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Resumen

El Modelo Estándar es la teoría que engloba nuestro conocimiento actual sobre las interac-
ciones fundamentales, pero tenemos numerosas razones, tanto teóricas como experimentales,
para creer que la historia no acaba aquí y debe haber física más allá.

Sin embargo, pese a décadas de búsqueda en un amplio rango de energías, todavía no hemos
encontrado señales claras de nueva física. Esto motiva el uso de Teorías de Campos Efectivas
como una manera muy eficiente de realizar la búsqueda, ya que permite dividir el problema
en dos partes independientes: una parametrización agnóstica de las posibles desviaciones del
Modelo Estándar y la conexión entre estas desviaciones y modelos concretos de nueva física.

Esta traducción se puede realizar a varios niveles en un desarrollo perturbativo, y tanto la
creciente precisión de los experimentos como la necesidad de capturar algunos efectos de lo
contrario ausentes requiere su realización a nivel lazo. El hecho de ser dependiente del modelo
hace que calcularlo para el vasto número de posibles modelos que nos podrían interesar sea
complejo y propenso a errores. La automatización de esta tarea sería por tanto muy útil a la
hora de simplificar esta conexión entre nuestras teorías y sus consecuencias experimentales y
es un problema que se aborda en esta tesis.

Además de por su eficiencia, las Teorías de Campos Efectivas nos proporcionan un
mecanismo para ordenar las mencionadas desviaciones por su tamaño, de forma que solo
un conjunto de las mismas es observable a una precisión finita. Esto nos permite clasificar, de
forma bidireccional, todos los posibles modelos de nueva física y todos los efectos que generan,
construyendo así un diccionario Infrarrojo/Ultravioleta. En esta tesis calculamos parcialmente
este diccionario a un lazo para el caso del Modelo Estándar.

Finalmente, usamos las herramientas previamente desarrolladas para su aplicación a un
caso fenomenológicamente relevante, en concreto sobre la tensión observada en el momento
magnético del muón. Proponemos no solo una nueva clase de modelos para explicar esta tensión
sino también un modelo específico como ejemplo para explicar también otras anomalías.
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Abstract

The Standard Model is the theory that comprises our current understanding of fundamental
interactions, but we have several reasons, both theoretical and experimental, to believe that it
cannot be the end of the story and there must be new physics beyond it.

However, despite decades of search over a long range of energies, we still do not have clear
signatures of new physics. This motivates the use of Effective Field Theories as an efficient
way of performing the search, because it allows to split the problem in two steps: an agnostic
parametrization of the possible deviations of the Standard Model and the connection between
these deviations and models of new physics.

This translation can be done at various levels in a perturbative expansion, and both the
increasing precision in experiments and the necessity of capturing some otherwise missing effects
require performing it at one loop. Being a model-dependent process makes it cumbersome and
prone to errors to do it for the large number of possible models that we could be interested
in. The automatization of this task would be therefore very useful to simplify the connection
between theories and experimental consequences and it is a problem we address in this thesis.

Besides its efficiency, Effective Field Theories provide us the mechanism to order the
mentioned deviations by their size, so that only a number of them are observable at a finite
experimental precision. This allows us to classify bidirectionally all possible models of new
physics and all the effects they generate, thus constructing an Infrared/Ultraviolet dictionary.
In this thesis we partially compute this dictionary at one loop for the case of the Standard
Model.

Finally, we apply the tools previously developed to perform a phenomenologically relevant
analysis, in particular concerning the observed tension in the magnetic moment of the muon.
We propose a new class of models to account for this tension and a specific example of a model
addressing other anomalies as well.
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1
Introduction

The history of particle physics is one of a quest for the most fundamental description of nature.
Over the course of the past century, this quest has changed the way we look at the universe. We
have explored a wide range of energies and not only discovered several particles, but learned
to describe how they behave. We even developed the very notion of a fundamental description,
based on a few principles and symmetries, as what we aim for in this quest. Nowadays people
think of the Standard Model (SM) as the first culmination of this pursuit. Its simplicity,
together with the never-ending list of experimental tests to which it has been successfully
subjected, make it the best description of nature we have... yet.

Even though the ultimate experimental confirmation only came in 2012 with the discovery
of the Higgs boson, it has been decades since we have reasons to believe that there must be
physics beyond the Standard Model (BSM). First, we have experimental evidences that hint to
new physics that the SM should be extended to accommodate, like neutrino oscillations, dark
matter, matter-antimatter asymmetry, etc. The second type of reasons are theoretical problems
with the SM. These include the lack of a quantum description of gravity, the Hierarchy problem,
flavor puzzle, the Strong CP problem, etc.

All these problems have motivated an active search for a theory more fundamental that the
SM, designed to overcome its shortcomings. Given the vast number of possible models, this
search has been traditionally guided by the compass of these theoretical arguments, mainly
naturalness, to favor some models against others. However, despite expanding the energy range
of search about an order of magnitude above the electroweak scale, nothing has been observed
yet. Arguments of naturalness have weakened over the years – some do not even acknowledge
it as a problem – and there is currently no clear criteria to choose the candidate to surpass
the SM.

The fact that the new physics is hiding behind the observed energy gap makes the SM an
effective description, at low energies, of the theory we want to discover, whatever it is. The idea
that any dynamics happening at an inaccessible scale can be traded by an effective description
at low energy opens up the possibility to perform the search in more unprejudiced, agnostic
way. The formalism of Effective Field Theories (EFTs) allows us to classify all possible effects
of new physics in terms of the Wilson Coefficients (WCs) of some operators, and order them
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1. Introduction

by their size in a double perturbative expansion in mass dimension and loops. Thus, given a
certain precision, only a finite number of coefficients will actually contribute and have to be
considered. Through the bottom-up approach, we can use global fits to interpret what the
experimental data are telling us, and parametrize deviations from SM while being agnostic
about their UV origin.

However, this would be just a parametrization of the data unless we extract information
about the structure of new physics. There needs to be a connection between the pattern of
WCs that we measure (or constrain) and how different models leave their imprints on them.
This is precisely the top-down approach, in which we use the matching procedure to translate
the parameters of a model of heavy new physics into Wilson Coefficients. Performing the
matching at leading order (tree level) is straightforward and there is only a finite number of
relevant completions (under certain assumptions).

Nevertheless, the increasing precision in experimental data, together with the fact that
some effects only appear at one loop, makes it necessary to consider loop effects to perform
a competitive analysis. This makes the process tedious, prone to errors, and loses some of
the power of EFTs due to the need of repeating this task for any interesting model. The
automatization of the process of matching at one loop is therefore crucial in the efficiency of
this comparison between models and experiments.

A natural consequence arising from the need of this translation between experimental
data and models of new physics, eased by the automation of the matching process, is the
utility of IR/UV dictionaries. The idea behind this is to be able to connect a set of WCs with
specific extensions of the SM in two directions. One should be able to, first, read the list of
possible models that contribute to a particular WC and, second, extract the list of WCs that
a particular model generates. The ordering principle of which we dispose in EFTs ensures that
at a certain precision, any observable new physics extending the SM, whatever it is, is already
included in that list.

The research done during this PhD, which constitutes the main body of this thesis, was
oriented to fill this gap between proposing models of new physics and comparing efficiently
with experimental data, and apply the results to the study of some phenomenologically relevant
examples.

The rest of the thesis is structured as follows. In Chapter 2 we will review the formalism of
Effective Field Theories, making emphasis on the concepts that will be used thereafter and
putting several examples. Next, Chapter 3 introduces Matchmakereft, an automated tool to
perform the matching at tree level and one loop between two general theories and compute
one-loop beta functions. Chapter 4 is devoted to present the partial UV/IR dictionary for the
SMEFT at dimension six and one loop, encoded in the Mathematica package SOLD. Finally,
in Chapter 5, we will make use of this dictionary to propose a whole new class of models to
explain the g-2 anomaly, and study the one-loop phenomenology of an specific model able to
explain, in addition, the neutral B anomalies and the Cabibbo angle anomaly.
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2
Effective Field Theories

The Standard Model is the best theory of nature that we have at the moment, and works even
better than some physicists wish, but it still has some shortcomings. Motivated by the energy
gap observed in experiments, the formalism Effective Field Theories seems the ideal candidate
to perform an agnostic, exhaustive search for new physics.

In this chapter, we will first briefly introduce the Standard Model, since it will be our
starting point for any new physics extension, which constitutes our main object of study. Next,
we will review the basics of EFTs, beginning by establishing its basic principles in Section
2.2 to then go over all the steps involved in a realistic calculation. This include the concept
and construction of a basis, in Section 2.3, the treatment of evanescent structures (Section
2.4), and one-loop matching and running (Sections 2.5, 2.6). Finally, we include in Section 2.7
a review of the current status of how a phenomenology study within the EFT framework is
streamlined in the literature, motivating the work presented in next chapters.

2.1 The Standard Model of Particle Physics

The Standard Model is the theory that encapsulates our current description of strong and
electroweak (EW) interactions. The history of its development shows a tremendous collective
effort to overcome several challenges along the way, both theoretical and experimental, that
culminated in an unprecedentedly successful theory. It is constructed under the assumption
of invariance under the Lorentz symmetry and the Standard Model gauge group GSM ≡
SU(3)c ⊗ SU(2)L ⊗U(1)Y.

The particle content of the theory comprises all elementary particles currently observed. It
consists of three sectors: gauge bosons associated with each symmetry group, fermions, that
can be further divided up to quarks and leptons, depending on whether they are charged under
strong interactions, and the Higgs doublet, responsible of the mechanism that provides mass to
the particles. In the case of fermions, there are three copies (with the same quantum numbers)
of each of them, called flavors or families. The matter fields are collected in Table 2.1, along
with their representations under the gauge group. This already reveals the chiral structure of
the theory, in which different chiralities belong to different representations of the gauge group.
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2. Effective Field Theories

Field SU(3)c ⊗ SU(2)L ⊗U(1)Y

qL (3, 2, 1/6)
uR (3, 1, 2/3)
dR (3, 1,−1/3)
ℓL (1, 2,−1/2)
eR (1, 1,−1)
H (1, 2, 1/2)

Table 2.1: Matter content of the Standard Model.

Once all the fields are specified, the SM Lagrangian is given by the set of all possible
renormalizable interactions among all these particle respecting the aforementioned symmetries:

LSM = i[ℓ̄ /Dℓ+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd]− [ℓ̄YeeH + q̄YuuH̃ + q̄YddH + h.c.]

+ −1
4G

A
µνG

Aµν − 1
4W

I
µνW

I µν − 1
4BµνB

µν + Lg.f. + Lgh

+ (DµH)†DµH −m2H†H − λ(H†H)2 , (2.1)

with H̃ ≡ iσ2H
∗, and gauge and flavor indices omitted. The first line is the fermionic sector,

which includes both gauge and Yukawa interactions for fermions. The second line is called
the Yang-Mills lagrangian, and includes the kinetic terms for the gauge bosons and the gauge
fixing, Lg.f., and ghost, Lgh, terms necessary for their consistent quantization.

Finally, the last line is the scalar sector, including the Higgs kinetic term and the scalar
potential. For m2 > 0 and λ > 0, the minimum of the potential occurs at H = 0. However, for
m2 < 0, this potential has its minimum at a non-trivial vacuum expectation value (vev) of the
Higgs doublet:

⟨H⟩ =

√︄
−m2

2λ ≡ v√
2

(2.2)

This leads to the spontaneous symmetry breaking (SSB) of the SM gauge symmetry when Eq.
(2.1) is parametrized with the actual quantum, propagating Higgs field.

The pattern of symmetry breaking is the following:

SU(3)c ⊗ SU(2)L ⊗U(1)Y −→ SU(3)c ⊗U(1)em, (2.3)

so that there are 3 broken generators. The Goldstone theorem then implies that there are three
degrees of freedom, the Goldstone bosons, that remain massless. These are “eaten up” by the
W±, Z bosons, by the so-called Higgs mechanism, becoming their longitudinal polarizations,
as they acquire a mass. The only remaining physical field in the Higgs doublet is the Higgs
boson, that also acquires a mass after the breaking.

The Yukawa interactions, on their side, generate a mass matrix for quarks and leptons,
proportional to the Yukawa matrices Yu,d,e. The texture of these matrices is (a priori) arbitrary
and ultimately determines the value of the masses. The chiral arrangement of the fermions, in
which the two chiralities belong to different representations of GSM, makes the diagonalization
of the quark mass matrices introduce flavor changing processes in the charged currents,
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2.1 The Standard Model of Particle Physics

through the famous Cabbibo-Kobayashi-Maskawa (CKM) matrix. The same would happen in
the leptonic sector in the (realistic, but BSM) scenario in which neutrinos have masses and
diagonalization of the mass matrix introduces the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix.

Besides the SM gauge symmetry, Eq. (2.1) exhibits some global, accidental symmetries.
They are called accidental because they are not imposed or neccessary in the construction
in the theory but “happen” to be there and are observed experimentally. These include the
baryon (B) and lepton (L) number U(1) symmetries, associated to the baryon and lepton
“charge” carried by a field. Despite being accidental, the scale in which new physics can violate
them is very constrained. Bounds on |∆B| ≠ 0 nucleon decay [1–3] constrain the scale in which
B can be violated to be around 1014−16 GeV. The situation for L is a bit different, because it
may be violated by neutrino masses, but a naive estimation also sets the scale to ∼ 1014 GeV.
This will be important in the construction of an EFT for the Standard Model, in which the
assumption of symmetries plays a defining role.

It is worth stressing at this point that the huge separation of scales already present in the
SM and provided us with an historic example of how heavy physics decouples and an effective
description can pave the way to a deeper understanding of phenomena. The first realistic
quantum field theory was developed to describe Quantum Electro-Dynamics (QED), which
already was and effective field theory. In fact, QED is the limit of Eq. (2.1) in which everything
but the electron is integrated out (ignoring the strong sector). When weak interactions were
first studied, it was observed that they could be parametrized at low energies by adding an
effective operator describing a point-like interaction between four fermions (today known
as Fermi theory). As experiments grew in energy, it was eventually possible to resolve the
structure in this interaction and verify that it was mediated by the weak bosons, but it was the
study of these effective interactions (why some of them were present and some others were not,
their relative values, etc.) which allowed to understand the characteristics of weak interactions.

The Standard Model meant a huge success in the history of physics. It has been
experimentally tested with an unprecedented degree of agreement with observations. During
decades, experiments seemed to discover things right were the SM predicted them to be. Thus
far, even when some deviations seemed to be observed, the SM ended up being correct. But,
besides being experimentally unparalleled, it also set some significant theoretical milestones,
among which the following, at least, are worth stressing:

• Simplicity. Its simple formulation, solely in terms of invariance under a gauge group, is
enough to explain the vast majority of phenomenology observed during the last hundred
years.

• Origin of the mass. The description of the weak interactions based on isospin symmetry
was initially hard to reconcile with the observation of mass for weak bosons (and fermions).
The Higgs mechanism for the electroweak symmetry breaking (EWSB) solved this problem
and set our current paradigm of the generation of mass.

• Electroweak unification. The electromagnetic and weak interactions, with very different
properties, were understood to be the low energy manifestation of the SM gauge group
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2. Effective Field Theories

after EWSB. The idea of a larger unification has fueled many endeavors in the search for
an ultimate theory.

• Asymptotic freedom and confinement. These two features of the strong interactions
were explained as the result of the dynamics of a strongly coupled sector with a non-
abelian gauge symmetry. This idea has also inspired many models ever since.

However, despite the fact that the ultimate confirmation of the Standard Model was only
recently discovered with the measure of the Higgs boson, there have been indications of its
insufficiencies since a long time ago. The reasons can be classified in two groups, according to
their nature.

In the first place we have experimental observations of physics that cannot be explained
within the Standard Model. For instance, the observation of neutrino oscillations implies that
there must be at least two massive states in the neutrino sector, that are not a feature of the
SM in its minimal setup. We also know that the matter content in the universe is greater
than what baryonic matter can account for, so it is highly possible that another type of (dark)
matter also exists. Moreover, the fact that we are made of matter and not antimatter can
only be explained by an additional source of CP violation besides the one in the SM. There
are also some tensions with the SM predictions in different observables which, in the case
of persisting, would be signs of new physics. These include the B anomalies, the anomalous
magnetic moment of the muon, the Cabibbo angle anomaly, etc.

On the other hand, there are several theoretical arguments to search for a more complete,
fundamental theory. First, the SM does not include a quantum description of gravity, so we
know it must be extended, even if we do not know how. Likewise, our eagerness for simplicity,
together with the running of gauge coupling constants, invites us to think that GSM could
be a subgroup of a larger gauge group broken at a high scale, motivating models of Grand
Unification. Furthermore, the mass of the Higgs is not protected from contributions of the
new physics that we know is present at a very high scale, and this large hierarchy makes
its actual value seem extremely fine-tuned. This is known as Hierarchy problem. Another
intriguing feature of the SM is the presence of three flavors of fermions and the huge hierarchy
among their masses, which could point to a more fundamental description (flavor puzzle). The
fine-tuning of the QCD θ angle, stringently constrained by bounds on the neutron electric
dipole moment, is also not yet explained and known as the Strong CP problem.

Altogether, all these reasons strongly suggest the presence of new, undiscovered physics.
The experimental indication of a mass gap between the EW scale and the scale in which this
physics hides (hinted by the absence of resonances or any significant deviations) makes the
Effective Field Theories framework a very efficient tool for its search. In the next section, we
will see what the idea behind EFTs is and what does it make them so useful.

2.2 The use of EFTs for BSM

An effective field theory is just a simplified, effective description of another theory in which
there is a separation of scales. In the context of physics beyond the Standard Model this
will apply to energy scales, but the concept is more general and can be applied as long as
a power-counting parameter can be identified. The idea is to make use of this separation to
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2.2 The use of EFTs for BSM

perform an perturbative expansion in inverse powers of the heavy masses to obtain a simpler
theory, with less degrees of freedom, which will reproduce the results of the complete theory in
the regime where this energy expansion is meaningful.

A priori, the reason to use an effective field theory when the complete one is known is not
only that it makes calculations easier, but also that it improves the convergence of perturbation
theory, and can be crucial in cases with a large separation of scales. But its actual applicability
goes much beyond that.

From now on, we will refer as full or ultraviolet (UV) theory to the complete theory with
a light sector of fields, denoted collectively as ϕ, and a sector of heavy fields Φ of masses of
order Λ. This is a simplification, and a realistic case would typically be a multiscale problem,
but the same ideas can be applied to one scale at a time. Note that, in principle, integration
of momentum in loop diagrams makes results sensitive to physics happening at all scales, so it
is not straight-forward that we can construct a simplified theory forgetting about the details
in the UV. The reason why we are, in fact, allowed to use EFTs relies on two facts. The first
one is that heavy physics decouples: Appelquist and Carazzone proved in [4] the decoupling
theorem in which they stated that amplitudes with (virtual) propagation of heavy states vanish
in the limit of very high masses. The second one is that the effects of this propagation, when
seen from low energies, are local.

Thus, we can perform an expansion in powers of the heavy masses and obtain an effective
description in terms of local operators. This description would be of course only valid when
performing experiments at energies E << Λ. Formally, constructing the effective theory
consists of “integrating-out” the heavy degrees of freedom in the path integral:∫︂

dϕ dΦ eiS[ϕ,Φ] =
∫︂
dϕ eiSeff [ϕ]. (2.4)

This integration trades out the virtual effects of heavy particles for a (formally infinite) set of
operators suppressed by the heavy scale Λ:

Leff = Ld≤4 +
∑︂
n,i

c
(n)
i

Λn−4 O
(n)
i , (2.5)

where Ld≤4 comprises (renormalizable) operators of mass dimension less or equal to four, that
also receive contributions, and O(n)

i are local operators of dimension n. The coefficients of
these operators, c(n)

i , are called Wilson Coefficients, and encode the effects of heavy physics1.
Insertions of these operators in amplitudes for a certain process are suppressed by the heavy
energy scale Λ, and increasingly suppressed the higher their dimension is. Therefore, working
at a certain precision level, we can truncate this expansion and consider only a finite set of
operators. In mass independent renormalization schemes this also happens at loop order, which
is crucial to keep both the operator and loop expansion meaningful.

This is where the power of EFTs in the search for new physics comes in, because the
problem can be then split in two independent steps. Even if we do not know about the UV
theory, this construction allows us to be completely agnostic about its details. All we need is

1The definition of Wilson Coefficients typically includes also the heavy scale Λ. We will talk indistinctly
about the two unless there could be a source of confusion.
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2. Effective Field Theories

to parametrize the set of all possible observable effects of UV physics, at a certain precision,
in terms of a set of local operators with (unknown) Wilson Coefficients. When comparing
with experiments, performed at low energies, we can measure or constrain the value of these
coefficients by computing observables in terms of the parameters of the effective theory. The
key advantage is that this calculation can be done just once (for each order in the loop and
mass dimension expansion) and will remain valid no matter what the actual UV theory is.
This is known as the bottom-up approach.

However, pursuing the idea of learning about the physics at the UV scale, we do not want
to stick to an effective description. In the end, as agnostic as it is, it is just a parametrization
of the effects of physics at high scales. This physics is encoded in the values of the Wilson
Coefficients, so to obtain information about it, we need to abandon the agnosticism and
compute the implications of the candidate theories to be able to distinguish between them.
This constitutes the top-down approach, and implies a process of translation between the
parameters of the effective theory, that we are able to extract from experiment, and the
parameters of the UV theory, whose effect at low energies is imprinted in the former. This
translation is the process known as matching.

Furthermore, the use of the effective field theory formalism is not only justified, but
inevitable in some sense. Since there is physics beyond the Standard Model, at the very least
because gravity exists, the Standard Model is an effective field theory, irrespective of how well
it works at the renormalizable level. It is just the d ≤ 4 part of an effective Lagrangian called
Standard Model Effective Theory (SMEFT).

Since the topic of this thesis is the application of effective field theories to physics beyond
the Standard Model, in the rest of this chapter we will review the fundamental concepts of
this formalism directly in the context of SMEFT. See [5–9] for extensive reviews on the topic.

2.3 Construction of an EFT

In the bottom-up approach, we are completely agnostic about what is the theory that extends,
in our case, the Standard Model. To construct an effective field theory, we need to be completely
general using the information that we have from low energy experiments. The purpose of
this section is to review the procedure for such a construction and specify for the case of the
SMEFT.

The first step is to identify the degrees of freedom that propagate, or can be excited, at
low energies. These will be the fields upon which we construct our Lagrangian. In the case of
the SM, we will use the fields described in Section 2.1. Different assumptions for the content
of light fields define different EFTs, and subsequently lead to a different interpretation of
experimental data. For this reason, although the SMEFT is the most broadly used by the
community, there are also some other EFTs extending the SMEFT with another light particle
that, even not being observed, is theoretically motivated. This is the case of the axion-like
particle (ALP) EFT [10–12], extending the SM content with an ALP, or the νSMEFT [13–17],
that includes a right-handed neutrino. Likewise, in order to compare the implications of a
model with precision experiments are low energies, it is convenient to use an effective theory
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in which the heaviest particles of the SM are also integrated out. This is called Low-energy
Effective Field Theory (LEFT).

The next ingredient is the symmetry to be imposed on the Lagrangian. Experimentally, we
know that the SM gauge symmetry is a very accurate description at low energies, and any
other symmetry extending the SM one must be in principle broken at sufficiently high energy.
We want therefore to construct the SMEFT imposing the SM gauge symmetry.

In the case of the SM and the SMEFT, an extra assumption is made concerning the Higgs
boson. In Section 2.1, we have introduced a Higgs doublet which contained four degrees of
freedom transforming linearly under SU(2): one scalar singlet (the physical Higgs boson) and
three Goldstone bosons that became the longitudinal polarizations of the weak bosons after
EWSB. However, this does not necessarily have to be the case; if the symmetry is not linearly
realized, the Higgs and the Goldstone bosons do not have to form a single SU(2) multiplet
and can transform independently. This is the case, for instance, of Composite-Higgs models.
The more general EFT constructed upon the SM fields but relaxing this assumption is called
Higgs Effective Field Theory or HEFT (see [18–20] for recent reviews on the topic).

The last step is to build all possible kinematic structures allowed by Lorentz and gauge
symmetry that could be generated by UV physics effects, and, as such, that can be encoded in
local operators. As we will see in the next section, the process of matching can be performed
at any order in the mass and loop expansion. To do such calculations involving loops, we use
dimensional regularization, for which we need to regularize our action extending it to d = 4−2ϵ
dimensions. We also do not employ any on-shell relations for the kinematic quantities. This
leads us to the concept of Green’s basis: a set of all independent operators (up to a certain
mass dimension) off-shell and in d space-time dimensions.

However, it is clear that among the most general set of Lorentz and gauge invariant
operators, we will find that not all of them are independent. We need to find relations to
express some of them in terms of others, the choice of which operators conform the basis being
not unique. In general, there are three types of identities that we can use to select a Green’s
basis out of this set:

(i) Integration by parts. Considering the set of SMEFT operators with a fermionic
tensor current, a Higgs and two derivates, we could in principle write the three following
combinations:

O1 = DµψLσ
µνDνψRH,

O2 = ψLσ
µνDνψRDµH, (2.6)

O3 = DµψLσ
µνψRDνH,

where σµν ≡ i
2 [γµ, γν ] and gauge and flavor indices are omitted. There are no more

combinations with the same components because two derivatives acting on the same
field could always be traded by a field-strength tensor Xµν . However, we can integrate
by parts to realize that in fact:

O1 = −O2 +Xµν [ . . . ],
O3 = O2 +Xµν [ . . . ],

(2.7)
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2. Effective Field Theories

so there is actually only two independent operators in this sector.

(ii) Group theory identities. There are cases in which we can find several independent
gauge invariant tensors to contract the same Lorentz structure. For instance, considering
four fermion operators with vector currents of SM lepton doublets, we could write in
principle the following possibilities:

O′1 = δab δcd ℓLaγµℓLb ℓLcγ
µℓLd

O′2 = δad δbc ℓLaγµℓLb ℓLcγ
µℓLd

O′3 = σIab σ
I
cd ℓLaγµℓLb ℓLcγ

µℓLd (2.8)

O′4 = σIad σ
I
cb ℓLaγµℓLb ℓLcγ

µℓLd

O′5 = ϵac ϵbd ℓLaγµℓLb ℓLcγ
µℓLd

where σI are the Pauli matrices and ϵ ≡ iσ2. Latin letters a,b,... denote SU(2) indices
and flavor indices are omitted. But using the SU(2) Fierz identity and the property of
the Levi-Civita tensor:

σIabσ
I
cd = 2δadδcb − δabδcd, (2.9)

ϵabϵcd = δacδbd − δadδbc, (2.10)

it is easy to show that:

O′2 = 1
2O
′
1 + 1

2O
′
3, (2.11)

O′4 = 2O′3 −O′2 = 1
2O
′
3 −

1
2O
′
1, (2.12)

O′5 = O′1 −O′2 = 1
2O
′
1 −

1
2O
′
3. (2.13)

(iii) Algebraic identities. Considering this time four fermion operators with charge
conjugation, even after applying group theory identities, we are left in principle with
two independent combinations for the product of two scalar currents of lepton doublets:

Õ1 = ℓLaℓ
c
Lb ℓ

c
LaℓLb (2.14)

Õ2 = ℓLaℓ
c
Lb ℓ

c
LbℓLa (2.15)

where ℓc ≡ CℓT and C is the charge conjugation matrix. Flavor indices are again omitted.
However, since ℓ1ℓc2 = ℓ2ℓ

c
1, it is straight-forward to show that:

Õ1 = Õ2. (2.16)

To put another example, one can construct a Green’s basis for SMEFT at operator
dimension five using very simple schematic arguments. It turns out that the Lorentz and gauge
invariance are so restrictive at dimension five that there is only one independent operator
(ignoring flavor). First, we cannot have H5 because that can never be invariant under SU(2).
Any operator built with Higges and derivatives would need to have an even number of both, so
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there is none at dimension 5. For operators with two fermions, one cannot add two derivates
because it is always forbidden by gauge symmetry. Adding one Higgs and one derivative is
not possible either because this would force us to form a vector current, which cannot couple
to a gauge singlet with the Higgs. Finally, the only possibility is to have an scalar current of
two fermions and two higgses. However, a combination in the form ψψ could never be gauge
invariant, so there can only be an operator of the form ψcψ, among which we find that the
only gauge invariant one is formed of two lepton doublets. We can still find three different
gauge structures, but there is only one independent:

OW = ϵab ϵcd ℓ
c
Lb ℓLdHaHc, (2.17)

which is called the Weinberg operator [21] and has been extensively studied because it generates
a Majorana mass for left-handed neutrinos after EWSB [22–24].

The same procedure can be applied at dimension six, which will be our main case of interest
for the rest of the thesis. The operators conforming a Green’s Basis for the SMEFT are listed
in Tables B.1-B.9 of Appendix B.

Nevertheless, constructing a Green’s basis is not the end of the story. When computing
observables, we compute on-shell quantities and project results into four space-time dimensions.
It is easy then to imagine how our construction of a basis in d dimensions will contain some
degree of redundancy among its operators, which could be further related using properties that
only hold on four dimensions. The use of these properties implicitly defines an operator – the
difference between the ones that are related – that vanishes in four dimensions, but that when
inserted in divergent loop diagrams during the calculations in the EFT, can give a finite result.
These are called evanescent operators and will be explored in greater detail in Section 2.4.

Moreover, even if it is not wrong to compute on-shell quantities with this basis, it could
be simplified having in mind that the ultimate goal is to compute physical quantities, and
this would make the computation easier. This can be achieved recalling that the LSZ formula
states that the S matrix elements can be computed using any interpolating field. This implies
that we can perform field redefinitions to our theory and still obtain the same physical results.
The operators in a Green’s basis that are reduced to others using field redefinitions are called
redundant.

This field redefinitions can be shown to be equivalent to applying the Equations of Motion
(EOMs) for the fields in the operator to be reduced, but only at the first order [25, 26]. This
process is usually referred to as using equations of motion in the literature, but the correct
way to proceed when you have a basis spanning over more than one operator dimension is
indeed using field redefinitions.

Let us put an example to illustrate what this difference is. Consider an EFT with a fermion
ψ and a real scalar ϕ:

L = ψi /Dψ + y ψψϕ+ c5
Λ ψψϕ2 + r5

Λ ψi /Dψϕ+ h.c., (2.18)
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where y, c5 ∈ R, r5 ∈ C, and we are writing explicitly the suppresion by a mass scale Λ. The
equation of motion for the fermion reads:

i /Dψ = −yψϕ. (2.19)

Substituting this expression back in Eq. (2.18), we obtain:

LEOM ⊃
(︃
c5
Λ − y

r5
Λ − y

r∗5
Λ

)︃
ψψϕ2 +O( 1

Λ2 ). (2.20)

We see that we have eliminated the operator ψi /Dψϕ in favour of ψψϕ2, so the former is
redundant. The same can be achieved by performing the following field redefinition:

ψ → r∗5
Λ ψϕ, (2.21)

after which we obtain:

L → LF.R. = L − r5
Λ ψ

(︃
i /Dψ + yϕψ

)︃
ϕ+ h.c.+O

(︁ 1
Λ2
)︁

= (2.22)

= ψi /Dψ + y ψψϕ+
(︃
c5
Λ − y

r5
Λ − y

r∗5
Λ

)︃
ψψϕ2 +O

(︁ 1
Λ2
)︁
.

Notice that the term in parenthesis in the first line of Eq. (2.22) is, in fact, proportional to the
equation of motion in Eq. (2.19), so we obtain the same result with both approaches at this
first order in the expansion. However, inspecting the terms at dimension six quadratic in the
field redefinition, we find a term:

LF.R. ⊃
y r5 r

∗
5

Λ2 ψψϕ3 (2.23)

that can never be recovered using equations of motion. In fact, such a term could only come
from applying EOMs in an operator of the type ψi /Dψϕ2, but it would be proportional to a
dimension six Wilson Coefficient, and not the combination r5 r

∗
5. For this reason, the correct

procedure to eliminate redundant operators is to use field redefinitions.
This reduction leads us to define the concept of a physical basis for an EFT: it is the

minimal set of operators that are independent on-shell and four space-time dimensions. As it
happened for the Green’s basis, the choice is not unique. In the case of the SMEFT at dimension
six, the most popular one is the Warsaw basis [27], broadly adopted by the community, which
will be used in the rest of the thesis.

In Tables B.1–B.9, the operators are classified in three sectors. We use the notation Oxxx for
the operators that conform a physical basis (the Warsaw basis). Rxxx is reserved for redundant
operators, that can be written as a combination of physical operators using field redefinitions.
Lastly, we use Exxx for redundant operators that implicitly define evanescent structures in
their reduction, and call them evanescent in a little abuse of notation. Their corresponding
coefficients will be denoted by αxxx, βxxx and γxxx, respectively.

As mentioned above, the SM exhibits some global, accidental symmetries like baryon or
lepton number conservation. As these are not necessary in the construction of the SM, they
could in principle be violated at high energies, so the most general version of SMEFT should
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capture these effects. Indeed, the Weinberg operator violates lepton number in two units, and
there is a whole sector of B-violating operators at dimension six. We will, however, restrict
ourselves to the basis in Appendix B, that does not include B-violating effects.

The B-preserving sector of SMEFT at dimension six includes 59 operators (2499 independent
coefficients counting flavor). To simplify the analysis of data in terms of these coefficients,
sometimes extra theoretical assumptions (concerning flavor) are taken into account, so that the
number of independent coefficients can be severely reduced. These include flavor universality
with an U(3)5 symmetry, only third generation flavor, Minimal Flavor Violation [28]... See
[29–32] for some studies along this line.

2.4 Evanescent operators

The process of matching beyond leading order entails calculations in d dimensions. In order to
“prepare” the EFT to receive all possible contributions from UV physics, we therefore have to
parametrize all independent operators in d dimensions. When reducing them to a physical
basis, we are implicitly defining a prescription to project a set of d-dimensional structures
into a physical and evanescent part. However, this evanescent part, when inserted in divergent
loop diagrams in the EFT, can give a finite contribution that has to be taken into account. In
this section we will review the prescription detailed in [33] to deal with evanescent operators,
which we will adopt in the following.

For instance, let us consider the following SMEFT operators:

Ecℓe = ℓcγµe eγµℓ
c, (2.24)

Ole = ℓγµℓ eγµe. (2.25)

Both operators are related, in four dimensions, by the following Fierz identity:

Ecℓe = −Ole. (2.26)

This identity is only true in four dimensions, so by making the substitution above, we are
implicitly defining an evanescent operator:

Ele ≡ Ecℓe +Ole, (2.27)

which is formally O(ϵ). This operator can contribute, for instance, in the dipole amplitude
between ℓ, e,H and Wµ. The relevant diagrams are depicted in Figure 2.1. The divergences
in these loops can be compensated by the insertion of Ele and yield a finite contribution. In
order to take this contribution into account, one can either keep track of these evanescent
operators and insert them in the calculations in the EFT, or absorb this effect by a shift in
the Wilson Coefficients of the operators in the physical basis, in a so-called evanescence-free
renormalization scheme [33].

In order to do so, we have to compute the finite part of all insertions of Ele in the EFT
loop amplitudes. For concreteness we will focus on the process depicted in Figure 2.1. Since
we are interested in the UV divergence of the amplitude, we can expand the integrand in a
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Figure 2.1: One loop diagrams with an insertion of Ele (denoted by the crossed circle) that
contribute to the dipole amplitude.

(hard) region in which k >> p, with k being the loop momentum and p any of the external
momenta. Moreover, since we will absorb this contribution by a shift in the physical basis, we
can perform the calculation on-shell. Using the conventions stated in Appendix A, we obtain
the following,:

iM(ejWµ→Hℓi) = −ig2[Ye]kl [γcle]kjli uℓσµνPRue qµϵνϵ
∫︂

ddk

(2π)d
1
k4 , (2.28)

where gauge structure is omitted, γcle denotes the Wilson Coefficient of Ecℓe, uℓ,e are external
spinors, ϵν is the W ’s polarization vector and q is its four-momentum. As anticipated, the
Dirac algebra from the insertion of Ele yields an ϵ factor that will extract the pole of the
divergent integral.

The only operator in the physical basis contributing to this amplitude is the dipole operator:

[OeW ]ij = (ℓiσµνej)σIHW I
µν , (2.29)

so we can absorb the contribution in Eq. [2.28] by a shift in its Wilson Coefficient:

[αeW ]ij −→ [αeW ]ij −
1

32π2 g2[Ye]kl [γcle]kjli. (2.30)

Besides the Fierz identities, the other source of evanescence structures that will be relevant
in our analysis is the reduction of Dirac structures. In four dimensions, any four-fermion
structure can be expressed as a combination of elements in this basis:{︂

Γi1 ⊗ Γi2
}︂

=
{︂
PL ⊗ PL, PR ⊗ PR, PL ⊗ PR, PR ⊗ PL, PRγµPL ⊗ PRγµPL,

PLγ
µPR ⊗ PLγµPR, PRγµPL ⊗ PLγµPR, PLγµPR ⊗ PRγµPL,

PLσ
µνPL ⊗ PLσµνPL, PRσµνPR ⊗ PRσµνPR

}︂
. (2.31)

In d dimensions, however, we can encounter additional gamma structures that have to be
projected onto this basis up to an O(ϵ) structure that will define our evanescent operators [33]:

A1 ⊗A2 =
∑︂
i

ai(A1, A2)Γi1 ⊗ Γi2 + E(A1, A2). (2.32)
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In order to obtain the ai coefficients, we can contract both sides of the equation with all the
basis elements and take the (d-dimensional) trace:

Tr[A1Γj1A2Γj2] =
∑︂
i

ai Tr[Γj1Γi1Γj2Γi2] (2.33)

defining a system of 10 equations in which we can solve for ai. These coefficients are fixed
once a choice for the basis and a prescription for γ5 is made. Different choices for the basis or
the treatment of γ5 involve other evanescent structures or give different coefficients at order ϵ
and simply define other renormalization/γ5 schemes, as the shift (or counterterms) needed to
compensate the evanescent contributions will be different. For the evaluation of these traces, as
in the rest of calculations, we will use a Naive Dimensional Regularization (NDR) prescription
for γ5, i.e., anticommuting γ5.

The matrix Mij ≡ Tr[Γi1Γj1Γi2Γj2] only depends on the choice of elements of the basis. For
the basis in Eq. (2.31), we obtain the following:

Mij =



2 0 0 0 0 0 0 0 24− 28ϵ 0
0 2 0 0 0 0 0 0 0 24− 28ϵ
0 0 0 0 0 0 8− 4ϵ 0 0 0
0 0 0 0 0 0 0 8− 4ϵ 0 0
0 0 0 0 0 24ϵ− 16 0 0 0 0
0 0 0 0 24ϵ− 16 0 0 0 0 0
0 0 0 8− 4ϵ 0 0 0 0 0 0
0 0 8− 4ϵ 0 0 0 0 0 0 0

24− 28ϵ 0 0 0 0 0 0 0 72− 180ϵ 0
0 24− 28ϵ 0 0 0 0 0 0 0 72− 180ϵ



(2.34)

Therefore, given any Dirac structure, for instance PLγµγνPL ⊗ PRγµγνPR, we can compute
the left-hand side of Eq. (2.33):

Tr[PLγµγνPLΓi1PRγµγνPRΓi2] =

 −8d+ 12d2 − 2d3 i = 7

0 otherwise
, (2.35)

and solve for ai. Considering structures with at most three gamma matrices, we obtain the
following:

PLγ
µνPL ⊗ PLγµνPL = (4− 2ϵ)PL ⊗ PL − PLσµνPL ⊗ PLσµνPL, (2.36)

PRγ
µνPR ⊗ PRγµνPR = (4− 2ϵ)PR ⊗ PR − PRσµνPR ⊗ PRσµνPR, (2.37)

PLγ
µνPL ⊗ PRγµνPR = 4(1 + ϵ)PL ⊗ PR + E

(2)
LR, (2.38)

PRγ
µνPR ⊗ PLγµνPL = 4(1 + ϵ)PR ⊗ PL + E

(2)
RL, (2.39)

PRγ
µνλPL ⊗ PRγµνλPL = 4(4− ϵ)PRγµPL ⊗ PRγµPL + E

(3)
LL, (2.40)

PLγ
µνλPR ⊗ PLγµνλPR = 4(4− ϵ)PLγµPR ⊗ PLγµPR + E

(3)
RR, (2.41)

PRγ
µνλPL ⊗ PLγµνλPR = 4(1 + ϵ)PRγµPL ⊗ PLγµPR + E

(3)
LR, (2.42)

PLγ
µνλPR ⊗ PRγµνλPL = 4(1 + ϵ)PLγµPR ⊗ PRγµPL + E

(3)
RL, (2.43)
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As it happened with the Fierz relations, these evanescent structures receive contributions
that can be compensated by a shift in the coefficients of the physical operators. Since we are
interested in matching at one loop, this shift will only be relevant in theories that generate
tree level coefficients for the evanescent operators. For this reason, although there is formally
an infinite number of evanescent structures, we only have to keep track of the shifts produced
by the few that can be generated at tree level by renormalizable UV theories. We will use the
results provided in [33] for the shift of the coefficients in the Warsaw basis.

2.5 Matching

The bottom-up approach to the use of EFTs provides an agnostic way of parametrizing and
classifying all new heavy physics effects that we can observe at low energies. However, our
ultimate goal is to learn about the physics at very high energies, so as mentioned above, we
need to be able to translate between the parameters (WCs) of the effective theory and those
of our UV “candidate” model. This is known as the top-down approach, which complements
the former one and rounds up the EFT strategy in the search for new physics. This section
will be devoted to review this process of translation, called matching.

In quantum field theory, we aim to compare with observables by computing the matrix
element of some process that we can measure at a certain energy. In weakly coupled UV theories,
which will be our focus of study, calculations are performed in a perturbative expansion. The
requirement that the effective theory naturally has to fulfill is to reproduce the amplitudes of
the UV model at low energies, in which its heavy modes are not excited, up to a certain order
in the loop expansion. In this section, as well as in all the calculations in this thesis, we will
work up to one-loop order. Therefore, the basic idea behind matching will be to identify the
effective theory with a UV theory expanded in powers of the heavy masses and somehow solve
for the Wilson Coefficients.

In order to do so, one can basically follow two strategies. We will briefly introduce the
functional approach to matching and then review the diagrammatic approach, which will be
used in the rest of the thesis. We will use a UV theory consisting of an extension of the SM with
a heavy, zero-hypercharged fermion singlet N as an example to illustrate how the matching
procedure works. Since N is real, we can give it a Majorana mass M and a Yukawa-like
interaction with the SM Higgs. The Lagrangian of the theory is the following:

LUV = LSM + 1
2 N(i/∂ −M)N +

(︂
yiN ℓa,iNH

∗
b ϵab + h.c.

)︂
, (2.44)

where ϵ = iσ2 and we only consider one generation for the heavy fermion for simplicity.

2.5.1 Functional methods

As mentioned in Section 2.2, the matching procedure formally consists of integrating-out the
heavy degrees of freedom from the path integral [34, 35]. To consider quantum effects we need
to obtain the one-loop effective action Γ, for which we split the fields ϕ in our theory into
a classical background ˆ︁ϕ (satisfying the equations of motion), and a quantum fluctuation:
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2.5 Matching

ϕ→ ˆ︁ϕ+ ϕ. The effective action is then given by:

eiΓ[ϕ̂] =
∫︂
dϕ eiS[ϕ+ϕ̂]. (2.45)

We can then formally expand the Lagrangian around the background configurations:

L[ϕ+ ϕ̂] = L[ϕ̂] + 1
2 ϕ

δ2L
δϕ δϕ

⃓⃓⃓
ϕ=ϕ̂

ϕ+O(ϕ3), (2.46)

where the linear term in the expansion is not present because it is proportional to the equations
of motion and higher order terms are not needed because they will not contribute at one loop.
We can then expand the equations of motion of the heavy fields ˆ︁ϕH in powers of the heavy
masses to express them in terms of the light fields ˆ︁ϕL, and truncate at the desired order. This
reproduces exactly what we wanted: an action where the heavy fields are no longer dynamic
and constitutes the low energy limit of the UV theory. At leading order, the tree level EFT
action is then given by:

Γ(0)
EFT[ϕ̂] ≡ S(0)[ˆ︁ϕL, ˆ︁ϕH(ˆ︁ϕL)]. (2.47)

In our example, the equation of motion for the heavy fermion reads:

(i/∂ −M)N = −yNℓcϵH∗ + y∗NH
T ϵℓ, (2.48)

where gauge and flavor indices are omitted for simpliticy. Expanding in powers of M−1:

N = − 1
M

(1 + i/∂

M
+ ...)(−yNℓcϵH∗ + y∗NH

T ϵℓ). (2.49)

Substituting Eq. (2.49) back in Eq. (2.44), we obtain:

L(0)
EFT =

(︂
− 1

2MyiNy
j
NℓiϵH

∗ℓcjϵH
∗ + h.c

)︂
− 1
M2 y

i
Ny
∗j
N (ℓiϵH∗)i/∂(HT ϵℓj) (2.50)

≡
(︂ 1

2My∗iNy
∗j
N [OW ]ij + h.c

)︂
− 1
M2 y

i
Ny
∗j
N [O1,3

Hℓ]ij ,

where OW is the Weinberg operator in Eq. (2.17) and we have defined the operator O1,3
Hℓ, that

can be written as a combination of two operators in the Warsaw basis:

O1,3
Hℓ = 1

4[O(3)
Hℓ −O

(1)
Hℓ]. (2.51)

Back to the functional matching at one-loop order, It is common to define the fluctuation
operator [34]:

Oij ≡
δ2L

δϕi δϕj

⃓⃓⃓
ϕ=ϕ̂

= δij∆−1
(i) −Xij , (2.52)

where ∆i is the propagator of the field ϕi and Xij encodes the interaction terms. At one-loop,
we are left with the following integral:

eiΓ
(1)[ϕ̂] =

∫︂
dϕ exp

[︂
i

∫︂
dxd

1
2ϕiOijϕj

]︂
, (2.53)
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2. Effective Field Theories

which can be done analytically since it is a Gaussian integral. The formal solution is:

Γ(1) = i

2 STr lnO = i

2 STr ln[∆−1] + i

2 STr ln[1−∆X], (2.54)

where the supertrace STr is a generalization of the usual trace to accommodate fermionic and
bosonic indices. However, this effective action still includes EFT loops with insertions of tree
level coefficients from Γ(0)

EFT, that we do not want to include in the definition of the one-loop
coefficients of the EFT action. For that reason, we will actually extract the hard region of the
effective action:

S
(1)
EFT ≡ Γ(1)⃓⃓

hard. (2.55)

We will see what this hard region means precisely in the next subsections. For the moment, let
us anticipate that ∆X ∼ Λ−1 so we can Taylor expand the second term in Eq. (2.54) up to
the desired order in the mass expansion:

S
(1)
EFT = i

2 STr ln[∆−1]
⃓⃓
hard −

i

2
∑︂
n

1
n

STr[(∆X)n]
⃓⃓
hard. (2.56)

There are two terms in this formula for the one-loop matching, known as log-type and power-
type supertraces. The first one only depends on the number and type of heavy propagators and
is therefore universal: it can be computed once and for all and only changes depending on the
particle content of the UV theory. The second type depends on the interactions between heavy
and light particles, and has to be computed specifically for the theory that is to be matched.
There are currently two publicly available tools to compute these supertraces automatically
given the X interaction terms (Supertracer [36], STrEAM [37]).

The evaluation of these supertraces is based on the Covariant Derivative Expansion (CDE)
method [38–40], developed in the 1980s, but these methods have only experienced a revival in
the last years, specially since Ref. [41] presented some universal results and the calculation in
[42] of the Universal One-Loop Effective Action (UOLEA).

The beauty of this functional matching is that we do not need any details, a priori, about
the effective field theory; integration of heavy modes yields directly effective operators that are
generated up to the ordered considered in the expansion. However, the (d-dimensional) action
recovered by this procedure does not in general conform even a Green’s basis, so in practice
one still needs to perform a reduction either to a Green’s or a physical basis to interpret the
results. There are also some public codes to perform this functional matching automatically at
tree level (MatchingTools [43]) and one loop (CoDEx [44], Matchete [45]).

2.5.2 Diagrammatic approach

The other equivalent way to perform matching is to impose that all scattering amplitudes
(between light external states) in the EFT reproduce the result of those in the UV theory up
to a certain order in the mass and loop expansion. In this diagrammatic approach one logically
needs to know before-hand the basis of operators, since the processes have to be computed
also in the EFT.

This equivalence between amplitudes can be enforced at two different levels. The strongest
requirement is to enforce the equality at the level of generating functionals of (connected)
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2.5 Matching

Green functions, i.e., equating all the off-shell Green functions of the two theories. Since we
are only interested in correlation functions of light external states, we can turn off the source
for the heavy fields:

WEFT[Jϕ] =WUV[Jϕ, 0], (2.57)

where Jϕ is the source for light fields. This equality has to be understood as holding up to
some order in the mass expansion. Applying a Legendre transformation returns:

ΓEFT[ϕ̂] = ΓUV[ϕ̂, Φ̂[ϕ̂]]. (2.58)

In this approach the goal is therefore to compute ΓUV[ϕ̂, Φ̂[ϕ̂]], which is an effective action of
one-light-particle-irreducible (1lPI) vertices. To compute this object, it is sufficient to compute
all the 1lPI diagrams contributing to all the amplitudes (between light states) of the theory.
This means that light fields can only run in loops and heavy bridges have to be included. The
reason is that diagrams with light bridges can be recovered joining vertices from ΓUV[ϕ̂, Φ̂[ϕ̂]],
and heavy bridges account for external heavy particles Φ̂[ϕ̂] fulfilling equations of motion.

Since this calculation is done in d dimensions and off-shell, we have to use a Green’s basis
for the EFT. After solving for the Wilson Coefficients, it is convenient to reduce the results, as
explained in Section 2.3, to a physical basis. These will be the approach used in the example
below as well as in the rest of the matching results presented in this thesis.

The alternative is to equate all the on-shell matrix elements of the two theories. In this case,
it is enough to use a physical basis of operators in the EFT, since they are, by construction, a
set of all independent structures on-shell. However, one has to include all connected diagrams
in the UV theory, including the ones with light bridges, since these light bridges account for
the field redefinitions performed in the EFT to obtain the physical basis. This method has the
advantage of a simpler calculation, because there are less operators in the EFT and on-shell
kinematic configurations can be used, but the disadvantage that the number of diagrams with
light bridges rapidly blows up at one loop, which makes it computationally more expensive.
Moreover, non-local terms coming from light bridges have to be cancelled between the EFT
and UV theory and need to be handled with care.

Let us revisit our example to illustrate its matching up to dimension six, this time both
at tree level and one loop. Our convention in the following calculations will be to take all
momenta incoming, and all indices identified by a numeric tag of the particle. We will adopt,
once again, the conventions in Appendix A and use v, u for the external spinors.

At tree level, the only processes allowed in the UV theory are the amplitudes ⟨ℓ1 ℓ2H3H4⟩
and ⟨ℓ1 ℓ2H3H

∗
4 ⟩ (omitting gauge and flavor indices). For the first one, there is only one

dimension five operator, the Weinberg operator, contributing to the amplitude, so the matching
is particularly simple. The diagrams contributing to the process are depicted in Figure 2.2.

The first amplitude then reads:

iM(EFT)
ℓ1ℓ2H3H4

= 2iαW (ε41ε32 + ε42ε31) v1PLu2, (2.59)

iM(UV)
ℓ1ℓ2H3H4

= − iy∗Ny
∗
N

(p1 + p3)2 −M2 (ε42ε31) v1PL(/p1 + /p3 +M)PLu2 + (3↔ 4)

= iy∗Ny
∗
N

M
(ε41ε32 + ε42ε31) v1PLu2 +O(M−3), (2.60)
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Figure 2.2: Diagrams contributing at tree level to the process ⟨ℓ ℓH H⟩ in the (a) effective theory
and (b) UV theory. The double line denotes the heavy fermion N , that we represent without an
arrow since, being a Majorana fermion, does not carry a fermion flow.
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Figure 2.3: Diagrams contributing at tree level to the process ⟨ℓ ℓH H∗⟩ in the (a) effective theory
and (b) UV theory. The double line denotes the heavy fermion N , that we represent without an
arrow since, being a Majorana fermion, does not carry a fermion flow.

where we have expanded the propagator in powers of the heavy mass M in the last line.
Comparing both equations, it is straight-forward to extract the value for the Wilson Coefficient
imposing the matching condition iM(EFT) = iM(UV):

[αW ]ij = y∗iNy
∗j
N

2M . (2.61)

For the second amplitude, ⟨ℓ1 ℓ2H3H
∗
4 ⟩, there are several operators contributing in the

EFT, collected in Table B.2. The diagrams contributing to the process, both in the EFT
and the UV, are depicted in Figure 2.3. Using the simplified notation α1,3, β′1,3, β′′1,3 for the
coefficients of O(1),(3)

Hℓ , R′(1),(3)
Hℓ and R′′(1),(3)

Hℓ , respectively, we obtain the following expression:

iM(EFT)
ℓ1 ℓ2 H3 H∗

4
=− i

(︂
2v1/p2PLu2(β′1δ12δ34 + β′3σ12σ43) (2.62)

+ v1/p3PLu2(δ12δ34(α1 + β′1 − iβ′′1 ) + σ12σ43(α3 + β′3 − iβ′′3 ))

− v1/p4PLu2(δ12δ34(α1 − β′1 + iβ′′1 ) + σ12σ43(α3 − β′3 + iβ′′3 )) )

We can see here that the structure of the EFT amplitude at tree level, which will be a general
feature, is a sum over all independent kinematic structures multiplying a combination of
gauge tensors “weighted” by all the WCs that can generate that particular structure. This, by
construction, is a basis of all possible kinematic and gauge structures allowed between these
external fields, and the WCs have to be fixed so that they reproduce the value of each particular
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term in the UV theory. Therefore, equating the coefficient of each kinematic structure both in
the EFT and the UV theory gives us a system of equations:

2i β′1 δ12 δ34 + 2i β′3 σ12 σ43 = i yN y
∗
N

2M2 (δ12 δ43 − σ12 σ43)

(−i α1 + i β′1 + β′′1 )δ12 δ34 + (−i α3 + i β′3 + β′′3 )σ12 σ43 = 0 (2.63)

(i α1 + i β′1 + β′′1 )δ12 δ34 + σ12 σ43(i α3 + i β′3 + β′′3 ) = i yN y
∗
N

2M2 (δ12 δ43 − σ12 σ43)

that we can solve to obtain the Wilson Coefficients:

[α1]ij = −[α3]ij = yiNy
∗j
N

4M2 (2.64)

[β′1]ij = −[β′3]ij = yiNy
∗j
N

4M2 (2.65)

[β′′1 ]ij = [β′′3 ]ij = 0 (2.66)

There is a more efficient way of solving this system of equations in general. Let us denote
by K = {Ki} the set of all possible kinematic structures allowed in a certain process. The tree
level amplitude in the EFT will be a sum over this set, where each element will be multiplied
by some linear combination of gauge tensors gj and a sum of Wilson Coefficients Cij . The
matching condition can then be expressed as follows:

∑︂
ij

KigjCij =
∑︂
ij

Kig
′
jYij , (2.67)

where g′j are a set of different (in principle) gauge tensors (that can be expressed as a linear
combination of gi) and Yij are functions of the couplings and masses in the UV theory.

Performing the matching between two theories amounts to solve this equation for particular
values of g(′), C, Y (with enough amplitudes to fix all the WCs). However, given an EFT,
the left-hand side of Eq. (2.67) is determined, so we can formally solve this equation without
knowing any details about the actual values of g′i and Yij . Matching to a particular UV theory
is then just identifying g′jYij for the relevant amplitudes and substitute their values in the
solution of Eq. (2.67). This is particularly efficient for EFTs susceptible of being matched with
several different UV theories, as it is the case of the SMEFT.

For concreteness, in our example we identify the gauge structures g1 = δ12 δ34 and g2 =
σ12 σ43, which leave us with the following combination of Wilson Coefficients:

C =


2iβ′1 2iβ′3

−i α1 + i β′1 + β′′1 −i α3 + i β′3 + β′′3
i α1 + i β′1 + β′′1 i α3 + i β′3 + β′′3

 . (2.68)

Then, for each kinematic structure Ki:

∑︂
j

gjCij =


(︄
Ci1 + Ci2 0

0 Ci1 − Ci2

)︄ (︄
0 0

2Ci2 0

)︄
(︄

0 2Ci2
0 0

)︄ (︄
Ci1 − Ci2 0

0 Ci1 + Ci2

)︄
 , (2.69)
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(1) (0) (0)

Figure 2.4: Diagrams contributing at one loop level to the process ⟨ℓ ℓ ℓ ℓ⟩ in the effective theory.
The superscripts (0), (1) denote insertions of tree and one loop level operators, respectively.

so we are left with the following system of equations:


2iβ′3 = ∑︁
j Y1j [g′j ]2112

−i α3 + i β′3 + β′′3 = ∑︁
j Y2j [g′j ]2112

i α3 + i β′3 + β′′3 = ∑︁
j Y3j [g′j ]2112

2iβ′1 = C12 +∑︁
j Y1j [g′j ]1122

−i α1 + i β′1 + β′′1 = C22 +∑︁
j Y2j [g′j ]1122

i α1 + i β′1 + β′′1 = C32 +∑︁
j Y3j [g′j ]1122

(2.70)

that allows us to obtain a symbolic expression for all the Wilson Coefficients.
There is one last advantage of formulating the matching as this system of equations. We

have seen in Section 2.3 how constructing a basis of operators and reducing it to an independent
set in d dimensions can be in general a cumbersome task. By constructing this system of
equations we have a powerful cross-check at hand: if the rank of the system (with vanishing
UV amplitudes) is smaller than the number of Wilson Coefficients, it means that they are not
linearly independent. Moreover, solving this system can give us the relations between them,
without the necessity of working out any operator relations.

2.5.3 One-loop matching

At one loop the idea is exactly the same, but there are many more coefficients generated. We
will match the amplitude ⟨ℓ1 ℓ2 ℓ3 ℓ4⟩ as an example. With the purpose of keeping it simple,
we will set to zero all couplings in the UV theory of Eq. (2.44) except for yN . The diagrams
contributing to this process at one-loop in the EFT and the UV theory in this approximation
are depicted in Figures 2.4 and 2.5, respectively.

Before computing anything, we can apply some simplifications only by looking at the
diagrams. First, the class of four-fermion operators at dimension six that contribute at tree
level in Figure 2.4 does not produce matrix elements proportional to external momenta. For
this reason, we can set to zero all external momenta in our ensuing calculations. We can
also see that no structures with three gammas can be generated only by one propagator in
each fermionic current. Therefore, the operators Ec[2]

ℓℓ , E [3]
ℓℓ and E [3](3)

ℓℓ can be ignored in this
particular calculation.
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Figure 2.5: Diagrams contributing at one loop level to the process ⟨ℓ ℓ ℓ ℓ⟩ in the UV theory.

For simplicity, we will divide the amplitude in two parts: the set of diagrams proportional to
(a) scalar currents PR⊗PL and (b) the ones proportional to vector-axial currents γµPL⊗γµPL.
The first part of the amplitude in the EFT, under the considerations mentioned above, reads:

iM(EFT) (a)
ℓ1 ℓ2 ℓ3 ℓ4

= v1PRu3 v2PLu4 (δ23δ14 + δ34δ12) 2i[γcℓℓ]1324 (2.71)

+ 4v1PRu3 v2PLu4[αW ]24[α∗W ]13 (δ23δ14 + δ34δ12) IEFT,

whereas the same process in the UV has the following expression:

iM(UV) (a)
ℓ1 ℓ2 ℓ3 ℓ4

= v1PRu3 v2PLu4 (δ23δ14 + δ34δ12) y3
Ny

1
Ny
∗4
N y
∗2
N IUV, (2.72)

where we have defined the following integrals:

IEFT = µ2ϵ
∫︂

ddk

(2π)d
1

(k2 −m2)2 = i

16π2

(︃1
ϵ
− log

[︃
m2

µ2

]︃)︃
, (2.73)

IUV = µ2ϵ
∫︂

ddk

(2π)d
M2

(k2 −m2)2(k2 −M2)2 = (2.74)

= i

16π2
M2

(M2 −m2)2

(︃
− 2 + M2 +m2

M2 −m2 log
[︃
M2

m2

]︃)︃
.

In a little abuse of notation, we will use the minimal substraction scheme (MS) writing the scale
µ inside the logarithms instead of the MS scale µ2 = 4πe−γEµ2, with γE the Euler-Mascheroni
constant, so that we can remove the terms proportional to ϵ (equivalently, one could send
1/ϵ→ 1/ϵ ≡ 1/ϵ+ γE − Log(4π) in our equations).
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Substituting the value of the tree level coefficient for αW in Eq. (2.61) and expanding in
powers of M−1, we obtain:

[γcℓℓ]ijkl = −y
i
Ny

k
Ny
∗j
N y
∗l
N

32π2M2

(︃
2 + 1

ϵ
− log

[︃
M2

µ2

]︃)︃
. (2.75)

This operator does not belong to our physical basis, so we can reduce it by means of the
following Fierz identity:

[Ecℓℓ]ijkl = 1
2[O]likj (2.76)

As mentioned above, this identity is only valid in four dimensions, so we are implicitly defining
an evanescent operator, Ecℓℓ ≡ [Ecℓℓ]ijkl− 1

2 [O]likj . However, since this operator is only generated
at one loop, its physical effect, only obtained when inserted in divergent loops, is at least two
loops order, and can therefore be disregarded.

The second part of the amplitude has the following expression, both for the EFT and UV
theories:

iM(EFT) (b)
ℓ1 ℓ2 ℓ3 ℓ4

=2i v1γ
µPLu2 v3γµPLu4

(︁
[αℓℓ]1234δ12δ34 + [γ(3)

ℓℓ ]1234σ12σ34
)︁

(2.77)

+ 2i v1γ
µPLu4 v3γ

µPLu2
(︁
[αℓℓ]1432δ14δ32 + [γ(3)

ℓℓ ]1432σ14σ32
)︁

iM(UV) (b)
ℓ1 ℓ2 ℓ3 ℓ4

=
(︁
v1γ

µPLu2 v3γµPLu4 δ23δ14 (2.78)

+ v1γ
µPLu4 v3γµPLu2 δ34δ12

)︁
y3
Ny

1
Ny
∗4
N y
∗2
N I

(b)
UV,

where we have defined the integral:

I
(b)
UV = µ2ϵ

∫︂
ddk

(2π)d
k2/d

(k2 −m2)2(k2 −M2)2 = (2.79)

= i

64π2(M2 −m2)3

(︃
m4 −M4 + 2M2m2 log

[︃
M2

m2

]︃)︃
.

Expanding I(b)
UV in powers of M−1 and solving the system of equations, we obtain the following

values for the coefficients:

[αℓℓ]ijkl = −[γ(3)
ℓℓ ]ijkl = −y

i
Ny

j
Ny
∗k
N y
∗l
N

256π2M2 . (2.80)

Using, again, Fierz identities to reduce the result to the physical basis:

[E(3)
ℓℓ ]ijkl = 2[Oℓℓ]ilkj − [Oℓℓ]ijkl, (2.81)

we obtain the final result:

[αℓℓ]ijkl = −y
i
Ny

j
Ny
∗k
N y
∗l
N

16π2M2

(︃5
8 −

1
4ϵ + 1

4 log
[︃
M2

µ2

]︃)︃
. (2.82)

Finally, when matching at one loop (or more), there is one last problem to take into
account. The propagator of the light fields can also receive contributions in the matching, and
that would leave an effective theory with a non-canonical kinetic term. This can be avoided
by performing a canonical normalization of the kinetic terms in the EFT, which consists of
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performing a field redefinition to get rid of the one-loop contribution to the kinetic term.
Consequently, the one-loop coefficients of the operators generated at tree level experience a
shift proportional to its tree-level coefficient. Taking again our example, we would have:

LEFT ⊃ [1 + α
(1)
Kℓ]ij ℓi i /Dℓj + [αW ]ij [OW ]ij + ..., (2.83)

where the superscript (1) indicates that is a one-loop order correction. We can perform the
field redefinition:

ℓ→ ℓi −
1
2[α(1)

Kℓ]ijℓj , (2.84)

after which we would end up with the following Lagrangian:

LEFT ⊃ ℓ i /Dℓ+ [˜︃αW ]ij [OW ]ij +O
(︁ 1
(16π2)2

)︁
, (2.85)

where the Wilson Coefficient [αW ]ij is shifted by:

[˜︃αW ]ij = [αW ]ij −
1
2[α(0)

W ]mj [α(1)
Kℓ]mi −

1
2[α(0)

W ]im[α(1)
Kℓ]mj . (2.86)

2.5.4 Expansion by regions

At this point, one could wonder how efficient, or useful, could an effective field theory calculation
be if we need to compute not only loop amplitudes in the EFT, but also the full UV calculation,
to perform the matching. The reason why we are able to get away with it, and one of the core
reasons of the usefulness of EFTs, is the idea of expansion by regions [46].

Let us take again the integral in our example:

IUV = µ2ϵ
∫︂

ddk

(2π)d
M2

(k2 −m2)2(k2 −M2)2 = (2.87)

= i

16π2M4

[︃
− 2(2m2 +M2) + (4m2 +M2) log

[︃
M2

m2

]︃]︃
+O(M−6),

where this time we have retained terms up to dimension eight in the expansion to better
illustrate our point. The first observation is that the IEFT integral in Eq. (2.73) corresponds
(up to factors that we left out of its definition) to the expansion of IUV in powers of M−1:

µ2ϵ
∫︂

ddk

(2π)d
M2

(k2 −m2)2(k2 −M2)2 ≃ µ
2ϵ
∫︂

ddk

(2π)d
1

(k2 −m2)2
1
M2

[︃
1 + 2 k

2

M2 + ...

]︃
=

= i

16π2M4

[︃
2m2 + (4m2 +M2)1

ϵ
− (4m2 +M2) log

[︃
m2

µ2

]︃]︃
+O(M−6), (2.88)

with the difference that here we are retaining terms up to dimension eight. This happened by
construction of the EFT; the expansion of the heavy propagator is encoded in the insertion of
the Wilson Coefficients, pictorially equivalent to “shrink” the line into a point. This expansion
corresponds to integrating in a soft region in which k2 ∼ m2, p2 << M2.

Looking at our results, integrating and then expanding is therefore not the same as
expanding an then integrating, but the commutation gives us precisely the integral of the
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2. Effective Field Theories

matching condition:
IM = IUV − IEFT. (2.89)

The second observation is that integrating around the other scale in the integral, i.e.,
k2 ∼M2 >> m2, p2, known as the hard region expansion, we obtain:

I
(h)
UV = µ2ϵ

∫︂
ddk

(2π)d
M2

(k2 −M2)2k4

[︃
1 + m2

k2 + ...

]︃
= (2.90)

= i

16π2M4
[︁
− 6m2 − 2M2 − (4m2 +M2)1

ϵ
+ (4m2 +M2) log

[︃
M2

µ2

]︃]︁
.

We can check that splitting the integration in the soft and hard region and adding them up
recovers the full result, not twice the result, as one could naively expect:

IUV = I
(h)
UV + I

(s)
UV. (2.91)

This does not only apply to this particular example, it is a general feature of dimensional
regularization and does not happen with other regulators. In the case of the EFT integral:

I
(s)
EFT ≡ IEFT = µ2ϵ

∫︂
ddk

(2π)d
1

(k2 −m2)2
1
M2

[︃
1 + 2 k

2

M2 + ...

]︃
= (2.92)

= i

16π2M4

[︃
2m2 + (4m2 +M2)1

ϵ
− (4m2 +M2) log

[︃
m2

µ2

]︃]︃
,

I
(h)
EFT = µ2ϵ

∫︂
ddk

(2π)d
1
k4

[︃
1 + 2m2

k2 + 3m4

k4 + ...

]︃ 1
M2

[︃
1 + 2 k

2

M2 + ...

]︃
= 0. (2.93)

We can see that the soft part of the EFT integral is the EFT integral itself, since heavy scales
had been already expanded out by definition, and the hard region has all scales expanded out
and is therefore scaleless (and vanishing in dimensional regularization). Consequently, we have
for the matching condition:

IM = IUV − IEFT = I
(h)
UV + I

(s)
UV − I

(h)
EFT − I

(s)
EFT = I

(h)
UV. (2.94)

Both IUV and IEFT exhibit non-analyticities in the light scales (m), but they drop out in the
difference IM, rendering it analytic. This allows us to compute it by expanding in the hard
region, obtaining the result in Eq. (2.94). This powerful relation tells us that we can extract
the one-loop matching condition only by computing the hard region of the amplitude in the
UV. Equating this to the tree level amplitude in the EFT is enough to compute the Wilson
Coefficients at one loop.

2.6 Renormalization and Running

When doing loop calculations in quantum field theory, one often finds divergent integrals. In
order to make sense of the calculation, and be able to compare with observables, one needs
to use a regularization and renormalization procedure. This leads to physical effects such as
the running of couplings constants of the theory. In this section we will review the process of
renormalization in the context of effective field theories.
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2.6 Renormalization and Running

But before talking about renormalization, let us see how divergences appear in a loop
calculation. A generic loop integral in the EFT, that could possibly have a non-polynomial
dependence on external momenta p, could look like:

I(p) =
∫︂

d4k

(2π)4
1

(k + p)2 ∼
∫︂ ∞

0
dk

k3

k2 + p2 + 2c k.p (2.95)

This is a divergent integral, with superficial degree of divergence +2. We can take as many
derivatives with respect to p as necessary to reduce its degree of divergence until the integral
is convergent. In this case it is enough with taking three derivatives:

I ′′′(p) = 2− 8c2

p
(2.96)

Integrating then thrice in p, we have:

I(p) = 1
2p
(︂
p
(︂
A1 + 12c2 − 3

)︂
+ 2A2 +

(︂
2− 8c2

)︂
p log(p)

)︂
+A3, (2.97)

with unknown integration constants A1,2,3. Since the original integral was divergent, the
divergences can only be in the integration constants, and therefore be a polynomial in external
momenta. Consequently, after subdivergences have been substracted, we can absorb all the
divergences in the Wilson Coefficients of local operators in our EFT.

Effective field theories are however often called non-renormalizable, because all divergences
in the theory cannot be removed by a finite set of counterterms. Although this is in fact the
case, as long as we work at a fixed order in the mass expansion we can remove divergences
order by order so that the ones still present are formally subleading.

The key idea of renormalization is that objects in the Lagrangian are not observables, so
they can formally be infinite. It is only after following a prescription to remove the infinite
part that we can compare with experiment and fix the value of the (renormalized) parameters
of the theory. We will follow dimensional regularization, for which we extend the action to a
d-dimensional object, and MS prescription, in which we only eliminate the 1/ϵ UV divergences.
The bare (original) fields (ϕ(0)) and WCs (α(0)) in the Lagrangian can be written in terms of
the renormalized ones as:

α
(0)
i = µniϵZiαi, ϕ(0) =

√︂
Zϕϕ, (2.98)

where µ is a parameter with dimensions of mass that we introduce to parametrize the deviation
from four dimensions, and ni is called the classical anomalous dimension of the operator Oi.

The divergences of the theory can be absorbed in the Wilson Coefficients of the operators:

L̂EFT = α̂iOi, (2.99)

and have to be canceled by the counterterms introduced in Eq. (2.98). Writing, at one loop:

Zi = 1 + Ki

ϵ
, (2.100)

27
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and performing canonical normalization in Eq. (2.99), we end up with the condition:

Ki = − α̂i
αi
. (2.101)

The original Lagrangian did not depend on the µ parameter, that we introduced artificially
and has to be fixed to some value, so this implies a dependence of the renormalized
Wilson Coefficients αi on the value of this parameter. This dependence is encoded in the
Renormalization Group Equation (RGE) of each Wilson Coefficient, that can be derived using
the fact that α(0)

i has to be µ-independent. Defining:

Ẋ ≡ dX

d logµ, (2.102)

we can take this derivative in Eq. (2.98) to write:

0 = niϵµ
niϵZiαi + µniϵZi˙ αi + µniϵZiαi˙ , (2.103)

and we obtain:
βi ≡ α̇i = −niϵαi −

1
ϵ
K̇iαi, (2.104)

that gives us the beta function for the Wilson Coefficient αi. Using this equation at tree level,
we can derive the following expression for the one-loop beta function:

α̇
(1)
i = α

(0)
i

∑︂
j

∂Ki

∂αj
njα

(0)
j . (2.105)

Coming back to our example, we can illustrate how the divergences of the amplitude
⟨ℓ1 ℓ2 ℓ3 ℓ4⟩ are removed. Since we already computed the divergent part of the amplitude in
IEFT, we just have to match it to (minus) the tree level amplitude, i.e., the first line in Eq.
(2.71). Directly in the physical basis, we obtain:

[αℓℓˆ ]ijkl = − [αW ]jl[α∗W ]ik
16π2ϵ

, (2.106)

and therefore:

α̇
(1)
ℓℓ = − αℓℓ

16π2

[︃
∂Kℓℓ

∂αW
nwαW + ∂Kℓℓ

∂α∗W
nwα

∗
W + ∂Kℓℓ

∂αℓℓ
nℓℓαℓℓ

]︃
= (2.107)

= −2 αℓℓ
16π2

[︃
αWα

∗
W

αℓℓ
+ αWα

∗
W

αℓℓ
− αWα

∗
W

α2
ℓℓ

αℓℓ

]︃
=

= −αWα
∗
W

8π2

Equation (2.105) can be further simplified by considering the following2. The classical
anomalous dimension for the coefficient αi can be written as:

niϵ = [Oi](4) − [Oi](d) − 2ϵ. (2.108)
2We thank Renato Fonseca for this derivation.
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We denote by [X](y) the mass dimension of X in y dimensions. The difference [Oi](4) − [Oi](d),
proportional to ϵ, will be the sum of the deviations from four dimensions for each of the
fields, ∑︁j([ϕj ](4) − [ϕj ](d)). This deviation is, however, universal for all type of fields, since it
is dictated by the quadratic Lagrangian and we will extract the O(ϵ) part, so it behaves like
[ϕj ](d) ∼ d

2 ∼ −ϵ. Consequently, we can write:

ni = Ni − 2, (2.109)

with Ni the number of fields in Oi. On the other hand, in our diagrammatic approach, the
divergent coefficients αî can be seen as originated by a sum of diagrams:

αî =
∑︂

diagrams D
αî

(D). (2.110)

Therefore, we have:

α̇
(1)
i = α

(0)
i

∑︂
j

∂Ki

∂αj
njα

(0)
j = niα̂i −

∑︂
j

∂α̂i
∂αj

njαj = (2.111)

=
∑︂

diagrams
D

(︃
ni −

∑︂
j

njαj
∂

∂αj

)︃
α̂

(D)
i =

∑︂
diagrams
D

(︃
(Ni − 2)−

∑︂
vertices
v∈D

(Nv − 2)
)︃
α̂

(D)
i

However, taking into account the topological relation between the number of legs N of a a
diagram, the number of loops L and the number Vk of vertices of k legs:

N + 2L− 2 =
∑︂
k

(k − 2)Vk ≡
∑︂
v

(Nv − 2), (2.112)

we see that it is equivalent to sum the number of legs of each vertex over the vertices of the
diagram. Substituting this relation at one loop, we get:

α̇
(1)
i =

∑︂
diagrams
D

(︃
(Ni − 2)− (Ni + 2L− 2)

)︃
α̂

(D)
i = −2

∑︂
diagrams
D

α̂
(D)
i = −2α̂i. (2.113)

In fact, we can check that we would have obtained directly the result in Eq. (2.107) by taking
the divergent part in Eq. (2.82).

The renormalization group evolution of couplings has remarkable physical consequences.
First, the value of one coupling fixed by experiment at a certain energy will differ from its
value at a different energy. This “running” of couplings can be computed integrating the
renormalization group equation. In our example:∫︂ µH

µL

dαℓℓ = −
∫︂ µH

µL

d logµ αWα
∗
W

8π2 . (2.114)

Under the approximation that αW does not run (is µ-independent), we obtain:

αℓℓ(µL) = αℓℓ(µH) + αWα
∗
W

8π2 log
(︃
µH
µL

)︃
. (2.115)
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μ = M1
MATCHING

RGE {mi}
Effective Theory

2

UV Theory

{Mi}, {mi} [ . . . ] RGE RGE

μ = Mn
MATCHING

Energy

Figure 2.6: An outline for a complete EFT calculation. The original theory should be iteratively
integrated-out and run down for each energy threshold, until the low energy scale in which
experiments are performed is reached.

We can see how the value of αℓℓ differs between the two scales µH,L. Moreover, this result also
illustrates what is called operator mixing; even if our theory defined at a high scale µH has a
vanishing coefficient αℓℓ, it will be inevitably generated at low energies by the presence of αW .

Given that we perform experiments at low energies and want to probe, generically, physics
at much higher scales, we need to run our coefficients down to the appropriate scale using
RGEs. This, in turn, helps improve the convergence of the perturbative expansion in our
calculations, since the RGE solution “resums” the large logarithms originated by the hierarchy
of scales and we effectively work in a double expansion in α and α log(µH/µL).

2.7 The streamlining of an EFT calculation

In this chapter, we reviewed the formalism of effective field theories, putting examples directly
in the context of SMEFT. We used a toy version of a phenomenologically relevant model
to illustrate isolatedly all the ingredients of a real calculation. However, the EFT recipe
involves putting all those ingredients together in a (generically) multiscale problem. Thus, in a
realistic scenario, comparing the predictions of a model with experiments can be much more
complicated.

Let us suppose a UV theory with a set of heavy states, {Mi}, and light states, {mi},
defined at the highest scale M1. Let us also assume a separation of scales Mi >> mi, making
the situation suitable for the use of an effective field theory description. The procedure would
be to match the UV theory to the EFT that is left when the heaviest state is integrated-out,
run the Wilson Coefficients down to the next scale, M2, and repeat for each energy threshold.
Matching and running at each step have to be consistently performed at the same order in
the mass and loop expansion to make sense of the final result. After n iterations, we are
left with an EFT where all heavy states are integrated out, and we finally need to run the
coefficients down to the low energy scale in which our experiments are performed. Moreover,
in the case of a hierarchy between the light masses, this process should be repeated to resum
large logarithms. This process is depicted schematically in Figure 2.6.
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The final result is an expression for your low energy observables in terms of the parameters
(WCs) of the theory defined at a high scale. Examples of this type of calculation can be found
in [47–49].

As mentioned in previous sections, in the bottom-up approach, calculations have to be
done just once (at each order in the double expansion). There are many public tools to perform
fits to the experimental data in the context of SMEFT [50–53], define or compute observables
[54] or construct likelihood functions for the Wilson Coefficients [55].

In the top-down side of the story, we are intrinsically limited by the dependence on a UV
model, and we just outlined how the process involves several steps. There are, however, some
tasks that can also be done once and for all, and in which there have been significant advances
in the last few years. For instance, starting by the basis construction, we have physical bases
at several dimensions for SMEFT [27, 56–59], LEFT [60] and even νSMEFT/νLEFT [17].
Moreover, there are some automatic tools to generate physical operator bases compatible with
a generic gauge symmetry [61, 62]. There are also Green’s bases for SMEFT at dimension six
[63, 64] and eight [65, 66].

Renormalization group equations at one loop are also known for LEFT [67] at dimension
six and SMEFT at dimensions six [68–70] and eight (partially) [71, 72]. There are also some
codes automatizing the running of Wilson Coefficients [73, 74]. Finally, the matching between
SMEFT and LEFT is known up to one loop [75, 76].

And still, despite this significant effort described above, we are a one-loop matching away
from comparing any possible model we could be interested in with experimental data. This
process is not straightforward and completely model-dependent, so it has to be done on a case
by case basis. Clearly, this task calls for automation. The next chapter is devoted to introducing
Matchmakereft, an automatic tool designed to precisely fill this gap in the streamlining of an
EFT calculation.
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3
Automatic one-loop matching:

Matchmakereft

In Chapter 2, we motivated the use of Effective Field Theories as an efficient tool to compare
experimental data with theoretical predictions. Splitting the problem in two independent
steps allowed us to parametrize the effects of new physics in a model-independent way, in the
bottom-up approach, to then sacrifice it in favor of model-discrimination through the top-down
approach. This involved a complicated multiscale problem that, for searches of physics beyond
the SM, is partially computed or automated (see Section 2.7). Thus, the only missing step
towards a fully automated calculation of the phenomenological implications of new physics
models is the calculation of the matching between arbitrary theories.

In this chapter, we introduce matchmakereft, a fully automated tool to perform tree-level
and one-loop matching of arbitrary UV models onto arbitrary EFTs. Matchmakereft uses a
diagrammatic approach to tree-level and one-loop matching, performed in the Background
Field Method (BFM) when gauge theories are involved. The matching is done off-shell which,
together with gauge invariance, provides a significant redundancy that results in a number
of non-trivial cross-checks of the calculation. It has been designed with efficiency, generality
and flexibility in mind, what allows a number of applications beyond the direct matching of
UV models to EFTs. Current applications include the renormalization of arbitrary (effective)
theories, the calculation of the RGEs of arbitrary (effective) theories, EFT basis translation
and checks of (off-shell) linear independence of operators. All these calculations are done in a
fully automated way.

This chapter is organised as follows. In Section 3.1, we describe how the tree-level and one-
loop matching is performed in matchmakereft. Model creation in matchmakereft is explained
in detail in Section 3.2. Section 3.3 compiles all the different commands available, and common
pitfalls when using matchmakereft are described in Section 3.4. Some physical applications
are given in Section 3.5, together with a minimal but complete example of the capabilities of
matchmakereft in Section 3.6, and we conclude and provide some outlook in Section 3.7.
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3.1 Matchmakereft in a nutshell

3.1.1 Types of models

The central objects in Matchmakereft are models, wich are classified according to two criteria.
According to their field content they can be light models, if only light (but not necessarily
massless) particles are present in the spectrum, or heavy models, when the spectrum includes at
least one heavy particle. Depending on their role in the process of matching we also distinguish
between UV models, which can be light or heavy under the former classification, and EFTs,
which are necessarily light models. Models in matchmakereft are created using FeynRules [77],
as described in detail in Section 3.2.

Matchmakereft performs the matching off-shell, in the BFM when gauge theories are
involved, of a UV model onto an EFT. As explained in Chapter 2, this can be achieved by
computing, in dimensional regularization in d = 4− 2ϵ space-time dimensions, the hard region
contribution to the one-light-particle-irreducible relevant amplitudes at tree and one-loop level
in the UV theory and equating it to the tree level contribution in the EFT. In matchmakereft,
we keep explicitly the 1/ϵ̄ terms to allow for the automatic incorporation of evanescent operators
and also to provide further information but, of course, the user should remove the 1/ϵ̄ (denoted
invepsilonbar in matchmakereft) terms explicitly from the renormalized Wilson coefficients
in the physical basis. The list of amplitudes (only between external light particles) that are
computed are fixed in an automated way by matchmakereft, but the user has flexibility on
modifying it. All the relevant diagrams that contribute to the matching, both in the UV model
and the EFT, are then automatically computed by QGRAF [78] and subsequently dressed by
matchmakereft using the Feynman rules computed by FeynRules during the creation of the
model.

3.1.2 Calculation of amplitudes

Matchmakereft can run in two different modes called RGEmaker and Matching modes,
respectively. In RGEmaker mode, which is used to compute the RGEs of an arbitrary theory, the
(light) UV model contains no heavy particles and matchmakereft computes the UV-divergent
contribution of the corresponding one-particle-irreducible amplitudes necessary to absorb the
divergences. In Matching mode, there are heavy particles in the spectrum and both the finite
and divergent (both UV and IR) hard-region contributions to the corresponding one-light-
particle-irreducible amplitudes are computed. The calculation of the hard region part of the
amplitudes is performed using FORM [79] and proceeds as follows:

• Hard region expansion. As we saw in Section 2.5, the hard contribution is given by
the expansion of the loop integrand in a region in which k2 ∼M2 ≫ p2 ∼ m2 where k
represents the loop momentum, M a heavy mass, p any of the external momenta and m
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a light mass. This is achieved by iterating the following identities:

1
(k + p)2 −M2 = 1

k2 −M2

[︄
1− p2 + 2k · p

(k + p)2 −M2

]︄
,

1
(k + p)2 −m2 = 1

k2

[︄
1− p2 + 2k · p−m2

(k + p)2 −m2

]︄
. (3.1)

These identities are iteratively applied to the amplitude until the power of light (IR)
scales (external momenta or light masses) matches the maximum dimension of momenta
produced by the operators appearing in the EFT, which is also automatically computed.

• Tensor reduction. This consists of applying the following identities:

kµ1kµ2 = gµ1µ2 k
2

d
, (3.2)

kµ1kµ2kµ3kµ4 = gµ1µ2µ3µ4 k4

d2 + 2d, (3.3)

kµ1 . . . kµ6 = gµ1...µ6 k6

d3 + 6d2 + 8d, (3.4)

kµ1 . . . kµ8 = gµ1...µ8 k8

d4 + 12d3 + 44d2 + 48d, . . . (3.5)

where gµ1...µn is the totally symmetric combination of metric tensors.

• Dirac algebra. Once the expression has been reduced to scalar integrals we proceed to
perform the corresponding Dirac algebra. Since we are using dimensional regularization,
this is done in d dimensions in Matching mode. In RGEmaker mode, however, we are
interested in extracting the divergences, so we can use the four-dimensional algebra (the
difference will be finite or O(ϵ)). Version 1.1.0 of matchmakereft uses an anticommuting
γ5 prescription as discussed in Section 3.1.4. Our treatment of fermion number violating
interactions follows the rules proposed in Ref. [80, 81].

• Partial fractioning. We use the following identity to separate propagators with different
masses:

1
(k2 −m2

1)(k2 −m2
2) = 1

m2
1 −m2

2

[︃ 1
k2 −m2

1
− 1
k2 −m2

2

]︃
. (3.6)

This holds for light or heavy masses and one of them can be vanishing.

• Reduction to tadpoles. After partial fractioning, scaleless integrals are set to zero.
In RGEmaker mode, however, the UV poles determine the anomalous dimensions and
therefore they have to be kept by using:

∫︂
ddk

(2π)d
1
k4 = i

(4π)2
1
ϵ

+ . . . , (3.7)

before setting the remaining scaleless integrals to zero. In Matching mode the following
identity (that can be derived using integration by parts) is used to reduce the massive
integrals (which are the only ones that can appear due to the hard-region expansion) to
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tadpoles:
1

(k2 −m2)n+1 = d− 2n
2nm2

1
(k2 −m2)n . (3.8)

At this point we are only left with tadpole integrals:

a0(m) =
∫︂

ddk

(2π)d
1

k2 −m2 = i m
2

16π2

[︄
1
ϵ̄

+ 1− Log
(︄
m2

µ2

)︄]︄
+O(ϵ), (3.9)

where:
1
ϵ̄
≡ 1
ϵ

+ γE − log(4π), (3.10)

with γE ≈ 0.5772 the Euler-Mascheroni constant.

3.1.3 EFT operator bases

In matchmakereft, no four-dimensional properties are used when running in Matching mode,
with the purpose of ensuring maximum generality. This implies, in particular, that no Fierz
relations or reduction of products of three or more gamma matrices are performed during
the matching procedure. Therefore, all evanescent structures have to be explicitly defined as
part of the Green basis to ensure a correct matching. These operators are then reduced to the
physical basis by means of the redundancies of the EFT model (that have to be provided by
the user). Moreover, the evanescent structures generated at tree level during this reduction, as
explained in Section 2.4, have to be compensated by a shift of the coefficients in the physical
basis given by their loop insertions in the EFT. Matchmakereft does not currently support
this calculation in general but we include the shifts in the Warsaw basis as computed in [33].
We plan, however, to automatize this calculation in the future (see Section 3.7).

As an example, we provide the user with the complete Green’s basis for the SMEFT
at dimension 6 of Appendix B, that extends the basis of [63] with the operators that
generate evanescent structures, as needed for the matching with matchmakereft of general
theories with renormalizable couplings. Non-renormalizable theories can be matched also with
matchmakereft but an extension of the basis with a larger number of gamma matrices in
four-fermion operators would be needed. Similarly, if bosonic evanescent operators appear in
the process of matching a specific UV model they would have to be included in the EFT basis.

3.1.4 Dealing with γ5

It is well known that using dimensional regularization in chiral theories can lead to inconsistent
results, due to γ5 being a strictly four-dimensional object. In particular, traces of γ5 and six
or more gammas are ambiguous, in the sense that ciclycity of the trace is lost and different
starting points would lead to different results at O(ϵ). One approach to the problem is to give
up the (anti)commutation relations of γ5, which allows to have a consistent definition of γ5

and recover ciclycity, in the so-called Breitenlohner-Maison/t’Hooft-Veltman (BMHV) scheme
[82]. However, besides being computationally more involved, gauge invariance is broken and
has to be recovered by the addition of some local counterterms [83, 84].

The other approach, called Naive Dimensional Regularization (NDR), consists of using
a anti-commuting γ5 at the cost of introducing finite ambiguous terms whenever one of the
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aforementioned traces rises in a divergent diagram. This is a problem, in particular, for the
matching of extensions of the SM into the SMEFT, since these kind of traces can appear
already at dimension six when computing amplitudes for the operators in classes X3, X2H2.

Limiting ourselves, at first, to the matching or renormalizable UV models to the SMEFT
at one loop, the problematic cases are, in practice, only a few. First, in order to have a trace at
one loop, the diagram cannot have external fermions.x Moreover, the ambiguity is proportional
to the fully antisymmetric ϵµνρσ tensor, so it can only contribute to one of the few CP violating
bosonic operators of the SMEFT, with two or three field strength tensors. Therefore, we need
two or three external gauge bosons. In order to have a trace with at least 6 γ-matrices there
have to be four or three fermionic propagators, respectively. Consequently, we only need to
worry about boxes contributing to H†HXµνX̃

µν type operators or triangles contributing to
Xµ
νX

ν
ρ X̃

µ
ρ . Triangle diagrams contributing to Xµ

νX
ν
ρ X̃

µ
ρ , with heavy fermions running in the

loop, are however non-ambiguous, because there are no γ5’s involved in the vertices; all heavy
fermions have to be vector-like. Triangle diagrams with only light particles are ambiguous,
but they do not contribute to the matching. These ambiguities are fixed by the anomaly
cancellation mechanism that we assume any EFT has built in.

Next, let us consider the box diagrams contributing to H†HXµνX̃
µν . There are four internal

fermionic propagators, of which at least one has to correspond to a heavy particle in the
UV model. As mentioned above, these traces have ambiguous and non-ambiguous parts. The
unambiguous part can be computed in any γ5-scheme. The ambiguous part is proportional
to d− 4 and therefore only contributes if it multiplies the singularity of the integral. These
singularities can be of two types: UV singularities emerging from the UV structure of the full
theory, and IR (spurious) singularities that are generated by the hard region expansion. The
latter coincide with the UV singularities of the EFT, as the soft region of the UV amplitude
is, by definition, the EFT amplitude. Moreover, since we are assuming a renormalizable UV
theory, the maximum possible number of γ-matrices in these diagrams is six, which means
that the terms in the numerator of such integrals with mass insertions have a lower number of
γ’s and are therefore unambiguous.

These box integrals have generically the following structure, ignoring couplings and group
theory factors:

Iµν ∼
∫︂
k
Tµ1...µ4µν

4∏︂
i=1

(k + qi)µi

(k + qi)2 −m2
i

, (3.11)

where
∫︁
k ≡

∫︁ ddk
(2π)d , and Tµ1...µ4µν denotes a trace with an odd number of γ5 insertions and six

γ’s, e.g.:
Tr[γµ1γ5γµ2γµγµ3γ5γνγµ4γ5]. (3.12)
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Expanding in the hard region expansion and performing tensor reduction we get:

Iµν ∼
∫︂
k
Tµ1...µ4µν

1∏︁4
i=1(k2 −m2

i )k4 g
µ1µ2µ3µ4

d(d+ 2) (1 +
∑︂
i

q2
i

k2 −m2
i

) + k6 gµ1µ2µ3µ4ρσ

d(d+ 2)(d+ 4)
∑︂
i≤j

4qρi qσj
(k2 −m2

i )(k2 −m2
j )

−2k4∑︂
i,m

qµi
i q

ρ
m

g{µ̂i}ρ

d(d+ 2)
1

k2 −m2
m

+
∑︂
i<j

k2 g
{µ̂i,µ̂j}

d
qµiqµj


∼
∫︂
k
Tµ1...µ4µν

gµ1µ2µ3µ4

d(d+ 2)
k4∏︁4

i=1(k2 −m2
i )

+
∫︂
k
Tµ1...µ4µν

k2∏︁4
i=1(k2 −m2

i )
1

d(d+ 2)gµ1µ2µ3µ4
∑︂
i

q2
i

(︄
1 + m2

i

k2 −m2
i

)︄
+ gµ1µ2µ3µ4ρσ

(d+ 4)
∑︂
i≤j

4qρi qσj
∏︂
l=i,j

(︄
1 + m2

l

(k2 −m2
l )

)︄

−2
∑︂
i,m

qµi
i q

ρ
mg
{µ̂i}ρ

(︄
1 + m2

m

k2 −m2
m

)︄
+
∑︂
i<j

(d+ 2)g{µ̂i,µ̂j}qµiqµj

 , (3.13)

where {µ̂i} = µjµkµr with j, k, r ̸= i, and {µ̂iµ̂j} = µkµr with k, r ̸= i, j.
The first term, of O(q0), is UV divergent. However, it does not lead to ambiguities, since

gµ1µ2µ3µ4 makes the γ5-dependent part of the trace vanish. The rest of the terms, of order O(q2),
are UV finite, but they could be IR singular depending on the number of heavy propagators.
For two, three or four heavy propagators, there is no singularity, but for just one heavy
propagator (and three light ones) we do have an IR singularity.

Therefore, we conclude that ambiguous contributions from γ5-odd traces in box integrals
can only be present in diagrams with one heavy and three light propagators. They appear as
a product of the ambiguous (d− 4) coefficient of the trace multiplying a 1/ϵ IR divergence
resulting from the hard region expansion. Notice that, since these divergences correspond to
the UV poles of the EFT, this ambiguous contribution will cancel during one-loop calculations
in the EFT as long as the same reading point for the trace is used in the UV and the EFT.
We would like however to remain within the naive anti-commuting γ5 scheme, without fixing a
reading point, when computing traces in matchmakereft. To this end, we would like to fix the
ambiguous contributions of the γ5-odd traces in box integrals with one heavy massive fermion
a posteriori. Considering that the Wilson Coefficient we are trying to match must be real
(all operators of the type H†HXµνX̃

µν are hermitian), any contribution from γ5-odd traces,
being imaginary, must be multiplied by a purely imaginary product of couplings of the full
theory. But, in the case that leads to ambiguities, namely when the UV theory has Yukawa-like
terms between the Higgs doublet, one heavy and one SM fermion, the corresponding Yukawa
couplings in the amplitude are complex conjugates of each other, by virtue of the hermiticity
of the UV Lagrangian. Consequently, the product of all couplings is real and, therefore, the
γ5-odd contributions are purely imaginary. They can be set to zero by hand, at the end of the
computation. Note that this does not imply that the ambiguous contributions are zero: it is
the sum of ambiguous and non-ambiguous traces that are set to zero.

This procedure also works if the effective theory is not the SMEFT. In such cases, more
than one scalar field might be present, allowing for non-hermitian operators of the type
ϕ†1ϕ2XµνX̃

µν . The constraint that the corresponding Wilson coefficient is real does not apply
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3.2 Model creation

anymore, but in this case the Wilson Coefficient of this operator should equal the complex
conjugate of the Wilson Coefficient of the hermitian conjugate operator ϕ†2ϕ1XµνX̃

µν . This is,
again, enough to remove the ambiguities.

This ambiguity problem also appears when, following the prescription in [33], one computes
EFT loops of evanescent operators in order to trade them for shifts of the physical basis
coefficients. In this same work it is shown that it is consistent to apply NDR in this calculation
as long as the same reading point is fixed for problematic traces in amplitudes of evanescent
operators and one-loop amplitudes in the EFT. We adopt their convention and express our
results, when there is a shift of the Warsaw basis coefficient, in terms of a reading point
parameter xRP.

3.1.5 Matching results

After the calculation of the amplitudes, each output is written in two files, factorizing the gauge
structure from the kinematic structures. Then, we match the tree level EFT amplitude to an
arbitrary UV amplitude, solving for the Wilson Coefficients in terms of generic coefficients,
as it was explained in Section 2.5. This process is performed the first time an EFT model
is matched and the result is stored internally. Next, these generic coefficients are replaced
by their specific values obtained from the tree and one-loop amplitudes of the UV model.
This yields the first set of results provided by matchmakereft, the Wilson Coefficients of the
Green’s basis at tree level and one loop. Then we perform a canonical normalization of this
basis, which conforms the second set of results. Finally, the matching is reduced to a physical
basis as defined by the user (see Section 3.3 for details). Results at all three levels (Green’s
basis with non-canonical kinetic terms, canonically normalised Green’s basis and physical
basis) are reported by matchmakereft together with the corresponding renormalization of the
gauge couplings as fixed by gauge boson renormalization in the BFM. If running in RGEmaker

mode, matchmakereft automatically computes the beta functions for all the WCs of the EFT
model.

Our use of the off-shell matching approach introduces a large degree of kinematic redundancy
which, in addition to the explicit gauge redundancy in gauge theories due to the use BFM,
provide a very powerful mechanism to cross-check the consistency of our results. Matchmakereft

checks that all kinematic configurations and gauge directions are correctly matched, which
in practice consists on checking whether the solution found is indeed a solution of the whole
system of equations. If any of this checks is not fulfilled, matchmakereft will raise a warning
and provide some extra information that can be useful to debug the problem (see Section 3.2).

3.2 Model creation

The creation of models in matchmakereft relies on the explicit input from the user. In the case
of renormalizable theories with new fermions and scalars, it can be performed automatically
by the Mathematica package SOLD (see Chapter 4). However, operators of mass dimension
higher than four are not supported yet. Thus, effective theories have to be implemented with
the greatest care, as this step is the most likely culprit in case of problems with the matching
calculation.
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3. Automatic one-loop matching: Matchmakereft

3.2.1 Required files

Matchmakereft needs some different types of files with all the relevant information to create a
model. The installation of matchmakereft comes with a number of sample models that can
be obtained with the command copy_models (see Section 3.3), that the user can use to check
more details on how to implement new models. SOLD can also be used to create most of these
files automatically for renormalizable theories. The different types of files are the following:

• Model files (compulsory): one or more files modfile1.fr, ..., modfilen.fr that define
the model in FeynRules format. The last one of the list during the creation of the model
(see below) will determine the name of the matchmakereft model, which is defined as
modelfilen_MM, and all the extra files need to have this same name. The Lagrangian
has to be defined as Ltot. Otherwise, the model will not be created.

• Gauge information file (compulsory only if gauge groups are present): a file called
modfilen.gauge with the definition of all the gauge functions, including structure
constants, group generators in different representations and Clebsch-Gordan coefficients,
appearing in the model (see below for more information). The user can choose any gauge
basis of interest but they are responsible for the consistency of the chosen basis. The use
of SOLD to generate this file is particularly efficient, specially in the case of exotic gauge
representations.

• Symmetry file (optional): a file called modfilen.symm that indicates possible flavor
symmetries in the parameters of the model. This is compulsory in the EFT model
if flavor symmetries are present. This file has to include a Mathematica list called
listareplacesymmetry in which the symmetries are given in the form of replacement
rules. As an example we show the case of the symmmetries of the Wilson coefficient
of the Weinberg operator (denoted by alphaWeinberg[i,j]=alphaWeinberg[j,i])
and the four-lepton operator Oℓℓ = ℓ̄iγ

µℓj ℓ̄kγµℓl (denoted by alphaOll[i,j,k,l]=

alphaOll[k,l,i,j]):
1 listareplacesymmetry =
2 {
3 alphaWeinberg [i_ , j_] -> alphaWeinberg [j, i],
4 alphaOll [i_ , j_ , k_ , l_] -> alphaOll [k, l, i, j]
5 }

Note that the symmetries present on this file should be symmetries of the d-dimensional
Lagrangian; symmetries only holding in four dimensions should not be included in this
list.

• Redundancy file (compulsory for EFT models): a file called modfilen.red including a
list of replacement rules with the redundancies, expressing the Wilson Coefficient of a
physical basis in terms of the ones in the Green’s basis. It can be empty if no redundancies
are needed (if the physical and Green’s bases coincide or if one just wants the results in
the Green’s basis).

• Hermiticity properties file: complex conjugation provides extra cross-checks of the
correctness of the calculation in matchmakereft. For that reason it is important to
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3.2 Model creation

provide the information of which WCs have special (anti)hermiticity properties. This
can be provided by the user through a file modfilen.herm including a list called
listahermiticity, indicating those WCs whose hermitian conjugate can be expressed
in terms of the original coefficient. As an example, for the case of the hermitian operator
(O(1)

Hq)ij = H†i
↔
DµHℓ̄iγ

µℓj , its Wilson coefficient, denoted alphaOHq1[i,j] satisfies
alphaOHq1bar[i,j]=alphaOHq1[j,i]. This relation is provided using the hermiticity
file as follows:

1 listahermiticity = {
2 alphaOHq1bar [i_ ,j_]-> alphaOHq1 [j,i]
3 }

3.2.2 Gauge structure

Matchmakereft is especially efficient when the matching is performed in the unbroken phase
of gauge theories as it keeps the gauge structure of the amplitudes completely symbolic,
replacing the explicit values only at the end of the calculation. When a model is created,
the name of all gauge functions, including structure constants, generators in different
representations and Clebsh-Gordan coefficients cannot coincide with any function already
present in Mathematica or FeynRules. Structure constants and generators do not have to be
defined as FeynRules parameters but Clebsch-Gordan coefficients do. The numerical values of
these gauge functions have to be provided in the modfilen.gauge file including a mathematica
list called replacegaugedata that consists on a list of substitutions in the form of Mathematica

sparse arrays. As a simple example, the SU(2)L gauge group can be defined as follows in one
of the .fr files:

1 M$GaugeGroups = {
2 SU2L == {
3 Abelian -> False ,
4 CouplingConstant -> g2 ,
5 GaugeBoson -> Wi ,
6 StructureConstant -> fsu2 ,
7 Representations -> {{Ta ,SU2D }}
8 }
9 },

where we have named the structure constant symbol and indicated one representation with
generator symbol Ta and index definition SU2D. Note that the adjoint representation does not
need to be explicitly defined because it is defined by the structure constants and the definition
of the corresponding gauge bosons, which in this case reads:

1 M$ClassesDescription = {
2 V[2] == {
3 ClassName -> Wi ,
4 SelfConjugate -> True ,
5 Indices -> {Index[SU2W ]},
6 Mass -> 0,
7 FullName -> "light"
8 }
9 };
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3. Automatic one-loop matching: Matchmakereft

A few comments are in order about the example above. First, we set the mass to zero because we
are in the unbroken phase of the SM. Second, we define physical fields in entire gauge multiplets,
rather than components (although it is actually possible to define also the field components
separately as the physical fields, which can be advantageous when creating complicated models
that take very long to generate in FeynRules). We also assign the FullName variable to
“light” (FullName->"light"). This is compulsory in matchmakereft; every particle has to be
defined with FullName equal to either "light" (and therefore to be kept in the EFT model)
or "heavy" (and then integrated out of the UV model).

The corresponding indices, either gauge or flavor ones (if present), have to be defined
with their respective finite ranges within the .fr files. As an example, we can define the
ones corresponding the the adjoint (SU2W) and fundamental (SU2D) representations of SU(2)L,
together with flavor indices for fermion generations (Generation), as follows:

1 IndexRange [Index[SU2W ]] = Range [3];
2 IndexRange [Index[SU2D ]] = Range [2];
3 IndexRange [Index[ Generation ]] = Range [3];
4 IndexStyle [SU2W ,n];
5 IndexStyle [SU2D ,l];
6 IndexStyle [Generation , fl];

Only massless particles can have flavor indices in the current version of matchmakereft

(1.1.0).
In order to illustrate how new particles with non-trivial quantum numbers and Clebsch-

Gordan coefficients can be defined we show here the implementation of a heavy scalar SU(2)L
triplet and the SM Higgs:

1 M$ClassesDescription = {
2 S[105] == {
3 ClassName -> tphi ,
4 SelfConjugate -> True ,
5 Indices -> {Index[SU2W ]},
6 Mass -> Mtphi ,
7 FullName -> "heavy",
8 QuantumNumbers -> {Y -> 0}
9 },

10

11 S[11] == {
12 ClassName -> Phi ,
13 Indices -> {Index[SU2D ]},
14 SelfConjugate -> False ,
15 Mass -> muH ,
16 FullName -> "light",
17 QuantumNumbers -> {Y -> 1/2}
18 }
19

20 };

where the new particle is defined as heavy and the SM Higgs is defined as light but also has
a non-vanishing mass. U(1) quantum numbers also have to be defined explicitly, but their
values can be symbolic. The only requirement is that U(1) invariance holds in all vertices even
with symbolic charges. The symbol used for the charge has to be defined as a parameter of
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the model. A trilinear coupling between the heavy scalar and two Higgs bosons, which has a
non-trivial gauge structure, would have a corresponding Clebsch-Gordan coefficients tensor
that has to be defined explicitly, like in the following example:

1 M$Parameters = {
2

3 C223 == {
4 ParameterType -> Internal ,
5 Indices -> {Index[SU2D],Index[SU2D],Index[SU2W ]},
6 ComplexParameter -> True
7 },
8

9 ...
10 }

The corresponding Lagrangian would read:
1 Ltot := Block [{ii ,jj ,nn},
2 2 C223[ii ,jj ,nn] kappatphi tphi[nn] Phibar [ii] Phi[jj] + ...]

As mentioned above, the explicit values of the gauge functions are given in a file called
modfilen.gauge (assuming the last FeynRules model file is called modfilen.fr) which for
our example would have to contain the following information:

1 replacegaugedata = {
2 fsu2 -> SparseArray [Automatic , {3, 3, 3}, 0,
3 {1, {{0, 2, 4, 6}, {{2, 3}, {3, 2},
4 {1, 3}, {3, 1}, {1, 2}, {2, 1}}} ,
5 {1, -1, -1, 1, 1, -1}}],
6 Ta -> SparseArray [Automatic , {3, 2, 2}, 0,
7 {1, {{0, 2, 4, 6}, {{1, 2}, {2, 1},
8 {1, 2}, {2, 1}, {1, 1}, {2, 2}}} ,
9 {1/2 , 1/2, -I/2, I/2, 1/2, -1/2}}] ,

10 C223 -> SparseArray [Automatic , {2, 2, 3}, 0,
11 {1, {{0, 3, 6}, {{1, 3}, {2, 1}, {2, 2},
12 {1, 1}, {1, 2}, {2, 3}}} ,
13 {1/2 , 1/2, -I/2, 1/2, I/2, -1/2}}]}

where we have implemented the usual definitions, fsu2[i, j, k] = ϵijk, Ta[a, i, j] = σaij/2 and
C223[i, j, a] = σaij/2. The simplest way to define these matrices is by applying the Mathematica

function SparseArray to the corresponding arrays defined by the user and copying the output
to a file. Again, this file can also be automatically created by SOLD, as we will see in Chapter 4.

3.2.2.1 Background field method

Matchmakereft assumes that the BFM [85] is used when gauge theories are involved. Gauge
fields are split into background and quantum configurations, and the gauge is fixed only for
the latter. This implies that the effective action computed this way remains (background)
gauge invariant, which, in our terms, means that the result of matching the same coefficient
with different amplitudes must be the same. Following the SU(2)L example, the associated
quantum and ghost fields have to be defined on top of the definition of Wi given above:

1 V[102] == {
2 ClassName -> WiQuantum ,
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3 SelfConjugate -> True ,
4 Indices -> {Index[SU2W ]},
5 Mass -> 0,
6 FullName -> "light"
7 },
8 U[1] == {
9 ClassName -> ghWi ,

10 SelfConjugate -> False ,
11 Indices -> {Index[SU2W ]},
12 Ghost -> Wi ,
13 QuantumNumbers -> { GhostNumber -> 1},
14 Mass -> 0,
15 FullName -> "light"
16 },
17 ...

and the Lagrangian involving Wi would be given by:
1 gotoBFM ={Wi[a__]->Wi[a]+ WiQuantum [a]};
2

3 Ltot :=
4 Block [{mu ,nu ,ii ,aa},
5 -1/4 (FS[Wi ,mu ,nu ,ii] FS[Wi ,mu ,nu ,ii])/. gotoBFM
6 -ghWibar [aa].DC[(DC[ghWi[aa],mu ]/. gotoBFM ),mu]
7 -DC[ WiQuantum [mu ,aa],mu] DC[ WiQuantum [nu ,aa],nu ]/2
8 ]

3.2.3 Defining an EFT model

As mentioned above, the EFT model has to be a light model (no heavy particles) and has to
include all independent operators forming a Green’s basis. The WCs in the EFT need to be
named alphaXXX, where XXX stands for an arbitrary number of alpha-numeric characters. The
amplitudes that matchmakereft computes are implicitly defined by the operators in the EFT.
In that sense, an EFT model does not need to include all the operators of a Green’s basis but
at least all the operators in a certain class or sector (same fields), including redundant and
evanescent ones. Matchmakereft then automatically generates a minimal set of amplitudes to
match these operators. Renormalizable operators, including kinetic and mass terms, also have
to be included in the EFT model in principle.

After computing the matching, matchmakereft checks that all off-shell kinematic
configurations and all gauge directions are correctly matched (see next section). In the event
of these checks not being satisfied, matchmakereft issues a warning and stores the relevant
information. This usually happens because there is a mistake in the definition of the models,
but this could happen because there are missing operators in the Green’s basis. In Section 3.4
we collect some common problems and possible solutions when running matchmakereft. When
doing the hard region expansion, structures of dimension equal or smaller to the highest
dimension of the operators appearing in the EFT will be generated, so all operators of smaller
dimensions (within the same class) have to be included. In their absence, the matching will
fail but the user can check that all problems appear in sectors that are of no interest for
them (for instance in lower-dimensional operators that have not been implemented). Also
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sometimes some amplitudes are not correctly matched due to the use of an anticommuting
γ5. Our proposed solution should be enough to ensure the correct results in the SMEFT and
similar EFTs, as we discussed in Section 3.1.4, but a warning is issued anyway and the relevant
information is stored so that the user can check if the solution is correct or not.

When interested in the matching results in a physical basis, the user has to provide the
corresponding expression to reduce the WCs of the Green’s basis into the ones of the physical
basis. This has to be implemented in the modfilen.red file. Let us consider the following
redundant operators in the SMEFT as an example:

OHD = (H†DµH)†(H†DµH), (3.14)

RBDH = (H†
↔
DµH)∂νBµν → g1OHD + . . . , (3.15)

R2B = −1
2(∂µBµν)(∂ρBρν)→ −

g2
1
2 OHD + . . . , (3.16)

where the → indicates an on-shell equivalence. These relations imply the following shift of the
coefficient in the physical basis:

alphaOHD→ alphaOHD + 2g1alphaRBDH− g2
1
2 alphaR2B, (3.17)

which should be implemented in the file modfilen.red as follows:
1 finalruleordered ={
2 alphaOHD ->alphaOHD + 2* alphaRBDH *g1 - ( alphaR2B *g1 ^2) /2,
3 ...
4 }

3.2.4 Protected keywords

The definition of models in matchmakereft is quite flexible, but there are a few keywords that
are protected and should be used only for their specific purpose. In general, all variables in
matchmakereft should be made of alphanumeric characters, without including any special
characters. The list of protected variables is the following:

• alpha. All WCs have to be defined as alphaXXX, with XXX an arbitrary string of
alphanumeric characters. Conversely, no other variable in the model can contain the
substring alpha. However, when computing the RGEs of an EFT the WCs in the UV
model can keep their original alphaXXX name (as in the EFT) and this will be changed
into WCXXX automatically.

• Ltot. The complete Lagrangian of the model has to be declared as Ltot and it should
not be used for anything else.

• Quantum. Since we use BFM, gauge bosons are split into a classical background and a quan-
tum excitation. The quantum excitation has to be defined by ClassName->VnameQuantum,
with ClassName->Vname the name of the classical counterpart.

• invepsilonbar. It denotes the dimensional regularization variable 1/ϵ̄ so it should not
be used explicitly in the definition of a model. Similarly, epsilonbar is used for ϵ̄.
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• Eps[] denotes the FeynRules Levi-civita tensor. When containing four indices,
matchmakereft interprets it as the Minkowskian (with +−−− metric signature) totally
antisymmetric tensor and should therefore not be used for the Euclidean one (if the
number of indices is different from four it can be used as the Euclidean one). In case
one needs to use the totally antisymmetric rank-4 tensor both with Minkowskian and
Euclidean signatures, the latter should be explicitly defined as a gauge function and its
numerical value defined in the corresponding modfilen.gauge file.

• ee[], dd[]. These are internally used to denote the totally antisymmetric tensor and
the Euclidean metric and they cannot be used in the model definition.

• onelooporder is a dummy variable to identify the one-loop order contribution.

• sSS is a dummy variable to identify the order in external momenta of a specific
contribution.

3.3 Matchmakereft usage

In this section, we explain how to use all the commands available in matchmakereft. An
updated version of the manual can be found, once matchmakereft is installed, in the directory
matchmakereft-location/matchmakereft/docs/ where matchmakereft-location is the
directory listed under Location when the command pip show matchmakereft is used or
the analogous location in Anaconda.

3.3.1 Installation

Matchmakereft is available both in the Python Package Index (PyPI) https://pypi.org/

project/matchmakereft/ and in the Anaconda Python distribution https://anaconda.

org/matchmakers/matchmakereft. If pip is installed in the system, matchmakereft can
be installed by just typing the following in a terminal:
> python3 -m pip install matchmakereft --user

or equivalently:
> pip install matchmakereft --user

Alternatively, if the distribution file has been directly downloaded from the repository, it can
be installed using:
> python3 -m pip install matchmakereft -x.x.x.tar.gz --user

where x.x.x corresponds to the version being installed.
The following command displays information about matchmakereft:

> pip3 show matchmakereft
Name: matchmakereft
Version : 1.1.0
Summary : Automated matching of general models onto general effective field

theories
Home -page: https :// ftae.ugr.es/ matchmakereft /
Author : Adrian Carmona , Achilleas Lazopoulos , Pablo Olgoso , Jose Santiago
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Author -email: adrian@ugr .es , lazopoulos@itp .phys.ethz.ch , pablolgoso@ugr .es ,
jsantiago@ugr .es

License : GNU General Public License GPLv3
Location : /Users/ usuario / Library / Python /3.9/ lib/ python /site - packages
Requires : colorama , requests , setuptools , tqdm , version -comparison , yolk3k
Required -by:

Once matchmakereft is already installed in the system, one can check for possible updates by
writing:
> pip install --upgrade matchmakereft --user

or uninstall it by typing:
> pip uninstall matchmakereft

For users employing Anaconda python distribution, matchmakereft can be installed using:
conda install -c matchmakers matchmakereft

Before running matchmakereft, however, some prerequisites are needed. These include
having Mathematica (version 10 or higher), FORM and QGRAF installed in the system, as well as
Python (3.5 or higher) and the FeynRules package. Moreover, matchmakereft’s executable
has to be included in the user path. See the manual for further details.

3.3.2 Matchmakereft commmand line interface

Matchmakereft can be run in two different ways. The same commands are available in both
running modes, although the syntax is slightly different on each of them. We will use the
command line interface (CLI) for the examples, as it is the most straight-forward way to use
matchmakereft. Once it is installed, we can access the CLI by typing on the terminal:
> matchmakereft
Checking for updates .
matchmakereft is up -to -date.

Welcome to matchmakereft v1 .1.0
Please refer to SciPost Phys. 12, 198 (2022) arXiv :2112.10787 when using this
code.
For documentation please check the manual in matchmakereft - location /
matchmakereft /docs/ manual .pdf

matchmakereft >

Inside the CLI tab-completion is available and all file paths can be absolute or relative.
The command help gives information on all available commands. The core commands in
matchmakereft CLI are:

➤ matchmakereft > test_installation

This command runs a number of minimal tests to check that matchmakereft has been
correctly installed. The process is verbose and provides information on what is being
computed. It takes about 6 minutes to complete in a core-i7@3.00 GHz laptop.

➤ matchmakereft > copy_models Location
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This command copies a number of sample models, including the complete baryon-number
conserving SMEFT at dimension six, in the directory Location (which can be . for the
current directory).

➤ matchmakereft > create_model modfile1 .fr ... modfilen .fr

This command creates a matchmakereft model called modfilen_MM from the FeynRules

model defined in one or more files with names modfile1.fr ... modfilen.fr, as
described in detail in Section 3.2. The matchmakereft model is created in the same
directory where modfilen.fr is present. Both relative and absolute paths can be given
as input. All models provided with the distribution, that can be obtained via the
copy_models command, that are extensions of the SM require calling also the file
UnbrokenSM_BFM.fr as the first file in when using this command. In Section 3.5.2 we
provide a specific example.

➤ matchmakereft > match_model_to_eft UVModelName EFTModelName

This command performs the complete tree-level and one-loop matching of a
matchmakereft UV model with name UVModelName onto a matchmakereft EFT
model with name EFTModelName. The result of the matching is written in a file called
MatchingResult.dat in the UVModelName directory. Any possible problems with the
matching are reported and stored in a file called MatchingProblems.dat under the
same directory.

As of version v1.1.0 there are two optional arguments for this function (and any
matchmakereft function that includes the calculation of amplitudes) that can be called
in arbitrary order:

❑ matchmakereft > match_model_to_eft --parallel

This computes the relevant amplitudes in parallel, using the available cores in the
computer.

❑ matchmakereft > match_model_to_eft --chunksize =xx

This option splits any amplitude with a number of diagrams larger than xx into
subprocesses with xx diagrams, whose results are combined once all of them have
been computed.

The result of the matching stored in MatchingResult.dat is a mathematica list called
MatchingResult with four entries and the following structure:

1 MatchingResult ={
2 {
3 {{ GreenTree , GreenTreeProblems },{ GreenLoop , GreenLoopProblems }},
4 {{ NormGreenTree , NormGreenTreeProblems },{ NormGreenLoop ,

NormGreenLoopProblems }},
5 { PhysTreeLoop },
6 { GaugeCouplingMatching }
7 }
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where GreenTree and GreenLoop stands for the tree level and one-loop matching in
the Green basis, respectively and GreenTreeProblems,GreenLoopProblems are filled if
problems were found in the process of impossing hermiticity as discussed in Section 3.1.4.
The second level with the Norm prefix includes the matching in the Green basis (again
separately for tree level and one-loop) after canonical normalization. The third level,
denoted PhysTreeLoop, consists of the matching in the physical basis in which the tree
level and one-loop contributions have been merged into a single expression (with the
dummy variable onelooporder identifying the one-loop contribution). If no physical
basis is defined by providing an empty modfilen.red file then the Green basis is used as
a physical basis. Finally, the fourth level, denoted as GaugeCouplingMatching, provides
the redefinition of the gauge couplings after matching as fixed by the corresponding
gauge boson canonical normalization in the background gauge.

The file MatchingProblems.dat provides partial information of the problems encountered
during the process of matching. It consists of a list with the following data: a number
denoting the loop order (plus one) at which the problem was encountered, the external
particles of the amplitude that was not correctly matched, and the result of these
amplitudes. Non-vanishing values of the amplitudes indicate contributions that could not
be matched by the EFT. At this point, all gauge information is lost and only kinematic
information is retained. This gives only partial information (we plan to provide more
detailed information in future versions of matchmakereft) but it can still be useful
to debug possible problems. As an example, it is common that models that involve
couplings proportional to γ5 report some problems, due to the ambiguous terms in
the anti-commuting γ5 scheme that matchmakereft uses. In this case all non-vanishing
amplitudes are proportional to ee[], as we will see in the example in Section 3.5.

➤ matchmakereft > match_model_to_eft_onlytree UVModelName EFTModelName

Identical to match_model_to_eft but only the tree level matching is computed. With
this feature, matchmakereft can be used as an automated basis translator, as one can
simply use the corresponding EFT in a different basis as UV model and the matching will
provide the complete translation between the two bases (see Section 3.5 for an explicit
example).

➤ matchmakereft > compute_rge_model_to_eft UVModelName EFTModelName

This command runs match_model_to_eft UVModelName EFTModelName in RGEmaker

mode (notice that the UV model has to be a light model) and then computes the beta
functions for the WCs of the EFT given the UV model. They are stored in a file called
RGEResult.dat under directory UVModelName. We define the beta function of a Wilson
Coefficient C as

β(C) = µ
dC
dµ . (3.18)

➤ matchmakereft > clean_model ModelName

Matchmakereft is designed for the maximal efficiency so that if a specific process has
been already computed it is not computed again. If for any reason the user wants to
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recreate the calculation of all the amplitudes this command should be invoked to clean
the previous calculations.

➤ matchmakereft > check_linear_dependence EFTModelName

Given a set of operators, defined as an EFT model in directory EFTModelName, this
command checks if they are off-shell linearly independent or not (in d dimensions). This
command is useful to find a Green’s basis, as sometimes the off-shell relations between
different operators are difficult to obtain analytically. If the set is not linearly independent
matchmakereft will provide the relations between the different WCs (see Section 3.5 for
an explicit example).

➤ matchmakereft > exit

This command exits the CLI.

For the sake of flexibility the following commands are also available to perform independently
some of the steps of the calculations:

➤ matchmakereft > match_model_to_eft_amplitudes UVModelName EFTModelName

This command is used to compute all the relevant amplitudes in the UV model and the
EFT, but no calculation of the WCs is done.

➤ matchmakereft > match_model_to_eft_amplitudes_onlytree UVModelName
EFTModelName

This command is identical to match_model_to_eft_amplitudes but performs only the
tree level calculation.

➤ matchmakereft > compute_wilson_coefficients UVModelName EFTModelName

This command should be run after the call to either match_model_to_eft_amplitudes

or match_model_to_eft_amplitudes_onlytree and it computes the WCs to complete
the matching.

3.3.3 Matchmakereft as a Python module

The python CLI described in the previous section provides an interactive experience to the user.
However, matchmakereft can be also run by importing matchmakereft into a python script,
a iPython shell or a Jupyter notebook as a module and then running the same commands as
in the CLI adding the parameters of the corresponding function as a string. As an example,
the commands to create a model stored in model UVmodel.fr and to match it to the EFT
stored in directory EFT_MM (which we assume has been already created) are given by:

1 from matchmakereft .libs. mm_offline import *
2 create_model (" UVmodel .fr")
3 match_model_to_eft (" UVmodel_MM EFT_MM ")

All other commands in the CLI are also available to use as functions in a script that
imports matchmakereft.
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3.4 Troubleshooting in matchmakereft

Matchmakereft provides a significant number of cross-checks that usually catch problems
with the installation or with the definition of the models. When a problem is encountered,
matchmakereft tries to provide a useful warning message that can be used to figure out
the origin of the problem. If the user encounters a problem that cannot be solved from the
information provided by matchmakereft we encourage them to check the troubleshooting
section in the latest matchmakereft manual and the Gitlab matchmakereft issue tracker
(https://gitlab.com/m4103/matchmaker-eft/-/issues) to see if the problem has been
encountered by other users and a solution is available. If no solution can be found, the issue
tracker should be used to pose questions to the matchmakereft developers or to file possible
bugs.

Most of the times an unsuccessful matching is due to an error in the definition of the
model(s). Some common pitfalls are:

• The name for the complete Lagrangian of the model has to be Ltot. Using a different
name results in matchmakereft not creating the model properly.

• Operators badly defined in FeynRules (for instance, with indices not properly contracted).
This results in wrong Feynman rules that lead to an incorrect matching.

• Model generation takes too long. This can happen with complicated models, in particular
with effective operators of high mass dimension. As an example, the generation of the
SMEFT model can easily take more than 30 minutes in a core-i7@3.00 GHz laptop. In
this case it is useful to compute the Feynman rules directly with FeynRules to check
that the model does not have any obvious problems. Also sometimes expanding in the
gauge components can significantly speed up model creation (at the expense of a reduced
gauge degeneracy and therefore a smaller set of cross-checks).

• QGRAF not running correctly. This could happen when vertices with a larger number of
particles than the limit set in QGRAF are present. The solution is to modify correspondingly
the limit in the QGRAF source and compile it again.

• FORM not running correctly. This is normally due to variables not being correctly defined
(again due to an incorrect implementation of the model). Running directly with FORM

the offending file can give hints on what is happening.

• FORM taking too long to run. Amplitudes with many external legs usually involve a very
large number of diagrams that can take a long time to compute. The simplest solution is
to not include the corresponding operators in the EFT model if the user is not interested
in their matching (in the SMEFT case at dimension six the operator OH = (H†H)3 is
usually the one that takes the longest to be matched). Other solution would be to use
the parallel and chunksize options to reduce the running time of the process.

• All amplitudes are computed but the matching is unsuccessful. This can be due to
a number of reasons, the most common ones being: the WCs of the EFT model or
the couplings in the UV model have some symmetry properties that have not been
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implemented in the corresponding modfilen.symm file, the hermiticity properties of the
couplings in the UV model have not been properly defined, either in the definition of
the model itself or in the corresponding modfilen.herm file, there are some missing
operators in the Green’s basis of the EFT model...

3.5 Physics applications

A preliminary version of matchmakereft had already been used in a number of physical
applications [12, 71, 86, 65, 87–89] even before its release, and has currently been used in some
works ever since (see [90–92] for some examples). In this section we list some examples of the
applications of matchmakereft.

3.5.1 Cross-checks

As we have emphasized, the large redundancy inherent in the off-shell matching in the BFM
that we use gives us confidence on the correctness of the results computed with matchmakereft.
Nevertheless we have tested matchmakereft against some of the few available complete one-
loop matching results in the literature. We have found complete agreement except when
explicitly described. The list of models we have compared includes:

• RGEmaker mode:

– Complete RGEs for the ALP-SMEFT up to mass dimension-5 as computed in [12].
Exact agreement was found up to a typo in the original reference.

– RGEs for the purely bosonic and two-fermion operators in the Warsaw basis [27] as
computed in [68–70] and implemented in DSixTools [93, 73]. Complete agreement
was found.

• Matching mode:

– Scalar singlet. The complete matching up to one-loop order of an extension of
the SM with a scalar singlet was recently completed in [94], after several partial
attempts [41, 95]. We have found complete agreement with the results in [94].

– Type-I see-saw model, as computed in [96]. Complete agreement was found.

– Scalar leptoquarks, as computed in [63]. We have found some minor differences that
we are discussing with the authors.

– Charged scalar electroweak singlet, as computed in [97]. We agree with the result
except for a sign in Eqs. (4.14), the terms with Pauli matrices in (4.15), (B.4) and
(B.5) (the latter is the culprit of the opposite sign in terms with Pauli matrices)
and a factor of 2 in Eq. (4.17) and of 4 in (B.7). We have contacted the authors
about these differences.

– Some partial cross-checks have been performed against the results in [98] with full
agreement.
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3.5.2 Complete one-loop matching of a new charged vector-like lepton
singlet

In this section we provide the complete tree-level and one-loop matching of an extension of the
SM with a new electroweak singlet vector-like lepton E of hypercharge −1. The Lagrangian of
this model is given by:

L = LSM + Ē(i /D −ME)E −
[︁
λ̃iℓ̄iHER + h.c.

]︁
, (3.19)

where i denotes a SM flavor index. See [99] for direct experimental limits on such an extension
of the SM.

This model is included in the distribution of matchmakereft and can be obtained via
the copy_models command. Once the model is downloaded, and inside the corresponding
directory, the following commands will generate the complete one-loop matching, including
the complete matching in the Green’s basis. We use the CLI as an example and replace the
output given by matchmakereft with ... ,
matchmakereft > create_model UnbrokenSM_BFM .fr VLL_Singlet_Y_m1_BFM .fr
...
matchmakereft > match_model_to_eft VLL_Singlet_Y_m1_BFM_MM

SMEFT_Green_Bpreserving_MM
...

Note that, due to the presence of γ5 matchmakereft will warn the user that some problems
are present and they are reported in the MatchingProblems.dat file. A close look at this
file will show that all the non-vanishing amplitudes are proportional to the ee[] symbol and
therefore they are indeed related to our γ5 prescription. As we argue in 3.1.4, the procedure
followed by matchmakereft guarantees the correct result in the SMEFT. Nevertheless we
prefer matchmakereft to give the warning to alert the user of the γ5 issue and the solution
adopted.

The non vanishing WCs in the Warsaw basis, including one-loop accuracy are given in the
next sections. In order to reduce clutter we only write explicitly flavor indices when necessary.
We use the following notation:

⌊λ̃λ̃∗⌋ ≡ λ̃iλ̃
∗
i , ⌊λ̃Mλ̃

∗⌋ ≡ λ̃iMij λ̃
∗
j , (3.20)

with Mij an arbitrary matrix with flavor indices. We also define:

LE ≡ log(µ2/M2
E). (3.21)

The tree level result agrees with the calculation in [100] (when taking into account the
different notation in the Yukawa coupling). The result also agrees with the one computed in
[45].
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3.5.2.1 SM couplings

The SM couplings receive the following (one-loop) corrections:

µ2
H =µ(0) 2

H + ⌊λ̃
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, (3.22)
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where the (0) superscript denotes the original parameters in the SM Lagrangian. All other
SM couplings receive no corrections. In the following we express our results in terms of the
physical SM couplings, the ones on the left hand side of Eqs. (3.22-3.27).
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3.5.2.2 Bosonic operators

Turning now to dimension 6 bosonic operators, we obtain the following non-vanishing WCs.
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All other bosonic operators do not receive any corrections up to one loop.

55



3. Automatic one-loop matching: Matchmakereft

3.5.2.3 Bi-fermion operators

Regarding operators in the Warsaw basis with two fermion fields, the non-vanishing
contributions in our model are the following.
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(αuH)ij = 1
16π2

1
M2
E

[︄(︄
2
3λ−

5g2
2

36 −
1
2⌊λ̃λ̃

∗⌋
)︄
⌊λ̃λ̃∗⌋+ 1

2⌊λ̃
∗
YeY

†
e λ̃⌋

+
(︄
−g

2
2
6 ⌊λ̃λ̃

∗⌋+ ⌊λ̃∗YeY †e λ̃⌋
)︄
LE

]︄
(Yu)ij , (3.43)

(αdH)ij = 1
16π2

1
M2
E

[︄(︄
2
3λ−

5g2
2

36 −
1
2⌊λ̃λ̃

∗⌋
)︄
⌊λ̃λ̃∗⌋+ 1

2⌊λ̃
∗
YeY

†
e λ̃⌋

+
(︄
−g

2
2
6 ⌊λ̃λ̃

∗⌋+ ⌊λ̃∗YeY †e λ̃⌋
)︄
LE

]︄
(Yd)ij , (3.44)

(αeH)ij = λ̃iλ̃
∗
k(Ye)kj
2M2

E

+ 1
16π2

1
M2
E

[︄(︄
2
3λ−

5g2
2

36 −
1
2⌊λ̃λ̃

∗⌋
)︄
⌊λ̃λ̃∗⌋(Ye)ij + 1

2⌊λ̃
∗
YeY

†
e λ̃⌋(Ye)ij

+
(︃

5λ− 14
16⌊λ̃λ̃

∗⌋
)︃
λ̃iλ̃
∗
k(Ye)kj + 37

24(Ye)ik(Y †e )klλ̃lλ̃
∗
m(Ye)mj −

1
4 λ̃iλ̃

∗
k(Ye)kl(Y †e )lm(Ye)mj

]︃
+ 1

16π2
1
M2
E

[︄
−g

2
2
6 ⌊λ̃λ̃

∗⌋(Ye)ij + ⌊λ̃∗YeY †e λ̃⌋(Ye)ij +
(︃

4λ− 3
4⌊λ̃λ̃

∗⌋
)︃
λ̃iλ̃
∗
k(Ye)kj

+ 3
4(Ye)ik(Y †e )klλ̃lλ̃

∗
m(Ye)mj

]︄
LE . (3.45)

3.5.2.4 Four-fermion operators

Finally, the following four-fermion operators receive non-vanishing WCs.

(α(1)
qq )ijkl =− 1

16π2
g4

1
270M2

E

δijδkl, (3.46)

(αuu)ijkl =− 1
16π2

8g4
1

135M2
E

δijδkl, (3.47)

(αdd)ijkl =− 1
16π2

2g4
1

135M2
E

δijδkl, (3.48)

(α(1)
ud )ijkl = 1

16π2
8g4

1
135M2

E

δijδkl, (3.49)

(α(1)
qu )ijkl =− 1

16π2
1
M2
E

[︄
4g4

1
135δijδkl + 1

18⌊λ̃λ̃
∗⌋(Yu)il(Y †u )kj

]︄
, (3.50)

(α(8)
qu )ijkl =− 1

16π2
1

3M2
E

⌊λ̃λ̃∗⌋(Yu)il(Y †u )kj , (3.51)

(α(1)
qd )ijkl = 1

16π2
1
M2
E

[︄
2g4

1
135δijδkl −

1
18⌊λ̃λ̃

∗⌋(Yd)il(Y †d )kj
]︄
, (3.52)

(α(8)
qd )ijkl =− 1

16π2
1

3M2
E

⌊λ̃λ̃∗⌋(Yd)il(Y †d )kj , (3.53)

(α(1)
quqd)ijkl = 1

16π2
1

3M2
E

⌊λ̃λ̃∗⌋(Yu)ij(Yd)kl, (3.54)
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(αℓℓ)ijkl = 1
16π2

1
M2
E

[︄
−g

4
1

30δijδkl + 25g2
1 + 11g2

2
288 (2δij λ̃kλ̃

∗
l )

−11g2
2

144 (δilλ̃kλ̃
∗
j + δjkλ̃iλ̃

∗
l )−

1
8 λ̃iλ̃

∗
j λ̃kλ̃

∗
l + 3

16(λ̃iλ̃
∗
l (Ye)km(Y †e )mj + λ̃kλ̃

∗
j (Ye)im(Y †e )ml)

]︄

+ 1
16π2

1
M2
E

[︄
g2

1 + g2
2

48 (2δij λ̃kλ̃
∗
l )−

g2
2

24(δilλ̃kλ̃
∗
j + δjkλ̃iλ̃

∗
l )

+ 1
8(λ̃iλ̃

∗
l (Ye)km(Y †e )mj + λ̃kλ̃

∗
j (Ye)im(Y †e )ml)

]︄
LE , (3.55)

(αee)ijkl =− 1
16π2

2g4
1

15M2
E

δijδkl, (3.56)

(αℓe)ijkl = 1
16π2

1
M2
E

[︄
−2g4

1
15 δijδkl + 25g2

1
72 λ̃iλ̃

∗
jδkl −

1
6⌊λ̃λ̃

∗⌋(Ye)il(Y †e )kj −
3
8 λ̃iλ̃

∗
j (Y †e )km(Ye)ml

]︄

+ 1
16π2

1
M2
E

[︄
+g2

1
12 λ̃iλ̃

∗
jδkl −

1
4 λ̃iλ̃

∗
j (Y †e )km(Ye)ml

]︄
LE , (3.57)

(α(1)
ℓq )ijkl = 1

16π2
1
M2
E

[︄
g4

1
45δijδkl −

25g2
1

432 λ̃iλ̃
∗
jδkl + 3

16 λ̃iλ̃
∗
j

(︂
(Yd)km(Y †d )ml − (Yu)km(Y †u )ml

)︂]︄

+ 1
16π2

1
M2
E

[︄
−g

2
1

72 λ̃iλ̃
∗
jδkl + 1

8 λ̃iλ̃
∗
j

(︂
(Yd)km(Y †d )ml − (Yu)km(Y †u )ml

)︂]︄
LE , (3.58)

(α(3)
ℓq )ijkl = 1

16π2
1
M2
E

[︄
−11g2

2
144 λ̃iλ̃

∗
jδkl + 3

16 λ̃iλ̃
∗
j

(︂
(Yd)km(Y †d )ml + (Yu)km(Y †u )ml

)︂]︄

+ 1
16π2

1
M2
E

[︄
−g

2
2

24 λ̃iλ̃
∗
jδkl + 1

8 λ̃iλ̃
∗
j

(︂
(Yd)km(Y †d )ml + (Yu)km(Y †u )ml

)︂]︄
LE , (3.59)

(αeu)ijkl = 1
16π2

8g4
1

45M2
E

δijδkl, (3.60)

(αed)ijkl =− 1
16π2

4g4
1

45M2
E

δijδkl, (3.61)

(αqe)ijkl = 1
16π2

2g4
1

45M2
E

δijδkl, (3.62)

(αℓu)ijkl = 1
16π2

1
M2
E

[︄
4g4

1
45 δijδkl −

25g2
1

108 λ̃iλ̃
∗
jδkl + 3

8 λ̃iλ̃
∗
j (Y †u )km(Yu)ml

]︄

+ 1
16π2

1
M2
E

[︄
−g

2
1

18 λ̃iλ̃
∗
jδkl + 1

4 λ̃iλ̃
∗
j (Y †u )km(Yu)ml

]︄
LE , (3.63)

(αℓd)ijkl = 1
16π2

1
M2
E

[︄
−2g4

1
45 δijδkl + 25g2

1
216 λ̃iλ̃

∗
jδkl −

3
8 λ̃iλ̃

∗
j (Y

†
d )km(Yd)ml

]︄

+ 1
16π2

1
M2
E

[︄
g2

1
36 λ̃iλ̃

∗
jδkl −

1
4 λ̃iλ̃

∗
j (Y

†
d )km(Yd)ml

]︄
LE , (3.64)

(αℓedq)ijkl = 1
16π2

1
3M2

E

⌊λ̃λ̃∗⌋(Ye)ij(Y †d )kl, (3.65)

(α(1)
ℓequ)ijkl =− 1

16π2
1

3M2
E

⌊λ̃λ̃∗⌋(Ye)ij(Yu)kl. (3.66)
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3.5.3 Basis translation

Given a specific EFT, defined by its field content and symmetries, the choice of a basis of
operators (either Green or physical) is not unique. Different bases are useful for different
purposes and it is very useful to have a systematic way to translate the results from one basis
to another. The Rosetta code [101] can be used to translate between popular physical bases
for the dimension six SMEFT. Nevertheless, matchmakereft provides a more general approach,
applicable to different EFTs and any two bases (not necessarily physical). This is done by
performing a tree-level matching with the new basis as a UV model and the old one as an
EFT.

As a trivial example we consider the following two operators that appear in the one-loop
integration of a scalar singlet as shown in [95]:

OR =(H†H)(DµH
†DµH)

→2λOH + 1
2OH□ + 1

2
(︂
(Yu)ij(OuH)ij + (Yd)ij(OdH)ij + (Ye)ij(OeH)ij + h.c.

)︂
, (3.67)

OT =1
2(H†

↔
DµH)2 → −2OHD −

1
2OH□, (3.68)

where the arrow denotes their expression in terms of the corresponding operators in the Warsaw
basis.

When using matchmakereft to match at tree level a UV model consisting of the SM plus
the two operators in the new basis, OR and OT , onto the SMEFT in the basis described in
Appendix B we obtain the following tree-level matching in the physical basis (we use β for the
WCs of the operators in the new basis) :

αH =2λβR, αHD =− 2βT , αH□ =1
2(βR − βT ), (3.69)

αuH =1
2βR(Yu)ij , αdH =1

2βR(Yd)ij , αeH =1
2βR(Ye)ij , (3.70)

which exactly reproduce the above equations. This is of course just a minimal example to show
the application of matchmakereft to basis translation but complete bases (both Green and
physical) can be translated in an automated way using this procedure.

3.5.4 Off-shell operator independence

The process of construction of a Green’s basis, as reviewed in Section 2.3, can be sometimes
quite cumbersome in practice, in particular as the number of fields and indices increases.
Matchmakereft can be used in this case to check if the operators defined in the EFT are
linearly independent in d dimensions for arbitrary off-shell kinematics or not. This can be
done, as explained in Section 2.5, by checking the rank of the system of equations obtained by
matching the EFT to all vanishing amplitudes. If several operators are linearly dependent, the
rank will be smaller than the number of operators and matchmakereft will solve the system
of equations to provide the relationship of the list of the dependent operators in terms of
a particular set of independent ones. In order to do this one has to define an EFT with all
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the relevant operators (including possibly linearly dependent ones) and run the command
check_linear_dependece EFTModel.

3.6 A minimal complete example

This section is devoted to illustrate many of the features of matchmakereft with a concrete
example involving two scalar fields: a light (but not massless) field ϕ and a heavy field Φ. Our
model is described by the Lagrangian:

L = 1
2(∂µϕ)2 − 1

2m
2
Lϕ

2 + 1
2(∂µΦ)2 − 1

2M
2
HΦ2 − λ0

4! ϕ
4 − λ2

4 ϕ
2Φ2 − κ

2ϕ
2Φ, (3.71)

which we want to match to an EFT without the heavy scalar, given by (up to dimension six):

LEFT = α4k
2 (∂µϕ)2 − α2

2 ϕ2 − α4
4! ϕ

4 − α6
6! ϕ

6 − α̃6
4! ϕ

3∂2ϕ− α̂6
2
(︂
∂2ϕ

)︂2
. (3.72)

This conforms a Green’s basis for the real (light) scalar field. Subsequently, the kinetic term
can be canonically normalized, and the redundant operators can be eliminated. Two of the
three operators of dimension six are redundant. We choose ϕ6 as the independent operator.
Using equations of motion we can readily find that:

ϕ3∂2ϕ→ −α2ϕ
4 − 1

3!α4ϕ
6, (3.73)(︂

∂2ϕ
)︂2
→ α2

2ϕ
2 + α2α4

3 ϕ4 + α2
4

36ϕ
6. (3.74)

Eliminating these operators from the Lagrangian would induce the shifts

α2 → α2 + α2
2α̂6 (3.75)

α4 → α4 − α̃6α2 + 4α2α4α̂6 (3.76)

α6 → α6 − 5α̃6α4 + 10α̂6α
2
4 (3.77)

The coupling κ of this model is a dimensionful coupling, and is expected to be parametrically
of the order of the heavy mass scale MH . Thus, κ/MH is of O(1) and is kept throughout the
matching procedure consistently.

The FeynRules file for the UV model, saved at two_scalars.fr, is shown below.
1 (* --- Contents of Feynrules file two_scalars .fr --- *)
2 M$ModelName = " two_scalars ";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[1] == { ClassName -> phiH , SelfConjugate -> True , Mass -> MH ,
6 FullName -> "heavy"},
7 S[2] == { ClassName -> phi , SelfConjugate -> True , Mass -> mL ,
8 FullName -> "light"}
9 };

10 (* ***** Parameters ***** *)
11 M$Parameters = {
12 MH == { ParameterType -> Internal , ComplexParameter -> False},
13 mL == { ParameterType -> Internal , ComplexParameter -> False},
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14 V == { ParameterType -> Internal , ComplexParameter -> False},
15 lambda0 == { ParameterType -> Internal , ComplexParameter -> False},
16 kappa == { ParameterType -> Internal , ComplexParameter -> False},
17 lambda2 == { ParameterType -> Internal , ComplexParameter -> False}
18 };
19 (* ***** Lagrangian ***** *)
20 Ltot := Block [{mu},
21 + 1/2 * del[phi ,mu] * del[phi ,mu] + 1/2 *del[phiH ,mu] * del[phiH ,mu]
22 - 1/2 * MH^2 * phiH ^2 - 1/2 * mL^2 * phi ^2
23 - lambda0 / 24 * phi ^4 - kappa / 2 * phi ^2 * phiH
24 - lambda2 / 4 * phi ^2 * phiH ^2
25 ];

Note that we use the keyword FullName to characterize each field as "heavy" or "light".
This is mandatory, as emphasized in Section 3.2, since it indicates matchmakereft which fields
have to be integrated out. Also note that all the parameters that are used in the Lagrangian,
masses as well as couplings, must be declared. In this example all parameters are real.

The FeynRules file for the EFT model, saved at one_scalar.fr, is:
1 (* --- Contents of Feynrules file for the EFT model one_scalar .fr --- *)
2 M$ModelName = " one_scalar ";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[2] == { ClassName -> phi , SelfConjugate -> True , Mass -> 0,
6 FullName -> "light"}
7 };
8 (* ***** Parameters ***** *)
9 M$Parameters = {

10 alpha4kin == { ParameterType -> Internal , ComplexParameter -> False},
11 alpha2mass == { ParameterType -> Internal , ComplexParameter -> False},
12 alpha4 == { ParameterType -> Internal , ComplexParameter -> False},
13 alpha6 == { ParameterType -> Internal , ComplexParameter -> False},
14 alpha6Rtilde == { ParameterType -> Internal , ComplexParameter -> False},
15 alpha6Rhat == { ParameterType -> Internal , ComplexParameter -> False}
16 };
17 (* ***** Lagrangian ***** *)
18 Ltot := Block [{mu ,mu2},
19 1/2 * alpha4kin * del[phi ,mu] * del[phi ,mu]
20 - 1/2 * alpha2mass * phi ^2
21 - alpha4 /24 * phi ^4
22 - alpha6 * phi ^6/720
23 - alpha6Rtilde /24 * phi ^3 * del[del[phi ,mu],mu]
24 - alpha6Rhat /2 * del[del[phi ,mu],mu] * del[del[phi ,mu2],mu2]
25 ];

Note that we have also included WCs (denoted by alphaXXX) also for the kinetic and
mass terms (squared), besides the rest of operators. In order for matchmakereft to perform
the reduction to the physical basis, we need to provide the set of relations that express the
redundant WCs in terms of the irreducible ones, as in Eq. (3.77). This has to be done in a
one_scalar.red file:

1 (* --- Contents of one_scalar .red --- *)
2 finalruleordered = {
3 alpha6 -> - alpha6Rtilde * alpha4 *5 + alpha6Rhat * alpha4 ^2 * 10 + alpha6 ,
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4 alpha4 -> alpha4 - alpha6Rtilde * alpha2mass + 4 * alpha6Rhat * alpha2mass *
alpha4 ,

5 alpha4kin -> alpha4kin ,
6 alpha2mass -> alpha2mass + alpha6Rhat * alpha2mass ^2
7 }

These rules are used at the end of the calculation, when both redundant and non-redundant
WCs have been matched and are known functions of the parameters of the UV theory. The
rules are therefore instructions on how to update the non-redundant WCs, to include the effect
of the redundant ones.

With these files prepared, since there is no gauge structure or further symmetries
in the model, we are ready to proceed with matching. In the matching directory,
where two_scalars.fr, one_scalar.fr and one_scalar.red are present, we can run
matchmakereft and enter the CLI. The first step is then to create the matchmakereft models,
that can be done by:
matchmakereft > create_model two_scalars .fr

with the following output:
Creating model two_scalars_MM . This might take some time depending on the
complexity of the model
Model two_scalars_MM created
It took 7 seconds to create it.

The model is now created in the directory two_scalars_MM. We proceed in the same way to
create the EFT model:
matchmakereft > create_model one_scalar .fr
Creating model one_scalar_MM . This might take some time depending on the
complexity of the model
Model one_scalar_MM created
It took 7 seconds to create it.

and now we can perform the matching calculation by using the match_model_to_eft command:
matchmakereft > match_model_to_eft two_scalars_MM one_scalar_MM

Once the process finishes, the results are stored in the UV model directory. The file
two_scalars_MM/MatchingProblems.dat contains troubleshooting information in case the
matching procedure failed. In our case it is an empty list, indicating no problems:

1 problist = {}

The matching results are stored in two_scalars_MM/MatchingResults.dat, as a Mathe-
matica file with a list of lists of replacement rules. The off-shell matching gives the following
results for the WCs of the Green’s basis. At tree level the non-vanishing contributions are,

α
(0)
2 = m2

L, (3.78)

α
(0)
4 = λ0 −

3κ2

M2
H

, (3.79)

α
(0)
6 = 45λ2κ

2

M4
H

, (3.80)

α̃
(0)
6 = 4κ2

M4
H

. (3.81)
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At one loop, keeping terms up to O
(︃
κ2n

M2n
H

m2
L

M2
H

)︃
, we get:

α
(1)
2 = − 1

16π2 (1 + LM )
(︄
κ2m4

L

M4
H

+ κ2m2
L

M2
H

+ 1
2λ2M

2
H + κ2

)︄
, (3.82)

α
(1)
4k = 1

16π2

(︄
5κ2m2

L

2M4
H

+ κ2

2M2
H

)︄
+ 1

16π2
κ2m2

L

M4
H

LM , (3.83)

α
(1)
4 = 1

16π2

(︄
48κ4m2

L

M6
H

+ 24λ2κ
2m2

L

M4
H

− 12λ0κ
2m2

L

M4
H

+ 18κ4

M4
H

+ 18λ2κ
2

M2
H

− 6λ0κ
2

M2
H

)︄
(3.84)

+ 1
16π2

(︄
36κ4m2

L

M6
H

+ 18λ2κ
2m2

L

M4
H

− 12λ0κ
2m2

L

M4
H

+ 12κ4

M4
H

+ 12λ2κ
2

M2
H

− 6λ0κ
2

M2
H

− 3λ2
2

2

)︄
LM ,

(3.85)

α
(1)
6 = 1

16π2M2
H

(︄
−1290κ6

M6
H

+ 720λ0κ
4

M4
H

− 1665λ2κ
4

M4
H

+ 360λ0λ2κ
2

M2
H

− 90λ2
0κ

2

M2
H

− 495λ2
2κ

2

M2
H

+ 15λ3
2

2

)︄
(3.86)

+ 1
16π2M2

H

(︄
−810κ6

M6
H

+ 540λ0κ
4

M4
H

− 945λ2κ
4

M4
H

+ 270λ0λ2κ
2

M2
H

− 90λ2
0κ

2

M2
H

− 270λ2
2κ

2

M2
H

)︄
LM ,

(3.87)

α̃
(1)
6 = 1

16π2M2
H

(︄
−107κ4

3M4
H

+ 9λ0κ
2

M2
H

− 77λ2κ
2

3M2
H

+ λ2
2

3

)︄

+ 1
16π2M2

H

(︄
−14κ4

M4
H

+ 2λ0κ
2

M2
H

− 16λ2κ
2

M2
H

)︄
LM , (3.88)

α̂
(1)
6 = − κ2

96π2M4
H

, (3.89)

where we define LM ≡ log( µ2

M2
H

). We can see in the equations above how the kinetic operator
receives a correction and therefore ϕ is no longer canonically normalized. A field redefinition is
needed to obtain a canonically normalized theory on which we can apply the corresponding
redundancies to go to the physical basis. Matchmakereft does these two processes (canonical
normalization and reduction to the physical basis) automatically. The resulting WCs in the
physical basis, up to one-loop order and O

(︃
κ2n

M2n
H

m2
L

M2
H

)︃
, read:

α2 = m2
L −

1
16π2

(︄
11κ2m4

L

3M4
H

+ 3κ2m2
L

2M2
H

+ 1
2λ2M

2
H + κ2

)︄
(3.90)

− 1
16π2

(︄
2κ2m4

L

M4
H

+ κ2m2
L

M2
H

+ 1
2λ2M

2
H + κ2

)︄
LM ,

α4 = λ0 −
4κ2m2

L

M4
H

− 3κ2

M2
H

(3.91)

+ 1
16π2

(︄
332κ4m2

L

3M6
H

− 80λ0κ
2m2

L

3M4
H

+ 149λ2κ
2m2

L

3M4
H

− λ2
2m

2
L

3M2
H

+ 25κ4

M4
H

− 7λ0κ
2

M2
H

+ 20λ2κ
2

M2
H

)︄

+ 1
16π2

(︄
60κ4m2

L

M6
H

− 16λ0κ
2m2

L

M4
H

+ 34λ2κ
2m2

L

M4
H

+ 16κ4

M4
H

− 6λ0κ
2

M2
H

+ 14λ2κ
2

M2
H

− 3λ2
2

2

)︄
LM ,
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α6 = 1
M2
H

(︄
60κ4

M4
H

− 20λ0κ
2

M2
H

+ 45λ2κ
2

M2
H

)︄

+ 1
16π2M2

H

(︄
−1560κ6m2

L

M8
H

+ 440λ0κ
4m2

L

M6
H

− 1635λ2κ
4m2

L

2M6
H

− 2320κ6

M6
H
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LM . (3.92)

Next, we will illustrate how to compute the RGE equations for both models. With this
purpose, we need first to create a new pair of FeynRules files for each model. Let us start
with the UV model, for which we will define a file rge_two_scalars_uv.fr that is the same
as two_scalars.fr but declaring here the heavy field phiH as "light":

1 S[1] == {ClassName -> phiH , SelfConjugate ->True , Mass ->MH ,
2 FullName ->"light"}
3

4 (* ***** Lagrangian ***** *)
5 Ltot := Block [{mu},
6 + 1/2 * del[phi ,mu] * del[phi ,mu]
7 + 1/2 *del[phiH ,mu] * del[phiH ,mu]
8 - 1/2 * MH^2 * phiH ^2
9 - 1/2 * mL^2 * phi ^2

10 -lambda0 /24* phi ^4
11 -kappa /2 *phi ^2* phiH
12 - lambda2 / 4 * phi ^2 * phiH ^2
13 ];

Next, we define the target model in a file called rge_two_scalars_eft.fr. It consists of an
EFT Lagrangian with the field phiH now considered as a light field:

1 (* --- Contents of rge_two_scalars_eft .fr --- *)
2 M$ModelName = " rge_two_scalars_eft ";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[1] == { ClassName -> phiH , SelfConjugate -> True , Mass -> 0,
6 FullName -> "light"},
7 S[2] == { ClassName -> phi , SelfConjugate -> True ,Mass -> 0,
8 FullName -> "light"}
9 };

10 (* ***** Parameters ***** *)
11 M$Parameters = {
12 alpha4kinphi == { ParameterType -> Internal , ComplexParameter -> False},
13 alpha4kinH == { ParameterType -> Internal , ComplexParameter -> False},
14 alpha2MH == { ParameterType -> Internal , ComplexParameter -> False},
15 alpha2ML == { ParameterType -> Internal , ComplexParameter -> False},
16 alpha4 == { ParameterType -> Internal , ComplexParameter -> False},
17 alphaV == { ParameterType -> Internal , ComplexParameter -> False},
18 alpha1 == { ParameterType -> Internal , ComplexParameter -> False},
19 alpha2 == { ParameterType -> Internal , ComplexParameter -> False}
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20 };
21 (* ***** Lagrangian ***** *)
22 Ltot := Block [{mu},
23 alphaV * phiH
24 +1/2 * alpha4kinphi * del[phi ,mu] * del[phi ,mu]
25 + 1/2 * alpha4kinH * del[phiH ,mu] * del[phiH ,mu]
26 - 1/2 * alpha2MH * phiH ^2
27 -1/2 * alpha2ML * phi ^2
28 - alpha4 / 24 * phi ^4
29 - alpha1 / 2 * phi ^2 * phiH
30 - alpha2 / 4 * phi ^2 * phiH ^2
31 ];

Note the presence of the tadpole term for the heavy scalar, that we will justify shortly. Also
note that we now have a WC also for the kinetic term of the Φ field.

All dimension four operators present in the model are physical, so a .red file is not needed
in this case. We can now create the two models with:
matchmakereft > create_model rge_two_scalars_uv .fr

matchmakereft > create_model rge_two_scalars_eft .fr

and then proceed to compute the RGEs using:
matchmakereft > compute_rge_model_to_eft rge_two_scalars_uv_MM

rge_two_scalars_eft_MM

As it happened before, we obtain an empty problem file MatchingProblems.dat, as well as a
MatchingResults.dat file inside the rge_two_scalars_uv_MM directory. In addition, another
file, RGEResult.dat, is written with the results for the beta functions of our UV model:

1 RGEResult = {
2 \[ Beta ][ alphaV ] -> -1/16*( kappa*mL ^2)/Pi^2
3 \[ Beta ][ alpha4kinphi ] -> 0,
4 \[ Beta ][ alpha4kinH ] -> 0,
5 \[ Beta ][ alpha2MH ] -> kappa ^2/(16* Pi ^2) +( lambda2 *mL ^2) /(16* Pi ^2) ,
6 \[ Beta ][ alpha2ML ] -> kappa ^2/(8* Pi ^2) +( lambda2 *MH ^2) /(16* Pi ^2) +
7 ( lambda0 *mL ^2) /(16* Pi ^2) ,
8 \[ Beta ][ alpha4 ] -> (3* lambda0 ^2) /(16* Pi ^2) +
9 (3* lambda2 ^2) /(16* Pi ^2) ,

10 \[ Beta ][ alpha1 ] ->( lambda0 *kappa)/(16* Pi ^2) + (kappa* lambda2 )/(4* Pi ^2) ,
11 \[ Beta ][ alpha2 ] -> ( lambda0 * lambda2 )/(16* Pi ^2) + lambda2 ^2/(4* Pi ^2)}

Let us now see how we can deal tadpole contributions, which will also justify the reason
for adding the αV Φ operator defined in line 23 of rge_two_scalars_eft.fr. The model we
are studying contains many tadpole contributions in 1lPI diagrams due to the presence of
the κϕ2Φ operator, that are accounted for during the matching procedure. These tadpoles
would vanish if the light field was massless, but they give a finite contribution otherwise.
However, the corresponding poles, which contribute to the beta functions of mL and κ

are disregarded during the RGE computation, since they do not belong to 1PI diagrams.
Nevertheless, there is an easy way to account for them. By adding the αV Φ term in the
Lagrangian of rge_two_scalars_eft.fr, we can match the divergence of the one-point
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function. Indeed, as we see from line 2 of RGEResult.dat, we have:

β(αV ) = − 1
16π2κm

2
L. (3.93)

We can then perform a shift in the field Φ→ Φ + V , with V = αV

M2
H

, to eliminate the tadpole
from the theory, which would modify the mass term for the light scalar, mL, and the κ coupling:

m̃2
L = m2

L + κV + 1
2λ2V

2 , κ̃ = κ+ λ2V. (3.94)

The beta functions we read from RGEResult.dat should be consequently modified, to account
for the tadpole pole:

δβ(m2
L) = β(κV ) = κ

M2
H

β(αV ) = − κ2

16π2
m2
L

M2
H

, (3.95)

δβ(κ) = β(λ2V ) = λ2
M2
H

β(αV ) = − κλ2
16π2

m2
L

M2
H

. (3.96)

The results of RGEResult.dat, including these contributions, read:

β(m2
L) = λ2M

2
H

16π2 + κ2

8π2 + λ0m
2
L

16π2 −
κ2

16π2
m2
L

M2
H

, (3.97)

β(M2
H) = κ2

16π2 + λ2m
2
L

16π2 , (3.98)

β(λ0) = 3λ2
0

16π2 + 3λ2
2

16π2 , (3.99)

β(κ) = λ0κ

16π2 + λ2κ

4π2 −
κλ2
16π2

m2
L

M2
H

, (3.100)

β(λ2) = λ2
2

4π2 + λ0λ2
16π2 . (3.101)

We can repeat the same procedure to obtain the RGEs of the EFT model. We create the
model via the following rge_one_scalar_uv.fr file

1 M$ModelName = " rge_one_scalar_uv ";
2 (* **** Particle classes **** *)
3 M$ClassesDescription = {
4 S[2] == { ClassName -> phi , SelfConjugate -> True ,Mass -> mL ,
5 FullName -> "light"}
6 };
7 (* ***** Parameters ***** *)
8 M$Parameters = {
9 mL == { ParameterType -> Internal , ComplexParameter -> False},

10 a4 == { ParameterType -> Internal , ComplexParameter -> False},
11 a6 == { ParameterType -> Internal , ComplexParameter -> False}
12 };
13 (* ***** Lagrangian ***** *)
14 Ltot := Block [{mu ,mu2},
15 1/2 * del[phi ,mu] * del[phi ,mu] - 1/2 * mL^2 * phi ^2
16 -a4 /24 phi ^4 - a6 * phi ^6/720
17 ];
18
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which contains the physical operators of the EFT model. Note that we have changed the names
of the couplings to something other than alphaXXX, although it is allowed and matchmakereft

automatically would have changed them to WCXXX. We also create rge_one_scalar_eft.fr

and rge_one_scalar_eft.red that are identical with one_scalar.fr and one_scalar.red

defined above. Once again, we can create the two models and run compute_rge_model_to_eft.
The result is:

β(α2) = α2α4
16π2 , (3.102)

β(α4) = 3α2
4

16π2 + α2α6
16π2 , (3.103)

β(α6) = 15α4α6
16π2 . (3.104)

We can now check whether the matching conditions and the RGE equations are consistent
with each other: if we match at µ = MH and we evolve all couplings using the RGEs of the
UV and the EFT model, to a lower scale Q, we should find the same expressions as when we
match directly at µ = Q. Let us check this explicitly in the case of the mass coefficient, α2.
The matching condition for α2, at scale µ = MH , gives, see Eq. (3.90),

α2(MH) = m2
L(MH)− 1

16π2

(︄
11κ2m4

L

3M4
H

+ 3κ2m2
L

2M2
H

+ 1
2λ2M

2
H + κ2

)︄
. (3.105)

We can use Eq. (3.102) to evolve α2 from MH to a lower scale Q. In the leading-log
approximation it reads:

α2(Q) = α2(MH) + 1
2LQβ(α2) = α2(MH) + 1

2LQ
α2α4
16π2 , (3.106)

where LQ ≡ log( Q2

M2
H

). Replacing the tree-level matched values of α2 and α4 we get:
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− LQ
16π2

(︄
2κ2m4

L

M4
H

+ 3κ2m2
L

2M2
H

− λ0m
2
L

2

)︄
. (3.108)

Finally, we need to use the mL RGE of the UV model Eq. (3.97), to evolve it to the scale Q.
We then get:

α2(Q) = m2
L(Q)− 1

16π2

(︄
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L
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. (3.110)

If we had matched directly at the scale µ = Q using Eq. (3.90), we would have found exactly
the same result.
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Similarly for α4, matching at µ = MH and evolving to µ = Q, with the help of the RGEs
for both the UV and the EFT couplings, gives:
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, (3.111)

in agreement with what we would get by matching directly at µ = Q, see Eq. (3.91).

3.7 The future of matchmakereft

In this chapter, we have introduced matchmakereft, an automatic tool to perform the one-loop
matching between general UV theories and EFTs and to compute their RGEs. Matchmakereft

is a very active code, subjected to constant development. In fact, since its initial release, there
have already been some modifications like the added functionality of computing amplitudes in
parallel.

We believe that matchmakereft is a very powerful tool that can be used in many calculations
in the context of EFTs and we plan to extend it in the future to exploit all its capabilities.
This section provides an outlook of the major improvements we want to perform.

On-shell matching

One of the ongoing developments in matchmakereft is to perform the matching on-shell. This
has the disadvantage of increasing the number of diagrams, and the appearance of light bridges
with poles in the external momenta that have to be cancelled with terms from the numerator.
We plan to overcome these challenges by using numerical values for on-shell configurations of
external momenta (see M. Chala’s talk in SMEFT-Tools).

Once this option is implemented, the most useful application will be to compute the
redundancies of any EFT, given a Green’s and a physical basis. This can be trivially achieved
by matching at tree level the Green’s basis to the physical one on-shell, the result being directly
the redundancies. This will not only severely ease the matching to any EFTs, but also open
the door to the computation of several IR/UV dictionaries (see Chapter 4).

Evanescent shifts

The reduction of a (d-dimensional) Green’s basis into a physical one defines implicitly some
evanescent structures that vanish in four dimensions, but which can produce finite, physical
effects when inserted in loop diagrams, as discussed in Section 2.4. These effects can be
absorbed by a shift of the physical WCs, but these one-loop contributions have to be computed
in the EFT.

In the current version of matchmakereft, these evanescent shifts have to be manually
added by the user the definition of the redundancies of the EFT. However, we plan to add a
routine to compute them automatically in the future.
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The idea is to have the user’s input of which WCs define, through their reduction, an
evanescent structure. From the redundancies of the model, we can read then the expression
of the evanescent operators as the difference between the original ones and their reductions.
Then, we can compute all their one-loop insertions and match them to the original EFT, in a
very similar way to our RGE computation, but keeping the finite terms instead. Thus, the
results are the shifts for the physical coefficients to be added to the redundancies.

BMHV scheme

In matchmakereft we use a NDR scheme for γ5. This was proven, in Section 3.1, to be sufficient
for the SMEFT at dimension six and theories with operators of the form ϕ†1ϕ2X

µνX̃µν . However,
fixing the ambiguities in general would require a case by case study, possibly fixing a reading
point convention for the traces, to be followed also in the calculations in the EFT. A more
general and flexible solution would therefore be convenient for other theories.

The Breitenlohner-Maison/t’Hooft-Veltman (BMHV) scheme [82] is the only one within
dimensional regularization that has been proven to be consistent at all orders in perturbation
theory. It basically consists on giving up on the anticommutation relations of γ5 in order to
obtain a consistent definition of it. This has been already partially automated in a experimental
version of matchmakereft.

Nevertheless, in chiral gauge theories, the regularization of the fermionic action breaks gauge
invariance, leading to a non-gauge invariant quantum effective action at one loop. Concretely,
the Ward Identities would not be satisfied. This would translate for matchmakereft in a failure
of the process of matching, as the same coefficient would receive different values depending on
the amplitude used for its matching.

Gauge invariance can be restored, though, by the addition of some local counterterms in the
theory [83, 84]. These counterterms, that are clearly non gauge invariant, have to compensate
the insertions of (evanescent) non gauge invariant vertices of the regularized action in divergent
loop integrals. Therefore the process can be thought as the matching of these operators into
all the local, non gauge invariant independent structures in your theory, and consequently
suitable to be performed using matchmakereft. The creation of a basis of all these structures
is not trivial but it could be automatized.

Matchmakereft has already been used, in fact, to reproduce some of the results in [83].
Once the process is further automatized, it could be used to compute these counterterms for
the complete SM (which are yet unknown), the SMEFT or, eventually, any given theory.
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4
Towards the SMEFT one-loop

dictionary

In the previous chapter we presented Matchmakereft, a tool to perform automatic matching
calculations. Thanks to it, comparing the experimental implications of a model of new physics
is significantly simpler. However, there are still infinite models to compare, and our imagination
to propose new realistic candidates to extend the Standard Model is endless. Without a
compass to point a direction in the vast space of possible models, the problem does not seem to
have been simplified very much. Some theoretical arguments can of course be used to get some
orientation, but the increasingly stringent limits set by experiments have rendered them less
convincing. In this sense, Effective Field Theories prove themselves useful once again allowing
us to construct IR/UV dictionaries: a map we can use to guide our way in this overwhelming
search.

In this chapter, we present the first stone in our way to a complete one-loop dictionary
for the SMEFT, providing the full sector of one-loop generated operators from heavy scalars
and fermions. The results are provided in a Mathematica package called SOLD (SMEFT One-
Loop Dictionary), that includes some further functionalities like generating Lagrangians and
matchmakereft models automatically. We start motivating our vision of dictionaries as a new
guiding principle in Section 4.1, followed by a discussion on the target and methods of our
study in Section 4.2. In Section 4.3 we review how the dictionary is constructed, and present
the results in Section 4.4. Finally, Section 4.5 includes a phenomenological example of the
application of the dictionary and we provide an outlook on possible future developments in
Section 4.6.

4.1 Dictionaries: a new guiding principle

Over decades, the naturalness principle guided most theoretical model-building endeavors.
A never-ending list of exotic models of new physics were waiting to be probed by the Large
Hadron Collider (LHC). However, a decade after the Higgs discovery, an intensive experimental
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scrutiny by the LHC and other experiments has shown that new physics is not likely to be
as close around the corner as we expected. In fact, there seems to be a energy gap between
the scales we are currently able to probe and the scale of new physics, which, as discussed in
Chapter 2, made EFTs suitable for this search.

Naturalness arguments can still play a relevant role in the discovery and interpretation
of physics beyond the SM, but they cannot be in the spotlight as our only guiding principle
anymore. The existence of increasingly stringent limits on the scale of new physics and the vast
number of models to test suggest that we should find alternative guiding principles in our quest
to unravel what lies beyond the SM. This is precisely where the power of EFTs comes into play;
perturbation theory and power counting arguments provide an ordering principle that allows
us to estimate the size of the different coefficients in our IR effective description, and order
them accordingly. Thus, working (as we always do) at finite precision, only a finite number
of WCs are actually observable and need to be considered. This opens up the possibility of
classifying, using symmetry or topological arguments, all the observable models of new physics,
relating them with the coefficients up to a certain order in the mass and loop expansion. This
information is organized into what we call IR/UV dictionaries. As its name suggests, it consists
of a mapping between UV extensions and IR effects in such a way that one can readily access
the list of coefficients generated by a UV model and the list of all models that generate a
particular Wilson Coefficient.

IR/UV dictionaries have the potential to become a leading guiding principle in the search
of new physics. They comprise all the information about which models (and only those) are
experimentally accessible, including all possible correlations between different experimental
observables and, even more strikingly, including models that have never been thought of by
theorists. Accessibility is of course dictated by the precision of experiments, and this changes
not only with time, but also depends on the particular observable. Therefore, in order to match
this precision, dictionaries have to be computed up to the relevant order.

The leading, tree level dictionary for the SMEFT at dimension six was published in [102],
building on previous partial calculations [103, 100, 104, 105] (see [106] for an alternative way
of constructing the dictionary). While extremely useful for sizeable effects, it is not sufficient
when more precise experimental measurements are considered. Moreover, there are some effects
whose leading order is one loop, so they are completely overlooked by the tree level dictionary.
This motivates the extension of the dimension six SMEFT dictionary up to one-loop order,
that we partially computed in [49] and present in this chapter.

Given the significant challenges inherent the task, we will restrict ourselves at first to a
subset of dimension six operators that cannot be generated at tree level in any weakly coupled
extension of the SM [107, 108]1, and whose leading order is therefore one loop. We will also
consider only renormalizable extensions of the SM with an arbitrary number of heavy scalar
and fermion fields.

1See [98] for a related analysis and [109, 110] for recent efforts towards the calculation of the dictionary for
four-fermion interactions. See also [111–113] for results on generic UV extensions for a set of operators in the
low energy EFT (LEFT).
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4.2 The one-loop generated sector in the SMEFT

The translation that the dictionary encodes is, naturally, given by the matching of the UV
models to the SMEFT at one loop. This can be achieved in different ways (see Chapter 2),
our approach being to perform a diagrammatic off-shell matching because then we can make
use of matchmakereft [64]. This requires the definition of a physical basis and a Green’s
basis. We adopt the Warsaw basis [27] for the former and the basis in Appendix B, also
provided in matchmakereft, for the latter. After the matching, operators in the Green’s basis
have to be reduced to the ones in the physical basis. Thus, considering the UV origin of a
specific operator in the Warsaw basis requires including the contribution to all redundant and
evanescent operators that contribute to it.

Any operator in an EFT can be generated at different orders in perturbation theory,
depending on the specific UV model. Some operators, however, can never be generated at tree
level in any weakly coupled extension of the SM. For the SMEFT at dimension six, this was
shown in [107], using simple topological arguments, in a basis along the lines of the Warsaw
one. The complete list of operators in the Warsaw basis that cannot be generated at tree level
is grouped in three classes and collected in Table 4.1. These are operators with three field
strength tensors (class X3), operators with two field strength tensors and two Higgs bosons
(class X2H2) and finally dipole operators (class ψ2XH).

X3 X2H2 ψ2XH + h.c.
O3G = fABCGAνµ GBρν GCµρ OHG = GAµνG

AµνH†H OuG = (qTAσµνu) ˜︁HGAµν
O˜︂3G = fABC ˜︁GAνµ GBρν GCµρ O

H ˜︁G = ˜︁GAµνGAµνH†H OuW = (qσµνu)σI ˜︁HW I
µν

O3W = ϵIJKW Iν
µ W Jρ

ν WKµ
ρ OHW = W I

µνW
I µνH†H OuB = (qσµνu) ˜︁HBµν

O˜︂3W = ϵIJK˜︂W Iν
µ W Jρ

ν WKµ
ρ O

H ˜︁W = ˜︂W I
µνW

I µνH†H OdG = (qTAσµνd)HGAµν
OHB = BµνB

µνH†H OdW = (qσµνd)σIHW I
µν

O
H ˜︁B = ˜︁BµνBµνH†H OdB = (qσµνd)HBµν
OHWB = W I

µνB
µνH†σIH OeW = (ℓσµνe)σIHW I

µν

O
H ˜︁WB

= ˜︂W I
µνB

µνH†σIH OeB = (ℓσµνe)HBµν

Table 4.1: One-loop generated operators in the Warsaw basis. Shaded operators are generated at
two or higher order loops in SM extensions with fermions and scalars.

Let us outline the structure of one-loop contributions to each operator class in turn. In
particular, we are interested in the UV origin of such contributions, namely, which heavy scalar
or fermion fields can give rise to these operators at one-loop order. The fact that both light and
heavy fields belong to complete, independent representations of the SM gauge group means that
any gauge boson insertion in an amplitude does not change the type of field. Thus, gauge boson
insertions do not affect the following discussion and can be ignored (naturally, all required
gauge boson insertions will be properly taken into account in the actual calculation). Operators
in classes X3 and X2H2 do not receive contributions from redundant or evanescent operators
so we only need to focus on the generation of the physical operators. Operators in the former
class, X3, can be computed from three gauge boson off-shell amplitudes. Neglecting the gauge
boson insertions these amplitudes are simply vacuum bubbles of a single heavy scalar or fermion
that is charged under the corresponding gauge group. Thus, any fermion or scalar that is not
a singlet will, in principle, contribute to the corresponding operator. X2H2 class operators
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ψ2D3 ψ2XD

RqD i
2q
{︁
DµD

µ, /D
}︁
q RGq (qTAγµq)DνGAµν RBd (dγµd)∂νBµν

RuD i
2u
{︁
DµD

µ, /D
}︁
u R′Gq 1

2(qTAγµi←→D νq)GAµν R′Bd
1
2(dγµi←→D νd)Bµν

RdD
i
2d
{︁
DµD

µ, /D
}︁
d R′˜︁Gq 1

2(qTAγµi←→D νq) ˜︁GAµν R′˜︁Bd 1
2(dγµi←→D νd) ˜︁Bµν

RℓD
i
2ℓ
{︁
DµD

µ, /D
}︁
ℓ RWq (qσIγµq)DνW I

µν RWℓ (ℓσIγµℓ)DνW I
µν

ReD i
2e
{︁
DµD

µ, /D
}︁
e R′Wq

1
2(qσIγµi←→D νq)W I

µν R′Wℓ
1
2(ℓσIγµi←→D νℓ)W I

µν

ψ2HD2 + h.c. R′˜︁Wq

1
2(qσIγµi←→D νq)˜︂W I

µν R′˜︁Wℓ

1
2(ℓσIγµi←→D νℓ)˜︂W I

µν

RuHD1 (qu)DµD
µ ˜︁H RBq (qγµq)∂νBµν RBℓ (ℓγµℓ)∂νBµν

RuHD2 (q iσµνDµu)Dν ˜︁H R′Bq 1
2(qγµi←→D νq)Bµν R′Bℓ

1
2(ℓγµi←→D νℓ)Bµν

RuHD3 (qDµD
µu) ˜︁H R′˜︁Bq 1

2(qγµi←→D νq) ˜︁Bµν R′˜︁Bℓ 1
2(ℓγµi←→D νℓ) ˜︁Bµν

RuHD4 (qDµu)Dµ ˜︁H RGu (uTAγµu)DνGAµν RBe (eγµe)∂νBµν
RdHD1 (qd)DµD

µH R′Gu 1
2(uTAγµi←→D νu)GAµν R′Be 1

2(eγµi←→D νe)Bµν
RdHD2 (q iσµνDµd)DνH R′˜︁Gu 1

2(uTAγµi←→D νu) ˜︁GAµν R′˜︁Be 1
2(eγµi←→D νe) ˜︁Bµν

RdHD3 (qDµD
µd)H RBu (uγµu)∂νBµν

RdHD4 (qDµd)DµH R′Bu 1
2(uγµi←→D νu)Bµν

ReHD1 (ℓe)DµD
µH R′˜︁Bu 1

2(uγµi←→D νu) ˜︁Bµν
ReHD2 (ℓ iσµνDµe)DνH RGd (dTAγµd)DνGAµν
ReHD3 (ℓDµD

µe)H R′Gd
1
2(dTAγµi←→D νd)GAµν

ReHD4 (ℓDµe)DµH R′˜︁Gd 1
2(dTAγµi←→D νd) ˜︁GAµν

Table 4.2: One-loop generated redundant operators. Operators in gray do not contribute to one
loop generated operators in the Warsaw basis. Shaded operators are generated at two or higher
order loops in SM extensions with fermions and scalars.

can be computed from H†HXX amplitudes which, ignoring again gauge boson insertions,
can be computed simply from H†H two-point functions. Dipole operators, on the other hand,
receive contributions also from redundant and evanescent operators, collected in Tables B.2
and B.4. Note that following the nomenclature in [64], evanescent operators are redundant
ones that define evanescent structures through their reduction, but the shifts generated by
these evanescent remnants are also taking into account. All the relevant operators for this
class can be computed from amplitudes of the form ψ̄ψ(V ) and ψ̄LψRH(†)(V ), where V stands
for the corresponding gauge boson, ψL = {lL, qL} stand for the left-handed fermions of the
SM, ψR = {uR, dR, eR} for the right-handed ones and ψ = {ψL, ψR} includes both. Neglecting
again the gauge boson insertions we just need to consider ψ̄ψ and ψ̄LψRH

(†) amplitudes.
Once we know which amplitudes contribute to each class, we can use topological

considerations to list the actual Feynman diagrams for each amplitude. Any one loop Feynman
diagram satisfies the following relation between the number of external particles, E, and the
number of vertices:

E =
E+2∑︂
n=3

(n− 2)Vn, (4.1)

where n denotes the order (number of fields) of the vertices and Vn the number of vertices of
order n in the diagram. The sum ends at n = E + 2 because higher order vertices would result
in more than E external legs at one loop. In particular we are interested in the cases E = 2, 3,
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4.2 The one-loop generated sector in the SMEFT

Ψ2XH + h.c. Ψ2XD

EuG q̄TAσµνu ˜︁H ˜︁GAµν EGq q̄TA(σµνγρ + γρσµν)qDρ
˜︁GAµν EGd d̄TA(σµνγρ + γρσµν)dDρ

˜︁GAµν
EuW q̄σIσµνu ˜︁H˜︂W I

µν E ′Gq iq̄(TAσµν /D −
←
/DσµνTA)qGAµν E ′Gd id̄(TAσµν /D −

←
/DσµνTA)dGAµν

EuB q̄σµνu ˜︁H ˜︁Bµν E ′˜︁Gq iq̄(TAσµν /D −
←
/DσµνTA)q ˜︁GAµν E ′˜︁Gd id̄(TAσµν /D −

←
/DσµνTA)d ˜︁GAµν

EdG q̄TAσµνdH ˜︁GAµν EWq q̄σI(σµνγρ + γρσµν)qDρ
˜︂W I
µν EBd d̄(σµνγρ + γρσµν)d∂ρ ˜︁Bµν

EdW q̄σIσµνdH˜︂W I
µν E ′Wq iq̄(σIσµν /D −

←
/DσµνσI)qW I

µν E ′Bd id̄(σµν /D −
←
/Dσµν)dBA

µν

EdB q̄σµνdH ˜︁Bµν E ′˜︁Wq
iq̄(σIσµν /D −

←
/DσµνσI)q˜︂W I

µν E ′˜︁Bd id̄(σµν /D −
←
/Dσµν)d ˜︁Bµν

EeW ℓ̄σIσµνeH˜︂W I
µν EBq q̄(σµνγρ + γρσµν)q∂ρ ˜︁Bµν EWℓ ℓ̄σI(σµνγρ + γρσµν)ℓDρ

˜︂W I
µν

EeB ℓ̄σµνeH ˜︁Bµν E ′Bq iq̄(σµν /D −
←
/Dσµν)qBµν E ′Wℓ iℓ̄(σIσµν /D −

←
/DσµνσI)ℓW I

µν

ψ2HD2 + h.c. E ′˜︁Bq iq̄(σµν /D −
←
/Dσµν)q ˜︁Bµν E ′˜︁Wℓ

iℓ̄(σIσµν /D −
←
/DσµνσI)ℓ˜︂W I

µν

EuH q̄σµνDρuDσ ˜︁Hϵµνρσ EGu ūTA(σµνγρ + γρσµν)uDρ
˜︁GAµν EBℓ ℓ̄(σµνγρ + γρσµν)ℓ∂ρ ˜︁Bµν

EdH q̄σµνDρdDσHϵµνρσ E ′Gu iū(TAσµν /D −
←
/DσµνTA)uGAµν E ′Bℓ iℓ̄(σµν /D −

←
/Dσµν)ℓBµν

EeH ℓ̄σµνDρeDσHϵµνρσ E ′˜︁Gu iū(TAσµν /D −
←
/DσµνTA)u ˜︁GAµν E ′˜︁Bℓ iℓ̄(σµν /D −

←
/Dσµν)ℓ ˜︁Bµν

EBu ū(σµνγρ + γρσµν)u∂ρ ˜︁Bµν EBe ē(σµνγρ + γρσµν)e∂ρ ˜︁Bµν
E ′Bu iū(σµν /D −

←
/Dσµν)uBµν E ′Be iē(σµν /D −

←
/Dσµν)eBµν

E ′˜︁Bu iū(σµν /D −
←
/Dσµν)u ˜︁Bµν E ′˜︁Be iē(σµν /D −

←
/Dσµν)e ˜︁Bµν

Table 4.3: One-loop generated evanescent operators. Operators in gray do not contribute to one
loop generated operators in the Warsaw basis. Shaded operators are generated at two or higher
order loops in SM extensions with fermions and scalars.

for which we have:

E = 2 = V3 + 2V4, (4.2)

E = 3 = V3 + 2V4 + 3V5. (4.3)

Using these expressions and the form of possible renormalizable vertices (which further limits
n ≤ 4) between heavy and light fermions and scalars one can draw all generic 1lPI amplitudes.
Moreover, since we extract the hard region part of the amplitude, loops involving light particles
are directly not considered (because they yield scaleless integrals). Once we have the list of
diagrams, we can immediately determine the quantum numbers of all possible UV completions
that contribute to the operators we are interested in2. In practice, we can also determine the
quantum numbers of those completions a posteriori, by using the result of the matching to a
generic UV model as we describe in detail in the next section.

From all the operators in Table 4.1, the CP-violating operators in the X3 class, namely
O˜︂3W and O˜︂3G, can only be generated at two-loop order in weakly coupled extensions of the SM
with heavy scalars and fermions. This feature was already pointed out, within some simplifying
assumptions, in [115].

2See [114, 115] for a similar approach to the classification of UV completions for the SMEFT under some
simplifying assumptions.
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4. Towards the SMEFT one-loop dictionary

The contributions for the X3 class are simple enough that the complete classification and
even the full result can be given in closed form. We can define the following operator:

O3V = α3V f
ABCV Aν

µ V Bρ
ν V Cµ

ρ , (4.4)

for a general (non-abelian) gauge symmetry, with fABC the structure constants of the group.
This allows us to give the results for both α3W and α3G in the SMEFT. The only restriction
on the heavy fields is that they are charged under the gauge symmetry, irrespectively on their
hypercharge. The matching condition is the following [41]:

α3V = − 1
(4π)2

∑︂
R

cR g
3

90M2
R

µ(R), cR =


1, Dirac fermions
1
2 , Majorana fermions
−1

2 , complex scalars
−1

4 , real scalars

, (4.5)

with Tr(TAR TBR ) = µ(R)δAB where R runs over all the heavy fields in the model, TR are the
generators of the group in R’s representation, g is the gauge group’s coupling constant.

4.3 Constructing the dictionary

In this section we review how the dictionary is computed in both directions, i.e., the matching
results of particular models and the classification of models contributing to one coefficient.

4.3.1 Matching procedure

Let us start by explaining precisely how the matching is performed. Notice, in the first place,
that the operators we are interested in are generated at least at one-loop order. Therefore,
we do not need to take into account “universal” contributions in the form of wave-function
renormalization or one-loop corrections to renormalizable couplings, that would give additional
contributions at one-loop order only via tree level generated operators. Thus, all of these
corrections (tree level generated operators and one-loop corrections to couplings or kinetic
terms) will be disregarded in the following. The only caveat is the presence of tree level
evanescent structures that shift the dipole operators in the Warsaw basis at one loop, that we
do take into account following the results from [33] (see subsection 4.3.1.1).

The matching is performed using matchmakereft (see Chapter 3), therefore adopting a
diagrammatic off-shell approach. Since we do not know a priori the representations of the
heavy particles under the SM gauge group, we proceed in two steps. First we define a generic
model consisting of the most general extension of the SM with heavy (Dirac or Majorana)
fermions and (real or complex) scalars with all the renormalizable couplings allowed by Lorentz
symmetry but leaving their gauge quantum numbers, and therefore the corresponding Clebsch-
Gordan (CG) coefficients, arbitrary. The only assumptions made on this generic model are the
following:

• It respects the SM gauge group symmetry, under which the new heavy particles transform
in some arbitrary representation.
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4.3 Constructing the dictionary

• The interaction basis coincides with the mass-eigenstates basis, i.e., mass terms are
diagonal at tree level.

• Heavy fermions are vector-like, i.e., both chiralities transform under the same represen-
tation of the gauge group, so the UV theory has no chiral anomaly.

Denoting all fermions (both light and heavy) by a single field Ψa and all scalars (light and
heavy) by another one Φb, where the indices, a, b, run over all relevant multiplets of the gauge
group, we can write the generic form of the Lagrangian as follows:

LUV =δΨaΨ̄a

[︂
i /D −MΨa

]︂
Ψa + δΦa

[︂
|DµΦa|2 −M2

Φa
|Φa|2

]︂
+

∑︂
χ=L,R

[︂
Y χ
abcΨaPχΨbΦc + ˜︁Y χ

abcΨaPχΨbΦ†c

+Xχ
abcΨc

aPχΨbΦc + ˜︁Xχ
abcΨc

aPχΨbΦ†c + h.c.
]︂

+
[︂
κabcΦaΦbΦc + κ′abcΦaΦbΦ†c + λabcdΦaΦbΦcΦd

+ λ′abcdΦaΦbΦcΦ†d + λ′′abcdΦaΦbΦ†cΦ
†
d + h.c.

]︂
, (4.6)

where Ψc ≡ CΨT with C the charge conjugation matrix, δΨa is 1 (1/2) times the identity matrix
for complex (Majorana, satisfying Ψc

a = Ψa) fermions and δΦa is 1 (1/2) times the identity
matrix for complex (real, satisfying Φ†a = Φa) scalars and all the light fields are massless
except for the SM Higgs doublet. The remaining couplings represent, for each fixed value of
the indices, coupling constants times CG tensors. Our convention for the covariant derivative
is the following:

DµΨ = (∂µ − ig1BµYΨ − ig2W
a
µT

a
W − ig3G

a
µT

a
G)Ψ, (4.7)

where TW (TG) are the generators of SU(2) (SU(3)) in the representation of Ψ, and YΨ is its
hypercharge. Also note that, despite the explicit sign for the interactions in Eq. (4.6), we still
follow conventions for the SM interactions stated in Appendix A:

˜︁Y R
qiujϕ =− iσ2(Yu)ij , (4.8)

Y R
qidjϕ =− (Yd)ij , (4.9)

Y R
liejϕ =− (Ye)ij , (4.10)

λ′′ϕ4 =− λ/2, (4.11)

with σ2 the second Pauli matrix. Given this generic model, we use matchmakereft to perform
the calculation of the hard region of the amplitudes. As explained in Section 3.1, the first
time an EFT model is matched using matchmakereft, we obtain a solution for the Wilson
Coefficients in terms of arbitrary coefficients of kinematic and gauge structures in the UV. This
information, for the case of the SMEFT, is then used to extract directly the relevant kinematic
structures from our result. The gauge information is however still left generic at this point.
This result is stored internally, as it will be common for any extension of the SM, so that we
do not need to repeat this calculation. In a second step, once the specific quantum numbers for
the heavy fields are fixed, we use GroupMath [116] to perform the remaining group-theoretic
calculation.
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4. Towards the SMEFT one-loop dictionary

Results in the Warsaw basis are computed obtaining first all the relevant coefficients in the
Green’s basis and then using the redundancies provided in [64] to project into the physical
basis. We follow the NDR prescription for γ5, as implemented in matchmakereft, which is
compatible with the scheme introduced in [33] to compute the evanescent contributions.

4.3.1.1 Evanescent contribution to the dipole operators

As mentioned above, tree level generated operators can produce tree level evanescent structures
that would shift the coefficients of the physical basis. This was studied in detail in [33] with
the result that, among the three classes of operators considered in this work, only the dipole
operators receive a contribution from evanescent ones. Given the small number of extensions
in which this effect is relevant, collected in Table ??, we present below the results explicitly.
The shifts in the dipole operators, as computed in [33], using the conventions in [64], read:

(αeB)ij → (αeB)ij + g1
(4π)2

[︃3
8(γle)ijst(Ye)ts −

5
8(1− ξrp)(Yu)∗ts(γcuelq)sjit

+5
8(1− ξrp)(γluqe)itsj(Yu)∗st

]︃
, (4.12)

(αeW )ij → (αeW )ij + g2
(4π)2

[︃
−1

8(Ye)ts(γle)ijst + 3
8(1− ξrp)(Yu)∗ts(γcuelq)sjit

−3
8(1− ξrp)(Yu)∗st(γluqe)itsj

]︃
, (4.13)

(αuB)ij → (αuB)ij −
g1

(4π)2
5
8(Yu)ts(γqu)ijst, (4.14)

(αuW )ij → (αuW )ij −
g2

(4π)2
3
8(Yu)ts(γqu)ijst, (4.15)

(αuG)ij → (αuG)ij −
g3

(4π)2
1
4(Yu)ts(γ(8)

qu )ijst, (4.16)

(αdB)ij → (αdB)ij + g1
(4π)2

1
8(Yd)ts(γqd)ijst, (4.17)

(αdW )ij → (αdW )ij −
g2

(4π)2
3
8(Yd)ts(γqd)ijst, (4.18)

(αdG)ij → (αdG)ij −
g3

(4π)2
1
4(Yd)ts(γ(8)

qd )ijst. (4.19)

In the equations above Yu,d,e stand for the up-type, down-type and charged electron Yukawa
couplings, respectively, and ξrp represents a reading point parameter and has xRP as output
format in SOLD (see [33] for more details). The remaining coefficients correspond to tree-level
contributions to evanescent structures. Using the notation in the tree level dictionary [102]
they correspond to the following expressions:

(γle)ijkl =
(yeφ)∗ji(yeφ)kl

M2
φ

, (4.20)

(γcuelq)ijkl = −
(yeuω1)ji(yqlω1)∗lk

M2
ω1

, (4.21)

(γluqe)ijkl =
(yluΠ7

)ij(yeqΠ7
)∗lk

M2
Π7

, (4.22)
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Heavy Field Shifted operator

φ ∼ (1, 2, 1
2) OeB,OeW ,OuB,OuW ,OdB,OdW

ω1 ∼ (3, 1,−1
3) OeB,OeW

Φ ∼ (8, 2, 1
2) OuG,OdG

Π7 ∼ (3, 2, 7
6) OeB,OeW

Table 4.4: List of all the SM extensions that generate a tree level evanescent structure that shifts
the dipole operators in the Warsaw basis. The notation for the heavy fields follows the conventions
in [102].

(γqu)ijkl =
(yuφ)ij(yuφ)∗lk

M2
φ

, (4.23)

(γqd)ijkl =
(ydφ)∗ji(ydφ)kl

M2
φ

, (4.24)

(γ(8)
qu )ijkl = (yuΦ)ij(yuΦ)∗lk

M2
Φ

, (4.25)

(γ(8)
qd )ijkl =

(ydΦ)∗ji(ydΦ)kl
M2

Φ
. (4.26)

4.3.2 Model classification

The complementary, bottom-up use of the dictionary, as mentioned above, consists of the
classification of all possible (renormalizable) SM extensions including heavy scalar and fermion
fields whose one-loop contribution to a certain WC, either in the SMEFT Warsaw or Green’s
basis, is allowed by gauge symmetry. Notice that, contrary to what happens in the tree level
case, the list of all possible models is infinite. The reason is that couplings that are quadratic in
heavy fields can contribute for the first time at one-loop order, thus allowing for loop topologies
in which the gauge representations for the fields running in the loop are not fixed, but only
their product is. Consequently, one can only impose the restrictions that the fields must satisfy
to contribute through a certain diagram, but these can be fulfilled by an infinite number of
representations.

Nevertheless, the classification of all possible new physics models can still be given in a
closed form using two different levels: on the first level we provide a complete, finite list of
the restrictions to be fulfilled by the new fields; on a second level we give a list of the allowed
specific representations that satisfy any of these conditions, up to certain dimension of such
representations (the list being infinite otherwise). As we will see below, the Mathematica

package SOLD, that encodes the one-loop dictionary, includes routines to perform both tasks.
The list of restrictions (at first level) can be easily computed in a comprehensive way

making use of the intermediate results of the matching as discussed in the previous section.
Once a specific WC is matched and expressed in terms of a combination of CG tensors, one
can simply check the restrictions on the quantum numbers of the heavy fields so that each
diagram is allowed by gauge symmetry. Note, however, that we are just imposing that the
result is non-zero a priori; the particular value of the gauge structure depends on specific
choices for the representations, so it could happen that it vanishes for some of them, or even
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4. Towards the SMEFT one-loop dictionary

that some cancellation happens between different diagrams. The list of restrictions for each
diagram defines implicitly a new possible extension and it is added to the complete list. These
restrictions are then reduced so that they contain the minimum number of different fields
needed to satisfy them. Finally, we eliminate from the complete list those models that are
related by conjugation of one of the fields, since they are physically equivalent. In the case of
the classification for coefficients in the Warsaw basis, we compute this list for every coefficient
that can contribute to it through redundancies.

The complete list of models, even at the first level, is too long to be reported here and is
given in electronic form via the SOLD package. The only exception is the operators in the X3

class, for which both the classification and the result are given in Section 4.1. An interesting
result of our calculation is that the two CP-violating operators with three field strength tensors,
namely, O˜︂3W and O˜︂3G, are not generated at one-loop order in any renormalizable extension of
the SM with heavy scalars or fermions.

4.4 SOLD usage

This section is devoted to provide a detailed description of the Mathematica package SOLD,
that encodes the calculation of the sector of the SMEFT one-loop dictionary described above.

4.4.1 Installation

SOLD is publicly available in the following Gitlab repository: https://gitlab.com/jsantiago_

ugr/sold. Before using SOLD, one should make sure that GroupMath is already installed
(otherwise, a reminder will be issued when installing SOLD). The same applies to matchmakereft

if the user is interested in the functionalities that make use of it (see below). There are two
ways of installing the package:

1. Automatic installation. SOLD can be installed in a fully automated way by typing the
following command on a Mathematica notebook:

In[1]:= Import["https://gitlab.com/jsantiago_ugr/sold/-/raw/main
/install.m"]

This will download the package and place it in the Applications folder of Mathematica’s
base directory. The same command will (re)install the latest version available in the
repository.

2. Manual installation. The alternative way is to manually download the package from
the SOLD repository and place it in the Applications folder of Mathematica’s base
directory, or a different directory as long as it is included in the variable $Path.

Once it is correctly installed, SOLD can be loaded in any Mathematica notebook in the
usual way:

In[2]:= << SOLD`

with an output shown in Fig. 4.1. When loading SOLD, it automatically checks the latest version
available and raises a warning if the installed version is outdated.
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4.4 SOLD usage

Figure 4.1: Output generated by loading SOLD, given that the latest version is installed.

4.4.2 List of functions

We describe below the list of all the functions available in the SOLD package. The usual help
command in Mathematica can be used to obtain more information on them, while some
detailed examples of their usage and output can be found in next section. An updated version
of the manual can be found in SOLD’s installation directory.

• OneLoopOperatorsGrid. Displays a grid with the SMEFT operators in the Warsaw basis
whose leading contribution is at one loop (see Table 4.1). When the mouse is on top of
each entry the expression of the operator is displayed, and when clicked, the different
contributions from redundant coefficients of the Green’s basis are shown.

• ListModelsWarsaw[coefficient]. Returns a list with all possible SM extensions
(sometimes implicitly defined by restrictions in the product of some representations, as
described in the previous section) whose contribution to coefficient in the SMEFT
Warsaw basis is allowed by gauge symmetry. The notation for the name of the
coefficients follow matchmakereft and a list of all coefficients is stored in the variable
AllCoefficientsWarsaw. Each entry of the result represents a different SM extension.
For each entry of the list, the first item indicates the field content of the model (number
and spin of heavy fields, with ψi and ϕi indicating fermions and scalars, respectively,
with i a numeric tag), the second item contains the restrictions that the SU(3)⊗ SU(2)
representations of the new fields should fulfill, and the last item indicates the restrictions
on the hypercharge.

• ListModelsGreen[coefficient]. Identical to the previous function but for operators
in the Green’s basis.

• ListValidQNs[listrestrictions,<MaxDimSU3>,<MaxDimSU2>]. Computes the
valid representations under SU(3)⊗ SU(2), up to dimensions MaxDimSU3 and
MaxDimSU2, respectively, allowed by listrestrictions, for the fields contained
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4. Towards the SMEFT one-loop dictionary

in it. listrestrictions can be either the direct output of ListModelsWarsaw or
ListModelsGreen, a sublist of its entries or just an entry’s second item. MaxDimSU3 and
MaxDimSU2 are optional arguments and their default values are 15 and 5, respectively.

• Match2Warsaw[coefficient, extension]. Computes the contribution to a particular
WC coefficient in the Warsaw basis generated by a model defined by extension,
where extension is a list of replacement rules with a tag to identify the heavy particle
(that must begin with an S or F, depending on whether the heavy particle is a scalar
or a fermion respectively and be followed by an identifying letter) and a list of its
quantum numbers under SU(3)⊗ SU(2)⊗ U(1). As an explicit example, if we wanted
to compute the matching condition of (OeW )i,j from the SM extended with an SU(2)
triplet vector-like lepton of hypercharge -1, a triplet scalar leptoquark of hypercharge
-1/3 and a triplet vector-like quark of hypercharge -4/3 [89], we would need to write:

In[3]:= Match2Warsaw[alphaOeW[i,j],
{Sa->{3,3,-1/3},Fa->{1,3,-1},Fb->{3,3,-4/3}}]

Note that the definitions of coefficient follow matchmakereft convention. Explicit
numerical values for the flavor indices are also allowed.

In order to allow for different, non-equivalent SU(3) representations of the same dimension,
as well as conjugated ones, Dynkin indices can be used as a valid input for SU(3). Note
that this is not necessary for SU(2). An explicit example of an input in this format
is provided in the next section. Symbolic hypercharges for the heavy fields are also
supported, as long as they are called Yi, where i is an integer character. However, only
vertices that formally conserve hypercharge will be taken as non-zero. This means, for
instance, that fields with symbolic hypercharge will never couple linearly with SM.

• Match2Green[coefficient,extension]. Computes the contribution to coefficient

in the Green’s basis of Appendix B. The conventions for coefficient and extension

are the same as for the function Match2Warsaw.

• NiceOutput[result,<ListSubstitutions>]. Returns a more readable expression of
result. ListSubstitutions is optional and set to False by default. If set to True, it
prints a list of the substitutions performed.

• SOLDInputForm[fieldreps]. Translates the gauge representation of a field (includ-
ing its hypercharge) from the output form given by ListValidQNs to a valid in-
put form usable by Match2Warsaw, Match2Green, CreateLag, GenerateMMEModel or
CompleteOneLoopMatching. An explicit example of this function is given in the next
section.

• CreateLag[extension]. Returns the full Lagrangian internally used to compute results
produced by extension, including the numerical values of each of the CG tensors, which
are presented as TSi or TCi for the SU(2) and SU(3) contraction respectively, where i

corresponds to an identifying numeric tag.

• GenerateMMEModel[extension, modelname, <outputdirectory>]. Generates, in the
outputdirectory, the matchmakereft model needed for the full one loop computation

82



4.4 SOLD usage

(the files included are also useful to use with other tools such as FeynRules). The file
modelname.fr contains the full Lagrangian of extension, as computed by CreateLag,
the heavy particles and parameter definitions, all in FeynRules format. The file
SM_SOLD.fr contains the SM definition in FeynRules format and in case that the heavy
particles in extension have exotic representations under the SM gauge group, it adds
these representations to the definition of the gauge groups. The file modelname.gauge

contains the numerical definitions of the CG tensors considered in the definition of the
Lagrangian. outputdirectory is optional and set to Mathematica’s current working
directory by default.

• CompleteOneLoopMatching[extension, modelname, <EFTname>,<outputdirectory>].
Runs matchmakereft to obtain the complete one-loop matching conditions between
a UV extension and an effective theory EFTname. If there is no modelname_MM in
outputdirectory, the model is first created by calling GenerateMMEModel. EFTname is
an optional argument and takes the default value of the matchmakereft’s model for
the SMEFT, SMEFT_Green_BPreserving_MM. outputdirectory is also optional and set
to Mathematica’s current working directory by default. Before doing the calculation,
matchmakereft’s installed version is checked to be the latest available one to avoid
possible errors.

Note that matchmakereft must be installed to run these last two functions, GenerateMMEModel

and CompleteOneLoopMatching. When these two functions are used to run matchmakereft

from a Mathematica notebook, the output is only printed at the end of whole calculation. For
a more informative process we recommend the user to create the model within SOLD using the
GenerateMMEModel function and then run the matching from matchmakereft in the terminal
directly. Likewise, we strongly recommend that the latest version of matchmakereft is always
used in conjuction with SOLD, as this could be the culprit of some errors otherwise.

4.4.3 Example of usage

In this subsection we provide an example to illustrate in more detail the usage of the different
functions in the package in sequential order. In preparation for the phenomenological study in
the next section, we will consider that the user is interested in using the dictionary to explore
the UV completions which could generate the SMEFT operator OdG.

After loading SOLD, the natural first step is listing the conditions on the models that can
generate this operator. This can be achieved by the command:

In[4]:= ListModelsWarsaw[alphaOdG[i,j]]

whose output is partially shown in Fig. 4.2.
Note that, for the SU(3)⊗ SU(2) restrictions a rule is used to indicate that the

representation for the corresponding particle is fixed whereas the symbol ⊃ appears when only
the product is constrained. For the case of U(1) an unconstrained hypercharge is explicitly
written only when it does not appear in other conditions. We also include redundant restrictions
such as ϕ2⊗ ϕ2 ⊃ 1⊗ 1 because, while ϕ2 in this case can have any quantum numbers, there
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Figure 4.2: Partial output of the command ListModelsWarsaw[alphaOdG[i,j]].

has to be information that it exists in the extension so that it is included when finding the
valid quantum numbers that respect the restrictions.

After obtaining the restrictions, the subsequent step is to find the actual combinations of
quantum numbers which respect them. As such, we would have to use the command:

In[5]:= ListValidQNs[conditions]

where conditions stands for the output of the ListModelsWarsaw[...] command or a sublist
of it. The resulting list of models, using as condition the second one from the bottom appearing
in Fig. 4.2, is partially shown in Fig. 4.3. The output consist of a list in which each entry is a
different extension respecting the restriction given by the previous command.

Figure 4.3: Output of the ListValidQNs command for one restriction, i.e., one entry from the
output of ListModelsWarsaw[alphaOdG[i,j]].

From this list of possible extensions, let us suppose that we want to focus on studying, for
instance, the first one appearing in Fig. 4.3. It consists of one heavy scalar and two heavy
fermions with the following quantum numbers: ϕa ∼ (1, 1,Y1); ψa ∼ (3̄, 2,Y1 − 1/6) and
ψb ∼ (3, 1,−Y1− 1/3). We can obtain the one-loop matching result for the WC of the (OdG)ij
operator in this model by simply typing the following command (using the Dynkin index
notation for the SU(3) representations):
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In[6]:= Match2Warsaw[alphaOdG[i,j],
{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},Fb->{{1,0},1,-(1/3)-Y1}}]

Note that the correct format for the model such that it can be used as an input in Match2Warsaw

can be obtained using the ListValidQNs[...] command as follows:

In[7]:= ourModel = SOLDInputForm /@ modelQNs[[1]]

Out[7]= {Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},Fb->{{1,0},1,-(1/3)-Y1}}

where modelQNs is defined in Fig. 4.3. The result from Match2Warsaw is given in Fig. 4.4, in
the limit of equal masses and vanishing down-type Yukawa couplings.

Figure 4.4: Result for the WC of the (OdG)ij operator in the Warsaw basis for a particular
extension (see the text for more details) in the limit of degenerate masses and neglecting terms
proportional to the down-type Yukawa couplings.

The couplings of the SM extension in the output of Match2Warsaw and Match2Green are
denoted as Li, with i an identifying integer. A bar is appended when the coupling corresponds
to the hermitian conjugate of the corresponding operator. These couplings are identified by
two possible sets of arguments: the first one corresponds to the fields which compose the
corresponding renormalizable operator (and an R or L in the case of operators with two heavy
fermions, denoting the two independent chiralities); the second set corresponds to flavor indices
in case the operator contains light fermions. The number i distinguishes couplings of operators
with the same field content but with different gauge contractions. The masses of the heavy
fields are defined as MX where X is the tag, given by the user, of the heavy state. This raw
result might seem a bit intricate and not easy to read, but it is given as the default output to
facilitate the user to easily make any desired simplifications, such as the one shown in Fig. 4.4,
where the down-type Yukawa was sent to zero.

Nevertheless, a more readable expression can be obtained using the NiceOutput function,
whose output is shown in Fig. 4.5. In NiceOutput format, couplings are represented by λ

(or other greek letters in case there is more than one relevant operator with the same field
content), except for the Yukawa couplings which are hard-coded to be written as y. The
subscript of these couplings denotes the fields composing the corresponding operator, whereas
the superscript can be either R or L, depending on whether the operator has a right- or
left-handed projector (for operators with two heavy fermions) or the flavor indices for operators
with light fermions. Notice that, when set to true, the optional argument in NiceOutput has
the effect of printing a list of the correspondence between the couplings in both the default
and the NiceOutput formats.

Besides the informative output format, one can naturally check the precise definition of any
coupling by calling the function CreateLag, whose output is the complete Lagrangian of the UV
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Figure 4.5: Warsaw basis result for the WC of the (OdG)ij operator for the same extension (see
text), in the limit of degenerate masses and vanishing down-type Yukawa couplings, using the
NiceOutput function to obtain a more readable expression. The last argument, set to True in this
example, prints a list of the replacements performed to the output in Figure 4.4 to obtain this one.

extension. This not only includes the correspondence between couplings and interaction terms
but also the numerical values used for the CG coefficients for each coupling. The Lagrangian
is given in FeynRules [77] notation, where the arguments of the fields correspond to their
indices, and the CG tensors are named as TCi and TSi for the SU(3) and SU(2) contractions,
respectively, with i an identifying integer. Kinetic terms are omitted and follow the conventions
in Eq. (4.6). The explicit values for the group generators can be obtained using the routine
RepMatrices in GroupMath. An example of the output of CreateLag is shown in Fig. 4.6.

Figure 4.6: Output of the CreateLag function.

Finally, one can be interested in studying the implications of this model in other operators
or observables. The function GenerateMMEModel allows then to generate automatically a
matchmakereft model by simply specifying the representations of the new heavy fields:

In[8]:= GenerateMMEModel[{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},
Fb->{{1,0},1,-(1/3)-Y1}},"model"]

and we can perform the complete one-loop matching to the SMEFT (or any other EFT) using
matchmakereft by simply running following the command:

In[9]:= CompleteOneLoopMatching[{Sa->{{0,0},1,Y1},Fa->{{0,1},2,-(1/6)+Y1},
Fb->{{1,0},1,-(1/3)-Y1}},"model"]

4.5 A phenomenological example

The ultimate goal of the one-loop IR/UV dictionary is to improve the efficiency in the search
for new physics and, as such, to use it in phenomenologically relevant applications. The purpose
of this section is to illustrate how the dictionary can be used in practice with a simple but
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phenomenologically motivated example, before performing a more detailed and extensive study
in the next chapter.

Even in its current partial form, the dictionary can still be used to classify in a comprehensive
way the origin, and the corresponding phenomenological implications in other experimental
measurements, of experimental anomalies eventually reported. We will consider, for the sake
of the exposition, a recently reported tension (around ∼ 2σ in significance) in different non-
leptonic decays of B mesons [117]. A discussion on this tension and its interpretations in terms
of SMEFT operators is beyond the scope of this section, so we refer to the original article for
all the relevant details and simply use one of the proposed solutions in terms of the following
effective Lagrangian:

L = GF
2

g3
4π2mb

∑︂
q=d,s

C8gq(VubV ∗uq + VcbV
∗
cq)q̄LσµνTAbRGAµν + . . . , (4.27)

where the dots comprise the hermitian conjugate and other operators that are not relevant
for our discussion here. Besides the conventions stated in Appendix A, GF denotes the Fermi
constant, mb the bottom mass and Vij the corresponding entries of the CKM matrix. One way
of alleviating the mentioned tension among the different B-meson decays is generating the
C8gd and C8gs coefficients in the following ranges (with some correlation on the upper range
for the latter):

0.13 ≲ C8gd(mb) ≲ 0.33, −0.45 ≲ C8gs(mb) ≲ 0.03, (4.28)

where the value in parenthesis denotes the scale (µ = mb) at which the WCs are renormalized.
Given this bottom-up interpretation of the effect, we can wonder which new physics models

can be held accountable of this deviation. Note how the proposed explanation is in terms of
dipole operators which, as discussed in this chapter, are first generated at one loop. Thus,
we can use our dictionary to completely classify all possible extensions of the SM (with new
scalars or fermions) that can generate these non-vanishing values. However, as discussed in
Section 2.7, we first have to express the C8gq coefficients in terms of the corresponding WC in
the LEFT, then use the LEFT (one-loop) RGEs to write them in terms of the LEFT WCs
defined at the matching scale with SMEFT, perform the one-loop matching and finally use the
SMEFT RGEs to express everything in terms of the WCs defined at a high scale µ = Λ, whose
values we can read off from our dictionary. All these steps can be simplified by automated
tools like DSixTools [93, 73]. During this whole process we can take into account that some
SMEFT coefficients can only be generated at one loop and therefore their effect via running or
one-loop matching is formally a two-loop effect that can be disregarded.

In the following discussion, we will denote generically the anomalous dimension of a WC αi

α̇i ≡ 16π2µ
dαi
dµ , (4.29)

and working to the leading log approximation (fixed order one-loop effects), we have

αi(µ) = αi(µ0) +
α̇i(αtree

j )
32π2 log

(︄
µ2

µ2
0

)︄
, (4.30)
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where α̇i can be evaluated at any scale and, as we have explicitly written, only the tree level
contribution for the relevant WCs needs to be included, since it would be formally two-loops
order otherwise. Note that our convention for the covariant derivative is the opposite to the
one used in the references above. Thus, we have changed the signs of the gauge couplings
whenever necessary.

The relevant part of the LEFT Lagrangian reads:

LLEFT = (LdG)ij d̄L iσµνTAdRjGAµν + . . . , (4.31)

so, by comparison:
C8gq = Fq

g3
(LdG)qb, (4.32)

where

Fq ≡
[︃
GF
8π2mb(VubV ∗uq + VcbV

∗
cq)
]︃−1
≈
{︄

1.8× 105 e0.9iπ TeV, [q = d],
3.8× 104 TeV, [q = s].

(4.33)

Likewise, the relevant part of the LEFT RGEs, in the up basis, reads:

(L̇dG)ij = −g3
∑︁
qu=u,cmqu

[︂
(LS1,RR

uddu )qujiqu − 1
6(LS8,RR

uddu )qujiqu

]︂
+ . . .

= g3
∑︁
qu=u,cmqu

[︂
(C(1)

quqd)iququj − 1
6(C(8)

quqd)iququj

]︂
+ . . . , (4.34)

where the dots stand for contributions that are either one-loop generated or receive no
contribution from the SMEFT, and we have used in the second line the following tree level
matching between the SMEFT and the LEFT:

(LS1,RR
uddu )ijkl = −(C(1)

quqd)klij , (LS8,RR
uddu )ijkl = −(C(8)

quqd)klij . (4.35)

We can therefore write:

C8gq
gs
Fq

⃓⃓⃓
µ=mb

= (LdG)qb
⃓⃓⃓
µ=mb

= (LdG)qb
⃓⃓⃓
µ=mt

+ gs
32π2

∑︂
qu=u,c

mqu

[︂
(C(1)

quqd)qququb −
1
6(C(8)

quqd)qququb

]︂
log

(︄
m2
b

m2
t

)︄ ⃓⃓⃓
µ=Λ

,

(4.36)

where the SMEFT coefficients on the last term can already be evaluated at the high scale
(other effects being formally of two-loops order) and for later convenience we have chosen the
top quark mass for the matching scale between the SMEFT and LEFT.
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Using the one-loop matching between SMEFT and LEFT we obtain:

(LdG)qb = v√
2
V †qk(CdG)kb + g3

64π2F1(xW )
V †qtVtbmb

v2
T

+ g3
36π2

(︄
1− m2

W

m2
Z

)︄
mq(CHd)qb + g3

64π2F2(xW )mtV
†
qt(CHud)tb

− g3
72π2

(︂
1 + 2m2

W

m2
Z

)︂
mbV

†
qk(C

(1)
Hq)klVlb

− g3
576π2mb

{︃
8
(︄

7 + 2m
2
W

m2
Z

)︄
V †qk(C

(3)
Hq)klVlb − 9F1(xW )[V †qt(C

(3)
Hq)tkVkb + V †qk(C

(3)
Hq)ktVtb]

}︃
+ . . . ,

(4.37)

where the dots stand for two-loop effects and, at the order given, v ≈ 246 GeV. This equality
should be understood at a scale µ = mt but, again, all terms but the first one can already be
evaluated at the cut-off scale, as any running effect will be of two-loop order. We have defined:

xW ≡
m2
W

m2
t

, (4.38)

F1(x) =1− 6x+ 3x2 + 2x3 − 6x2 log(x)
(1− x)4 , (4.39)

F2(x) =1− 3x2 + 4x3 − 6x2 log(x)
(1− x)3 . (4.40)

The last term in the first line of Eq. (4.37) corresponds to the SM contribution which, using
the relation between the measured Fermi constant in muon decay and the Higgs vacuum
expectation value (vev), vT , [70]

1
v2
T

=
√

2GF + 1
2[(Cll)2112 + (Cll)1221]− [(C(3)

Hl )11 − (C(3)
Hl )22] ≡

√
2GF + ∆GF , (4.41)

gives the following new physics contribution:

g3
64π2F1(xW )

V †qtVtbmb

v2
T

= SM− g3
64π2 (VubV ∗uq + VcbV

∗
cq)F1(xW )mb∆GF . (4.42)

Finally, we have to include the RGE of CdG in the SMEFT, which reads,

(ĊdG)qb = g3

(︃
C

(1)
quqd −

1
6C

(8)
quqd

)︃
qklb

(Y †u )kl + . . . , (4.43)

where the dots denote, once again, terms that correspond to two-loop effects. We therefore
have:

(CdG)qb
⃓⃓
µ=mt

=
[︃
(CdG)qb + g3

32π2

(︃
C

(1)
quqd −

1
6C

(8)
quqd

)︃
qklb

(Y †u )kl log
(︄
m2
t

Λ2

)︄]︃
µ=Λ

+ . . . , (4.44)
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where, as explicitly stated, this expression is already evaluated at the high scale. Putting
everything together we arrive to the following expression for the new physics contribution:

C8gq
gs
Fq

⃓⃓⃓
µ=mb

= gs
32π2

∑︂
qu=u,c

mqu

[︂
(C(1)

quqd)qququb −
1
6(C(8)

quqd)qququb

]︂
log

(︄
m2
b

m2
t

)︄

+ v√
2
V †qk(CdG)kb + gs

64π2F1(xW )V †qtVtbmb∆GF

+ gs
36π2

(︄
1− m2

W

m2
Z

)︄
mq(CHd)qb + gs

64π2F2(xW )mtV
†
qt(CHud)tb

− gs
72π2

(︂
1 + 2m2

W

m2
Z

)︂
mbV

†
qk(C

(1)
Hq)klVlb

− gs
576π2mb

{︃
8
(︄

7 + 2m
2
W

m2
Z

)︄
V †qk(C

(3)
Hq)klVlb − 9F1(xW )[V †qt(C

(3)
Hq)tkVkb + V †qk(C

(3)
Hq)ktVtb]

}︃

+ V †qk

[︃
gs

32π2

(︃
C

(1)
quqd −

1
6C

(8)
quqd

)︃
qkkb

(mu)k log
(︄
m2
t

Λ2

)︄]︃
+ . . . , (4.45)

where in the last line we neglected higher loop and mass dimension effects to write the mass of
the up-type quarks in terms of their Yukawa couplings and the Higgs vev. In the equation
above the first line corresponds to the running in the LEFT between µ = mb and µ = mt, the
second to fifth to the matching between the SMEFT and the LEFT at µ = mt and the last to
the SMEFT running between µ = mt and the cut-off scale µ = Λ. All the SMEFT WCs are to
be evaluated at the cut-off scale and only their tree level contributions should be included to
be consistent (except for CdG).

Thanks to equation (4.45), we can “read” low energy effects in C8gq (like the reported
tension in B decays) in terms of physics generated at a high scale Λ. Thus, we can directly use
the dictionaries to classify all possible SM extensions (with scalars and fermions for the one
loop one) that can explain this tension.

The analysis can be simplified by first checking which WCs can give a sizeable contribution
to our coefficient at low energy. In order to do that we will select a benchmark point with:

Cbenchm.
8gd = 0.25, Cbenchm.

8gs = −0.1, (4.46)

allowed from the study of [117]. Rescaling all coefficients with an explicit power of the cut-off:

C = c

Λ2 , (4.47)

with c now a dimensionless coefficient, and dropping all contributions that require the relevant
c to be larger than 10 (to be on the conservative side) to reproduce the benchmark points, we
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find, for Λ = 2 TeV,

C8gd ≈ [−6.9 + 2.9i]× 103 (cdG)1,3 + [1.6− 0.66i]× 103 (cdG)2,3 − 65.5 (cdG)3,3

+ [3.22− 1.34i]× 10−2 (c(1)
Hq)1,2 + [0.80− 0.33i] (c(1)

Hq)1,3 − [0.18− 0.08i] (c(1)
Hq)2,3

+ [0.11− 0.04i] (c(3)
Hq)1,2 + [2.38− 0.99i] (c(3)

Hq)1,3 − [2.5− 1.0i]× 10−2 (c(3)
Hq)2,2

− [0.55− 0.23i] (c(3)
Hq)2,3 − 0.39 (cHud)3,3 + [1.23− 0.51i] (c(1)

quqd)1,2,2,3

+ 1.18 (c(1)
quqd)1,3,3,3 − [0.21− 0.09i] (c(8)

quqd)1,2,2,3 − 0.20 (c(8)
quqd)1,3,3,3, (4.48)

C8gs ≈ [373 + 7i] (cdG)1,3 + [1600 + 30i] (cdG)2,3 − 65.5 (cdG)3,3

− 0.043 (c(1)
Hq)1,3 − 0.18 (c(1)

Hq)2,3 − 0.13 (c(3)
Hq)1,3 − 0.025 (c(3)

Hq)2,2

− [0.55 + 0.01i] (c(3)
Hq)2,3 + 0.02 (c(3)

Hq)3,3 − 0.39 (cHud)3,3 − [0.58 + 0.01i] (c(1)
quqd)2,2,2,3

+ 1.2 (c(1)
quqd)2,3,3,3 + [0.096 + 0.002i] (c(8)

quqd)2,2,2,3 − 0.20(c(8)
quqd)2,3,3,3. (4.49)

Contributions from tree level generated operators can be directly read off from the tree
level dictionary [102], so we will classify in the following the contribution from the one-loop
generated WC CdG, taking full advantage of the sector of the one-loop dictionary that we
have computed. We are interested, then, in models that do not contribute at tree level to the
SMEFT operators in the equation above and just consider the simpler case of:

C8gd ≈ [−6.9 + 2.9i]× 103 (cdG)1,3 + [1.6− 0.66i]× 103 (cdG)2,3 − 65.5 (cdG)3,3

= [−27.6 + 11.6i]× 103 (CdG)1,3 + [6.4− 2.64i]× 103 (CdG)2,3 − 262. (CdG)3,3, (4.50)

C8gs ≈ [373 + 7i] (cdG)1,3 + [1600 + 30i] (cdG)2,3 − 65.5 (cdG)3,3

= [1492 + 28i] (CdG)1,3 + [6400 + 120i] (CdG)2,3 − 262. (CdG)3,3, (4.51)

where the second line (of each equation) has been rewritten in terms of dimensionful Wilson
Coefficients (arbitrary Λ. All dimensionful quantities hereafter will be measured in TeV. There
is a continuum of solutions for these observables to match the benchmark values. An example
of such solution is:

(CdG)1,3 ≈ −(1.1 + 0.3i)× 10−5, (CdG)2,3 ≈ −1× 10−5, (CdG)3,3 ≈ 10−4, (4.52)

all in units of TeV−2 and the complex value for the 1, 3 component is just to accommodate
the assumption of real WC made in [117].

One can check that in general it is easy to generate these values in phenomenologically
viable models. We are in position now, using SOLD, to see the list of all possible extensions
that can generate these coefficients. This was computed in Section 4.4 and partially shown in
Figure 4.2. From this (long) list we eliminate the cases in which at least one heavy field has all
its quantum numbers fixed, as they correspond to linear couplings to the SM and therefore
contribute at tree level to other operators.

All the remaining models have three heavy fields. We choose one of the simplest ones
that has “chirally enhanced” contributions, not suppressed by the down-type quark Yukawa
couplings (for simplicity we will use the conjugated field of the first fermion with respect to
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the one given by SOLD):

Φ ∼ (1, 1)YΦ , Ψ1 ∼ (3, 2) 1
6−YΦ

, Ψ2 ∼ (3, 1)− 1
3−YΦ

, (4.53)

where the hypercharge of the heavy scalar YΦ is arbitrary up to the limitation (under our
assumption) of no tree level contributions, that restricts YΦ ̸= 0,−1. The complete expression
can be obtained by the command

In[10]:= Match2Warsaw[alphaOdG[i,j],{Sa ->{1,1,Y1},Fa->{3,2,1/6-Y1},
Fb->{3,1,-1/3-Y1}}]

For simplicity we report here the expression in the large scalar mass limit and neglecting terms
suppressed by the down-type quark masses:

(CdG)ij =− g3
64π2

(λqa)i(λbd)j
M2

Φ(M2
a −M2

b )

[︃
2MaMb log

(︄
M2
a

M2
b

)︄
λRab

+
(︄

2M2
b log

(︄
M2
a

M2
b

)︄
+ (M2

a −M2
b )
(︄

3 + 2 log
(︄
M2
a

M2
Φ

)︄)︄)︄
λLab

]︃
+O

(︄
M2
a,b

M4
Φ

)︄
, (4.54)

where the parameters are defined by the following Lagrangian:

L ⊃ −M2
ΦΦ†Φ−MaΨ̄aΨa −MbΨ̄bΨb

− Ψ̄a[λLabPL + λRabPR]Ψb − (λqa)iq̄iPRΨaΦ− (λbd)iΨ̄bPRdiΦ†. (4.55)

Using the full expression given by SOLD, we can obtain, for instance, the following parameter
point, respecting the values in Eq. (4.52):

Ma = 1.5 TeV, Mb = 2.0 TeV, Ma = 4.0 TeV,

λLab = 0, (λqa)i = (0.084 + 0.023i, 0.077,−0.776)
λRab(λbc)3

. (4.56)

We can then proceed to perform the full one-loop matching of this model via the
function CompleteOneLoopMatching. The result has been exported to WCxf format [118]
and smelli [119–121] has been used to check the viability of the model. Indeed the following
values of the remaining parameters:

λRab = −0.7, (λbc)3 = 0.9, (4.57)

relax the corresponding tension for the considered operators without conflicting with other
experimental observables (the global pull with respect to the SM is of 3.4 σ when considering
all other relevant observables encoded in smelli).

Note that, given the choice of quantum numbers, there is no linear coupling of the new
fields to SM particles. This means that the lightest one, Ψa for our choice, is stable. However,
we can still make a choice of YΦ that ensures that Ψa can still decay via higher dimensional
operators, with a non-standard decay pattern, evading current experimental limits. See [122]
for a detailed discussion.
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4.6 Outlook

We have presented in this chapter the results of the one-loop dictionary for the SMEFT at
dimension six for a sector of operators whose leading contribution is at this order. Even in its
current partial form, it can be already applied to phenomenological examples, as presented in
Section 4.5 and as we will see in the next chapter. However, there are a few clear limitations
that we should be able to overcome thanks to all the machinery constructed.

The first future step would be clearly to extend the dictionary to all dimension six operators
in the SMEFT. Even if the remaining operators can receive tree-level contributions, this is
still necessary to perform a complete one-loop analysis of the connection between models and
observables. The changes needed to accommodate the rest of operators are minimal and we
plan to include them in the future.

Likewise, we also want to include extensions of the SM with new heavy vector bosons,
which are theoretically very motivated. Before that, we want to study in detail how to
construct consistently a generic UV theory with massive vector bosons without details of their
representations [123].

Another slight improvement could be implementing flavor indices for the heavy fields
in the models defined by the user. Note that same physical result can be already obtained
with the current version of SOLD by defining different heavy particles with the same quantum
numbers (which is what we call flavor). However, the results would be much more compact and
readable introducing a flavor index for the heavy fields. This will be taken care of following
their inclusion in matchmakereft. Besides, we plan to add a Mathematica interface between
SOLD (and matchmakereft) and the MatchingDB format [124] that will allow for a flexible use
of these highly non-trivial dictionaries.

Finally, given the way in which the dictionary is constructed, the power to extend the
results to other EFTs is at hand. Since we work with generic field multiplets, without specifying
their components or gauge representations right until the end of the calculation, we can
consider other EFTs by only matching them to a generic theory. This can be easily achieved
with matchmakereft, only limited by the reduction of a general EFT to a physical basis. Once
this is implemented, we would “instantly” have dictionaries for theories like νSMEFT, ALP
EFTs, SMEFT at dimension eight, etc.

93





5
A SOLD bridge to new physics

Motivated by the increasing precision in experiments and the intention to capture higher order
effects, we constructed the one-loop dictionary for heavy scalars and fermions for the sector of
SMEFT generated for the first time at one loop. We reviewed how the dictionary is constructed
and encoded in the package SOLD, and provided an example of a phenomenological application.

In this chapter, we want to demonstrate how IR/UV dictionaries can play a relevant role as
a guiding principle in our search for new physics, and how it is important to be systematic and
“leave no stone unturned”. With that purpose, we show how the dictionary was used to propose
a whole new class of models to explain the anomaly in the magnetic dipole moment of the
muon (aµ). After an introduction to the problem in Sections 5.1 and 5.2, we present generic
(with gauge representations unspecified) and specific results for aµ in this class of models in
Sections 5.3, 5.4 and 5.5. Finally we exemplify how the models contained in the dictionary, in
particular the ones discussed in this chapter, can have the freedom to accommodate well-known
explanations of different anomalies, by proposing an specific model in Section 5.6.

5.1 The anomalous magnetic moment of the muon

The Fermilab Muon g-2 Experiment [125] recently performed a measurement of the anomalous
magnetic moment of the muon which, together with the previous measurement by Brookhaven
National Laboratory [126], combines to a 4.2σ tension with the Standard Model (SM) result
[127–162],

aEXP
µ − aSM

µ = (251± 59)× 10−11. (5.1)

This exciting tension strongly suggests the presence of new physics coupling to muons, and has
fueled significant efforts in the community in order to explain its origin. This SM value, however,
does not take into account the latest lattice results from the hadronic vacuum polarization
(HVP) SM contribution, presented by the BMW collaboration [163, 164], which would reduce
the tension in g-2 to ∼ 1.5σ. Nevertheless, there is a disagreement in the size of prediction
for the HVP contribution between these lattice results and the data-driven method, which
introduces another tension in e+e− → hadrons cross-section [165–168] that amounts to ∼ 3σ.
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5. A SOLD bridge to new physics

In the following, we will neglect this discrepancy and acknowledge the g-2 measurement as
an anomaly. Our rationale behind this is that, even if the tension eventually vanishes, this
chapter still sets the example as an illustration of how the dictionaries can be used to interpret
future anomalies and how a systematic scrutiny of models can open up several new physics
possibilities.

Under the assumption that the physics responsible for the g-2 tension is heavy, we will
use once again the formalism of Effective Field Theories in our study. From the SMEFT
perspective, the heavy physics contribution to aµ (at tree-level) is given by:

∆aµ = aNP
µ − aSM

µ = 4mµv√
2e

(︃
Re
(︁
[αeB]2,2

)︁
cW − Re

(︁
[αeW ]2,2

)︁
sW

)︃
≡ 4mµv√

2e
[αeγ ]2,2 , (5.2)

where mµ is the mass of the muon, v the vacuum expectation value (VEV) of the Higgs, e
the electric charge, cW (sW ) the co-sine (sine) of the Weinberg angle and αeB and αeW the
coefficients of the leptonic dipole operators (see Appendix B):

[OeB]i,j = (ℓiσµνej)HBµν , (5.3)

[OeW ]i,j = (ℓiσµνej)σIHW I
µν , (5.4)

with i and j denoting flavor indices. At lower energies, the contribution to aµ at tree level in
the LEFT is given by the photon dipole operator, whose Wilson coefficient is Leγ = v√

2αeγ

[75]. Therefore, we will quote our results as contributions to αeγ hereafter.
As discussed in Chapter 4, the SMEFT dipole operators are generated only at loop level by

weakly-coupled UV theories. Since the measurement is performed at low energies, a consistent
calculation at one loop needs to include the effects of running of coefficients besides the
one-loop finite contributions at low energy (see Section 2.7). A calculation along the lines
of the one in Section 4.5 was done in [48], and showed that besides the mentioned dipole
operators, the only remaining relevant contribution to aµ arises as a one-loop effect from the
O(3)
ℓequ operator, setting a cut-off of Λ = 10 TeV (lower cut-offs result in even more negligible

remaining terms, since the running effects are less important). Since it is already a one-loop
contribution, we only need to consider the tree-level generation of this operator, which only
occurs for extensions including one of the two scalar leptoquarks S1 or S2 [102]. These have
been well studied [102, 48] so, following the purpose of exploring one-loop generated operators,
we will focus only on the contributions to the leptonic dipoles.

Several works have been dedicated in the last years to propose SM extensions (containing
a number of different fields) that generate these operators. A comprehensive review of the
status of such models can be found in [169] (and references therein). Among all of these
explanations, chirally enhanced solutions, i.e., solutions in which the contribution to aµ is
not suppressed by the muon Yukawa coupling, are particularly interesting because they can
explain the observed value with masses for the new heavy particles typically large enough
to avoid current experimental constraints. These chirally enhanced contributions have been
studied for a wide range of extensions (see, for instance, [170, 171, 112, 98, 172, 173]).
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5.1 The anomalous magnetic moment of the muon

All of these extensions are included in the one-loop dictionary, since they give finite
contributions to the dipole operators OeB,OeW . We can examine the complete list by using
the following command in SOLD:

In[11]:= ListModelsWarsaw[alphaOeW[2,2]]

The complete set of models is technically the union of the sets contributing to the OeB and
OeW operators, but we use here only OeW as an example. Among this long list, we can find
some models:

Out[11]= {...

{{ϕ1,ψ1,ψ2}, {ψ1→1⊗2, ϕ1⊗ϕ1⊃1⊗3, ψ2⊗ϕ1⊃1⊗2},

{Yψ1→-1/2,Yψ2→Yϕ1-1/2}},

{{ϕ1, ψ1, ψ2}, {ψ1→1⊗2, ψ2⊗ϕ1⊃1⊗2, ψ2⊗ψ2 ⊃1⊗3},

{Yψ1→1/2, Yψ2→Yϕ1+1/2}},

{{ϕ1, ψ1, ψ2}, {ψ2==ϕ1, ψ1→1⊗1, ϕ1⊗ϕ1 ⊃1⊗3}, {Yψ1→1, Yψ2→1+Yϕ1}},

{{ϕ1, ψ1, ψ2}, {ψ2==ϕ1, ψ1→1⊗3, ϕ1⊗ϕ1 ⊃1⊗3}, {Yψ1→1, Yψ2→1+Yϕ1}},

...}

that had not been studied, to the best of our knowledge, prior to this work. This completions
have in common that they yield chirally enhanced contributions to aµ produced by the topology
of Fig. 5.2, which we will refer to as bridge hereafter, and contain one vector-like lepton (VLL)
that couples linearly to the SM. Note that the VLL connecting the loop and 2 external states
(the bridge) and one of the particles in the loop must be heavy (otherwise the hard region of
the loop would vanish), but the remaining one can be heavy or light. As such, either 2- or
3-field extensions can generate this type of topology, besides the ones listed above.

While the bridge diagram has been studied in the context of some particular cases of 2-field
extensions with two VLLs [174, 175], in this chapter we perform the complete classification of
the subset of all possible 2 and 3 fields extensions of the SM (included in the dictionary) that
can produce this topology. Chirally enhanced solutions from 3-field extensions, like the ones in
[171, 112, 98, 172, 173, 170], contributed to aµ through a box diagram1 (see Figure C.2). The
heavy fields allowed by gauge symmetry to generate that topology are different from the ones
which can generate the bridge one, and, as such, the latter constitute a new class of models
that can alleviate the observed tension. Notice, however, that some of these extensions will
also contribute to aµ through a box diagram.

Adopting the SMEFT perspective also allowed us to consider several 2-field extensions which
had been overlooked in the literature, where only the lepton Yukawa-suppressed contributions
to aµ were took into account, thus excluding these models as explanations of the anomaly either
by direct searches or due to a wrong sign in the contribution. The bridge-like contribution in
these 2-field models restores them as plausible explanations for the g-2 anomaly.

1From the LEFT perspective, this box corresponds to the triangle diagram, which is the one usually considered
in the literature, when the Higgs takes a VEV.

97



5. A SOLD bridge to new physics

5.2 Computation of aµ

In this section we review the technicalities pertinent to the calculation of aµ from an EFT
perspective. Even if in the rest of the chapter we consider SM extensions with two or three
heavy fermions or scalars that can generate the bridge topology, but the procedure presented in
this section is completely general and applies for any type of model. Moreover, we will neglect
contributions suppressed either by lepton Yukawa couplings or by the Higgs mass (terms of
the form mH/M) throughout all computations, since they are negligible in comparison with
the chirally enhanced contribution that we are interested in.

The matching condition of the dipole operators can naturaly be obtained through a
diagrammatic off-shell approach, as we have been doing on the previous chapters, computing
the relevant 1lPI amplitudes and then reducing the result to the Warsaw basis:

αeB = αGeB −
g1
8 β

G
eHD2 + g1

8 β
G
eHD4 −

g1
2 β

G
eHD3 , (5.5)

αeW = αGeW −
g2
8 β

G
eHD2 + g2

8 β
G
eHD4 , (5.6)

where we have added explicitly the superscript G to denote the Wilson coefficients in the
Green’s basis. In this expression we neglected Yukawa-suppressed contributions and coefficients
not generated at one loop by renormalizable extensions (see Chapter 4). Following from Eq.
(5.2), we can then express the contribution to aµ in terms of these coefficients in the Green’s
basis as:

∆aµ = 4mµv√
2

(︃ 1
g1

[︂
αGeB

]︂
2,2
− 1
g2

[︂
αGeW

]︂
2,2
− 1

2
[︂
βGeHD3

]︂
2,2

)︃
. (5.7)

This procedure was applied to cross-check with matchmakereft [64] all the results presented
in the next sections (and, when possible, compared against those in the literature).

However, in the following we will adopt a different approach to compute aµ, simpler in our
case of interest. We will compute the on-shell amplitude ⟨ℓL eRH B/W ⟩2, taking all momenta
incoming, in the full theory and in the SMEFT. For simplicity, we set the momentum of the
Higgs, pH , to zero. The dipole operators are uniquely defined by the kinematic structure /q/ϵ,
where q is the gauge boson momentum and ϵ its polarization vector. This structure can be
traded on-shell by ϵ · pe, since:

vℓ /q/ϵ ue = −vℓ (/pℓ + /pe)/ϵ ue = −2ϵ · pe vℓ ue , (5.8)

where pe(ℓ) is the momentum of the right-handed (left-handed) electron, and vℓ, ue are the
corresponding external spinors. In the second equality we applied the on-shell conditions
vℓ /pℓ = 0 and /pe ue = 0 (which hold for massless fermions). Therefore, ϵ · pe ends up being the
only relevant kinematic structure for the matching calculation.

On-shell matching is particularly efficient in this specific case, since we do not have to
consider any connected diagrams other than the box (if present) and the bridge ones. The
reason is that, first, we are neglecting diagrams with insertions of the lepton Yukawas. Second,
one could also think of diagrams with the gauge bosons attached to the external legs instead

2Note that in practice one can directly calculate the diagram with the photon insertion and consider the
appropriate electric charge; however, to keep the language coherent within the SMEFT picture, we will refer to
diagrams with both W and B bosons.
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of in the internal propagators. However, when the gauge boson is attached to the fermions, the
diagram will either result in a contribution proportional to /pℓ/ϵ or /ϵ /pe, or, when the photon
couples to the Higgs, proportional to q · ϵ = 0 or pH · ϵ = 0.

Moreover, the same happens when the gauge boson is attached to the fermionic bridge.
In this case, all contributions are proportional either to /pℓ/ϵ or /ϵ /pe, being therefore zero in
light of the arguments presented above. Consequently, we can compute only the diagrams with
insertions of gauge bosons in the particles in the loop. The same arguments can be used to
realize that only the mass insertion in the bridge propagator contributes, fixing the chirality of
the coupling between the two (or three) heavy fields.

5.3 General results

In this section we present the contributions to aµ produced by the bridge topology for general
representations of the new heavy fields. Among the bridge topologies, we can distinguish three
cases depending on the particle that runs in the bridge. Note that it can never be a SM particle
because it would give a Yukawa-suppressed contribution. The possible heavy particles in the
bridge couple linearly to SM particles and their representations are therefore fixed:

• Scalar bridge. A heavy scalar in the bridge must couple to the left- and right-handed
muon, fixing its quantum numbers to be the same as the SM Higgs. The contributions
to aµ through these diagrams are always zero (they are proportional to ϵ · q).

• Fermion bridge coupled to right-handed muon. In this case the heavy fermion
has a Yukawa-like interaction to the Higgs and right-handed muon, so it is fixed to be a
heavy copy of the SM left-handed lepton, ∆ ∼ (1, 2,−1/2). The numbers in parenthesis
denote the representations under SU(3)c, SU(2)L and U(1)Y , respectively.

• Fermion bridge coupled to left-handed muon. The Yukawa-like interaction leaves
us in this case with two possibilities for the quantum numbers of the heavy fermion:
those of a SM right-handed lepton, E ∼ (1, 1,−1), or an SU(2) triplet, Σ ∼ (1, 3,−1).

The next subsections include the contribution to aµ for each of these VLL bridges. Note
that some of the extensions we consider can also contribute to aµ through the box diagrams
shown in Figs. C.1 and C.2. Therefore, for completeness, we present in Appendix C the general
results arising from box diagrams. With these and the ones from the bridge topology one
can in principle calculate the full contribution to aµ for arbitrary UV extensions of the SM.
Furthermore, for some particular representations, some 3-field extensions can also generate
diagrams with only two or one heavy propagators, which have different kinematic factors
and must also be included in the calculation of the full result3. When presenting results for
particular extensions in Sections 5.4 and 5.5, we obviously include all possible contributions to
aµ.

Moreover, extensions including φ, ω1 or Π7 scalars (see Table ??) also feature a shift of
the dipole coefficients in the Warsaw basis to account for the evanescent structures generated
at tree level, which affects the result for aµ. See Section 4.3 for the results of this contribution.

3For instance, 3-field extensions with a heavy Higgs also include diagrams generated by substituting it by
the SM Higgs. Note, in addition, that the heavy Higgs generates by itself a contribution to aµ.
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5. A SOLD bridge to new physics

For concreteness, our results will always be presented assuming one specific orientation of
the internal propagators shown in the diagrams (in particular, we always avoid the presence of
fermion-number violating interactions). To translate from these results to those with a flipped
propagator – which may be needed for some choices of the gauge representations of the heavy
fields –, it is sufficient to add a minus sign in the contribution corresponding to a gauge boson
insertion in the flipped propagator.

5.3.1 VLL doublet bridge

Considering a fermionic bridge, we sitll have three possible combinations inside the loop: one
extra heavy fermion, Ψ with the SM Higgs (Fig. 5.1a), one heavy scalar, Φ, and one heavy
fermion (Fig. 5.2), and one heavy scalar and an SM fermion (Fig. 5.1b). The latter contribution
to aµ vanishes because, since a mass insertion in the bridge propagator is needed (as discussed
in the previous section), the chirality of the external fermions requires another mass insertion
from the fermion propagator in the loop, which is massless. We will therefore neglect this
possibility in the following.

The most general Lagrangian, extending the SM with the VLL doublet, ∆, that can
generate a bridge-like contribution to aµ is the following:

L ⊃ gYΨΨγµΨBµ + gWT
W,Ψ
IKI′ΨIγµΨI′Wµ

K (5.9)

− igYΦB
µ(∂µΦ†Φ− Φ†∂µΦ)− igWTW,ΦJKJ ′W

µ
K(∂µΦ†JΦJ ′ − Φ†J∂µΦJ ′)

+ yM∆ eRH + TIKJ
(︂
yRb ΨI PR ∆KΦJ + yLb ΨI PL ∆KΦJ

)︂
+ yF T

′
KIJ ℓL,KΨIΦ†J + h.c. ,

where Φ can stand generically for a heavy scalar or the SM Higgs (H always stands for the
SM Higgs) and Ψ is a heavy fermion. Flavor indices in the couplings with the SM leptons are
omitted because we are only interested in the coupling to the muons. The indices I(′), J (′),
K(′) denote the SU(2) components of the fields, YΨ(Φ) represents the hypercharge of Ψ(Φ), and
TW , T and T ′ are the Clebsch-Gordan coefficients of the fields in the corresponding interaction
term.

Defining T γ,ψij ≡ Yψδij + TW,ψi3j , where ψ here represents any particle, we can write the
generic bridge result for αeγ as:

[αeγ ]2,2 = iNe

4 yMyF y
R
b

∑︂
IJ

TI2J
[︂
γΨT

γ,Ψ
I′I T

′
2JI′ + γΦT

γ,Φ
JJ ′ T

′
2IJ ′

]︂
, (5.10)

where N denotes the dimension of the SU(3) representation of Ψ (and Φ, by extension, when
denoting a heavy scalar). γΨ,Φ, which will be defined below, are different kinematic factors
corresponding to the insertion of the gauge bosons on the fermion and scalar, respectively.
Their explicit expression depends on the number of heavy propagators. Note that T γ,ψ would
be diagonal and proportional to the electric charge if the charge eigenstate basis is chosen for
the ψ multiplet, i.e., TW,ψ is diagonal.
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Figure 5.1: Bridge topology for the fermionic bridge with: (a) an extra heavy fermion and the SM
Higgs; (b) an extra heavy scalar and a SM fermion. Double lines represent heavy particles whereas
single lines are SM particles. The gauge boson (B or W ) is represented outside the diagram since
it can be attached to any of the internal propagators.

eR

φ

ℓL

B, W

Figure 5.2: Bridge topology for the fermionic bridge with an extra heavy fermion and a heavy
scalar. Double lines represent heavy particles, whereas single lines are SM particles. The gauge
boson (B or W ) is represented outside the diagram since it can be attached to any of the internal
propagators.

Let us define, for convenience, these two functions of the masses:

f(MA,MB,MC) ≡ − iMB

(4π)2MA

M4
B − 4M2

BM
2
C + 3M4

C + 2M4
C Log [M2

B/M
2
C ]

(M2
B −M2

C)3 , (5.11)

h(MA,MB,MC) ≡ − iMB

(4π)2MA

M4
B −M4

C − 2M2
BM

2
C Log [M2

B/M
2
C ]

(M2
B −M2

C)3 . (5.12)

as all the kinematic factors γΨ,Φ defined throughout this section can always be expressed in
terms of them. For the case in which the loop contains a heavy fermion, Ψ, and the SM Higgs
(Fig. 5.1a), the kinematic factors in Eq. (5.10) are given by:

γΨ = γΦ = lim
MΦ→0

f(M∆,MΨ,MΦ) = −i
(4π)2M∆MΨ

. (5.13)

Likewise, for the bridge diagram with three heavy propagators (Fig. 5.2), the kinematic
factors read:

γΨ = f(M∆,MΨ,MΦ) , (5.14)

γΦ =h(M∆,MΨ,MΦ) . (5.15)
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5. A SOLD bridge to new physics

5.3.2 VLL singlet (triplet) bridge

The relevant diagrams for the case of a VLL singlet or triplet bridge are the same ones presented
in the previous subsection, changing only the flow of the fermionic current because the bridge
is attached now to the left-handed muon.

The relevant Lagrangian for an extension of the SM with a triplet, Σ, that generates the
bridge diagram is given by:

L ⊃ yMℓLσIHPRΣI + yFΨIΦIeR + TKIJ
(︂
yRb ΣKPRΨIΦ†J + yLb ΣKPLΨIΦ†J

)︂
+ h.c. , (5.16)

where we use the same gauge conventions and general notation introduced in Eqs. (5.9) and
(5.10). Thus, we can write the general bridge result for αeγ as:

[αeγ ]2,2 = − iNe4 yMyF y
R
b

∑︂
IJ

T3IJ
[︂
γΨT

γ,Ψ
IJ + γΦT

γ,Φ
IJ

]︂
. (5.17)

In the case of a singlet bridge, E, the relevant Lagrangian is the following:

L ⊃ yMℓLHPRE + yFΨIΦIeR + yRb EPRΨIΦ†I + yLb EPLΨIΦ†I + h.c. , (5.18)

using once again the conventions in Eqs. (5.9), (5.10). The contributions to αeγ are given by:

[αeγ ]2,2 = iNe

4 yMyF y
R
b

(︂
Tr [T γ,Ψ]γΨ + Tr [T γ,Φ]γΦ

)︂
. (5.19)

The kinematic factors, common to Eqs. (5.17) and (5.19), for diagrams with a loop including
one heavy fermion and the SM Higgs, read

γΨ = γΦ = lim
MΦ→0

f(ME(Σ),MΨ,MΦ) , (5.20)

whereas for the case of two heavy particles running in the loop, they are given by:

γψ = f(ME(Σ),MΨ,MΦ) , (5.21)

γΦ =h(ME(Σ),MΨ,MΦ) . (5.22)

5.4 Two-field extensions

Since there are not many two field extensions that generate one of the bridge topologies
previously discussed, we present in this section the specific αeγ results for all of them.

The list of all possible completions that can generate a bridge topology with only one
heavy propagator in the loop in collected in Table 5.1. Note that, since the representation
of the bridge is fixed, the quantum numbers of the other heavy particle are also fixed, and
therefore the possibilities are finite.
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5.4 Two-field extensions

Table 5.1: 2-field UV completions which generate the bridge topology, with only two heavy
propagators. The aµ results include, however, all possible topologies for each extension.

Bridge Other Fermion aµ result

E ∼ (1, 1,−1) ∆ ∼ (1, 2,−1/2) Eq. (5.23)

∆3 ∼ (1, 2,−3/2) Eq. (5.24)

∆ ∼ (1, 2,−1/2)

E ∼ (1, 1,−1) Eq. (5.23)

Σ ∼ (1, 3,−1) Eq. (5.25)

N ∼ (1, 1, 0) Eq. (5.26)

Σ0 ∼ (1, 3, 0) Eq. (5.27)

Σ ∼ (1, 3,−1) ∆ ∼ (1, 2,−1/2) Eq. (5.25)

∆3 ∼ (1, 2,−3/2) Eq. (5.28)

The chirally enhanced contribution to αeγ from all these extensions can be readily obtained
using the SOLD package:

In[12]:= alphaOegamma[ex_] :=
16 Pi^2*(Match2Warsaw[alphaOeB[2, 2], ex_]/g1 -

Match2Warsaw[alphaOeW[2, 2], ex_]/gw) /.
L1[lLbar, eR, phi][a_, b_] -> 0 // NiceOutput // Simplify

We list below the individual results, again, all of them to be understood as divided by the
loop factor (16π2):

• E ∼ (1, 1,−1) and ∆ ∼ (1, 2,−1/2)

Note that in this particular extension, there are two different bridge diagrams that
contribute, because both heavy fermions can act as the bridge.

[αeγ ]2,2 = −e yMyF y
R
b

4MEM∆
. (5.23)

The couplings above can therefore be interpreted within the Lagrangian in Eq. (5.9) or
Eq. (5.18).

• E ∼ (1, 1,−1) and ∆3 ∼ (1, 2,−3/2)

[αeγ ]2,2 = −5e yMyF yRb
4MEM∆3

. (5.24)

• ∆ ∼ (1, 2,−1/2) and Σ ∼ (1, 3,−1)

There are also two bridge diagrams relevant for this extension: one with the doublet on
the bridge and the triplet in the loop, and vice-versa.

[αeγ ]2,2 = −9e yMyF yRb
4M∆MΣ

. (5.25)
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Both (5.9) and (5.16) can be used to interpret this result.

• ∆ ∼ (1, 2,−1/2) and N ∼ (1, 1, 0)

[αeγ ]2,2 = 0 . (5.26)

This zero has been extensively discussed in the literature in Refs. [174, 175].

• ∆ ∼ (1, 2,−1/2) and Σ0 ∼ (1, 3, 0)

[αeγ ]2,2 = −e yMyF y
R
b

2M∆MΣ0

. (5.27)

• Σ ∼ (1, 3,−1) and ∆3 ∼ (1, 2,−3/2)

[αeγ ]2,2 = −5e yMyF yRb
4MΣM∆3

. (5.28)

These results were cross-checked against those in [176, 175, 177], and found agreement
except for the numerical factors in Eq. (4.8) from Ref. [176] for VLLs with doubly charged
components.

In addition, some 2-field extensions can also generate a bridge topology with 3 heavy
propagators (Fig. 5.2), given that the fermion in the bridge is the same as the fermion in the
loop. These extensions are obviously limited and are listed in Table 5.2. The corresponding
contributions to αeγ are:

• E ∼ (1, 1,−1) and S0 ∼ (1, 1, 0)

[αeγ ]2,2 = −eyRb yMyF
M4
E − 4M2

EM
2
S0

+ 3M4
S0

+ 2M4
S0

Log [M2
E/M

2
S0

]
4(M2

E −M2
S0

)3 ; (5.29)

• E ∼ (1, 1,−1) and S2 ∼ (1, 1,−2)

[αeγ ]2,2 = eyRb yMyF
3M4

E − 4M2
EM

2
S2

+M4
S2

+ (2M4
S2
− 4M2

EM
2
S2

) Log [M2
E/M

2
S2

]
2(M2

E −M2
S2

)3 ;

(5.30)

• ∆ ∼ (1, 2,−1/2) and S0 ∼ (1, 1, 0)

[αeγ ]2,2 = −eyRb yMyF
M4

∆ − 4M2
∆M

2
S0

+ 3M4
S0

+ 2M4
S0

Log [M2
∆/M

2
S0

]
4(M2

∆ −M2
S0

)3 ; (5.31)

• ∆ ∼ (1, 2,−1/2) and S1 ∼ (1, 1,−1)

[αeγ ]2,2 = 0 ; (5.32)
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• ∆ ∼ (1, 2,−1/2) and Ξ0 ∼ (1, 3, 0)

[αeγ ]2,2 = eyRb yMyF
M4

∆ + 4M2
∆M

2
Ξ0
− 5M4

Ξ0
− (4M2

Ξ0
M2

∆ + 2M4
Ξ0

) Log [M2
∆/M

2
Ξ0

]
4(M2

∆ −M2
Ξ0

)3 ;

(5.33)

• ∆ ∼ (1, 2,−1/2) and Ξ1 ∼ (1, 3,−1)

[αeγ ]2,2 = −eyRb yMyF
7M4

∆ − 8M2
∆M

2
Ξ1

+M4
Ξ1

+ (−10M2
Ξ1
M2

∆ + 4M4
Ξ1

) Log [M2
∆/M

2
Ξ1

]
2(M2

∆ −M2
Ξ1

)3 ;

(5.34)

• Σ ∼ (1, 3,−1) and Ξ0 ∼ (1, 3, 0)

[αeγ ]2,2 = −eyRb yMyF
M2

Σ −M2
Ξ0

+M2
Ξ0

Log [M2
Ξ0
/M2

Σ]
(M2

Σ −M2
Ξ0

)2 ; (5.35)

• Σ ∼ (1, 3,−1) and Ξ2 ∼ (1, 3,−2)

[αeγ ]2,2 = 0 . (5.36)

A few comments are in order concerning these results. First, we are not considering here
flavor for the heavy particles for simplicity. Therefore, in this type of completions, where the
bridge coupling yb involves two fermions that are equal, it will vanish when the gauge structure
is antisymmetric. This is the case for completions (5.32) and (5.36). Note that this is not true
in general when dealing with multiple families for heavy fields. On the other hand, for models
(5.29), (5.31), (5.33) and (5.35), the couplings yRb and yLb are related by hermitian conjugation;
therefore, we redefine yRb ≡ yRb + yL ∗b as the effective coupling with the right-handed chirality
and write our results using such convention.

These models have been considered previously in the literature [178, 170, 177], apart
from the ones that involve fermion number violating (FNV) vertices which, to the best of
our knowledge, are first explored here. However, only the Yukawa-proportional contribution
(neglected here) was considered, which resulted in most of the models in Tab. 5.2 being excluded
as explanations of ∆aµ, since this was driven the mass of the new particles to be lighter than
what was allowed by experiments. Performing, as we do, the calculations in the unbroken phase
of the SM, it becomes easier to see the chirally enhanced contribution coming from the bridge
diagram, which allows for the new particles to be heavier while explaining aµ and avoiding the
constraints. Consequently, this opens up this class of models as possible explanations of the
anomaly.

A particularly interesting example is the case of the model with ∆ ∼ (1, 2,−1/2) +
Ξ0 ∼ (1, 3, 0), where the contribution is quoted to be always negative in the literature (and
as such worsening the tension with the observed value). However, we can see from Eq. (5.33)
that the dependence on the couplings makes it always possible to take a positive contribution
and account for the observed ∆aµ.
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Table 5.2: 2 field fermion-scalar UV extensions which generate the bridge topology with 3 heavy
propagators. Completions in gray color involve fermion number violating interactions.

Fermion Scalar Result

E ∼ (1, 1,−1) S0 ∼ (1, 1, 0) Eq. (5.29)

S2 ∼ (1, 1,−2) Eq. (5.30)

∆ ∼ (1, 2,−1/2)

S0 ∼ (1, 1, 0) Eq. (5.31)

S1 ∼ (1, 1,−1) Eq. (5.32)

Ξ0 ∼ (1, 3, 0) Eq. (5.33)

Ξ1 ∼ (1, 3,−1) Eq. (5.34)

Σ ∼ (1, 3,−1) Ξ0 ∼ (1, 3, 0) Eq. (5.35)

Ξ2 ∼ (1, 3,−2) Eq. (5.36)

5.5 Three-field extensions

In the case of three-field extension, there is an infinite number of extensions that generate
the bridge diagram of Fig. 5.2, since the representation of particles in the loop is not fixed,
but only their product is. Therefore, we collect in this section the restrictions of the quantum
numbers of the fields in the loop in order to contribute through this diagram. This can be
done using the results included in the one-loop dictionary, collecting the models contributing
to either OeB or OeW and selecting the extensions that produce a bridge diagram, as partially
shown in Section 5.1.

The conditions that the extra heavy scalar, Φ, and heavy fermion, Ψ, must respect are the
following:

• VLL singlet bridge: YΨ −YΦ = −1

SU(2)Φ ⊗ SU(2)Ψ ⊃ 1
(5.37)

• VLL doublet bridge: YΨ −YΦ = −1/2

SU(2)Φ ⊗ SU(2)Ψ ⊃ 2
(5.38)

• VLL triplet bridge: 
YΨ −YΦ = −1

SU(2)Φ ⊗ SU(2)Ψ ⊃ 3

SU(2)Φ ⊗ SU(2)Ψ ⊃ 1

(5.39)

In the case of SU(3) representations, the condition is to always form a singlet with the two
fields in the loop, Φ and Ψ. Introducing large color representations results in an enhancement
factor to the diagram, as explored in [172] for completions with box diagrams.
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5.5 Three-field extensions

Table 5.3: Three-field UV extensions which generate the bridge topology, up to the triplet
representation of SU(2). Only SU(2) representations are shown because the color representations
must be the conjugates of each other and the conditions on the hypercharge are specified above.
Switching the assigned SU(2) representations between Φ and Ψ also corresponds to a possible
extension.

Bridge (SU(2)Ψ , SU(2)Φ) Result

E ∼ (1, 1,−1)
(1,1) Eq. (5.40)

(2,2) Eq. (5.41)

(3,3) Eq. (5.42)

∆ ∼ (1, 2,−1/2) (2,1) Eqs. (5.43), (5.44)

(2,3) Eqs. (5.45), (5.46)

Σ ∼ (1, 3,−1) (2,2) Eq. (5.47)

(3,3) Eq. (5.48)

Using the ListValidQNs routine in SOLD, we can compute the specific quantum numbers
that fulfill these conditions. Limiting ourselves to, at most, triplet representations of SU(2),
the UV completions which can generate the bridge topology are listed in Table 5.3.

Notice that none of these completions can be found among the ones explored in Refs.
[170, 171, 112, 98, 172, 173] and as such represent a new class of SM extensions that can in
principle contribute to aµ. We will present, for completeness, the results from the models
in Table 5.3, using again the notation in Eqs. (5.9), (5.16) and (5.18). This corresponds
only to the chirally enhanced contributions (terms proportional to the lepton Yukawa are
neglected) and, once again, a factor 1/16π2 is omitted. We do not fix the hypercharge of the
new fields, expressing the results in terms of a symbolic one for Ψ, YΨ, and we use the notation
(Ψ,Φ) ∼ (SU(2)Ψ,SU(2)Φ) to label the SU(2) representations of the fields.

• E ∼ (1, 1,−1) + (Ψ,Φ) ∼ (1, 1)

[αeγ ]2,2 = eNMΨyMyF y
R
b

4ME(M2
Ψ −M2

Φ)3

{︃
(M2

Ψ −M2
Φ)(M2

Φ(1− 2YΨ) +M2
Ψ(1 + 2YΨ))

− 2(−M4
ΦYΨ +M2

ΨM
2
Φ(1 + YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.40)

• E ∼ (1, 1,−1) + (Ψ,Φ) ∼ (2, 2)

[αeγ ]2,2 = eNMΨyMyF y
R
b

2ME(M2
Ψ −M2

Φ)3

{︃
(M2

Ψ −M2
Φ)(M2

Φ(1− 2YΨ) +M2
Ψ(1 + 2YΨ))

−2(−M4
ΦYΨ +M2

ΨM
2
Φ(1 + YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.41)
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• E ∼ (1, 1,−1) + (Ψ,Φ) ∼ (3, 3)

[αeγ ]2,2 = 3eNMΨyMyF y
R
b

4ME(M2
Ψ −M2

Φ)3

{︃
(M2

Ψ −M2
Φ)(M2

Φ(1− 2YΨ) +M2
Ψ(1 + 2YΨ))

−2(−M4
ΦYΨ +M2

ΨM
2
Φ(1 + YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.42)

• ∆ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (2, 1)

[αeγ ]2,2 = eNMΨyMyF y
R
b

4M∆(M2
Ψ −M2

Φ)3

{︃
2(M2

Ψ −M2
Φ)(M2

Φ(1− YΨ) +M2
ΨYΨ)

−(M4
Φ(1− 2YΨ) +M2

ΨM
2
Φ(1 + 2YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.43)

• ∆ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (1, 2)

[αeγ ]2,2 = eNMΨyMyF y
R
b

4M∆(M2
Ψ −M2

Φ)3

{︃
(M2

Ψ −M2
Φ)(M2

Φ(1− 2YΨ) +M2
Ψ(1 + 2YΨ))

−2(−M4
ΦYΨ +M2

ΨM
2
Φ(1 + YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.44)

• ∆ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (2, 3)

[αeγ ]2,2 = eNMΨyMyF y
R
b

4M∆(M2
Ψ −M2

Φ)3

{︃
2(M2

Ψ −M2
Φ)(M2

Φ(1− 3YΨ) +M2
Ψ(2 + 3YΨ))

+(M4
Φ(1 + 6YΨ)−M2

ΨM
2
Φ(7 + 6YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.45)

• ∆ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (3, 2)

[αeγ ]2,2 = − eNMΨyMyF y
R
b

4M∆(M2
Ψ −M2

Φ)3

{︃
(M2

Ψ −M2
Φ)(M2

Φ(7− 6YΨ) +M2
Ψ(−1 + 6YΨ))

−2(M4
Φ(2− 3YΨ) +M2

ΨM
2
Φ(1 + 3YΨ)) Log [M2

Ψ/M
2
Φ]
}︃

;
(5.46)

• Σ ∼ (1, 3,−1) + (Ψ,Φ) ∼ (2, 2)

[αeγ ]2,2 = − eNMΨyMyF y
R
b

2MΣ(M2
Ψ −M2

Φ)2

{︃
M2

Ψ −M2
Φ −M2

Φ Log [M2
Ψ/M

2
Φ]
}︃

; (5.47)

• Σ ∼ (1, 3,−1) + (Ψ,Φ) ∼ (3, 3)

[αeγ ]2,2 = − eNMΨyMyF y
R
b

MΣ(M2
Ψ −M2

Φ)2

{︃
M2

Ψ −M2
Φ −M2

Φ Log [M2
Ψ/M

2
Φ]
}︃
. (5.48)

5.6 A step beyond the bridge

So far, we have focused on models explaining the tension in aµ because it is an effect that
arises at one loop and constitutes a realistic and relevant phenomenological example of the use
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of the dictionary. In this last section of the chapter, we want to show how the models within it
have enough flexibility to accommodate other (present or future) anomalous observations by
proposing a specific model as an example.

5.6.1 General phenomenological considerations

First, let us briefly discuss some general considerations that apply to the class of bridge models.
Among the new particles introduced, the one that is typically more constrained by experiment
a priori is the VLL in the bridge, since it is the only one, in principle, coupling linearly to SM
particles.

The mixing of VLLs with the SM muon is bounded by electroweak precision observables
(EWPO) [179, 180]:

v

ME
yM ≲ 0.03 (0.04) , (5.49)

v

M∆
yM ≲ 0.065 (0.075) , (5.50)

v

MΣ
yM ≲ 0.1 (0.11) , (5.51)

for the singlet, doublet and triplet of SU(2), respectively, at 1 (2) σ confidence levels.
We can find lower limits on the masses of these VLLs set by direct searches at colliders.

[181] set a limit of ME ≳ 175 GeV for a singlet VLL decaying through muon or electron
channels. In [99], however, it is estimated that the HL phase of the LHC could exclude masses
lighter than 800 GeV. The doublet has recently been probed by CMS [182], excluding masses
below ∼ 800 GeV. These results are conservative for our specific case, since only tau decays
were considered, whereas we need a coupling to muons to address the aµ tension. In the case
of the triplet, the discovery reach of the LHC at 3 ab−1 at 5σ was estimated in [183] to be of
approximately 1.4 TeV.

Other direct bounds typically apply to the particles running in the loop (EW or QCD
pair production, for instance). However, these are clearly model-dependent and performing
a specific study of the phenomenology and general constraints for different types of bridge
models is beyond the scope of this section.

Finally, a common feature of chirally enhanced solutions to aµ is typically a large
contribution to the muon Yukawa through the same mechanism responsible of generating the
aµ contribution. In fact, the same diagrams contribute in principle to both, without insertions
of the gauge boson in the Yukawa ones. In the case of the VLL triplet bridge diagram this
does not suppose a problem, since without an insertion of a W -boson the loop vanishes. In
the other two cases, in turn, a sizable contribution to the muon Yukawa is indeed expected,
needing then to explain the cancellation between this contribution and a possible tree-level
coefficient. This motivates the idea of UV scenarios in which the Yukawa couplings and the
dipole operators have the same origin [184–186].

5.6.2 The triple triplet model

Before introducing the model, let us briefly review the anomalous observations that it is
designed to address. The LHCb collaboration measurements of B-meson decays seemed to
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suggest an exciting violation of lepton flavor universality. The ratio:

R
(∗)
K = BR(B → K(∗)µµ)

BR(B → K(∗)ee)
(5.52)

is close to 1 in the SM, but there was a deficit in the observations of muon decays with a
combined deviation from the SM prediction of more than 4σ [187–191]. This set of observables
was known as the neutral B anomalies, and triggered an active field of research [192–197].
However, the latest measurements reveal that the ratios seem to be compatible with SM
[198, 199]. In spite of it, we will still consider here the old measurements in order to illustrate
how one could proceed in the event of a future anomalous observable.

Another observed tension is a possible violation of unitarity in the first row of the CKM
matrix, known as the Cabibbo Angle Anomaly (CAA). Measurements of Vus which assume
CKM unitarity coming from super-allowed β decays are in tension with those coming from
direct measurements from leptonic kaon decays [200, 201], with a significance of 3 to 5σ,
depending on the parametrization of the β decays. See [202–204] for some examples of models
explaining this tension. We will parametrize this deviation as the difference from unity of the
R(Vus) observable, defined as the ratio of the values of Vus extracted directly from kaon decays
and assuming unitarity [205, 206]. This deviation is shown in [205, 206] to be directly related
to a correction in the muon vertex with the W boson, denoted by ϵµµ:

L ⊃ g2√
2
W−µ ℓiγ

µPLνj(δij + ϵij), (5.53)

where i, j run over lepton flavors.
The idea of this section is to construct one specific realization of the last class of models

in Table 5.3 that is able to alleviate the tension in these observables, besides aµ. We will
show how this can be achieved by extending the SM with the vector-like lepton triplet, Σ, a
triplet scalar leptoquark with hypercharge −1/3, S3, and a triplet vector-like quark, ΨQ, with
hypercharge −4/3.

First, the triplet leptoquark has been extensively studied and is well-known to provide a
tree-level solution for the neutral B anomalies [47, 197, 207, 208]. The VLL triplet, in turn,
is able to explain the CAA, in spite of creating some tension with EWPO [180, 206]4. The
constraint of explaining aµ including these two particles and using a bridge topology fixes the
representation of ΨQ.

The Lagrangian of this model reads:

L ⊃ yiT ℓLiHσIΣI
R + yiQΨI

QLS
I
3 eRi + iyLb ϵ

IJKΣI
RΨJ

Q,LS
K†
3 + iyRb ϵ

IJKΣI
LΨJ

Q,RS
K†
3

+ λijS q
c
Liiσ

2σIℓLjS
I†
3 + λiUuRi Σc,ISI3 + h.c.,

(5.54)

where, again, qc ≡ CqT with C the charge conjugation matrix. We will assume the SM doublets
qL and ℓL to be in the down-quark and charged lepton diagonal basis, respectively.

4This tension between the CAA and EWPO significantly increases with one takes into account the latest
CDF II measurement of the W -boson mass [209](see [210] for a recent analysis). We will, however, neglect this
tension.
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Observable SM
Prediction

Model
Prediction Experiment Pull

model (σ) Pull SM (σ)

aµ 0.0011659181(4) 0.0011659201(4) 0.0011659206(4) 0.82 4.22
⟨Rµe⟩(B± → K±ℓ+ℓ−)[1.0,6.0] 1 0.79 0.85(5) 1.41 3.21
⟨Rµe⟩(B0 → K∗0ℓ+ℓ−)[0.045,1.1] 0.93 0.87 0.65(12) 1.98 2.39
⟨Rµe⟩(B0 → K∗0ℓ+ℓ−)[1.1,6.0] 0.99 0.79 0.68(12) 1.04 2.55

ϵµµ 0 0.40e-3 0.58(15)e-3 1.20 3.87
∆Ms 1.25(8)e-11 1.25(8)e-11 1.1688(14)e-11 1.08 1.07
∆Md 3.9(5)e-13 3.9(5)e-13 3.33(15)e-13 1.25 1.25
MW 80.36 80.35 80.379(12) 2.28 1.72
Ae 0.147 0.146 0.151(2) 2.77 2.22

Table 5.4: Individual values for the SM prediction, model prediction, experimental measure and
pulls of the most relevant observables as given by smelli. Definitions of these observables (and
updated values) can be read from the flavio [54] documentation, which smelli uses to calculate
contributions from the Wilson coefficients to low energy observables.

Limiting ourselves to the simplest version of this model, we will only consider the minimal
set of couplings which allow us to explain the anomalies in B-meson decays, VCKM unitarity and
∆aµ. We will therefore suppose just one flavor of heavy particles and assume that new physics
only couples to second generation leptons (see [211–213] for some works on the implications
of g-2 in the flavor structure of new physics). This also helps to avoid some constraints like
the Lepton Flavor Violating (LFV) decay µ→ eγ. In the quark sector, we will only allow for
second and third generation couplings in λijS , namely λsµS and λbµS .

The aforementioned anomalies can be explained in this model due to the generation of
O(1),(3)
ℓq at tree-level by S3 exchange, O(3)

Hℓ also at tree-level by Σ exchange and a bridge-like
one-loop contribution to ∆aµ. The expressions for the relevant Wilson coefficients are:

[α(1)
ℓq ]i,j,k,l = 3λ∗kiS λljS

4M2
S3

+O
(︂ 1

16π2

)︂
, (5.55)

[α(3)
ℓq ]i,j,k,l = λ∗kiS λljS

4M2
S3

+O
(︂ 1

16π2

)︂
, (5.56)

[α(3)
Hℓ]i,j = yiT y

∗j
T

4M2
Σ

+O
(︂ 1

16π2

)︂
, (5.57)

[αeB]i,j ≃ 0 , (5.58)

[αeW ]i,j ≃
3gW yRb yiT y

j
Q

16π2
MΨQ

MΣ


M2

ΨQ
−M2

S3
+M2

S3
Log

[︄
M2

S3
M2

ΨQ

]︄
(M2

ΨQ
−M2

S3
)2

 , (5.59)

where the ≃ means that we are once again neglecting Yukawa-suppressed contributions.
Explaining R(∗)

K and CAA essentially fixes the ratios xS ≡ λ∗sµS λbµS /M
2
S3

and xT ≡ yµT /MΣ,
up to small one-loop corrections that break the scale invariance in couplings over masses. In
spite of this, the loop suppression is enough for observables to be approximately flat on the
values of the masses (within a certain range). The xT ratio contributes to the expression of
∆aµ as well, but the couplings yRb and xF ≡ yµQ/MΨQ

provide enough freedom to fix both
observables to the desired value. Note also that, since they couple two and three heavy fields,
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Figure 5.3: The 1 (2)-σ regions in green (yellow) around the model’s best fit point. For each xS

and xT point in the plot, the other couplings were marginalized in order to minimize the χ2. The
observables included in the fit were the ones available in smelli in the classes EWPO, leptonic
observables, lepton flavor universality for neutral currents and quark flavor observables, and ϵµµ.

both yb and xF generate Wilson Coefficients starting at one-loop order, so in principle a wider
parameter space could be expected in comparison to other couplings.

With the goal of studying the one-loop low-energy phenomenology of the model, we used
matchmakereft [64] to compute the complete one-loop matching of the model and constructed,
using smelli [214, 215, 74, 54], a χ2 function from the relevant observables at low energy
in terms of the Wilson Coefficients defined at the cut-off scale. Finally, we performed a fit,
minimizing the χ2 function using the iminuit [216] python package. The likelihood includes
the observables given in smelli in the classes of leptonic observables (with magnetic dipole
moments for leptons), lepton flavor universality for neutral currents (for anomalies in B decays
such as R(∗)

K ), EWPO (containing observables sensitive to deviations in the electroweak vertices)
and quark flavor related observables (which include meson decays and mixing)5. Besides these
observables taken directly from smelli, we also added ϵµµ.

In addition to the flavor assumptions listed above, we further imposed the couplings to be
lower than 1, and fixed the values of the masses to MΣ = 3.4 TeV, MS3 = 2 TeV and MΨQ

= 4.6
TeV. As discussed above, the observables were indeed essentially flat for masses between 1-5
TeV, so this hierarchy was chosen just as an example that avoided current experimental
detection limits but that could be reached by upcoming searches. Other hierarchies and values
for the masses between 1-5 TeV are also feasible and yield similar results.

The best fit point in this setup is:

xF = 0.2 TeV−1,

xT = 0.17 TeV−1,

yLb = 0.10,

xS = 0.00078 TeV−2,

λbµS = 0.07,

yRb = 0.13,

(5.60)

5See Appendix D of [214] to find more details on all the observables included in these classes.
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Figure 5.4: The 1 (2)-σ regions in green (yellow) around the model’s best fit point. For each point
in the plot, the other couplings were marginalized in order to minimize the χ2. The observables
included in the fit were the ones available in smelli in the classes EWPO, leptonic observables,
lepton flavor universality for neutral currents and quark flavor observables, and ϵµµ. Values of λbµ

S

very close to zero were not plotted because that would imply λsµ
S larger than 1 for a fixed xS and

MS3 .

which corresponds to a global pull from the SM of 6.2 σ. This pull was computed from the
observables included in the likelihood, i.e., the ones available in smelli in the classes EWPO,
leptonic observables, lepton flavor universality for neutral currents and quark flavor observables;
we do not include ϵµµ since we did not consider its correlations with the observables in the
stated classes. Some of the individual pulls for the most relevant observables, both from
experiment and SM, are collected in Table 5.4.

Figures 5.3 and 5.4 show the 1- and 2-σ regions from the best-fit point for the parameters of
the model that generate Wilson Coefficients at tree level, using the global likelihood constructed
with smelli. For each point in the grid, the value of χ2 was minimized by varying the remaining
parameters. The profiles in the rest of the variables, that contribute for the firs time at one
loop, are very similar to what one would expect from only taking the tree level solutions (i.e.
they feature somewhat flat directions), showing that the model has enough freedom to explain
∆aµ without spoiling the anomalies independently explained at tree level. These flat directions
are illustrated in the plots of Fig. 5.5, where the couplings on the x-axis only enter at one-loop.
Note that yLb is the only coupling allowed to vanish because it does not contribute to the
relevant anomalies.
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Figure 5.5: The 1 (2)-σ regions in green (yellow) around the model’s best fit point. For every plot,
the vertical axis represents a coupling that enters observables a tree-level, whereas the horizontal
axis represents one that only contributes at one-loop. For each point in the plot, the other couplings
were marginalized in order to minimize the χ2. The observables included in the fit were the ones
available in smelli in the classes EWPO, leptonic observables, lepton flavor universality for neutral
currents and quark flavor observables, and ϵµµ.
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6
Conclusions

The Standard Model meant a huge success in the history of particle physics, but we have
many reasons to believe there must be new physics beyond it. Decades of theoretical efforts
and experimental searches have left us with a myriad of models and no clue of where this
new physics is hiding. Some would advocate for stopping the waste of time and giving up our
search, but others see this situation as a time of opportunities. Indeed, we can follow the trail
of what the data are hinting: new physics seems to be waiting for us behind an energy gap
greater than we expected, and this opens up the possibility of using Effective Field Theories.
The works comprised in this thesis have the purpose of pushing forward the use of EFTs, both
developing tools for the community and exploring new physics scenarios ourselves to be able
to obtain the most out of it.

We discussed in Chapter 2 how EFTs had the advantage of splitting the problem in two
independent steps. Through the bottom-up approach, we can parametrize and constrain all
possible deviations from SM in a highly agnostic way. We dispose of an ordering principle that
allows us to list all the coefficients that can be observed at a certain experimental precision,
and use them to perform calculations just once. However, this tells us nothing about new
physics by itself; we need a connection – the top down approach – between these coefficients
and the models among which we want to discriminate, given by the process of matching. After
many collective efforts, the running in SMEFT and LEFT and the matching between them
have been computed at one loop and are available in computer tools. Likewise, the matching
of arbitrary models onto the SMEFT has been solved at tree level and dimension six. However,
performing a complete one-loop analysis of the implications of new physics models still means
to match them at one loop, which is very cumbersome in practice and needs to be repeated
for every model.

In Chapter 3 we introduced matchmakereft [64], a tool designed to compute automatically
the matching between two arbitrary theories up to one loop. In particular, we provide the
model for the the B-preserving sector of the SMEFT at dimension six, which can be used
to complete the mentioned chain in the translation between new physics and experimental
implications. Matchmakereft is robust, efficient and flexible, and have been extensively cross-
checked to ensure the reliability of our results. In fact, it has already been used in several
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6. Conclusions

physical applications which, due to its flexibility, are many more than just the matching to
the SMEFT. The possibility of defining arbitrary EFTs makes it usable for extending the
matching of SMEFT to higher dimensions or for the matching to other motivated EFTs, like
the ones including an axion-like particle or a right-handed neutrino [217]. Another relevant use
is the calculation of the RGEs of arbitrary theories (renormalizable or not). Other applications
include the automated basis translation between two EFT bases (either Green’s or physical) or
the extraction of the relations between a set of linearly dependent operators in d dimensions.
All these features will allow the particle physics community to analyze in a automated way
the one-loop phenomenology or arbitrary new physics models.

Moreover, matchmakereft is constantly growing in efficiency and functionalities. The
parallelization of the calculations, already available, can significantly decrease the time of
execution. The current input from the user only consists of giving the details about the UV
and EFT models, but we plan to reduce it even further. With the generation of EFT bases
greatly automatized in the last few years, the main bottleneck is the reduction from a Green’s
basis to a physical one. This not only involves the computation of redundancies, but also the
evanescent shifts to the physical basis. Given the flexibility that matchmakereft offers, we are
already planning to use it to solve both problems.

The power of EFTs, however, goes beyond simplifying the comparison between models and
experimental data. Given the vast number of possible models of new physics, even being able
of perform the matching automatically, we need a way of guiding or organizing the search.
Since the number of coefficients at any observable order in the mass and loop expansion is
finite, we can classify all the models which have observable consequences. This allows us to
obtain, in a systematic way, the complete phenomenological implications of any model: new
physics, whatever it is, will be included in that list as long as it is observable. This is the idea
behind IR/UV dictionaries, that encode the correspondence between Wilson Coefficients and
extensions of the Standard Model (at a given order). The leading tree-level dictionary for the
SMEFT at dimension six was computed only recently, but in order to make a competitive,
realistic analysis given the current experimental precision we need to extend it to include
one-loop effects.

Chapter 4 presents the first step towards the calculation of the IR/UV dictionary for the
SMEFT at mass dimension 6 and one-loop order. In particular, we classify all SM extensions
including new heavy fermions and scalars that contribute to the sector of the SMEFT that
cannot be generated at tree level, so that the contributions considered are the leading ones
for them. A key feature, absent at tree level, is that infinite different extensions can generate
a coefficient, since representations of heavy fields are not fixed but only their product is.
However, we can still provide the list in a closed form by indicating the restrictions that
these representations have to fulfill in order to contribute to a certain coefficient. The results
are provided in electronic form via the Mathematica package SOLD [49] (SMEFT One Loop
Dictionary), together with routines to obtain the value of these WCs for arbitrary extensions
and specify the representations that can satisfy any given restriction.

Moreover, we have included routines that, for a particular SM extension, automatically
create the matchmakereft model and compute the complete one-loop matching of the model
using matchmakereft. The only inputs from the user are the spin and quantum numbers of
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the heavy fermions and scalars in the extension, which significantly increases the efficiency in
the use of matchmakereft.

Finally, we have illustrated how the dictionary, even in its current, partial form, can still be
used for relevant phenomenological studies, first with a brief example about a recently reported
tension in some B decays, and second with its application to the g-2 anomaly in Chapter 5. In
this chapter we perform a detailed, systematic study of the chirally enhanced contributions
to aµ arising from bridge topologies [89]. General results for two and three field extensions
generating this topology, with gauge representations unspecified, are provided, together with
specific results for all two field extensions and some of the three field ones (since there is an
infinite number of them). These general results are also provided for the usual box topology
considered in the literature in Appendix C.

Within these two field extensions, we arrive at a class of them, with a fermion and a scalar,
which had been previously discarded in the literature but that, when considering this bridge
diagram contribution, can in principle be viable solutions to alleviate the aµ tension. Moreover,
the set of three field extensions considered represent a completely new class of models which,
to the best of our knowledge, were not considered in the literature.

We have shown, in addition, how the systematic study of effects arising at one-loop (in
our case, the anomalous magnetic moment of the muon) can open up the possibility of a
common explanation with other observations, even at tree level. We demonstrate this with a
toy model designed to address the anomalies in the neutral B decays, the VCKM unitarity and
the anomalous magnetic moment of the muon. Using matchmakereft and smelli, we perform
a one-loop analysis of its phenomenology and show the allowed regions in parameter space.
Even if all these tensions with the SM eventually fade away, we believe that this analysis sets
an example of how the provided dictionary can be used if (when) new anomalous observations
are found, and how dictionaries simplify the scrutiny of observable models of new physics.

We do not know how or where new physics will finally be revealed to us. The field is living
a time of changes and uncertainty, in which the challenge could be precisely how to address
this situation. In the next years we will have to decide the experiments that will determine
the future of the field in half a century, so we need to extract the most information out of
what we have. In this sense, it is essential to proceed systematically and agnostically, and
Effective Field Theories are a very useful ally in this quest. We need to develop all the tools
necessary to make this search in the most smart and efficient way, and be prepared to explore
all possibilities in the light of future data. In this time of uncertainty only one thing is clear:
the search continues.
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A
Conventions

In this Appendix we collect a set of different conventions that we adopt throughout this thesis.
In first place, we will use the following Lagrangian for the Standard Model:

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

I µν − 1
4BµνB

µν + (DµH)†DµH −m2H†H − λ(H†H)2

+ i[ℓ̄ /Dℓ+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd]− [ℓ̄YeeH + q̄YuuH̃ + q̄YddH + h.c.] . (A.1)

We will omit in general gauge and flavor indices. When necessary, we will tipically use
i, j, k, l, . . . as flavour indices and A,B,C, . . . and I, J,K, . . . for the adjoint representation of
SU(3) and SU(2), respectively. On the other hand, a, b, c, . . . and r, s, t, . . . will be used for
the fundamental representations their respective fundamental representations. H̃ is defined as
H̃ = iσ2H∗ and we use the following convention for the covariant derivative:

Dµq = (∂µ − ig3T
AGAµ − ig2

σI

2 W
I
µ − ig1Y Bµ)q, (A.2)

where TA = λA/2 and λA, σI are the Gell-Mann and Pauli matrices, respectively.
Correspondingly, the field strength tensors are:

GAµν = ∂µG
A
ν − ∂νGAµ + g3f

ABCGBµG
C
ν , (A.3)

W I
µν = ∂µW

I
ν − ∂νW I

µ + g2ϵ
IJKW J

µW
K
ν , (A.4)

Bµν = ∂µBν − ∂νBµ, (A.5)

and their covariant derivatives:

(DρGµν)A = ∂ρG
A
µν + g3f

ABCGBρ G
C
µν , (A.6)

(DρWµν)I = ∂ρW
I
µν + g2ϵ

IJKW J
ρW

K
µν , (A.7)

(DρBµν) = ∂ρBµν , (A.8)

with fABC and ϵIJK the SU(3) and SU(2) structure constants, respectively.
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A. Conventions

The chiral projectors are defined as usual:

PR,L = 1
2(1± γ5), (A.9)

and we use:
σµν = i

2[γµ, γν ] (A.10)

for the commutator of gamma matrices. We use the convention ϵ0123 = −1 with ϵαβµν the
Levi-Civita tensor, in such a way that for D = 4 e.g.

σµνϵµνρσ = −2iσρσγ5, (A.11)

and
γ5 = iγ0γ1γ2γ3 = − i

4!ϵµναβγ
µγνγαγβ. (A.12)

Dual tensors are defined by:

X̃µν = 1
2ϵµναβX

µν , with X = G,W,B. (A.13)
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B
SMEFT Green’s Basis

X3 X2H2 H2D4

O3G fABCGAνµ GBρν GCµρ OHG GAµνG
Aµν(H†H) RDH (DµD

µH)†(DνD
νH)

O˜︂3G fABC ˜︁GAνµ GBρν GCµρ O
H ˜︁G ˜︁GAµνGAµν(H†H) H4D2

O3W ϵIJKW Iν
µ W Jρ

ν WKµ
ρ OHW W I

µνW
Iµν(H†H) OH□ (H†H)□(H†H)

O˜︂3W ϵIJK˜︂W Iν
µ W Jρ

ν WKµ
ρ O

H ˜︁W ˜︂W I
µνW

Iµν(H†H) OHD (H†DµH)†(H†DµH)

X2D2 OHB BµνB
µν(H†H) R′HD (H†H)(DµH)†(DµH)

R2G −1
2(DµG

Aµν)(DρGAρν) O
H ˜︁B ˜︁BµνBµν(H†H) R′′HD (H†H)Dµ(H†i←→D µH)

R2W −1
2(DµW

Iµν)(DρW I
ρν) OHWB W I

µνB
µν(H†σIH) H6

R2B −1
2(∂µBµν)(∂ρBρν) O

H ˜︁WB
˜︂W I
µνB

µν(H†σIH) OH (H†H)3

H2XD2

RWDH DνW
Iµν(H†i←→D I

µH)
RBDH ∂νB

µν(H†i←→D µH)

Table B.1: Physical and redundant bosonic operators.
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B. SMEFT Green’s Basis

ψ2D3 ψ2XD ψ2DH2

RqD i
2q
{︁
DµD

µ, /D
}︁
q RGq (qTAγµq)DνGAµν O(1)

Hq (qγµq)(H†i←→D µH)
RuD i

2u
{︁
DµD

µ, /D
}︁
u R′Gq 1

2(qTAγµi←→D νq)GAµν R′(1)
Hq (q i

←→
/D q)(H†H)

RdD
i
2d
{︁
DµD

µ, /D
}︁
d R′˜︁Gq 1

2(qTAγµi←→D νq) ˜︁GAµν R′′(1)
Hq (qγµq)∂µ(H†H)

RℓD
i
2ℓ
{︁
DµD

µ, /D
}︁
ℓ RWq (qσIγµq)DνW I

µν O(3)
Hq (qσIγµq)(H†i←→D I

µH)
ReD i

2e
{︁
DµD

µ, /D
}︁
e R′Wq

1
2(qσIγµi←→D νq)W I

µν R′(3)
Hq (q i

←→
/D Iq)(H†σIH)

ψ2HD2 + h.c. R′˜︁Wq

1
2(qσIγµi←→D νq)˜︂W I

µν R′′(3)
Hq (qσIγµq)Dµ(H†σIH)

RuHD1 (qu)DµD
µ ˜︁H RBq (qγµq)∂νBµν OHu (uγµu)(H†i←→D µH)

RuHD2 (q iσµνDµu)Dν ˜︁H R′Bq 1
2(qγµi←→D νq)Bµν R′Hu (u i

←→
/D u)(H†H)

RuHD3 (qDµD
µu) ˜︁H R′˜︁Bq 1

2(qγµi←→D νq) ˜︁Bµν R′′Hu (uγµu)∂µ(H†H)
RuHD4 (qDµu)Dµ ˜︁H RGu (uTAγµu)DνGAµν OHd (dγµd)(H†i←→D µH)
RdHD1 (qd)DµD

µH R′Gu 1
2(uTAγµi←→D νu)GAµν R′Hd (d i

←→
/D d)(H†H)

RdHD2 (q iσµνDµd)DνH R′˜︁Gu 1
2(uTAγµi←→D νu) ˜︁GAµν R′′Hd (dγµd)∂µ(H†H)

RdHD3 (qDµD
µd)H RBu (uγµu)∂νBµν OHud (uγµd)( ˜︁H†iDµH)

RdHD4 (qDµd)DµH R′Bu 1
2(uγµi←→D νu)Bµν O(1)

Hℓ (ℓγµℓ)(H†i←→D µH)
ReHD1 (ℓe)DµD

µH R′˜︁Bu 1
2(uγµi←→D νu) ˜︁Bµν R′(1)

Hℓ (ℓi
←→
/D ℓ)(H†H)

ReHD2 (ℓ iσµνDµe)DνH RGd (dTAγµd)DνGAµν R′′(1)
Hℓ (ℓγµℓ)∂µ(H†H)

ReHD3 (ℓDµD
µe)H R′Gd

1
2(dTAγµi←→D νd)GAµν O(3)

Hℓ (ℓσIγµℓ)(H†i←→D I
µH)

ReHD4 (ℓDµe)DµH R′˜︁Gd 1
2(dTAγµi←→D νd) ˜︁GAµν R′(3)

Hℓ (ℓi
←→
/D Iℓ)(H†σIH)

ψ2XH + h.c. RBd (dγµd)∂νBµν R′′(3)
Hℓ (ℓσIγµℓ)Dµ(H†σIH)

OuG (qTAσµνu) ˜︁HGAµν R′Bd
1
2(dγµi←→D νd)Bµν OHe (eγµe)(H†i←→D µH)

OuW (qσµνu)σI ˜︁HW I
µν R′˜︁Bd 1

2(dγµi←→D νd) ˜︁Bµν R′He (e i
←→
/D e)(H†H)

OuB (qσµνu) ˜︁HBµν RWℓ (ℓσIγµℓ)DνW I
µν R′′He (eγµe)∂µ(H†H)

OdG (qTAσµνd)HGAµν R′Wℓ
1
2(ℓσIγµi←→D νℓ)W I

µν ψ2H3 + h.c.

OdW (qσµνd)σIHW I
µν R′˜︁Wℓ

1
2(ℓσIγµi←→D νℓ)˜︂W I

µν OuH (H†H)q ˜︁Hu
OdB (qσµνd)HBµν RBℓ (ℓγµℓ)∂νBµν OdH (H†H)qHd
OeW (ℓσµνe)σIHW I

µν R′Bℓ
1
2(ℓγµi←→D νℓ)Bµν OeH (H†H)ℓHe

OeB (ℓσµνe)HBµν R′˜︁Bℓ 1
2(ℓγµi←→D νℓ) ˜︁Bµν

RBe (eγµe)∂νBµν
R′Be 1

2(eγµi←→D νe)Bµν
R′˜︁Be 1

2(eγµi←→D νe) ˜︁Bµν
Table B.2: Physical and redundant operators with two fermions.
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Four-quark Four-lepton Semileptonic

O(1)
qq (qγµq)(qγµq) Oℓℓ (ℓγµℓ)(ℓγµℓ) O(1)

ℓq (ℓγµℓ)(qγµq)
O(3)
qq (qγµσIq)(qγµσIq) Oee (eγµe)(eγµe) O(3)

ℓq (ℓγµσIℓ)(qγµσIq)
Ouu (uγµu)(uγµu) Oℓe (ℓγµℓ)(eγµe) Oeu (eγµe)(uγµu)
Odd (dγµd)(dγµd) Oed (eγµe)(dγµd)
O(1)
ud (uγµu)(dγµd) Oqe (qγµq)(eγµe)
O(8)
ud (uγµTAu)(dγµTAd) Oℓu (ℓγµℓ)(uγµu)
O(1)
qu (qγµq)(uγµu) Oℓd (ℓγµℓ)(dγµd)
O(8)
qu (qγµTAq)(uγµTAu) Oℓedq (ℓe)(dq)
O(1)
qd (qγµq)(dγµd) O(1)

ℓequ (ℓre)ϵrs(qsu)
O(8)
qd (qγµTAq)(dγµTAd) O(3)

ℓequ (ℓrσµνe)ϵrs(qsσµνu)
O(1)
quqd (qru)ϵrs(qsd)
O(8)
quqd (qrTAu)ϵrs(qsTAd)

Table B.3: Baryon and lepton number conserving operators with four fermions.

Ψ2XH + h.c. Ψ2XD

EuG q̄TAσµνu ˜︁H ˜︁GAµν EGq q̄TA(σµνγρ + γρσµν)qDρ
˜︁GAµν EGd d̄TA(σµνγρ + γρσµν)dDρ

˜︁GAµν
EuW q̄σIσµνu ˜︁H˜︂W I

µν E ′Gq iq̄(TAσµν /D −
←
/DσµνTA)qGAµν E ′Gd id̄(TAσµν /D −

←
/DσµνTA)dGAµν

EuB q̄σµνu ˜︁H ˜︁Bµν E ′˜︁Gq iq̄(TAσµν /D −
←
/DσµνTA)q ˜︁GAµν E ′˜︁Gd id̄(TAσµν /D −

←
/DσµνTA)d ˜︁GAµν

EdG q̄TAσµνdH ˜︁GAµν EWq q̄σI(σµνγρ + γρσµν)qDρ
˜︂W I
µν EBd d̄(σµνγρ + γρσµν)d∂ρ ˜︁Bµν

EdW q̄σIσµνdH˜︂W I
µν E ′Wq iq̄(σIσµν /D −

←
/DσµνσI)qW I

µν E ′Bd id̄(σµν /D −
←
/Dσµν)dBA

µν

EdB q̄σµνdH ˜︁Bµν E ′˜︁Wq
iq̄(σIσµν /D −

←
/DσµνσI)q˜︂W I

µν E ′˜︁Bd id̄(σµν /D −
←
/Dσµν)d ˜︁Bµν

EeW ℓ̄σIσµνeH˜︂W I
µν EBq q̄(σµνγρ + γρσµν)q∂ρ ˜︁Bµν EWℓ ℓ̄σI(σµνγρ + γρσµν)ℓDρ

˜︂W I
µν

EeB ℓ̄σµνeH ˜︁Bµν E ′Bq iq̄(σµν /D −
←
/Dσµν)qBµν E ′Wℓ iℓ̄(σIσµν /D −

←
/DσµνσI)ℓW I

µν

ψ2HD2 + h.c. E ′˜︁Bq iq̄(σµν /D −
←
/Dσµν)q ˜︁Bµν E ′˜︁Wℓ

iℓ̄(σIσµν /D −
←
/DσµνσI)ℓ˜︂W I

µν

EuH q̄σµνDρuDσ ˜︁Hϵµνρσ EGu ūTA(σµνγρ + γρσµν)uDρ
˜︁GAµν EBℓ ℓ̄(σµνγρ + γρσµν)ℓ∂ρ ˜︁Bµν

EdH q̄σµνDρdDσHϵµνρσ E ′Gu iū(TAσµν /D −
←
/DσµνTA)uGAµν E ′Bℓ iℓ̄(σµν /D −

←
/Dσµν)ℓBµν

EeH ℓ̄σµνDρeDσHϵµνρσ E ′˜︁Gu iū(TAσµν /D −
←
/DσµνTA)u ˜︁GAµν E ′˜︁Bℓ iℓ̄(σµν /D −

←
/Dσµν)ℓ ˜︁Bµν

EBu ū(σµνγρ + γρσµν)u∂ρ ˜︁Bµν EBe ē(σµνγρ + γρσµν)e∂ρ ˜︁Bµν
E ′Bu iū(σµν /D −

←
/Dσµν)uBµν E ′Be iē(σµν /D −

←
/Dσµν)eBµν

E ′˜︁Bu iū(σµν /D −
←
/Dσµν)u ˜︁Bµν E ′˜︁Be iē(σµν /D −

←
/Dσµν)e ˜︁Bµν

Table B.4: Evanescent operators with two fermions.
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B. SMEFT Green’s Basis

L̄RR̄L R̄RR̄R L̄LR̄R

Equ (q̄u)(ūq) E(8)
uu (ūγµTAu)(ūγµTAu) E [3]

qu (q̄γµνρq)(ūγµνρu)
E(8)
qu (q̄TAu)(ūTAq) E [3]

uu (ūγµνρu)(ūγµνρu) E [3](8)
qu (q̄γµνρTAq)(ūγµνρTAu)

Eqd (q̄d)(d̄q) E [3](8)
uu (ūγµνρTAu)(ūγµνρTAu) E [3]

qd (q̄γµνρq)(d̄γµνρd)
E(8)
qd (q̄TAd)(d̄TAq) E(8)

dd (d̄γµTAd)(d̄γµTAd) E [3](8)
qd (q̄γµνρTAq)(d̄γµνρTAd)

E [2]
qu (q̄γµνu)(ūγµνq) E [3]

dd (d̄γµνρd)(d̄γµνρd) L̄LL̄L

E [2](8)
qu (q̄γµνTAu)(ūγµνTAq) E [3](8)

dd (d̄γµνρTAd)(d̄γµνρTAd) E(8)
qq (q̄γµTAq)(q̄γµTAq)

E [2]
qd (q̄γµνd)(d̄γµνq) Eud (ūγµd)(d̄γµu) E(3,8)

qq (q̄γµσITAq)(q̄γµσITAq)
E [2](8)
qd (q̄γµνTAd)(d̄γµνTAq) E(8)

ud (ūγµTAd)(d̄γµTAu) E [3](1)
qq (q̄γµνρq)(q̄γµνρq)

L̄RL̄R E [3]
ud (ūγµνρd)(d̄γµνρu) E [3](3)

qq (q̄γµνρσIq)(q̄γµνρσIq)

E [2]
quqd (q̄rγµνu)ϵrs(q̄sγµνd) E [3](8)

ud (ūγµνρTAd)(d̄γµνρTAu) E [3](8)
qq (q̄γµνρTAq)(q̄γµνρTAq)

E [2](8)
quqd (q̄rγµνTAu)ϵrs(q̄sγµνTAd) E ′ [3]

ud (ūγµνρu)(d̄γµνρd) E [3](3,8)
qq (q̄γµνρσITAq)(q̄γµνρσITAq)

E ′ [3](8)
ud (ūγµνρTAu)(d̄γµνρTAd)

Table B.5: Evanescent operators with four fermions involving only quarks.

L̄RR̄L R̄RR̄R L̄LR̄R

Eℓu (ℓ̄u)(ūℓ) Eeu (ēγµu)(ūγµe) Eℓqde (ℓ̄γµq)(d̄γµe)
Eℓd (ℓ̄d)(d̄ℓ) Eed (ēγµd)(d̄γµe) E [3]

ℓu (ℓ̄γµνρℓ)(ūγµνρu)
Eqe (q̄e)(ēq) E [3]

eu (ēγµνρu)(ūγµνρe) E [3]
ℓd (ℓ̄γµνρℓ)(d̄γµνρd)

E [2]
ℓedq (ℓ̄γµνe)(d̄γµνq) E [3]

ed (ēγµνρd)(d̄γµνρe) E [3]
qe (q̄γµνρq)(ēγµνρe)

E [2]
ℓu (ℓ̄γµνu)(ūγµνℓ) E ′ [3]

eu (ēγµνρe)(ūγµνρu) E [3]
ℓqde (ℓ̄γµνρq)(d̄γµνρe)

E [2]
ℓd (ℓ̄γµνd)(d̄γµνℓ) E ′ [3]

ed (ēγµνρe)(d̄γµνρd) L̄LL̄L

E [2]
qe (q̄γµνe)(ēγµνq) Eℓq (ℓ̄γµq)(q̄γµℓ)

L̄RL̄R E(3)
ℓq (ℓ̄γµσIq)(q̄γµσIℓ)

E [2]
ℓequ (ℓ̄rγµνe)ϵrs(q̄sγµνu) E [3]

ℓq (ℓ̄γµνρq)(q̄γµνρℓ)
Eℓuqe (ℓ̄ru)ϵrs(q̄se) E [3](3)

ℓq (ℓ̄γµνρσIq)(q̄γµνρσIℓ)
E [2]
ℓuqe (ℓ̄rγµνu)ϵrs(q̄sγµνe) E ′ [3]

ℓq (ℓ̄γµνρℓ)(q̄γµνρq)
E ′ [3](3)
ℓq (ℓ̄γµνρσIℓ)(q̄γµνρσIq)

Table B.6: Semileptonic four-fermion evanescent operators. We use the shorthand notation
γµ1...µn ≡ γµ1 . . . γµn with no (anti)symmetrization.

R̄RR̄R L̄LL̄L L̄LR̄R

E [3]
ee (ēγµνρe)(ēγµνρe) E(3)

ℓℓ (ℓ̄γµσIℓ)(ℓ̄γµσIℓ) E [3]
ℓe (ℓ̄γµνρℓ)(ēγµνρe)

L̄RR̄L E [3]
ℓℓ (ℓ̄γµνρℓ)(ℓ̄γµνρℓ)

Eℓe (ℓ̄e)(ēℓ) E [3](3)
ℓℓ (ℓ̄γµνρσIℓ)(ℓ̄γµνρσIℓ)

E [2]
ℓe (ℓ̄γµνe)(ēγµνℓ)

Table B.7: Leptonic four-fermion evanescent operators. We use the shorthand notation γµ1...µn ≡
γµ1 . . . γµn with no (anti)symmetrization.
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L̄
c
LL̄Lc R̄

c
RR̄Rc L̄

c
RR̄Lc

Ecqq (qcarqbs)(q̄bsqcar) Ecuu (ucaub)(ūbuca) Ecqu (qcaγµub)(ūbγµqca)
Ec ′qq (qcarqbs)(q̄asqcbr) Ecdd (dcadb)(d̄bdca) Ecqd (qcaγµdb)(d̄bγµqca)
Ec [2]
qq (qcarγµνqbs)(q̄bsγµνqcar) Ecud (ucadb)(d̄buca) Ec ′qu (qcaγµub)(ūaγµqcb)
Ec ′[2]
qq (qcarγµνqbs)(q̄asγµνqcbr) Ec ′ud (ucadb)(d̄aucb) Ec ′qd (qcaγµdb)(d̄aγµqcb)

R̄
c
RL̄Lc Ec [2]

uu (ucaγµνub)(ūbγµνuca) Ec [3]
qu (qcaγµνρub)(ūbγµνρqca)

Ecudqq (ucadb)(q̄brϵrsqcas) Ec [2]
dd (dcaγµνdb)(d̄bγµνdca) Ec [3]

qd (qcaγµνρdb)(d̄bγµνρqca)
Ec [2]
udqq (ucaγµνdb)(q̄brϵrsγµνqcas) Ec [2]

ud (ucaγµνdb)(d̄bγµνuca) Ec ′ [3]
qu (qcaγµνρub)(ūaγµνρqcb)

Ec ′[2]
ud (ucaγµνdb)(d̄aγµνucb) Ec ′ [3]

qd (qcaγµνρdb)(d̄aγµνρqcb)

Table B.8: Evanescent operators with four fermions involving only quarks and featuring charge
conjugation. We use the shorthand notation γµ1...µn ≡ γµ1 . . . γµn with no (anti)symmetrization.

L̄
c
LL̄Lc R̄

c
RR̄Rc L̄

c
RR̄Lc

Ecℓℓ (ℓcrℓs)(ℓ̄sℓcr) Ecee (ece)(ēec) Ecℓe (ℓcγµe)(ēγµℓc)
Ecqℓ (qcrℓs)(ℓ̄sqcr) Eceu (ecu)(ūec) Ecqe (qcγµe)(ēγµqc)
Ec ′qℓ (qcrℓs)(ℓ̄rqcs) Eced (ecd)(d̄ec) Ecℓu (ℓcγµu)(ūγµℓc)
Ec [2]
ℓℓ (ℓcrγµνℓs)(ℓ̄sγµνℓcr) Ec [2]

ee (ecγµνe)(ēγµνec) Ecℓd (ℓcγµd)(d̄γµℓc)
Ec [2]
qℓ (qcrγµνℓs)(ℓ̄sγµνqcr) Ec [2]

eu (ecγµνu)(ūγµνec) Ecqedℓ (qcγµe)(d̄γµℓc)
Ec ′[2]
qℓ (qcrγµνℓs)(ℓ̄rγµνqcs) Ec [2]

ed (ecγµνd)(d̄γµνec) Ec [3]
ℓe (ℓcγµνρe)(ēγµνρℓc)

R̄
c
RL̄Lc Ec [3]

qe (qcγµνρe)(ēγµνρqc)

Ecueℓq (uce)(ℓ̄rϵrsqcs) Ec [3]
ℓu (ℓcγµνρu)(ūγµνρℓc)

Ec [2]
ueℓq (ucγµνe)(ℓ̄rγµνϵrsqcs) Ec [3]

ℓd (ℓcγµνρd)(d̄γµνρℓc)
Ec [3]
qedℓ (qcγµνρe)(d̄γµνρℓc)

Table B.9: Semileptonic and leptonic evanescent operators with four fermions featuring charge
conjugation. We use the shorthand notation γµ1...µn ≡ γµ1 . . . γµn with no (anti)symmetrization.
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C
General results from box diagrams

For completeness, we present in this appendix the generic results, as done for the bridge
topology in Chapter 5, for the contribution to aµ produced by the box diagrams. These
chirally enhanced contributions (equivalent to triangles in the LEFT) are the ones commonly
considered in the literature. In the models consider in Chapter 5, however, these are only
relevant for some specific representations of the new heavy fields.

For the box diagram with two heavy fermion propagators (Fig. C.1a), the generic Lagrangian
reads:

L ⊃ yRTIJΨ1IHJeR + yLTIJKℓL,IH
†
JΨ2K + yRHT

H
IJKΨ2IHJPRΨ1K

+ THIJKy
L
HΨ2IHJPLΨ1K + h.c. , (C.1)

where we use the same conventions for the covariant derivative of Ψ and Φ as in Eq. (5.9).
The contribution to αeγ is given by:

[αeγ ]2,2 =
(︃
i

4

)︃
e yR yL

∑︂
χ=R,L

yχH

[︂
TIJT2JKT

γ
I′IT

H
K2I′γ

χ
Ψ1

+TIJT2JKT
H
K′2IT

γ
KK′γ

χ
Ψ2

+ TIJT2J ′KT
H
K2IT

γ
J ′Jγ

χ
H

]︂
, (C.2)

where χ sums over the right- and left-handed chiralities and the different kinematic factors
read:

γLΨ1 = 0 ,

γRΨ1 = − i

16π2

MΨ2

(︃
M2

Ψ1
Log

(︃
M2

Ψ1
M2

Ψ2

)︃
−M2

Ψ1
+M2

Ψ2

)︃
MΨ1

(︂
M2

Ψ1
−M2

Ψ2

)︂2 ,

(C.3)
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C. General results from box diagrams

eR

φ B, W

ℓL

(a)

eR

φ B, W

ℓL

(b)

Figure C.1: Box diagram contribution to αeγ with: (a) two heavy fermion propagators; (b) one
heavy fermion and one heavy scalar propagator. Double lines represent heavy particles whereas
single lines are SM particles. The gauge boson (B or W ) is represented outside the diagram since
it can be attached to any of the internal propagators.

γLΨ2 = 0 ,

γRΨ2 = − i

16π2

MΨ1

(︃
−M2

Ψ2
Log

(︃
M2

Ψ1
M2

Ψ2

)︃
+M2

Ψ1
−M2

Ψ2

)︃
MΨ2

(︂
M2

Ψ1
−M2

Ψ2

)︂2 ,

γLH = 0 ,

γRH = −i
16π2MΨ1MΨ2

. (C.4)

For the box diagram with a light fermion in the loop, in which the heavy fermion couples
with the right-handed muon (Fig. C.1b), the Lagrangian reads:

L ⊃ yRT eIJΨ1IΦJeR + yLT
1
IJψHJPLΨ1I + yΦT

Φ
IJℓLIΦ

†
JPRψ + h.c. , (C.5)

where ψ represents any light SM fermion which fits with the heavy field representations. The
resulting contribution to αeγ is:

[αeγ ]2,2 =
(︃
i

4

)︃
eN yR yL yΦ

[︂
T eIJT

γ
I′IT

1
I′2T

Φ
2JγΨ

+T eIJT 1
I2YψT

Φ
2Jγψ + T eIJT

1
I2T

γ
JJ ′T

Φ
2J ′γΦ

]︂
, (C.6)
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with the following kinematic factors:

γΨ = −
M2

Φ

(︃(︁
M2

Ψ +M2
Φ
)︁

Log
(︃
M2

Ψ
M2

Φ

)︃
− 2M2

Ψ + 2M2
Φ

)︃
(︁
M2

Φ −M2
Ψ
)︁3 ,

γψ =
−M2

Φ Log
(︃
M2

Ψ
M2

Φ

)︃
+M2

Ψ −M2
Φ(︁

M2
Ψ −M2

Φ
)︁2 ,

γΦ =
M4

Ψ − 2M2
ΨM

2
Φ Log

(︃
M2

Ψ
M2

Φ

)︃
−M4

Φ(︁
M2

Ψ −M2
Φ
)︁3 . (C.7)

In the case that the heavy fermion couples with the left-handed muon, the relevant
Lagrangian can be written as:

L ⊃ yRT ℓIJKℓLIΦ
†
JΨ1K + yLT

2
IJKΨIHJPLψK + yΦT

Φ
IJψIΦJeR + h.c. , (C.8)

with the following contribution to αeγ :

[αeγ ]2,2 =
(︃
i

4

)︃
eNyRyLyΦ

[︂
T ℓ2JIT

γ
II′T

2
I′2KT

Φ
KJγΨ

+T ℓ2JIT 2
I2KT

γ
KK′T

Φ
K′Jγψ + T ℓ2JIT

2
I2KT

Φ
KJ ′T

γ
J ′JγΦ

]︂
, (C.9)

where:

γΨ =
M2

Φ

(︃(︂
M2

Ψ1
+M2

Φ

)︂
Log

(︃
M2

Ψ1
M2

Φ

)︃
− 2M2

Ψ1
+ 2M2

Φ

)︃
(︂
M2

Ψ1
−M2

Φ

)︂3 ,

γψ = −

(︃
M2

Ψ1
Log

(︃
M2

Ψ1
M2

Φ

)︃
−M2

Ψ1
+M2

Φ

)︃
(︂
M2

Ψ1
−M2

Φ

)︂2 ,

γΦ =
M4

Ψ − 2M2
ΨM

2
Φ Log

(︃
M2

Ψ
M2

Φ

)︃
−M4

Φ(︁
M2

Ψ −M2
Φ
)︁3 . (C.10)

When there are only heavy propagators in the box diagram (Fig. C.2), the relevant
Lagrangian reads:

L ⊃ yRT 1
IJΨ1IΦJeR + yLT

2
IJℓLΨ2IΦ†J + yRHTIJKΨ2IHJPRΨ1K

+ yLHTIJKΨ2IHJPLΨ1K + h.c., (C.11)

and the resulting αeγ is given by:

[αeγ ]2,2 =
(︃
i

4

)︃
yRyL

∑︂
χ=R,L

yχH

[︂
T 2
IJT

H
I2KT

γ
KK′T

1
K′Jγ

χ
Ψ1

+T 2
IJT

γ
II′TI′2KT

1
KJγ

χ
Ψ2

+ T 2
IJTI2KTKJ ′2T

γ
JJ ′γ

χ
Φ

]︂
, (C.12)
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C. General results from box diagrams

eR

φ B, W

ℓL

Figure C.2: Box diagram contribution to αeγ with all heavy internal propagators. Double lines
represent heavy particles, whereas single lines are SM particles. The gauge boson (B or W ) is
represented outside the diagram since it can be attached to any of the internal propagators.

where:

γLΨ1 = i

16π2M
2
Φ

[︃
(MΨ2 −MΨ1)(MΨ1 +MΨ2)

(︂
M2

Φ(MΨ2 −MΨ1)(MΨ1 +MΨ2)
(︂
M2

Ψ1

(︂
M2

Φ − 2M2
Ψ2

)︂
+M4

Φ
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(︄
M2

Ψ1

M2
Φ

)︄
− (MΦ −MΨ1)(MΨ1 +MΦ)(MΨ2 −MΦ)(MΨ2 +MΦ)

(︃
M2

Ψ1

(︂
M2

Ψ2 − 2M2
Φ

)︂
+M2

Ψ2M
2
Φ

)︂)︂
+M4

Ψ2

(︂
M2

Ψ1 −M
2
Φ

)︂3
Log

(︄
M2

Ψ1

M2
Ψ2

)︄]︃
×

1

(MΨ1 −MΨ2)2(MΨ1 +MΨ2)2
(︂
M2

Φ −M2
Ψ1

)︂3
(MΨ2 −MΦ)2(MΨ2 +MΦ)2

, (C.13)

γRΨ1 = i

16π2MΨ1 (MΨ2(MΨ2 −MΨ1)(MΨ1 +MΨ2) ((MΨ1 −MΦ)(MΨ1 +MΦ)

(MΨ2 −MΦ)(MΨ2 +MΦ)
(︂
M2

Ψ1M
2
Ψ2 − 3M2

Ψ2M
2
Φ + 2M4

Φ

)︂
+M4

Φ(MΨ2 −MΨ1)(MΨ1 +MΨ2)(︂
M2

Ψ1 + 2M2
Ψ2 − 3M2

Φ

)︂
Log

(︄
M2

Ψ1

M2
Φ

)︄)︄
+M3

Ψ2

(︂
M2

Ψ1 −M
2
Φ

)︂3 (︂
M2

Ψ2 − 2M2
Φ

)︂
Log

(︄
M2

Ψ1

M2
Ψ2

)︄)︄
×

1
(MΨ1 −MΨ2)2(MΨ1 +MΨ2)2(MΨ1 −MΦ)3(MΨ1 +MΦ)3(MΨ2 −MΦ)2(MΨ2 +MΦ)2 ,

(C.14)
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γLΨ2 = − i

16π2

[︄
M6
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(︃
−
(︂
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Ψ2 −M
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)︂3
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(C.15)
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C. General results from box diagrams

This last result of the box diagram with only heavy internal propagators was cross-checked
with Eq. (4.4) of Ref. [172] in the limit of degenerate masses and we found perfect agreement.
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