)2) 2−d
2
dσdy

= Cd‖f̃‖0,α,µ−2

∫
Rd−1

|y|µ−2|x− y|3−ddy,

where Cd =
∫
R(1 + τ 2)

2−d
2 dτ <∞. By rotational invariance, we thus find that∣∣∣( 1

| · |d−2
∗ f̃
)

(x, t)
∣∣∣ ≤ Cd‖f̃‖0,α,µ−2

∫
Rd−1

|y|µ−2
∣∣|x|e1 − y

∣∣3−ddy
= Cd‖f̃‖0,α,µ−2|x|µ+1−d

∫
Rd−1

∣∣∣∣ y|x|
∣∣∣∣µ−2∣∣∣∣e1 −

y

|x|

∣∣∣∣3−ddy
= CdDd,µ‖f̃‖0,α,µ−2|x|µ,
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where Dd,µ :=
∫
Rd−1 |z|µ−2|e1− z|3−ddz is finite since 3−d < µ < 0. Therefore, the

function u := 1
|·|d−2 ∗ f̃ satisfies the estimate

‖u‖L∞(As) ≤ Cd,µ‖f̃‖0,α,µ−2s
µ (4.22)

for some constant Cd,µ > 0.

Moreover, by (4.65) in the appendix, using the fact that u solves −∆u = f̃ in
A2s ∪ As ∪ A s

2
, we find that for every s > 0,

2∑
i=0

si‖∇iu‖As + s2+α[∇2u]C0,α(As)

≤ C
(
s2‖f̃‖L∞(A2s∪As∪A s

2
) + s2+α[f̃ ]C0,α(A2s∪As∪A s

2
) + ‖u‖L∞(A2s∪As∪A s

2
)

)
≤ Csµ

(
‖f̃‖0,α,µ−2 + ‖u‖0,α,µ

)
≤ Csµ‖f̃‖0,α,µ−2,

where we used (4.22) in the last step. Hence u ∈ C2,α
µ (Rd). Moreover, u is even

and periodic in the t-variable, and therefore u ∈ C2,α
µ,p,e(Rd), as claimed.

Lemma 4.8. Let 3 − d < µ < 0 and let ϕ ∈ C2,α
p,e (Ω1). Then there exists w ∈

C2,α
µ,p,e(Ω1) satisfying

∆w = 0 in Ω1, w = ϕ on ∂Ω1. (4.23)

Proof. With the help of Perron’s method, it is easy to see that (4.23) admits an
even and periodic solution w ∈ C2,α

loc (Ω1) with respect to τ satisfying

w(y, τ)→ 0 as |y| → ∞ uniformly in τ ∈ R.

To see that w ∈ C2,α
µ,p,e(Ω1), we first note that

|w(y, τ)| ≤ ‖ϕ‖C2,α
p,e (Ω1)|y|

3−d for (y, τ) ∈ Ω1,

by comparison (see [44, Theorem 3.3]) with the functions

w± : Ω1 → R, w±(y, τ) = ±‖ϕ‖C2,α
p,e (Ω1)|y|

3−d,

which are harmonic in Ω1 and satisfy w− ≤ w ≤ w+ on ∂Ω1.

Moreover, for s > 2, there exists R0 > 1 such that BR0s(x) ⊂ A2s ∪ As ∪ A s
2

for
any x ∈ As. Using this and the fact that w solves −∆w = 0 in A2s ∪As ∪A s

2
, we

may apply (4.66) in the appendix with f ≡ 0 to see that

2∑
i=0

si‖∇iw‖As + s2+α[∇2w]C0,α(As) ≤ C‖w‖L∞(A2s∪As∪A s
2

)

≤ C‖ϕ‖L∞(Ω1)s
3−d ≤ C‖ϕ‖L∞(Ω1)s

µ. (4.24)
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Here we used that µ > 3 − d. Using also the fact that, by standard elliptic
estimates we have w ∈ C2,α(Ω1 \ Ω2) with ‖w‖C2,α(Ω1\Ω2) ≤ C‖ϕ‖C2,α(Ω1), we see
that for 1 < s ≤ 2,

2∑
i=0

si‖∇iw‖As + s2+α[∇2w]C0,α(As)

≤ C‖w‖C2,α(Ω1\Ω2) ≤ C‖ϕ‖C2,α(Ω1) ≤
C

2µ
sµ‖ϕ‖C2,α(Ω1), (4.25)

where C is a constant only depending on α.

Combining (4.24) and (4.25), we obtain

‖w‖2,α,µ ≤ C‖ϕ‖C2,α(Ω1),

as required.

4.3 Solution to the Dirichlet problem

In this section, we wish to use Theorem 4.4 to formulate problem (4.16), (4.17) as a
nonlinear operator equation. For this, we need the following Lemma. Throughout
the remainder of this chapter, we let O be given as in Theorem 4.4.

Lemma 4.9. Let 3− d < µ < 0. Then there exists a smooth map

O → C2,α
µ,p,e(Ω1), (T, ϕ) 7→ wT,ϕ (4.26)

with the property that, for every (T, ϕ) ∈ O, the function wT,ϕ is the unique solution
of the problem 

LT,ϕwT,ϕ = 0 in Bc
1 × R,

wT,ϕ = 1 on ∂(Bc
1 × R),

lim
|y|→∞

wT,ϕ(y, τ) = 0 uniformly in τ ∈ R.

(4.27)

Moreover, the functions wT,ϕ : Ω1 → R and ∂νϕwT,ϕ : ∂Ω1 → R are radially
symmetric in the y-variable, and

wT,0(y, τ) = u1(y) = |y|3−d = u1(y, τ) for every T > 0. (4.28)

Proof. We first note that u1 ∈ C2,α
µ (Ω1) since 3 − d < µ < 0, as |∂iu1(y, τ)| ≤

(d− 3)|y|2−d and |∂iju1(y, τ)| ≤ d(d− 3)|y|1−d for i, j = 1, . . . , d. We consider the
map

O → C2,α
µ,D,p,e(Ω1), (T, ϕ) 7→ mT,ϕ :=

(
LDT,ϕ

)−1(
LT,ϕu1

)
, (4.29)
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which is well-defined by Theorem 4.4. For (T, ϕ) ∈ O, the function mT,ϕ ∈
C2,α
µ,D,p,e(Ω1) is the unique solution of the problem

LT,ϕmT,ϕ = LT,ϕu1 in Ω1,

mT,ϕ = 0 on ∂Ω1,

lim
|y|→∞

mT,ϕ(y, τ) = 0 uniformly in τ ∈ R.

Hence the function
wT,ϕ := −mT,ϕ + u1 ∈ C2,α

µ,p,e(Ω1)

is the unique solution of (4.27). Moreover, both wT,ϕ : Ω1 → R and ∂νϕwT,ϕ :
∂Ω1 → R are radially symmetric in the x-variable by uniqueness and the fact that
both Ω1 and the operator LT,ϕ are radial in the x-variable. In addition, for T > 0
we have mT,0 ≡ 0 in Ω1 since LT,0u1 = ∆yu1 ≡ 0 and therefore wT,0 = u1.

It thus remains to show that the map (T, ϕ) 7→ mT,ϕ in (4.29) is smooth. For this
we first note that, for every pair of Banach spaces X, Y , the inversion map

I(X, Y )→ I(Y,X), T 7→ T−1

is smooth in the open set I(X, Y ) ⊂ L(X, Y ) of topological isomorphisms. Hence
the smoothness of the maps (T, ϕ) 7→ mT,ϕ follows by the smoothness of the maps

O → L(C2,α
µ,p,e(Ω1), C0,α

µ−2,p,e(Ω1)), (T, ϕ)→ LT,ϕ,

O → L(C2,α
µ,D,p,e(Ω1), C0,α

µ−2,p,e(Ω1)), (T, ϕ)→ LDT,ϕ

asserted in Theorem 4.4. The proof is thus finished.

The aim now is to prove that for some parameter values (T, ϕ) ∈ O with ϕ 6≡ 0,
the function wT,ϕ satisfies the overdetermined condition

∂wT,ϕ
∂νT,ϕ

= d− 3 on ∂(Bc
1 × R). (4.30)

We thus define the map

F : O ⊂ R× C2,α
p,e (R)→ C1,α

p,e (R), F (T, ϕ)(τ) :=
∂wT,ϕ
∂νT,ϕ

(e1, τ)− (d− 3). (4.31)

By radial symmetry of
∂wT,ϕ
∂νT,ϕ

, the condition (4.30) is therefore equivalent to

F (T, ϕ) = 0. Our aim is to apply the Crandall-Rabinowitz bifurcation theorem
1.7 to solve the equation

F (T, ϕ) ≡ 0 in C1,α
p,e (R).

Observe that from (4.13) and (4.14) that the map O → C1,α(∂Ω1,Rd), (T, ϕ) 7→
νT,ϕ is smooth. This together with the smoothness of the map in (4.26) guarantees
that (T, ϕ) 7→ F (T, ϕ) is smooth. Indeed, we have the following observation.
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Lemma 4.10. (see [32, Lemma 2.3])
Let

h : O → C2,α(Ω1), (T, ϕ) 7→ hT,ϕ

be a smooth map. Then the map

G(T, ϕ) : O → C1,α(∂Ω1), G(ϕ) =
∂hT,ϕ
∂νT,ϕ

is smooth as well and satisfies

DϕG(T, ϕ)v =
∂hT,ϕ
∂ν̃T,ϕ(v)

+
∂
(

[DϕhT,ϕ]v
)

∂νT,ϕ
for v ∈ C2,α

p,e (R), (4.32)

where

ν̃T,ϕ(v) := [DϕνT,ϕ]v ∈ C1,α
p,e (∂Ω1,Rd) for (T, ϕ) ∈ O, v ∈ C2,α

p,e (R).

In addition, by (4.15), (4.31) and (4.6) it reads

F (T, ϕ)(t) = ∇uT,ϕ
(

(1 + ϕ(τ))e1,
T

2π
τ

)
·Υ
(

(1 + ϕ(τ))e1,
T

2π
τ

)
−(d−3). (4.33)

Hence applying (4.33) with ϕ = 0 and using (4.28), we see that

F (T, 0) = 0 for every T > 0 .

4.4 Study of the linearized operator

The aim of this section is to study the spectral properties of the linearized operator

HT ∈ L(C2,α
p,e (R), C1,α

p,e (R)), HT (v) = Dϕ

∣∣
ϕ=0

F (T, ϕ)v. (4.34)

Proposition 4.11. For every T > 0, the linearised operator HT defined by (4.34)
is given by

HT (v)(τ) = (d− 3)
(
∇u̇(e1, τ) · (−e1, 0)− (d− 2)v(τ)

)
, (4.35)

where u̇ is solution to

(
∆y +

(
2π
T

)2 ∂2

∂τ2

)
u̇ = 0 in Bc

1 × R,

u̇(y, τ) = v(τ) (y, τ) ∈ ∂(Bc
1 × R),

u̇→ 0 as |z| → ∞ uniformly in τ ∈ R.

(4.36)



60 CHAPTER 4. EXCEPTIONAL DOMAINS IN RD

Furthermore, the eigenfunctions of HT are given by vk(τ) := cos(kτ), k ∈ N∪{0},
and we have

HTvk = λk(T )vk, (4.37)

where

λk(T ) = −(d− 3)Λ

(
2kπ

T

)
(4.38)

with Λ(0) = 1 and

Λ(ρ) =

(
d− 2− ρKη+1(ρ)

Kη(ρ)

)
for ρ > 0 with η =

d− 3

2
. (4.39)

Proof. To prove (4.35) and (4.36), we consider the functions

WT,ϕ(y, τ) : = u1

(
κ(|y|2, ϕ(τ))y,

T

2π
τ

)
= |y|3−d

(
1 +

ϕ(τ)

|y|2
)3−d

,

VT,ϕ(y, τ) : = WT,ϕ(y, τ)− wT,ϕ(y, τ). (4.40)

Since u1(y, τ) = |y|3−d is harmonic in Rd \ ({0} ×R), we have, by (4.6) and (4.4),

LT,ϕWT,ϕ = 0 in Ω1.

Moreover, LT,ϕVT,ϕ = 0 in Ω1,

VT,ϕ(y, τ) = (1 + ϕ(τ))3−d − 1 for (y, τ) ∈ ∂Ω1,
(4.41)

and

VT,0 ≡ 0 in Ω1.

Differentiating (4.41) with respect to ϕ at ϕ ≡ 0 and setting

ψT,v :=
1

3− d
[Dϕ

∣∣
ϕ=0

VT,ϕ]v for v ∈ C2,α
p,e (R),

we find that
(

∆y +
(

2π
T

)2 ∂2

∂τ2

)
ψT,v = 0 in Ω1,

ψT,v = v on ∂Ω1,

ψT,v → 0 as |y| → ∞ uniformly in τ ∈ R.
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We now put G(T, ϕ)(τ) :=
∂WT,ϕ

∂νT,ϕ
(e1, τ) for τ ∈ R. By (4.13), (4.15) and (4.40),

we have

G(T, ϕ)(τ) = (∇u1)((1 + ϕ(τ))e1, τ)) ·Υ((1 + ϕ(τ))e1, τ)

=
(
−(d− 3)(1 + ϕ(τ))2−de1

)
·
(
−
(

1 +
(2π

T

)2
ϕ′2(τ)

)− 1
2
e1

)
= (d− 3)(1 + ϕ(τ))2−d

(
1 +

(2π

T

)2
ϕ′2(τ)

)− 1
2
.

Consequently, [
Dϕ

∣∣
ϕ=0

G(T, ϕ)v
]
(τ) = −(d− 2)(d− 3)v(τ). (4.42)

Moreover, by (4.32) and since VT,0 ≡ 0 in Ω1, we have[
Dϕ

∣∣
ϕ=0

∂VT,ϕ
∂νT,ϕ

]
ω = ∂ν̃ϕ(ω)VT,0 + ∂νψT,v = −(d− 3)∂νψT,v on ∂Ω1. (4.43)

Using (4.40), (4.42) and (4.43), we get[
Dϕ

∣∣
ϕ=0

∂wT,ϕ
∂νT,ϕ

]
v =

[
Dϕ

∣∣
ϕ=0

∂

∂νT,ϕ
(WT,ϕ − VT,ϕ)

]
v = (d− 3)

(
∂νψT,v − (d− 2)v

)
,

which combined with (4.31) and (4.34) yields

HT (v)(τ) =
[
Dϕ

∣∣
ϕ=0

F (T, ϕ)v
]
(τ) = (d− 3)

(
∇u̇(e1, τ) · (−e1, 0)− (d− 2)v(τ)

)
,

as claimed in (4.35). This proves the first part of Proposition 4.11.

Next we claim that the functions τ 7→ vk(τ) := cos(kτ), k ∈ N ∪ {0} are the
eigenfunctions of the operator v 7→ HT (v). This is clear for k = 0, as the unique
solution of (4.36) with v ≡ 1 is merely given by (y, τ) → u1(y, τ) = |y|3−d, and
therefore HT (v) ≡ −(d− 3) by (4.35).

Assuming k 6= 0 from now on, we see that the unique solution u̇k to (4.36) with
v = vk can be expressed, by separation of variables, as u̇k(y, τ) = uk(|y|) cos(kτ)
where uk solves the ODE boundary value problem

u′′k +
d− 2

r
u′k − (2πk

T
)2uk = 0 in (1,∞),

uk(1) = 1,

uk(r)→ 0 as r →∞.

We set ρk := 2πk
T

and consider the function w : [ρk,∞)→ R defined by

w(ρ) = uk

(
ρ

ρk

)
. (4.44)
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We have 
w′′(ρ) + d−2

ρ
w′(ρ)− w(ρ) = 0 in (ρk,∞),

w(ρk) = 1,

w(ρ)→ 0 as ρ→∞,

and setting g(ρ) := ρηw(ρ), where η = d−3
2

, we see that function g satisfies
g(ρ) + 1

ρ
g′(ρ)−

(
1 + η2

ρ2

)
g(ρ) = 0 in (ρk,∞),

g(ρ)→ 0 as ρ→∞,

g(ρk) = ρηk.

(4.45)

Up to a multiplicative constant, the modified Bessel function of second kind Kη

is the unique solution to (4.45). Since the function Kη is positive on (0,+∞) it
follows that

w(ρ) = Cρ−ηKη(ρ), ρ ∈ (ρk,+∞), for some constant C > 0. (4.46)

Furthermore, combining (4.44) with (4.46),

uk(r) = w(K0r) = Cρ−ηk r−ηKη(ρkr)

and it follows from uk(1) = 1 that C = ρηk/Kη(ρk) and

u′k(1) = Cρ−ηk Kη(ρk)

(
−η + ρk

K ′η(ρk)

Kη(ρk)

)
= −η + ρk

K ′η(ρk)

Kη(ρk)
. (4.47)

Recalling (4.35) and (4.47), we find that

HT (vk)(τ) = (d− 3)
(
∇uk(e1, τ) · (−e1, 0)− (d− 2)vk(τ)

)
= −(d− 3)

(
d− 1

2
+ ρk

K ′η(ρk)

Kη(ρk)

)
vk(τ)

= −(d− 3)

(
d− 2− ρk

Kη+1(ρk)

Kη(ρk)

)
vk(τ),

where we have used the relation

ρK ′η(ρ) = ηKη(ρ)− ρKη+1(ρ).

Consequently,

HT (vk) = −(d− 3)Λ(ρk)vk = −(d− 3)Λ(
2kπ

T
)vk

with Λ given in (4.39). Hence (4.37) follows with λk(T ) given in (4.38), and the
proof is finished.
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In the following result, we study the behaviour of the eigenvalue in λ1(T ) in (4.38).

Lemma 4.12. For k > 0 we have

µk(T )→

{
−(d− 3), T → +∞,
+∞, T → 0+.

(4.48)

and for every T > 0 we have

lim
k→∞

λk(T )

k
=

2π(d− 3)

T
. (4.49)

Moreover, there exists a unique T∗ >
2π√
d− 2

satisfying

λ1(T∗) = 0, λ′1(T∗) < 0 and λk(T∗) 6= 0 for k 6= 1. (4.50)

Proof. The proof of the above result is achieved studying the asymptotics for the
function Λ defined in (4.39) with η = d−3

2
. By (4.70) and (4.71) in the appendix,

we have

ρ
Kη+1(ρ)

Kη(ρ)
→

{
2η = d− 3, ρ→ 0+,

+∞, ρ→ +∞.

and therefore (4.48) follows. Furthermore, since

Kη+1(ρ)

Kη(ρ)
→ 1 as ρ→ +∞

by (4.70), we have

lim
ρ→∞

Λ(ρ)

ρ
=
d− 2

ρ
− Kη+1(ρ)

Kη(ρ)
= −1

and hence

lim
k→∞

λk(T )

k
= −2π(d− 3)

T

T

2πk
Λ(

2πk

T
) =

2π(d− 3)

T
,

proving (4.49).

To prove (4.50), we note that the function T 7→ µ1(T ) has a positive zero by (4.49)
and (4.48). We then use (4.68) and (4.69) to compute

−Λ′(ρ) =
Kη+1(ρ)

Kυ(ρ)
+ ρ

K ′η+1(ρ)

Kη(ρ)
− ρ

K ′η(ρ)

Kη(ρ)

Kη+1(ρ)

Kη(ρ)
,

=
Kη+1(ρ)

Kη(ρ)
− ρ− (η + 1)

Kη+1(ρ)

Kη(ρ)
+
(
−η + ρ

Kη+1(x)

Kη(ρ)

)Kη+1(ρ)

Kη(ρ)
,

=
Kη+1(ρ)

Kη(ρ)

(
−2η + ρ

Kη+1(x)

Kη(ρ)

)
−ρ for ρ > 0. (4.51)
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Next, we consider a point ρ > 0 with Λ(ρ) = 0. Then

Kη+1(ρ)

Kη(ρ)
=
d− 2

ρ
(4.52)

and, by (4.72),

η +
√
ρ2 + η2 < ρ

Kη+1(ρ)

Kη(ρ)
= d− 2⇐⇒

√
ρ2 + η2 < −η + d− 2 =

d− 1

2

since η = d−3
2

, which gives

ρ <
√
d− 2. (4.53)

Plugging (4.52) in (4.51) and using (4.53) yields

−Λ′(ρ) =
d− 2

ρ
− ρ > 0.

It thus follows that the function Λ has a unique zero ρ∗ on (0,∞) satisfying ρ∗ <
√
d− 2. Hence (4.38) gives (4.50) with T∗ >

2π√
d− 2

.

4.5 Proof of the main result

In this section we consider the fractional Sobolev spaces

Hσ
p,e :=

{
v ∈ Hσ

loc(R) : v even and 2π-periodic
}

for σ ≥ 0, and we put L2
p,e := H0

p,e. Note that L2
p,e is a Hilbert space with scalar

product

(u, v) 7→ 〈u, v〉L2
p,e

:=

∫ π

−π
u(t)v(t) dt for u, v ∈ L2

p,e,

and induced norm denoted by ‖ · ‖L2
p,e

. We define for all k ∈ N, vk(t) := cos(kt).

‖vk‖L2
p,e

=
√
π, the set { vk√

π
, k ∈ N} forms a complete orthonormal basis of L2

p,e.

Moreover, Hσ
p,e ⊂ L2

p,e is characterized as the subspace of all functions v ∈ L2
p,e

such that ∑
k∈N

(1 + k2)σ〈v, vk〉2L2
p,e
<∞. (4.54)

Therefore, Hσ
p,e is also a Hilbert space with scalar product

(u, v) 7→
∑
k∈N

(1 + k2)σ〈u, vk〉L2
p,e
〈v, vk〉L2

p,e
for u, v ∈ Hσ

p,e.
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Set
Wk := span {vk} ⊂

⋂
j∈N

Hj
p,e

for k ∈ N. Then from Proposition 4.11, the spaces Wk are the eigenspaces of the
operator HT in (4.34) corresponding to the eigenvalues λk(T ), i.e., we have

HTv = λk(T )v for every v ∈ Wk. (4.55)

We also consider their orthogonal complements in L2
p,e, given by

W⊥
k :=

{
w ∈ L2

p,e :

∫ π

−π
cos(ks)w(s) ds = 0

}
,

as well as the the spaces

X :=

{
ϕ : R→ R, ϕ ∈ C2,α(R) is even and 2π-periodic

}
,

and

Y :=

{
ϕ : R→ R, ϕ ∈ C1,α(R) is even and 2π-periodic

}
.

Proposition 4.13. There exists a unique T∗ > 0 such that the linear operator
HT∗ : X → Y has the following properties:

(i) The kernel N(HT∗) of HT∗ is spanned by the function cos(·),

(ii) HT∗ : X ∩W⊥
1 → Y ∩W⊥

1 is an isomorphism.

Moreover
∂T

∣∣∣
T=T∗

HTv1 = λ′1(T∗)v1 6∈ Y ∩W⊥
1 . (4.56)

Proof. By Lemma 4.12, we have the existence of a unique T∗ > 0 such that
λ1(T∗) = 0, µ′1(T∗) < 0 and λk(T∗) 6= 0 for all k 6= 1. This with (4.55) imply
that N(H∗) = span{v1} = W1 and we obtain (i) and (4.56).

To prove (ii), we pick g ∈ Y ∩W⊥
1 and consider the equation

H∗w = g. (4.57)

Using (4.37), the equation (4.57) is uniquely solved by the function

w(s) =
∑

`∈N\{1}

w`v`(s),

where

w` =
1

πλ`(T∗)
〈g, v`〉L2

p,e
, ` 6= 1. (4.58)
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In addition,∑
`∈N\{1}

(1 + `2)2〈w, v`〉2L2
p,e

=
1

π

∑
`∈N\{1}

(1 + `2)

λ2
`(T∗)

(1 + `2)〈g, v`〉2L2
p,e
. (4.59)

Since g ∈ C1,α
p,e (R) ⊂ H1

loc(R), we have g ∈ H1
p,e. This combined with (4.54) and

the first asymptotic in Lemma 4.12 allow to see that the right hand side in (4.59)
is bounded, which implies w ∈ H2

p,e. We now show that w ∈ C2,α
p,e (∂Ω1).

Recalling Proposition 4.11 (4.35), (4.58) reads

(d− 3)∇u̇(e1, τ) · (−e1, 0) = (d− 3)(d− 2)w(τ) + g(τ), (4.60)

where u̇ is the unique even and 2π periodic solution in τ of
∆u̇ = 0 in Ω1,

u̇(y, τ) = w(τ) in ∂Ω1,

u̇→ 0 as |y| → ∞ uniformly in τ ∈ R.

(4.61)

Furthermore since w ∈ H2
p,e, we have by standard elliptic regularity that u̇ ∈

W 2,2
loc (Ω1).

We now show that
u̇ ∈ C2,α

p,e (Ω1). (4.62)

The fact that (4.62) holds follows from a similar argument as in the proof of [32,
Proposition 4.1] (see also the proof of [33, Proposition 5.1]). We give the details
here for the reader’s convenience. The regularity property in (4.62) is obtained
from [45, Theorem 6.3.2.1] once we show that

u̇ ∈ W 2,p
loc (Ω1) for any p ∈ (1,∞). (4.63)

Indeed if (4.63) holds then by Sobolev embedding, we get u̇ ∈ C1,α
p,e (Ω1) and hence

w ∈ C1,α
p,e (∂Ω1) by (4.61). Then applying [45, Theorem 6.3.2.1] with the order

d = 1 to the boundary operator (see [45, Section 2.1]) yields (4.62).

To see (4.63), we prove by induction that

u̇ ∈ W 2,p`
loc (Ω1)

for a sequence of numbers p` ∈ [2,∞) with p0 = 2 and p`+1 ≥ d−1
d−p`

p` for ` ≥ 0.

Clearly, it holds for p0 = 2. So let us assume that u̇ ∈ W 2,p`
loc (Ω1) also holds for

some p`. We consider the following two cases:
Case 1: p` < d. By the trace Theorem, [1, Theorem 5.4], we can get that

u̇|∂Ω1 ∈ W
1,p`+1

loc (∂Ω1) with p`+1 :=
d− 1

d− p`
p` ≥

d− 1

d− 2
p`,
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therefore w ∈ W 1,p`+1

loc (∂Ω1). Since g ∈ C1,α(R) ⊂ W
1,p`+1

loc (∂Ω1) and by (4.60),

(d− 3)∂ν u̇(±e1, τ) + u̇(±e1, τ) = f(τ),

where
f(τ) := (1 + (d− 3)(d− 2))w(τ) + g(τ) ∈ W 1,p`+1

loc (∂Ω1).

Therefore, u̇ ∈ W 2,p`+1

loc (Ω1) by [45, Theorem 2.4.2.6].
Case 2: p` ≥ d. The trace theorem implies that w ∈ W 1,p

loc (∂Ω1) for any p > 2, and

then we repeat the above argument to deduce that u̇ ∈ W 2,p`+1

loc (Ω1) for arbitrarily
chosen p`+1 ≥ d−1

d−2
p`.

Finally, we conclude that (4.63) holds and (4.62) follows. By passing to the trace,
we see with (4.62) that w ∈ C2,α

p,e (∂Ω1) and the proof is complete.

We are now in position to apply the Crandall-Rabinowitz Theorem 1.7, which will
give rise to the following bifurcation property.

4.5.1 Proof of Theorem 1.2

We define

X⊥ :=

{
v ∈ X :

∫ π

−π
v(τ) cos(τ) dτ = 0

}
.

By Proposition 4.13 and the Crandall-Rabinowitz Theorem 1.7, we then find ε > 0
and a smooth curve

(−ε, ε)→ (0,+∞)× U ⊂ R+ ×X, s 7→ (T (s), ϕs)

such that

(i) F (T (s), ϕs) = 0 for s ∈ (−ε, ε),

(ii) T (0) = T∗,

(iii) ϕs = s cos(·) + svs for s ∈ (−ε, ε) with a smooth curve

(−ε, ε)→ X⊥, s 7→ vs

satisfying v0 = 0 and ∫ π

−π
vs(τ) cos(τ) dτ = 0.

Finally, since F (T (s), ϕs) = 0 for s ∈ (−ε, ε), we see from (4.31) and Lemma 4.9
that the function ws := wTs,ϕs solves (4.17). Furthermore recalling (4.6), the
function

us(z, t) = ws

(
ζ(|z|2, ϕs(

2πt

Ts
))z,

2πt

Ts

)
solves (4.1) on ΩTs,ϕs . The proof is complete.
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4.6 Appendix

4.6.1 Scale invariant Hölder estimates for solutions of the
Poisson equation

In this section, we provide C2,α
µ estimate for solutions of the Poisson problem

∆u = f . We first recall the following classical regularity results (see [44, Theorem
4.6] and [44, Theorem 6.6]).

Lemma 4.14. Let f ∈ C0,α(B1) and u ∈ C2,α(B1) solve the equation −∆u = f
in B1. Then there exists a constant C = C(N,α) > 0 such that

‖u‖C2,α(B1/2) ≤ C(‖f‖L∞(B1) + [f ]C0,α(B1) + ‖uR‖L∞(B1)). (4.64)

Lemma 4.15. Let f ∈ C0,α(B1) and u ∈ C2,α(B1) solve the equation −∆u = f
in B1.

Assume there exists ϕ ∈ C2,α(B1) such that u = ϕ on ∂B1. Then there exists a
constant C = C(N,α) > 0 such that

‖u‖C2,α(B1) ≤ C(‖ϕ‖C2,α(B1) + ‖f‖L∞(B1) + [f ]C0,α(B1) + ‖uR‖L∞(B1)).

Lemma 4.16. Let z ∈ Rd, f ∈ C0,α(BR(z)), u ∈ C2,α
loc (BR(z))∩L∞(BR(z)) solves

−∆u = f in BR(z), R > 0. Then there exists a constant C > 0, independent of
R, with the property that

2∑
i=0

Ri‖∇iu‖L∞(BR
2

(0)) +R2+α[∇2u]C0,α(BR
2

(0))

≤ C(R2‖f‖L∞(BR(0)) +R2+α[f ]C0,α(BR(0)) + ‖u‖L∞(BR(0))). (4.65)

Furthermore if f ∈ C0,α(BR(z)) and u ∈ C2,α
loc (BR(z))∩L∞(BR(z)) solves −∆u =

f in BR(z), with u = ϕ on ∂BR(z), then

2∑
i=0

Ri‖∇iu‖L∞(BR(0)) +R2+α[∇2u]C0,α(BR(0))

≤ C

(
2∑
i=0

Ri‖∇iϕ‖L∞(BR(0)) +R2+α[∇2ϕ]C0,α(BR(0)) + ‖u‖L∞(BR(0))

)
+ C(R2‖f‖L∞(BR(0)) +R2+α[f ]C0,α(BR(0))). (4.66)

Here, [·] is the Hölder semi-norm defined in Definition 4.2.

Proof. Without loss of generality, we may take z = 0. Hence we assume that

−∆u = f in BR(0), (4.67)
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and we let uR, fR : B1(0) → R be defined by uR(x) = u(Rx), fR(x) = f(Rx).
Then we have

∇uR = R(∇u)(R · ) in B1(0),

∇2uR = R2(∇2u)(R · ) in B1(0).

Since by (4.67) we have

−∆uR = R2fR in B1(0),

we can apply (4.64) to get

‖uR‖C2,α(B1/2) ≤ C(‖R2fR‖L∞(B1) + [R2fR]C0,α(B1) + ‖uR‖L∞(B1)),

where C is a constant independent of R and f . Combining this estimate with the
scaling identities listed above, we obtain

2∑
i=0

Ri‖∇iu‖L∞(BR
2

(0)) +R2+α[∇2u]C0,α(BR
2

(0))

≤ C(R2‖f‖L∞(BR(0)) +R2+α[f ]C0,α(BR(0)) + ‖u‖L∞(BR(0))),

which gives (4.65) in the case z = 0. Similarly, we obtain (4.66) using Lemma
4.15.

4.6.2 Identities and inequalities involving modified Bessel
functions

Here we collect some properties on the modified Bessel functions Kη.

General properties

For η ≥ 0, the modified Bessel function Kη is defined on (0,∞) by the integral
representation

Kη(x) =

∫ ∞
0

e−x cosh(t) cosh(ηt)dt for x > 0.

Derivatives

For all x ∈ (0,+∞), we have

x
K ′η+1(x)

Kη(x)
= −x− (η + 1)

Kη+1(x)

Kη(x)
, (4.68)

x
K ′η(x)

Kη(x)
= η − xKη+1(x)

Kη(x)
, (4.69)
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see e.g. [91, Page 6]) or and [7] and [27].

Asymptotic behaviour

Asymptotics of Kη are given e.g. in [91, Page 4]). In particular, we have for all
η > 0,

Kη(x) ∼
√
π√
2
x−

1
2 e−x as x −→ +∞, (4.70)

Kη(x) ∼ 1

2
Γ(η)

(x
2

)−η
as x −→ 0. (4.71)

Inequalities

The following inequality identity can be found in [91]: For every ρ > 0 and η ≥ 0,

Kη+1(ρ)

Kη(ρ)
>
η +

√
ρ2 + η2

ρ
. (4.72)



Chapter 5

Nontrivial contractible domains
in Sd

This chapter is concerned with the problem (1.7) on the sphere. Firstly, we give
a more precise statement of Theorem 1.3 and some notations which will be used
later. Then we show that there exists a radial family of solutions to the related
Dirichlet problem. Then, we construct the nonlinear Dirichlet-to-Neumann op-
erator and compute its linearization under certain nondegeneracy assumptions,
which will be verified. Furthermore, we will study the spectral properties of the
linearized operator computed before. With all those ingredients we can apply a lo-
cal bifurcation argument to prove our main result. Finally, we complete the proof
of the quantitative version of the Implicit Function Theorem and two important
inequalities in the appendix.

5.1 Notations and statement of the main result

If k > 0, let Sd(k) be the d-dimensional sphere of radius 1
k

naturally embedded in
Rd+1 (d ≥ 2). We consider Sd(k) as a Riemannian manifold with the metric gk
endowed by its embedding in Rd+1. The sectional curvature of such manifold is
equal to k. When k = 1 we write directly Sd as the usual notation. We fix two
opposite points S,N ∈ Sd(k) (let’s say respectively the south and the north pole)
and we use the exponential map of Sd(k) centered at S,

expS : B
(

0,
π

k

)
→ Sd(k) \ {N},

where B
(
0, π

k

)
⊂ Rd is the Euclidean ball of radius π

k
centered at the origin. Given

any continuous function v : Sd−1 →
(
0, π

k

)
, we define the domain

Bv = expS

({
x ∈ Rd : 0 ≤ |x| < v

(
x

|x|

)})
⊂ Sd(k) .

71
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Through this chapter we take α ∈ (0,min{p− 1, 1}) fixed. The precise statement
of our result is the following:

Theorem 5.1. Let d ∈ N, d ≥ 2, let 1 < p < d+2
d−2

(p > 1 if d = 2). Then, there
exists a real number k0 > 0, such that for any 0 < k < k0 the following holds true:
there exist a sequence of real parameters λm = λm(k) converging to some λ∗(k) > 0,
a sequence of nonconstant functions vm = vm(k) ∈ C2,α(Sd−1) converging to 0 in
C2,α sense, and a sequence of positive functions um ∈ C2,α(Sd(k) \ B1+vm), such
that the problem 

−λm∆um + um − upm = 0 in Sd(k) \B1+vm ,

um = 0 on ∂B1+vm ,

∂νum = c on ∂B1+vm ,

is satisfied.

Observe that Theorem 1.3 follows at once from the previous result, by a scale
change transforming Sd(k) into Sd.

Throughout this chapter we shall use the coordinates in Sd(k) given by the expo-
nential map centered at the south pole composed with polar coordinates in Rd. In
other words, we write:

X :
[
0, π

k

)
× Sd−1 → Sd(k) \ {N}

X(r, θ) = expS(r θ).
(5.1)

Observe that X is well defined but singular at the south pole S.

With this notation, the set Bv can be written as:

Bv =
{

(r, θ) ∈
[
0,
π

k

)
× Sd−1 : r < v(θ)

}
.

Moreover, the standard metric gk on Sd(k) and its corresponding Laplace-Beltrami
operator can be written in (r, θ) coordinates as:

gk = dr2 + S2
k(r)dθ

2,

∆ := ∆gk = ∂2r + (d− 1)
Ck(r)

Sk(r)
∂r +

1

S2
k(r)

∆Sd−1 ,

where

Sk(r) =
sin(kr)

k
, Ck(r) = cos(kr). (5.2)

See for instance [14].

Sometimes it will be useful to consider Sk(r), Ck(r) defined for all r > 0; in such
case, Sk(r) = Ck(r) = 0 for all r ≥ π/k.
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In order to prove Theorem 5.1 we will make use of symmetry groups. Given a
group of isometries G acting on Sd−1, we say that Ω ⊂ Sd(k) is G-symmetric if,
working in coordinates:

(r, θ) ∈ Ω⇒ (r, g(θ)) ∈ Ω

for any g ∈ G. Let us point out that in the case in which G = G the group of
all possible symmetries of Sd−1, then G-symmetry is just axial symmetry in Sd(k)
(with respect to the axis of Rd+1 passing through the south and the north poles).

We define:

Ck,α
G (Sd−1) = {u ∈ Ck,α(Sd−1) : u = u ◦ g ∀g ∈ G}.

For later purposes we also define the set of functions in Ck,α
G (Sd−1) whose mean is

0:

Ck,α
G,0(Sd−1) =

{
u ∈ Ck,α

G (Sd−1) :

∫
Sd−1

u = 0

}
.

If Ω ⊂ Sd(k) is G-symmetric, we define the following Hölder spaces of G-symmetric
functions:

Ck,α
G (Ω) = {u ∈ Ck,α(Ω) : u(r, θ) = u(r, g(θ)) ∀g ∈ G},

Ck,α
G,0(Ω) = {u ∈ Ck,α

G (Ω) : u = 0 on ∂Ω}.

In addition, we denote the Sobolev spaces of G-symmetric functions as follows:

H1
G(Ω) = {u ∈ H1(Ω) : u(r, θ) = u(r, g(θ)) ∀g ∈ G},

H1
0,G(Ω) = {u ∈ H1

0 (Ω) : u(r, θ) = u(r, g(θ)) ∀g ∈ G}.

Let us recall that the norm of the Sobolev space H1(Ω) is given by:

‖u‖H1(Ω) =

(∫
Ω

(
|∇u|2 + u2

)
dvolgk

)1/2

where the gradient depends on the metric gk. If Ω = Sd(k) \Bv, we can write this
expression in coordinates (r, θ) as:∫

Ω

(
|∇u|2 + u2

)
dvolgk =

∫ π/k

v(θ)

∫
Sd−1

Sd−1
k (r)

[
(∂ru)2 +

|∇θu|2

S2
k(r)

+ u2

]
dθ dr.

In the axisymmetric case of Sd(k) with respect to the two poles (that is, G = G
the group of all possible isometries in Sd−1) we write a subscript r instead of G,
to highlight that the spaces depend only on the r variable. Hence, we shall write:

H1
r (Sd(k) \B1) =

{
u :
[
1,
π

k

)
→ R, ‖u‖k <∞

}
,
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where

‖u‖k =

(∫ π/k

1

Sd−1
k (r)

[
(∂ru)2 + u2

]
dr

)1/2

. (5.3)

Clearly,
‖u‖H1

r (Sd(k)\B1) =
√
ωd−1 ‖u‖k,

where ωd−1 is the (d− 1)-dimensional measure of the unit sphere Sd−1.

Moreover we shall make use of the notation:

H1
0,r(Sd(k) \B1) =

{
u ∈ H1

r (Sd(k) \B1), u(1) = 0
}
.

Observe that in the above definitions the functions u(r) are absolutely continuous
in
[
1, π

k

)
(possibly singular at π

k
).

We denote by µi = i(i + d − 2), i ∈ N the eigenvalues of the Laplace-Beltrami
operator ∆Sd−1 in Sd−1. From now on, we shall fix a symmetry group G in Sd−1

satisfying the following property:

(G) Defining by {µil}l∈N the eigenvalues of ∆Sd−1 restricted to G-symmetric func-
tions and by ml their multiplicities, we require i1 ≥ 2 and m1 odd.

A group satisfying those properties is the dihedric group Dn, n ≥ 2, if d = 2. For
d > 2 one can take for instance G = O(2)×O(d−2). Other examples are possible,
see [69, Remark 2.2].

5.2 Existence of the axisymmetric solution to

the Dirichlet problem

As mentioned before, we will use a local bifurcation argument. On that purpose,
we first need to build an axially symmetric solution to the problem:{

−λ∆u+ u− up = 0 in Sd(k) \B1,

u = 0 on ∂B1,
(5.4)

for suitable values of λ. This is the goal of this section. We will do it for k suffi-
ciently small (i.e. for spheres Sd(k) with large radius, and then small curvature).

By using the coordinates (r, θ) as in (5.1), we have to find a solution u(r) of the
ODE problem:

−λ
[
∂2
r + (d− 1)Ck(r)

Sk(r)
∂r

]
u+ u− up = 0 r ∈

(
1, π

k

)
,

u(1) = 0,

u′(π
k
) = 0,

(5.5)
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where Ck(r) and Sk(r) are defined in (5.2). Observe that, for any fixed r > 0,

Ck(r)

Sk(r)
→ 1

r
as k → 0.

Hence, at least formally, a limit problem for (5.5) as k → 0 is:{
−λ
(
∂2
r + d−1

r
∂r
)
u+ u− up = 0 r > 1,

u(1) = 0.
(5.6)

Those are just radially symmetric functions of the Dirichlet problem:{
−λ∆u+ u− up = 0 in Rd \B1,

u = 0 on ∂B1 .
(5.7)

In the proposition below we list some known properties of this problem.

Proposition 5.2. We have:

a) For any λ > 0, there exists a positive radially symmetric C∞ solution of
(5.7). This solution increases in the radius up to a certain maximum, and
then it decreases and converges to 0 at infinity exponentially.

b) Such positive and radial solution to (5.7) is unique: we denote it by ũλ.
Moreover it has an exponential decay (see [84], for instance):

ũλ(x) ∼ |x|
d−1
2 e
− 1√

λ
|x|

as |x| → +∞.

c) Set Bc
1 = Rd\B1, let H1

0,r(B
c
1) be the classical Sobolev space H1

0 (Bc
1) restricted

to radial functions, and let H−1
r (Bc

1) be its dual. Let us define the linearized
operator Lλ : H1

0,r(B
c
1)→ H−1

r (Bc
1),

Lλ(φ) = −λ∆φ+ φ− pũp−1
λ φ ,

and consider the eigenvalue problem:

Lλ(φ) = τ φ.

This problem has a unique negative eigenvalue and no zero eigenvalues. In
other words, ũλ is nondegenerate in H1

0,r(B
c
1) and has Morse index 1. We

denote by z̃λ ∈ H1
0,r(B

c
1) (normalized by ‖z̃λ‖ = 1) the positive eigenfunction

with negative eigenvalue, i.e.{
−λ∆z̃λ + z̃λ − pũp−1

λ z̃λ = τ̃λz̃λ in Bc
1,

z̃λ = 0 on ∂B1,
(5.8)

where τ̃λ < 0. Moreover z̃λ is a C∞ function.
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Statement a) is quite well known and has been proved in [29], for instance. The
results b) and c) are more recent and have been obtained in [40,87].

We now state the main result of this section.

Proposition 5.3. Given ε ∈ (0, 1), there exists k0 > 0 such that for any k ∈ (0, k0)
and any λ ∈ [ε, 1/ε] there exists a positive solution uk,λ ∈ C2,α(Sd(k) \ B1) to the
problem (5.5). Moreover, for any λ ∈ [ε, 1/ε],

lim
k→0
‖uk,λ − ũλ‖k = 0, (5.9)

where ũλ is the unique positive radial solution of (5.7) and ‖ · ‖k is given by (5.3).

In order to prove the Proposition 5.3, we use the following version of the Inverse
Function Theorem. We include its proof in the Appendix for the sake of complete-
ness.

Proposition 5.4. Let Y be a Hilbert space, v ∈ Y and F ∈ C1(Y, Y ). Suppose
that:

(A1) ‖F (v)‖ < δ for some fixed δ > 0;

(A2) The derivative operator F ′ : Y → Y is invertible and ‖F ′(v)−1‖ ≤ c0, for
some c0 > 0;

(A3) Define U = {z ∈ Y : ‖z‖ ≤ 2c0 δ} and assume that:

‖F ′(v + z)− F ′(v)‖ < 1

2c0

,∀z ∈ U.

Then there exists a unique z ∈ U such that F (v+z) = 0. Moreover, ‖F ′(v+z)−1‖ ≤
2c0.

In order to apply the previous proposition to our purpose we will need the following
lemma, whose proof again is postponed to the Appendix.

Lemma 5.5. For any u ∈ H1
0 (Sd(k) \B1), 0 < k < π2

2
, we have

‖u‖Ls ≤ C‖u‖H1 ,

where 2 < s ≤ 2∗ = 2d
d−2

if d ≥ 3, s > 2 if d = 2, and C = C(d, s) > 0 is a constant
independent of k.

With these two results we are now able to prove Proposition 5.3.
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Proof of Proposition 5.3. We will apply the Proposition 5.4 in the Sobolev space

Y = H1
0,r(Sd(k) \B1) (5.10)

via the coordinates given in (5.1). We define the operator

F (u) = Φ(F̃ (u)) : Y → Y,

where Φ : Y −1 → Y is the isomorphism given by the Riesz Representation Theorem
and the functional F̃ : Y → Y −1 is defined by

F̃ (u)w = ωd−1

∫ π
k

1

Sd−1
k (r)(λu′w′ + uw − (u+)pw) dr,

where Y −1 is the dual space of Y.

Observe that if F (u) = 0, then u is a solution of problem (5.4) by the maximum
principle. In what follows we fix λ ∈ [ε, 1/ε] for some ε ∈ (0, 1) and define
v := vk,λ = ũλχk, where ũλ is the positive solution of (5.6) and 0 ≤ χk ≤ 1 is a
cut-off function such that:


χk(r) = 1 r ∈

(
1, π√

k

)
,

χk(r) = 0 r ∈
(

2π√
k
, π
k

)
,

|χ′k(r)| ≤ k−1/4 r ∈
(
1, π

k

)
.

This function will play the role of v in Proposition 5.4. Now, let us verify that the
assumptions of Proposition 5.4 are satisfied. For that, the exponential decay of ũλ
will be essential. First, it is clear that F̃ is a C1 map.
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(A1) Let’s prove that ‖F̃ (v)‖ = ok(1). We compute∣∣∣∣∣ F̃ (v)w

ωd−1

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

k

1

Sd−1
k (r)(λv′w′ + vw − vpw)dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ π

k

1

Sd−1
k (r) [λ(ũλχk)

′w′ + (ũλχkw − ũpλχ
p
kw + ũpλχkw − ũ

p
λχkw)] dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ π

k

1

Sd−1
k (r)

[
λ(ũλχ

′
kw
′ − ũ′λχ′kw) + ũpλ(χk − χ

p
k)w

+ (d− 1)λũ′λχkw

(
1

r
− Ck(r)

Sk(r)

)]
dr

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 2π√

k

1

(d− 1)λũ′λwS
d−1
k (r)

(
1

r
− Ck(r)

Sk(r)

)
dr

∣∣∣∣∣
+

∣∣∣∣∣
∫ π

k

π√
k

Sd−1
k (r)

[
λ(ũλχ

′
kw
′ − ũ′λχ′kw) + ũpλ(χk − χ

p
k)w

]
dr

∣∣∣∣∣
≤ c1B‖w‖k + c2

1

ε

(
e
− π√

kλ

k
d−1
4

+
e
− pπ√

kλ

k
d−1
2

+
e
− π√

kλ

k
d−3
2

)
‖w‖k

≤ c1B‖w‖k + c2
1

ε

e−√επ√k
k
d−1
4

+
e
− p
√
επ√
k

k
d−1
2

+
e
−
√
επ√
k

k
d−3
2

 ‖w‖k,
where B =

∣∣∣1− 2
√
kπ

tan(2
√
kπ)

∣∣∣ .
(A2) Let’s prove that F̃ ′ is invertible and ‖F̃ ′(v)−1‖ ≤ c0, c0 > 0. By contradiction,
we suppose that either F̃ ′(v) is not invertible or ‖F̃ ′(v)−1‖ is not bounded. We first
assume that F̃ ′(v) is not invertible, then we can have that F̃ ′(v) is not injective
(see [4, Lemma 4.1]). Suppose that F̃ ′(v) is injective, let us write F̃ ′(v)(ψ1, ψ2) =
(Aψ1, ψ2) for all ψ1, ψ2 ∈ Y that is given in (5.10), where the operator

A : Y → Y −1

ψ 7→ −λ∆ψ + ψ − pvp−1ψ.

Notice that the operator A0 : ψ → −λ∆ψ + ψ is an isomorphism from Y to Y −1.
And the operatorK : ψ → pvp−1ψ is compact from Y to Y −1 since v := vk,λ = ũλχk
and ũλ converges to 0 at infinity exponentially. Since A = A0(I − A−1

0 K) is
injective and A−1

0 K is compact, the operator A is invertible by the Fredholm
alternative for I − A−1

0 K. This is a contradiction. Then there exists a non-zero
function ϕk ∈ Y such that

F̃ ′(v)ϕk = 0.

Now, in the case ‖F̃ ′(v)−1‖ is unbounded, we assume that ‖F̃ ′(v)−1‖ → ∞ as
k → 0. Taking φk ∈ Y −1 so that F̃ ′(v)−1φk = ξk is a divergence sequence of Y.
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Let ϕk = ξk
‖ξk‖k

, then ‖ϕk‖k = 1 and define F̃ ′(v)−1 φk
‖ξk‖k

= ϕk, one has that

‖F̃ ′(v)ϕk‖ =
‖φk‖
‖ξk‖k

→ 0.

Therefore, it suffices to consider

F̃ ′(v)ϕk → 0,

with ‖ϕk‖k = 1. First, we verify that ϕk ⇀ ϕ0 in H1
r,loc(Rd \ B1) and ϕ0 ∈

H1
0,r(Rd \B1).

In fact, for k = k(i, j) sufficiently small and a some fixed constant M > 1, we use
the Cantor’s diagonal argument

ϕk(1,1) ϕk(1,2) · · · ϕk(1,n) ⇀ ϕ1
0 in H1

r (BM \B1)
ϕk(2,1) ϕk(2,2) · · · ϕk(2,n) ⇀ ϕ2

0 in H1
r (B2M \B1)

...
... · · · ...

...
ϕk(n,1) ϕk(n,2) · · · ϕk(n,n) ⇀ ϕn0 in H1

r (BnM \B1)
...

... · · · ...
...

We consider the diagonal subsequence ϕk = ϕk(n,n). Fix m ∈ N, we can check that
(ϕk(n,n))n≥m ⊂ (ϕk(m,n))n≥1 with ϕk(m,n) ⇀ ϕm0 in H1

r (BmM \B1) since each row is
a subsequence of all previous rows. Then, by the uniqueness of limits, the function
ϕ0 = ϕm0 is well-defined. Thus we have ϕk ⇀ ϕ0 in H1

r,loc(Rd \ B1). And we know
that∫ ∞

1

rd−1(ϕ′20 + ϕ2
0)dr = lim

M→∞

∫ M

1

rd−1(ϕ′20 + ϕ2
0)dr

≤ (1 + ε)d−1 lim
M→∞

lim inf
k→0

∫ M

1

(
r

1 + ε

)d−1

(ϕ′2k + ϕ2
k)dr

≤ (1 + ε)d−1 lim
M→∞

lim inf
k→0

∫ M

1

Sd−1
k (r)(ϕ′2k + ϕ2

k)dr

≤ (1 + ε)d−1 lim
M→∞

lim inf
k→0

∫ π
k

1

Sd−1
k (r)(ϕ′2k + ϕ2

k)dr

= (1 + ε)d−1,

with small ε. This shows that ϕ0 ∈ H1
0,r(Rd \B1).

Now we prove that ϕ0 differs from 0 by contradiction. If ϕ0 = 0,

F̃ ′(v)(ϕk, ϕk)

ωd−1

=

∫ π
k

1

Sd−1
k (r)(λϕ′2k + ϕ2

k − pvp−1ϕ2
k)dr

≥ min{λ, 1}‖ϕk‖2
k − p

∫ π
k

1

Sd−1
k (r)vp−1ϕ2

kdr

= min{λ, 1} − p
∫ π

k

1

Sd−1
k (r)vp−1ϕ2

kdr.
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Then we can get a contradiction that the left-hand side converges to 0 but the
right-hand side is greater and equal to min{λ, 1} > 0. The latter result comes
from the fact that∫ π

k

1

Sd−1
k (r)vp−1ϕ2

k

=

∫ M

1

Sd−1
k (r)ũp−1

λ ϕ2
kdr +

∫ π
k

M

Sd−1
k (r)ũp−1

λ χp−1
k ϕ2

kdr

=

∫ M

1

rd−1ũp−1
λ ϕ2

0dr + ok(1) +

∫ π
k

M

Sd−1
k (r)ũp−1

λ χp−1
k ϕ2

kdr

≤
∫ M

1

rd−1ũp−1
λ ϕ2

0dr + Ce
−(p−1)M√

λ ‖ϕk‖2
k + ok(1),

which can be taken arbitrarily small by choosing M and k appropriately.

Finally, for all w ∈ C∞0 (BM \B1),

F̃ ′(v)(ϕk, w)

ωd−1

=

∫ π
k

1

Sd−1
k (r)(λϕ′kw

′ + ϕkw − pvp−1ϕkw)dr

=

∫ M

1

Sd−1
k (r)(λϕ′kw

′ + ϕkw − pvp−1ϕkw)dr

→
∫ M

1

rd−1(λϕ′0w
′ + ϕ0w − pũp−1

λ ϕ0w)dr

=

∫ ∞
1

rd−1(λϕ′0w
′ + ϕ0w − pũp−1

λ ϕ0w)dr = 0.

As a consequence, ϕ0 6= 0 solves the linearized problem{
−λϕ′′0 − (d− 1)λ

r
ϕ′0 + ϕ0 − pũp−1

λ ϕ0 = 0 in (1,∞),

ϕ0(1) = 0.

But this is a contradiction with Proposition 5.2, c).

(A3) Let’s show that ‖F̃ ′(v)−F ′(s)‖ < 1
2c0

for any v, s ∈ Y with ‖v− s‖ ≤ 2c0 δ.
For any φ ∈ Y , we have that∣∣∣∣∣ F̃ ′(v)(φ)w − F̃ ′(s)(φ)w

ωd−1

∣∣∣∣∣ = p

∣∣∣∣∣
∫ π

k

1

Sd−1
k (r)(vp−1 − (s+)p−1)φwdr

∣∣∣∣∣
≤ p

∫ π
k

1

Sd−1
k (r)|φw|(ε|s+|p−1 + Cε|v − s+|p−1)

≤ p

∫ π
k

1

Sd−1
k (r)|φw|(ε|s|p−1 + Cε|v − s|p−1)

≤ C‖φ‖k‖w‖k
(
ε‖s‖p−1

k + ‖v − s‖p−1
k

)
≤ C(ε+ 2c0δ)

p−1‖φ‖k‖w‖k

<
1

2c0

‖φ‖k‖w‖k,
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where ε is arbitrary and Cε is a constant.

The C2,α regularity of uk,λ follows from usual Schauder regularity estimates. This
concludes the proof of the proposition.

In next result we gather some properties of the boundedness and decay of the
solution uk,λ that will be useful later.

Lemma 5.6. Given ε > 0, consider k0 > 0, k and λ as in Proposition 5.3. Then
the following properties hold:

1) There exists M > 0 independent of k, λ such that ‖uk,λ‖L∞ ≤M .

2) For any δ > 0 there exists R > 0 independent of k, λ such that uk,λ(r) < δ
for any k < π/R, r ∈ (R, π/k).

Proof. The proof of 1) follows immediately from the classical blow-up analysis of
Gidas and Spruck, together with their Liouville theorem, see [42,43]. Observe that
here we use in an essential way that 1 < p < d+2

d−2
(if d ≥ 3).

We now turn our attention to 2). Observe that by Proposition 5.3, ‖uk,λ‖k ≤ C.
In particular, taking into account that Sk(r) ≥ 2r/π for all r ∈ (1, π

2k
],

∫ π
2k

1

rd−1(u′k,λ(r)
2 + uk,λ(r)

2) dr ≤ C.

Then, the Radial Lemma of Strauss [84] gives us the desired decay for any r ∈
(1, π

2k
].

We now consider the estimate in the north hemisphere Sd+(k). If it does not hold,
then uk,λ attains a local maximum in such hemisphere for a sequence k = kn → 0.
By the maximum principle, this local maximum is strictly bigger than 1.

We now multiply (5.4) by v = (uk,λ − 1)+ and integrate in Sd+(k), to obtain that:

λ

∫
Sd+(k)

|∇v|2 =

∫
Sd+(k)

upk,λ − uk,λ
uk,λ − 1

v2 ≤ C

∫
Sd+(k)

v2,

by 1). We now define Σ = {x ∈ Sd+(k) : uk,λ(x) > 1}. Therefore, we can use
Hölder inequality for any 2 < q ≤ 2d

d−2
(any q > 2 if d = 2), and Lemma 5.5, to

obtain:
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λ

∫
Sd+(k)

(|∇v|2 + v2) ≤ (C + λ)

∫
Sd+(k)

v2

≤ (C + λ)
(∫

Sd+(k)

vq
)2/q

|Σ|
q−2
q ≤ C

(∫
Sd+(k)

(|∇v|2 + v2)
)
|Σ|

q−2
q .

This implies that the measure of Σ is uniformly bounded from below. Observe
moreover that:

∫
Sd+(k)

uk,λ(x)2 dx ≥ |Σ|,

which is bounded from below. But this is in contradiction with (5.9) and the
exponential decay of ũλ.

5.3 The Dirichlet-to-Neumann operator and its

linearization

In this section we build the Dirichlet-to-Neumann operator to which we intend to
apply a local bifurcation argument. In order to do this, some definitions are in
order. First, let us fix a symmetry group G satisfying assumption (G).

For any solution given in Proposition 5.3, we define the linearized operator of the
Dirichlet problem: LD = LDk,λ : H1

0,G(Sd(k) \ B1)→ H−1
G (Sd(k) \ B1) associated to

(5.4) by

LD(φ) = −λ∆φ+ φ− pup−1
k,λ φ. (5.11)

Proposition 5.7. The operator LD has a negative eigenvalue τ = τk,λ with a
radially symmetric eigenfunction z = zk,λ.

The proof is rather easy and will be presented in Section 5, when we introduce
quadratic forms associated to LD.

We also need the following result, that establishes the nondegeneracy of the Dirich-
let operator:

Proposition 5.8. There exist 0 < λ0 < λ1 such that, by taking smaller k0 > 0,
if necessary, we have that for any k ∈ (0, k0), λ ∈ [λ0, λ1], the eigenvalues of LD

different from τ are all strictly bigger than a positive constant ε independent of λ,
k. In particular, the operator LD is an isomorphism.
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The proof of this proposition is an immediate consequence of Proposition 5.14, iii).
We emphasize that the values λ0, λ1, which will be fixed in the rest of the section,
are given in Proposition 5.13 and depend only on d, p and G.

The main result of this section is the following:

Proposition 5.9. Assume that λ ∈ [λ0, λ1], and k ∈ (0, k0), where k0 is giv-
en in Proposition 5.8. Then, there exists a neighborhood U of 0 in C2,α

G,0(Sd−1),
independent of λ, k, such that for any v ∈ U , the problem

−λ∆u+ u− up = 0 in Sd(k) \B1+v,

u > 0 in Sd(k) \B1+v,

u = 0 on ∂B1+v,

(5.12)

has a unique positive solution u = uvk,λ ∈ C2,α(Sd(k) \ B1+v) in a neighborhood of
uk,λ. Moreover the dependence of u on the function v is C1 and u0

k,λ = uk,λ.

Proof. Let v ∈ C2,α
G (Sd−1). It will be more convenient to consider the fixed domain

Sd(k) \ B1 endowed with a new metric depending on v. This will be possible by
considering the parameterization of Sd(k) \ B1+v defined by Ξ : Sd(k) \ B1 →
Sd(k) \B1+v,

Ξ(r, θ) := ((1 + χ(r)v(θ)) r, θ) , (5.13)

where χ is a cut-off function

χ(r) =

{
0, r ≥ 3

2
,

1, r ≤ 5
4
.

Therefore, we consider the coordinates (r, θ) ∈
(
1, π

k

)
× Sd−1 from now on, and we

can write the new metric in these coordinates as

gv = a2dr2 + 2abdrdv + b2dv2 + S2
k ((1 + χ(r)v(θ)) r) h̊,

where a = 1 + χ(r)v(θ) + χ′(r)v(θ)r, b = χ(r)r, and h̊ is the standard metric on
Sd−1 induced by the Euclidean one. It is clear that a = 1 if v = 0. Up to some
multiplicative constant, we can now write the problem (5.12) as{

−λ∆gv û+ û− ûp = 0 in Sd(k) \B1 ,

û = 0 on ∂B1.
(5.14)

As v ≡ 0, the metric gv is just the round metric gk, and û = uk,λ is therefore a
solution of (5.14). In the general case, the expression between the function u and
the function û can be represented by

û = Ξ∗u.
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For all ψ ∈ C2,α
G,0(Sd(k) \B1), we define:

N(v, ψ, λ) := −λ∆gvψ + ψ − [ψ+]p,

where ψ+ is the positive part of ψ. By Proposition 5.3 we have that

N(0, uk,λ, λ) = 0.

The mappingN is C1 from a neighborhood of (0, uk,λ, λ) in C2,α
G (Sd−1)×C2,α

G,0(Sd(k)\
B1)× [λ0, λ1] into C0,α

G (Sd(k) \B1). The partial differential of N with respect to ψ
at (0, uk,λ, λ) is

DψN |(0,uk,λ,λ)(ψ) = −λ∆ψ + ψ − pup−1
k,λ ψ.

Observe that DψN |(0,0,λ)(ψ) is precisely invertible by the fact that the operator
LDk,λ is nondegenerate, see Proposition 5.8. This is true in the framework of Sobolev
spaces, and also in the framework of Holder spaces by Schauder regularity.

The Implicit Function Theorem yields that there exists ψ(v, λ) ∈ C2,α
G,0(Sd(k) \B1)

such that N(v, ψ(v, λ), λ) = 0 for v in a neighborhood of 0 in C2,α
G (Sd−1). Observe

that the neighborhood U can be taken uniformly in k by the quantitative version
of the Implicit Function Theorem, see Proposition 5.4. By the maximum principle,
ψ(v, λ) is positive and solves (5.14).

Let k ∈ (0, k0). After the canonical identification of ∂B1+v with Sd−1, we define
Fk : U × [λ0, λ1]→ C1,α

G,0(Sd−1),

Fk(v, λ) = ∂νu
∣∣∣
∂B1+v

− 1

Vol(∂B1+v)

∫
∂B1+v

∂νu.

Here U and u = uvk,λ are as given by Proposition 5.9. Notice that Fk(v, λ) = 0 if
and only if ∂νu is constant on the boundary ∂B1+v. Obviously, Fk(0, λ) = 0 for
all λ ∈ [λ0, λ1]. Our goal is to find a branch of nontrivial solutions (v, λ) to the
equation Fk(v, λ) = 0 bifurcating from some point (0, λ∗(k)), λ∗(k) ∈ [λ0, λ1]. For
this aim, we will use a local bifurcation argument. This leads to the study of the
linearization of Fk around a point (0, λ). To start that, we first show the following
useful lemmas.

Lemma 5.10. Assume that λ ∈ [λ0, λ1], and k ∈ (0, k0), where k0 is given in
Proposition 5.8. Then for all v ∈ C2,α

G (Sd−1), there exists a unique solution ψ =
ψvk,λ ∈ C

2,α
G (Sd(k) \B1) to the problem{

−λ∆ψ + ψ − p up−1
k,λ ψ = 0 in Sd(k) \B1,

ψ = v on ∂B1.
(5.15)

Proof. Let ψ0(x) ∈ C2,α
G (Sd(k) \ B1) such that ψ0|∂B1 = v. If we set w = ψ − ψ0,

the problem (5.15) is equivalent to the problem{
−λ∆w + w − pup−1

k,λ w = −
(
− λ∆ψ0 + ψ0 − pup−1

k,λ ψ0

)
in Sd(k) \B1,

w = 0 on ∂B1.
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Observe that the right hand side of the above equation is in H−1
G (Sd(k)\B1). Since

by Proposition 5.8 the operator LDk,λ is a bijection, there exists a solution w. By
Schauder estimates, w has the required regularity and the result follows.

Lemma 5.11. Assume that λ ∈ [λ0, λ1], and k ∈ (0, k0), where k0 is given in
Proposition 5.8. Let v ∈ C2,α

G,0(Sd−1) and ψ ∈ C2,α
G (Sd(k) \ B1) be the solution of

(5.15). Then ∫
Sd(k)\B1

ψz = 0,

∫
∂B1

∂νψ = 0.

Here z stands for the eigenfunction associated to the negative eigenvalue of LD, as
given in Proposition 5.7.

Proof. Let

LD(z) = τz in Sd(k) \B1, z = 0 on ∂B1,

where LD is given in (5.11). We now multiply the above equation by ψ = ψvk,λ,
the equation in (5.15) by z, and integrate by parts to gain∫

∂B1

(
∂νψ z − ∂νz ψ

)
=

∫
Sd(k)\B1

τzψ .

Then we can at once gain the first identity by the facts that z = 0, ∂νz is constant
and ψ = v has 0 mean on ∂B1.

We now define ϑ ∈ H1
G(Sd(k) \B1) as the unique solution of the problem{
−λ∆ϑ+ ϑ− pup−1

k,λ ϑ = 0 in Sd(k) \B1,

ϑ = 1 on ∂B1,
(5.16)

whose existence has been proved in Lemma 5.10. Observe that, by uniqueness, ϑ
is radially symmetric. Then we multiply the equation in (5.16) by ψ, the equation
in (5.15) by ϑ, and integrate by parts to obtain∫

∂B1

(
∂νψ ϑ− ∂νϑψ

)
= 0.

Then we can immediately gain the second identity by the facts that ϑ = 1, ∂νϑ is
constant and ψ = v on ∂B1.

For λ ∈ [λ0, λ1], k ∈ (0, k0), we can define the linear continuous operator Hk,λ :
C2,α
G,0(Sd−1)→ C1,α

G,0(Sd−1) by

Hk,λ(v) = ∂ν(ψv)−
(d− 1)k

tan(k)
v,
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where ψv is given by Lemma 5.10. It is worth pointing out that the constant

(d− 1)k

tan(k)

is nothing but the mean curvature of ∂B1 ⊂ Sd(k).

We show now that the linearization of the operator Fk with respect to v at v = 0
is given by Hk,λ, up to a constant.

Proposition 5.12. For any λ ∈ [λ0, λ1] and k ∈ (0, k0) we have

Dv(Fk)(λ, 0) = ∂ru(1)Hk,λ ,

where u = uk,λ.

Proof. By the C1 regularity of Fk, it is enough to compute the linear operator
obtained by the directional derivative of Fk with respect to v, computed at (0, λ).
Such derivative is given by

F ′k(w) = lim
s→0

Fk(sw, λ)− Fk(0, λ)

s
= lim

s→0

Fk(sw, λ)

s
.

Let v = sw, we consider the parameterization of Sd(k) \ B1+v given in (5.13) for
(r, θ) ∈

(
1, π

k

)
× Sd−1. Let gv be the induced metric such that û = ûvk,λ = Ξ∗uvk,λ

(smoothly depending on the real parameter s) solves the problem{
−λ∆gv û+ û− ûp = 0 in Sd(k) \B1,

û = 0 on ∂B1.

We define that ûk,λ = Ξ∗uk,λ, which is a solution of

−λ∆gv ûk,λ + ûk,λ − ûpk,λ = 0

in Sd(k) \ B1 (notice that uk,λ is radial and then can be extended as a solution of
(5.5) in a small inner neighborhood of ∂B1), and

ûk,λ(r, θ) = uk,λ
(
(1 + sw)r, θ

)
on ∂B1. Let û = ûk,λ + ψ̂, we can get that{
−λ∆gv ψ̂ + (ûk,λ + ψ̂)− (ûk,λ + ψ̂)p − ûk,λ + ûpk,λ = 0 in Sd(k) \B1 ,

ψ̂ = −ûk,λ on ∂B1.
(5.17)

Obviously, ψ̂ is differentiable with respect to s. When s = 0, we have û = uk,λ.

Then, ψ̂ = 0 as s = 0. We set
ψ̇ = ∂sψ̂|s=0.
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Differentiating (5.17) with respect to s and evaluating the result at s = 0, we get
that {

−λ∆ψ̇ + ψ̇ − pup−1
k,λ ψ̇ = 0 in Sd(k) \B1,

ψ̇ = −∂ruk,λ(1)w on ∂B1.

Then ψ̇ = −∂ruk,λ(1)ψ where ψ = ψvk,λ is as given in Lemma 5.10 (with v = w).
Then, we can write

û(r, θ) = ûk,λ(r, θ)− s∂ruk,λ(1)ψ(r, θ) + o(s).

In particular, in B5/4 \B1 we have

û(r, θ) = uk,λ((1 + sw(θ))r, θ)− s∂ruk,λ(1)ψ(r, θ) + o(s)

= uk,λ(r, θ) + s
(
rw(θ)∂ruk,λ(r, θ)− ∂ruk,λ(1)ψ(r, θ)

)
+ o(s).

In order to complete the proof of the result, it is enough to calculate the normal
derivation of the function û when the normal is calculated with respect to the
metric gv. Since the coordinates (r, θ) ∈

(
1, π

k

)
× Sd−1, the metric gv can be

expanded in B5/4 \B1 as

gv = (1 + sw)2dr2 + 2sr(1 + sw)drdw + s2r2dw2 + S2
k((1 + sw)r) h̊ ,

where again h̊ is the standard metric on Sd−1 induced by the Euclidean one. It
follows from this expression that the unit normal vector field to ∂B1 for the metric
gv is given by

ν̂ =
(
(1 + sw)−1 + o(s)

)
∂r + o(s)∂θi ,

where θi are the vector fields induced by a parameterization of Sd−1. As a result,

gv(∇û, ν̂) = ∂ruk,λ + s
(
w∂2

ruk,λ − ∂ruk,λ∂rψ
)

+ o(s)

on ∂B1. From the fact that ∂ruk,λ and ∂2
ruk,λ are constant, while the term w and

ψ have mean 0 on ∂B1, and

−λ
(
∂2
ruk,λ +

(d− 1)k

tan(k)
∂ruk,λ

)
= 0

on ∂B1, we can conclude the proof of the result by using Lemma 5.11.

5.4 Study of the linearized operator Hk,λ

In view of Proposition 5.12, a bifurcation of the branch (0, λ) of solutions to the
equation Fk(v, λ) = 0 might appear only at point (0, λ∗) such that Hk,λ∗ becomes
degenerate. We will see that this is true for some λ∗.
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As we shall see in Lemma 5.16, the behavior of Hk,λ is related to the following
quadratic form:

Qk,λ : H1
G(Sd(k) \B1)→ R,

Qk,λ(ψ) =

∫
Sd(k)\B1

(
λ|∇ψ|2 + ψ2 − pup−1

k,λ ψ
2
)
− λ(d− 1)k

tan(k)

∫
∂B1

ψ2.

When restricted to functions that vanish at the boundary, we obtain the quadratic
form associated to the Dirichlet problem:

QD
k,λ := Qk,λ|H1

0,G(Sd(k)\B1).

Sometimes we will simply write QD instead of QD
k,λ.

We first show that QD attains negative values, which shows the validity of Propo-
sition 5.7.

Proof of Proposition 5.7. In this proof we drop the subindices k, λ. Observe that
by multiplying equation (5.4) by u and integrating by parts we obtain that:∫

Sd(k)\B1

λ|∇u|2 + |u|2 − up+1 = 0.

As a consequence,

QD(u) = −(p− 1)

∫
Sd(k)\B1

up+1 < 0.

Then, the first eigenvalue of LD is strictly negative. Since the first eigenfunction
is simple, it is radially symmetric.

In what follows it will be necessary to restrict those quadratic forms to the following
spaces:

Ek,λ =

{
ψ ∈ H1

G(Sd(k) \B1) :

∫
∂B1

ψ = 0,

∫
Sd(k)\B1

ψzk,λ = 0

}
,

ED
k,λ =

{
ψ ∈ H1

0,G(Sd(k) \B1) :

∫
Sd(k)\B1

ψzk,λ = 0

}
.

As k tends to 0 we have formally limit quadratic forms related to the problem in
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Rd \B1. On that purpose, let us define:

Q̃λ : H1
G(Rd \B1)→ R

Q̃λ(ψ) :=

∫
Rd\B1

λ|∇ψ|2 + ψ2 − pũp−1
λ ψ2 − λ(d− 1)

∫
∂B1

ψ2,

Q̃D
λ = Q̃λ|H1

0,G(Rd\B1).

Here ũλ is the solution given in Proposition 5.2. We also define the analogous
functional spaces:

Ẽλ =

{
ψ ∈ H1

G(Rd \B1) :

∫
∂B1

ψ = 0,

∫
Rd\B1

ψz̃λ = 0

}
,

ẼD
λ =

{
ψ ∈ H1

0,G(Rd \B1) :

∫
Rd\B1

ψz̃λ = 0

}
.

In order to facilitate the reading, sometimes we will drop the subscripts k, λ of the
above definitions.

The behavior of the quadratic forms Q̃λ and Q̃D
λ has been studied in [69], and the

following result holds true.

Proposition 5.13. . There exist 0 < λ0 < λ1 and ε > 0 such that:

(i) Q̃λ0(ψ) < −ε for some ψ ∈ Ẽλ0, ‖ψ‖L2 = 1;

(ii) Q̃λ1(ψ) > ε for any ψ ∈ Ẽλ1, ‖ψ‖L2 = 1;

(iii) Q̃D
λ (ψ) > ε for any ψ ∈ ẼD

λ , ‖ψ‖L2 = 1, and any λ > λ0.

Proof. The proof is basically contained in [69]. We first recall the definitions given
in [69, (3.6) and (5.7)] under our notations:

Λ0 = sup
{
λ > 0 : Q̃D

λ (ψ) ≤ 0 for some ψ ∈ ẼD
λ , ψ 6= 0

}
.

Λ∗ = sup{λ > 0 : Q̃λ(ψ) < 0 for some ψ ∈ Ẽλ}.

It is proved in [69] that the above suprema exist and that 0 < Λ0 < Λ∗. Then, we
can take λ0 ∈ (Λ0,Λ

∗) such that i) and iii) hold.

Moreover, [69, Proposition 5.3] implies that Q̃(ψ) > 0 for any ψ ∈ Ẽλ, ψ 6= 0,
provided that λ is sufficiently large. Then we can take λ1 > Λ∗ such that ii) is
satisfied.
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In next proposition we use a perturbation argument to prove an analogous result
for small k > 0.

Proposition 5.14. Fix λ0 and λ1 as given in Proposition 5.13. By taking k0 > 0
smaller if necessary, and for any k ∈ (0, k0) there exists ε > 0 independent of k, λ
such that:

(i) Qk,λ0(ψ) < −ε for some ψ ∈ Ek,λ0, ‖ψ‖L2 = 1:

(ii) Qk,λ1(ψ) > ε for any ψ ∈ Ek,λ1, ‖ψ‖L2 = 1:

(iii) QD
k,λ(ψ) > ε for any ψ ∈ ED

k,λ, ‖ψ‖L2 = 1 and any λ ∈ [λ0, λ1].

In particular, (iii) implies Proposition 5.8.

In order to prove the above Proposition, we need the following lemma, whose proof
will be given in the Appendix.

Lemma 5.15. For any function ψ ∈ H1
G(Sd(k) \B1), we can verify that

‖ψ‖2
L2(∂B1) ≤ C‖∇ψ‖L2(Sd(k)\B1)‖ψ‖L2(Sd(k)\B1) + C‖ψ‖2

L2(Sd(k)\B1)

for some constant C > 0, which does not depend on k.

Proof of Proposition 5.14. First, we prove that (i) holds. Let us give the following
min-max characterization of the second eigenvalue related to the quadratic forms
Qk,λ and Q̃λ as follows. Define Ak and Ã the class of 2-dimensional vector spaces
in {

ψ ∈ H1
G(Sd(k) \B1) :

∫
∂B1

ψ = 0

}
,

and {
ψ ∈ H1

G(Rd \B1) :

∫
∂B1

ψ = 0

}
,

respectively. Then we are concerned with the infimum:

inf
U
{max{Qk,λ(ψ) : ψ ∈ U, ‖ψ‖L2(Sd(k)\B1) = 1} : U ∈ Ak},

and

inf
Ũ
{max{Q̃λ(ψ) : ψ ∈ Ũ , ‖ψ‖L2(Rd\B1) = 1} : U ∈ Ã}.

Observe that the last infimum is strictly negative for λ = λ0 by Proposition 5.13,
i). By density, there exists a 2-dimensional vector space of U of functions in
C∞G (Rd \B1) with support contained in a fixed compact set K such that

max{Q̃λ0(ψ) : ψ ∈ Ũ , ‖ψ‖L2(Rd\B1) = 1} < 0.
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We also have

max{Q̃λ0(ψ) : ψ ∈ Ũ , ‖ψ‖L2(Sd(k)\B1) = 1} < 0

for k small, since both norms are equivalent in the 2-dimensional vector space Ũ .

Therefore, for any ψ ∈ Ũ with ‖ψ‖L2(Sd(k)\B1) = 1, one has that

Qk,λ0(ψ) = Q̃λ0(ψ) + ok(1) < 0.

Clearly, we can choose such ψ orthogonal to zk,λ, so that

Qk,λ0(ψ) < 0,

for some ψ ∈ Ek,λ0 as k small.

We now prove (ii). Since in what follows λ = λ1 is fixed, we drop the subscripts
of its dependence for the sake of clarity.

To reach a contradiction, we assume that there exists a sequence kn, which con-
verges to 0 as n → ∞, such that τ2,n := τ2(kn) ≤ on(1), where τ2 is defined
as:

τ2(k) = inf{Qk,λ(ψ) : ψ ∈ Ek,λ, ‖ψ‖L2(Sd(k)\B1) = 1}.

By a standard minimization procedure, there exists a sequence of functions ψn ∈
H1
G(Sd(kn) \ B1) with ‖ψn‖H1

G(Sd(kn)\B1) = 1 satisfying
∫
Sd(kn)\B1

ψnzkn = 0 solving

the eigenvalue problem:{
−λ1∆ψn + ψn − pup−1

kn
ψn = τ2,nψn in Sd(kn) \B1 ,

∂νψn = (d−1)kn
tan(kn)

ψn + µn on ∂B1,
(5.18)

for some µn ∈ R.

In what follows we just want to pass to the limit in ψn, τ2,n and zkn . This will
give a contradiction with Proposition 5.13, ii). The limit argument is technically
intricate and will be divided in several steps.

Step 1: Up to a subsequence, ψn converges weakly (in a sense to be specified) to
some ψ0 in H1

G(Rd \B1).

First, let us consider ψn in coordinates (r, θ), r ∈ (1, π
kn

), θ ∈ Sd−1.

For any compact set K ⊂ Rd \ B1, we have that ‖ψn‖H1(K) is bounded. Via a
diagonal argument, we can take a subsequence ψn such that ψn ⇀ ψ0 in H1

loc(Rd \
B1). By using compactness and taking a convenient subsequence, if necessary, we
can assume also that ψn → ψ0 in L2

loc(Rd \B1) and also pointwise. We now claim
that ψ0 ∈ H1(Rd \B1). We prove this by duality, showing that:
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sup

{∫
Rd\B1

∇ψ0 · ∇ξ + ψ0 ξ : ξ ∈ H1(Rd \B1) with compact support, ‖ξ‖H1 ≤ 1

}
≤ 1.

Observe that:

Skn(r)d−1

rd−1
ξ(r, θ)→ ξ(r, θ),

Skn(r)d−1

rd−1
∂rξ(r, θ)→ ∂rξ(r, θ),

Skn(r)d−3

rd−3
∇θξ(r, θ)→ ∇θξ(r, θ),

in L2(Rd \B1). Recall also that ψn ⇀ ψ0 in H1
loc(Rd \B1). Then,

∫
Rd\B1

∇ψ0 · ∇ξ + ψ0 ξ = lim
n→∞

∫
Sdkn\B1

∇ψn · ∇ξ + ψn ξ

≤ lim
n→∞

‖ξ‖H1(Sd(kn)\B1) = ‖ξ‖H1(Rd\B1) ≤ 1.

For later use we point out that the restriction of ψ0 to r ∈ [1, π
kn

] belongs to

L2(S2(kn) \B1), since

∫ π
kn

1

∫
Sd−1

Sd−1
kn

(r)(ψ0)2 ≤
∫ +∞

1

∫
Sd−1

rd−1(ψ0)2 ≤ 1.

Moreover, by local weak convergence,

ψn|∂B1 → ψ0|∂B1 strongly in L2(∂B1). (5.19)

Step 2: The sequences τ2,n, µn are bounded. In particular, τ2,n → τ2 ≤ 0 and
µn → µ0 up to a subsequence.

We argue by a contradiction and assume that τ2,n → −∞. Multiply the equation
(5.18) with ψn,∫

Sd(kn)\B1

λ1|∇ψn|2 + ψ2
n −

∫
Sd(kn)\B1

pup−1
kn

ψ2
n − λ1

(d− 1)kn
tan(kn)

∫
∂B1

ψ2
n

= τ2,n

∫
Sd(kn)\B1

ψ2
n. (5.20)

It is clear that the left-hand side of (5.20) is bounded, so ‖ψn‖ is supposed to
converge to 0. Therefore, by Lemma 5.6,∫

Sd(kn)\B1

pup−1
kn

ψ2
n ≤ C‖ψn‖2

L2 → 0,
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Moreover, by the Lemma 5.15, ∫
∂B1

ψ2
n → 0.

Then we can see that left-hand side of (5.20) converges to λ1 > 0 but the right-hand
side is non-positive, which gives a contradiction.

For the estimate on µn, take a test function φ(r) = (2−r)+. Clearly φ has compact
support, is bounded in H1(Sd(kn) \ B1) and φ = 1 on ∂B1. Multiplying equation
(5.18) by φ and integrating, we obtain

∫
Sd(kn)\B1

λ1∇ψn · ∇φ+ (1− τ2,n)ψnφ− pup−1
kn

ψφ = µn|∂B1|.

Taking into account the L∞ bound of ukn (see Lemma 5.6), we conclude.

Step 3: ψ0 is a nonzero weak solution of the problem:

{
−λ1∆ψ0 + ψ − pũp−1ψ0 = τ2ψ0 in Rd \B1 ,

∂νψ0 = (d− 1)ψ0 + µ0 on ∂B1.
(5.21)

Multiplying (5.18) by a test function with compact support and passing to the
limit, we obtain that ψ0 is a solution of (5.21). We now show that ψ0 6= 0.

By multiplying the equation (5.18) with ψn, we obtain∫
Sd(kn)\B1

λ1|∇ψn|2 + (1− τ2,n)ψ2
n

−
∫
Sd(kn)\B1

pup−1
kn

ψ2
n − λ1

(d− 1)kn
tan(kn)

∫
∂B1

ψ2
n = 0, (5.22)

By (5.19), we have that:

∫
∂B1

ψ2
n →

∫
∂B1

ψ2
0.

We now claim that

∫
Sd(kn)\B1

pup−1
kn

(ψ2
n − ψ2

0)→ 0. (5.23)

Let us fix an arbitrary δ > 0, and M > 0 sufficiently large as in Lemma 5.6. We
can compute:



94 CHAPTER 5. NONTRIVIAL CONTRACTIBLE DOMAINS IN SD

∣∣∣∣∫
Sd(kn)\B1

up−1
kn

(ψn − ψ0)2

∣∣∣∣ =

∣∣∣∣∣
∫ π

kn

1

∫
Sd−1

Sd−1
kn

(r)up−1
kn

(ψn − ψ0)2

∣∣∣∣∣
≤
∣∣∣∣∫ M

1

∫
Sd−1

Sd−1
kn

(r)up−1
kn

(ψn − ψ0)2

∣∣∣∣+

∣∣∣∣∣
∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)up−1
kn

(ψn − ψ0)2

∣∣∣∣∣
=: (I) + (II).

We are first concerned with the estimate of (I).∣∣∣∣∫ M

1

∫
Sd−1

Sd−1
kn

(r)up−1
kn

(ψn − ψ0)2

∣∣∣∣ ≤ C

∣∣∣∣∫ M

1

∫
Sd−1

rd−1(ψn − ψ0)2

∣∣∣∣ = on(1),

by the L2
loc convergence of ψn and the uniform L∞ bound on ukn , see Lemma 5.6.

We now estimate (II) by making use of Lemma 5.6, 2), to obtain:

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)up−1
kn

(ψn − ψ0)2 ≤ δp−1

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)(ψ2
n + ψ2

0)

≤ Cδp−1
(∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)ψ2
n +

∫ +∞

M

∫
Sd−1

rd−1ψ2
0

)
≤ 2Cδp−1.

Since δ > 0 is arbitrary, we conclude the proof of (5.23).

Then, if ψ0 = 0, (5.22) implies that:

∫
Sd(kn)\B1

λ1|∇ψn|2 + (1− τ2,n)ψ2
n → 0,

which is in contradiction with ‖ψn‖H1(Sd(kn)\B1) = 1.

Step 4: Defining zn = zkn , we show that ‖zn − z̃‖H1
0,r(Sd(kn)\B1) → 0.

By definition, {
−λ1∆zn + zn − pup−1

kn
zn = τnzn in Sd(kn) \B1 ,

zn = 0 on ∂B1,
(5.24)

where τn < 0 by Proposition 5.7. Recall moreover that ‖zn‖H1(Sd(kn)\B1) = 1.
Hence we can use the same ideas in Steps 1, 2 and 3 to prove that τn → τ̃ and also
zkn converges to z̃ weakly in H1

0,loc(Rd \ B1), strongly in L2
loc(Rd \ B1). Moreover

z̃ 6= 0 belongs to H1
0 (Rd\B1) with norm smaller or equal than 1, and z̃ is a solution

of (5.8).
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Observe that the restriction of z̃n to r ∈ [1, π
kn

] can be seen as an axially symmetric

function in H1(Sd(kn) \B1), since:

‖z̃‖2
H1(Sd(kn)\B1) = ωd

∫ π
kn

1

(z̃′(r)2+z̃(r)2)Skn(r)d−1 ≤ ωd

∫ +∞

1

(z̃′(r)2+z̃(r)2)rd−1 ≤ 1.

Claim 1:

∫
Sd(kn)\B1

λ1∇zn · ∇(zn − z̃) + (1− τn)zn(zn − z̃) = on(1).

By multiplying the equation (5.24) by zn − z̃ and integrating, we obtain∫
Sd(kn)\B1

λ1∇zn · ∇(zn − z̃) + (1− τn)zn(zn − z̃)−
∫
Sd(kn)\B1

pup−1
kn

zn(z̃ − zn) = 0.

Hence, it suffices to show that:

∫
Sd(kn)\B1

pup−1
kn

zn(zn − z̃)→ 0.

Indeed, by Hölder inequality and Lemma 5.6,

∫
Sd(kn)\B1

pup−1
kn

zn(zn − z̃) ≤
(∫

Sd(kn)\B1

pup−1
kn

(zn − z̃)2
)1/2(∫

Sd(kn)\B1

pup−1
kn

z2
n

)1/2

≤
(∫

Sd(kn)\B1

pup−1
kn

(zn − z̃)2
)1/2

C‖zn‖L2 .

Moreover, the same argument of the proof of (5.23) implies that

∫
Sd(kn)\B1

pup−1
kn

(zn − z̃)2 → 0.

Claim 2:

∫
Sd(kn)\B1

∇z̃ · ∇(zn − z̃)→ 0,

∫
Sd(kn)\B1

z̃(zn − z̃)→ 0.

In order to show the first convergence, write:

∫
Sd(kn)\B1

∇z̃ · ∇(zn − z̃)

=

∫ M

1

∫
Sd−1

Sd−1
kn

(r)∂rz̃ ∂r(zn − z̃) +

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)∂rz̃ ∂r(zn − z̃) = (I) + (II).
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Clearly, |(I)| → 0 because of the weak convergence H1
loc of zn to z̃. By Hölder

inequality,

|(II)| ≤ C
(∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)|∂rz̃|2
)1/2

.

Moreover,

lim sup
n→+∞

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)|∂rz̃|2 ≤
∫ +∞

M

∫
Sd−1

rd−1|∂rz̃|2,

which can be made arbitrarily small by choosing M appropriately.

The second convergence of claim 2 can be justified in the same way.

We are now in conditions of proving Step 4:

∫
Sd(kn)\B1

λ1|∇(zn − z̃)|2 + (1− τn)(zn − z̃)2

=

∫
Sd(kn)\B1

λ1∇(zn − z̃) · ∇zn + (1− τn)(zn − z̃)zn

−
∫
Sd(kn)\B1

λ1∇(zn − z̃) · ∇z̃ + (1− τn)(zn − z̃)z̃ = on(1),

by claims 1 and 2.

Step 5: Conclusion. We now show that∫
Rd\B1

ψ0z̃ = 0.

Indeed,

0 =

∫
Sd(kn)\B1

ψnzn

=

∫
Sd(kn)\B1

ψn(zn − z̃) +

∫
Sd(kn)\B1

z̃(ψn − ψ0) +

∫
Sd(kn)\B1

ψ0z̃

= (I) + (II) + (III).

By Hölder inequality,

(I) ≤
(∫

Sd(kn)\B1

(zn − z̃)2
)1/2(∫

Sd(kn)\B1

(ψn)2
)1/2

→ 0.
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Moreover, taking M > 0 sufficiently large,

(II) =

∫ M

1

∫
Sd−1

Sd−1
kn

(r)z̃(ψn − ψ0) +

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)z̃(ψn − ψ0)

The first term above converges to 0 by the local weak convergence of ψn to ψ0.
Moreover, the second term can be estimated via Hölder inequality:

∫ π
kn

M

∫
Sd−1

Sd−1
kn

(r)z̃(ψn − ψ0)

≤
(∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)(ψn − ψ0)2
)1/2(∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)z̃2
)1/2

≤C
(∫ π

kn

M

∫
Sd−1

Sd−1
kn

(r)z̃2
)1/2

,

which can be made arbitrarily small if M is sufficiently large.

As a consequence,

(III) =

∫
Sd(kn)\B1

ψ0z̃ → 0.

Passing to the limit, we conclude that

∫
Rd\B1

ψ0z̃ = 0.

This, together with step 3 and the inequality τ2 ≤ 0, gives a contradiction with
Proposition 5.13 (ii).

The proof of iii) follows the same arguments as that of ii). In some places the
computations are easier since there are no boundary terms.

Let us now define the quadratic form associated to Hk,λ, namely:

Jk,λ : Ck,α
G,0(Sd−1)→ R, Jk,λ(v) =

∫
Sd−1

vHk,λ(v).

In this case also, sometimes we will drop the subindices k, λ. Let us also denote
the first eigenvalue of the operator Hk,λ as

σ1(Hk,λ) = inf

{
Jk,λ(v) : v ∈ Ck,α

G,0(Sd−1) ,

∫
Sd−1

v2 = 1

}
.
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By the divergence formula, one can get

Jk,λ(v) =
1

λ
Qk,λ(ψv).

Next lemma characterizes the eigenvalue σ1(Hk,λ) in terms of the quadratic form
Qk,λ.

Lemma 5.16. For any λ ∈ [λ0, λ1], we have

σ1(Hk,λ) = min

{
1

λ
Qk,λ(ψ) : ψ ∈ Ek,λ,

∫
∂B1

ψ2 = 1

}
.

Moreover the infimum is attained.

Proof. Let us define

η := inf

{
Qk,λ(ψ) : ψ ∈ Ek,λ,

∫
∂B1

ψ2 = 1

}
∈ [−∞,+∞).

We first show that η is achieved. On that purpose, let us take ψm ∈ Ek,λ such that
Qk,λ(ψm)→ η. We claim that ψm is bounded. By contradiction, if ‖ψm‖H1

G
→ +∞,

we define ξm = ‖ψm‖−1
H1
G
ψm; we can suppose that up to a subsequence ξm ⇀ ξ0.

Notice that
∫
∂B1

ξ2
m → 0, which yields that ξ0 ∈ H1

0,G(Sd(k) \ B1). We also point
out that ∫

Sd(k)\B1

up−1
k,λ ξ

2
m →

∫
Sd(k)\B1

up−1
k,λ ξ

2
0 .

Let us distinguish two cases:
Case 1: ξ0 = 0. In this case

Qk,λ(ψm) = ‖ψm‖2
H1
G

∫
Sd(k)\B1

(
λ|∇ξm|2 + ξ2

m − pu
p−1
k,λ ξ

2
m

)
− λ(d− 1)k

tan(k)
→ +∞ ,

which is impossible.
Case 2: ξ0 6= 0. In this case

lim inf
m→∞

Qk,λ(ψm) = lim inf
m→∞

‖ψm‖2
H1
G

∫
Sd(k)\B1

(
λ|∇ξm|2 + ξ2

m − pu
p−1
k,λ ξ

2
m

)
− λ(d− 1)k

tan(k)

≥ lim inf
m→∞

‖ψm‖2
H1
G
QD
k,λ(ξ0)− λ(d− 1)k

tan(k)
,

but QD
k,λ(ξ0) > 0 for λ ∈ [λ0, λ1] by the Proposition 5.14. This is again a contra-

diction.

Thus, ψm is bounded, so up to a subsequence we can pass to the weak limit
ψm ⇀ ψ. Then, ψ is a minimizer for Qk,λ and in particular η > −∞.
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By the Lagrange multiplier rule, there exist real numbers θ0, θ1, θ2 so that for any
ρ ∈ H1

G(Sd(k) \B1),∫
Sd(k)\B1

(
λ∇ψ∇ρ+ ψρ− pup−1

k,λ ψρ− θ0ρzk,λ
)

=

∫
∂B1

ρ((θ1 + c̃)ψ + θ2),

where c̃ = λ (d−1)k
tan(k)

. Taking ρ = zk,λ above we conclude that θ0 = 0. Moreover, if we

take ρ = ψ and ρ = ϑ (given by (5.16)), we conclude that θ1 + c̃ = η and θ2 = 0,
respectively. In other words, ψ is a (weak) solution of{

−λ∆ψ + ψ − pup−1
k,λ ψ = 0 in Sd(k) \B1 ,

∂νψ = ηψ on ∂B1 .

By the regularity theory, ψ ∈ C2,α
G (Sd(k) \ B1). Define v = ψ|∂B1 and ψ ∈

C2,α
G (Sd(k) \B1) ∩ Ek,λ by the Lemma 5.11. Observe that:∫

Sd−1

v2 = 1, Jk,λ(v, v) =
1

λ
Qk,λ(ψ) =

1

λ
(η − c̃) .

The proof is completed.

For any k ∈ (0, k0), we define

λ∗(k) := sup {λ ∈ [λ0, λ1] : Qk,λ(ψ) < 0 for some ψ ∈ Ek,λ} . (5.25)

The above set is non empty since λ0 belongs to it, so the supremum is well defined.
It is clear that λ0 < λ∗(k) < λ1 by the Proposition 5.14. We now can state the
main result of this section as the following:

Proposition 5.17. We have:

(i) if λ = λ1, then σ1(Hk,λ) > 0;

(ii) if λ ≥ λ∗(k), then σ1(Hk,λ) ≥ 0;

(iii) if λ = λ∗(k), then σ1(Hk,λ) = 0;

(iv) for any ε > 0 there exists λ ∈ (λ∗ − ε, λ∗), with σ1(Hk,λ) < 0.

Proof. This proposition follows at once from the Lemma 5.16, Proposition 5.14
and from the definition of λ∗ given by (5.25).
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5.5 Bifurcation argument

In this section, we are ready to prove our main result, Theorem 5.1, by the
bifurcation argument. In order to prove our result, we reformulate the problem.
For this aim, we need the following lemma:

Lemma 5.18. There exists ε > 0 such that for any λ ∈ (λ∗(k)−ε, λ1), the operator

Hk,λ + Id : C2,α
G,0(Sd−1)→ C1,α

G,0(Sd−1), v 7→ Hk,λ(v) + v,

is invertible.

Proof. Observe that, by choosing ε > 0 sufficiently small, we can assume that
σ1(Hk,λ) > −1. We define the quadratic forms Q̂k,λ : Ek,λ → R by

Q̂k,λ(ψ) = Qk,λ(ψ) + λ

∫
∂B1

ψ2,

and Ĵk,λ : C2,α
G,0(Sd−1)→ R by

Ĵk,λ(v) =

∫
Sd−1

(
v∂νψv −

(d− 1)k

tan k
v2 + v2

)
.

Actually, these quadratic forms are positive definite since σ1 > −1. We state that
they are also coercive. Let’s first show that

β := inf{Q̂k,λ(ψ) : ψ ∈ Ek,λ, ‖ψ‖ = 1} > 0

is achieved. On that purpose, take ψn ∈ Ek,λ with ‖ψn‖H1
G

= 1 such that

Q̂k,λ(ψn) → β, and suppose that ψn ⇀ ψ0. If the convergence is strong, then
the infimum β is attained, which implies that β > 0. Otherwise,

β = lim sup
n→∞

∫
Sd(k)\B1

(
λ|∇ψn|2 + ψ2

n − pu
p−1
k,λ ψ

2
n

)
− λ(d− 1)k

tan k

∫
∂B1

ψ2
n + λ

∫
∂B1

ψ2
n

>

∫
Sd(k)\B1

(
λ|∇ψ0|2 + ψ2

0 − pu
p−1
k,λ ψ

2
0

)
− λ(d− 1)k

tan k

∫
∂B1

ψ2
0 + λ

∫
∂B1

ψ2
0 ≥ 0.

Therefore, Q̂k,λ is coercive. Thus, we can obtain that

Ĵk,λ(v) =
1

λ
Q̂k,λ(ψv) ≥ C‖ψv‖2

H1
G(Sd(k)\B1).

Observe that Ĵk,λ is naturally defined in the space:

X =

{
u ∈ H1/2

G (Sd−1) :

∫
Sd−1

u = 0

}
,
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where H
1/2
G (Sd−1) denotes the Sobolev space of G-symmetric functions, i.e.

H
1/2
G (Sd−1) = {v ∈ H1/2(Sd−1) : v(θ) = v(g(θ)) ∀g ∈ G} .

By the trace estimate Ĵk,λ is coercive inX. According to the Lax-Milgram theorem,
the regularity theory and the fact that the mean property is preserved, the operator

v 7→ ∂νψv
∣∣
∂B1
− (d− 1)k

tan k
v + v

is invertible from C2,α
G,0(Sd−1) to C1,α

G,0(Sd−1). The regularity of elliptic operators
under non-homogenous Robin boundary condition can be found in [53, Chapters
4 and 5].

By the Proposition 5.17, we can take λ̄ ∈ (λ0, λ∗(k)) sufficiently close to λ∗(k)
such that σ1(Hλ̄) < 0. Define the operator Z : U × [λ̄, λ1]→ V by

Z(v, λ) = Fk(v, λ) + v,

where U ⊂ C2,α
G,0(Sd−1),V ⊂ C1,α

G,0(Sd−1) are open neighborhoods of 0. By the

Lemma 5.18, taking λ̄ close enough to λ∗(k) so that we can assume that DvZ(0, λ)
is an isomorphism for all λ ∈ [λ̄, λ1]. Then, we can further restrict U and V so that
Z(·, λ) is invertible for all λ ∈ [λ̄, λ1] according to the Inverse Function theorem.

Now define the operator W : V × [λ̄, λ1] → C1,α
G,0(Sd−1) by W (v, λ) = v − v̂ with

Z(v̂, λ) = v. By the compactness of the inclusion of C2,α
G,0(Sd−1) into C1,α

G,0(Sd−1),
we can point out that W is the operator by the sum of an identity and a compact
operator. Obviously, Fk(v, λ) = 0⇔ W (v, λ) = 0. Theorem 5.1 follows if we show
the local bifurcation of solutions to the equation W (v, λ) = 0.

We have

DvW
∣∣
(0,λ)

(v) = v −DvZ
−1
∣∣
(0,λ)

(v).

Thus

DvW
∣∣
(0,λ)

(v) = δv ⇔ Hk,λ(v) =
δ

(1− δ)∂ruk,λ(1)
v.

Recall from the proof of the Lemma 5.18, we have that δ < 1 if λ ≥ λ̄. Hence,
DvW (0, λ) has the same number of negative eigenvalues as Hk,λ.

Under this framework, Theorem 5.1 follows immediately from the following lemma
and the Krasnoselskii Theorem 1.8.

Lemma 5.19. The index of the linearized operator DvW (0, λ) is odd for some
λ < λ∗(k) sufficiently close to λ∗(k).
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Proof. In view of Proposition 5.17, it is sufficient to prove that Hk,λ∗(k) has odd-
dimensional kernel. For any ψ ∈ Ek,λ, there exist functions ψ0, ψl,j defined in [1, π

k
)

such that

ψ(r, θ) = ψ0(r) +
+∞∑
l=1

ml∑
j=1

ψl,j(r)ξl,j(θ),

where (r, θ) ∈ [1, π
k
) × Sd−1, and ξl,j are the G-symmetric spherical harmonics,

normalized to 1 in the L2-norm, with the eigenvalue µil of multiplicity ml. Then
the quadratic form ψ 7→ Qk,λ(ψ) defined in Ek,λ can be given by

Qk,λ(ψ) = Q0
k,λ(ψ0) +

+∞∑
l=1

ml∑
j=1

Ql
k,λ(ψl,j), (5.26)

where the functional Ql
k,λ is defined as

Ql
k,λ(φ) =

∫ π
k

1

(λφ′2 + φ2 − pup−1
k,λ φ

2)Sd−1
k dr

− λ(d− 1)k

tan(k)
φ(1)2 + λµil

∫ π
k

1

φ2Sd−3
k dr

for a function φ :
(
1, π

k

)
→ R. By convention, we choose µi0 = 0. Also ψ0(1) = 0 and

ψ0 is orthogonal to the function zk,λ restricted to the radial variable since ψ ∈ Ek,λ.
We know that Q0

k,λ(ψ0) > 0 in the radial case. For λ = λ∗(k), Qk,λ(ψ) ≥ 0, and

then Ql
k,λ ≥ 0 by (5.26). Moreover, it is obvious that

Ql1
k,λ < Ql2

k,λ if 1 ≤ l1 < l2.

We also know that there exists a ψ ∈ Ek,λ such that Qk,λ(ψ) = 0. Therefore
Q1
k,λ ≥ 0 and Ql

k,λ > 0 for l > 1. This implies that the dimension of the kernel of
the operator Hλ∗(k) is m1, which is odd by the assumption (G) on the symmetry
group.

5.6 Appendix

In this appendix we prove the quantitative version of the Implicit Function The-
orem given in Proposition 5.4, the uniformity of the Sobolev constant given in
Lemma 5.5, and also the proof of Lemma 5.15.

Proof of Proposition 5.4. Let us define the map T : U → Y by setting

T (w) = w − [F ′(v)]−1(F (v + w)).

Clearly, a fixed point z of T will give rise to a solution to the equation F (v+z) = 0.
We apply now the Banach contraction theorem to the operator T.
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For any ψ ∈ Y,w ∈ U, one has

T ′(w)[ψ] = ψ − [F ′(v)]−1(F ′(v + w)[ψ]) = [F ′(v)]−1(F ′(v)[ψ]− F ′(v + w)[ψ]).

Thus we find

‖T ′(w)[ψ]‖ ≤ c0

2c0

‖ψ‖ =
1

2
‖ψ‖. (5.27)

Therefore we conclude that T is a contraction. We finish the proof if we show that
T maps U into itself. With this purpose, let us compute:

‖T (0)‖ = ‖[F ′(v)]−1(F (v))‖ ≤ c0δ.

On the other hand, for any w ∈ U we can use (5.27) to deduce

‖T (w)− T (0)‖ ≤ c0

2c0

‖w‖ ≤ c0δ.

By using the triangular inequality of the norm, we get

‖T (w)‖ ≤ 2c0δ.

By the Banach contraction Theorem, T has a fixed point in U . Moreover, by (A2)
and (A3) we conclude that ‖F ′(v + z)−1‖ ≤ 2c0.

Proof of Lemma 5.5. We first give the facts that

‖u‖Ls ≤ C(q) (‖∇u‖Lq + ‖u‖Lq) ∀ u ∈ H1,q(S2
1),

1

s
=

2− q
2q

, 1 < q < 2,

and

‖u‖L2∗ ≤ C(d) (‖∇u‖L2 + ‖u‖L2) ∀ u ∈ H1(Sd1), d ≥ 3,

see [5, 8]. And we expand that

ū =

{
u, x ∈ Sd(k) \B1,

0, x ∈ B1,

so that ū ∈ H1
r (Sd(k)) = H1

r (SdR), R = 1
k
. Taking û(y) = ū(Ry), y ∈ Sd1, we now

consider two cases:
Case 1: d = 2.
Let f(t) = 2t

2−t , with f(1) = 2, f(2−) = +∞, then for any s ∈ (2,+∞), there exists

a unique t ∈ (1, 2) such that f(t) = 2t
2−t = s. Then we have

‖u‖Ls ≤ C(‖u‖Lt + ‖∇u‖Lt)
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by the fact that

(∫
S2R

|ū|s
) t

s

= R2−t

(∫
S21
|û|s
) t

s

≤ R2−tC

(∫
S21
|û|t +

∫
S21
|∇û|t

)

= R2−tC

(
R−2

∫
S2R

|ū|t +Rt−2

∫
S2R

|∇ū|t
)

≤ C

(∫
S2R

|ū|t +

∫
S2R

|∇ū|t
)
,

where C = C(s) is a positive constant. We take u2 instead of u, then we can get
that

‖u2‖Ls ≤ C(‖u2‖Lt + ‖∇u2‖Lt)
≤ C(‖u‖L2 + 2‖∇u‖L2)‖u‖Ls
≤ C(‖u‖L2 + 2‖∇u‖L2)‖u‖1−β

L2 ‖u‖βL2s ,

where β = 2
s
. Then one can get that

‖u‖2−β
L2s ≤ C(‖u‖L2 + 2‖∇u‖L2)‖u‖1−β

L2 .

Therefore, for any s > 4, we have

‖u‖Ls ≤ C‖u‖H1 .

As 2 < s ≤ 4, we obtain

‖u‖Ls ≤ ‖u‖γL2‖u‖1−γ
L2s ,

where γ = 2
s
. Also, we can gain

‖u‖Ls ≤ C‖u‖H1 .

Case 2: d ≥ 3.
By the interpolation inequality, one has that

‖u‖Ls ≤ ‖u‖αL2‖u‖1−α
L2∗ ,
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where α satisfies α
2

+ (1− α)(1
2
− 1

d
) = 1

s
. We also have(∫

SdR

|ū|2∗
) 2

2∗

= Rd−2

(∫
Sd1
|û|2∗

) 2
2∗

≤ Rd−2C

(∫
Sd1
|û|2 +

∫
Sd1
|∇û|2

)

= Rd−2C

(
R−d

∫
SdR

|ū|2 +R2−d
∫
SdR

|∇ū|2
)

≤ C

(∫
SdR

|ū|2 +

∫
SdR

|∇ū|2
)
,

where the positive constant C just depends on d. Then one can obtain that
‖u‖Ls ≤ C‖u‖H1

0,r
. The proof of the lemma is done.

Proof of Lemma 5.15. Take a smooth vector field M(x) in Sd(k) \ B1 such that
M(x) = ν(x) on the boundary ∂B1, |M(x)| ≤ 1. Then, we apply the divergence
theorem and Hölder inequality to get∫

∂B1

ψ2 =

∫
∂B1

ψ2 ·M(x) · ν(x)

=

∫
Sd(k)\B1

(
2ψ∇ψ ·M(x) + ψ2 · divM(x)

)
≤ 2‖∇ψ‖L2‖ψ‖L2 + ‖ψ‖2

L2‖divM(x)‖L∞
≤ C‖∇ψ‖L2‖ψ‖L2 + C‖ψ‖2

L2

since |divM(x)| is uniformly bounded. In order to prove that, let us now consider
the vector field M(x) in the coordinates (r, θ), r ∈ (1, π

k
), θ ∈ Sd−1, and give by

M(r, θ) = − ∂

∂r
X(r, θ) · χ(r) = −vr · χ(r) = −

(
Mrvr +

d−1∑
i=1

Mθivθi

)
,

where vr := vr(θ),vθi are orthonormal vectors along X and χ(r) is a cut-off
function

χ(r) =

{
0, r ≥ 3

2
,

1, r ≤ 5
4
.

Then the divergence can be written as

divM(x) =
1

Sd−1
k (r)

∂

∂r
(Sd−1

k (r)Mr(r, θ)) +
1

Sk(r)
divθMθ(r, θ)

= ∂rMr(r, θ) + (d− 1)
Ck(r)

Sk(r)
Mr(r, θ) +

1

Sk(r)
divθMθ(r, θ)

= −χ′(r)− (d− 1)
Ck(r)

Sk(r)
χ(r).
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Therefore,
|divM(x)| ≤ C(d)

as k → 0, and the proof is finished.



Chapter 6

Modica type estimate and
curvature results

In this chapter, we establish a Modica type estimate and give some curvature
results for the overdetermined problem (1.1). In order to verify the main result,
we first present some facts about the function P . Then we prove a uniform gradient
bound on the solution. This is the key to proving the main theorem. Once this
is done, we then can conclude the proof of the Modica type estimate by a scaling
argument and passing to a limit. The results about mean curvature and the rigidity
result will be proved afterwards.

6.1 Gradient’s estimate

Let u be a C3 solution of (1.1), f ∈ C1, and P as in (1.12) where F is a primitive
of f (no assumption on its sign at the moment). We begin this section by showing
that the function P is a subsolution of an elliptic PDE. This is a very well known
result (see for instance [83]), which we present here for the sake of completeness.

Lemma 6.1. The function P satisfies:

L(P ) := ∆P + 2f(u)
∇u
|∇u|2

· ∇P ≥ 0.

for any x ∈ Ω such that ∇u(x) 6= 0.

Proof. We have that P ∈ C2(Ω) and following Sperb [83], we find that

DiP = 2
d∑
j=1

DjuDiju+ 2f(u) ·Diu

107
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for every i = 1, · · · , d. Therefore,

DiP − 2f(u) ·Diu = 2
d∑
j=1

DjuDiju ≤ 2|∇u|

[
d∑
j=1

(Diju)2

]1/2

.

Using ∆u+ f(u) = 0, the Laplacian of P can be given by

∆P = 2
d∑

i,j=1

(Diju)2 + 2
d∑
j=1

DjuDj(∆u) + 2f ′(u)|∇u|2 − 2f 2(u)

= 2
d∑

i,j=1

(Diju)2 − 2f 2(u),

so that

|∇u|2∆P ≥ 1

2
|∇P |2 − 2f(u)∇u · ∇P,

and then

L(P ) := ∆P + 2f(u)
∇u
|∇u|2

· ∇P ≥
1
2
|∇P |2

|∇u|2
≥ 0.

This concludes the proof of the lemma.

We finish this section with a uniform estimate on the gradient of u, under mild
conditions on f . This will be essential in the proof of Theorem 1.5.

Lemma 6.2. Let u be a bounded solution of the problem (1.1), then there exists
a constant M > 0 such that |∇u| ≤ M in Ω. Moreover, M depends only on d,
‖f(u)‖L∞ and c.

Proof. Let us observe that the above gradient estimate would be a immediate
consequence of interior regularity estimates for elliptic equations in

{x ∈ Ω : dist(x, ∂Ω) > δ},

for any δ > 0 that will be fixed later. We now prove that this estimates holds also
up to the boundary.

Given any x0 ∈ Ω, denote by h := dist(x0, ∂Ω) and assume that this distance is
attained at y0 ∈ ∂Ω. By the previous comment, we can focus on the case h ≤ δ.
We define:

ũ(x) :=
1

h
u(x0 + hx),

then in B1(0),
−∆ũ = hf(hũ), ũ > 0.

Let z0 := y0−x0
h

,
|∇ũ(z0)| = |∇u(y0)| = |c|,
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since the ball Bh(x0) is tangent to ∂Ω at y0.

We now decompose ũ = v + w, where the functions v, w solve the following two
problems, respectively:{

∆v = 0 in B1(0),

v = ũ on ∂B1(0),
and

{
−∆w = hf(hũ) in B1(0),

w = 0 on ∂B1(0).

For the function w, we can use regularity estimates to conclude that

‖w‖C1,α(B̄1) ≤ Ch‖f‖L∞ .

Here C is a constant depending only on d. We now turn our attention to v. By
applying an explicit version of the Harnack’s inequality for harmonic functions v
(see, for instance, [44, Chapter 2, exercise 2.6]), one can get that

1− r
(1 + r)d−1

v(0) ≤ v(x) ≤ 1 + r

(1− r)d−1
v(0) (6.1)

where r = |x| < 1. Using the first inequality and computing boundary derivatives
on z0, we have:

21−dv(0) ≤
∣∣∂νv(z0)

∣∣ ≤ |∇ũ(z0)|+ |∂νw(z0)| ≤ c+ C h‖f(u)‖L∞ .

If h is sufficiently small, we have that

v(0) ≤M,

We now use the second inequality in (6.1) to conclude that

v(x) ≤M
1 + r

(1− r)d−1
.

Based on these results, we get that

ũ(x) = v(x) + w(x) ≤M
1 + r

(1− r)d−1
+ Ch‖f(u)‖L∞ .

Therefore,
sup

B1/2(0)

ũ(x) ≤M,

taking a bigger M if necessary. By standard interior gradient estimates,

|∇u(x0)| = |∇ũ(0)| ≤ CM,

where, again, this constant C depends only on d and ‖f(u)‖L∞ .
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6.2 Proof of theorems

In this section, we shall present the proof of our main results, Theorem 1.4, The-
orem 1.5 and Theorem 1.6. Define

α := max{0, c2 + 2F (0).}

Proposition 6.3. Under the assumptions of Theorem 1.5, we have that P (x) ≤ α
for all x ∈ Ω.

Proof. By Lemma 6.2 we know that P is bounded. Reasoning by contradiction,
assume that

β := sup
Ω
P (x) > α.

There exists a sequence (xk)k∈N ⊂ Ω such that

P (xk)→ β as k →∞.

If xk is bounded, up to a subsequence we can assume that xk → x0, with P (x0) = β.
Since β > 0, we conclude that x0 is not a critical point of u. Moreover, since
β > c2 + 2F (0), then x0 ∈ Ω. As a consequence, P attains a local maximum at x0,
and ∇u(x0) 6= 0; the maximum principle applied to P implies that P is constant
on a neighborhood of x0. This argument implies that the set:

{x ∈ Ω : P (x) = β}

is a non-empty open subset of Ω. Since it is obviously closed, then P (x) = β for
all x ∈ Ω. But P (x) = c2 + 2F (0) < β if x ∈ ∂Ω, and this is a contradiction with
the continuity of P .

We now assume that xk is unbounded, and discuss the following two cases.

Case 1: lim supk→+∞ dist(xk, ∂Ω) > δ.
Let us consider uk extended by 0 outside Ω, so that uk : Rd → R is a globally
Lipschitz function. We consider uk(x) = u(x+xk) and Pk(x) = P (x+xk), so that

Pk(0) = P (xk)→ β.

By a Cantor diagonal argument we can take a subsequence, still denoted by uk,
so that on compact sets of Rd the sequence uk converges uniformly to a certain
Lipschitz function u∞ ≥ 0. Moreover ∇uk

∗
⇀ ∇u∞, where

∗
⇀ denotes convergence

with the weak star topology in L∞.

Denoting P∞ = |∇u∞|2 + 2F (u∞) ∈ L∞(Rd), we have that P∞ ≤ β. Recall that
by Lemma 6.2, f(uk) is a globally Lipschitz function in Rd. By interior regularity
estimates we have that uk is bounded in C2,α norm on any compact subset of
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Bδ(0). Then uk converges to u∞ in C2,α sense in compact subsets of Bδ(0). In
particular,

0 < β ← Pk(0)→ P∞(0).

Since β > 0, then 0 is not a critical point of u∞. This, in particular, excludes the
possibility u∞(0) = 0. Define the open set Ω∞ = {x ∈ Rd : u∞(x) > 0}. Clearly
Ω∞ is not empty since 0 ∈ Ω∞. We first claim that inside Ω∞ the convergence is
C2,α
loc , and ∆u∞ = f(u∞). Indeed, given p ∈ Ω∞, by uniform convergence there

exists r > 0 such that uk(x) > 0 for any x ∈ Br(p). Reasoning as above, interior
regularity estimates allow us to conclude the claim.

By applying the maximum principle to P∞, we conclude that P is constant on a
neighborhood of 0. Indeed, we have that the set {x ∈ Ω : P (x) = β} is an open
subset of Ω∞. By continuity of P in Ω∞, it is also closed. As a consequence,

P (x) = β for all x ∈ Ω̃∞, (6.2)

where Ω̃∞ is the connected component of Ω∞ containing 0.

Take now yk ∈ Ω̃∞ such that u∞(yk)→ ξ, where

ξ = sup{u∞(x) : x ∈ Ω̃∞} > 0.

By the Lipschitz regularity of u∞, there exists r > 0 such that Br(yk) ⊂ Ω̃∞.
Thanks to the Ekeland Variational Principle (see for instance [85, Chapter 5])
there exists zk ∈ Ω̃∞ such that:

• u∞(zk)→ ξ;

• |yk − zk| → 0;

• ∇u∞(zk)→ 0.

In particular, P (zk)→ 2F (ξ) ≤ 0, which is a contradiction with (6.2).

Case 2: limk→+∞ dist(xk, ∂Ω) = 0.
As in case 1, we consider uk extended by 0 outside Ω, so that uk : Rd → R is
a globally Lipschitz function. Observe that u(xk) → 0 since |∇u| is bounded by
Lemma 6.2. Then,

|∇u(xk)|2 = P (xk)− 2F (u(xk))→ β − 2F (0) > c2. (6.3)

Denote hk := dist(xk, ∂Ω) → 0 and assume that this distance is attained at yk ∈
∂Ω. Let

uk(x) :=
1

hk
u(yk + hkx).

Observe that uk(0) = 0 and ∇uk is uniformly bounded by Lemma 6.2. Therefore,
we can take a subsequence such that uk converges uniformly in compact sets to a
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limit function u∞ ≥ 0, which is Lipschitz continuous (but possibly unbounded).

Moreover, ∇uk
∗
⇀ ∇u∞ in L∞.

Let us denote Ω∞ = {x ∈ Rd : u∞(x) > 0}. First, we show that in compact sets
of Ω∞, uk converges to u∞ in C2,α sense and:

∆u∞ = 0, x ∈ Ω∞.

Indeed, take p ∈ Ω∞. By uniform convergence, there is r > 0 such that uk > 0
in Br(p). Recall that f(uk) is uniformly Lipschitz continuous in Rd, by interior
regularity estimates, we conclude that uk → u∞ in C2,α sense in compact sets of
Br(p). Passing to the limit, u∞ is harmonic in Ω∞.

Now, let zk := xk−yk
hk

, then we can assume that zk converges to z∞ since |zk| = 1.

The same argument as above works in Br(z∞) for any r ∈ (0, 1), and then uk → u∞
in C2,α sense in compact sets of B1(z∞). Hence u∞ ≥ 0 is harmonic in B1(z∞). It
is clear that, by (6.3),

|c| < |∇u(xk)| = |∇uk(zk)| → |∇u∞(z∞)| := a. (6.4)

By the maximum principle we conclude that u∞ > 0 in B1(z∞), that is, B1(z∞) ⊂
Ω∞.

Observe now that:

β = |∇uk(zk)|2 + 2F (uk(zk)) + ok(1)

= |∇u(xk)|2 + 2F (u(xk)) + ok(1)

≥ |∇u(yk + xhk)|2 + 2F (u(yk + xhk))

= |∇uk(x)|2 + 2F (u(yk + xhk))

where F (u(xk))→ F (0) and F (u(yk + xhk))→ F (0) since hk → 0, u(yk) = 0. As
a consequence, |∇u∞(z∞)| ≥ |∇u∞(x)| for all x ∈ B1(z∞). Recall moreover that
u∞ is Lipschitz continuous in Rd and u∞(0) = 0.

Therefore, up to a rotation,
u∞(x) = ax+

d ,

where a is given in (6.4).

Fix ε > 0 small enough, by the uniform convergence of uk to u∞,

|uk − ax+
d | <

aε

2

in B1(0) for all large enough k. Following [48, Lemma 4.4], let us consider the
domain Dt, the perturbation of B1(0) ∩ {xd > ε}, given by

Dt = {x ∈ B1(0) : xd > ε− tη(x′)},
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where x′ = (x1, · · ·, xd−1), 0 ≤ η(x′) ≤ 1 is a smooth bump function supported in
|x′| ≤ 1

2
with η(x′) = 1 for |x′| ≤ 1

4
. It is clear that uk > 0 in D0.

Now, we denote a function w which solves the following problem
−∆w(x) = −ε in Dt0 ,

w(x) = axd − aε on ∂B1(0) ∩ {xd > ε},
w(x) = 0 on ∂B1(0) ∩ {xd = ε− t0η(x′)},

for some 0 < t0 < 2ε, where Dt0 ⊆ B2(0) ∩ {uk > 0} will touch

J(uk) := ∂
(
B2(0) ∩ {uk > 0}

)
∩B2(0)

at some point p ∈ J(uk)∩{|x′| < 1
2
}. Thus, w(x) ≤ uk(x) in Dt0 by the maximum

principle, and by the Hopf lemma,

|wν(p)| ≤ |(uk)ν(p)| = |c|,

where ν is the outer normal to ∂Dt0 at p. On the other hand,

|wν(p)| = a+O(ε),

by the standard perturbation argument. We therefore conclude a ≤ |c| since ε is
arbitrary. This is a contradiction with (6.4).

In order to conclude the proof of Theorem 1.5 we only need to show the following
result.

Proposition 6.4. If, under the assumptions of Theorem 1.5, P (x) = α at a point
x ∈ Ω, then P is constant, u is 1-dimensional and Ω is a half-space.

Proof. The proof of his proposition follows the ideas of [13], and is divided in two
steps.

Step 1: If P (x0) = α, then ∇u(x0) 6= 0.

Reasoning by contradiction, if ∇u(x0) = 0, then 0 ≤ α = 2F (u(x0)) ≤ 0, so that
α = 0 = F (u0), where u0 = u(x0). We consider the set

U = {x ∈ Ω : u(x) = u0},

where u0 = u(x0). Clearly, U is closed and U 6= ∅. Then we take x1 ∈ U and
consider the function ϕ(t) = u(x1 + tw)− u0, where w ∈ Sd−1 is arbitrarily fixed.
We have

ϕ′(t) = ∇u(x1 + tw)w.
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Then

|ϕ′(t)|2 ≤ |∇u(x1 + tw)|2 ≤ α− 2F (u(x1 + tw))

= 2F (u0)− 2F (u(x1 + tw)).

Since F (u0) = 0, then F ′(u0) = 0 and F ′′(u0) ≤ 0 by the C2 regularity of F .
Hence F (u) = O((u− u0)2) as |u− u0| → 0. Therefore we can get that

|ϕ′(t)| ≤ C|ϕ(t)|,

as t small enough. It follows that ϕ ≡ 0 in [−ε, ε], for some ε > 0, since ϕ(0) = 0.
It shows that the set U given above is open. By continuity it is clear that U is
also closed, and then U = Ω, which implies that u is a constant, a contradiction.

Step 2: Conclusion.

Then, we have that ∇u(x) 6= 0 for any x ∈ Ω with P (x) = α. By the maximum
principle applied to P , we conclude that the set

{x ∈ Ω : P (x) = α}

is a non-empty open set, which is also closed by continuity. Then P (x) = α for all
x ∈ Ω.

We now set v = G(u), where G ∈ C2(R) is suitably determined. By the straight-
forward computation, one has

∆v = G′′(u)|∇u(x)|2 +G′(u)∆u = G′′(u)(α− 2F (u))−G′(u)F ′(u). (6.5)

Then we can attain that
∆v = 0, (6.6)

if we choose

G(u) =

∫ u

u0

(α− 2F (s))−
1
2ds,

for some fixed u0 ∈ u(Ω). With this choice, one has that

|∇v|2 = G′(u)2|∇u|2 = 1. (6.7)

We can infer that v(x) = ~a · x+ b for some ~a ∈ Rd with |~a| = 1 and b ∈ R.

Then, we can obtain that u(x) = G−1(v(x)) = g(~a ·x+ b) with g = G−1, since G is
invertible. Then u is 1-dimensional. A priori, Ω could be the inner space between
two parallel hyperplanes, but this is impossible since u has no critical points by
Step 1. This concludes the proof.

We are now in conditions to conclude the proofs of Theorem 1.6 and Theorem 1.4.
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Proof of Theorem 1.6. Since c 6= 0, we have that u has no critical points close to
∂Ω. By the assumption that P attains its maximum at ∂Ω, then

Pν ≥ 0, on ∂Ω.

Let H be the mean curvature of ∂Ω at a given point. On the other hand,

∂P

∂ν
=

∂

∂ν

(
|∇u|2 + 2F (u)

)
= 2

∂u

∂ν

∂2u

∂ν2
+ 2f(u)

∂u

∂ν

= 2
∂u

∂ν

(
∆u− (d− 1)H

∂u

∂ν
+ f(u)

)
= −2(d− 1)

∣∣∣∂u
∂ν

∣∣∣2H,
by using the fact that ∂2u

∂ν2
= ∆u−(d−1)H ∂u

∂ν
on ∂Ω, see [83, Section 5.4]. Therefore,

H ≤ 0.

If H(p) = 0 for some p ∈ ∂Ω, one has that ∂P
∂ν

(p) = 0. By Hopf’s lemma, we can
get that P is constant, at least in a neighborhood of p. We can now argue as in
Step 2 of the proof of Proposition 6.4 (see (6.5), (6.6), (6.7)) to conclude that u is
1-dimensional in such neighborhood. By unique continuation, u is 1-dimensional.
As a consequence, Ω is either a half-space or the open set placed between two
parallel hyperplanes.

Proof of Theorem 1.4. By Theorem 1.5, we have that P (x) ≤ c2 + 2F (0) for all
x ∈ Ω. Let us consider first the case c 6= 0. In this case we can apply Theorem 1.6
to deduce H ≤ 0. Moreover, if H(p) = 0 at some point of ∂Ω, then P is constant
and u is 1-dimensional. Moreover, by Step 1 of Proposition 6.4, u has no critical
points, and then Ω is a half-space.

We now address the case c = 0. Observe that:

0 ≤ c2 + 2F (0) = 2F (0) ≤ 0.

As a consequence, F (0) = 0. Since F is nonnegative, this implies that f(0) =
F ′(0) = 0. Then, 0 is a solution of the equation −∆u = f(u) with 0 Dirichlet
boundary data. By unique continuation u = 0, which is a contradiction.





Chapter 7

Conclusions and future
perspectives

In this thesis, we have proved some results of local bifurcation of solutions to
overdetermined elliptic problems, which give nontrivial solutions. Moreover, a
gradient estimate in the spirit of Modica’s classical result is presented.

In Rd, we first obtained the existence of nontrivial unbounded domains, bifurcating
from the straight cylinder such that the overdetermined elliptic problem (1.1) has
a positive bounded solution. We proved such a result for a very general class
of functions f by making use of the Crandall-Rabinowitz Bifurcation Theorem
(see [73]). We also have treated the case of the complement of a cylinder for f = 0
in [57], where we proved the existence of nontrivial unbounded exceptional domains
in the Euclidean space Rd, d ≥ 4. Moreover, we have established a kind of Modica
type estimate for bounded solutions to the overdetermined elliptic problem. As
we have seen, the presence of the boundary changes the usual form of the Modica
estimate for entire solutions. The case of equality has also been discussed. From
such estimates we will derive information about the curvature of ∂Ω under a certain
condition on c and f . The proof uses the maximum principle together with scaling
arguments and a careful passage to the limit in the arguments by contradiction,
see [74].

Concerning the problem on the sphere Sd, we have constructed nontrivial con-
tractible domains where the overdetermined elliptic problem could admit a positive
solution. These domains are perturbations of Sd \D, where D is a small geodesic
ball. This shows in particular that Serrin’s theorem for overdetermined problems
in the Euclidean space cannot be generalized to the sphere even for contractible
domains (see [72]).

This thesis has addressed positive bounded solutions to the overdetermined prob-
lems. A natural question is to ask what happens on sign-changing solutions? And
how about the cases of unbounded solutions? Taking this into consideration, some

117



118 CHAPTER 7. CONCLUSIONS AND FUTURE PERSPECTIVES

interesting research objectives could be as follows.

Regarding Modica type estimate for overdetermined elliptic problems, another
point of interest could be to consider unbounded solutions, and whether a Modica
type estimate is possible in this situation. Here the situation changes, since the
Modica result does not hold as it is (consider e.g. F = 0 and u(x) = x1). Hence,
a new formulation is needed here. A related important question is to find out
whether the inequality |∇u| < 1 holds or not in the harmonic case. We point
that all examples found so far satisfy this inequality. In [88] it is shown that the
inequality holds in dimension 2 under some extra (mild) assumptions, but there is
no result in higher dimensions.

With respect to sign-changing solutions, we would like to mention some recent work
[56,71] by Minlend and Ruiz, where the authors obtained sign-changing solutions
to some overdetermined problems via the local bifurcation theorem. In [71], the
choice of trivial sign-changing solutions depend closely on the form of the equation,
which is indeed a delicate issue. Moreover, the nontrivial domains constructed are
bounded. The unbounded domains constructed in [56] are periodic in the first
coordinate and they bifurcate from suitable strips in R2, the Neumann boundary
condition considered in [56] varies from top to bottom.

These results on changing-sign solutions are important in application and will be
the object of intensive research.

Finally, we mention another kind of overdetermined problem that can become a
subject of study in the future. Let us recall the following conjecture which is still
open:

Schiffer conjecture: Let Ω ∈ Rd be a bounded smooth domain, and u : Ω→ R
a non-constant solution of the overdetermined elliptic problem:

∆gu+ λu = 0 in Ω,

u = c on ∂Ω,

∂νu = 0 on ∂Ω,

(7.1)

for some λ > 0. Then Ω is a ball.

The study of the Schiffer conjecture is now considered one of the outstanding prob-
lems in Analysis since Williams proved in 1976 that the conjecture is equivalent
to the famous Pompeiu problem in integral geometry, see [90]. For a survey on
this subject we remind to [92]. Very recently, Fall, Minlend and Weth [35] provide
the first example of a Schiffer domain in a Riemannian manifold given as the flat
cylinder endowed with the flat metric with nonconstant principal curvatures on
the boundary. They also construct regular Schiffer domains which are given as
open neighborhoods of the equator in 2-sphere bounded by pairs of curves.

What we plan to study in the near future is the existence of solutions to overdeter-
mined elliptic problems (7.1) with nonlinearity f(u) = |u|p−2u, 2 < p < 2∗ = 2d

d−2
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(p > 2 if d = 1, 2) instead of λu. Indeed, we plan to construct a domain, which is a
bifurcated straight cylinder. This work will be also addressed by taking advantage
of a bifurcation argument and the idea of frameworks of Banach spaces set in [35],
but here the situation is more complicated due to the nonlinear term. This will be
joint work with Ignace Aristide Minlend at the University of Goethe Frankfurt.
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Poincaré C, Analyse non linéaire 31 (2014), no. 6, 1231–1265.

[79] B. Sirakov, Symmetry for exterior elliptic problems and two conjectures in
potential theory, 18 (2001), no. 2, 135–156.

[80] , Overdetermined elliptic problems in physics, Nonlinear PDE’s in Con-
densed Matter and Reactive Flows (2002), 273–295.

[81] J. Smoller, Shock waves and reaction–diffusion equations, vol. 258, Springer
Science & Business Media, 1994.

[82] I.S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill, New York,
1956.

[83] R. Sperb, Maximum principles and their applications, vol. 157, Academic
Press, 1981.

[84] W.A. Strauss, Existence of solitary waves in higher dimensions, Communica-
tions in Mathematical Physics 55 (1977), 149–162.



BIBLIOGRAPHY 127

[85] M. Struwe, Variational methods: applications to nonlinear partial differential
equations and Hamiltonian systems, Fourth edition, vol. 34, Springer-Verlag,
Berlin, 2008.
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