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Abstract 

Process-based hydrologic models allow to identify the behavior of a basin providing a 

mathematical description of the hydrologic processes underlying the runoff mechanisms 

that govern the streamflow generation. This study focuses on a macroscale application 

of the Variable Infiltration Capacity (VIC) model over 31 headwater subwatersheds 

belonging to the Duero River Basin, located in the Iberian Peninsula, through a three-

part approach: (1) the calibration and evaluation of the VIC model performance for all 

the subwatersheds; (2) an integrated sensitivity analysis concerning the soil parameters 

chosen for the calibration, and (3) an assessment of equifinality and the efficiency of the 

calibration algorithm. The temporal evaluation of the model was done for the calibration 

and the subsequent validation periods, and showed good results for most of the 

subwatersheds that largely improved the benchmark performance. The spatial 

performance reflected a high transferability for most parameter combinations, and the 

least transferable were related to subwatersheds located in the northern mountains. An 
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additional evaluation of the simulated actual evapotranspiration produced satisfactory 

adjustments to two selected data products. The sensitivity measures were obtained with 

the Standardized Regression Coefficients method through a post-process of the outputs 

of a Monte Carlo simulation carried out for 10 000 parameter samples for each 

subwatershed. This allowed to quantify the sensitivity of the water balance components 

to the selected parameters for the calibration and understanding the strong dependencies 

between them. The final assessment of the equifinality hypothesis manifested that there 

are many parameter samples with performances as good as the optimum, calculated 

using the Shuffled-Complex-Evolution Algorithm. For almost all the analyzed 

subwatersheds the calibration algorithm resulted efficient, reaching the optimal fit. Both 

the Monte Carlo simulation and the use of a calibration algorithm will be of interest for 

other feasible applications of the VIC model in other river basins. 
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equifinality 



3 

1. Introduction

Water resources in the Mediterranean Basin have undergone dramatic changes during 

the 20th century as a consequence of the rising temperatures and the significant 

decrease of precipitation (García-Ruiz et al., 2011). The effects of climate change in this 

region are already noticeable and are expected to be much more pronounced by the end 

of the 21th century (IPCC, 2014). This fact, together with the increasing water demand 

for agriculture, industry and urban supply, makes the water scarcity problem of 

paramount importance, being its accurate identification essential for adopting adequate 

water management strategies and mitigation measures that ensure the sustainability of 

the water resources (Chavez-Jimenez et al., 2013; Garrote et al., 2016). As a part of the 

Mediterranean region, the Iberian Peninsula conforms a vulnerable area that has been 

identified as a hotspot (Diffenbaugh and Giorgi, 2012) where the streamflows have 

shown a marked reduction during the last half century (Lorenzo-Lacruz et al., 2012, 

2013).  

Being able to identify the hydrologic behavior of a basin is necessary in order to 

assess the effects of climate and land changing conditions, and therefore a profound 

description of the main hydrologic processes governing the response of the basin is 

required. In this way, process-based hydrologic models are powerful tools that represent 

the underlying runoff mechanisms governing the streamflow generation for a given 

basin, and therefore constitute mathematical hypotheses on how the hydrologic system 

functions, characterizing the potential changes of the water resources using precipitation 

and temperature data as inputs variables. Calibration and validation of hydrologic 

models are required in order to develop reliable models (Savenije, 2009), and sensitivity 

analysis should be carried out for a better knowledge of complex models (Song et al., 

2015). Moreover, the recognition of the equifinality concept, that is, the existence of 
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many sets of parameters conducive to good adjustments to some target observations 

(Beven, 2006; 2012), is unavoidable and necessary (Beven and Freer, 2001). The 

correct identification of modeling uncertainties remains a fundamental question for 

hydrologic models after several decades of continuous progress, with a particular focus 

on structural uncertainties as they are more elusive than input and parametric 

uncertainties (Blöschl et al., 2019). 

In the context of climate modeling, these models are usually called Land-Surface 

Models (LSMs) and are coupled to General Circulation Models (GCMs) and Regional 

Climate Models (RCMs) as the land scheme that allows to simulate the biophysical 

processes involved in the land-atmosphere interaction (Wood et al., 2011). Although 

there is a subtle difference between a hydrologic model and a LSM, this distinction has 

become blurred over time (Clark et al., 2015). In this respect, the Variable Infiltration 

Capacity (VIC) macroscale hydrologic model (Liang et al., 1994, 1996) has played the 

role of both LSM and hydrologic model in many previous studies. Melsen et al. (2016b) 

provided sufficient evidence in a meta-analysis of 192 peer-reviewed studies where the 

VIC model was calibrated and validated. Current research has aimed at calibrating the 

VIC model over the contiguous United States (CONUS) domain and constitutes a 

promising approach for the calibration of large-domain hydrologic models (Mizukami 

et al., 2017; Rakovec et al., 2019; Yang et al., 2019). These studies involve a large-scale 

parameter estimation through spatially distributed techniques such as the multiscale 

parameter regionalization (MPR) method (Samaniego et al., 2010) for calibrating the 

VIC model parameters using transfer functions that relate them to certain physical 

properties (Mizukami et al., 2017; Rakovec et al., 2019), or the regionalization of 

various streamflow characteristics for calibrating the model everywhere (Yang et al., 

2019). 
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Since its first development many efforts have been made in order to study the 

sensitivity of the VIC model, which has been explored in a broad sense in the following 

terms: 

- Sensitivity to spatio-temporal variability: the impacts of the implemented

spatial resolution in the simulated runoff and other water fluxes have been addressed in 

various studies, suggesting that there is a high influence of the sub-grid variability of the 

precipitation on the model performance (Haddeland et al., 2002; Liang et al., 2004). 

However, a critical spatial resolution under which a better model performance is not 

necessarily achieved (Liang et al., 2004) could exist. These impacts are also noticeable 

in calibration and validation exercises with an increase of the model accuracy at higher 

resolutions (Oubeidillah et al., 2014), although a high transferability of the calibrated 

parameters across the different resolutions may be an indicator of a poor representation 

of the spatial variability (Melsen et al., 2016a). Unfortunately, the time step of the 

calibration and validation has not kept up with the increasing spatial resolution, and this 

is a crucial aspect for the correct representation of the involved hydrologic processes 

(Melsen et al., 2016b). The fact that it is more difficult to transfer parameters across 

temporal resolutions than across the spatial dimension brings the need of a better 

representation of the spatial variability in macroscale hydrologic models (Melsen et al., 

2016a). 

- Sensitivity to boundary conditions: understanding the boundary conditions as

the meteorological forcings that drive the simulations, the VIC model sensitivity to the 

boundary conditions has been studied through the application of different climate 

change scenarios and the analysis of the impacts of changing precipitation and 

temperature on the hydrology and water resources of several continental river basins 

(Nijssen et al., 2001), the Pacific Northwest (Vano et al., 2015), or more locally in the 
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Colorado River Basin (Christensen et al., 2004; Bennet et al., 2018) and in the upper 

Ganga Basin (Chawla and Mujumdar, 2015). Also, these kind of studies sometimes are 

carried out in conjunction with other sensitivity analysis, i.e. the combined and 

segregated effects of climate change and land use changes on streamflow (Chawla and 

Mujumdar, 2015) or the parameter sensitivity under a changing climate (Bennet et al., 

2018). 

- Sensitivity to initial conditions: the question about if the hydrologic predictions

are affected by the hydrologic initial conditions (i.e. the initial moisture state at the 

snowpack and the soil profile) or if the boundary conditions constitute the main 

contributor to the model simulations was studied in detail in Cosgrove et al. (2003), 

Wood and Lettenmaier (2009) and Li et al. (2009). It is known that the soil moisture 

content for the bottom soil layer of the VIC grid cells is the variable that commonly 

takes the longest time to reach the equilibrium, and although there is not a general 

agreement in how long the model spin-up period should be, since it highly depends on 

each particular application, it has been found that wetter states lead to faster spin-up 

times (Cosgrove et al., 2003; Melsen et al., 2016a). This issue is of relevance for a 

proper calibration and validation of the VIC model and is usually avoided by fixing a 

long-enough spin-up period previous to the simulation together with a wet initialization 

of the soil layers. 

- Sensitivity to soil and vegetation parameters: since its generalization as a three-

layer soil model (VIC-3L) in Liang et al. (1996) after its two-layer predecessor (VIC-

2L, Liang et al., 1994), the sensitivity of the model to soil parameters has been studied 

at basin-scale and at global-scale through a cell-based approach. The basin-scale 

approach of Demaria et al. (2007) allowed to estimate the sensitivity of the simulated 

streamflows to the parameters that control the surface and subsurface runoff generation, 
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and the global-scale study of Chaney et al. (2015) evaluated the efficiency of the VIC 

model for monitoring global floods and droughts under a parameter uncertainty 

framework. The sensitivity to land use changes and the vegetation parameters associated 

to the different vegetation classes (i.e. Leaf Area Index and albedo) have also been 

explored and expressed for the different components of the water and energy balances 

from the VIC model (VanShaar et al., 2002; Chawla and Mujumdar, 2015; Bennett et 

al., 2018). 

This work aims to contribute to the knowledge of the VIC model in a macroscale 

application over the headwater subwatersheds of an important basin located in the north 

of the Iberian Peninsula, the Duero River Basin. For this end, the hydrologic modeling 

exercise here developed has been divided into three interrelated parts: 

- The calibration of the VIC model for the selected subwatersheds of the study

area and the subsequent evaluation of its performance against a benchmark 

performance using the results of a well-calibrated model in Spain. 

- An integrated sensitivity analysis for all the subwatersheds focused on the soil

parameters chosen for the calibration. 

- A final assessment of equifinality and the efficiency of the calibration

algorithm that links the calibration and sensitivity analysis results. 

The Duero River Basin has been investigated in various previous studies and the 

main issues addressed are: the temporal trend of water supply and its relation to 

precipitation, temperature and plant cover changes (Ceballos-Barbancho et al., 2008); 

the hydrologic response to land-cover changes (Morán-Tejeda et al., 2010, 2012a), the 

impacts of different climate oscillations (Morán-Tejeda et al., 2010) and its response to 

the North Atlantic Oscillation (Morán-Tejeda et al., 2011a); the characteristics of the 

different existing river regimes (Morán-Tejeda et al., 2011b) and the effects of 
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reservoirs on them (Morán-Tejeda et al., 2012b). All these studies were based on 

statistical analyses of different hydroclimatic and land-surface variables and contributed 

to a better understanding of the hydrologic behavior of the Duero River Basin. The 

hydrologic modeling analysis carried out in this work can then provide an added value 

to this set of issues since the potentialities of a macroscale hydrologic model such as the 

VIC model have been examined in detail for this river. 

In Sect. 2 and 3 the study area and the methods are described. Sect. 4 gathers the 

results of the three-part approach and Sect. 5 corresponds to the discussion of the key 

results. Finally, the main conclusions of this study are provided in Sect. 6. 

2. Study area

The Duero River Basin constitutes the largest basin of the Iberian Peninsula with a 

surface of 98 073 km
2
. It is a shared territory between Spain and Portugal, characterized 

by a high water contribution (~ 15 000 hm
3
/year). The study is focused on the Spanish 

part of the basin (Fig. 1), which represents the 80% of the area (78 859 km
2
). Most of 

this territory constitutes a plain surrounded by mountainous chains, thus configuring 

two topographic areas well differentiated. The large depression is filled with sediments 

of the Tertiary and the Quaternary, constituting a complex hydrogeologic environment. 

The lithology of the northern mountains consists of siliceous, calcareous and carbonated 

rocks with local small aquifers to the west part and aquifers of greater capacity to the 

east. The south system harbors rocks of low permeability and is dominated by a granite 

batholith. Finally, the eastern mountainous areas hold a silicic core enclosed by 

carbonated rocks with a high presence of karstic aquifers. 

The basin presents a predominant Mediterranean climate with a mean annual 

precipitation volume of 50 000 hm
3
 which is mostly lost into the atmosphere through
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evaporative fluxes (~ 35 000 hm
3
/year). Most precipitation is concentrated in the

mountainous areas reaching values above 1500 mm/year to the north of the basin and 

values slightly below 1000 mm/year to the south and east. As for the most part of the 

Iberian Peninsula, precipitation exhibits a very irregular intra-annual distribution, being 

concentrated in spring and fall and almost nonexistent during summer. Winter months 

are cold with a mean temperature of 2ºC in January, while summer is soft with 

maximum temperatures occurring in July (~ 20.5ºC). 

The Duero River Basin is regulated by a total of 31 reservoirs where the 

reservoir inflow records are estimated through a water balance of the daily storages and 

water releases. Additional streamflow monitoring is also carried out in a large network 

of ~ 200 gauging stations where the streamflow records are calculated through the 

rating curves.  

3. Methods

3.1 Hydrologic dataset 

The streamflow records were gathered in a monthly basis from the Spanish Centre for 

Public Work Experimentation and Study (CEDEX, Centro de Estudios y 

Experimentación de Obras Públicas) database for all the reservoirs and gauging stations 

of the Duero Basin. An analysis of the percentage of gaps in the time series revealed 

that the period from October 2000 to September 2011 presents less than 5% of missing 

values for all the time series. Therefore, it was chosen as the study period for this work. 

A reference hydrologic network was then defined applying the criterion of the absence 

of upstream hydraulic structures (Whitfield et al., 2012). This selection reduced the 

number of reservoirs and gauging stations for the analysis to 16 reservoirs and 15 

gauging stations covering the headwaters of the Duero River Basin (Fig. 1). Table 1 
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collects the main characteristics of these subwatersheds: area (km
2
), mean elevation

(m), averaged annual precipitation (Pan, mm/year), potential evapotranspiration (PETan, 

mm/year), and streamflow (Qan, hm
3
/year), for the study period.

Precipitation, maximum temperature and minimum temperature data were 

extracted from two high-resolution (~ 5 km x 5 km) daily gridded datasets: SPREAD 

(Serrano-Notivoli et al., 2017) for precipitation data and STEAD (available at 

http://dx.doi.org/10.20350/digitalCSIC/8622) for temperature data. Both datasets cover 

Peninsular Spain and the Balearic and Canary Islands and were built with information 

from observed precipitation and maximum and minimum temperature at a varying 

number of meteorological stations provided by several administrations including the 

Spanish Meteorological Agency (AEMET) and some hydrologic confederations. 

Atmospheric pressure, incoming shortwave radiation, incoming longwave radiation, 

vapor pressure and wind speed data were taken from daily outputs of high resolution 

(0.088º, 10 km) simulations carried out with the Weather Research and Forecasting 

(WRF) model driven by the ERA-Interim Reanalysis data (WRFERA hereafter) for the 

spatial domain of the Iberian Peninsula (García-Valdecasas Ojeda et al., 2017).  

3.2 Hydrologic modeling 

3.2.1 The VIC model 

The VIC model (Liang et al., 1994, 1996) is a semi-distributed macroscale hydrologic 

model that computes both the water and the energy balance within the grid cell. The 

sub-grid variability in land cover classes is evaluated statistically, and a spatially 

heterogeneous structure for the infiltration capacity is assumed using the formulation 

described in the Xinanjiang model (Zhao et al., 1980). This approach takes into account 

the sub-grid variability in the soil moisture storage capacity. 

http://dx.doi.org/10.20350/digitalCSIC/8622
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The water balance in the VIC model considers three types of evaporation: 

evaporation from bare soil, evaporation from the canopy layer for each vegetation class 

and transpiration from the different types of vegetation. Potential evapotranspiration is 

calculated from the Penman-Monteith equation, and it represents the atmospheric 

demand for water vapor. Actual evapotranspiration in a grid cell is obtained as the sum 

of the three evaporation types weighted by the fraction of the area corresponding to each 

land cover class. 

Different algorithms for the runoff generation process must be contemplated 

depending on the number of soil layers defined. The three-layer VIC model (VIC-3L) is 

the most common application and has been chosen for this work since it is a 

modification of the two-layer VIC model (VIC-2L) originally developed to better 

represent the runoff generation process (Liang et al., 1996). Surface runoff is generated 

through an infiltration excess applying the Xinanjiang formulation (Zhao et al., 1980) to 

the upper two soil layers: 

 

For each time step Qd [L] is the surface (direct) runoff, P [L] is the precipitation, 

z2 [L] is the depth of the upper two soil layers, θ2 is their volumetric soil moisture 

content, θS is their porosity, im [L] is the maximum infiltration capacity, i0 [L] is the 

infiltration capacity that corresponds to the soil moisture at that time step and bi is the 

infiltration shape parameter.  

Baseflow is generated in the third soil layer following the Arno formulation 

(Franchini and Pacciani, 1991), and is expressed as: 
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Here, Qb [L] is the baseflow for each time step, Dm [L] is the maximum 

baseflow, DS is a fraction of Dm, θ3 is the volumetric soil moisture content of the soil 

layer 3, θS is the porosity in this layer and WS is a fraction of θS. The baseflow recession 

curve is divided into two parts: a linear part for lower values of θ3 and a non-linear 

(quadratic) part for higher values of θ3. 

The characteristic large grid size for macroscale models makes that the VIC 

snow model conceptualizes the snow processes partitioning each grid cell of the spatial 

domain into snow bands, thereby accounting for the sub-grid variability in topography, 

land uses and precipitation. The snow model is applied separately to each snow band 

and land class and the outputs consist of the snow depth and the snow water equivalent 

for each grid cell. The snowpack is represented as a two-layer model that solves the 

energy and the mass balance and determines whether the snowpack is subject to 

accumulation or ablation, making the model suitable for applications in any part in the 

world (Liang et al., 1994, 1996). 

3.2.2 Soil and vegetation parameters 

The required soil parameters for the application of the VIC model were obtained from 

SoilGrids1km (Hengl et al., 2014) and EU-SoilHydroGrids ver1.0 (Tóth et al., 2017), 

all of them with a spatial resolution of 1 km x 1 km. In both datasets the different soil 

properties are provided for seven soil depths up to 2 m (0, 5, 15, 30, 60, 100 and 200 

cm). These soil parameters are: (1) bulk density and soil textural classes of the United 

States Department of Agriculture (USDA) from SoilGrids1km; and (2), field capacity, 
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saturated hydraulic conductivity, porosity and wilting point from EU-SoilHydroGrids 

ver1.0.  

The VIC model handles land uses information as a set of vegetation parameters 

for the different vegetation classes specified in a vegetation library. Here the UMD 

Global land cover classification (Hansen et al., 2000) was chosen with a spatial 

resolution of 1 km x 1 km, and the vegetation parameters (i.e. Leaf-Area Index, roots 

depth and roots coverage) were fixed for each vegetation class following the 

recommendations of the GLDAS Project (https://ldas.gsfc.nasa.gov/gldas/vegetation-

parameters). 

3.2.3 Aggregation method 

The water balance mode of the VIC model allows to simulate the surface runoff and the 

baseflow for each grid cell of the spatial domain where the model is implemented. Since 

the conceptualization of the VIC model does not include the horizontal transport 

processes between contiguous grid cells, the runoff generated needs to be transported to 

a certain outlet in order to determine simulated values of streamflow that can be 

compared with existing observations. An approach consisting of a monthly aggregation 

of the total runoff (the sum of surface runoff and baseflow) for all the grid cells within a 

given subwatershed, weighted by the fractional area of each cell inside the 

subwatershed, was selected for this work. This approach has the advantage of working 

with the real boundaries of the subwatersheds and is not dependent on the resolution of 

the grid cells.  

3.2.4 Model implementation 

https://ldas.gsfc.nasa.gov/gldas/vegetation-parameters
https://ldas.gsfc.nasa.gov/gldas/vegetation-parameters
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The version of the model used in this work was VIC 4.2.d 

(https://vic.readthedocs.io/en/vic.4.2.d/). The VIC model was implemented in the water 

balance mode at a daily time step and with a spatial resolution of 0.05º (~ 5 km x 5 km) 

for the 31 studied subwatersheds (Fig. 2). The meteorological forcings were interpolated 

to the grid cells of the spatial domain following a nearest neighbor assignment. The soil 

parameters and the elevation were averaged for each grid cell, and the vegetation 

parameters were kept at the original resolution of 1 km x 1 km because the VIC model 

allows to consider the sub-grid variability of the land uses for each grid cell. As in the 

soil database, the depth of each grid cell was set at 2 m, fixing the thickness of the first 

soil layer (d1) at 0.1 m and varying the thicknesses of the second (d2) and third (d3) 

layers during the calibration and the sensitivity analysis. 

The outputs of the VIC model were finally aggregated into monthly values for 

each subwatershed in order to accomplish the calibration, model evaluation and 

sensitivity analysis.  

3.3 Parameter calibration 

The model was calibrated for the period from October 2000 to September 2009 

choosing the Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) as the objective 

function. The NSE was calculated by comparing the monthly observations of 

streamflow with the monthly aggregated total runoff simulated by the VIC model. Table 

2 indicates the selected parameters for the calibration process together with their upper 

and lower bounds. These parameters were chosen following the recommendations for 

the calibration of the VIC model 

(https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/). This selection is 

also in agreement with previous studies (e.g. Chawla and Mujumdar, 2015; Liang et al., 

https://vic.readthedocs.io/en/vic.4.2.d/
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/
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1996, 2004; Melsen et al., 2016b; Oubeidillah et al., 2014). The calibration was carried 

out using the Shuffled-Complex-Evolution Algorithm (SCE-UA) of Duan et al. (1994). 

A spin-up period of ten years, previous to the calibration period, was simulated in order 

to ensure that the soil moisture content of the three soil layers reached an equilibrium, 

and therefore the initial conditions did not affect the calibration process.  

3.4 Model evaluation 

The temporal evaluation of the VIC model capability to appropriately simulate the 

streamflow was carried out by calculating four skill measures commonly selected for 

this end (Mizukami et al., 2017; Rakovec et al., 2019; Yang et al., 2019): NSE, the 

coefficient of correlation (r), and two ratios here called alphad and alpham. NSE 

evaluates the predictive skill of the VIC model comparing the monthly observations 

with the monthly simulations, and was chosen as the objective function for the 

calibration exercise. r measures the degree of agreement between the dynamics of the 

simulated and observed time series. alphad is the ratio between the standard deviation of 

the simulations and the standard deviation of the observations. alpham is the ratio of the 

mean of the simulations to the mean of the observations.  

The four skill metrics were calculated for the calibration period and were 

validated for the period October 2009 - September 2011(validation period) in order to 

evaluate the model predictive skill outside the calibration years. The model performance 

was compared to a benchmark performance based on the streamflow simulations carried 

out with the Integrated System for Rainfall-Runoff Modeling (SIMPA) model (Estrela 

and Quintas, 1996; Álvarez et al., 2004) for the domain of Spain. This model has been 

implemented and calibrated by CEDEX, and it is periodically updated and used among 

the different water districts of Spain as a tool for water planning and water resources 
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management purposes (see https://www.miteco.gob.es/en/agua/temas/evaluacion-de-

los-recursos-hidricos/evaluacion-recursos-hidricos-regimen-natural/ for more detail).  

The spatial assessment of the VIC model streamflow simulations was done 

through a cross-evaluation exercise that aimed at analyzing the spatial transferability of 

the five soil parameters chosen for the calibration. The VIC model was run for each 

subwatershed using the calibrated parameters of the remaining 30 subwatersheds, and 

the NSE was then calculated for the different model runs. The spatial evaluation was 

done for the complete study period (calibration + validation period). 

Finally, the VIC model performance was also evaluated for the actual 

evapotranspiration (AET) simulations comparing the monthly outputs for each 

subwatershed with two AET products: the Global Land Evaporation Amsterdam Model 

(GLEAM) version 3.3a (Martens et al., 2017; Miralles et al., 2011), and the WRFERA 

simulation for the Iberian Peninsula provided in García-Valdecasas Ojeda et al. (2017). 

GLEAM comprises a set of algorithms for the estimation of land evaporation using 

satellite information and reanalysis data. GLEAM v3.3a presents several improvements 

with respect to its predecessors, such as the use of ERA5 data instead of ERA-Interim, 

and provides a global dataset spanning the period 1980-2014 with a spatial-resolution of 

0.25º x 0.25º. The WRFERA simulation for the Iberian Peninsula constitutes a suitable 

tool for studying the AET behavior, and its performance was recently evaluated showing 

a good ability to represent the land-surface processes in this region (García-Valdecasas 

Ojeda et al., 2020). The monthly AET data for both products were spatially aggregated 

following a similar aggregation method to that applied to the simulated total runoff. The 

same four skill metrics posed for the streamflow were calculated for the AET in the 

calibration + validation period, and the SIMPA model simulations were again taken as 

the benchmark performance. 
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3.5 Sensitivity Analysis 

The Standardized Regression Coefficients (SRC) method (Saltelli et al., 2008) aims to 

study the propagation of uncertainty from model inputs to outputs. The SRC method is 

focused on the behavior of the model outputs in relation to a certain set of parameters 

once the boundary conditions (i.e. the meteorological forcings) and the initial conditions 

(i.e. the soil moisture content of the three soil layers) have been fixed. This sensitivity 

analysis method requires two elements: first, a Monte Carlo simulation where the model 

is run with a specified number of parameter samples; and second, a multiple linear 

regression of each model output of interest as a linear function of the parameters. 

The sensitivity analysis was carried out for each subwatershed considered in the 

study area. As in the calibration process, the period October 2000 – September 2009 

was chosen and ten years of spin-up prior to the study period were run. 

3.5.1 Monte Carlo simulation 

A parametric space is defined through the selection of several parameters and their 

upper and lower bounds. Here, a 5-dimensional parametric space was established 

choosing the five calibration parameters and considering the upper a lower bounds 

specified in Table 2. A sampling method is then applied to the parametric space, 

extracting a large-enough sample of parameters for the Monte Carlo simulation. The 

Latin Hypercube Sampling (LHS) method (Iman and Conover, 1982) was applied for 

this step extracting a total of 10 000 random samples. This process allowed to define a 

sampling matrix, Θ, of order m x n, where m represents the number of samples (m = 10 

000) and n the number of parameters for the analysis (n = 5). The model was finally run

for each parameter combination (i.e. row) of Θ. 
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The Monte Carlo simulation was also used for assessing equifinality and the 

efficiency of the calibration algorithm by studying the response given by each parameter 

sample in terms of the NSE. The results were compared with the NSE determined during 

the calibration period. 

3.5.2 Multiple linear regression 

The outputs of interest from the VIC model were those components included in the 

water balance: surface runoff (Qd), baseflow (Qb), total runoff (Qt), actual 

evapotranspiration (AET) and the soil moisture content of the three soil layers (SM1, 

SM2 and SM3). For each component and for each run of the Monte Carlo simulation, the 

mean value of the simulated series was calculated, and a multiple linear regression 

model was then adjusted relating the mean values of each component with the sampling 

parameters: 

Where y is a column vector with the m mean values of the component, a0 is the 

intercept of the hyperplane, ai is the regression coefficient of the parameter i and Θi is 

the column of the sampling matrix corresponding to the parameter i. The standardized 

regression coefficients, βi, are then calculated for each parameter: 

Here, σΘi and σyp are the standard deviations of Θi and the predicted values of y, 

respectively. βi
2
 represents the relative contribution of the parameter i to the variance of 

the model output of interest, being and equal to the coefficient of 

determination r
2
 of the adjustment. A threshold of r

2
≥ 0.7 is usually defined for 
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assuming that the fitted model has a good linear behavior, and therefore the coefficients 

βi are valid measures of the sensitivity (Saltelli et al., 2006), although they can be robust 

and reliable measures even for nonlinear models (Saltelli et al., 2008). βi can take values 

between -1 and 1. A high absolute value of βi implies that the component is sensitive to 

the parameter and its sign indicates whether the effect is positive or negative.  

4. Results

4.1 Calibration results 

The values of the four skill metrics for the calibration and validation periods are shown 

in Table 3. Figure 3 depicts the simulated streamflows during both periods together with 

the observed streamflows for six selected subwatersheds (R-2011, R-2037, R-2038, GS-

3005, GS-3089 and GS-3150) located in different parts of the basin. The NSE for the 

calibration period presents values above 0.75 in 19 out of the 31 subwatersheds and 

reaches values above 0.85 in 10 subwatersheds, and the corresponding r values are high 

too. For the validation period, both NSE and r
 
values are predominantly high, and 

generally lower than the corresponding ones for the calibration process, although 

minimum values of NSE below 0 were attained for 3 subwatersheds. Note that the 

results of the calibration and the validation processes are slightly better for the 

reservoirs, what could indicate a quality difference between the streamflow databases 

from the reservoirs and from gauging stations.  

Some of the high r values are obtained for low NSE estimations, which indicates 

that the model is able to capture the intra-annual variability of the streamflow 

observations but is not able to reach a good fit for the peaks of streamflow (Table 3, Fig. 

3). For instance, stations R-2012 and GS-3035 present NSE values for the calibration 

period of 0.2723 and 0.5047, respectively, being the corresponding r values high and 
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equal to 0.8983 and 0.8850, respectively. This can be better understood analyzing the 

values of alphad and alpham in such cases. The values of alphad and alpham are below 

0.4 for station R-2012, and this evidences a clear underestimation of both the variability 

of the streamflow (i.e. low alphad) and its total volume during the period (i.e. low 

alpham). In the case of station GS-3035, the variability of the simulated streamflow is 

almost identical to the observations (alphad ~ 1), while the streamflow volume is greatly 

overestimated (alpham ~ 2). It is interesting to note that high NSE values were obtained 

for subwatersheds with varying sizes, with good fits for both small-sized (e.g. R-2011 

and GS-3089) and medium-sized (e.g. R-2038 and GS-3005) subwatersheds, 

emphasizing the ability of the VIC model to provide accurate predictions of the 

streamflow across different spatial scales. 

Figure 4 shows the cumulative distribution functions (CDFs) of the four skill 

metrics together with the benchmark performance (i.e. SIMPA model performance) for 

the calibration and validation periods separately. The NSE and r values (Fig. 4a, b) are 

notably higher for the VIC model both in calibration and validation conditions, being 

their corresponding CDFs steeper and closer to the upper bounds of NSE and r. The 

CDFs for alphad and alpham (Fig. 4c, d) show that most of the subwatersheds present 

values close to 1 for the VIC model in the calibration period, being its performance 

slightly deteriorated in the validation years. The simulated streamflow variability and 

volume are generally lower than the observations for the two model structures. 

However, the streamflow variability becomes markedly overestimated by SIMPA for 

cumulative probabilities superior to 0.8 and reaches alphad values above 1.5. The 

overestimation is also evident for the streamflow volume, and in this case the presence 

of values of alpham above 1.5 is noticeable both for VIC and SIMPA.  
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4.2 Cross-evaluation of the calibrated parameters 

Figure 5a depicts the spatial distribution of the optimal NSE values reached for the 

calibration + validation period, presenting values above 0.8 in 14 out of the 31 

subwatersheds and values between 0.6 and 0.8 in 12 of them. There is  a spatial pattern 

for the optimal NSE distribution, and most of the lowest values were obtained for the 

subwatersheds located in the headwater areas of the central depression of the basin, 

being mainly associated to gauging stations (e.g. GS-3041 and GS-3105). 

Figure 5b shows the distribution of the differences between the NSE value 

calculated for each experiment of the cross-evaluation exercise and the optimal NSE 

corresponding to each subwatershed (i.e. NSE bias). The results can be interpreted in 

two different directions: firstly, each row reflects the degree of receptivity of a given 

subwatershed to the calibrated parameters obtained for every subwatershed including 

itself. The presence of darker blue tones indicates a greater parameter receptivity for the 

target subwatershed (i.e. NSE biases close to 0). Secondly, each column represents the 

degree of transferability of the different calibrated parameters when they are used to run 

the VIC model for all the subwatersheds of the study area. In this case the presence of 

darker blue tones indicates a greater transferability for the target parameter combination. 

The maximum degrees of receptivity and transferability correspond to a null NSE bias 

and are obtained when the target subwatershed and the target parameters coincide (i.e. 

main diagonal of the pixel plot). 

The horizontal dimension of the pixel plot reveals a predominance of low NSE 

bias sequences, and therefore many of the subwatersheds present an elevated degree of 

receptivity to different parameter combinations. The greatest degrees of receptivity were 

independent from the model performance for the streamflow simulations and were 

obtained for subwatersheds with both high optimal NSE estimations (e.g. R-2011 and 
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GS-3089) and low optimal NSE values (e.g. R-2012 and GS-3057). The lowest degrees 

of receptivity followed a similar behavior but were much less abundant (e.g. R-2001 

and GS-3105), The vertical dimension confirms a prevalence of low NSE bias 

sequences as well, suggesting a high degree of transferability for the majority of the 

calibrated parameters. In this case, the lowest parameter transferability occurs for 

stations R-2012 to R-2014 and for stations R-2027 to R-2032, all of them located in the 

northern mountains of the Duero River Basin (see Fig. 1). 

4.3 Model performance for the AET simulations 

Figure 6 evaluates the AET predictability comparing VIC and the benchmark AET 

simulations against the GLEAM and WRFERA datasets. There is a large gap between 

the performance of VIC and SIMPA concerning the NSE metric (Fig. 6a), yielding a 

median NSE value around 0.5 in the comparison of VIC with both AET products, and a 

slower median NSE value of approximately 0.2 in the case of SIMPA. Each model 

structure reflects similar performances against GLEAM and WRFERA when evaluated 

separately, although VIC produces higher NSE values for cumulative probabilities 

above 0.5 in the comparison with WRFERA.  

A comparable behavior is observed in relation to r. The AET dynamics are better 

captured by VIC with 60% of the population presenting values above 0.8 for both 

GLEAM and WRFERA, and being the performances against them almost identical (Fig. 

6b). The SIMPA model produces r values slightly higher when compared against 

GLEAM and hardly reaches a value of 0.8 for very few subwatersheds. 

Lastly, there is a generalized underestimation of the AET variability and the total 

volume for both model structures, with alphad and alpham values predominantly below 

1 and markedly slower for SIMPA (Fig. 6c, d). The wide distance between the CDFs 
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corresponding to alphad supposes that the different performances can be better defined 

and distinguished for this skill metric. The greatest closeness to 1 is observed for VIC, 

and while the variability is underestimated when compared to WRFERA, it turns out to 

be particularly overestimated in comparison to GLEAM. Concerning alpham, the 

spacing between the different CDFs becomes narrower and the underestimation of the 

mean AET is also noticeable in the VIC model comparison to GLEAM. The greatest 

closeness to 1 now corresponds to the VIC model performance against GLEAM, thus 

producing more similar AET volumes. 

4.4 Integrated sensitivity analysis 

Through the application of the SRC method the β coefficients for the five calibration 

parameters of the water balance components in the VIC model were obtained, and the 

results are shown in Fig. 7 (a to g) for all the subwatersheds. The r
2
 value obtained from

the multiple linear regression and the estimation of r
2
 as the sum of the squares of β

coefficients are also depicted in Fig. 7 (h, i), reflecting very similar values. The results 

of the sensitivity analysis for the selected components to the parameters are given below 

in a component-by-component basis providing the necessary explanations when there is 

a strong dependency between them: 

- Qd: the values of r
2
 are above 0.7 for all the subwatersheds (Fig. 7), fulfilling

the criterion of enough linearity for interpreting the results of the sensitivity analysis. 

The strongest positive effect corresponds to the parameter bi, which means that a higher 

value of bi leads to more surface runoff. This is clearly evidenced in Eq. 1, where a 

relation of exponential type between Qd and bi is established. Dm produces a negative 

effect on the surface runoff, suggesting that an increase of the maximum baseflow 

brings a reduction of the surface component under the assumption of the same 
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meteorological forcings. d2 also yields a negative effect on Qd, and this effect is related 

to an increase in AET.  

- Qb: the values of r
2
 mostly range from 0.5 to 0.7, with some values close to 0.8 

(Fig. 7). In this case the linearity criterion is hardly reached and therefore it is difficult 

to interpret the β coefficients. However, it is interesting to note that, with the exception 

of d2, the β coefficients of the parameters are characterized by a low dispersion. This is 

an indicator of the robustness of the VIC model response, and although the threshold of 

linearity is not always achieved, the dependency of Qb with respect to these parameters 

can be accepted. As expected from the previous analysis of the surface component of 

the runoff, bi reflects a strong negative effect. The positive effects now correspond to DS 

and Dm. This is obvious in the case of Dm but not so evident for DS since a higher value 

of DS only means that the baseflow law tends to be more linear (see Eq. 2). The 

amplitude of the β coefficients for d2 is broader than for the rest of the parameters but 

always negative except for two subwatersheds.  

- Qt: the total runoff exhibits an additive effect of the previous components for

both r
2
 and the β coefficients as it is computed through the sum of the surface runoff

and the baseflow (Fig. 7). Thus, higher values of bi, DS and Dm lead to an increase of Qt 

and higher values of d2 produce a negative effect on Qt due to a rise of AET. This 

component is of particular interest given that it is the component subject to calibration 

in this work. In order to provide a better understanding on its behavior the spaghetti 

plots of the Monte Carlo simulation for an example subwatershed (R-2038) are depicted 

in Fig. 8. As shown there, the time series of the observed streamflow (Fig. 8c) falls into 

the range of responses of the model for almost all the study period and therefore one or 

more sets of parameters will afford a god fit with the observations. 
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- AET: this component and Qt are linked through the law of conservation of mass 

applied to the system defined by each subwatershed, being the precipitation equal to the 

sum of Qt, AET and the variation of the storage in the hydrologic system. Moreover, the 

study period for the sensitivity analysis is long-enough to neglect the last term of the 

water balance equation, and the precipitation is fixed for each subwatershed as a 

boundary condition. In consequence, the linearity of both Qt and AET with respect to the 

parameters must be similar and the β coefficients for AET are essentially identical to the 

corresponding ones for Qt but with opposite signs (Fig. 7). Figure 8d shows the 

spaghetti plots of this component together with the potential evapotranspiration (PET) 

profile. The reason of the existence of some values of AET above the PET curve 

responds to the internal handling of the Penman-Monteith equation used in the VIC 

model because various different approaches are considered when computing the 

potential evapotranspiration, and the curve presented in Fig. 8d corresponds to the 

current vegetation parameters.  

- SM1: the values of r
2
 are widely scattered and range from 0.35 to values above 

0.9 (Fig. 7). The nature of such a scattered distribution may be an outcome of the 

closeness between the soil moisture profiles in this layer, making it difficult to adjust a 

multiple linear regression model to its mean values. Similarly to the case of Qb, most of 

the β coefficients present a relatively low dispersion and subsequently the results of the 

sensitivity analysis can be interpreted. The negative effects mainly concern to bi and 

Dm, demonstrating that a higher exponent in the surface runoff equation and a higher 

maximum baseflow are related to lower soil moisture values for the upper soil layer. On 

the other hand, the positive effects are associated with increasing values of d2 despite of 

revealing highly dispersed β coefficients. The spaghetti plots of SM1 (Fig. 8e) seem to 
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reproduce the PET cycles and this results from the evaporative fluxes themselves as the 

transpiration process occurs from the roots of the vegetation. 

- SM2: it is the component with the highest linearity with regard to the

calibration parameters, proffering values of r
2
 very close to 1 for all the subwatersheds

(Fig. 7). In this case d2 dominates the sensitivity of SM2 with a noticeable positive effect 

(i.e. values of β near to 1). The PET cycles are also markedly represented in the soil 

moisture profiles of this layer (Fig. 8f).  

- SM3: even though the values of r
2
 lie between 0.6 and 0.7 predominantly, some 

of them fall below 0.6 with minimum values close to 0.4 (Fig. 7). Once again the 

dispersion of the β coefficients is relatively low and in this occasion this is also true for 

d2. Baseflow takes place from this layer and this is reflected in the β coefficients 

corresponding to DS, WS and Dm, which present opposite signs and similar absolute 

values to the calculated ones for Qb. As for the previous soil layers, the PET cycles are 

present too but here there is a lag in the valleys of the soil moisture profiles due to the 

delay in the baseflow generation process (Fig. 8g). 

4.5 Assessing equifinality and the efficiency of the calibration algorithm 

Equifinality and the efficiency of the calibration algorithm were assessed through the 

evaluation of the NSE values for the Monte Carlo simulations of all the subwatersheds 

by comparing the total runoff of each simulation with the observed streamflow during 

the calibration period. For this purpose, two counts of the number of simulations 

satisfying certain criteria were carried out: first, the number of simulations for each 

subwatershed presenting NSE values above the NSE determined during the calibration 

(NSEcal) minus 0.05 was used as indicator of equifinality of the VIC model and the 

parameter samples; and second, the number of simulations with NSE values above 
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NSEcal hinted at the efficiency of the SCE-UA algorithm in finding the optimal set of 

parameters producing the best fit with the streamflow records. The results of this 

exercise are expressed in Table 4.  

It is clear that for the majority of the subwatersheds there are many simulations 

with NSE values very close to the optimal model, and in some cases the number of 

simulations is fairly high (> 3000). This can be also appreciated when the columns of 

the sampling matrix are plotted against the NSE of each simulation in a “dotty plot”. 

Figure 9 shows the dotty plots of the five parameters of the calibration for two 

subwatersheds (R-2038 and GS-3089) as an example of this analysis. For both 

subwatersheds the NSE values of the simulations are above 0 and the points clouds are 

concentrated on the top of the diagrams, suggesting that a high number of them are 

close to the optimal fit (see also Table 4). The shape of the dotty plots supplies useful 

information about the behavior of the parameter samples as a set. For example, the dotty 

plot of d2 for the subwatershed R-2038 reflects a trend to produce high NSE values 

when the parameter values are near to the upper bound. The optimum was reached for 

d2 = 0.8995 m, while the rest of the fitted parameters were located between the fixed 

limits. Also, most of the NSE values were below NSEcal when the second count was 

executed, implying that the SCE-UA algorithm was highly efficient in searching for the 

optimal set of parameters. 

5. Discussion

5.1 VIC model performance for the streamflow simulations 

The results of the calibration and the validation suggest that the macroscale application 

of the VIC model carried out in this study performs well for a large number of 

subwatersheds in the Duero River Basin. The VIC model showed a considerably better 
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performance in the prediction of the streamflow in comparison to the SIMPA model 

according to the four skill metrics calculated. The VIC performance for the streamflow 

simulations in the calibration and validation periods is also comparable to other studies 

using hydrologic models developed in northern Spain (Morán-Tejeda et al., 2014) and 

recently in the south of Spain (Pellicer-Martínez and Martínez-Paz, 2018; Yeste et al., 

2018).  

Other studies also aimed at calibrating the VIC model and evaluating its 

performance over the CONUS domain (Mizukami et al., 2017; Rakovec et al., 2019; 

Yang et al., 2019) applying different techniques for the estimation of spatially 

distributed parameters. The application of the MPR method (Samaniego et al., 2010) to 

the VIC parameter estimations (Mizukami et al., 2017; Rakovec et al., 2019) and the 

regionalization of various key streamflow characteristics (Yang et al., 2019) have 

shown to be consistent manners for estimating parameters both in gauged and ungauged 

basins. This supposes a clear gain of information with respect to the calibration of 

individual basins as the spatial discontinuities and limitations inherent to a basin-by-

basin approach are effectively avoided. However, this is always achieved at the expense 

of a large loss of accuracy when compared to the individual basin calibration 

(Mizukami et al., 2017; Rakovec et al., 2019).  

The CDFs corresponding to the skill metrics calculated in this work (Fig. 4) 

showed higher NSE and r values than those obtained for the subwatersheds of the 

CONUS domain, as well as alphad and alpham values closer to 1. This is also noticeable 

for the individual basin calibration (Mizukami et al., 2017; Rakovec et al., 2019). The 

large gap between both VIC performances could be connected with the selected 

calibration time step, and while the model was calibrated in a monthly basis in this 

work, the other studies implemented a daily calibration. This is supported by the results 
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of the VIC performance obtained in Yang et al. (2019) for five large basins, being the 

daily NSE values considerably lower than the corresponding monthly estimations (see 

Table 3 there in). Moreover, while the CDFs of our work were calculated for 31 

subwatersheds, the CDFs in Mizukami et al. (2017) and Rakovec et al. (2019) 

represented approximately 500 basins belonging to a much bigger and heterogeneous 

domain that combines humid and dry regions. Within the climatic variability of the 

Iberian Peninsula, the Duero River Basin is representative of a wetter climate. The 

tendency for VIC to show poorer results in drier regions (Mizukami et al., 2017; Yang 

et al., 2019) could thus also explain its good performance in our study area. 

Nevertheless, the calibration results were not exempt from poor skill metrics 

estimations. It is to be expected that the application of a single model structure over a 

heterogeneous spatial domain, such as the Duero River Basin, does not conduct to a 

good adjustment of the simulated streamflow with the observations for all the studied 

subwatersheds. Furthermore, the existence of other potential pressures over the water 

resources may be responsible for those cases where the evaluation exercise showed poor 

results, and therefore further research is required in order to identify the origin of the 

biases with respect to the observations of the simulated streamflows for these 

subwatersheds. 

Finally, the aggregation method has proven to be accurate and efficient in this 

work, permitting its application in other studies using hydrologic models that operate 

over the grid cell in a similar mode to the VIC model. However, its applicability may 

become limited as the subwatershed size increases, but it is expected that for 

subwatersheds with a similar size to these studied in this work, this only could happen 

for a shorter calibration time step (e.g. daily time step). 
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5.2 Spatial evaluation and AET predictability 

The spatial evaluation exercise explored the parameter transferability and evinced the 

VIC performance for the 961 experiments resulting from crossing each subwatershed 

with each parameter combination. Many subwatersheds produced low NSE biases for 

most experiments, as well as almost all the parameter combinations exhibited a high 

degree of transferability. The lowest degree of receptivity was evident for those 

subwatersheds where the Monte Carlo analysis showed a lesser number of simulations 

close to the optimum (see Table 4 and compare with Fig. 5b). Meanwhile, the parameter 

combinations reflecting the highest NSE biases were found for various subwatersheds 

located in the north of the basin. This latitudinal gradient requires further research in 

order to study the main drivers of its behavior (e.g. forcing dependency, relation to soil 

properties). Notably, these results could be the basis for a future application of VIC in 

both gauged and ungauged parts of the Duero River Basin using those parameters with 

greater transferability. 

The VIC performance for the AET simulations was evaluated through the CDFs 

of the same for skill metrics calculated for the streamflow. Since the streamflow was the 

only variable subject to calibration in this work, the VIC performance was slightly 

lower for the AET simulations, but broadly improved the benchmark performance. The 

VIC model showed slightly higher NSE values when compared to WRFERA, and this 

could be related to the use of some WRFERA data as meteorological forcings. The 

underestimation of the variability and the AET volume are consistent with the VIC 

performance for the AET simulations over the CONUS domain (Rakovec et al., 2019). 

The values of alpham for the VIC-GLEAM comparison were higher than those for the 

VIC-WRFERA performance, and this is also in line with previous results exhibiting a 
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predominantly positive annual relative bias of WRFERA compared with GLEAM for 

the study area (García-Valdecasas Ojeda et al., 2020). 

5.3 Sensitivity analysis and equifinallity assessment 

The application of the SRC method allowed a deep understanding of the existing 

relationships between the components of the water balance in the VIC model and the 

selected parameters for the calibration as long as the linearity criterion was fulfilled. 

Even when the coefficient of determination of the fitted model did not satisfy the 

linearity criterion, the relatively low dispersion of the β coefficients permitted the 

interpretation of the results. Special attention deserves the component Qt since it is the 

component that was compared with the streamflow observations during the calibration 

and validation processes. The sensitivity of this component to the five soil parameters 

reflected an additive effect of the sensitivity measures of Qd and Qb as Qt is calculated 

as the sum of the surface and the subsurface components. Qt was mainly sensitive to bi 

and d2, and this is consistent with the sensitivity measures for the simulated streamflow 

carried out in Demaria et al. (2007) for four studied subwatersheds. 

At the sight of the results of the equifinality assessment, it is unavoidable 

accepting that no parameter set leads to a single optimal model, or in other words, that 

there are many parameter samples with performances as good as the optimum calculated 

with the calibration algorithm. As in the GLUE method (Beven and Binley, 1991; 

Beven, 2012), this fact could be the starting point of the calibration process, in which a 

measure of belief is associated to each parameter set according to the degree of 

proximity to the optimum. This will be an interesting research line for further 

investigation in the Duero River Basin.  
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It is worth noting that if the calibration were repeated using different initial 

conditions, one could expect a similar spread of the calibrated parameters to that 

identified with the Monte Carlo analysis. However, fixing the number of samples for the 

Monte Carlo exercise ensured that the sensitivity analysis could be done under equal 

conditions for all the subwatersheds, and therefore independently from the number of 

trials of the SCE-UA algorithm for each individual calibration. In any case, we consider 

that the use of a calibration algorithm provides a first-look into the goodness-of-fit 

response surface of the hydrologic model in a computationally more efficient way than 

the Monte Carlo experiment, serving as a sign of the goodness-of-fit of the overall 

parameter samples.  

6. Conclusions

The main conclusions of this work can be summarized as follows: 

[1] The VIC performance for the streamflow simulations reflected good results

for most of the studied subwatersheds in the Duero River Basin, largely improving the 

benchmark performance. The results were slightly better for the reservoirs than for the 

gauging stations and this may be a consequence of a quality difference between the 

streamflow databases. The poor results found in a few subwaterheds may be caused by 

the existence of pressures over the water resources that have not been taken into account 

in the modeling exercise. However, this is out of the scope of this work since the main 

interest is placed on the macroscale application of the VIC model, which has shown to 

perform well for a great part of the Duero River Basin. 

[2] An additional evaluation of the model performance was carried out for the

transferability of the calibrated parameters and for the actual evapotranspiration 

simulations. Most parameter combinations exhibited a high degree of transferability, 
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and the least transferable were associated to subwatersheds located in the north of the 

basin. The VIC performance was evaluated for two actual evapotranspiration products, 

yielding satisfactory results with higher skill levels than the benchmark evaluation. 

[3] The β coefficients calculated during the sensitivity analysis allowed to

quantify the sensitivity of the water balance components to the selected parameters for 

the calibration. The surface runoff and the soil moisture content of the soil layer 2 were 

the components with the highest linearity and were mainly dominated by the values of 

the infiltration shape parameter and the thickness of soil layer 2, respectively, both with 

a positive effect. The total runoff presented a combined behavior from the surface 

runoff and the baseflow components, and the sensitivity analysis yielded similar results 

to other sensitivity measures previously reported in the literature. The potential 

evapotranspiration cycles were noticeable in the whole soil profile and more evidently 

in the upper two soil layers.  

[4] A final exercise for assessing equifinality and the efficiency of the calibration

algorithm was carried out, finding that there are many parameter sets with NSE values 

as high as the NSE determined during the calibration. The calibration algorithm was 

efficient and reached the optimal fit for almost all the studied subwatersheds. The use of 

a calibration algorithm is also in line with other possible practical applications of the 

VIC model for studying the impacts of climate change on water resources in the Duero 

River Basin, where a parameter set must be chosen prior to the simulations using 

climate change data. 
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Figure captions 

Figure 1. Duero River Basin and the 31 studied subwatersheds. The prefix “R-” denotes 

“Reservoir” and the prefix “GS-” denotes “Gauging Station”. 

Figure 2. VIC model implementation. 

Figure 3. Time series of the observed streamflows along with the simulated ones for the 

calibration and de validation periods for six example subwatersheds.  

Figure 4. CDFs of the four skill metrics for the streamflow simulations: a) NSE; b) r; c) 

alphad, and d) alpham. Blue lines represent the VIC model performance and red lines 

represent the SIMPA model (benchmark) performance. Straight lines correspond to the 

calibration period and dotted lines correspond to the validation period. 

Figure 5. Cross-evaluation of the calibrated parameters for the 31 subwatersheds: a) 

spatial distribution of the optimal NSE values, and b) cross-performance of the different 

parameter combinations for each subwatershed. 

Figure 6. CDFs of the four skill metrics for the AET simulations: a) NSE; b) r; c) 

alphad, and d) alpham. Blue and green lines represent the VIC model performance 

against GLEAM and WRFERA, respectively. Red and orange lines represent the 

SIMPA model (benchmark) performance against GLEAM and WRFERA, respectively. 

Figure 7. (a to g) β coefficients for the 31 subwatersheds. h) r
2
 value from the multiple 

linear regression. i) r
2
 estimated from the β coefficients.

Figure 8. Spaghetti plots of the water balance components resulting from the Monte 

Carlo simulation for the subwatershed R-2038. 
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Figure 9. Dotty plots for two subwatersheds: a) R-2038 and b) GS-3089. Red dot 

corresponds to the calibrated value for the corresponding parameter using the SCE-UA 

algorithm. 
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Table 1. Main characteristics of the 31 subwatersheds. 

Code Name Area (km
2
) 

Mean 

elevation 

(m) 

Pan 

(mm/year) 

PETan 

(mm/year) 

Qan 

(hm
3
/year) 

R-2001 CUERDA DEL POZO 546.7 1319 1122 900 188.7 

R-2011 ARLANZON 106.7 1440 1293 798 77.6 

R-2012 CERVERA DE RUESGA 54.3 1284 1005 859 86.1 

R-2013 REQUEJADA, LA 220.7 1378 1022 780 153.2 

R-2014 CAMPORREDONDO 229.6 1673 1457 747 223.9 

R-2026 BARRIOS DE LUNA 482.9 1496 1468 757 400.1 

R-2027 VILLAMECA 45.8 1180 946 941 34.1 

R-2028 MONCABRIL (SISTEMA) 62.9 1712 1242 744 93.5 

R-2030 PORMA / JUAN BENET 250.3 1412 1251 753 304.5 

R-2032 RIAÑO 592.3 1451 1569 748 623.7 

R-2036 LINARES DEL ARROYO 761.3 1111 515 1222 52.4 

R-2037 BURGOMILLODO 803.1 1097 573 1232 87.0 

R-2038 SANTA TERESA 1845.4 1326 882 1235 734.8 

R-2039 AGUEDA 788.4 895 1189 1333 392.7 

R-2042 CASTRO DE LAS COGOTAS 853.3 1279 527 1231 89.0 

R-2043 PONTON ALTO 150.4 1582 990 993 78.3 

GS-3005 OSMA 893.1 1090 728 1084 121.0 

GS-3016 PAJARES DE PEDRAZA 281.3 1298 634 1196 61.6 

GS-3028 SALAS DE LOS INFANTES 353.5 1257 988 926 104.7 

GS-3035 OTERO DE GUARDO 69.2 1492 1702 838 29.3 

GS-3041 VILLALCAZAR DE SIRGA 307.7 929 664 1011 35.5 

GS-3047 MEDIANA DE VOLTOYA 130.4 1347 518 1128 15.4 

GS-3049 CABAÑES DE ESGUEVA 270.2 995 658 1046 24.7 

GS-3051 ESPINAR, EL 36.7 1610 905 1032 18.8 

GS-3057 VILLOVELA DE PIRON 202.0 1183 615 1212 33.0 

GS-3089 MORLA DE LA VALDERIA 281.1 1369 1001 945 146.1 

GS-3104 VILLAVERDE DE ARCAYOS 371.1 1146 1041 942 135.3 

GS-3105 SANTERVAS DE CAMPOS 277.1 900 591 1107 28.8 

GS-3124 MEDINA DE RIOSECO 908.4 790 450 1315 37.2 

GS-3150 PARDAVE 223.8 1448 1356 787 220.8 

GS-3818 RABAL 597.9 678 1328 1146 305.7 
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Table 2. Selected parameters for the calibration. 

Parameter Units 
Lower 

bound 

Upper 

bound 
Description 

bi - 10
-5

 0.4 Infiltration shape parameter (see Eq. 1) 

DS - 10
-9

 1 Fraction of Dm where non-linear baseflow starts (see Eq. 2) 

WS - 10
-9

 1 Fraction of the porosity of soil layer 3 where non-linear baseflow starts (see Eq. 2) 

Dm mm/day 10
-9

 30 Maximum baseflow (see Eq. 2) 

d2 m 0.1 0.9 Thickness of soil layer 2 
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Table 3. Values of the four skill metrics for the calibration and validation periods. 

Code NSEcal rcal alphad-cal alpham-cal NSEval rval alphad-val alpham-val 

R-2001 0.8520 0.9494 1.0968 1.2299 0.4813 0.8006 1.0882 1.2763 

R-2011 0.9237 0.9696 1.0798 1.0731 0.7606 0.8947 1.0328 0.8599 

R-2012 0.2723 0.8983 0.3737 0.3895 0.3758 0.8733 0.5686 0.5270 

R-2013 0.8263 0.9263 0.7619 0.9274 0.8141 0.9152 0.7636 1.0211 

R-2014 0.8777 0.9370 0.9422 1.0152 0.8736 0.9347 0.9382 1.0076 

R-2026 0.8865 0.9645 1.1449 1.1055 0.7904 0.8958 1.0049 1.0082 

R-2027 0.8254 0.9477 0.7769 0.7314 0.7003 0.9278 0.6790 0.6937 

R-2028 0.7475 0.8812 0.9708 0.8514 -0.3382 0.8078 0.2941 0.2746 

R-2030 0.6478 0.8774 0.6893 0.7401 0.5780 0.8730 0.7258 0.7209 

R-2032 0.9409 0.9705 0.9618 0.9707 0.8354 0.9220 0.9881 0.9222 

R-2036 0.6662 0.8217 0.8436 1.1285 0.8070 0.9177 0.7531 0.9172 

R-2037 0.8222 0.9114 0.9971 0.9726 0.3201 0.7912 1.3354 0.9508 

R-2038 0.9145 0.9587 0.9241 1.0785 0.8301 0.9188 0.9737 0.8973 

R-2039 0.9521 0.9760 0.9766 1.0413 0.2494 0.8033 1.3851 1.2843 

R-2042 0.8903 0.9500 1.0336 1.1031 0.8309 0.9559 1.1520 1.2374 

R-2043 0.8322 0.9237 1.0287 1.0923 0.8960 0.9476 0.9033 0.9925 

GS-3005 0.8307 0.9156 1.0006 1.0305 0.5003 0.8161 0.6139 0.6316 

GS-3016 0.8350 0.9173 0.8664 1.0787 0.7798 0.9126 0.7777 0.8281 

GS-3028 0.6290 0.8320 1.0762 1.0830 0.6980 0.8465 0.7543 0.8810 

GS-3035 0.5047 0.8850 0.9824 2.1179 -2.1931 0.7974 1.4392 3.1461 

GS-3041 0.7106 0.8497 0.9556 1.0304 0.1784 0.8344 0.3184 0.3503 

GS-3047 0.6277 0.8148 0.9591 1.2317 0.4813 0.7479 1.0270 1.0153 

GS-3049 0.7333 0.8738 1.0208 1.1350 -0.0513 0.8926 1.5098 1.5572 

GS-3051 0.7743 0.8909 0.7924 0.8814 0.7591 0.9226 0.6616 0.8019 

GS-3057 0.7230 0.8864 1.1062 1.1746 0.6515 0.9176 0.7842 0.6004 

GS-3089 0.9116 0.9564 1.0038 1.0377 0.9026 0.9561 0.8707 0.9415 

GS-3104 0.8137 0.9208 1.0955 1.0734 0.6694 0.8985 0.5954 0.7873 

GS-3105 0.6204 0.8032 0.9603 1.0057 0.3723 0.8010 0.5803 0.6466 

GS-3124 0.7397 0.8604 0.8403 0.9855 0.3129 0.8246 1.3097 0.8383 

GS-3150 0.7909 0.9118 0.8582 0.7828 0.8507 0.9436 1.1388 0.9702 

GS-3818 0.8724 0.9403 1.0319 1.0953 0.8975 0.9720 0.8782 0.7920 
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Table 4. Behavior of NSE in the Monte Carlo simulations for assessing equifinality and the efficiency of 

the calibration algorithm. 

Code NSEcal 

Number of 

simulations with  

NSE > NSEcal – 0.05 

Number of 

simulations with  

NSE > NSEcal 

R-2001 0.8520 96 0 

R-2011 0.9237 1970 5 

R-2012 0.2723 426 0 

R-2013 0.8263 1259 0 

R-2014 0.8777 3463 0 

R-2026 0.8865 2804 8 

R-2027 0.8254 1863 56 

R-2028 0.7475 1364 2 

R-2030 0.6478 1132 0 

R-2032 0.9409 3568 0 

R-2036 0.6662 10 3 

R-2037 0.8222 0 0 

R-2038 0.9145 2808 0 

R-2039 0.9521 227 0 

R-2042 0.8903 368 0 

R-2043 0.8322 1660 5 

GS-3005 0.8307 32 5 

GS-3016 0.8350 1758 0 

GS-3028 0.6290 103 0 

GS-3035 0.5047 373 0 

GS-3041 0.7106 0 0 

GS-3047 0.6277 267 0 

GS-3049 0.7333 0 0 

GS-3051 0.7743 2446 0 

GS-3057 0.7230 518 3 

GS-3089 0.9116 3578 3 

GS-3104 0.8137 93 0 

GS-3105 0.6204 8 0 

GS-3124 0.7397 1 0 

GS-3150 0.7909 3484 0 

GS-3818 0.8724 26 0 
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