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con mucho cariño el comienzo de este camino a su lado, compartiendo despacho y viviendo tantas
experiencias juntos. Gracias por seguir en mi vida a pesar de la distancia. Gracias a Alicia, Mariceli
y Noelia, por ser los pilares que me sostienen d́ıa a d́ıa y ser las mejores amigas que podŕıa pedir.
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Abstract

The aim of this thesis is to study and analyse different notions related to the geometry of the space
of all bounded linear operators between Banach spaces around a fixed operator.

We begin with a thorough study of the numerical index with respect to an operator between
Banach spaces. Given two Banach spaces X and Y , and a norm-one operator G ∈ L(X,Y ) (the space
of all bounded linear operators from X to Y ), the numerical index with respect to G, nG(X,Y ), is
the greatest constant k > 0 such that

k‖T‖ 6 inf
δ>0

sup
{
|y∗(Tx)| : y∗ ∈ Y ∗, x ∈ X, ‖y∗‖ = ‖x‖ = 1, Re y∗(Gx) > 1− δ

}

for every T ∈ L(X,Y ). Firstly, we provide some tools to study this concept and present some results
dealing with the numerical index with respect to adjoint operators and rank-one operators. Then, we
study the set N (L(X,Y )) of values of the numerical indices with respect to all norm-one operators
between X and Y . We give several examples of spaces having trivial set of values of the numerical
indices with respect to operators. For instance, N (L(X,Y )) = {0} when X or Y is a real Hilbert
space of dimension at least two and also when X or Y is the space of bounded or compact operators
on an infinite-dimensional real Hilbert space. We also prove that, in the real case,

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for 1 < p < ∞ and for all real Banach spaces X and Y , where Mp = maxt∈[0,1]
|tp−1−t|

1+tp . For com-
plex Hilbert spaces H1, H2 with dimension at least 2, we show that N (L(H1, H2)) = {0, 1/2} if H1

and H2 are isometrically isomorphic and N (L(H1, H2)) = {0} otherwise. Moreover, for a complex
Hilbert space H with dimension greater than 1, N (L(X,H)) ⊆ [0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2]
for all complex Banach spaces X and Y . We also prove that N (L(C(K1), C(K2))) = {0, 1} for many
families of compact Hausdorff topological spaces K1 and K2, both in the real and complex case. As
a consequence, N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} and N (L(L1(µ1), L1(µ2))) ⊆ {0, 1} for all σ-finite
measures µ1 and µ2. Additionally, we show that the concept of Lipschitz numerical range for Lips-
chitz self-maps of a Banach space is a particular case of numerical range with respect to a convenient
linear operator between two different Banach spaces. To finish the study of the numerical index with
respect to an operator, we provide some results showing the behaviour of this concept when we apply
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8 Abstract

some Banach space operations, such as constructing diagonal operators between c0-, `1- or `∞-sums of
Banach spaces, considering composition operators between vector-valued function spaces, taking the
adjoint of an operator, and composing two operators.

Next, we deal with the numerical index of Banach spaces, that is, the numerical index with respect
to the identity operator on a Banach space X, denoted by n(X). We analyse the behaviour of this
concept on operators ideals, showing that the numerical index of any operator ideal endowed with
the operator norm is less than or equal to the minimum of the numerical indices of the domain
and of the codomain. We present stronger inequalities for the numerical indices of the spaces of
compact and weakly compact operators, which allow to give interesting examples. For tensor products
of Banach spaces X and Y , we prove that the numerical indices of X⊗̂πY , the projective tensor
product, and X⊗̂εY , the injective tensor product, are less than or equal to the minimum of n(X)
and n(Y ). As a consequence, we obtain some inequalities for the spaces of approximable and nuclear
operators. Furthermore, we discuss when the Daugavet property of a tensor product passes to the
factors. Specifically, we show that if X⊗̂πY has the Daugavet property and the unit ball of Y is slicely
countably determined or the dual space of Y has a point of Fréchet differentiability of the norm, then
X inherits the Daugavet property. For injective tensor products, if X⊗̂εY has the Daugavet property
and Y has a point of Fréchet differentiability of the norm, then X also has the Daugavet property.

In addition, we address the problem of calculating the numerical index of the real `2p, i.e., the real
Lp space of dimension two. To do so, we follow two different approaches. The first one is to deal with
two-dimensional real spaces endowed with an absolute and symmetric norm and give a lower bound
for the numerical index of such spaces. Moreover, we show that in many instances the numerical index

coincides with the given bound and, as a consequence, we prove that n(`2p) = Mp = maxt∈[0,1]
|tp−1−t|

1+tp

for 3/2 6 p 6 3 in the real case. In our second approach, we directly work in `2p and show that
n(`2p) = Mp for 6/5 6 p 6 3/2 and 2 6 p 6 6 in the real case.

Then, we introduce and study the concept of generating operator: A norm-one operator G ∈
L(X,Y ) between two Banach spaces X and Y is a generating operator if

‖T‖ = inf
δ>0

sup {‖Tx‖ : x ∈ X, ‖x‖ = 1, ‖Gx‖ > 1− δ} for every T ∈ L(X,Y ),

or, equivalently, if BX = conv ({x ∈ X : ‖x‖ = 1, ‖Gx‖ > 1− δ}) for every δ > 0. We show that G is
generating if and only if

max
θ∈T

sup
y∗∈BY ∗

‖G∗(y∗) + θx∗‖ = 1 + ‖x∗‖ for every x∗ ∈ X∗.

Additionally, we study the relationship between generating operators and norm-attainment. While
generating operators having rank one and those whose domain has the Radon-Nikodým property
attain their norm, there are generating operators which do not attain their norm, even of rank two.
We also discuss the possibility for a Banach space X to be the domain of a generating operator which
does not attain its norm in terms of the behaviour of some spear sets of X∗. Furthermore, we study
the properties of the set Gen(X,Y ) of all generating operators between two Banach spaces X and Y .
In this line, we show that the set Gen(X,Y ) generates the unit ball of L(X,Y ) by closed convex hull
when X is `1(Γ) and that this is the only possibility for real finite-dimensional spaces.

Finally, using its connection with abstract numerical range, we present a widely applicable approach
to address Birkhoff-James orthogonality. More precisely, we characterize Birkhoff-James orthogonality
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and smooth points in a Banach space Z in terms of the actions of functionals in a subset of Z∗ which
is one-norming for Z. This general approach can be applied in several cases to obtain known results,
such as the characterization of Birkhoff-James orthogonality in the space of operators between Banach
spaces endowed with the operator norm or with the numerical radius, as well as new results on Birkhoff-
James orthogonality for spaces of vector-valued bounded functions and its applications for spaces
of vector-valued continuous functions, uniform algebras, polynomials, Lipschitz maps, and injective
tensor products. Next, we study possible extensions of the Bhatia-Šemrl Theorem on Birkhoff-James
orthogonality of matrices, showing results in for vector-valued continuous functions, compact linear
operators on reflexive spaces, and finite Blaschke products. Furthermore, we provide applications to
the study of spear vectors, spear operators, and Banach spaces with numerical index one. Specifically,
we prove that no smooth point of a Banach space Z can be Birkhoff-James orthogonal to a spear
vector of Z. In the case when Z = L(X,Y ), if X is a Banach space with strongly exposed points
and Y is a smooth Banach space with dimension at least two, then there are no spear operators in
L(X,Y ). Particularizing this result to the identity operator, we obtain an obstructive condition for a
Banach space to have numerical index one: the existence of a smooth point which is Birkhoff-James
orthogonal to a strongly exposed point. In particular, smooth Banach spaces with dimension at least
two containing strongly exposed points do not have numerical index one.





Resumen

El objetivo de esta tesis es estudiar y analizar diferentes conceptos relacionados con la geometŕıa del
espacio de los operadores lineales y continuos entre espacios de Banach alrededor de un operador
fijado.

Comenzamos con un profundo estudio del ı́ndice numérico respecto a un operador entre espacios
de Banach. Dados dos espacios de Banach X e Y y un operador de norma uno G ∈ L(X,Y ) (el espacio
de todos los operadores lineales y continuos de X a Y ), el ı́ndice numérico respecto a G, nG(X,Y ), es
la mayor constante k > 0 tal que

k‖T‖ 6 inf
δ>0

sup
{
|y∗(Tx)| : y∗ ∈ Y ∗, x ∈ X, ‖y∗‖ = ‖x‖ = 1, Re y∗(Gx) > 1− δ

}

para todo T ∈ L(X,Y ). En primer lugar, damos algunas herramientas que serán de ayuda a la
hora de estudiar este concepto y presentamos algunos resultados sobre ı́ndice numérico respecto a
operadores adjuntos y de rango uno. Después, estudiamos el conjunto N (L(X,Y )) de los posibles
valores que puede tomar el ı́ndice numérico respecto a todos los operadores de norma uno entre X
e Y . Presentamos varios ejemplos de espacios para los que este conjunto es trivial. Por ejemplo,
N (L(X,Y )) = {0} cuando X o Y es un espacio de Hilbert real de dimensión mayor que 1 y cuando
X o Y es el espacio de operadores continuos o compactos definidos en un espacio de Hilbert real
infinito-dimensional. También probamos que, en caso real,

N (L(X, `p)) ⊆ [0,Mp] y N (L(`p, Y )) ⊆ [0,Mp]

para 1 < p <∞ y para cualesquiera espacios de Banach reales X e Y , donde Mp = maxt∈[0,1]
|tp−1−t|

1+tp .
Para espacios de Hilbert H1, H2 complejos de dimensión mayor que uno, se tiene que N (L(H1, H2)) =
{0, 1/2} si H1 y H2 son isométricamente isomorfos y N (L(H1, H2)) = {0} en otro caso. Además,
si H es un espacio de Hilbert complejo de dimensión mayor que uno, N (L(X,H)) ⊆ [0, 1/2] y
N (L(H,Y )) ⊆ [0, 1/2] para cualesquiera espacios de Banach complejos X e Y . Probamos también
que N (L(C(K1), C(K2))) = {0, 1} para muchas familias de espacios de Hausdorff compactos K1

y K2, tanto en caso real como complejo. Como consecuencia, N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} y
N (L(L1(µ1), L1(µ2))) ⊆ {0, 1} para cualesquiera medidas σ-finitas µ1 y µ2. Por otro lado, mostramos
que el concepto de rango numérico Lipschitz para aplicaciones Lipschitz de un espacio de Banach en
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12 Resumen

śı mismo se puede ver como un caso particular de rango numérico respecto a un operador lineal entre
espacios de Banach convenientemente elegidos. Para finalizar el estudio del ı́ndice numérico respecto
a un operador, presentamos algunos resultados sobre la estabilidad de este concepto cuando construi-
mos operadores diagonales entre c0-, `1- o `∞-sumas de espacios de Banach, cuando consideramos
operadores de composición en algunos espacios de funciones con valores vectoriales, cuando tomamos
el adjunto de un operador y, finalmente, cuando componemos dos operadores.

Seguidamente, centramos nuestra atención en el ı́ndice numérico de un espacio de Banach X, es
decir, el ı́ndice numérico respecto al operador identidad, denotado por n(X). Analizamos el compor-
tamiento de este concepto en ideales de operadores, demostrando que el ı́ndice numérico de un ideal de
operadores con la norma usual de operadores es menor o igual que el mı́nimo de los ı́ndices numéricos
del dominio y del codominio. Para el espacio de operadores compactos y el de operadores débilmente
compactos obtenemos desigualdades más fuertes que nos permiten dar ejemplos interesantes. Para
productos tensoriales de espacios de Banach X e Y , probamos que tanto el ı́ndice numérico del pro-
ducto tensorial proyectivo X⊗̂πY como el del producto tensorial inyectivo X⊗̂εY es menor o igual
que el mı́nimo de n(X) y n(Y ). Como consecuencia, obtenemos desigualdades para el espacio de los
operadores aproximables y el de los operadores nucleares. Además, analizamos cuándo la propiedad
de Daugavet de un producto tensorial pasa a alguno de sus factores. Concretamente, si X⊗̂πY tiene
la propiedad de Daugavet y la bola unidad de Y es SCD o el espacio dual Y ∗ tiene un punto de
diferenciabilidad Fréchet para la norma, entonces X hereda la propiedad de Daugavet. En el caso de
productos tensoriales inyectivos se tiene que si X⊗̂εY tiene la propiedad de Daugavet e Y tiene un
punto de diferenciabilidad Fréchet de la norma, entonces X también tiene la propiedad de Daugavet.

Adicionalmente, abordamos el problema del cálculo del ı́ndice numérico de `2p en caso real, es
decir, del espacio Lp real de dimensión dos. Para ello, seguimos dos enfoques diferentes. En el primero
trabajamos en cualquier espacio real de dimensión dos dotado de una norma absoluta y simétrica
y damos una cota inferior para el ı́ndice numérico de dichos espacios. Además, probamos que en
muchos casos el ı́ndice numérico coincide con la cota dada y, como consecuencia, demostramos que

n(`2p) = Mp = maxt∈[0,1]
|tp−1−t|

1+tp para 3/2 6 p 6 3 en caso real. En nuestro segundo acercamiento

trabajamos directamente en el espacio `2p y probamos que n(`2p) = Mp para 6/5 6 p 6 3/2 y 2 6 p 6 6
en caso real.

Posteriormente, introducimos y estudiamos el concepto de operador generador: Un operador de
norma uno G ∈ L(X,Y ) entre dos espacios de Banach X e Y es generador si

‖T‖ = inf
δ>0

sup {‖Tx‖ : x ∈ X, ‖x‖ = 1, ‖Gx‖ > 1− δ} para todo T ∈ L(X,Y ),

o, equivalentemente, si BX = conv ({x ∈ X : ‖x‖ = 1, ‖Gx‖ > 1− δ}) para todo δ > 0. Probamos que
G es generador si y solo si

max
θ∈T

sup
y∗∈BY ∗

‖G∗(y∗) + θx∗‖ = 1 + ‖x∗‖ para todo x∗ ∈ X∗.

Analizamos también la relación de los operadores generadores con la propiedad de alcanzar la norma.
Mientras los operadores generadores de rango uno o aquellos cuyo dominio tiene la propiedad de
Radon-Nikodým alcanzan su norma, hay operadores generadores que no alcanzan su norma, incluso
de rango dos. Además, caracterizamos la posibilidad de que un espacio de Banach X sea el dominio de
un operador generador que no alcance su norma en términos del comportamiento de ciertos conjuntos
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de X∗. Por otro lado, estudiamos el conjunto Gen(X,Y ) de todos los operadores generadores entre
dos espacios de Banach X e Y . En esta ĺınea, probamos que el conjunto Gen(X,Y ) genera la bola
unidad de L(X,Y ) por envolvente convexa y cerrada cuando X es `1(Γ) y, de hecho, esta es la única
posibilidad en caso real para espacios de dimensión finita.

Finalmente, usando su conexión con el rango numérico abstracto, presentamos un método general
y extensamente aplicable para abordar la ortogonalidad de Birkhoff-James. De manera más precisa,
caracterizamos la ortogonalidad de Birkhoff-James en un espacio de Banach Z en términos de las
acciones de los funcionales que pertenecen a un subconjunto de Z∗ que es uno-normante para Z.
Este método general se puede aplicar en numerosos casos para obtener tanto resultados ya conocidos,
como pueden ser las caracterizaciones de ortogonalidad de Birkhoff-James en el espacio de operadores
dotado con la norma usual de operadores o con el radio numérico, como nuevos resultados sobre la
ortogonalidad de Birkhoff-James para espacios de funciones acotadas con valores vectoriales y sus apli-
caciones para funciones continuas con valores vectoriales, algebras uniformes, polinomios, aplicaciones
Lipschistz y productos tensoriales inyectivos. Después, estudiamos posibles extensiones del Teorema
de Bathia-Šemrl sobre ortogonalidad de Birkhoff-James para matrices, obteniendo resultados de este
tipo para funciones continuas con valores vectoriales, operadores compactos en espacios reflexivos y
productos de Blaschke finitos. Además, damos aplicaciones para vectores y operadores lanza, aśı como
para espacios de Banach con ı́ndice numérico uno. Concretamente, probamos que ningún punto suave
de un espacio de Banach Z puede ser Birkhoff-James ortogonal a un vector lanza de Z. Para el caso
Z = L(X,Y ), obtenemos que si X es un espacio de Banach con puntos fuertemente expuestos e Y es un
espacio de Banach suave de dimensión mayor que uno, entonces no hay operadores lanza en L(X,Y ).
Este resultado particularizado al operador identidad nos lleva a una condición obstructiva para que un
espacio de Banach tenga ı́ndice numérico uno: la existencia de un punto suave que sea Birkhoff-James
ortogonal a un punto fuertemente expuesto. En particular, los espacios de Banach suaves de dimensión
mayor que uno conteniendo puntos fuertemente expuestos no tienen ı́ndice numérico uno.
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Introduction

In this thesis we are interested in studying the geometry of the space of operators between Banach
spaces around a fixed operator. To do so, one of the tools that we use is the numerical range with
respect to a given operator. The concept of numerical range of operators has its origin in the 1918
paper by Toeplitz [39] dealing with matrices and it was firstly developed within the context of Hilbert
spaces (see e.g. the book [16]). Over the years, this notion has been extended to more general settings.
A first extension of the concept of numerical range to elements of a unital algebra was given in
1955 by Bohnenblust and Karlin [6] in order to relate the geometric and the alebraic properties of
the unit. Later on, in the 1960s, Bauer [3] and Lumer [25] provided independent but essentially
equivalent extensions of Toeplitz’s numerical range to bounded linear operators on Banach spaces.
In 1985 [34], an abstract notion of numerical range was introduced, which implicitly appeared in the
aforementioned Bohnenblust–Karlin paper and generalizes all the previous versions. Let us introduce
here such abstract version from which we will recover all other numerical ranges. We refer to the
classical monographs by Bonsall and Duncan [7, 8] and to the book by Cabrera and Rodŕıguez-Palacios
[10, Sections 2.1 and 2.9] for further information and background.

The basic notation and terminology needed to understand both this introduction and the rest of the
dissertation is included in the “Notation and terminology” section on page 33. The bibliography listed
from page 199 onwards is specific to this introduction and to the Conclusions chapter, as Chapters I
to VI each contain their own separate references sections.

Given a Banach space Z and an element u ∈ SZ , the (abstract) numerical range of z ∈ Z with
respect to (Z, u) is the set of scalars given by

V (Z, u, z) := {φ(z) : φ ∈ SZ∗ , φ(u) = 1}.
It is well-known that the geometry of the space Z around u is related to the numerical range with
respect to (Z, u) thanks to the formula

(1) max ReV (Z, u, z) = lim
α→0+

‖u+ αz‖ − 1

α

(see for instance [10, Proposition 2.1.5]). The numerical radius of z ∈ Z with respect to (Z, u) is
defined as

v(Z, u, z) := sup{|λ| : λ ∈ V (Z, u, z)}.

19
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It is clear that the numerical radius is a seminorm on Z satisfying v(Z, u, z) 6 ‖z‖ for every z ∈ Z.
Frequently, the numerical radius is actually an equivalent norm on Z, and this can be measured
quantitatively with the (abstract) numerical index of (Z, u):

n(Z, u) := inf{v(Z, u, z) : z ∈ SZ} = max{k > 0: k‖z‖ 6 v(Z, u, z) ∀z ∈ Z}.

Clearly, 0 6 n(Z, u) 6 1 and n(Z, u) > 0 if and only if v(Z, u, ·) is an equivalent norm on Z.

It is then natural to define the numerical range of an operator as follows: given a Banach space X
and an operator T ∈ L(X), the intrinsic numerical range of T is the set

V (L(X), Id, T ) = {φ(T ) : φ ∈ L(X)∗, ‖φ‖ = φ(Id) = 1}.

Notice that this definition deals with the (wild) dual of L(X), which can be quite complicated. There-
fore, it is convenient to have a “spatial” version of the numerical range that allows to work in the
ground space and its dual rather than in the dual of the space of operators. We present here Bauer’s
definition, which is currently the standard one. The spatial numerical range of T is the set of scalars
given by

W (T ) := {x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1}.
These two concepts of numerical range are related by the equality

(2) conv(W (T )) = V (L(X), Id, T )

for every T ∈ L(X) (see e.g. [10, Proposition 2.1.31]), thus they produce the same numerical radius of
operators and so the same numerical index. Namely, the numerical radius of an operator T ∈ L(X) is

v(T ) := sup{|λ| : λ ∈W (T )} = sup{|λ| : λ ∈ V (L(X), Id, T )} = v(L(X), Id, T )

and the numerical index of the space X is

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1} = n(L(X), Id).

It is of course possible to consider the numerical range of operators between (possibly different)
Banach spaces with respect to a fixed operator of norm one. The intrinsic version of this concept is
clear just particularizing the abstract numerical range to this context. Given two Banach spaces X
and Y and a norm-one operator G ∈ L(X,Y ), the intrinsic numerical range of T ∈ L(X,Y ) with
respect to G is the set

V (L(X,Y ), G, T ) = {φ(T ) : φ ∈ L(X,Y )∗, ‖φ‖ = φ(G) = 1},

and we may consider the corresponding numerical radius v(L(X,Y ), G, T ) and numerical index
n(L(X,Y ), G). Again, this definition forces us to deal with the (even wilder) dual of L(X,Y ), so
a more manageable version of this concept would be desirable. A direct extension of the spatial
numerical range to this setting using the set

{y∗(Tx) : y∗ ∈ SY ∗ , x ∈ SX , y∗(Gx) = 1}

is not suitable as, for instance, it is empty if G does not attain its norm. Moreover, even in the case
when G is an isometric embedding, it is not always representative (see [30, Theorem 2.1]). In 2014,
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Ardalani [1] provided an approximated version of this set. Given two Banach spaces X and Y and
a norm-one operator G ∈ L(X,Y ), the approximated spatial numerical range of T ∈ L(X,Y ) with
respect to G is defined as

VG(T ) :=
⋂

δ>0

{y∗(Tx) : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}.

Ardalani showed in [1, Lemma 4.2] that, in the case when G = Id, this set is just the closure of
W (T ) and, therefore, recovers V (L(X), Id, T ) by convex hull using (2). Actually, it is proved in [27,
Theorem 2.1] that the same happens for all norm-one operators G, that is,

(3) conv(VG(T )) = V (L(X,Y ), G, T )

for every T ∈ L(X,Y ). As a consequence, the approximated spatial numerical range and the intrinsic
numerical range produce the same numerical radius and numerical index. The numerical radius of T
with respect to G is

vG(T ) := inf
δ>0

sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ} = v(L(X,Y ), G, T )

and the numerical index of the pair (X,Y ) with respect to G is

nG(X,Y ) := inf{vG(T ) : T ∈ L(X,Y ), ‖T‖ = 1} = n(L(X,Y ), G).

Equivalently, nG(X,Y ) is the maximum constant k > 0 such that k‖T‖ 6 vG(T ) for all T ∈ L(X,Y ).

These notions are natural generalizations of the original concepts by Bauer and Lumer: as already
commented, if we restrict to the case X = Y and G = Id, [1, Lemma 4.2] shows that VId(T ) = W (T )
by using the Bishop–Phelps–Bollobás Theorem and, in consequence, vId(T ) = v(T ) and nId(X,X) =
n(X). This opens the way for extending the study of the numerical index to this more general
context. Along this process, new questions will arise due to the possibility of moving the operator G
and choosing different Banach spaces as domain or codomain.

Thanks to formula (1) in the context of the space of operators and equality (3), it is clear that
the numerical range with respect to an operator is related to both the algebraic and the geometric
structures of the space L(X,Y ) around a norm-one operator G.

The aim of this thesis is to study and analyse different notions related to the geometry of the space
of all bounded linear operators between Banach spaces around a given operator and to make advances
in several related problems. More specifically, we conduct a systematic analysis of the concept of
numerical index with respect to an operator (Chapter I), we analyse the numerical index and Daugavet
property of operators ideals and tensor products (Chapter II), we compute the numerical index of some
two-dimensional Lp spaces (Chapters III and IV), we study the property of being a generating operator
(Chapter V), and we explore the notion of Birkhoff-James orthogonality (Chapter VI). Finally, the
Conclusions chapter (page 191) contains some final remarks, including some open questions on the
topics treated in the previous chapters.

The methodology we adopted in our research followed the standard approach used in Functional
Analysis. This involved conducting a comprehensive review of existing literature in the field, examining
the techniques used by other researchers, and consulting with experts to gain insights into related
problems. Our results were documented in research articles and presented through talks and posters
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at various conferences. Furthermore, our research was significantly enhanced through a three-month
research stay supervised by Professor Vladimir Kadets at V. N. Karazin Kharkiv National University
in Ukraine.

This dissertation follows a compendium form, where Chapters I to VI consist of independent papers
authored by the doctoral candidate and collaborators. Each chapter is self-contained and has its own
introduction, development, and bibliography. Therefore, each chapter could be read as an independent
entity. Due to the compendium form, different results may be numbered identically across multiple
chapters. To avoid confusion when referencing them in this introductory chapter and in the final
chapter of conclusions, we will use roman numerals to indicate the chapter in which a particular result
appears. For example, Theorem I.2.12 refers to Theorem 2.12 in Chapter I.

Let us provide an overview of the thesis contents.

Chapter I. On the numerical index with respect to an operator

The content of this chapter corresponds to the published paper

[21] V. Kadets, M. Mart́ın, J. Meŕı, A. Pérez, and A. Quero, On the numerical index with
respect to an operator, Dissertationes Mathematicae 547 (2020), 1–58.
DOI: 10.4064/dm805-9-2019.

The aim of this chapter is to thoroughly study the numerical index with respect to an operator
between Banach spaces.

Section I.2 is devoted to presenting some known and new results on abstract numerical index.
When Z is a finite-dimensional real space, we show that the set {u ∈ SZ : n(Z, u) > 0} is countable
(i.e. finite or infinite and countable) and give estimations on the sum of n(Z, u) over all elements
u ∈ SZ .

Theorem (Theorem I.2.12). Let Z be a real space with dim(Z) = m > 2. Then,

∑

u∈SZ

n(Z, u)m−1 <∞.

Additionally, for every subset A ⊆ [0, 1] containing 0, we show the existence of a (real or complex)
Banach space Z such that {n(Z, u) : u ∈ SZ} = A. To finish this section, we give a new expression of
V (Z, u, z) in terms of the elements of a subset of BZ∗ such that its weak-star closed convex hull is the
whole BZ∗ , which will be useful to compute numerical radii with respect to operators.

We provide some tools for studying the numerical index with respect to an operator in Section I.3.
We begin particularizing some results in the previous section to the setting of the space of operators.
Then, we show that the numerical index with respect to an operator is greater than or equal to the
numerical index with respect to its adjoint, we give a formula for the numerical index with respect to
a rank-one operator, and provide some results which allow to control the numerical index with respect
to an operator in terms of the numerical radii of the operators on the domain or on the codomain.
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Next, we dedicate Section I.4 to studying the set of values of the numerical indices with respect to
all norm-one operators between two given Banach spaces X and Y , that is, the set

N (L(X,Y )) :=
{
nG(X,Y ) : G ∈ L(X,Y ), ‖G‖ = 1

}
.

As a consequence of the results in the previous sections, we obtain that 0 ∈ N (L(X,Y )) unless both
X and Y are one-dimensional and that the set N (L(X,Y )) is countable when X and Y are finite-
dimensional real spaces. Additionally, we provide several results for classic Banach spaces. The first
result in this line is the following concerning real Hilbert spaces.

Theorem (Theorem I.4.5). Let H be a real Hilbert space of dimension at least two. Then,

N (L(X,H)) = N (L(H,Y )) = {0}

for all real Banach spaces X and Y . In particular, N (L(H)) = {0}.

There are other spaces having trivial set of values of the numerical indices with respect to operators,
for instance, when the domain or the codomain is L(H) where H is an infinite-dimensional real Hilbert
space.

Theorem (Theorem I.4.7). Let H be a real Hilbert space of dimension at least two. Then,

N
(
L(X,L(H))

)
= N

(
L(X,K(H))

)
= {0}

for every Banach space X. In particular,

N
(
L(L(H))

)
= N

(
L(K(H))

)
= {0}.

Moreover, if H is infinite-dimensional or has even dimension, then

N
(
L(L(H), Y )

)
= N

(
L(K(H), Y )

)
= {0}

for every Banach space Y .

Then, we give some inclusions for the set of numerical indices with respect to operators whose
domain or codomain is a real `p space.

Proposition (Proposition I.4.11). Let 1 < p <∞ and let Mp = sup
t∈[0,1]

|tp−1−t|
1+tp . Then,

N
(
L(X, `p(Γ))

)
⊆ [0,Mp] and N

(
L(`p(Γ), Y )

)
⊆ [0,Mp]

hold in the real case for all Banach spaces X and Y .

We also study the set of values of the numerical indices with respect to operators for complex
Hilbert spaces.

Proposition (Proposition I.4.13). Let H be a complex Hilbert space with dim(H) > 2. Then,

N
(
L(X,H)

)
⊆ [0, 1/2] and N

(
L(H,Y )

)
⊆ [0, 1/2]

for all complex Banach spaces X and Y .
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Moreover, when both domain H1 and codomain H2 are complex Hilbert spaces we obtain that
N
(
L(H1, H2)

)
= {0, 1/2} if H1 and H2 are isometrically isomorphic and N

(
L(H1, H2)

)
= {0} other-

wise.

In addition, we show that
N (L(C(K1), C(K2))) = {0, 1}

for many families of compact Hausdorff topological spaces K1 and K2, both in the real and complex
case. As a consequence, we obtain that N (L(L∞(µ1), L∞(µ2))) = {0, 1} for all σ-finite measures
µ1 and µ2 such that at least one of the spaces L∞(µi), i = 1, 2, has dimension greater than 1, and
N (L(L1(µ1), L1(µ2))) ⊆ {0, 1} for all σ-finite measures µ1 and µ2.

In Section I.5, using the tools presented in Section I.3, we prove that the concept of Lipschitz
numerical range introduced in [40, 41] for Lipschitz maps from a Banach space to itself can be viewed
as a particular case of numerical range with respect to a linear operator between two different Banach
spaces.

The last section of this chapter contains some results showing the behaviour of the value of the
numerical index when applying some Banach space operations. For instance, the numerical index
of a c0-, `1- or `∞-sum of Banach spaces with respect to a direct sum of norm-one operators in
the corresponding spaces coincides with the infimum of the numerical indices of the corresponding
summands. As an important consequence, we obtain the following example.

Theorem (Theorem I.6.4). In both the real and the complex case, there exist Banach spaces X such
that

N (L(X)) = [0, 1].

We also show that composition operators between vector-valued function spaces C(K,X), L1(µ,X)
and L∞(µ,X) produce the same numerical index as the original operator. Next, we provide two
conditions, each of which ensures that the numerical index with respect to an operator equals the
numerical index with respect to its adjoint, namely when the codomain is L-embedded or when the
operator has rank-one. Finally, we discuss some results about the numerical index with respect to the
composition of two operators, and show how to extend the domain and the codomain of an operator
maintaining the value of the numerical index. In particular, these results allow to solve a part of
Problem 9.14 posed in [20].

Chapter II. Numerical index and Daugavet property of operator
ideals and tensor products

The content of this chapter corresponds to the published paper

[31] M. Mart́ın, J. Meŕı, and A. Quero, Numerical index and Daugavet property of operator
ideals and tensor products, Mediterranean Journal of Mathematics 18 (2021), no. 2, 15 pp.
DOI: 10.1007/s00009-021-01721-9.

This chapter is dedicated to studying the numerical index of operator ideals and tensor products,
and to analysing the behaviour of the Daugavet property in tensor products.
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We study in Section II.2 the relationship between the numerical index of subspaces of L(X,Y )
which are ideals and the numerical indices of the spaces X and Y . The first result of the section
shows that for every operator ideal Z(X,Y ) 6 L(X,Y ) endowed with the operator norm we have
that n(Z(X,Y )) 6 min{n(X), n(Y )}. In particular, n(L(X,Y )) 6 min{n(X), n(Y )}. With the help
of suitable representations, we proved stronger inequalities for the numerical indices of the spaces of
compact and weakly compact operators.

Theorem (Theorem II.2.3). Let X, Y be Banach spaces, then the following hold:

n(K(X,Y )) 6 min{n(X∗), n(Y )} and n(W(X,Y )) 6 min{n(X∗), n(Y )}.

As a consequence of this result, we present some interesting examples such as the existence of a
real Banach space X with n(X) = 1 while n(K(X,Y )) = n(W(X,Y )) = 0 for every Banach space Y .
In particular, n(X) = 1 while n(K(X,X)) = n(W(X,X)) = 0. We also provide an example to show
that the previous inequalities can be strict and discuss some cases in which the equality holds.

In Section II.3 we also obtain inequalities for the numerical index of tensor products of Banach
spaces, which is the best one can expect as it is known that n(X⊗̂πY ) and n(X⊗̂εY ) cannot be
computed as a function of n(X) and n(Y ) (see [33, Example 10]).

Theorem (Theorem II.3.2). Let X, Y be Banach spaces. Then, the following hold:

(a) n(X⊗̂πY ) 6 min{n(X), n(Y )},

(b) n(X⊗̂εY ) 6 min{n(X), n(Y )}.

We present some consequences for the space of approximable operators and for the space of nuclear
operators using their representations as suitable tensor products. More specifically, we have that

n(A(X,Y )) 6 min{n(X∗), n(Y )}
and, if X∗ or Y has the approximation property,

n(N (X,Y )) 6 min{n(X∗), n(Y )}.

We finish this chapter with a section devoted to studying when the Daugavet property passes from
the tensor product to the factors. Recall that a Banach space X has the Daugavet property [24] if the
norm equality

(DE) ‖Id + T‖ = 1 + ‖T‖
holds for all rank-one operators T ∈ L(X). This property is related to the numerical range of operators
as follows: an operator T ∈ L(X) satisfies (DE) if and only if sup ReW (T ) = ‖T‖ (see [12, Remark,
page 483]). A notion related to the Daugavet property is that of slicely countably determined set.
A bounded subset A of a Banach space X is said to be slicely countably determined if there exists a
coutable family of slices {Sn : n ∈ N} of A such that A ⊆ conv(B) for every subset B ⊆ A intersecting
all the slices Sn. This concept was introduced in [2], where the authors proved that every operator
T defined on a Banach space X with the Daugavet property such that T (BX) is slicely countably
determined satisfies (DE). Thanks to this relation, we are able to prove that the Daugavet property
of a projective tensor product passes to one of the factors if the unit ball of the other one is a slicely
countably determined set.
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Theorem (Theorem II.4.1). Let X, Y be Banach spaces. Suppose that BY is a slicely countably
determined set and X⊗̂πY has the Daugavet property. Then, X has the Daugavet property.

For injective tensor products, we obtain the following positive result.

Proposition (Proposition II.4.3). Let X, Y be Banach spaces such that X⊗̂εY has the Daugavet
property. Suppose that the norm of Y is Fréchet differentiable at a point y0 ∈ SY . Then, X has the
Daugavet property.

An analogous result is provided for projective tensor products in the case where the space Y ∗ has
a point of Fréchet differentiability of the norm.

Chapter III. On the numerical index of absolute symmetric norms on
the plane

The content of this chapter corresponds to the published paper

[35] J. Meŕı and A. Quero, On the numerical index of absolute symmetric norms on the plane,
Linear and Multilinear Algebra 69 (2021), no. 5, 971–979.
DOI: 10.1080/03081087.2020.1762532.

The exact computation of the numerical index of concrete Banach spaces is usually a difficult task,
even in finite dimension. For instance, the computation of the numerical index of Lp spaces when
p 6= 1, 2,∞ remains as an important open problem since the beginning of the theory although it has
been addressed by several authors (see [13, 14, 15, 28, 29]). With the aim of advancing in the problem
of calculating the numerical index of the real `2p space, we deal in this chapter with the numerical
index of two-dimensional real spaces X equipped with an absolute and symmetric norm. Recall that
a norm ‖ · ‖ : R2 −→ R is absolute if ‖(1, 0)‖ = ‖(0, 1)‖ = 1 and

‖(a, b)‖ = ‖(|a|, |b|)‖

for every a, b ∈ R, and that the norm is symmetric if ‖(b, a)‖ = ‖(a, b)‖ for every a, b ∈ R. In our
approach, we make use of a basis of the space of operators L(X) formed by onto isometries:

I1 =

(
1 0
0 1

)
, I2 =

(
1 0
0 −1

)
, I3 =

(
0 1
1 0

)
, I4 =

(
0 1
−1 0

)
,

and we estimate the norm of the operators using that ‖T‖ 6 max{‖T‖1, ‖T‖∞} for every operator
T ∈ L(X). With the help of these tools, we are able to transform our problem into a linear optimization
one, which allows us to give a lower bound for the numerical index of such spaces and to show that,
in many instances, the numerical index is attained at the operator I4.

Theorem (Theorem III.2.2). Let X be R2 endowed with an absolute and symmetric norm. Let
x0 ∈ SX and x∗0 ∈ SX∗ be such that x∗0(x0) = 1 and |x∗0(I4x0)| = v(I4), and write cj = |x∗0(Ijx0)| for
every j = 1, . . . , 4. If c4 = 0, then n(X) = 0. If otherwise c4 > 0, then

n(X) > min

{
c4,

2

1 + 1
c2

+ 1
c3

+ 1
c4

}
.
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Moreover, if the inequality c4

(
1 + 1

c2
+ 1

c3

)
6 1 holds, then

n(X) = v(I4).

As a major consequence, we compute the numerical index of the real two-dimensional Lp space for
3/2 6 p 6 3.

Theorem (Theorem III.2.3). Let p ∈
[

3
2 , 3
]
. Then,

n(`2p) = Mp = max
t∈[0,1]

|tp−1 − t|
1 + tp

.

Let us remark that, in order to use Theorem III.2.2 to obtain this result, we show that condition

c4

(
1 + 1

c2
+ 1

c3

)
6 1 holds not only for a particular choice of x ∈ S`2p and x∗ ∈ S`2q satisfying x∗(x) = 1

but for all of them when 3/2 6 p 6 3. In [37] the authors prove that this condition actually holds
for carefully selected pairs for a wider range of values of p, which leads to a slight improvement: the
equality n(`2p) = Mp is proved for 1+α0 6 p 6 α1, where α0 is the root of f(x) = 1+x−2−(x−

1
x +x

1
x )

and 1
1+α0

+ 1
α1

= 1 (α0 ≈ 0.4547).

Chapter IV. On the numerical index of the real two-dimensional Lp
space

The content of this chapter corresponds to the following paper accepted for publication:

[36] J. Meŕı and A. Quero, On the numerical index of the real two-dimensional Lp space, Linear
and Multilinear Algebra (2023), published online, 1–16.
DOI: 10.1080/03081087.2023.2181938.

The aim of this chapter is to calculate the numerical index of `2p for 6
5 6 p 6

3
2 and for 3 6 p 6 6.

This, together with the previous results, gives the numerical index of `2p for 6
5 6 p 6 6. Since the

abstract approach in the previous chapter does not provide a complete solution for the problem of
computing the numerical index of the real `2p spaces, we need to explore an alternative method. The
main difference here is the use of Riesz–Thorin interpolation theorem to estimate the norm of operators

on `2p: the inequality ‖T‖ 6 ‖T‖1/p1 ‖T‖
1/q
∞ holds for every operator T ∈ L(`2p).

Theorem (Theorem IV.2.2). Let p ∈
[

6
5 , 6
]
. Then,

n(`2p) = Mp = max
t∈[0,1]

|tp−1 − t|
1 + tp

.

The proof of this result is rather technical and we want to highlight that, although we only obtain
the numerical index of `2p for 6/5 6 p 6 3/2 (and consequently for 3 6 p 6 6 by duality), we actually
prove that

v(T )

‖T‖ >Mp

for a wide class of operators T ∈ L(`2p) for 1 < p 6 3/2. Let us also comment that our techniques can
give the equality n(`2p) = Mp for a slightly wider range of values of p, however our approach does not
work for p close to 1 (see Remark IV.2.3).
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Chapter V. Generating operators between Banach spaces

The content of this chapter corresponds to the preprint

[22] V. Kadets, M. Mart́ın, J. Meŕı, and A. Quero, Generating operators between Banach
spaces, Preprint (2023). Available at arXiv:2306.02645.

In this chapter, we introduce a new seminorm on the space of bounded linear operators which is
between the numerical radius with respect to an operator and the operator norm. Let X, Y and Z be
Banach spaces, let G ∈ L(X,Y ) be a norm-one operator, and let T ∈ L(X,Z). We define the norm
of T relative to G by

‖T‖G := inf
δ>0

sup {‖Tx‖ : x ∈ att(G, δ)} .

where, for each δ > 0, att(G, δ) := {x ∈ SX : ‖Gx‖ > 1− δ} is the δ-attainment set of G.

Clearly, if Y = Z, we have that

vG(T ) 6 ‖T‖G 6 ‖T‖
for all operators T ∈ L(X,Y ). This chapter aims to study the relationship between ‖ · ‖G and the
usual operator norm, especially focusing on the case when they coincide. We say that a norm-one
operator G ∈ L(X,Y ) between two Banach spaces X and Y is generating if ‖T‖G = ‖T‖ for every
T ∈ L(X,Y ).

In many instances, the relative norm and the usual norm of operators are equivalent. The first
result in Section V.2 characterizes this fact in several ways.

Proposition (Proposition V.2.1). Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one
operator, and let r ∈ (0, 1]. Then, the following are equivalent:

(i) ‖T‖G > r‖T‖ for every Banach space Z and every T ∈ L(X,Z).

(ii) There is a (non null) Banach space Z such that ‖T‖G > r‖T‖ for every T ∈ L(X,Z).

(iii) There is a (non null) Banach space Z such that ‖T‖G > r‖T‖ for every rank-one operator
T ∈ L(X,Z).

(iv) ‖x∗‖G > r‖x∗‖ for every x∗ ∈ X∗.

(v) conv(att(G, δ)) ⊇ rBX for every δ > 0.

As a consequence, we obtain the following characterization of generating operators.

Corollary (Corollary V.2.3). Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator.
Then, the following are equivalent:

(i) G is generating.

(ii) ‖T‖G = ‖T‖ for every T ∈ L(X,Z) and every Banach space Z.
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(iii) There is a (non null) Banach space Z such that ‖T‖G = ‖T‖ for every rank-one operator
T ∈ L(X,Z).

(iv) BX = conv(att(G, δ)) for every δ > 0.

Thanks to this result, it is clear that the property of being generating does not depend on the
codomain. When X is reflexive and G is compact, the affirmations in the previous result are also
equivalent to the fact that BX = conv(att(G)). We also study the relationship between the concept of
generating operator and denting point, showing that any generating operator attains its norm at every
denting point of the unit ball of the domain. Actually, this necessary condition is also sufficient when
BX is the closed convex hull of its denting points and, in particular, when X has the Radon-Nikodým
property. We provide another useful characterization in terms of some spear sets of the dual of the
domain. Recall that F ⊂ BX is a spear set if maxθ∈T supz∈F ‖z + θx‖ = 1 + x for every x ∈ X. If
z ∈ SZ satisfies that F = {z} is a spear set, we just say that z is a spear vector.

Corollary (Corollary V.2.17). Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1. Then,
G is generating if and only if G∗(BY ∗) is a spear set of X∗.

Additionally, we analyse how the property of being generating behaves with respect to the operation
of taking the adjoint G∗ of an operator G and show that this property does not pass in general from
an operator to its adjoint, nor the other way around. Nevertheless, if the second adjoint is generating,
then so is G. To finish this section, we study the stability of generating operators by taking c0-, `1-,
and `∞-sums, and provide some examples in classical Banach spaces.

We study in Section V.3 the relationship between generating operators and norm-attainment.
While generating operators having rank one and those whose domain has the Radon-Nikodým property
attain their norm, there are generating operators, even of rank two, which do not attain their norm.
Then, we characterize when it is possible to construct an operator from a given Banach space which
is generating but does not attain its norm.

Theorem (Theorem V.3.5). Let X be a Banach space. Then, the following statements are equivalent:

(i) There exists a Banach space Y and a norm-one operator G ∈ L(X,Y ) such that G is generating
but it does not attain its norm.

(ii) There exists a spear set B ⊆ BX∗ such that sup
x∗∈B

|x∗(x)| < 1 for every x ∈ SX .

In Section V.4, we consider the set Gen(X,Y ) of all generating operators between two Banach
spaces X and Y . We show that this set is closed and that for every Banach space Y , there exists a
Banach space X such that Gen(X,Y ) = ∅. However, if we restrict the space X to be separable, this
result is not longer true. Then, we study some properties of Gen(X,Y ) when X is fixed. We show
that Gen(X,Y ) 6= ∅ for every Y if and only if X∗ contains spear vectors and that the only case in
which there is Y such that Gen(X,Y ) = SL(X,Y ) is when X has dimension one. We next study when
the set Gen(X,Y ) generates the unit ball of L(X,Y ) by closed convex hull. The next result shows
that this is the case when X = L1(µ) for a finite measure µ and Y has the Radon-Nykodým property.

Theorem (Theorem V.4.10). Let (Ω,Σ, µ) be a finite measure space and let Y be a Banach space.
Then,

{T ∈ L(L1(µ), Y ) : ‖T‖ 6 1, T is representable} ⊆ conv (Gen(L1(µ), Y )) .
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As a consequence, if Y has the Radon-Nikodým property, then

BL(L1(µ),Y ) = conv (Gen(L1(µ), Y )) .

Moreover, BL(`1(Γ),Y ) = conv (Gen(`1(Γ), Y )) for every Banach space Y and the only real finite-
dimensional spaces with this property are `n1 for n ∈ N.

Chapter VI. A numerical range approach to Birkhoff-James
orthogonality with applications

The content of this chapter corresponds to the preprint

[32] M. Mart́ın, J. Meŕı, A. Quero, S. Roy, and D. Sain, A numerical range approach to
Birkhoff-James orthogonality with applications, Preprint (2023). Available at arXiv:2306.02638.

Let Z be a Banach space. Given x, y ∈ Z, we say that x is Birkhoff-James orthogonal to y, denoted
by x ⊥B y, if

‖x+ λy‖ > ‖x‖ ∀λ ∈ K.

This concept was introduced by Birkhoff [5] and thoroughly studied by James [17, 18], and it extends
the standard definition of orthogonality in Hilbert spaces. A general approach to study Birkhoff-James
orthogonality in any Banach space Z was given by James in [18, Corollary 2.2]:

x ⊥B y ⇐⇒ there exists φ ∈ Z∗ with ‖φ‖ = 1 such that φ(x) = ‖x‖ and φ(y) = 0.

Observe that this characterization can be easily written using the abstract numerical range as follows:

x ⊥B y ⇐⇒ 0 ∈ V (Z, u, z).

The notion of Birkhoff-James orthogonality has been extensively studied in specific Banach spaces
by several authors, specially the case when Z is a space of bounded linear operators (see for instance
[4, 26, 38]). The main disadvantage of James’ approach is that involves working in the dual space,
which can be difficult in certain cases. Consequently, in order to give characterizations of Birkhoff-
James orthogonality, the authors usually needed to use specific techniques for each of the particular
cases. With the help of the numerical range, the main aim of this chapter is to provide a widely
applicable approach to address Birkhoff-James orthogonality that unifies all these techniques.

We begin Section VI.2 showing that it is also possible to express the numerical range in terms
of Birkhoff-James orthogonality. Then, we present in Theorem VI.2.4 different expressions of the
numerical range in terms of the elements on an arbitrary subset of the dual which is one-norming
for the space, which extend a previous result from Chapter I, specifically Proposition I.2.14. Recall
that a subset Λ ⊂ SZ∗ is said to be one-norming for Z if ‖z‖ = sup{|φ(z)| : φ ∈ Λ} for all z ∈ Z
(equivalently, if BZ∗ equals the absolutely weak-star closed convex hull of Λ).
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Theorem (Theorem VI.2.4). Let Z be a Banach space, let u ∈ SZ , and let Λ ⊂ BZ∗ be one-norming
for Z. Then, for every z ∈ Z,

V (Z, u, z) = conv
({
θ0 limψn(z) : ψn ∈ Λ ∀n ∈ N, θ0 ∈ T, limψn(u) = θ0

})

= conv
({

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
})

= conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}

=
⋂

δ>0
conv

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
.

This is the key to obtain the main result of this section, which provides a characterization of
Birkhoff-James orthogonality in a Banach space in terms of the actions of functionals on an arbitrary
one-norming subset. One of the equivalences presented in this result is the following.

Corollary (Corollary VI.2.6). Let Z be a Banach space, let u ∈ SZ , and let Λ ⊂ BZ∗ be one-norming
for Z. Then, for z ∈ Z,

u ⊥B z ⇐⇒ 0 ∈ conv
({

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
})

.

Additionally, we characterize smooth points following the same spirit.

Corollary (Corollary VI.2.11). Let Z be a Banach space, let u ∈ SZ , and let Λ ⊂ BZ∗ be one-norming

for Z. Then, u is a smooth point if and only if
{

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
}

is

a singleton set for every z ∈ Z.

Section VI.3 contains a collection of particular cases in which the results of Section VI.2 apply.
Even though some of the results in this section were already known, the techniques previously used
depended on the particular case, while our current approach is applicable to all of them. The new
results include general characterizations of Birkhoff-James orthogonality and smoothness in the space
of vector-valued bounded functions.

Theorem (Theorem VI.3.2). Let Γ be a non-empty set, let Y be a Banach space, let C ⊂ SY ∗ such
that BY ∗ = convw

∗
(C), and let f, g ∈ `∞(Γ, Y ). Then,

f ⊥B g ⇐⇒ 0 ∈ conv {lim y∗n(g(γn)) : γn ∈ Γ, y∗n ∈ C ∀n ∈ N, lim y∗n(f(γn)) = ‖f‖} .

This result also applies to Banach spaces which can be viewed as closed subspaces of `∞(Γ, Y ),
and this allows to present new applications for spaces of vector-valued continuous functions, uniform
algebras, polynomials, Lipschitz maps, and injective tensor products. For bounded linear operators,
we present several results with respect to the operator norm as well as with respect to the numerical
radius. Most of them were previously known but there are some improvements for compact operators.

In Section VI.4, we present some cases in which it is possible to remove the convex hull and the
limits when characterizing Birkhoff-James orthogonality. The main result in this section deals with
vector-valued continuous functions on a compact Hausdorff topological space and uses the notion of
directional orthogonality. Given a Banach space Z and x, y ∈ Z, we say that x is orthogonal to y in
the direction of γ ∈ T, denoted by x ⊥γ y, if ‖x+ tγy‖ > ‖x‖ for every t ∈ R.
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Theorem (Theorem VI.4.3). Let K be a compact Hausdorff topological space and let Y be a Banach
space. Let f, g ∈ C(K,Y ) be such that the set {t ∈ K : ‖f(t)‖ = ‖f‖} is connected. Then,

f ⊥B g ⇐⇒ ∀µ ∈ T ∃t ∈ K such that ‖f(t)‖ = ‖f‖ and f(t) ⊥µ g(t).

In the real case, we actually have

f ⊥B g ⇐⇒ ∃t ∈ K such that ‖f(t)‖ = ‖f‖ and f(t) ⊥B g(t).

As a consequence, we obtain analogous results for compact operators on reflexive Banach spaces,
which is new for complex infinite-dimensional spaces. We finish this section with a nice characterization
of Birkhoff-James orthogonality for finite Blaschke products.

Finally, the last section contains applications of the results in the chapter to the study of spear
vectors, spear operators, and Banach spaces with numerical index one. We say that a norm-one
operator G ∈ L(X,Y ) between two Banach spaces X and Y is a spear operator if maxθ∈T ‖G+ θT‖ =
1 + ‖T‖ for every T ∈ L(X,Y ). All the applications followed from Theorem VI.5.1, which connects
the concepts of smoothness and Birkhoff-James orthogonality with respect to the abstract numerical
radius.

Theorem (Theorem VI.5.1). Let Z be a Banach space and let u ∈ SZ be such that v(Z, u, ·) is a norm
on Z. Then, no smooth point is Birkhoff-James orthogonal to u in (Z, v(Z, u, ·)).

As a consequence, we obtain the next result for spear vectors.

Corollary (Corollary VI.5.3). Let Z be a Banach space and u ∈ SZ . If there exists a smooth point
z0 in Z such that z0 ⊥B u, then u is not a spear vector.

In the case when Z = L(X,Y ) for Banach spaces X and Y , this leads to obstructive results for
the existence of spear operators.

Corollary (Corollary VI.5.5). Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1.
Suppose that there is a strongly exposed point x0 ∈ BX and a smooth point u0 in Y satisfying that
u0 ⊥B Gx0. Then, G is not a spear operator. As a consequence, if X is a Banach space with strongly
exposed points and Y is a smooth Banach space with dimension at least two, then there are no spear
operators in L(X,Y ).

This result somehow extends [20, Proposition 6.5.a] and provides a partial answer to [20, Prob-
lem 9.12]. When X = Y and G = Id, we get an obstructive condition for a Banach space to have
numerical index one: the existence of a smooth point which is Birkhoff-James orthogonal to a strongly
exposed point. In particular, smooth Banach spaces with dimension at least two containing strongly
exposed points do not have numerical index one. This partially answers the question of whether a
smooth Banach space of dimension at least two may have numerical index one [19, page 166].



Notation and terminology

Most of our notation and terminology is standard. We gather here some basics, while the rest is
explained in the chapters when it is required.

We use K to denote the scalar field of real R or complex C numbers, and we use the standard
notation T := {θ ∈ K : |θ| = 1} for its unit sphere. We denote by Re(·) the real part function, which
is nothing more than the identity if we are dealing with real numbers.

We use the letters X, Y , Z for Banach spaces over K. In some cases, we have to distinguish
between the real and the complex case. For x ∈ X and δ > 0, we denote by B(x, δ) the closed ball
centered at x of radius δ > 0. For simplicity, we write BX and SX to denote the closed unit ball and
the unit sphere of X respectively.

Given a non-empty subset A ⊂ X and x ∈ X, we write

TA := {θa : θ ∈ T, a ∈ A} and Tx := {θx : θ ∈ T}.

We write conv(A), aconv(A), and span(A) to denote the convex hull, absolutely convex hull, and
(linear) span of A respectively, while conv(A), aconv(A), and span(A) denote their respective closures.

The diameter of a (bounded) set A ⊂ X is

diam(A) := sup{‖x− y‖ : x, y ∈ A},

and the distance between two subsets A,B ⊂ X is

dist(A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B}.

We denote by L(X,Y ) the Banach space of all bounded linear operators from X to Y endowed
with the operator norm

‖T‖ := sup{‖Tx‖ : x ∈ SX}.
We say that an operator T ∈ L(X,Y ) attains its norm, or that it is norm-attaining, if there exists
x0 ∈ SX such that ‖Tx0‖ = 1. We just write L(X) for L(X,X) and the identity operator is denoted
by Id, or IdX if it is necessary to precise the space. The topological dual of X is X∗ := L(X,K), and
JX : X −→ X∗∗ denotes the natural isometric inclusion of X into its bidual X∗∗. If T ∈ L(X,Y ), the

33
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operator T ∗ ∈ L(Y ∗, X∗) defined by (T ∗y∗)(x) := y∗(Tx) for every y∗ ∈ Y ∗ and x ∈ X is called the
adjoint operator of T . For x∗0 ∈ X∗ and y0 ∈ Y , we write x∗0 ⊗ y0 to denote the rank-one operator
defined by (x∗0 ⊗ y0)(x) := x∗0(x)y0 for every x ∈ X.

A subset Λ ⊆ BX∗ is said to be r-norming for X (0 < r 6 1) if r‖x‖ 6 sup{|x∗(x)| : x∗ ∈ Λ}
for every x ∈ X; equivalently, if rBX∗ ⊆ aconvw

∗
(Λ). In the case when r = 1, we say that Λ is

one-norming for X if ‖x‖ = sup{|x∗(x)| : x∗ ∈ Λ} for every x ∈ X; equivalently, if BX∗ = aconvw
∗
(Λ).

An operator ideal Z is a “rule” (formally a subclass of the class of all bounded linear operators
between Banach spaces) assigning to every pair of Banach spaces X and Y a linear subspace Z(X,Y )
of L(X,Y ) (called a component of Z) which contains the finite rank operators and satisfies that

L(F, Y ) ◦ Z(E,F ) ◦ L(X,E) ⊆ Z(X,Y )

for all Banach spaces E, F , X, Y . We only consider ideals whose components are closed subspaces.
We write K(X,Y ), W(X,Y ), and A(X,Y ) to denote, respectively, the space of all compact operators,
weakly compact operators, and approximable operators (i.e. norm limits of finite-rank operators), from
X to Y , all of them endowed with the operator norm. We also consider the space of all nuclear
operators. We say that an operator T ∈ L(X,Y ) is nuclear if there exist x∗n ∈ X and yn ∈ Y for every
n ∈ N such that

∑∞
n=1 ‖x∗n‖ ‖yn‖ <∞ and

Tx =
∞∑

n=1

x∗n(x)yn (x ∈ X).

The space of all nuclear operators, denoted by N (X,Y ), is a Banach space endowed with the norm

N(T ) := inf

{ ∞∑

n=1

‖x∗n‖ ‖yn‖ : Tx =

∞∑

n=1

x∗n(x)yn

}
,

where the infimum is taken over all the representations of T as above.

Given x ∈ X and y ∈ Y , x⊗ y denotes the evaluation mapping acting on elements T ∈ L(X,Y ∗)
given by (x⊗ y)(T ) = (Tx)(y). The (algebraic) tensor product of X and Y , denoted by X ⊗ Y , is the
vector space spanned by {x⊗y : x ∈ X, y ∈ Y }. Observe that every element u of X⊗Y is of the form

u =

n∑

i=1

xi ⊗ yi,

where n ∈ N, x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y , and the representation above is not unique in general.
We introduce two different norms on X ⊗ Y . The projective norm is defined for every u ∈ X ⊗ Y by

‖u‖π := inf

{
n∑

i=1

‖xi‖ ‖yi‖ : u =

n∑

i=1

xi ⊗ yi
}
,

where the infimum is taken over all the representations of u =
∑n

i=1 xi ⊗ yi. We define the projective
tensor product of X and Y , denoted by X⊗̂εY , as the completion of X⊗Y under the projective norm.
The injective norm is defined for each u ∈ X ⊗ Y as

‖u‖ε := sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)y∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
,
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where
∑n

i=1 xi ⊗ yi is any representation of u. The injective tensor product of X and Y , denoted by
X⊗̂εY , is the completion of X ⊗ Y under the injective norm.

Given u ∈ SX , the face of BX∗ generated by u is the (non-empty) set

F(BX∗ , u) := {x∗ ∈ SX∗ : x∗(u) = 1}.

Let A ⊂ X be a non-empty subset. A slice of A is a non-empty intersection of A with an open
half space, and for x∗ ∈ X∗ and δ > 0, we write

Slice(A, x∗, δ) := {x ∈ A : Rex∗(x) > supA Rex∗ − δ} .

A point x ∈ A is said to be extreme if whenever x = λy + (1 − λ)z with y, z ∈ A and 0 < λ < 1,
then y = z = x. We denote by ext(A) the set of extreme points of A. A point x ∈ A is denting if
x0 /∈ conv(A \ B(x, δ)) for every δ > 0 (equivalently, if it belongs to slices of A of arbitrarily small
diameter). We write dent(A) to denote the set of denting points of A.

We say that a closed convex subset A of X has the Radon-Nikodým property (RNP in short), if
all its closed convex bounded subsets contain slices of arbitrarily small diameter or, equivalently, if all
its closed convex bounded subsets are the closed convex hull of their denting points (see e.g. [9, 11]).
In particular, the whole space X may also have this property.

A point x ∈ X \ {0} is said to be smooth if the mapping x 7→ ‖x‖ is Gâteaux differentiable at x
(equivalently, if there is a unique x∗ ∈ SX∗ with x∗(x) = ‖x‖). We say that the Banach space X is
smooth if every point x ∈ X \ {0} is smooth. An element x ∈ BX is said to be a strongly exposed
point of BX if there is x∗ ∈ SX∗ such that x∗(x) = 1 and whenever a sequence {xn} in BX satisfies
that Rex∗(xn) → 1, we have that ‖xn − x‖ → 0 (equivalently, if x∗(x) = 1 and the diameter of
Slice(BX , x

∗, δ) tends to zero as δ → 0+). We denote by StrExp(BX) the set of strongly exposed
points of BX . Observe that strongly exposed points are denting points and denting points are extreme
points, but none of the implications reverses in general.

Let Γ be a non-empty index set, and {Xγ : γ ∈ Γ} be a collection of Banach spaces. We write

[⊕
λ∈Λ

Xλ

]
c0
,

[⊕
λ∈Λ

Xλ

]
`1
,

[⊕
λ∈Λ

Xλ

]
`∞
,

to denote, respectively, the c0-, `1-, and `∞-sum of the family. If E is Rn endowed with an absolute
norm | · |E and X1, . . . , Xn are Banach spaces, we write X = [X1 ⊕ · · · ⊕Xn]E to denote the product
space X1 × · · · ×Xn endowed with the norm

‖(x1, . . . , xn)‖ =
∣∣(‖x1‖, . . . , ‖xn‖)

∣∣
E

for all xi ∈ Xi, i = 1, . . . , n.

Given a Hausdorff topological space Ω and a Banach space X, we write Cb(Ω, X) to denote the
Banach space of all bounded continuous functions from Ω to X, endowed with the supremum norm. If
K is a compact Hausdorff topological space and X is a Banach space, we write C(K,X) = Cb(K,X).
Let (Ω,Σ, µ) be a positive measure space. We write L∞(µ,X) to denote the Banach space of all
(classes of) strongly measurable functions from Ω to X which are essentially bounded, endowed with
the essential supremum norm

‖f‖∞ := inf {c > 0: ‖f(t)‖ 6 c for a.e. t ∈ Ω} .



36 Notation and terminology

For each 1 6 p < ∞, Lp(µ,X) is the Banach space of all (classes of) p-Bochner integrable functions
from Ω to X, endowed with the integral norm

‖f‖p :=

(∫

Ω
‖f(t)‖pdµ

) 1
p

.

To simplify, we just write Cb(Ω) = Cb(Ω,K), C(K) = C(K,K) and Lp(µ) = Lp(µ,K). Given 1 6 p 6
∞ and a non-empty set Γ, we write `p(Γ) to denote the Lp space associated to the counting measure
on Γ. For n ∈ N, we just write `np to denote `p({1, . . . , n}).
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Abstract

The aim of this paper is to study the numerical index with respect to an operator between
Banach spaces. Given Banach spaces X and Y , and a norm-one operator G ∈ L(X,Y ) (the
space of all bounded linear operators from X to Y ), the numerical index with respect to G,
nG(X,Y ), is the greatest constant k ≥ 0 such that

k‖T‖ ≤ inf
δ>0

sup{|y∗(Tx)| : y∗ ∈ Y ∗, x ∈ X, ‖y∗‖ = ‖x‖ = 1, Re y∗(Gx) > 1− δ}

for every T ∈ L(X,Y ). Equivalently, nG(X,Y ) is the greatest constant k ≥ 0 such that

max
|w|=1

‖G+ wT‖ ≥ 1 + k‖T‖

for all T ∈ L(X,Y ). Here, we first provide some tools to study the numerical index with respect
to G. Next, we present some results on the set N (L(X,Y )) of the values of the numerical indices
with respect to all norm-one operators in L(X,Y ). For instance, N (L(X,Y )) = {0} when X
or Y is a real Hilbert space of dimension greater than 1 and also when X or Y is the space of
bounded or compact operators on an infinite-dimensional real Hilbert space. In the real case

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for 1 < p < ∞ and for all real Banach spaces X and Y , where Mp = supt∈[0,1]
|tp−1−t|

1+tp
.

For complex Hilbert spaces H1, H2 of dimension greater than 1, N (L(H1, H2)) ⊆ {0, 1/2}
and the value 1/2 is taken if and only if H1 and H2 are isometrically isomorphic. Moreover,
N (L(X,H)) ⊆ [0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2] when H is a complex infinite-dimensional
Hilbert space and X and Y are arbitrary complex Banach spaces. Also, N (L(L1(µ1), L1(µ2))) ⊆
{0, 1} and N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} for arbitrary σ-finite measures µ1 and µ2, in both
the real and the complex cases. Also, we show that the Lipschitz numerical range of Lipschitz
maps from a Banach space to itself can be viewed as the numerical range of convenient bounded
linear operators with respect to a bounded linear operator. Further, we provide some results
which show the behaviour of the value of the numerical index when we apply some Banach space
operations, such as constructing diagonal operators between c0-, `1-, or `∞-sums of Banach
spaces, composition operators on some vector-valued function spaces, taking the adjoint to an
operator, and composition of operators.
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1. Introduction

The study of isometric properties of the space L(X,Y ) of all bounded linear operators
between two Banach spaces X and Y and their impact on the domain and range spaces
is a traditional subject of Banach space theory, and it remains to be an active area of
research. For instance, in the second part of the twentieth century there were a number
of results [5, 22, 40, 47, 48, 49, 50] on the structure of extreme points of the unit ball
of L(X,Y ) (sometimes known as extreme operators or extreme contractions), but the
subject attracts researchers until now, see for instance [10, 11, 32, 41, 46] and references
therein. When X = Y , the space L(X) := L(X,X) is a Banach algebra with unit Id

(or IdX if it is necessary to mention), and there are many deep results in this case (see,
for instance, the classical references [42, 45]). The starting point of all these results is
a celebrated result of 1955 by Bohnenblust and Karlin [6] which related the geometric
and the algebraic properties of the unit. To state their result, they introduce and study
a numerical range of elements of a unital algebra which generalized the classical Toeplitz
numerical range of operators on Hilbert spaces from 1918. Let us state here an extension
of this numerical range, which implicitly appeared in Bohnenblust–Karlin paper, and
which was introduced in the 1985 paper [39]. We refer the reader to the classical books
[7, 8] by Bonsall and Duncan, and to the recent book [9, Sections 2.1 and 2.9] for more
information and background. Given a Banach space Z, we write BZ and SZ to denote the
closed unit ball and the unit sphere of Z, respectively. If u ∈ Z is a norm-one element,
the (abstract) numerical range of z ∈ Z with respect to (Z, u) is given by

V (Z, u, z) := {φ(z) : φ ∈ F(BZ∗ , u)},

where Z∗ denotes the topological dual of Z and

F(BZ∗ , u) := {φ ∈ SZ∗ : φ(u) = 1}

is the face of BZ∗ generated by u ∈ SZ (also known as the set of states of Z relative to u).
Let us mention that when Z = A is a unital Banach algebra and u is the unit of A, then
V (A, u, a) is the algebra numerical range of the element a ∈ A. The well-known formula

sup ReV (Z, u, z) = lim
α→0+

‖u+ αz‖ − 1

α

(see Lemma 2.2) connects the geometry of the space Z around u with the numerical range
with respect to (Z, u). The numerical radius of z ∈ Z with respect to (Z, u) is

v(Z, u, z) := sup{|λ| : λ ∈ V (Z, u, z)},
[6]
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which is obviously a seminorm on Z satisfying v(Z, u, z) ≤ ‖z‖ for every z ∈ Z. Sometimes
the numerical radius is an equivalent norm on Z. The constant

n(Z, u) := inf{v(Z, u, z) : z ∈ SZ} = max{k ≥ 0: k‖z‖ ≤ v(Z, u, z) ∀z ∈ Z}

clearly measures this fact quantitatively. This constant is called the (abstract) numerical
index of (Z, u) or the numerical index of Z with respect to u. Clearly, 0 ≤ n(Z, u) ≤ 1 and
n(Z, u) > 0 if and only if v(Z, u, ·) is an equivalent norm on Z (and this is equivalent to
the fact that u is a geometrically unitary element of BZ , see the beginning of Chapter 2).
When n(Z, u) = 0, it is possible that v(Z, u, ·) is not a norm, or that v(Z, u, ·) is a non-
equivalent norm on Z (and in this case, u is a vertex of BZ which is not a geometrically
unitary element, see also the beginning of Chapter 2). The value n(Z, u) = 1 means
that the numerical radius with respect to (Z, u) coincides with the given norm of Z
(and in this case, we say that u is a spear element of Z, see Proposition 2.5 and the
paragraph after it for some equivalent formulations). With this language in mind, the
announced result of Bohnenblust and Karlin states that unitary elements of a unital
complex algebra A (a purely algebraic concept) are geometrically unitary elements of A
(a purely geometric concept), actually n(A, u) ≥ 1/e if u is a unitary element of the
complex Banach algebra A, see [9, Corollary 2.1.21]. This is no longer true in the real
case as, for instance, the identity is not even a vertex of L(H) when H is any real Hilbert
space of dimension greater than 1. Nevertheless, by numerical range arguments, the unit of
a unital real Banach algebra is a strongly extreme point (see [9, Corollary 2.1.42] and [25]
for a quantitative version). For (complex) C∗-algebras, the concepts of unitary element
and geometrically unitary element coincide (see [9, Theorem 2.1.27] for the details). Let
us also comment that the study of the algebra numerical range was crucial to state very
important results in the theory of Banach algebras such as Vidav’s characterization of C∗-
algebras (see [7] or [9]). More recently, geometric characterizations of algebraic properties
of elements of C∗-algebras have been given by Akeman and Weaver [2], some of which can
be expressed in terms of the numerical ranges (see [43]). Let us observe that geometrically
unitary elements (and even vertices) of the unit ball of a Banach space are extreme points
of the unit ball (see Lemma 2.3, for instance) so, when non-zero, the abstract numerical
index measures “how extreme” a point of the unit ball of a Banach space is. Finally, let
us recall that the concept of numerical range (and so the ones of numerical radius and
numerical index) depends on the base field, as for a complex Banach space Z and a norm-
one element u ∈ Z, V (ZR, u, z) = ReV (Z, u, z), where ZR is the real space underlying
the space Z and Re represents the real part function.

Let us now return to our aim of studying the geometry of L(X,Y ) around a norm-one
operator G. For this to be done, we introduce the numerical range with respect to G. If
X and Y are Banach spaces and G ∈ L(X,Y ) is a norm-one operator, we consider the
numerical range of T ∈ L(X,Y ) with respect to G, which is the set

V (L(X,Y ), G, T ) = {φ(T ) : φ ∈ L(X,Y )∗, ‖φ‖ = φ(G) = 1}.

Analogously, we may consider the corresponding numerical radius with respect to G:

v(L(X,Y ), G, T ) = sup{|λ| : λ ∈ V (L(X,Y ), G, T )} (T ∈ L(X,Y )),
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and the numerical index of (L(X,Y ), G) (or the numerical index of L(X,Y ) with respect
to G):

nG(X,Y ) := n(L(X,Y ), G) = inf{v(L(X,Y ), G, T ) : T ∈ L(X,Y ), ‖T‖ = 1}.
This will be the central concept of study in this paper. Note that nG(X,Y ) is the greatest
constant k ≥ 0 such that

max
|w|=1

‖G+ wT‖ ≥ 1 + k‖T‖

for every T ∈ L(X,Y ) (see Proposition 3.3). The case k = 1 in the inequality above gives
the concept of spear operator, introduced in [3] and deeply studied in [26].

Usually, when one deals with the geometry of spaces of operators, it is convenient
to have tools which allow to describe this geometry in terms of the geometry of the
domain and range spaces, allowing us to work on these spaces and not on the whole
space of operators and, even more, on its wild dual space. In the case of the numerical
range of operators on a Banach space (with respect to the identity operator), this tool
is the “spatial” version of the numerical range. For a Banach space X and T ∈ L(X),
the spatial numerical range of T was introduced by Bauer (and in a somehow equivalent
reformulation by Lumer) in the 1960s (see [7] for instance) as the set

(1.1) W (T ) := {x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1},
which is the direct extension of Toeplitz’s numerical range of operators on Hilbert spaces.
There is a straightforward inclusion W (T ) ⊆ V (L(X), Id, T ) and, actually, one has

conv(W (T )) = V (L(X), Id, T )

for every T ∈ L(X) (see [9, Proposition 2.1.31], for instance). Hence, the spatial numerical
radius v(T ) of an operator T ∈ L(X) coincides with the numerical radius with respect
to Id, that is,

v(T ) := sup{|λ| : λ ∈W (T )} = v(L(X), Id, T ).

Therefore, the same happens with the corresponding numerical index:

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1} = n(L(X), Id).

With this tool it has been possible to construct an example of a Banach space X such
that the identity operator is a vertex but not a geometrically unitary element (see [9,
Proposition 2.1.39] for instance). For a detailed study of the Banach space numerical
index, we refer the reader to the expository paper [27] and to Subsection 1.1 of the very
recent paper [28].

When dealing with a general operator G ∈ L(X,Y ), it is not possible to get a spatial
numerical range with respect to G with a formula analogous to (1.1). Indeed, for the set

{(x, y∗) : x ∈ SX , y∗ ∈ SY ∗ , y∗(Gx) = 1}
to be non-empty, we need the operator G to attain its norm; but even in the case of G
being an inclusion operator, the above set is not always representative (see [34]). Nev-
ertheless, there is an “approximate spatial” numerical range with respect to an operator
recently introduced by Ardalani [3] which does the job. Given two Banach spaces X
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and Y and a norm-one operator G ∈ L(X,Y ), the approximate spatial numerical range
of T ∈ L(X,Y ) with respect to G is the set

VG(T ) :=
⋂

δ>0

{y∗(Tx) : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}.

It was shown in [3], using the Bishop–Phelps–Bollobás theorem, that VId(T ) = W (T ) for
every T ∈ L(X) and every Banach space X, so both numerical ranges produce the same
associated numerical radii. Moreover, the equality

(1.2) conv(VG(T )) = V (L(X,Y ), G, T )

holds [33, Theorem 2.1] for all Banach spaces X, Y and all operators G,T ∈ L(X,Y ).
Consequently,

vG(T ) := inf
δ>0

sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ} = v(L(X,Y ), G, T ),

and
nG(X,Y ) = inf{vG(T ) : T ∈ L(X,Y ), ‖T‖ = 1} = n(L(X,Y ), G).

This provides a “spatial” way to deal with the numerical radius and the numerical index
with respect to an arbitrary operator, which is especially interesting when we work in
concrete Banach spaces and when we study the behaviour of these concepts with respect
to Banach space operations on the domain and range spaces.

The aim of this paper is to present a number of results on the numerical indices
with respect to operators. Let us detail the content of the paper. First, we finish this
introduction with a short section containing the needed terminology and notation. Next,
we provide in Chapter 2 some basic results on abstract numerical index. Some of the
results were previously known, but some others are new. Among the new ones, we may
stress the fact that the set {u ∈ SZ : n(Z, u) > 0} is countable (i.e. finite or infinite and
countable) when Z is a finite-dimensional real space, and we provide some estimations on
the sum of the values n(Z, u) with varying u ∈ SZ . On the other hand, for every subset
A ⊆ [0, 1] containing 0, we show that there is a (real or complex) Banach space Z such
that {n(Z, u) : u ∈ SZ} = A. Moreover, an extension of the formula (1.2) is given, which
provides some useful ways to calculate numerical radii with respect to operators. Next,
we particularize these results to numerical indices with respect to operators and also give
some more important tools in Chapter 3. Namely, we show that the numerical index with
respect to an operator always dominates the numerical index with respect to its adjoint,
we calculate the value of the numerical index with respect to a rank-one operator and we
show some estimations of the numerical index with respect to an operator in terms of the
numerical radii of operators on the domain space or on the range space. In Chapter 4 we
provide results on the set of values of the numerical indices with respect to all norm-one
operators between two fixed Banach spaces, that is, on the set

N (L(X,Y )) := {nG(X,Y ) : G ∈ L(X,Y ), ‖G‖ = 1}
for given Banach spaces X and Y (this notation is coherent with the one that we will
introduce at the beginning of Section 2.2 for the abstract numerical index). For example,
0 ∈ N (L(X,Y )) unless both X and Y are one-dimensional, and the set N (L(X,Y )) is
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countable if X and Y are finite-dimensional real spaces. In addition, for a real Hilbert
space H with dim(H) ≥ 2 one has

N (L(X,H)) = N (L(H,Y )) = {0}
for all Banach spaces X and Y . The role of the space H can also be played by some non-
Hilbertian real Banach spaces like L(H) where H is an infinite-dimensional real Hilbert
space. Estimations of the numerical indices with respect to operators whose domain or
range is a real space `p are also given: for 1 < p <∞,

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for all real Banach spaces X and Y , where Mp = supt∈[0,1]
|tp−1−t|

1+tp . For complex Hilbert
spaces H1, H2 of dimension greater than 1, N (L(H1, H2)) ⊆ {0, 1/2} and the value 1/2

is taken if and only if H1 and H2 are isometrically isomorphic. Moreover, N (L(X,H)) ⊆
[0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2] when H is a complex infinite-dimensional Hilbert
space and X and Y are arbitrary complex Banach spaces. Also

N (L(C(K1), C(K2))) = {0, 1}
for many families of Hausdorff topological compact spaces K1 and K2, both in the real
and the complex cases. As a consequence, we demonstrate the inclusions

N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} and N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}
for all σ-finite positive measures µ1 and µ2.

In Chapter 5 we use the tools presented in Chapter 3 to prove that the concept of
Lipschitz numerical range introduced in [51, 52] for Lipschitz self-maps of a Banach space
can be viewed as a particular case of numerical range with respect to a linear operator
between two different Banach spaces.

Finally, we collect in Chapter 6 some results which show the behaviour of the value
of the numerical index when we apply some Banach space operations. For instance, the
numerical index of a c0-, `1- or `∞-sum of Banach spaces with respect to a direct sum
of norm-one operators in the corresponding spaces coincides with the infimum of the nu-
merical indices of corresponding summands. As a consequence, we show the existence of
real and complex Banach spaces X for which N (L(X)) = [0, 1]. We also show that a com-
position operator between spaces of vector-valued continuous, integrable, or essentially
bounded functions produces the same numerical index as the original operator. Next, we
provide two independent conditions ensuring that the numerical index with respect to
an operator and the numerical index with respect to its adjoint coincide: that the range
space is L-embedded or that the operator is rank-one. Finally, we discuss some results on
the value of the numerical index with respect to a composition of two operators, and then
we show how to extend the domain of an operator retaining the value of the numerical
index, and an analogous result for the codomain. In particular, the results of the chapter
allow us to solve Problem 9.14 of [26].

1.1. Notation and terminology. By K we denote the scalar field (R or C), and we
use the standard notation T := {λ ∈ K : |λ| = 1} for its unit sphere. We use the letters
X,Y, Z for Banach spaces over K and by a subspace we always mean a closed subspace.
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In some cases, we have to distinguish between the real and the complex case, but for
most results this difference is insignificant. We write JX : X → X∗∗ to denote the natural
isometric inclusion of X into its bidual X∗∗. Given a subset C of X we denote by conv(C)

and aconv(C) the convex hull and the absolutely convex hull of C, respectively.
Let Γ be a non-empty index set, and {Xγ : γ ∈ Γ} be a collection of Banach spaces.

We write [⊕

λ∈Λ

Xλ

]
c0
,

[⊕

λ∈Λ

Xλ

]
`1
,

[⊕

λ∈Λ

Xλ

]
`∞
,

to denote, respectively, the c0-, `1-, and `∞-sum of the family. If E is Rn endowed with
an absolute norm | · |E and X1, . . . , Xn are Banach spaces, we write X = [X1⊕· · ·⊕Xn]E
to denote the product space X1 × · · · ×Xn endowed with the norm

‖(x1, . . . , xn)‖ =
∣∣(‖x1‖, . . . , ‖xn‖)

∣∣
E

for all xi ∈ Xi, i = 1, . . . , n.
Given 1 ≤ p ≤ ∞ and a non-empty set Γ, we write `p(Γ) to denote the Lp-space asso-

ciated to the counting measure on Γ. For n ∈ N, we just write `np to denote `p({1, . . . , n}).
Given a Banach space X, a compact Hausdorff topological space K, and a σ-finite mea-
sure space (Ω,Σ, µ), we write C(K,X), L1(µ,X), and L∞(µ,X) to denote, respectively,
the spaces of continuous functions from K to X, (classes of) Bochner-integrable func-
tions from Ω to X, and (classes of) strongly measurable and essentially bounded functions
from Ω to X.



2. Some old and new results on abstract numerical index

Our aim here is to collect a few basic facts about the abstract numerical range, some of
which seem to be new. We start by recalling some related definitions which were already
mentioned in the introduction.

Definition 2.1. Let Z be a Banach space and let u ∈ SZ .
(a) We say that u is a vertex of BZ if F(BZ∗ , u) separates the points of Z (i.e. for every

z ∈ Z \ {0}, there is φ ∈ F(BZ∗ , u) such that φ(z) 6= 0). This is clearly equivalent to
the fact that v(Z, u, z) = 0 for z ∈ Z implies z = 0.

(b) We say that u is a geometrically unitary element of BZ if the linear span of F(BZ∗ , u)

is equal to the whole Z∗. It is known (see [9, Theorem 2.1.17]) that u is a geometrically
unitary element if and only if n(Z, u) > 0.

We refer the reader to the already cited book [9], and to the papers [4, 19, 21, 43] for
more information and background on these concepts.

2.1. A few known elementary results. First, we present some known results on
abstract numerical index which we will use throughout the paper. They are elementary
and come from many sources, but we use the recent monograph [9] as reference for them
for the convenience of the reader.

The first result allows us to relate the numerical range to a directional derivative.

Lemma 2.2. Let Z be a Banach space and let u ∈ SZ . Then

max ReV (Z, u, z) = lim
t→0+

‖u+ tz‖ − 1

t

for every z ∈ Z. Therefore,

v(Z, u, z) = max
θ∈T

lim
t→0+

‖u+ tθz‖ − 1

t
= lim
t→0+

max
θ∈T
‖u+ t θz‖ − 1

t
.

The first part of the above lemma is folklore and can be found in [9, Proposition 2.1.5].
The first equality for the numerical radius is an immediate consequence, and the second
equality follows routinely from the compactness of T. Indeed, let {tn}n∈N be a sequence
of positive scalars converging to 0 and for each n ∈ N, take θn ∈ T such that

max
θ∈T
‖u+ tn θz‖ − 1

tn
=
‖u+ tn θn z‖ − 1

tn
.

Extract a subsequence {θσ(n)}n∈N which is convergent to, say, θ0 ∈ T. Then
‖u+ tσ(n)θ0z‖ − 1

tσ(n)
≥ ‖u+ tσ(n)θσ(n)z‖ − 1

tσ(n)
− |θσ(n) − θ0|‖z‖.

[12]
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Finally,

v(Z, u, z) ≥ lim
n→∞

‖u+ tσ(n)θ0z‖ − 1

tσ(n)
≥ lim
n→∞

max
θ∈T

‖u+ tσ(n) θz‖ − 1

tσ(n)
.

The next result relates the numerical index with respect to a point to the geometry at
the point. Recall that a norm-one element u of a Banach space Z is said to be a strongly
extreme point of BZ if whenever {xn}n∈N and {yn}n∈N are sequences in BZ such that
lim(xn + yn) = 2u, then lim(xn − yn) = 0. Strongly extreme points are extreme points,
but the converse result is not true (see [29] for instance).

Lemma 2.3. Let Z be a Banach space and u ∈ SZ .
(a) If u is a vertex of BZ , then u is an extreme point, and if moreover dim(Z) ≥ 2, then

the norm of Z is not smooth at u.
(b) If u is a geometrically unitary element of BZ (i.e. n(Z, u) > 0), then u is a strongly

extreme point of BZ .

The extreme point condition appears in [9, Lemma 2.1.25]; if the norm of Z is smooth
at u, then F(BZ∗ , u) is a singleton, so either dim(Z) = 1 or u cannot be a vertex. The
result in (b) appears in [9, Proposition 2.1.41]. There are vertices which are not strongly
extreme points [9, Example 2.1.43].

The next result, which can be found in [9, Corollary 2.1.2], is elementary and very
useful.

Lemma 2.4. Let ψ : Z1 → Z2 be a linear operator between Banach spaces Z1 and Z2, let
u ∈ SZ1

be such that ‖ψ(u)‖ = 1.

(a) If ‖ψ‖ = 1, then v(Z2, ψ(u), ψ(z)) ≤ v(Z1, u, z) for every z ∈ Z1.
(b) If ψ is an isometric embedding, then v(Z2, ψ(u), ψ(z)) = v(Z1, u, z) for every z ∈ Z1;

therefore, n(Z2, ψ(u)) ≤ n(Z1, u) in this case.

We next would like to present a pair of characterizations of the abstract numerical
index.

Proposition 2.5. Let Z be a Banach space, u ∈ SZ , and 0 < λ ≤ 1. Then the following
statements are equivalent:

(i) n(Z, u) ≥ λ.
(iiR) In the real case, λBZ∗ ⊆ conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)).
(iiC) In the complex case, given ε > 0, θ1, . . . , θk ∈ BC satisfying

BC ⊆ (1 + ε) conv{θ1, . . . , θk},
we have

λBZ∗ ⊆ (1 + ε) conv
( k⋃

j=1

θj F(BZ∗ , u)
)
.

(iii) maxθ∈T ‖u+ θz‖ ≥ 1 + λ‖z‖ for every z ∈ Z.
The equivalence between (i) and (ii) is well known and can be found, for instance, in [9,

Theorem 2.1.17]. The implication (i)⇒(iii) is immediate from the Hahn–Banach theorem.
The converse result follows straightforwardly from the last equality in Lemma 2.2.
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The strongest possibility in Proposition 2.5, that is, λ = 1, gives rise to the concept
of spear vector introduced in [26]. A norm-one element u of a Banach space Z is a spear
vector if

max
θ∈T
‖u+ θz‖ = 1 + ‖z‖ for every z ∈ Z.

The previous proposition shows that this is equivalent to n(Z, u) = 1. We refer the reader
to [26, Chapter 2] for more information and background.

Finally, we present a result relating the numerical index of a Banach space with respect
to a point to the numerical index of its bidual with respect to the same point which can
be found in [9, Theorem 2.1.17.v].

Lemma 2.6. Let Z be a Banach space and let u ∈ SZ . Then n(Z∗∗, JZ(u)) = n(Z, u).

2.2. On the set of values of the abstract numerical indices with respect to all
unit vectors of a given space. For a given Banach space Z, denote

N (Z) := {n(Z, u) : u ∈ SZ}.
In this section we concentrate on the properties of N (Z) for various classes of Banach
spaces Z.

Let us start with a general important observation.

Proposition 2.7. Let Z be a Banach space with dim(Z) ≥ 2. Then 0 ∈ N (Z).

Proof. Let Y be a two-dimensional subspace of Z. Then there is a smooth point u∈SY
and we have n(Y, u) = 0 by Lemma 2.3(a). Now, Lemma 2.4(b) gives n(Z, u) = 0.

For many Banach spaces Z, zero is the only element of N (Z). Say, this happens
for smooth spaces of dimension greater than 1, a fact which follows immediately from
the above proof. In Chapter 4 the reader will find many examples of operator spaces
Z = L(X1, X2) with the property that N (Z) = {0}. On the other hand, for “big bad”
spaces Z, the corresponding set N (Z) can be big. Moreover, it is possible to show that
this set can be any subset of [0, 1] containing 0.

Proposition 2.8. For every subset A of [0, 1] with 0 ∈ A, one can find a (real or complex)
Banach space Z with N (Z) = A.

In order to demonstrate this result, we need some preparatory work.

Example 2.9. For every a ∈ [0, 1] there is a two-dimensional (real or complex) space Za
with N (Za) = {0, a}.

Indeed, for r ∈ [0, 1] denote by Z∗r the two-dimensional space K2 equipped with the
norm

‖(x1, x2)‖ = max{|x1|,
√
r|x1|2 + |x2|2}.

Then the intersections of BZ∗r with the lines {x1 = θ} for θ ∈ T are the only non-trivial
faces of BZ∗r (see Figure 1). Therefore, in the predual space Zr the only elements u of SZr
with n(Zr, u) 6= 0 are u = (θ, 0) with θ ∈ T. As Zr has the same abstract numerical index
with respect to all these elements, N (Zr) consists of two points: 0 and some h(r) ≥ 0.
The value h(r) varies continuously from 1 to 0 as r varies from 0 to 1 (because Z0 = `2∞
and Z1 = `22).
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(0, 1)•

(1, 0)
•

y =
√
1− rx2

y = −
√
1− rx2

Fig. 1. The unit ball of Z∗r

The next result may be known, but we include the easy proof as we have not found
it in the literature.

Lemma 2.10. Let {Zγ : γ ∈ Γ} be a family of Banach spaces. Then

N
([⊕

γ∈Γ

Zγ

]
`1

)
=
⋃

γ∈Γ

N (Zγ).

Proof. If a norm-one element u = (uγ)γ∈Γ ∈ [
⊕

γ∈Γ Zγ ]`1 has more than one non-
zero coordinate, then n([

⊕
γ∈Γ Zγ ]`1 , u) = 0 as u is then not an extreme point. In the

case of u having just one non-zero coordinate uτ , one has n([
⊕

γ∈Γ Zγ ]`1 , u) = n(Zτ , uτ )

routinely.

We are now ready to provide the pending proof.

Proof of Proposition 2.8. For every a ∈ A, select a two-dimensional Za such that
N (Za) = {0, a} provided by Example 2.9 and then the desired example is Z =

[
⊕

a∈A Za]`1 by Lemma 2.10.

Our next goal is to find the restrictions onN (Z) which appear in the finite-dimensional
case. We start by showing that, in this case, the corresponding N (Z) is at most countable.

Proposition 2.11. Let Z be a finite-dimensional real Banach space. Then the set of
points u ∈ SZ satisfying n(Z, u) > 0 is countable. As a consequence, N (Z) is countable.

Proof. Let u ∈ SZ be such that n(Z, u) > 0. By Proposition 2.5, the set

conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))

has non-empty interior so, being Z∗ finite-dimensional, F(BZ∗ , u) has non-empty interior
relative to SZ∗ . Indeed, otherwise F(BZ∗ , u) has affine dimension at most dim(Z∗)−2, so
its linear span has dimension at most dim(Z∗)−1, and so conv(F(BZ∗ , u)∪−F(BZ∗ , u))

has empty interior, a contradiction. Furthermore, for u1, u2 ∈ SZ , as
(2.1) F(BZ∗ , u1) ∩ F(BZ∗ , u2) ⊆ ker(u1 − u2),

the relative interiors of F(BZ∗ , u1) and F(BZ∗ , u2) are disjoint if u1 6= u2. Hence, by
separability, the set of those u ∈ SZ satisfying n(Z, u) > 0 has to be countable and,
a fortiori, so is N (Z).
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We do not know if the above corollary remains valid for “small” infinite-dimensional
spaces, such as Banach spaces with separable dual. We also do not know whether N (Z)

is countable for every finite-dimensional complex Banach space Z.
Our next aim is to give a strengthening of Proposition 2.11 for real finite-dimensional

spaces, where some techniques from combinatorial geometry are applicable. Note that
neither Theorem 2.12 nor Proposition 2.13 below are needed in the rest of the paper. We
introduce some notation. For a convex body K ⊆ Rn let us denote its inradius by

r(K) := sup{r > 0: ∃x ∈ K such that x+ rB`n2 ⊆ K}.
Note that in the case of K = −K, the above formula simplifies to

r(K) = sup{r > 0: rB`n2 ⊆ K}.
We denote by voln[K] and S(K) the volume and the surface area of K, respectively.

Theorem 2.12. Let Z be a real space with dim(Z) = m ≥ 2. Then
∑

u∈SZ
n(Z, u)m−1 <∞.

Proof. Let us identify, as usual, Z with (Rm, ‖ · ‖), Z∗ with (Rm, ‖ · ‖∗) and BZ∗ with
the polar body of BZ . Given a finite set F of points in SZ , we evidently have

(2.2)
∑

u∈F
volm−1[F(BZ∗ , u)] ≤ S(BZ∗)

by (2.1). Using Proposition 2.5, for every u ∈ F , we have

n(Z, u)r(BZ∗)B`m2 ⊆ n(Z, u)BZ∗ ⊆ conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))

and so,

n(Z, u)r(BZ∗)B`m2 ∩ ker(u) ⊆ [conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))] ∩ ker(u).

For an arbitrary z∗ ∈ F(BZ∗ , u), the latter set can be rewritten as
1
2 [F(BZ∗ , u)− F(BZ∗ , u)] = 1

2 [(F(BZ∗ , u)− z∗)− (F(BZ∗ , u)− z∗)].
According to the Rogers–Shephard theorem [44, Theorem 1],

voln[K −K] ≤
(

2n

n

)
voln[K]

for every convex body K in an n-dimensional space. Applying this to the convex body
(F(BZ∗ , u)− z∗) of the (m− 1)-dimensional space ker(u), we obtain the inequality

volm−1[n(Z, u)r(BZ∗)B`m2 ∩ ker(u)] ≤ 1

2m−1

(
2(m− 1)

m− 1

)
volm−1[F(BZ∗ , u)].

Therefore, we can write

n(Z, u)m−1r(BZ∗)
m−1 volm−1[B`m−1

2
] = volm−1[n(Z, u)r(BZ∗)B`m2 ∩ ker(u)]

≤ 1

2m−1

(
2(m− 1)

m− 1

)
volm−1[F(BZ∗ , u)]
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which, combined with (2.2), gives

(2.3)
∑

u∈F
n(Z, u)m−1 ≤ 1

2m−1

(
2(m− 1)

m− 1

)
S(BZ∗)

volm−1[B`m−1
2

] · r(BZ∗)m−1
.

As F was arbitrary, we get the desired result.

For a finite-dimensional polyhedral space (i.e. finite-dimensional real space whose unit
ball has finitely many faces), we can give a lower bound for the sum of numerical indices
of the elements of the unit sphere.

Proposition 2.13. Let Z be Rm endowed with a polyhedral norm such that BZ∗ ⊆ B`m2 .
Then

(2.4)
∑

u∈SZ
n(Z, u) ≥ r(BZ∗).

Proof. Since Z∗ is also polyhedral, SZ∗ is the union of finitely many sets of the form
F(BZ∗ , u) ∪ −F(BZ∗ , u) for some u ∈ SZ . Let us denote by F the set of corresponding
u ∈ SZ . Then obviously

BZ∗ ⊆
⋃

u∈F
conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)).

Since

conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)) ⊃ r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)))B`m2
⊃ r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)))BZ∗ ,

Proposition 2.5 implies n(Z, u) ≥ r(conv (F(BZ∗ , u) ∪ −F(BZ∗ , u))). As the convex
body BZ∗ is covered by a finite number of convex bodies, we can use [24, Theorem 2.1]
to get ∑

u∈F
n(Z, u) ≥

∑

u∈F
r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))) ≥ r(BZ∗).

Let us remark that the estimates in (2.3) and (2.4) depend on the particular chosen
representation of Z as Rm, and they do not pretend to be optimal. It would be interesting
to find the sharp estimates in both inequalities.

2.3. A new result on abstract numerical ranges. Our goal here is to present a very
general result about numerical range spaces which extends and generalizes the results
of [33]. It will be useful to study the behaviour of the numerical ranges with respect to
operators when dealing with some Banach space operations on the domain and range
spaces (see Chapter 6) and also to study Lipschitz numerical ranges (see Chapter 5).

Proposition 2.14. Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that
BZ∗ = convw

∗
(C). Then

V (Z, u, z) = conv
⋂

δ>0

{z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ}

for every z ∈ Z. Consequently,
v(Z, u, z) = inf

δ>0
sup{|z∗(z)| : z∗ ∈ C, Re z∗(u) > 1− δ}

for every z ∈ Z.
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Let us first observe that the inclusion “⊇” is a straightforward application of the
Banach–Alaoglu theorem. Indeed, given λ0 ∈

⋂
δ>0 {z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ},

for every n ∈ N there is z∗n ∈ C such that

Re z∗n(u) > 1− 1/n and |λ0 − z∗n(z)| < 1/n.

If z∗0 ∈ BZ∗ is a limiting point of the sequence {z∗n}n∈N, we have z∗0(u) = 1 and z∗0(z) = λ0,
so λ0 ∈ V (Z, u, z). As the latter set is convex, the inclusion follows.

To prove the more intriguing reverse inequality, we need a couple of preliminary
results. The first one is a general version of [33, Lemma 2.5].

Lemma 2.15. Let Z be a Banach space, let C ⊆ BZ∗ be such that BZ∗ = convw
∗
(C), and

let u ∈ SZ and z ∈ Z. Then for every z∗0 ∈ SZ∗ with z∗0(u) = 1 and every δ > 0, there is
z∗ ∈ C such that

Re z∗(u) > 1− δ and Re z∗(z) > Re z∗0(z)− δ.
Proof. As BZ∗ = convw

∗
(C), for δ′ > 0 satisfying 2‖z‖δ′ < δ, we may find n ∈ N,

z∗1 , . . . , z
∗
n ∈ C, α1, . . . , αn ∈ [0, 1] with

∑n
k=1 αk = 1 such that

n∑

k=1

αk Re z∗k(u) > 1− (δ′)2 and
n∑

k=1

αk Re z∗k(z) > Re z∗0(z)− δ/2.

Now, consider
J = {k ∈ {1, . . . , n} : Re z∗k(u) > 1− δ′}

and let L = {1, . . . , n} \ J . We have

1− (δ′)2 <
n∑

k=1

αk Re z∗k(u) ≤
∑

k∈J
αk +

∑

k∈L
αk(1− δ′) = 1− δ′

∑

k∈L
αk,

from which we deduce ∑

k∈L
αk < δ′.

Now, we have

Re z∗0(z)− δ/2 <
n∑

k=1

αk Re z∗k(z)

≤
∑

k∈J
αk Re z∗k(z) + ‖z‖

∑

k∈L
αk <

∑

k∈J
αk Re z∗k(z) + δ/2.

Therefore, ∑

k∈J
αk Re z∗k(z) > Re z∗0(z)− δ,

and an obvious convexity argument provides the existence of k ∈ J such that

Re z∗k(z) > Re z∗0(z)− δ.
On the other hand, Re z∗k(u) > 1− δ as k ∈ J , so the proof is finished.

The next preliminary result follows straightforwardly from [33, Lemma 2.4].
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Lemma 2.16. Let {Wδ}δ>0 be a monotone family of compact subsets of K (i.e.Wδ1 ⊆Wδ2

when δ1 < δ2). Then
sup Re

⋂

δ>0

Wδ = inf
δ>0

sup ReWδ.

Proof of the main part of Proposition 2.14. For z ∈ Z, write
Wδ(z) := {z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ} and W (z) :=

⋂

δ>0

Wδ(z).

To get the desired inclusion V (Z, u, z) ⊆ convW (z) for every z ∈ Z, it is enough to prove
that for every δ > 0 and every z ∈ Z,
(2.5) sup ReV (Z, u, z) ≤ sup ReWδ(z) + δ.

Indeed, it then follows from Lemma 2.16 that sup ReV (Z, u, z) ≤ sup ReW (z) for every
z ∈ Z. Now, as for every θ ∈ T, we have

V (Z, u, θz) = θV (Z, u, z) and W (θz) = θW (z),

the desired inclusion follows easily.
So let us prove that inequality (2.5) holds. Fix z ∈ Z and δ > 0. Given z∗0 ∈ F(BZ∗ , u),

we may use Lemma 2.15 to get z∗ ∈ C such that

Re z∗(u) > 1− δ and Re z∗0(z) < Re z∗(z) + δ.

So, Re z∗0(z) ≤ sup ReWδ(z) + δ. Varying z∗0 in F(BZ∗ , u), we get

sup ReV (Z, u, z) ≤ sup ReWδ(z) + δ,

as desired.



3. Tools to study the numerical index with respect to an operator

Our aim in this chapter is to provide some tools to calculate, or at least estimate, the
numerical indices with respect to operators. Some of the results are just direct translation
to the operator spaces setting of the abstract results contained in the previous chapter,
but other ones rely on specifics of the operator case.

We need some notation. Let X and Y be Banach spaces. For a norm-one operator
G ∈ L(X,Y ) and δ > 0, we write

vG,δ(T ) := sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}
for every T ∈ L(X,Y ). It then follows from [33] (or from Proposition 2.14) that

v(L(X,Y ), G, T ) = vG(T ) = inf
δ>0

vG,δ(T )

for every T ∈ L(X,Y ), a result which we will use without any further mention (see
Lemma 3.4 for details).

We include first some results which directly follow from those of Chapter 2. The first
one is the translation of Lemma 2.3 to the setting of the spaces of operators. For a simpler
notation, let us say that a norm-one operator G ∈ L(X,Y ) is an extreme operator (or
extreme contraction) if G is an extreme point of the unit ball of L(X,Y ).

Lemma 3.1. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator
with nG(X,Y ) > 0. Then G is a strongly extreme point of BL(X,Y ); in particular, G is
an extreme operator. Moreover, if dim(X) ≥ 2 or dim(Y ) ≥ 2, then the norm of L(X,Y )

is not smooth at G.

Next, we particularize Lemma 2.2 to our setting.

Lemma 3.2. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator.
Then

vG(T ) = max
θ∈T

lim
α→0+

‖G+ αθT‖ − 1

α
= lim
α→0+

max
θ∈T
‖G+ αθT‖ − 1

α

for every T ∈ L(X,Y ).

We now include a part of Proposition 2.5, particularized to spaces of operators, which
allows us to characterize the numerical index in terms of the norm of the space of oper-
ators.

Proposition 3.3. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator,
and 0 < λ ≤ 1. Then the following statements are equivalent:

(i) nG(X,Y ) ≥ λ.
(ii) maxθ∈T ‖G+ θ T‖ ≥ 1 + λ‖T‖ for every T ∈ L(X,Y ).

[20]
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The case λ = 1 in the previous result gives us the concept of spear operator. A norm-
one operator G ∈ L(X,Y ) is said to be a spear operator if

max
θ∈T
‖G+ θ T‖ = 1 + ‖T‖

for every T ∈ L(X,Y ). This concept was introduced in [3] and deeply studied in [26],
where we refer for more information and background. Observe that Proposition 3.3 says,
in particular, that G is a spear operator if and only if nG(X,Y ) = 1.

The next result is a direct consequence of Proposition 2.14 and will be very useful
later on.

Lemma 3.4. Let X,Y be Banach spaces. Suppose that A ⊆ BX and B ⊆ BY ∗ satisfy
conv(A) = BX and convw

∗
(B) = BY ∗ . Then given G ∈ L(X,Y ) with ‖G‖ = 1, we have

V (L(X,Y ), G, T ) = conv
⋂

δ>0

{y∗(Tx) : y∗ ∈ B, x ∈ A, Re y∗(Gx) > 1− δ}

for every T ∈ L(X,Y ). Accordingly,
vG(T ) = inf

δ>0
sup{|y∗(Tx)| : y∗ ∈ B, x ∈ A, Re y∗(Gx) > 1− δ}.

Proof. The result follows from Proposition 2.14 as the hypotheses on A and B give
BL(X,Y )∗ = convw

∗
(A⊗B). Indeed, for every G ∈ L(X,Y ), we have

sup
x∈A, y∗∈B

Re y∗(Gx) = sup
y∗∈B

sup
x∈A

Re y∗(Gx) = sup
y∗∈B

sup
x∈BX

Re y∗(Gx)

= sup
x∈BX

sup
y∗∈B

Re y∗(Gx) = sup
x∈BX

sup
y∗∈BY ∗

Re y∗(Gx) = ‖G‖,

as desired.

We may also relate the numerical index with respect to an operator to the numerical
index with respect to its adjoint.

Lemma 3.5. Let X,Y be Banach spaces. Then
nG∗(Y

∗, X∗) ≤ nG(X,Y )

for every norm-one G ∈ L(X,Y ).

Proof. The result follows immediately from Lemma 3.2 and the fact that the norm
of an operator and the norm of its adjoint coincide. Alternatively, it also follows from
Lemma 2.4 as the operator Ψ: L(X,Y ) → L(Y ∗, X∗) given by T 7→ T ∗ is an isometric
embedding.

In the case of a rank-one operator, we may provide a formula for the numerical index
with respect to it.

Proposition 3.6. Let X, Y be Banach spaces, x∗0 ∈ SX∗ , and y0 ∈ SY . Then the rank-
one operator G = x∗0 ⊗ y0 satisfies

nG(X,Y ) = n(X∗, x∗0)n(Y, y0).

We need to introduce some notation, just for this proof. Given a Banach space Z,
u ∈ SZ , and δ ∈ (0, 1), we write

vδ(Z, u, z) := sup{|z∗(z)| : z∗ ∈ SZ∗ , Re z∗(u) > 1− δ}.
Then (use Proposition 2.14, for instance) v(Z, u, z) = infδ>0 vδ(Z, u, z).
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Proof of Proposition 3.6. Given x∗ ∈ SX∗ and y ∈ SY , we consider the norm-one
operator T = x∗ ⊗ y and show

vG,δ(T ) ≤ vδ(X∗, x∗0, x∗)vδ(Y, y0, y)

for every δ > 0. To do so, we first observe that

vδ(X
∗, x∗0, x

∗) = sup{|x∗(x)| : x ∈ SX ,Rex∗0(x) > 1− δ}

as JX(BX) is weak∗ dense in BX∗∗ . Therefore, we can write

vG,δ(T ) = sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re(y∗(y0)x∗0(x)) > 1− δ}
≤ sup{|y∗(y)||x∗(x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(y0) > 1− δ, Rex∗0(x) > 1− δ}
≤ sup{|x∗(x)| : x ∈ SX , Rex∗0(x) > 1− δ} sup{|y∗(y)| : y∗ ∈ SY ∗ , Re y∗(y0) > 1− δ}
= vδ(X

∗, x∗0, x
∗) vδ(Y, y0, y).

This clearly gives nG(X,Y ) ≤ n(X∗, x∗0)n(Y, y0). To prove the reverse inequality, fixed
T ∈ L(X,Y ) with ‖T‖ = 1 and δ > 0, observe that

sup{‖Tx‖ : x ∈ SX , Rex∗0(x) > 1− δ}
= sup{|z∗(Tx)| : z∗ ∈ SY ∗ , x ∈ SX , Rex∗0(x) > 1− δ}
= sup{|[T ∗z∗](x)| : z∗ ∈ SY ∗ , x ∈ SX , Rex∗0(x) > 1− δ}
= sup{vδ(X∗, x∗0, T ∗z∗) : z∗ ∈ SY ∗}
≥ sup{n(X∗, x∗0)‖T ∗z∗‖ : z∗ ∈ SY ∗}
= n(X∗, x∗0)‖T ∗‖ = n(X∗, x∗0).

Therefore, we can write

vG,2δ(T ) = sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re(y∗(y0)x∗0(x)) > 1− 2δ}
≥ sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(y0) > 1− δ, Rex∗0(x) > 1− δ}
≥ sup{n(Y, y0)‖Tx‖ : x ∈ SX , Rex∗0(x) > 1− δ} ≥ n(Y, y0)n(X∗, x∗0),

which gives the desired inequality nG(X,Y ) ≥ n(X∗, x∗0)n(Y, y0).

To finish the chapter, we would like to present some results which allow to control
the numerical index with respect to operators in terms of the numerical radius of the
operators on the domain space or on the range space, which we will profusely use in
Chapter 4. They all follow from this easy key lemma.

Lemma 3.7. Let X,Y be Banach spaces and let G ∈ L(X,Y ) be such that ‖G‖ = 1. Then

(a) vG(G ◦ T ) ≤ v(T ) for every T ∈ L(X),
(b) vG(T ◦G) ≤ v(T ) for every T ∈ L(Y ).

Proof. Both statements follow from Lemma 2.4 by considering, respectively, the op-
erator L(X) → L(X,Y ) given by T 7→ G ◦ T , and the operator L(Y ) → L(X,Y ) given
by T 7→ T ◦G.
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As a consequence of this result, we have the following chain of inequalities:

nG(X,Y ) ≤ inf

{
v(T )

‖G ◦ T‖ : T ∈ L(X), G ◦ T 6= 0

}

≤ sup
ε>0

inf{v(T ) : T ∈ L(X), ‖G ◦ T‖ > 1− ε}

and, analogously,

nG(X,Y ) ≤ inf

{
v(T )

‖T ◦G‖ : T ∈ L(Y ), T ◦G 6= 0

}

≤ sup
ε>0

inf{v(T ) : T ∈ L(Y ), ‖T ◦G‖ > 1− ε}.

These inequalities immediately imply the following result.

Lemma 3.8. Let X, Y be Banach spaces, G ∈ L(X,Y ) with ‖G‖ = 1, and 0 ≤ α ≤ 1.
Then nG(X,Y ) ≤ α provided one of the following statements is satisfied:

(a) For every ε > 0 there exists Tε ∈ L(X) such that v(Tε) ≤ α and ‖G ◦ Tε‖ > 1− ε.
(b) For every ε > 0 there exists Sε ∈ L(Y ) such that v(Sε) ≤ α and ‖Sε ◦G‖ > 1− ε.

The previous result gives some important consequences.

Proposition 3.9. Let X, Y be Banach spaces and let 0 ≤ α ≤ 1.

(a) Let A(α) = {T ∈ L(X) : ‖T‖ = 1, v(T ) ≤ α}. If
BX = aconv

⋃

T∈A(α)

T (BX),

then nG(X,Y ) ≤ α for every norm-one operator G ∈ L(X,Y ).
(b) Let B(α) = {T ∈ L(Y ) : ‖T‖ = 1, v(T ) ≤ α}. If for every ε > 0, the set

⋃

T∈B(α)

{y ∈ SY : ‖Ty‖ > 1− ε}

is dense in SY , then nG(X,Y ) ≤ α for every norm-one operator G ∈ L(X,Y ).
(c) In particular, if there exists a surjective isometry T ∈ L(X) with v(T ) ≤ α or there

exists a surjective isometry S ∈ L(Y ) with v(S) ≤ α, then nG(X,Y ) ≤ α for every
norm-one operator G ∈ L(X,Y ).

Proof. Fix G ∈ L(X,Y ) with ‖G‖ = 1.
(a) For every ε > 0, we may use the hypothesis to find Tε ∈ L(X) with ‖Tε‖ = 1 and

v(Tε) ≤ α such that ‖G(Tε(x))‖ > 1 − ε for some x ∈ BX . Therefore, ‖G ◦ Tε‖ > 1 − ε
and Lemma 3.8 gives the result.

(b) For every ε > 0, we take x ∈ SX such that ‖Gx‖ > 1 − ε/3. Now, we may use
the hypothesis to find Sε ∈ L(Y ) with ‖Sε‖ = 1 and v(Sε) ≤ α, and y ∈ SY such that
‖Sεy‖ > 1− ε/3 and

∥∥y −Gx/‖Gx‖
∥∥ < ε/3. Now, ‖y −Gx‖ < 2ε/3, and so

‖Sε(Gx)‖ ≥ ‖Sεy‖ − ‖Sε(y −Gx)‖ > 1− ε/3− 2ε/3 = 1− ε.
Consequently, ‖Sε ◦G‖ > 1− ε and Lemma 3.8 gives the result.

Finally, (c) clearly follows from (a) and (b).
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For the special case α = 0, the above result can be improved as we do not have to
pay attention to the norm of the operators.

Proposition 3.10. Let X, Y be Banach spaces.

(a) Let G ∈ L(X,Y ) with ‖G‖ = 1.

(a.1) If there exists T ∈ L(X) with v(T ) = 0 and G ◦ T 6= 0, then nG(X,Y ) = 0.
(a.2) If there exists T ∈ L(Y ) with v(T ) = 0 and T ◦G 6= 0, then nG(X,Y ) = 0.

(b) If ⋂

T∈L(Y ), v(T )=0

kerT = {0},

then nG(X,Y ) = 0 for every norm-one operator G ∈ L(X,Y ).
(c) If ⋃

T∈L(X), v(T )=0

T (X)

is dense in X, then nG(X,Y ) = 0 for every norm-one operator G ∈ L(X,Y ).

We emphasize the following immediate consequence of the previous result which will
be useful.

Corollary 3.11. LetW be a Banach space such that there is an onto isometry J ∈ L(W )

with v(J) = 0. Then

(a) nG(X,W ) = 0 for every Banach space X and every operator G ∈ L(X,W ) of norm 1,
(b) nG(W,Y ) = 0 for every Banach space Y and every operator G ∈ L(W,Y ) of norm 1.



4. Set of values of the numerical indices with respect to all
operators between two given Banach spaces

We start by showing some general results which can be deduced from the tools imple-
mented in the previous sections. The first result shows that 0 is always a possible value
of the numerical index with respect to operators (unless we are in the trivial case of both
spaces being one-dimensional). It is a direct consequence of Proposition 2.7.

Proposition 4.1. Let X, Y be Banach spaces. If dim(X) ≥ 2 or dim(Y ) ≥ 2, then
0 ∈ N (L(X,Y )).

The result above is actually an equivalence, as the following result is immediate.

Example 4.2. N (L(K,K)) = {1}.
Next, we particularize Proposition 2.11 to spaces of operators.

Proposition 4.3. Let X, Y be finite-dimensional real Banach spaces. Then the set of
norm-one G ∈ L(X,Y ) with nG(X,Y ) > 0 is countable. In particular, N (L(X,Y )) is
countable.

Our next result shows that all values of the numerical index are valid for operators
between Banach spaces. In the real case, this is clear as the numerical indices of all two-
dimensional norms do the job (and they are the numerical index with respect to the
corresponding identities). But in the complex case, the values of the numerical indices
with respect to the identity are not enough (as they are always greater than or equal
to 1/e; see [9, Corollary 2.1.19], for instance).

A first simple way of getting arbitrary values of the numerical indices with respect to
operators is given in the following result which follows immediately from Proposition 2.8.

Example 4.4. For every subset A ⊆ [0, 1] containing 0, there is a Banach space X such
that N (L(X,K)) = A. Indeed, just take X to be the predual of the space Z provided in
Proposition 2.8 (which is a dual Banach space as it is the `1-sum of finite-dimensional
spaces).

Let us also observe that if X is a Banach space of dimension at least 2 whose dual
space is smooth, it follows from Lemma 2.3 that N (L(X,K)) = {0}. This result contrasts
with the already cited fact that n(X) ≥ 1/e for every complex Banach space X, so
N (L(X,X)) cannot reduce to 0 when X is a complex Banach space. Therefore, it seems
more interesting to perform the study of the set of values of the numerical indices with
respect to all operators from a Banach space to itself, that is, the set

{nG(X,X) : X (real or complex) Banach space, G ∈ L(X), ‖G‖ = 1}.
[25]



26 V. Kadets, M. Martín, J. Merí, A. Pérez, and A. Quero

In the real case it is immediate that this set covers [0, 1], just using identity operators
[16, Theorem 3.6]. In the complex case, using identity operators one can only cover the
interval [1/e, 1]. The result will be stated in Example 6.5. Even more, we will show that
there are Banach spaces X such that N (L(X)) = [0, 1], both in the real and in the
complex case, see Theorem 6.4.

For real Banach spaces, the Banach space numerical index may be zero, so there is no
obstacle for the set N (L(X)) to be equal to {0}. We are going to prove that this happens
when X is a real Hilbert space of dimension greater than 1. Actually, we show that zero
is the only possible value of the numerical index with respect to operators, when either
the domain space or the range space is a real Hilbert space of dimension at least 2.

Theorem 4.5. Let H be a real Hilbert space of dimension at least 2. Then

N (L(X,H)) = N (L(H,Y )) = {0}
for all real Banach spaces X and Y . In particular, N (L(H)) = {0}.

Proof. Observe that for every pair of points x, y ∈ SH with 〈x, y〉 = 0, the operator
T ∈ SH given by T (z) = 〈z, x〉y − 〈z, y〉x for z ∈ H satisfies v(T ) = 0. So, clearly

⋃

T∈L(H), v(T )=0

T (H) is dense in H and
⋂

T∈L(H), v(T )=0

ker(T ) = {0}.

Now, both assertions are immediate consequences of Proposition 3.10.

For every complex Banach space W , its underlying real Banach space WR also has
trivial set of values of the numerical indices with respect to operators. This is an imme-
diate consequence of Corollary 3.11 as multiplication by i is an onto isometry which has
numerical radius zero when viewed in L(WR).

Proposition 4.6. Let WR be the real Banach space underlying a complex Banach
space W . Then

N (L(X,WR)) = N (L(WR, Y )) = {0}
for all real Banach spaces X and Y . In particular, N (L(WR)) = {0}.

Another kind of spaces having trivial set of values of the numerical indices with respect
to operators are L(H) and also K(H), the space of compact linear operators from H to H.

Theorem 4.7. Let H be a real Hilbert space of dimension at least 2. Then

N (L(X,L(H))) = N (L(X,K(H))) = {0}
for every Banach space X. In particular,

N (L(L(H))) = N (L(K(H))) = {0}.
Moreover, if H is infinite-dimensional or has even dimension, then

N (L(L(H), Y )) = N (L(K(H), Y )) = {0}
for every Banach space Y .

Proof. Let us start with the case of L(H). For J ∈ SL(H) we define the operator
ΦJ : L(H) → L(H) by ΦJ(T ) = J ◦ T for every T ∈ L(H). Evidently, ‖ΦJ‖ = ‖J‖ = 1
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and ΦIdH = IdL(H). Therefore,

v(ΦJ) = v(L(L(H)), IdL(H),ΦJ) = v(L(H), IdH , J) = v(J)

by Lemma 2.4(b). Let us write

B = {ΦJ : J ∈ L(H), ‖J‖ = 1, v(J) = 0}
and observe that the result will follow from Proposition 3.10(b) if we prove the equality

⋂

Φ∈B
ker Φ = {0}.

To do so, fix T0 ∈ SL(H) and take x ∈ SH such that ‖T0x‖ > 1/2. Now, define e1 = T0x
‖T0x‖

and take e2 ∈ SH satisfying 〈e1, e2〉 = 0. We define the operator J ∈ L(H) given by
Jh = 〈h, e2〉e1 − 〈h, e1〉e2 for h ∈ H, which satisfies ‖J‖ = 1 and v(J) = 0, so ΦJ ∈ B.
Moreover, we can write

‖ΦJ(T0)‖ = ‖J ◦ T0‖ ≥ ‖J(T0x)‖ = ‖ − ‖T0x‖e2‖ = ‖T0x‖ > 1/2.

Therefore, T0 /∈ ker ΦJ and thus
⋂

Φ∈B ker Φ = {0}, which finishes the proof for L(H).
For K(H), it suffices to observe that the same argument is valid since ΦJ(K(H)) ⊆ K(H)

and we may repeat the argument considering ΦJ : K(H)→ K(H) and getting

v(ΦJ) = v(L(K(H)), IdK(H),ΦJ) = v(L(H), IdH , J) = v(J).

The rest of the proof is identical.
To prove the moreover part, observe that when H is infinite-dimensional or has even

dimension, then there is an onto isometry J ∈ L(H) with v(J) = 0. Indeed, in this case
we may write H = [

⊕
λ∈Λ `

2
2]`2 for a suitable index set Λ and, defining A ∈ L(`22) by

A(x, y) = (y,−x), the surjective isometry with numerical index zero is given by

J [(xλ)λ∈Λ] = (Axλ)λ∈Λ ((xλ)λ∈Λ ∈ H).

Now, the operator ΦJ is an onto isometry on L(H) or K(H) (ΦJ−1 is clearly the inverse
of ΦJ) satisfying v(ΦJ) = 0. Then Corollary 3.11 gives the result.

When H has odd dimension, we do not know if the equality nG(L(H), Y ) = 0 holds
for every Banach space Y and every operator G ∈ L(L(H), Y ).

Another result of the same kind tells us that there are many other spaces of operators
having trivial set of values of the numerical indices with respect to operators.

Proposition 4.8. Let W1, . . . ,Wn be real Banach spaces, let E be Rn endowed with an
absolute norm, and let W = [W1 ⊕ · · · ⊕Wn]E. Then the following statements hold:

(a) If SE is smooth at points whose first coordinate is zero and
⋂
{ker(S1) : S1 ∈ L(W1), v(S1) = 0} = {0},

then N (L(X,W )) = {0} for every Banach space X.
(b) If SE is rotund in the direction of the first coordinate, that is, SE does not contain

line segments parallel to (1, 0, . . . , 0), and
⋃{S1(W1) : S1 ∈ L(W1), v(S1) = 0} is

dense in W1, then N (L(W,Y )) = {0} for every Banach space Y .

Consequently, if the assumptions of (a) or (b) hold, then N (L(W )) = {0}.
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Proof. (a) Given a Banach space X, a norm-one operator G ∈ L(X,W ) can be seen
as G = (G1, . . . , Gn) where Gk ∈ L(X,Wk) for k = 1, . . . , n. We claim nG(X,W ) = 0

if G1 6= 0. Indeed, let P1 ∈ L(W,W1) denote the natural projection on W1 and let
I1 ∈ L(W1,W ) be the natural inclusion, so G1 = P1 ◦ G. Observe now that for every
S1 ∈ L(W1) with v(S1) = 0, the operator S ∈ L(W ) given by S = I1 ◦ S1 ◦ P1 clearly
satisfies ‖S‖ = ‖S1‖ and v(S) = 0. Since

P1 ◦G 6= 0 and
⋂

S1∈L(W1), v(S1)=0

ker(S1) = {0},

we can find S1 ∈ L(W1) with v(S1) = 0 such that S1◦P1◦G 6= 0 and so I1◦S1◦P1◦G 6= 0.
As v(I1 ◦ S1 ◦ P1) = 0, we get nG(X,W ) = 0 from Proposition 3.10(a.2). Therefore, we
may and do assume from now on that G1 = 0. Next we fix w0 ∈ SW1 and x∗ ∈ SX∗ , we
consider the norm-one operator T = x∗ ⊗ (w0, 0, . . . , 0) ∈ L(X,W ), and we shall prove
vG(T ) = 0. To this end, as

vG(T ) = inf
δ>0

sup{|w∗(Tx)| : w∗ ∈ SW∗ , x ∈ SX , Rew∗(Gx) > 1− δ}

for every k ∈ N we can take w∗k = (w∗k,1, . . . , w
∗
k,n) ∈ SW∗ and xk ∈ SX satisfying

lim
k

Rew∗k(Gxk) = 1 and lim
k
|w∗k(Txk)| = vG(T ).

For each k ∈ N define

e∗k = (‖w∗k,1‖, . . . , ‖w∗k,n‖) ∈ SE∗ and ek = (‖G1xk‖, . . . , ‖Gnxk‖) ∈ BE
which satisfy 1 = limk Rew∗k(Gxk) ≤ limk〈e∗k, ek〉 ≤ 1, and thus limk〈e∗k, ek〉 = 1. Now, by
passing to a subsequence, we may find y∗ = (y∗1 , . . . , y

∗
n) ∈ SE∗ and y = (y1, . . . , yn) ∈ SE

such that limk→∞ e∗k = y∗ and limk→∞ ek = y. Then it follows that

〈y∗, y〉 = lim
k
〈e∗k, ek〉 = 1

and y∗ is a supporting functional of y. Moreover, we have y1 = 0 as the first coordinate
of ek is equal to ‖G1xk‖ = 0 for every k, so

1 = 〈y∗, y〉 =
n∑

j=1

y∗j (yj) =
n∑

j=2

y∗j (yj)

and the element ỹ∗ = (0, y∗2 , . . . , y
∗
n) ∈ BE∗ is also a supporting functional of y. Therefore,

we get ỹ∗ = y∗ by the smoothness of SE at y and so y∗1 = 0. Finally, we can write

vG(T ) = lim
k
|w∗k(Txk)| = lim

k
|w∗k(w0, 0, . . . , 0)| |x∗(xk)|

≤ lim
k
‖w∗k,1‖ ‖w0‖ ≤ lim

k
‖w∗k,1‖ = y∗1 = 0,

which gives vG(T ) = 0 and finishes the proof of (a).
To prove (b) we start by observing that we can assume G ◦ I1 ◦ S1 ◦ P1 = 0 for

every S1 ∈ L(W1) with v(S1) = 0. Indeed, if there is S1 ∈ L(W1) with v(S1) = 0 such
that G ◦ I1 ◦ S1 ◦ P1 6= 0, then S = I1 ◦ S1 ◦ P1 satisfies v(S) = 0 and G ◦ S 6= 0. So
Proposition 3.10 gives nG(W,Y ) = 0. Then G ◦ I1 ◦ S1 ◦ P1 = 0 for every S1 ∈ L(W1)
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with v(S1) = 0. This, together with the fact that the set
⋃

S1∈L(W1), v(S1)=0

S1(W1)

is dense in W1, implies G ◦ I1 = 0. Next, we fix y0 ∈ SY , w∗0 ∈ SW∗1 , we define w∗ =

(w∗0 , 0, . . . , 0) ∈ SW∗ and the rank-one operator T = w∗ ⊗ y0 ∈ SL(W,Y ), and we shall
prove vG(T ) = 0. To do so, since

vG(T ) = inf
δ>0

sup{|y∗(Tw)| : y∗ ∈ SY ∗ , w ∈ SW , Re y∗(Gw) > 1− δ}

for every k ∈ N we can take wk = (wk,1, . . . , wk,n) ∈ SW and y∗k ∈ SY ∗ satisfying

lim
k

Re y∗k(Gwk) = 1 and lim
k
|y∗k(Twk)| = vG(T ).

By passing to a subsequence, we may assume that {‖wk,j‖}k is convergent for every
j = 1, . . . , n. So, since the norm in E is absolute, we can define elements

e+ =
(

lim
k
‖wk,1‖, lim

k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
,

e− =
(
− lim

k
‖wk,1‖, lim

k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
,

ẽ =
(

0, lim
k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
=

1

2
(e+ + e−),

which clearly satisfy ‖ẽ‖ ≤ ‖e+‖ = ‖e−‖ ≤ 1. Since G◦I1 = 0, we can estimate as follows:

1 = lim
k

Re y∗k(Gwk) = lim
k

Re y∗k(G(0, wk,2, . . . , wk,n))

≤ lim
k
‖(0, wk,2, . . . , wk,n)‖ ≤ lim

k

∥∥(0, ‖wk,2‖, . . . , ‖wk,n‖)
∥∥
E

= ‖ẽ‖ ≤ 1

which gives ẽ ∈ SE and thus e± ∈ SE . So, we deduce that limk ‖wk,1‖ = 0 since SE is
rotund in the direction of the first coordinate. To finish the proof, observe that

vG(T ) = lim
k
|y∗k(Twk)| = lim

k
|y∗k(y0)| |w∗(wk)| ≤ lim

k
‖w∗0‖ ‖wk,1‖ = 0.

Therefore, we get vG(T ) = 0 and nG(W,Y ) = 0.

Remark 4.9. The smoothness and rotundity hypotheses in Proposition 4.8 cannot be
omitted. Indeed, on the one hand, the rank-one operator G ∈ L(`22 ⊕∞ R,R) given by
G = (0, 0, 1) ⊗ 1 is a spear operator by Proposition 3.6 as 1 is a spear vector in R and
(0, 0, 1) is a spear vector in (`22 ⊕∞ R)∗ = `22 ⊕1 R. Thus, the assumption of smoothness
in Proposition 4.8(a) is essential. On the other hand, the operator G∗ ∈ L(R, `22 ⊕1 R) is
also a spear operator by the same argument, showing that we cannot omit the rotundity
in Proposition 4.8(b).

The next example is even more surprising.

Example 4.10. There exists a Banach space X with n(X) = 0 such that L(X) contains
a spear operator. Indeed, consider X = (`22⊕∞ R)⊕1 R, which clearly satisfies n(X) = 0,
and G ∈ L((`22⊕∞R)⊕1R) given by G = (0, 0, 0, 1)⊗(0, 0, 0, 1), which is a spear operator
by Proposition 3.6.
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Our next result estimates the numerical indices with respect to operators whose do-
main or range is an `p-space.

Proposition 4.11. Let 1 < p <∞, 1 < q <∞ with 1
p + 1

q = 1, let Mp = sup
t∈[0,1]

|tp−1−t|
1+tp ,

and let Γ be either an infinite set or a finite set with an even number of elements. Then

N (L(X, `p(Γ))) ⊆ [0,Mp] and N (L(`p(Γ), Y )) ⊆ [0,Mp]

hold in the real case for all Banach spaces X and Y .

Proof. The argument is very similar to the one given at the end of the proof of
Theorem 4.7. By the assumption on the set Γ we may write `p(Γ) = [

⊕
λ∈Λ `

2
p]`p for a

suitable index set Λ. Defining A ∈ L(`2p) by A(x, y) = (y,−x), the operator given by

J [(xλ)λ∈Λ] = (Axλ)λ∈Λ ((xλ)λ∈Λ ∈ `p(Γ))

is then a surjective isometry. As v(A) = Mp (see the comments after [27, Theorem 1]),
we get v(J) ≤Mp. Now, Corollary 3.11 gives the result.

We now pass to study some results for complex spaces. As a first result, we may
calculate the set of values of the numerical indices with respect to operators between two
Hilbert spaces.

Proposition 4.12. Let H1, H2 be complex Hilbert spaces with dimension greater
than 1. Then N (L(H1, H2)) = {0, 1/2} if H1 and H2 are isometrically isomorphic and
N (L(H1, H2)) = {0} in the other case.

Proof. L(H1, H2) is a JB∗-triple (see [9, §2.2.27, §4.1.39] for the definition) under the
triple product

{xyz} = 1
2 (xy∗z + zy∗x) (x, y, z ∈ L(H1, H2)),

as it is a closed subtriple of the C∗-algebra L(H1⊕2H2) (we may use [9, Facts 4.1.40 and
4.1.41]). Now, as L(H1, H2) is not abelian since dim(H1) ≥ 2 and dim(H2) ≥ 2 (see [9,
§4.1.47]), it follows from [9, Theorem 4.2.24] that the quantity nG(H1, H2) is equal to 0

or 1/2 for every norm-one operator G ∈ L(H1, H2).
Next, we take into account that, by [9, Theorem 4.2.24], J = L(H1, H2) contains

a geometrically unitary element if and only if J contains a unitary element as Jordan
∗-triple, that is, if there is U ∈ J such that {UUT} = T for every T ∈ J (see [9,
Definition 4.1.53]). This implies that H1 and H2 are isometrically isomorphic, as is known
to experts, but we give an easy argument. Taking into account the formula for the product
in J , we get

UU∗T + TU∗U = 2T

for every T ∈ L(H1, H2). Just considering rank-one operators T ∈ L(H1, H2), we obtain

UU∗ = IdH2
and U∗U = IdH1

,

which gives the desired result.

Following an argument similar to the one given in Theorem 4.5, we can establish the
next result.
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Proposition 4.13. Let H be a complex Hilbert space with dim(H) ≥ 2. Then

N (L(X,H)) ⊆ [0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2]

for all complex Banach spaces X and Y .

Proof. For each u ∈ SH , let v ∈ SH with 〈u, v〉 = 0 and define

T : H → H, T (x) = 〈x, v〉u,
which satisfies v(T ) ≤ 1/2. An application of Proposition 3.9 gives the result.

Our next aim is to study the set N (L(C(K1), C(K2))), where K1 and K2 are compact
Hausdorff topological spaces. Recall that, by Lemma 3.1, if nG(C(K1), C(K2)) > 0 for
some G ∈ L(C(K1), C(K2)), then G is an extreme operator. There is a well studied
special kind of extreme operators between C(K) spaces, the nice operators. A norm-one
operator G ∈ L(C(K1), C(K2)) is said to be nice if

G∗(δt) ∈ T{δs : s ∈ K1}
for every t ∈ K2 (that is, G∗ carries extreme points of BC(K2)∗ to extreme points of
BC(K1)∗). It is immediate that nice operators are extreme, but the converse result is
not always true (see Remark 4.16 below). We claim that a nice operator G satisfies
nG(C(K1), C(K2)) = 1. Indeed, this is easy to show by hand using the properties of the
δ-functions in the dual of a C(K) space, but also follows directly from [26, Proposition 4.2]
and [26, Example 2.12(a)]. Therefore, if for a pair of compact Hausdorff topological spaces
(K1,K2) it is known that every extreme operator in L(C(K1), C(K2)) is nice, then the
only possible values of the numerical index of operators in L(C(K1), C(K2)) are 0 and 1.
This idea leads to a couple of results, one for the real case and another one for the complex
case.

Theorem 4.14. Let K1, K2 be compact Hausdorff topological spaces such that at least
one of them has more than one point. Then, in the real case, one has

N (L(C(K1), C(K2))) = {0, 1}
provided at least one of the following assumptions holds:

(1) K1 is metrizable,
(2) K1 is Eberlein compact and K2 is metrizable,
(3) K2 is extremally disconnected,
(4) K1 is scattered.

Proof. First, as at least one of the spaces C(K1) and C(K2) has dimension greater
than 1, Proposition 4.1 gives 0 ∈ N (L(C(K1), C(K2))). By considering the rank-one op-
erator G = δt ⊗ 1, we immediately obtain 1 ∈ N (L(C(K1), C(K2))) by Proposition 3.6.
Finally, to get the reverse inclusion, by the comments before the statement of the the-
orem, we just have to check that under the given conditions, every extreme operator in
L(C(K1), C(K2)) is actually nice. For (1), this is shown in [5, Theorem 1]; for (2) in [1,
Theorem 7]; [47, Theorem 4] gives (3); finally, (4) follows from [47, Theorem 5].

For the complex case, we have a similar result.
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Theorem 4.15. Let K1, K2 be compact Hausdorff topological spaces such that at least
one of them has more than one point. Then, in the complex case, one has

N (L(C(K1), C(K2))) = {0, 1}
provided at least one of the following assumptions holds:

(1) K2 is extremally disconnected,
(2) K1 is metrizable and K2 is basically disconnected (i.e. the closure of every Fσ-open

is open),
(3) K1 is scattered.

Proof. We just need to follow the lines of the proof of Theorem 4.14, but here we have
to provide references for the fact that, in the complex case, every extreme operator in
L(C(K1), C(K2)) is actually nice under the presented conditions. For (1), this is shown
in [47, Theorem 4]; (2) is proved in [17, Theorem 1.4]; finally, (3) follows from [47,
Theorem 5].

Remark 4.16. There are examples showing that it is not true in general that all extreme
operators between spaces of continuous functions are nice [49, 50]. The underlying idea in
these examples is to consider for an arbitrary compact Hausdorff space K the canonical
inclusion G given by

G : C(K)→ C(BC(K)∗ , w
∗)

which satisfies
G∗(δµ) = µ

for every µ ∈ BC(K) and so it is not nice. Additional hypothesis on the compact space K
(e.g. K perfect in the complex case, see [49, Theorem 2.5]) ensure, however, that G is an
extreme point. We do not know whether the numerical index with respect to operators G
defined as above has to be always 0 or 1.

Remark 4.17. Let us also comment that, in the real case, examples as the ones in
the previous remark cannot be compact: for arbitrary compact Hausdorff topological
spaces K1 and K2, every compact extreme operator G ∈ L(C(K1), C(K2)) is nice [40,
Theorem 4.5] (see [54, Theorem 2.4] for an extension of this result). Moreover, if K2 is
separable, every weakly compact extreme operator G ∈ L(C(K1), C(K2)) is nice [14,
Proposition 2.8].

As a consequence of Theorems 4.14 and 4.15, we get the following particular case.

Corollary 4.18. Let K1 be a compact Hausdorff topological space and let (Ω,Σ, µ) be a
σ-finite measure space such that at least one of the spaces C(K1) or L∞(µ) has dimension
at least 2. Then

N (L(C(K1), L∞(µ))) = {0, 1}
in both the real and the complex case.

Indeed, this is a consequence of the fact that every L∞(µ) space can be identified with
a C(Kµ)-space where Kµ is extremally disconnected. With this in mind, the following
particular case also holds.
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Corollary 4.19. Let (Ωi,Σi, µi), i = 1, 2, be σ-finite measure spaces such that at least
one of the spaces L∞(µi), i = 1, 2, has dimension at least 2. Then

N (L(L∞(µ1), L∞(µ2))) = {0, 1}
in both the real and the complex case.

We get an analogous result for L1(µ) spaces.

Corollary 4.20. Let (Ωi,Σi, µi), i = 1, 2, be σ-finite measure spaces. Then

N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}
in both the real and the complex case.

Proof. Fix a norm-one operator G ∈ L(L1(µ1), L1(µ2)). If G is not extreme,
Lemma 3.1 gives nG(L1(µ1), L1(µ2)) = 0. If, otherwise, G is an extreme operator, then
G∗ ∈ L(L∞(µ2), L∞(µ1)) is nice by [48, Corollary 2.4], so nG∗(L∞(µ2), L∞(µ1)) = 1

from the discussion preceding Theorems 4.14 and 4.15. But then nG(L1(µ1), L1(µ2)) = 1

by Lemma 3.5. This shows N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}.
Let us show that the set N (L(L1(µ1), L1(µ2))) does not always contain the value 1.

Example 4.21. N (L(`1, L1[0, 1])) = {0}.
Indeed, by [26, Proposition 3.3] any norm-one operator G ∈ L(`1, L1[0, 1]) satisfying

nG(`1, L1[0, 1]) = 1 would carry the elements of the basis of `1 to spear vectors of L1[0, 1]

and thus to extreme points of the unit ball of L1[0, 1] [26, Proposition 2.11(b)], so there
are no such operators. On the other hand, 0 ∈ N (L(`1, L1[0, 1])) by Proposition 4.1.



5. Lipschitz numerical range

We would like to deal now with the Lipschitz numerical range introduced in [51, 52] and
show that it can be viewed as a particular case of the numerical range with respect to
a linear operator. We need some notation. Let X, Y be Banach spaces. We denote by
Lip0 (X,Y ) the set of all Lipschitz maps F : X → Y such that F (0) = 0. This is a Banach
space when endowed with the norm

‖F‖L = sup

{‖F (x)− F (y)‖
‖x− y‖ : x, y ∈ X, x 6= y

}
.

Following [51, 52], the Lipschitz numerical range of F ∈ Lip0(X,X) is

WL(F ) :=

{
ξ∗(F (x)− F (y))

‖x− y‖ : ξ∗ ∈ SX∗ , x, y ∈ X, x 6= y, ξ∗(x− y) = ‖x− y‖
}
,

the Lipschitz numerical radius of F is

wL(F ) := sup{|λ| : λ ∈WL(F )},
and the Lipschitz numerical index of X is

nL(X) := inf{wL(F ) : F ∈ Lip0(X,X), ‖F‖L = 1}
= max{k ≥ 0: k‖F‖L ≤ wL(F ) ∀F ∈ Lip0(X,X)}.

We would like to show that the closed convex hull of the Lipschitz numerical range is
equal to the numerical range with respect to a linear operator. To do so, we need to recall
the concept of Lipschitz free space. First, observe that we can associate to each x ∈ X
an element δx ∈ Lip0 (X,K)

∗ which is just the evaluation map δx(F ) = F (x) for every
F ∈ Lip0(X,K). The Lipschitz free space over X is defined as

F(X) := span‖·‖{δx : x ∈ X} ⊆ Lip0 (X,K)
∗
.

The space F(X) is an isometric predual of Lip0 (X,K). Moreover, the inclusion map
δ : x δx establishes an isometric (non-linear) embedding X ↪→ F(X) since

‖δx − δy‖F(X) = ‖x− y‖X
for all x, y ∈ X. The term “Lipschitz free space” comes from [20], but the concept was
studied much earlier and it is also known as the Arens–Eells space of X. We refer the
reader to the paper [18] and the book [53] for more information and background. The
main features of the Lipschitz free space we are going to use here are contained in the
following result which is nowadays considered folklore in the theory of Lipschitz maps
and can be found in the cited references [18], [20], or [53, Chapter 3].

[34]



On the numerical index with respect to an operator 35

Lemma 5.1. Let X, Y be Banach spaces.

(a) For every F ∈ Lip0(X,Y ) there exists a unique linear operator TF : F(X)→ Y such
that TF ◦δ = F and ‖TF ‖ = ‖F‖L. Moreover, Lip0(X,Y ) is isometrically isomorphic
to L(F(X), Y ). In particular, Lip0(X,K) = F(X)∗.

(b) When the above is applied to Id ∈ Lip0(X,X), we get the operator GX : F(X) → X

given by
GX
(∑

x∈X
axδx

)
=
∑

x∈X
axx,

which has norm 1 and satisfies GX ◦ δ = IdX .
(c) The set

BX :=

{
δx − δy
‖x− y‖ : x, y ∈ X, x 6= y

}
⊆ F(X)

is norming for F(X)∗ = Lip0(X,K), i.e. BF(X) = aconv(BX).

Our result for Lipschitz numerical ranges is the following.

Theorem 5.2. Let X be a Banach space. Then

conv(WL(F )) = V (L(F(X), X),GX , TF ) = V (Lip0(X,X), Id, F )

for every F ∈ Lip0(X,X).

The result will be a consequence of two lemmas. The first one follows directly from
Proposition 2.14, as the set

C =

{
x∗ ⊗ δx − δy

‖x− y‖ : x, y ∈ X, x 6= y, x∗ ∈ SX∗
}
⊆ L(F(X), X)∗

satisfies BL(F(X),X)∗ = convw
∗
(C) by Lemma 5.1(c).

Lemma 5.3. Let X be a Banach space. Then

V (L(F(X), X),GX , T ) =

conv
⋂

δ>0

{
x∗(T (δx − δy))

‖x− y‖ : x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re
x∗(GX(δx − δy))

‖x− y‖ > 1− δ
}

for every T ∈ L(F(X), X). Equivalently,

V (Lip0(X,X), IdX , F ) =

conv
⋂

δ>0

{
x∗(F (x)− F (y))

‖x− y‖ : x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re
x∗(x− y)

‖x− y‖ > 1− δ
}

for every F ∈ Lip0(X,X).

The second preliminary result follows from the Bishop–Phelps–Bollobás theorem.

Lemma 5.4. Let X be a Banach space. Then

WL(F ) =
⋂

δ>0

{
x∗(F (x)− F (y))

‖x− y‖ : x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re
x∗(x− y)

‖x− y‖ > 1− δ
}

for every F ∈ Lip0(X,X).
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Proof. The inclusion “⊆” is obvious, so let us prove the reverse one. Fix F in
Lip0(X,X). For every δ > 0, write

Wδ :=

{
x∗(F (x)− F (y))

‖x− y‖ : x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re
x∗(x− y)

‖x− y‖ > 1− δ
}
.

It is enough to show that for every ε > 0, there is δ > 0 such that Wδ ⊆ WL(F ) + εBK.
So let us fix 0 < ε < 1 and consider δ > 0 such that 2‖F‖L

√
2δ < ε. Given x, y ∈ X with

x 6= y and x∗ ∈ SX∗ satisfying

Rex∗
(

x− y
‖x− y‖

)
> 1− δ,

we can use the Bishop–Phelps–Bollobás theorem (see [13, Corollary 2.4] for this version)
to find u ∈ SX , 0 < ρ <

√
2δ and z∗ ∈ SX∗ such that

z∗
(

x− y
‖x− y‖ + ρu

)
=

∥∥∥∥
x− y
‖x− y‖ + ρu

∥∥∥∥ = 1 and
∥∥x∗ − z∗‖ <

√
2δ.

Write x′ := x+ ρ‖x− y‖u and y′ := y, and observe that

‖x′ − y′‖ =
∥∥x− y + ρ‖x− y‖u

∥∥ = ‖x− y‖
∥∥∥∥
x− y
‖x− y‖ + ρu

∥∥∥∥ = ‖x− y‖

and so
z∗
(

x′ − y′
‖x′ − y′‖

)
= z∗

(
x− y
‖x− y‖ + ρu

)
= 1.

Therefore, z
∗(F (x′)−F (y′))
‖x′−y′‖ ∈WL(F ). Moreover,

∥∥∥∥
z∗(F (x′)− F (y′))
‖x′ − y′‖ − x∗(F (x)− F (y))

‖x− y‖

∥∥∥∥

≤
∥∥∥∥
F (x′)− F (y′)
‖x′ − y′‖ − F (x)− F (y)

‖x− y‖

∥∥∥∥+

∥∥∥∥[z∗ − x∗]F (x)− F (y)

‖x− y‖

∥∥∥∥

≤
∥∥∥∥
F (x′)− F (y′)− F (x) + F (y)

‖x− y‖

∥∥∥∥+ ‖F‖L ‖z∗ − x∗‖

< ‖F‖L
∥∥∥∥
x′ − x
‖x− y‖

∥∥∥∥+ ‖F‖L
√

2δ = ‖F‖L(ρ+
√

2δ) < 2‖F‖L
√

2δ < ε.

We have shown x∗(F (x)−F (y))
‖x−y‖ ∈WL(F ) + εBK, so Wδ ⊆WL(F ) + εBK as desired.



6. Some stability results

In this chapter we collect some results which show the behaviour of the value of the
numerical index when we apply some Banach space operations. We have divided the
chapter into several subsections.

6.1. Diagonal operators. The next result allows us to calculate the numerical index
with respect to a diagonal operator between c0-, `1- and `∞-sums of Banach spaces.

Proposition 6.1. Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces and
let Gλ ∈ L(Xλ, Yλ) be a norm-one operator for every λ ∈ Λ. Let E be one of the Banach
spaces c0, `∞, or `1, let X = [

⊕
λ∈ΛXλ]E and Y = [

⊕
λ∈Λ Yλ]E, and define the operator

G : X → Y by
G[(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈ [
⊕

λ∈ΛXλ]E. Then

nG(X,Y ) = inf
λ
nGλ(Xλ, Yλ).

Proof. We follow the lines of [37, proof of Proposition 1]. Given κ ∈ Λ, we first
have to show nG(X,Y ) ≤ nGκ(Xκ, Yκ). Observe that setting W = [

⊕
λ 6=κXλ]E and

Z = [
⊕

λ6=κ Yλ]E , we can write X = Xκ⊕∞W and Y = Yκ⊕∞Z when E is `∞ or c0 and
X = Xκ⊕1 W and Y = Yκ⊕1 Z when E is `1. Given S ∈ L(Xκ, Yκ), define T ∈ L(X,Y )

by
T (xκ, w) = (Sxκ, 0) (xκ ∈ Xκ, w ∈W )

which obviously satisfies ‖T‖ = ‖S‖. We claim vG(T ) = vGκ(S). In order to obtain
vG(T ) ≤ vGκ(S), given δ > 0, we may suppose vG,δ(T ) > 0. For our goal, it is sufficient
to prove vG,δ(T ) ≤ vGκ,δ̂(S) where δ̂ = 2δ/vG,δ(T ). For every 0 < ε < vG,δ(T )/2, we
may find x = (xκ, w) ∈ SX and y∗ = (y∗κ, z

∗) ∈ SY ∗ such that |y∗(Tx)| > vG,δ(T )− ε >
vG,δ(T )/2 and

1− δ < Re y∗(Gx) ≤ Re y∗κ(Gκxκ) + ‖z∗‖ ‖w‖.
Moreover,

‖y∗κ‖ ‖xκ‖+ ‖z∗‖ ‖w‖ ≤ ‖y∗‖ ‖x‖ = 1.

Consequently,

‖y∗κ‖ ‖xκ‖+ ‖z∗‖ ‖w‖ − δ ≤ 1− δ < Re y∗κ(Gκxκ) + ‖z∗‖ ‖w‖
and so Re y∗κ(Gκxκ) > ‖y∗κ‖ ‖xκ‖ − δ. Since

vG,δ(T )

2
< |y∗(Tx)| = |y∗κ(Sxκ)| ≤ ‖y∗κ‖ ‖xκ‖,

[37]
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we deduce

Re
y∗κ
‖y∗κ‖

(
G1

xκ
‖xκ‖

)
> 1− δ

‖y∗κ‖ ‖xκ‖
> 1− δ̂.

Then

vG,δ(T )− ε < |y∗(Tx)| = |y∗κ(Sxκ)| ≤
∣∣∣∣
y∗κ
‖yκ‖

(
S
xκ
‖xκ‖

)∣∣∣∣ ≤ vGκ,δ̂(S),

and hence vG(T ) ≤ vGκ(S).

To prove the reverse inequality, we fix δ > 0 and xκ ∈ SXκ , y∗κ ∈ SY ∗κ satisfying
Re y∗κ(Gκxκ) > 1 − δ, and define x = (xκ, 0) ∈ SX and y∗ = (y∗κ, 0) ∈ SY ∗ . We clearly
have

Re y∗(Gx) > 1− δ and |y∗κ(Sxκ)| = |y∗(Tx)| ≤ vG,δ(T ).

Consequently, vGκ,δ(S) ≤ vG,δ(T ) and the claim follows by letting δ ↓ 0.
To sum up, we have proved that given S ∈ L(Xκ, Yκ) there is T ∈ L(X,Y ) with

‖T‖ = ‖S‖ and vG(T ) = vGκ(S); consequently,

nG(X,Y )‖S‖ = nG(X,Y )‖T‖ ≤ vG(T ) = vGκ(S)

and the arbitrariness of S ∈ L(Xκ, Yκ) gives nG(X,Y ) ≤ nGκ(Xκ, Yκ).
We now prove the reverse inequalities when E is c0 or `∞. In both cases, an operator

T ∈ L(X,Y ) can be seen as a family (Tλ)λ∈Λ, where Tλ ∈ L(X,Yλ) for every λ, and
‖T‖ = sup{‖Tλ‖ : λ ∈ Λ}. Given ε > 0, we may find κ ∈ Λ such that ‖Tκ‖ > ‖T‖−ε, and
write X = Xκ⊕∞W where W = [

⊕
λ 6=κXλ]E . Since BX is the convex hull of SXκ×SW ,

we may find x0 ∈ SXκ and w0 ∈ SW such that

‖Tκ(x0, w0)‖ > ‖T‖ − ε.
Now, fix x∗0 ∈ SX∗κ with x∗0(x0) = 1 and define the operator S ∈ L(Xκ, Yκ) by

Sx = Tκ(x, 0) + x∗0(x)Tκ(0, w0) = Tκ(x, x∗0(x)w0) (x ∈ Xκ)

which satisfies

‖S‖ ≥ ‖Sx0‖ = ‖Tκ(x0, x
∗
0(x0)w0)‖ = ‖Tκ(x0, w0)‖ > ‖T‖ − ε.

Given δ > 0, we claim that vGκ,δ(S) ≤ vG,δ(T ). Indeed, we may find u ∈ SXκ and
v∗ ∈ SY ∗κ with Re v∗(Gλ0

u) > 1− δ. Now, we write

x = (u, x∗0(u)w0) ∈ SX , y∗ = (v∗, 0) ∈ SY ∗
which satisfy Re y∗(Gx) = Re v∗(Gκu) > 1− δ, hence

|v∗(Su)| = |v∗[Tκ(u, x∗0(u)w0)]| = |y∗(Tx)| ≤ vG,δ(T ).

Then we deduce vGκ,δ(S) ≤ vG,δ(T ). From this, we get

vG(T ) ≥ vGκ(S) ≥ nGκ(Xκ, Yκ)‖S‖ ≥ nGκ(Xκ, Yκ)[‖T‖ − ε].
Therefore,

vG(T ) ≥ inf
λ
nGλ(Xλ, Yλ)‖T‖

and so nG(X,Y ) ≥ infλ nGλ(Xλ, Yλ), as required.
Suppose now E = `1. In this case, we can write every operator T ∈ L(X,Y ) as

a family (Tλ)λ∈Λ of operators where Tλ ∈ L(Xλ, Y ) for every λ ∈ Λ, and satisfying
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‖T‖ = sup{‖Tλ‖ : λ ∈ Λ}. Given ε > 0, find κ ∈ Λ such that ‖Tκ‖ > ‖T‖ − ε, and write
X = Xκ⊕1W , Y = Yκ⊕1Z, and Tκ = (A,B) whereW = [

⊕
λ 6=κXλ]`1 , Z = [

⊕
λ6=κ Yλ]`1 ,

A ∈ L(Xκ, Yκ) and B ∈ L(Xκ, Z). Now, we choose x0 ∈ SXκ such that

‖Tκx0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T‖ − ε,
we find a0 ∈ SY ∗κ and z∗ ∈ SZ∗ satisfying

Ax0 = ‖Ax0‖a0 and z∗(Bx0) = ‖Bx0‖,
and define an operator S ∈ L(Xκ, Yκ) by

Sx = Ax+ [z∗(Bx)]a0 (x ∈ Xκ).

Then
‖S‖ ≥ ‖Sx0‖ = ‖Ax0 + z∗(Bx0)a0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T‖ − ε.

Given δ > 0, we prove vGκ,δ(S) ≤ vG,δ(T ). To do so, given u ∈ SXκ and v∗ ∈ SY ∗κ with
Re v∗(Gκu) > 1− δ, we define

x = (u, x∗0(u)w0) ∈ SX and y∗ = (v∗, 0) ∈ SY ∗ .
Since Re y∗(Gx) = Re v∗(Gκu) > 1− δ, we get

|v∗(Su)| = |v∗(Au) + v∗(a0)z∗(Bu)| = |y∗(Tκu)| = |y∗(Tx)| ≤ vG,δ(T ),

which gives vGκ,δ(S) ≤ vG,δ(T ) thanks to the arbitrariness of u and v∗. Finally, we can
write

vG(T ) ≥ vGκ(S) ≥ nGκ(Xκ, Yκ)‖S‖ ≥ nGκ(Xκ, Yκ)[‖T‖ − ε]
and so we deduce vG(T ) ≥ infλ nGλ(Xλ, Yλ)‖T‖, from which the desired inequality
nG(X,Y ) ≥ infλ nGλ(Xλ, Yλ) follows.

Let us observe that the first part of the above proof is valid for general absolute sums.

Proposition 6.2. Let X1, X2, Y1, Y2 be Banach spaces and let E be R2 endowed with
an absolute norm. Given norm-one operators Gi ∈ L(Xi, Yi) for i = 1, 2, define G ∈
L(X1 ⊕E X2, Y1 ⊕E Y2) by

G(x1, x2) = (G1x1, G2x2) ∈ Y1 ⊕E Y2

for every (x1, x2) ∈ X1 ⊕E X2. Then

nG(X1 ⊕E X2, Y1 ⊕E Y2) ≤ min{nG1
(X1, Y1), nG2

(X2, Y2)}.
The associativity of `p-sums allows us to get the following result from the above one.

Corollary 6.3. Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces,
let Gλ ∈ L(Xλ, Yλ) be a norm-one operator for every λ ∈ Λ, let 1 < p < ∞, and let
X = [

⊕
λ∈ΛXλ]`p and Y = [

⊕
λ∈Λ Yλ]`p . Define the operator G : X → Y by

G[(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈ [
⊕

λ∈ΛXλ]`p . Then

nG(X,Y ) ≤ inf
λ
nGλ(Xλ, Yλ).
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The main application of Proposition 6.1 is the following important example.

Theorem 6.4. In both the real and the complex case, there exist Banach spaces X such
that

N (L(X)) = [0, 1].

The proof will follow immediately from Proposition 6.1 and the next example.

Example 6.5. For every γ ∈ [0, 1] there exist a real or complex Banach space Yγ and
norm-one operators Gγ,1, Gγ,2 ∈ L(Yγ) with nGγ,1(Yγ , Yγ) = γ and nGγ,2(Yγ , Yγ) = 1.

Proof. We start by showing the existence of a real or complex space Zγ such that there
exists a norm-one operator G ∈ L(Zγ) satisfying nG(Zγ , Zγ) = γ. For γ ∈ [1/2, 1], it is
enough to use the fact that the set {n(W ) : W two-dimensional space} covers the interval
[0, 1] in the real case and [1/ e, 1] in the complex case [16, Theorems 3.5 and 3.6]. So, for
γ ∈ [1/2, 1] there is a two-dimensional (real or complex) space Zγ satisfying n(Zγ) = γ

and it suffices to take G = IdZγ .
For γ ∈ [0, 1/2], let Xγ = K2 endowed with the norm

‖(x1, x2)‖γ = max{|x2|, |x1|+ (1− γ)|x2|} ((x1, x2) ∈ K2),

let Z = `2∞, and let Zγ = Xγ ⊕∞ Z. Take x∗0 = (0, 1) ∈ SX∗γ , z0 = (1, 1) ∈ SZ ,
x0 = (1, 0) ∈ SXγ , z∗0 = (1, 0) ∈ SZ∗ , and define J1 = x∗0 ⊗ z0, J2 = z∗0 ⊗ x0, and
G = (J1, J2). Let us prove the equality nG(Zγ , Zγ) = γ.

Observe first that X∗γ is K2 endowed with the norm

‖(x∗1, x∗2)‖ = max{|x∗1|, γ|x∗1|+ |x∗2|} ((x1, x2) ∈ K2).

Since ‖J1‖ = ‖J2‖ = 1 and z0 ∈ Z, z∗0 ∈ Z∗ are spear vectors, by Propositions 6.1 and 3.6
we have

nG(Zγ , Zγ) = min{nJ1(Xγ , Z), nJ2(Z,Xγ)}
= min{n(X∗γ , x

∗
0)n(Z, z0), n(Z∗, z∗0)n(Xγ , x0)} = min{n(X∗γ , x

∗
0), n(Xγ , x0)}.

So it suffices to show n(X∗γ , x
∗
0) = γ and n(Xγ , x0) ≥ 1 − γ. To do so, we fix x∗ =

(x∗1, x
∗
2) ∈ SX∗γ and we compute v(X∗γ , x

∗
0, x
∗). The points x ∈ SXγ satisfying x∗0(x) = 1

are of the form x = (tθ, 1) with t ∈ [0, γ] and θ ∈ T. Thus we have

v(X∗γ , x
∗
0, x
∗) = sup{|tθx∗1 + x∗2| : t ∈ [0, γ], θ ∈ T} = γ|x∗1|+ |x∗2| ≥ γ‖x∗‖,

which implies n(X∗γ , x
∗
0) ≥ γ. Finally, v(X∗γ , x

∗
0, x
∗) = γ for x∗ = (1, 0) ∈ SX∗γ and so

n(X∗γ , x
∗
0) = γ as desired.

To prove n(Xγ , x0) ≥ 1− γ, we fix x = (x1, x2) ∈ SXγ and we estimate v(Xγ , x0, x).
The points x∗ ∈ SX∗γ satisfying x∗(x0) = 1 are of the form x∗ = (1, tθ) with t ∈ [0, 1− γ]

and θ ∈ T. Thus we have

v(Xγ , x0, x) = sup{|x1 + tθx2| : t ∈ [0, 1− γ], θ ∈ T} = |x1|+ (1− γ)|x2| ≥ (1− γ)‖x‖,

which implies n(Xγ , x0) ≥ 1− γ. This finishes the proof of the existence of Zγ .
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Now, for each γ ∈ [0, 1], we take Yγ = (Zγ ⊕∞ K) ⊕1 K. On the one hand, define
Gγ,1 ∈ L(Yγ) by

Gγ,1(z, α, β) = (Gz, α, β) (z ∈ Zγ , α, β ∈ K),

which satisfies nGγ,1(Yγ , Yγ) = nG(Zγ , Zγ) = γ by Proposition 6.1. On the other hand,
observe that Y ∗γ = (Z∗γ ⊕1 K) ⊕∞ K, so the elements y = (0, 0, 1) ∈ SYγ and y∗ =

(0, 1, 1) ∈ SY ∗γ are spear vectors in Yγ and Y ∗γ respectively. Therefore, the norm-one
operator Gγ,2 = y∗ ⊗ y ∈ L(Yγ) satisfies nGγ,2(Yγ , Yγ) = 1 by Proposition 3.6.

We are now able to provide the pending proof.

Proof of Theorem 6.4. For each γ ∈ [0, 1], consider the space Yγ given in Example 6.5
and consider the norm-one operators Gγ,1, Gγ,2 ∈ L(Yγ) satisfying nGγ,1(Yγ , Yγ) = γ and
nGγ,2(Yγ , Yγ) = 1. Now, let X = [

⊕
γ∈[0,1] Yγ ]c0 , and for every ξ ∈ [0, 1], consider the

norm-one operator Gξ ∈ L(X) to be the diagonal operator given by [Gξ]γ = Gγ,2 if γ 6= ξ

and [Gξ]ξ = Gξ,1. By Proposition 6.1, nGξ(X,X) = ξ, finishing the proof.

6.2. Composition operators on vector-valued function spaces. The first result
here gives the numerical index with respect to composition operators between spaces of
vector-valued continuous functions.

Proposition 6.6. Let X, Y be Banach spaces, let K be a compact Hausdorff topological
space and G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition
operator G̃ : C(K,X)→ C(K,Y ) given by G̃(f) = G ◦ f for every f ∈ C(K,X). Then

nG̃(C(K,X), C(K,Y )) = nG(X,Y ).

Proof. We follow the lines of [37, proof of Theorem 5]. To show

nG̃(C(K,X), C(K,Y )) ≥ nG(X,Y ),

we fix T ∈ L(C(K,X), C(K,Y )) with ‖T‖ = 1 and prove the inequality vG̃(T ) ≥
nG(X,Y ). Given ε > 0, we may find f0 ∈ C(K,X) with ‖f0‖ = 1 and t0 ∈ K such
that

(6.1) ‖[Tf0](t0)‖ > 1− ε.
Define z0 = f0(t0) and find a continuous function ϕ : K → [0, 1] such that ϕ(t0) = 1 and
ϕ(t) = 0 if ‖f0(t)− z0‖ ≥ ε. Now write z0 = (1−λ)x1 +λx2 with 0 ≤ λ ≤ 1, x1, x2 ∈ SX ,
and consider the functions

fj = (1− ϕ)f0 + ϕxj ∈ C(K,X) (j = 1, 2).

Then ‖ϕf0 − ϕz0‖ < ε meaning that

‖f0 − ((1− λ)f1 + λf2)‖ < ε,

and, by (6.1), we must have

‖[Tf1](t0)‖ > 1− 2ε or ‖[Tf2](t0)‖ > 1− 2ε.

By making the right choice of x0 = x1 or x0 = x2, we get x0 ∈ SX such that

(6.2) ‖[T ((1− ϕ)f0 + ϕx0)](t0)‖ > 1− 2ε.
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Next, we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1− ϕ)f0 + ϕx ∈ C(K,X) (x ∈ X),

and consider the operator S ∈ L(X,Y ) given by

Sx = [T (Φ(x))](t0) (x ∈ X)

which, by (6.2), obviously satisfies ‖S‖ ≥ ‖Sx0‖ > 1− 2ε.
Now, given δ > 0, and x ∈ SX , y∗ ∈ SY ∗ such that Re y∗(Gx) > 1 − δ, we define

f ∈ SC(K,X) by f = Φ(x), and consider the functional g∗ ∈ SC(K,Y )∗ given by

g∗(h) = [y∗ ⊗ δt0 ](h) = y∗(h(t0)) (h ∈ C(K,Y )).

Since f(t0) = x, we have Re g∗(G̃f) > 1− δ and

|y∗(Sx)| =
∣∣y∗([T (Φ(x))](t0))

∣∣ = |g∗(Tf)| ≤ vG̃,δ(T ),

hence vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− 2ε)nG(X,Y ),

and the arbitrariness of ε > 0 gives vG̃(T ) ≥ nG(X,Y ), as desired.
To prove the reverse inequality, we take an operator S ∈ L(X,Y ) and define the

operator T ∈ L(C(K,X), C(K,Y )) by

[T (f)](t) = S(f(t)) (t ∈ K, f ∈ C(K,X)).

Clearly, ‖T‖ = ‖S‖. To estimate the value of vG̃(T ) we use Lemma 3.4 considering
A = SC(K,X) and B = {y∗⊗δt : y∗ ∈ SY ∗ , t ∈ K}, where (y∗⊗δt)(g) = y∗(g(t)) for every
g ∈ C(K,Y ) (as these subsets satisfy conv(A) = BC(K,X) and convw

∗
(B) = BC(K,Y )∗).

Now, for every δ > 0, f ∈ SC(K,X), t ∈ K, and y∗ ∈ SY ∗ satisfying Re y∗(G(f(t))) > 1−δ,
we set x = f(t) ∈ SX and observe that Re y∗(Gx) > 1− δ and

|y∗([Tf ](t))| = |y∗(S(f(t)))| = |y∗(Sx)| ≤ vG,δ(S).

Consequently, vG̃,δ(T ) ≤ vG,δ(S) and

vG(S) ≥ vG̃(T ) ≥ nG̃(C(K,X), C(K,Y ))‖T‖ = nG̃(C(K,X), C(K,Y ))‖S‖,
so nG(X,Y ) ≥ nG̃(C(K,X), C(K,Y )), as desired.

We next deal with Köthe–Bochner vector-valued function spaces, for which we need
to introduce some terminology.

Let (Ω,Σ, µ) be a complete σ-finite measure space. We denote by L0(µ) the vector
space of all (equivalent classes modulo equality a.e. of) Σ-measurable locally integrable
real-valued functions on Ω. A Köthe function space is a linear subspace E of L0(µ)

endowed with a complete norm ‖ · ‖E satisfying the following conditions:

(i) If |f | ≤ |g| a.e. on Ω, g ∈ E and f ∈ L0(µ), then f ∈ E and ‖f‖E ≤ ‖g‖E .
(ii) For every A ∈ Σ with 0 < µ(A) <∞, the characteristic function 1A belongs to E.

We refer the reader to the classical book by J. Lindenstrauss and L. Tzafriri [31] for more
information and background on Köthe function spaces. Let us recall some useful facts
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about these spaces. First, E is a Banach lattice in the pointwise order. The Köthe dual
E′ of E is the function space defined as

E′ =

{
g ∈ L0(µ) : ‖g‖E′ := sup

f∈BE

∫

Ω

|fg| dµ <∞
}
,

which is again a Köthe space on (Ω,Σ, µ). Every element g ∈ E′ defines naturally a
continuous linear functional on E by the formula

f 7→
∫

Ω

fg dµ (f ∈ E),

so we have E′ ⊆ E∗ and this inclusion is isometric.
Let E be a Köthe space on a complete σ-finite measure space (Ω,Σ, µ) and let X

be a real or complex Banach space. A function f : Ω → X is said to be simple if f =∑n
i=1 xi1Ai for some x1, . . . , xn ∈ X and some A1, . . . , An ∈ Σ. The function f is said

to be strongly measurable if there exists a sequence {fn}n∈N of simple functions such
that lim ‖fn(t)− f(t)‖X = 0 for almost all t ∈ Ω. Given a strongly measurable function
f : Ω → X we use the notation |f | for the function |f |(·) = ‖f(·)‖X . We write E(X)

to denote the space of (classes of) strongly measurable functions f : Ω → X such that
|f | ∈ E and we endow E(X) with the norm

‖f‖E(X) =
∥∥|f |

∥∥
E
.

Then E(X) is a real or complex (depending on X) Banach space and it is called a
Köthe–Bochner function space. We refer the reader to the book [30] for background. For
an element f ∈ E(X) we consider a strongly measurable function f̃ : Ω→ SX such that
f = |f | f̃ a.e.

Our result for composition operators between Köthe–Bochner function spaces is the
following inequality.

Proposition 6.7. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
let E be a Köthe space on (Ω,Σ, µ) such that E′ is norming for E, and let G ∈ L(X,Y )

be a norm-one operator. Consider the norm-one composition operator G̃ : E(X)→ E(Y )

given by G̃(f) = G ◦ f for every f ∈ E(X). Then

nG̃(E(X), E(Y )) ≤ nG(X,Y ).

We need a preliminary lemma which is considered folklore in the theory of Köthe–
Bochner spaces. As we have not found direct references, we will include a short sketch of
its proof. Let us introduce some notation. Let E be a Köthe space on a σ-finite measure
space (Ω,Σ, µ) and let Y be a Banach space. If Φ: Ω→ Y ∗ belongs to E′(Y ∗), then the
integral functional on E(Y ) defined by Φ is given by

(6.3) 〈Φ, f〉 =

∫

Ω

〈Φ(t), f(t)〉 dµ(t) (f ∈ E(Y )).

We keep the notations |Φ| = ‖Φ(·)‖Y ∗ ∈ E′ and Φ̃ : Ω→ SY ∗ , which satisfy Φ = |Φ|Φ̃ a.e.
It is possible to define integral functionals as in (6.3) for functions satisfying weaker
requirements but, actually, here we are only interested in those integral functionals coming
from functions Φ in E′(Y ∗) having countably many values.
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Lemma 6.8. Let E be a Köthe space on a σ-finite measure space (Ω,Σ, µ) and let Y be
a Banach space.

(a) The set of measurable functions from Ω to Y having countably many values is dense
in E(Y ).

(b) If Φ ∈ E′(Y ∗) has countably many values, then the integral functional defined as
in (6.3) belongs to E(Y )∗ and satisfies ‖Φ‖E(Y )∗ = ‖Φ‖E′(Y ∗) =

∥∥|Φ|
∥∥
E′
.

(c) If E′ is norming for E, then the set B of all integral functionals defined by norm-one
functions in E′(Y ∗) having countably many values satisfies convw

∗
(B) = BE(Y )∗ .

Sketch of the proof. (a) Fix f ∈ E(Y ) and ε > 0. We consider a partition of Ω into
countably many pairwise disjoint measurable sets Ω =

⋃
n∈N∪{0}Ωn with µ(Ω0) = 0,

0 < µ(Ωn) < ∞ for all n ∈ N, and such that f(Ωn) is separable for all n ∈ N. Now, for
every n ∈ N we use the Bochner measurability of f1Ωn to find a measurable function
gn : Ω→ Y with gn(Ω \ Ωn) = {0}, having countably many values and satisfying

‖f(t)− gn(t)‖ ≤ ε

2n‖1Ωn‖
(t ∈ Ωn)

(see [15, Corollary 3, p. 42], for instance). We have

|f1Ωn − gn| ≤
ε1Ωn

2n‖1Ωn‖
,

so gn ∈ E(Y ) and ‖f1Ωn −gn‖ ≤ ε
2n . It is now clear that the sum g of the (formal) series∑

n≥1 gn belongs to E(Y ), has countably many values, and satisfies ‖f − g‖ ≤ ε.
(b) Our Φ is of the form

Φ(t) =

∞∑

n=1

y∗n1An(t) (t ∈ Ω)

for suitable sequences {y∗n}n∈N of elements of Y ∗ and {An}n∈N of pairwise disjoint ele-
ments of Σ such that the scalar function

t 7→
∞∑

n=1

‖y∗n‖1An(t)

belongs to E′. Then the action of Φ on E(Y ) is given by

〈Φ, f〉 =

∫

Ω

〈Φ(t), f(t)〉 dµ(t) =
∞∑

n=1

∫

An

y∗n(f(t)) dµ(t) (f ∈ E(Y )).

It is now routine to show Φ ∈ E(Y )∗ and ‖Φ‖E(Y )∗ =
∥∥|Φ|

∥∥
E′
.

Assertion (c) follows routinely from the density in E(Y ) of the set of countably-valued
functions, from the fact that E′ is norming for E, and from the density in E′ of the set
of countably-valued functions.

Proof of Proposition 6.7. We follow the lines of [36, proof of Theorem 4.1]. Take an
operator S ∈ L(X,Y ) with ‖S‖ = 1, and define T ∈ L(E(X), E(Y )) by

[T (f)](t) = S(f(t)) = |f |(t)S(f̃(t)) (t ∈ Ω, f ∈ E(X)).
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We claim that T is well defined and ‖T‖ = 1. Indeed, for f ∈ E(X), T (f) is strongly
measurable and

‖[T (f)](t)‖Y = |f |(t)‖S(f̃(t))‖ ≤ |f |(t) (t ∈ Ω),

so T (f) ∈ E(Y ) with ‖T (f)‖E(Y ) ≤
∥∥|f |

∥∥
E

= ‖f‖E(X). This gives ‖T‖ ≤ 1. Conversely,
fix A ∈ Σ with 0 < µ(A) < ∞ and for each x ∈ SX consider f = ‖1A‖−1

E x1A ∈ SE(X).
Then ‖f‖ = 1 and

‖[T (f)](t)‖Y =
1A(t)‖S(x)‖Y
‖1A‖E

,

so

‖T‖ ≥ ‖T (f)‖E(Y ) =

∥∥∥∥
1A ‖S(x)‖Y
‖1A‖E

∥∥∥∥
E

≥ ‖S(x)‖Y .

Taking supremum over x ∈ SX , we get ‖T‖ ≥ ‖S‖ = 1 as desired.
Next, we fix 0 < δ < 1, f = |f | f̃ ∈ SE(X) and Φ = |Φ|Φ̃ ∈ B satisfying the condition

Re 〈Φ, G̃(f)〉 > 1− δ, where B ⊂ E(Y )∗ is the set given in Lemma 6.8(c). Let 0 < α < 1

be such that 1− α =
√
δ and write

Ω1 = {t ∈ Ω: Re 〈Φ̃(t), G(f̃(t))〉 ≤ α} and Ω2 = {t ∈ Ω: Re 〈Φ̃(t), G(f̃(t))〉 > α}.
Then

1− δ < Re 〈Φ, G̃(f)〉 = Re

∫

Ω

|Φ|(t) |f |(t) 〈Φ̃(t), G(f̃(t))〉 dµ(t)

= Re

∫

Ω1

|Φ|(t)|f |(t)〈Φ̃(t), G(f̃(t))〉 dµ(t) + Re

∫

Ω2

|Φ|(t)|f |(t)〈Φ̃(t), G(f̃(t))〉 dµ(t)

≤ α
∫

Ω1

|Φ|(t)|f |(t) dµ(t) +

∫

Ω2

|Φ|(t) |f |(t) dµ(t)

≤ α
∫

Ω1

|Φ|(t), |f |(t) dµ(t) + 1−
∫

Ω1

|Φ|(t) |f |(t) dµ(t),

hence
∫

Ω1
|Φ|(t)|f |(t) dµ(t) < δ

1−α . Moreover,

|〈Φ, Tf〉| =
∣∣∣∣
∫

Ω

|Φ|(t) |f |(t) 〈Φ̃(t), S(f̃(t))〉 dµ(t)

∣∣∣∣

≤
∫

Ω2

|Φ|(t)|f |(t) vG,1−α(S) dµ(t) +

∫

Ω1

|Φ|(t) |f |(t)|〈Φ̃(t), S(f̃(t))〉| dµ(t)

≤ vG,1−α(S) +
δ

1− α = vG,
√
δ(S) +

√
δ.

Thus, we get vG̃,δ(T ) ≤ vG,
√
δ(S) +

√
δ by Lemmas 3.4 and 6.8(c). So, taking infimum

over 0 < δ < 1, we obtain nG̃(E(X), E(Y )) ≤ vG̃(T ) ≤ vG(S) and the desired inequality
follows.

For G = IdX , the above result improves [36, Theorem 4.1]:

Corollary 6.9 (Extension of [36, Theorem 4.1]). Let X be a Banach space, let (Ω,Σ, µ)

be a σ-finite measure space, and let E be a Köthe space on (Ω,Σ, µ) such that E′ is
norming for E. Then

n(E(X)) ≤ n(X).
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There are Köthe spaces which do not satisfy the norming requirement of Proposi-
tion 6.7 (see [31, Remark 1, p. 30] for instance). We next present some particular cases
in which the previous proposition applies. First, we deal with order continuous spaces.
We say that a Köthe space E is order continuous if 0 ≤ xα ↓ 0 and xα ∈ E imply
lim ‖xα‖ = 0 (this is known to be equivalent to the fact that E does not contain an
isomorphic copy of `∞). If E is order continuous, then E′ = E∗ (see [30, p. 169] or [31,
p. 29]).

Corollary 6.10. Let X,Y be Banach spaces, let (Ω,Σ, µ) be a probability space, let
E be an order continuous Köthe space on (Ω,Σ, µ), and let G ∈ L(X,Y ) be a norm-
one operator. Consider the norm-one composition operator G̃ : E(X) → E(Y ) given by
G̃(f) = G ◦ f for every f ∈ E(X). Then

nG̃(E(X), E(Y )) ≤ nG(X,Y ).

For 1 ≤ p <∞, Lp-spaces over σ-finite measures are order continuous Köthe spaces;
for p = ∞, this is no longer true, but L∞(µ)′ is norming for L∞(µ) (see [31, Remark 1,
p. 30] for instance). Therefore, we get the following consequence:

Corollary 6.11. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
let 1 ≤ p ≤ ∞, and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-
one composition operator G̃ : Lp(µ,X) → Lp(µ, Y ) given by G̃(f) = G ◦ f for every
f ∈ Lp(µ,X). Then

nG̃(Lp(µ,X), Lp(µ, Y )) ≤ nG(X,Y ).

Equality does not hold in general, since for p 6= 1,∞ we have n(`2p) < 1. On the other
hand, we will show that equality holds for p = 1 and p =∞.

We start by dealing with spaces of Bochner integrable functions.

Proposition 6.12. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition oper-
ator G̃ : L1(µ,X)→ L1(µ, Y ) given by G̃(f) = G ◦ f for every f ∈ L1(µ,X). Then

nG̃(L1(µ,X), L1(µ, Y )) = nG(X,Y ).

Proof. We follow the lines of [37, proof of Theorem 8]. Without loss of generality,
(Ω,Σ, µ) can be considered a probability space, as vector-valued L1-spaces associated to
σ-finite measures are (up to an isometric isomorphism) vector-valued L1-spaces associated
to probability measures (see [12, Proposition 1.6.1] for instance).

In order to prove nG̃(L1(µ,X), L1(µ, Y )) ≥ nG(X,Y ), we need to introduce some
notation. If (Ω,Σ, µ) is a probability space, we write Σ+ := {B ∈ Σ: µ(B) > 0}. Given
Banach spaces X and Y , the set

B :=
{∑

B∈π
y∗B1B : π ⊆ Σ+ finite partition of Ω, y∗B ∈ SY ∗

}
⊆ SL∞(µ,Y ∗)

satisfies

(6.4) BL1(µ,Y )∗ = convw
∗
(B)

since TB = B and it is clearly norming for the simple functions of L1(µ, Y ). On the other
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hand, we will write

A :=

{
x

1A

µ(A)
: x ∈ SX , A ∈ Σ+

}
,

which satisfies

(6.5) BL1(µ,X) = conv(A).

Indeed, it is enough to notice that every simple function f ∈ SL1(µ,X) belongs to the
convex hull of A: such an f can be written as f =

∑
A∈π xA1A, where π ⊆ Σ+ is a finite

family of pairwise disjoint sets of Ω and xA ∈ X \ {0} for each A ∈ π. Then
‖f‖ =

∑

A∈π
‖xA‖µ(A) = 1,

and hence
f =

∑

A∈π
‖xA‖µ(A)

xA
‖xA‖

1A

µ(A)
∈ conv(A).

Now, fix T ∈ L(L1(µ,X), L1(µ, Y )) with ‖T‖ = 1 and ε > 0. We may find by (6.5)
elements x0 ∈ SX and A ∈ Σ+ such that∥∥∥∥T

(
x0

1A

µ(A)

)∥∥∥∥ > 1− ε.

By (6.4), there exists f∗ =
∑
B∈π y

∗
B1B , where π is a finite partition of Ω into sets of Σ+

and y∗B ∈ SY ∗ for each B ∈ π, satisfying

(6.6) Re f∗
(
T

(
x0

1A

µ(A)

))
= Re

∑

B∈π
y∗B

(∫

B

T

(
x0

1A

µ(A)

)
dµ

)
> 1− ε.

Then we can write

T

(
x0

1A

µ(A)

)
=

∑

B∈π
µ(A∩B)6=0

µ(A ∩B)

µ(A)
T

(
x0

1A∩B
µ(A ∩B)

)

so, by a standard convexity argument, we can assume that there is B0 ∈ π such that,
if we take the set A ∩ B0 in the role of new A, the inequality (6.6) remains true. After
this modification of A, we additionally obtain A ⊆ B0. By the density of norm-attaining
functionals, we can assume that every y∗B is norm-attaining, so there is yB0

∈ SY such
that y∗B0

(yB0
) = 1. Define the operator S : X → Y by

S(x) =

∫

B0

T

(
x

1A

µ(A)

)
dµ+

[ ∑

B∈π\{B0}
y∗B

(∫

B

T

(
x

1A

µ(A)

)
dµ

)]
yB0

(x ∈ X).

It is easy to check that ‖S‖ ≤ 1, and moreover ‖S‖ > 1 − ε since, as a consequence
of (6.6), we obtain

‖S(x0)‖ ≥ |y∗B0
(Sx0)| =

∣∣∣∣f∗
(
T

(
x0

1A

µ(A)

))∣∣∣∣ > 1− ε.

Now, fixed δ > 0, we consider x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ. Take f ∈ A
defined by

f = x
1A

µ(A)
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and g∗ ∈ B by

g∗(h) = y∗
(∫

B0

h dµ

)
+

∑

B∈π\{B0}
y∗B

(∫

B

h dµ

)
y∗(yB0

) (h ∈ L1(µ, Y )).

We have

G̃f = G̃

(
x

1A

µ(A)

)
= G(x)

1A

µ(A)
,

and, since A ⊆ B0 and a partition is a family of pairwise disjoint sets, we deduce

Re g∗(G̃f) = Re

(
y∗
(∫

B0

G(x)
1A

µ(A)
dµ

)
+

[ ∑

B∈π\{B0}
y∗B

(∫

B

G(x)
1A

µ(A)
dµ

)]
y∗(yB0

)

)

= Re y∗(Gx) > 1− δ.
Moreover,

|y∗(Sx)| =
∣∣∣∣y∗
(∫

B0

T

(
x
1A

µ(A)

)
dµ

)
+

[ ∑

B∈π\{B0}
y∗B

(∫

B

T

(
x

1A

µ(A)

)
dµ

)]
y∗(yB0

)

∣∣∣∣

= |g∗(Tf)| ≤ vG̃,δ(T ).

So, vG,δ(S) ≤ vG̃,δ(T ) and hence

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− ε)nG(X,Y ).

Taking ε ↓ 0, we get vG̃(T ) ≥ nG(X,Y ), and the arbitrariness of T gives the desired
inequality.

The reverse inequality nG̃(L1(µ,X), L1(µ, Y )) ≤ nG(X,Y ) follows directly from
Corollary 6.11.

The last result on composition operators on vector-valued function spaces deals with
spaces of essentially bounded vector-valued functions.

Proposition 6.13. Let X,Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition oper-
ator G̃ : L∞(µ,X)→ L∞(µ, Y ) given by G̃(f) = G ◦ f for every f ∈ L∞(µ,X). Then

nG̃(L∞(µ,X), L∞(µ, Y )) = nG(X,Y ).

The proof of this result borrows ideas from [38, proof of Theorem 2.3]. We also borrow
from [38] two preliminary lemmas that we state for the convenience of the reader.

Lemma 6.14 ([38, Lemma 2.1]). Let f ∈ L∞(µ,X) with ‖f(t)‖ > λ a.e. Then there exists
B ∈ Σ with 0 < µ(B) <∞ such that

∥∥∥∥
1

µ(B)

∫

B

f(t) dµ(t)

∥∥∥∥ > λ.

Lemma 6.15 ([38, Lemma 2.2]). Let f ∈ L∞(µ,X), C ∈ Σ with positive measure, and
ε > 0. Then there exist x ∈ X and A ⊆ C with 0 < µ(A) < ∞ such that ‖x‖ = ‖f1C‖
and ‖(f − x)1A‖ < ε. Accordingly, the set

{x1A + f1Ω\A : x ∈ SX , f ∈ BL∞(µ,X), A ∈ Σ with 0 < µ(A) <∞}
is dense in SL∞(µ,X).
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Proof of Proposition 6.13. In order to show nG̃(L∞(µ,X), L∞(µ, Y )) ≥ nG(X,Y ),

we fix an operator T ∈ L(L∞(µ,X), L∞(µ, Y )) with ‖T‖ = 1. Given ε > 0, we may find
f0 ∈ SL∞(µ,X) and C ⊆ Ω with µ(C) > 0 such that

(6.7) ‖[Tf0](t)‖ > 1− ε (t ∈ C).

On account of Lemma 6.15, there exist y0 ∈ BX and A ⊆ C with 0 < µ(A) < ∞ such
that ‖(f0 − y0)1A‖ < ε. Now, write y0 = (1 − λ)x1 + λx2 with 0 ≤ λ ≤ 1, x1, x2 ∈ SX ,
and consider the functions

fj = xj1A + f01Ω\A ∈ L∞(µ,X) (j = 1, 2).

which clearly satisfy ‖f0 − ((1− λ)f1 + λf2)‖ < ε. Since A ⊆ C, by (6.7) we have

‖[Tf1](t)‖ > 1− 2ε or ‖[Tf2](t)‖ > 1− 2ε

for every t ∈ A. Now, we choose i ∈ {1, 2} such that

Ai = {t ∈ A : ‖[Tfi](t)‖ > 1− 2ε}
has positive measure, we write x0 = xi, and we finally use Lemma 6.14 to get B ⊆ Ai ⊆ A
with 0 < µ(B) <∞ such that

(6.8)
∥∥∥∥

1

µ(B)

∫

B

T (x01A + f01Ω\A) dµ

∥∥∥∥ > 1− 2ε.

Next, we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, we write

Φ(x) = x1A + x∗0(x) f01Ω\A ∈ L∞(µ,X) (x ∈ X).

and we define the operator S ∈ L(X,Y ) by

Sx =
1

µ(B)

∫

B

T (Φ(x)) dµ (x ∈ X)

which, by (6.8), satisfies ‖S‖ ≥ ‖Sx0‖ > 1− 2ε.
Given δ > 0, we fix x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1−δ. Define f ∈ SL∞(µ,X)

by
f = Φ(x) = x1A + x∗0(x)f01Ω\A

and g∗ ∈ SL∞(µ,Y )∗ by

g∗(h) = y∗
(

1

µ(B)

∫

B

h dµ

)
(h ∈ L∞(µ, Y )).

Since B ⊆ A, we have

Re g∗(G̃f) = Re y∗
(

1

µ(B)

∫

B

G(f(t)) dµ(t)

)

= Re y∗
(

1

µ(B)

∫

B

G(x1A(t) + x∗0(x) f0(t)1Ω\A(t)

)
dµ(t))

= Re y∗
(

1

µ(B)

∫

B

G(x)1B(t) dµ(t)

)
= Re y∗(Gx) > 1− δ.

Moreover,

|y∗(Sx)| =
∣∣∣∣y∗
(

1

µ(B)

∫

B

T (Φ(x)) dµ

)∣∣∣∣ = |g∗(Tf)| ≤ vG̃,δ(T )
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so vG,δ(S) ≤ vG̃,δ(T ) and hence

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− 2ε)nG(X,Y ).

Taking ε ↓ 0, we get vG̃(T ) ≥ nG(X,Y ), and the arbitrariness of T gives the desired
inequality.

The reverse inequality is a consequence of Corollary 6.11.

6.3. Adjoint operators. As shown in Lemma 3.5, the numerical index with respect
to an operator always dominates the numerical index with respect to its adjoint. Our
aim here is to give some particular cases in which the two indices coincide. First, we
have to recall that this is not always the case, as there are Banach spaces X for which
n(X∗) < n(X) (see [27, §2] for instance). We also provide an easier example which does
not use the identity operator.

Example 6.16. The inclusion G : c0 → c satisfies nG(c0, c) = 1, whereas its adjoint
G∗ : `1⊕1 K→ `1, given by (x, λ) 7→ x, is not even a vertex of L(c∗, c∗0) and so it satisfies
nG∗(c

∗, c∗0) = 0.
Indeed, G is a spear operator by, for instance, [26, Proposition 4.2], so nG(c0, c) = 1.

To prove G∗ is not a vertex, consider the operator T : `1⊕1K→ `1 given by T (x, λ) = λe∗1
for x ∈ `1 and λ ∈ K. Then we have

‖G∗(x, λ) + θT (x, λ)‖ =
∥∥∥(x(1) + θλ)e∗1 +

∞∑

k=2

x(k)e∗k

∥∥∥

= |x(1)|+ |λ|+
∞∑

k=2

|x(k)| = ‖x‖+ |λ| = ‖(x, λ)‖

for every θ ∈ T, every x ∈ `1, and every λ ∈ K. This shows ‖G∗ + θT‖ ≤ 1 and so G∗ is
not an extreme operator. Therefore, G∗ is not a vertex by Lemma 2.3.

If X and Y are both reflexive spaces, the numerical index with respect to every norm-
one operator G ∈ L(X,Y ) coincides with the numerical index with respect to G∗. Indeed,
the inequality

nG∗∗(X
∗∗, Y ∗∗) ≤ nG∗(Y ∗, X∗) ≤ nG(X,Y )

gives the result. Actually, it is enough that Y is reflexive, or even a much weaker hypoth-
esis: we show that the numerical index with respect to an operator coincides with the one
with respect to its adjoint when the range space is L-embedded. Recall that a Banach
space Y is L-embedded if Y ∗∗ = JY (Y ) ⊕1 Ys for suitable closed subspace Ys of Y ∗∗.
We refer to the monograph [23] for background. Examples of L-embedded spaces are
reflexive spaces (trivial), preduals of von Neumann algebras, in particular L1(µ) spaces,
the Lorentz spaces d(w, 1) and Lp,1, the Hardy space H1

0 , and the dual of the disk alge-
bra A(D) (see [23, Examples IV.1.1 and III.1.4]).

Proposition 6.17. Let X be a Banach space, let Y be an L-embedded space, and let
G ∈ L(X,Y ) be a norm-one operator. Then nG(X,Y ) = nG∗(Y

∗, X∗).

Proof. We follow the lines of [26, proof of Proposition 5.21]. Write Y ∗∗ = JY (Y )⊕1Ys
and let PY : Y ∗∗ → JY (Y ) be the natural projection. For a fixed T ∈ L(Y ∗, X∗) consider
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the operators

A := PY ◦ T ∗ ◦ JX : X → JY (Y ), B := [Id− PY ] ◦ T ∗ ◦ JX : X → Ys.

Then T ∗ ◦ JX = A ⊕ B. Given ε > 0, since JX(BX) is dense in BX∗∗ by the Goldstine
Theorem and T ∗ is weak∗-to-weak∗ continuous, we may find x0 ∈ SX such that

‖T ∗JX(x0)‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T ∗‖ − ε.
Now, we may find y0 ∈ SY and y∗s ∈ SY ∗s such that

‖Ax0‖y0 = Ax0 and y∗s (Bx0) = ‖Bx0‖.
Define S : X → Y by

S(x) = Ax+ y∗s (Bx)y0 (x ∈ X).

For this operator

‖S‖ ≥ ‖Sx0‖ = ‖Ax0 + y∗s (Bx0)y0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T ∗‖ − ε.
Given δ > 0, we take x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ, and consider

z = JX(x) ∈ SX∗∗ and z∗ = (JY ∗(y
∗), y∗(y0)y∗s ) ∈ SY ∗∗∗

as Y ∗∗∗ = JY ∗(Y
∗)⊕∞Y ∗s . Now, Re z∗(G∗∗z) = Re y∗(Gx) > 1−δ sinceG∗∗◦JX = JY ◦G.

Moreover,

|z∗(T ∗z)| = |JY ∗(y∗)(Ax+ y∗(y0)y∗s (Bx))| = |y∗(Sx)|,
hence |y∗(Sx)| = |z∗(T ∗z)| ≤ vG∗∗,δ(T

∗) and, taking supremum, vG,δ(S) ≤ vG∗∗,δ(T
∗).

Therefore,

vG∗(T ) = vG∗∗(T
∗) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].

The arbitrariness of ε > 0 and of T ∈ L(Y ∗, X∗) gives nG(X,Y ) ≤ nG∗(Y ∗, X∗), and the
other inequality is always true.

Particular cases of the above result are the following.

Corollary 6.18. Let X be a Banach space and let Y be a reflexive space. Then

nG(X,Y ) = nG∗(Y
∗, X∗)

for every norm-one G ∈ L(X,Y ).

Corollary 6.19. Let X be a Banach space and let µ be a positive measure. Then
nG(X,L1(µ)) = nG∗(L1(µ)∗, X∗) for every norm-one G ∈ L(X,L1(µ)).

Finally, we show that, for rank-one operators, the numerical index is preserved by
passing to the adjoint.

Proposition 6.20. Let X,Y be Banach spaces, and let G ∈ L(X,Y ) be a rank-one
operator of norm 1. Then nG(X,Y ) = nG∗(Y

∗, X∗) and so the same happens to all the
successive adjoints of G.

Proof. We can write G = x∗0 ⊗ y0 for some x∗0 ∈ SX∗ and y0 ∈ SY , so
nG(X,Y ) = n(X∗, x∗0)n(Y, y0)
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by Proposition 3.6. Furthermore, as G∗ = JY (y0)⊗ x∗0, we have

nG∗(Y
∗, X∗) = n(Y ∗∗, JY (y0))n(X∗, x∗0)

again by Proposition 3.6. But n(Y ∗∗, JY (y0)) = n(Y, y0) by Lemma 2.6 and we are done.

6.4. Composition of operators. The next result allows us to control the numerical
index with respect to the composition of two operators in two particular cases.

Lemma 6.21. Let X,Y, Z be Banach spaces and let G1 ∈ L(X,Y ) and G2 ∈ L(Y,Z) be
norm-one operators.

(a) If G2 is an isometric embedding, then nG2◦G1(X,Z) ≤ nG1(X,Y ).
(b) If G1(BX) = BY , then nG2◦G1

(X,Z) ≤ nG2
(Y,Z).

Proof. Both (a) and (b) follow from Lemma 2.4. In the first case, it is enough to
see that the map T 7→ G2 ◦ T from L(X,Y ) to L(X,Z) is an isometric embedding by
the hypothesis on G2. For (b), we see that S 7→ S ◦ G1 from L(Y,Z) to L(X,Z) is an
isometric embedding by the hypothesis on G1.

We now collect some consequences of this result.
The first immediate consequence is that the restriction of the codomain of an operator

cannot decrease the numerical index.

Proposition 6.22. Let X,Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator,
and let Z be a closed subspace of Y with G(X) ⊆ Z. Consider the operator G : X → Z

given by Gx = Gx for every x ∈ X. Then nG(X,Y ) ≤ nG(X,Z).

Proof. This follows from Lemma 6.21(a) as G = I ◦ G where I : Z → Y denotes the
inclusion.

The inequality in the above result can be strict:

Example 6.23. The operator G : K → K ⊕∞ K given by G(x) = (x, 0) satisfies
nG(K,K⊕∞ K) = 0, whereas G : K→ K satisfies nG(K,K) = 1.

Another consequence of Lemma 6.21 is that the numerical index with respect to the
injectivization of an operator is an upper bound for the numerical index with respect to
the original operator.

Proposition 6.24. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one
operator, and let q : X → X/kerG be the quotient map. Consider the injectivization
Ĝ ∈ L(X/kerG, Y ) satisfying Ĝ ◦ q = G. Then

nG(X,Y ) ≤ nĜ(X/kerG, Y ).

Proof. This follows from Lemma 6.21(b) as Ĝ ◦ q = G and q(BX) = BX/kerG.

In the particular case when nG(X,Y ) = 1, we obtain the following result which gives
a partial answer to [26, Problem 9.14].

Corollary 6.25. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator.
Then, under the notation of Proposition 6.24, if G is a spear operator, then so is its
injectivization Ĝ.



On the numerical index with respect to an operator 53

Again, the inequality in Proposition 6.24 may be strict, as the following example
shows. It also proves that Corollary 6.25 is not an equivalence.

Example 6.26. The operator G : `1⊕1K→ `1 given by G(x, λ) = x satisfies the condition
nG(`1 ⊕1 K, `1) = 0 (as proved in Example 6.16), whereas the injectivization Ĝ is the
identity operator in `1 and so it satisfies nĜ(`1, `1) = n(`1) = 1.

With the aid of all of these examples and some others from previous sections, we may
prove the following assertion.

Remark 6.27. There is no general function Υ: [0, 1]×[0, 1]→ [0, 1] such that the equality

nG2◦G1
(X,Z) = Υ(nG2

(Y,Z), nG1
(X,Y ))

holds for all Banach spaces X,Y, Z and for all norm-one operators G1 ∈ L(X,Y ) and
G2 ∈ L(Y, Z).

Indeed, suppose that such a function Υ exists. In Remark 4.9 an example is given
of a real Banach space Z with n(Z) = 0 and a norm-one operator G ∈ L(Z,R) such
that nG(Z,R) = 1. As G = G ◦ IdZ , it follows that 1 = Υ(1, 0). Moreover, there is a
similar example in Remark 4.9 showing 1 = Υ(0, 1). On the other hand, if X, Y are
two-dimensional Banach spaces, we may always find G ∈ L(X,Y ) with nG(X,Y ) = 0 by
Proposition 4.1. As G = G ◦ IdX = IdY ◦G, it follows that 0 = Υ(0, n(X)) = Υ(n(Y ), 0).
It is enough to consider X = Y = `2∞ to get a contradiction.

Now, we may wonder whether a further relationship with the composition is valid in
general. We answer this question in the negative giving some counterexamples.

Example 4.10 shows that, in general, there is no inequality

nG2◦G1
(X,Z) ≤ max{nG1

(X,Y ), nG2
(Y, Z)},

with G playing the role of G1 and the identity operator playing the role of G2.
Example 6.23 also shows the absence, in general, of the inequality

nG2◦G1(X,Z) ≥ max{nG1(X,Y ), nG2(Y, Z)}.
Actually, it is possible that the inequality nG2◦G1

(X,Z) ≥ min{nG1
(X,Y ), nG2

(Y, Z)}
fails, as the following example shows, since n(`p) > 0 for p 6= 2 by [35].

Example 6.28. Let 1 ≤ p < q < ∞. The canonical inclusion G : `p → `q satisfies
nG(`p, `q) = 0.

Proof. Consider the norm-one operator T ∈ L(`p, `q) given by T = e∗2 ⊗ e1. Given a
scalar 0 < ε < 1/4, our goal is to prove vG(T ) ≤ max{ε1/p, (1− (1− 2ε)q)1/q}. To do so
we need the following claim.

Claim. Let 0 < δ < 1/2 be such that (1 − δ)p/(q−p) > 1 − ε. Given x ∈ S`p such that
‖x‖q > (1− 2δ2)1/q, there exists a unique k0 ∈ N satisfying |x(k0)|p > 1− ε.

Indeed, the uniqueness of k0 is clear because |x(k0)|p > 1− ε, ε < 1/4, and ‖x‖p = 1.
Let us show the existence of k0. Since 1 − 2δ2 < ‖x‖qq, there is n ∈ N satisfying
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1− δ2 <
∑n
k=1 |x(k)|q, and thus

n∑

k=1

|x(k)|p − δ2 ≤ 1− δ2 <

n∑

k=1

|x(k)|q =

n∑

k=1

|x(k)|p|x(k)|q−p.

Let I = {k ∈ {1, . . . , n} : |x(k)|q−p > 1 − δ}. Using [26, Lemma 8.14] with λk = |x(k)|p,
βk = 1 and αk = |x(k)|q−p, we get

∑
k/∈I |x(k)|p < δ. So we can write

1− δ2 <

n∑

k/∈I
|x(k)|q +

n∑

k∈I
|x(k)|q ≤

n∑

k/∈I
|x(k)|p +

n∑

k∈I
|x(k)|q < δ +

n∑

k∈I
|x(k)|q,

which gives
∑
k∈I |x(k)|q > 1− δ2 − δ > 0 and therefore I 6= ∅. For k0 ∈ I, we have

|x(k0)|p > (1− δ) p
q−p > 1− ε,

finishing the proof of the claim.
To estimate the numerical radius of T , let 0 < δ̃ < ε be such that 1− δ̃ > (1− 2δ2)1/q

and take x ∈ S`p and y∗ ∈ S`∗q satisfying Re y∗(x) > 1− δ̃, which implies

‖x‖q > Re y∗(x) > 1− δ̃ > (1− 2δ2)1/q.

The claim tells us that there is k0 ∈ N such that |x(k0)|p > 1−ε and so
∑∞
k 6=k0 |x(k)|p < ε.

Now, we can estimate |y∗(Tx)| = |y∗(1)| |x(2)| depending on the value of k0. If k0 6= 2

then |x(2)| < ε1/p and |y∗(Tx)| ≤ |x(2)| < ε1/p. Suppose, otherwise, k0 = 2. Then, as

1− δ̃ < Re y∗(x) = |y∗(2)| |x(2)|+
∞∑

k 6=2

|y∗(k)| |x(k)|

≤ |y∗(2)|+ ‖y∗‖q
∞∑

k 6=2

|x(k)|p ≤ |y∗(2)|+ ε,

we get |y∗(2)| > 1− δ̃ − ε > 1− 2ε. Therefore,

|y∗(2)|q > (1− 2ε)q and |y∗(Tx)| ≤ |y∗(1)| < (1− (1− 2ε)q)1/q.

Hence, in any case,

vG(T ) ≤ vG,δ̃(T ) ≤ max
{
ε1/p, (1− (1− 2ε)q)1/q

}

and the arbitrariness of ε gives vG(T ) = 0 and so, nG(`p, `q) = 0.

6.5. Extending the domain and the codomain. Our final aim in this chapter is to
study ways of extending the domain and the codomain of an operator maintaining the
same numerical index. For the domain, we have the following result.

Proposition 6.29. Let X,Y, Z be Banach spaces, let G ∈ L(X,Y ) be a norm-one oper-
ator, and consider the norm-one operator G̃ : X ⊕∞ Z → Y given by G̃(x, z) = G(x) for
every (x, z) ∈ X ⊕∞ Z. Then

nG̃(X ⊕∞ Z, Y ) = nG(X,Y ).

Proof. Fix T ∈ L(X ⊕∞ Z, Y ) with ‖T‖ > 0 and 0 < ε < ‖T‖. We may find x0 ∈ SX
and z0 ∈ SZ satisfying ‖T (x0, z0)‖ > ‖T‖ − ε. Now take x∗0 ∈ SX∗ with x∗0(x0) = 1 and
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define the operator S ∈ L(X,Y ) by

S(x) = T (x, x∗0(x)z0) (x ∈ X),

which satisfies ‖S‖ ≥ ‖Sx0‖ = ‖T (x0, z0)‖ > ‖T‖ − ε.
Now, given δ > 0, x ∈ SX , and y∗ ∈ SY ∗ with Re y∗(Gx) > 1 − δ, we consider

(x, x∗0(x)z0) ∈ SX⊕∞Z . Clearly, Re y∗(G̃(x, x∗0(x)z0)) = Re y∗(Gx) > 1− δ. Moreover,

|y∗(Sx)| = |y∗(T (x, x∗0(x)z0))| ≤ vG̃,δ(T ),

hence vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].
The arbitrariness of ε > 0 and T ∈ L(X ⊕∞ Z, Y ) gives nG̃(X ⊕∞ Z, Y ) ≥ nG(X,Y ).

The reverse inequality follows immediately from Lemma 6.21(b) as G̃ = G ◦ P where
P : X ⊕∞ Z → X denotes the natural projection.

For the range space, the result is the following.

Proposition 6.30. Let X,Y, Z be Banach spaces, let G ∈ L(X,Y ) be a norm-one op-
erator, and consider the norm-one operator G̃ : X → Y ⊕1 Z given by G̃x = (Gx, 0) for
every x ∈ X. Then

nG̃(X,Y ⊕1 Z) = nG(X,Y ).

Proof. Fix T ∈ L(X,Y ⊕1 Z) with ‖T‖ > 0, ‖T‖ > ε > 0, and x0 ∈ SX such that
‖Tx0‖ > ‖T‖ − ε. Denote by PY and PZ the projections from Y ⊕1 Z to Y and Z,
respectively. Take y0 ∈ SY so that PY Tx0 = ‖PY Tx0‖y0 and z∗0 ∈ SZ∗ satisfying
z∗0(PZTx0) = ‖PZTx0‖. Now define S ∈ L(X,Y ) by

Sx = PY Tx+ z∗0(PZTx)y0 (x ∈ X),

which satisfies

‖S‖ ≥ ‖Sx0‖ = ‖PY Tx0 + ‖PZTx0‖y0‖ = ‖PY Tx0‖+ ‖PZTx0‖ > ‖T‖ − ε.
Given δ > 0, x ∈ SX , and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ, we consider (y∗, y∗(y0)z∗0) ∈
S(Y⊕1Z)∗ as (Y ⊕1 Z)∗ = Y ∗ ⊕∞ Z∗. Clearly,

Re(y∗, y∗(y0)z∗0)(G̃x) = Re y∗(Gx) > 1− δ.
Moreover,

|y∗(Sx)| = |y∗(PY Tx+ z∗0(PZTx)y0)| = |(y∗, y∗(y0)z∗0
)
(Tx)| ≤ vG̃,δ(T ),

and then vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].
The arbitrariness of ε and T gives nG̃(X,Y ⊕1 Z) ≥ nG(X,Y ).

The reverse inequality is an immediate consequence of Lemma 6.21(a) as G̃ = I ◦ G
where I : Y → Y ⊕1 Z denotes the natural inclusion.
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NUMERICAL INDEX AND DAUGAVET PROPERTY OF OPERATOR IDEALS

AND TENSOR PRODUCTS

MIGUEL MARTÍN, JAVIER MERÍ, AND ALICIA QUERO

Abstract. We show that the numerical index of any operator ideal is less than or equal to the
minimum of the numerical indices of the domain space and the range space. Further, we show that the
numerical index of the ideal of compact operators or the ideal of weakly compact operators is less than
or equal to the numerical index of the dual of the domain space, and this result provides interesting
examples. We also show that the numerical index of a projective or injective tensor product of Banach
spaces is less than or equal to the numerical index of any of the factors. Finally, we show that if a
projective tensor product of two Banach spaces has the Daugavet property and the unit ball of one
of the factor is slicely countably determined or its dual contains a point of Fréchet differentiability
of the norm, then the other factor inherits the Daugavet property. If an injective tensor product
of two Banach spaces has the Daugavet property and one of the factors contains a point of Fréchet
differentiability of the norm, then the other factor has the Daugavet property.

1. Introduction

The numerical index of a Banach space is a constant that relates the numerical radius and the
norm of bounded linear operators on the space. It was introduced by G. Lumer in 1968 (see [8]).
Let us present the needed definitions and notation. Given a Banach space X, we write SX and BX
to denote, respectively, the unit sphere and the closed unit ball of the space. By X∗ we denote the
topological dual of X and L(X) will denote the Banach space of all bounded linear operators on X.
The numerical range of an operator T ∈ L(X) is the set of scalars given by

V (T ) := {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1},
and the numerical radius of T is then given by

v(T ) := sup{|λ| : λ ∈ V (T )}.
It is clear that the numerical radius is a seminorm on L(X) which is not greater than the operator
norm. Very often, the numerical radius is actually an equivalent norm on L(X) and to quantify this
fact it is used the numerical index of the space X:

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
= max{k > 0: k‖T‖ 6 v(T )∀T ∈ L(X)}.

It is clear that 0 6 n(X) 6 1; the value n(X) = 1 means that the numerical radius and the norm
coincide, while n(X) = 0 when the numerical radius is not an equivalent norm on L(X). We refer
the reader to the expositive paper [12], to Chapter 1 of the recent book [10], and to Subsection 1.1

Date: May 22nd, 2020; Revised August 7th, 2020.
2020 Mathematics Subject Classification. Primary 46B04, 47A12; Secondary 46B20, 46B28, 47B07.
Key words and phrases. Banach space; numerical index; numerical range; numerical radius; operator ideal; projective

and injective tensor product; Daugavet property; slicely countably determined sets and operators.
Research partially supported by projects PGC2018-093794-B-I00 (MCIU/AEI/FEDER, UE) and FQM-185 (Junta
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of the very recent paper [14]. Some results on numerical index which we would like to emphasize
are the following. For every Banach space X, n(X∗) 6 n(X) and the inequality can be strict;
n(c0) = n(`1) = n(`∞) = 1, a result which is also valid for all L- and M -spaces, the disk algebra, and
H∞. The numerical index behaves differently when dealing with real or complex Banach spaces. For
instance, Hilbert spaces of dimension greater than or equal to two have numerical index 0 in the real
case and 1/2 in the complex case. In general, if X is a complex Banach space, then n(X) > 1/ e and
all the values in the interval [1/ e, 1] are valid; for real Banach spaces, there is no restriction and all
the values of the interval [0, 1] are possible. The numerical index of Lp spaces for 1 < p < ∞, p 6= 2,
is still unknown, but it is known that n(Lp(µ)) > 0 in the real case for p 6= 2. All these results can be
found in the cited papers [10, 12, 14]. Some recent results can be found in [18], where the exact value
of some two-dimensional `p spaces is calculated, and in [1, 2, 22], for instance. Different extensions of
the concept of numerical index appear in [11] and [25].

There is a property somehow related to the numerical index called Daugavet property. A Banach
space X has the Daugavet property [13] if the norm equality

(DE) ‖Id + T‖ = 1 + ‖T‖
holds for all rank-one operators T ∈ L(X) and, in this case, the same happens for all weakly compact
operators on X. Examples of Banach spaces satisfying this property are L1(µ, Y ) when the positive
measure µ is atomless and Y is arbitrary, C(K,Y ) when the compact space K is perfect and Y is
arbitrary, or the disk algebra. Let us say that there is a relation between the Daugavet property
and the numerical range of operators: an operator T satisfies (DE) if and only if sup ReV (T ) = ‖T‖
(see [8] for instance). Classical references for Daugavet property include [13, 24, 26]. For very recent
results, we refer the reader to [5, 19], for instance.

To state the results of the paper, we need to introduce some definitions and notation. Given Banach
spaces X and Y , we write L(X,Y ), K(X,Y ), W(X,Y ), and A(X,Y ) to denote, respectively, the
space of (bounded linear) operators, compact operators, weakly compact operators, and approximable
operators (i.e. norm limits of finite rank operators), all of them endowed with the operator norm.
Finally, we consider the space of all nuclear operators: an operator T : X −→ Y between Banach spaces
is called nuclear if there exist x∗n ∈ X and yn ∈ Y for every n ∈ N such that

∑∞
n=1 ‖x∗n‖ ‖yn‖ < ∞

and

Tx =

∞∑

n=1

x∗n(x)yn (x ∈ X).

The space of all nuclear operators, denoted by N (X,Y ), is a Banach space endowed with the norm

N(T ) = inf

{ ∞∑

n=1

‖x∗n‖ ‖yn‖ : Tx =

∞∑

n=1

x∗n(x)yn

}
,

where the infimum is taken over all the representations of T as above. The projective tensor product
of X and Y , denoted by X⊗̂πY , is the completion of X ⊗ Y under the norm given by

‖u‖π = inf

{
n∑

i=1

‖xi‖ ‖yi‖ : u =

n∑

i=1

xi ⊗ yi
}
,

where the infimum is taken over all the representations of u =
∑n

i=1 xi⊗yi. It follows from the definition
that BX⊗̂πY = conv(BX ⊗ BY ). The projective tensor product of two operators S ∈ L(X,W ) and

T ∈ L(Y,Z) between Banach spaces, denoted by S ⊗π T , is the unique operator between X⊗̂πY and
W ⊗̂πZ such that (S ⊗π T )(x ⊗ y) = Sx ⊗ Ty for every x ∈ X and y ∈ Y , which also satisfies that
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‖S ⊗π T‖ = ‖S‖ ‖T‖. The injective tensor product of X and Y , denoted by X⊗̂εY , is the completion
of X ⊗ Y under the norm given by

‖u‖ε = sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)y∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
,

where
∑n

i=1 xi ⊗ yi is any representation of u. The injective tensor product of two operators S ∈
L(X,W ) and T ∈ L(Y,Z) between Banach spaces, denoted by S⊗ε T , is the unique operator between
X⊗̂εY and W ⊗̂εZ such that (S⊗εT )(x⊗y) = Sx⊗Ty for every x ∈ X and y ∈ Y , which also satisfies
that ‖S ⊗ε T‖ = ‖S‖ ‖T‖. We refer the reader to [7] and [21] for more information and background
about ideals of operators and tensor products of Banach spaces.

For ideals of operators, we show in Section 2 that for every operator ideal Z of L(X,Y ) endowed
with the operator norm we have that n(Z) 6 min{n(X), n(Y ). In the case of compact and weakly
compact operators, we may improve this inequality to

n(K(X,Y )) 6 min{n(X∗), n(Y )}, n(W(X,Y )) 6 min{n(X∗), n(Y )}.
This result allows us to present some interesting examples as the existence of a real Banach space X
such that n(X) = 1 while n(K(X,Y )) = n(W(X,Y )) = 0 for every Banach space Y . In particular,
n(X) = 1 while n(K(X,X)) = n(W(X,X)) = 0.

For tensor products of Banach spaces, we prove in Section 3 that the numerical indices of X⊗̂πY
and X⊗̂εY are less than or equal to the minimum of n(X) and n(Y ). As a consequence, and just
using representation theorems, we get some consequences for the space of approximable operators and
for the space of nuclear operators:

n(A(X,Y )) 6 min{n(X∗), n(Y )}
and, in the case where X∗ or Y has the approximation property,

n(N (X,Y )) 6 min{n(X∗), n(Y )}.
Finally, we study in Section 4 the Daugavet property of tensor products of Banach spaces. We

show that when X⊗̂πY has the Daugavet property and BY is a slicely countably determined set (see
the definition at the beginning of the section), then X has the Daugavet property. We also provide
with the analogous result in the case where the space Y ∗ has a point of Fréchet differentiability of
the norm. For injective tensor products, we do not know if the result with the hypothesis of slicely
countably determined unit ball is true or not, but there is a positive result when the space Y has a
point of Fréchet differentiability of the norm.

2. Numerical index of some operator ideals of L(X,Y )

Given two Banach spaces X and Y , we first study the relationship between the numerical index of
subspaces of L(X,Y ) which are ideals and the numerical indices of the spaces X and Y . Recall that,
according to Pietsch, an operator ideal Z is a “rule” (formally a subclass of the class of all continuous
linear operators between Banach spaces) assigning to every pair of Banach spaces X and Y a linear
subspace Z(X,Y ) of L(X,Y ) (called a component of Z) which contains the finite rank operators and
satisfies that

L(F, Y ) ◦ Z(E,F ) ◦ L(X,E) ⊆ Z(X,Y )

for all Banach spaces E, F , X, Y . We refer the reader to the monograph [7] for background. Here,
we will only consider ideals whose components are closed subspaces.
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Proposition 2.1. Let X, Y be Banach spaces, then n
(
L(X,Y )

)
6 min{n(X), n(Y )}. Moreover, the

same happens to every operator ideal Z(X,Y ) 6 L(X,Y ) endowed with the operator norm, that is,
n(Z(X,Y )) 6 min{n(X), n(Y )}.

To give the proof of the proposition, we need the following lemma which is well known and can be
deduced, for instance, from [6, Corollary 2.1.2].

Lemma 2.2. Let X1, X2 be Banach spaces and suppose that there is an isometric embedding
Φ: L(X1) −→ L(X2) satisfying Φ(IdX1) = IdX2. Then, n(X2) 6 n(X1).

Proof of Proposition 2.1. We first show that n
(
L(X,Y )

)
6 n(X). Fixed J ∈ L(X), we define the map

ΦJ : L(X,Y ) −→ L(X,Y ) by ΦJ(T ) = T ◦ J for every T ∈ L(X,Y ) and observe that ‖ΦJ‖ = ‖J‖.
Indeed, the inequality ‖ΦJ‖ 6 ‖J‖ is evident. To prove the reverse one, given ε > 0, we find xε ∈ SX
satisfying ‖Jxε‖ > ‖J‖ − ε and then we take x∗ε ∈ SX∗ such that x∗ε(Jxε) = ‖Jxε‖ > ‖J‖ − ε. We fix
y0 ∈ SY and define the rank-one operator Tε ∈ L(X,Y ) by Tε(x) = x∗ε(x)y0 for every x ∈ X, which
satisfies ‖Tε‖ = 1 and

‖ΦJ(Tε)‖ = ‖Tε ◦ J‖ > ‖[Tε ◦ J ](xε)‖ = ‖x∗ε(Jxε)y0‖ > ‖J‖ − ε.
Therefore ‖ΦJ‖ > ‖J‖, and hence the mapping J 7−→ ΦJ is an isometric embedding from L(X) to
L
(
L(X,Y )

)
carrying IdX to IdL(X,Y ), so the inequality n

(
L(X,Y )

)
6 n(X) follows by Lemma 2.2.

The inequality n
(
L(X,Y )

)
6 n(Y ) can be proved analogously, using ΨS(T ) = S ◦ T instead of ΦJ .

To prove the moreover part it suffices to observe that if T ∈ Z(X,Y ) ⊂ L(X,Y ) and J ∈ L(X),
then ΦJ(T ) = T ◦ J belongs to Z(X,Y ) for every T ∈ Z(X,Y ) by the ideal property. So the map
J 7−→ ΦJ is an isometric embedding from L(X) to L(Z(X,Y )) carrying IdX to IdZ(X,Y ), and the
result follows again by Lemma 2.2. For the inequality involving n(Y ), the argument is analogous,
considering now that ΨS(T ) = S ◦ T ∈ Z(X,Y ) for every T ∈ Z(X,Y ) and so the map S 7−→ ΨS is
an isometric embedding from L(Y ) to L(Z(X,Y )) carrying IdY to IdZ(X,Y ). �

We can get a stronger result for the numerical indices of K(X,Y ) andW(X,Y ). To do so, we recall
that Kw∗(X∗, Y ) denotes the space of compact operators that are weak∗-weakly continuous from X∗

into Y endowed with the usual operator norm. This space was originally introduced by L. Schwartz
[23] as the ε-product of the spaces X and Y . It is well-known that Kw∗(X∗, Y ) ≡ Kw∗(Y ∗, X) and that
K(X,Y ) can be identified with Kw∗(X∗∗, Y ) using the mapping T 7−→ T ∗∗. Analogously, Lw∗(X∗, Y )
denotes the space of operators that are weak∗-weakly continuous from X∗ into Y. Finally, we recall
that W(X,Y ) can be identified with Lw∗(X∗∗, Y ). We refer the reader to [20, 23] for background on
this type of spaces.

Theorem 2.3. Let X, Y be Banach spaces, then the following hold:

(a) n
(
Lw∗(X∗, Y )

)
6 min{n(X), n(Y )}.

(b) n
(
Kw∗(X∗, Y )

)
6 min{n(X), n(Y )}.

(c) n
(
W(X,Y )

)
6 min{n(X∗), n(Y )}.

(d) n
(
K(X,Y )

)
6 min{n(X∗), n(Y )}.

Proof. To prove (a), for J ∈ L(X) we define the operator ΨJ : Lw∗(X∗, Y ) −→ Lw∗(X∗, Y ) given by
ΨJ(T ) = T ◦ J∗ for every T ∈ Lw∗(X∗, Y ). Observe that it is well-defined because J∗ is weak∗-weak∗

continuous. Moreover, reasoning as in the proof of Proposition 2.1 we get ‖ΨJ‖ = ‖J‖. Therefore,
the mapping J 7−→ ΨJ is an isometric embedding from L(X) to L

(
Lw∗(X∗, Y )

)
carrying IdX to

IdLw∗ (X∗,Y ) so the inequality n
(
Lw∗(X∗, Y )

)
6 n(X) follows from Lemma 2.2.

For the proof of n
(
Lw∗(X∗, Y )

)
6 n(Y ), just note that Lw∗(X∗, Y ) ≡ Lw∗(Y ∗, X).
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Let us prove (b). To show that n
(
Kw∗(X∗, Y )

)
6 n(X) it suffices to observe that ΨJ |Kw∗ (X∗,Y ), the

restriction of ΨJ to Kw∗(X∗, Y ), lies in L
(
Kw∗(X∗, Y )

)
and satisfies

∥∥ΨJ |Kw∗ (X∗,Y )

∥∥ = ‖J‖. Therefore,

the mapping J 7−→ ΨJ |Kw∗ (X∗,Y ) is an isometric embedding from L(Y ) to L
(
Kw∗(X∗, Y )

)
carrying

IdX to IdKw∗ (X∗,Y ) and Lemma 2.2 gives the result. To prove n
(
Kw∗(X∗, Y )

)
6 n(Y ), we use what

we just proved and the identification Kw∗(X∗, Y ) ≡ Kw∗(Y ∗, X).
(c) follows from (a) using the identification W(X,Y ) ≡ Lw∗(X∗∗, Y ).
(d) follows from (b) using the identification K(X,Y ) ≡ Kw∗(X∗∗, Y ). �
As a consequence of [4, Examples 3.3] and Theorem 2.3 we have the following interesting examples.

Examples 2.4.

(a) There exists a real Banach space X with n(X) = 1 and n
(
K(X,Y )

)
= n

(
W(X,Y )

)
= 0

for every Banach space Y . In particular, n(X) = 1 and n(K(X,X)) = n(W(X,X)) = 0.
Indeed, the real space X given in [4, Examples 3.3.a] satisfies n(X) = 1 and n(X∗) = 0 so
n
(
K(X,Y )

)
= n

(
W(X,Y )

)
= 0 for every Y by Theorem 2.3.

(b) There exists a complex Banach space X with n(X) = 1 and n
(
K(X,Y )

)
= n

(
W(X,Y )

)
= 1/ e

for every Banach space Y . In particular, n(X) = 1 and n(K(X,X)) = n(W(X,X)) = 1/ e.
The complex space X given in [4, Examples 3.3.b] satisfies n(X) = 1 and n(X∗) = 1/ e, so it
works by Theorem 2.3 and the fact that every complex Banach space has numerical index less
than or equal to 1/ e.

To obtain the analogue of Theorem 2.3 for the numerical index of the space of approximable op-
erators and also to get an analogous result for nuclear operators, we will use their representation as
suitable tensor products in the next section.

We emphasize a consequence of the results for the case when the ideal spaces have numerical index
one.

Corollary 2.5. Let X, Y be Banach spaces.

(1) If n(L(X,Y )) = 1, then n(X) = n(Y ) = 1.
(2) If n(K(X,Y )) = 1, then n(X∗) = n(Y ) = 1.
(3) If n(W(X,Y )) = 1, then n(X∗) = n(Y ) = 1.

One may wonder whether the inequalities obtained for the numerical indices of operator ideals are
equalities in general. The following example shows that this is not the case, even for finite-dimensional
spaces.

Example 2.6. There exist finite-dimensional Banach spaces X and Y with n(X∗) = n(Y ) = 1 and
n
(
L(X,Y )

)
= n

(
F(X,Y )

)
= n

(
K(X,Y )

)
= n

(
W(X,Y )

)
< 1. Indeed, consider X = `4∞ and Y = `41,

which have numerical index 1, and observe that n
(
L(X,Y )

)
< 1 by [15, Proposition 2.4, Lemma 3.2].

However there are cases in which the equality holds for the spaces of compact and weakly compact
operators.

Remark 2.7. Let K be a compact Hausdorff space, and let X be a Banach space. Then,

n
(
K(X,C(K))

)
= n

(
W(X,C(K))

)
= n(X∗).

Indeed, the space K(X,C(K)) can be identified with C(K,X∗) (see [9, Theorem VI.7.1]) and we
have n

(
C(K,X∗)

)
= n(X∗) by [17, Theorem 5]. The equality n

(
W(X,C(K))

)
= n(X∗) holds by [16,

Corollary 3].

In the next result we give other conditions for which the equality is satisfied for the space of compact
operators.
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Proposition 2.8. Let X be a Banach space such that n(X∗∗∗) = 1 and let Z be an isometric predual
of `1. Then, the space K(X,Z)∗∗ has numerical index one. Therefore, so do K(X,Z)∗ and K(X,Z).
In particular, n

(
K(c0)

)
= n

(
K(c0)∗

)
= n

(
K(c0)∗∗

)
= n

(
L(`∞)

)
= 1 and n

(
K(`1, c0)∗∗

)
= 1.

Proof. Since Z has the approximation property, K(X,Z) ≡ X∗⊗̂εZ. Since Z∗ has the approximation
property and the Radon-Nikodým property, we can apply [7, Theorem 16.6] to obtain K(X,Z)∗ ≡
(X∗⊗̂εZ)∗ ≡ X∗∗⊗̂π`1. Therefore, K(X,Z)∗∗ ≡ (X∗∗⊗̂π`1)∗ ≡ L(X∗∗, `∞). Now, by using the
identification between `∞ and C(βN), where βN is the Stone–Čech compactification of N, and the one
between Cw∗(βN, X∗∗∗) and L

(
X∗∗, C(βN)

)
(see [9, Theorem VI.7.1]), we obtain that

n
(
L(X∗∗, `∞)

)
= n

(
Cw∗(βN, X∗∗∗)

)
> n(X∗∗∗) = 1,

where the inequality is given by [16, Proposition 7]. Then, n
(
K(X,Z)∗∗

)
= 1 as desired. The other

statements follow straightforwardly. �

3. Numerical index of tensor products

Our goal here is to study the numerical index of projective and injective tensor products of Banach
spaces. It is known that n(X⊗̂εY ) and n(X⊗̂πY ) cannot be computed as a function of n(X) and n(Y ).
Indeed, it is shown in [17, Example 10] that there exist Banach spaces X and Y with n(X) = n(Y ) = 1
and such that n(X⊗̂εX) < 1, n(Y ⊗̂πY ) < 1, and n(X⊗̂πX) = n(Y ⊗̂εY ) = 1. Therefore, our results
will be inequalities, as in the previous section.

Our first result on tensor products follows immediately by Proposition 2.1 and the identifications
(X⊗̂πY )∗ ≡ L(X,Y ∗) ≡ L(Y,X∗) (see [7, Proposition 3.2], for instance).

Corollary 3.1. Let X, Y be Banach spaces. Then, n
(
(X⊗̂πY )∗

)
6 min{n(X∗), n(Y ∗)}.

Our main result in this section is the following pair of inequalities.

Theorem 3.2. Let X, Y be Banach spaces. Then, the following hold:

(a) n(X⊗̂πY ) 6 min{n(X), n(Y )},
(b) n(X⊗̂εY ) 6 min{n(X), n(Y )}.

We introduce some notation in order to present an interesting tool to calculate numerical radii
which we will use in the proof of the theorem. Given a Banach space X, δ > 0, and T ∈ L(X), we
write

vδ(T ) := sup
{
|x∗(Tx)| : x ∈ BX , x∗ ∈ BX∗ , Rex∗(x) > 1− δ

}
.

Lemma 3.3 ([11, Lemma 3.4]). Let X be a Banach space. For T ∈ L(X), we have that

v(T ) = inf
δ>0

vδ(T ).

Moreover, if A ⊂ BX satisfies that conv(A) = BX and B ⊂ BX∗ satisfies that convw
∗
(B) = BX∗, then

the same equality holds if we replace BX and BX∗ by A and B respectively in the definition of vδ(T ),
that is,

v(T ) = inf
δ>0

sup
{
|x∗(Tx)| : x ∈ A, x∗ ∈ B, Rex∗(x) > 1− δ

}
.

Proof of the Theorem 3.2. (a). We prove first n(X⊗̂πY ) 6 n(X). Given S ∈ L(X) with ‖S‖ = 1, we
consider the operator T = S ⊗π IdY ∈ L(X⊗̂πY ) which satisfies that ‖T‖ = ‖S‖‖IdY ‖ = 1. Since
BX⊗̂πY = conv (BX ⊗BY ) and (X⊗̂πY )∗ = L(Y,X∗), by Lemma 3.3 we can estimate the numerical
radius of T as

v(T ) = inf
δ>0

ṽδ(T ),
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where for δ > 0,

ṽδ(T ) := sup
{
|〈Φ, T z〉| : z ∈ BX ⊗BY , Φ ∈ BL(Y,X∗), Re〈Φ, z〉 > 1− δ

}
.

Fixed δ > 0, we claim that ṽδ(T ) 6 vδ(S). Indeed, fix z = x⊗y ∈ BX⊗BY and Φ ∈ BL(Y,X∗) such that
Re〈Φ, z〉 = Re〈Φ(y), x〉 > 1−δ, define x∗ = Φ(y) ∈ BX∗ , and observe that Rex∗(x) = Re〈Φ, z〉 > 1−δ.
Then,

|〈Φ, T z〉| = |〈Φ, Sx⊗ y〉| = |〈Φ(y), Sx〉| = |x∗(Sx)| 6 vδ(S)

which gives ṽδ(T ) 6 vδ(S). Then we get that v(T ) 6 v(S) and, as ‖T‖ = ‖S‖ = 1, we deduce that
n(X⊗̂πY ) 6 n(X). By repeating this process using this time the identification (X⊗̂πY )∗ ≡ L(X,Y ∗),
we also obtain that n(X⊗̂πY ) 6 n(Y ).

(b). We prove n(X⊗̂εY ) 6 n(X). Given S ∈ L(X) with ‖S‖ = 1, we consider T = S ⊗ε IdY ∈
L(X⊗̂εY ) which satisfies that ‖T‖ = ‖S‖‖IdY ‖ = 1. Since B(X⊗̂εY )∗ = convw

∗
(BX∗ ⊗BY ∗) and

BX⊗̂εY = {z ∈ X ⊗ Y : ‖z‖ε 6 1},
we use the following to estimate the numerical radius of T (again by by Lemma 3.3):

v(T ) = inf
δ>0

v̄δ(T )

where

v̄δ := sup {|z∗(Tz)| : z∗ ∈ BX∗ ⊗BY ∗ , z ∈ X ⊗ Y with ‖z‖ε 6 1, Re z∗(z) > 1− δ} .
Given δ > 0, we claim that v̄δ(T ) 6 vδ(S). Indeed, fixed z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y with

‖z‖ε 6 1 and z∗ = x∗0 ⊗ y∗0 ∈ BX∗ ⊗ BY ∗ with Re z∗(z) = Re
∑n

i=1 x
∗
0(xi)y

∗
0(yi) > 1 − δ, we consider

x =
∑n

i=1 y
∗
0(yi)xi ∈ BX which satisfies

‖x‖ =

∥∥∥∥∥
n∑

i=1

y∗0(yi)xi

∥∥∥∥∥ 6 sup

{∣∣∣∣∣
n∑

i=1

y∗0(yi)x
∗(xi)

∣∣∣∣∣ : x∗ ∈ BX∗

}
6 ‖z‖ε

and Rex∗0(x) = Re
∑n

i=1 x
∗
0(xi)y

∗
0(yi) > 1− δ. Hence we can write

|z∗(Tz)| =
∣∣∣∣∣〈x
∗
0 ⊗ y∗0,

n∑

i=1

Sxi ⊗ yi〉
∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

x∗0(Sxi)y
∗
0(yi)

∣∣∣∣∣ = |x∗0(Sx)| 6 vδ(S).

Then, we deduce that v̄δ(T ) 6 vδ(S) as claimed. From this, we get that v(S) > v(T ) > n(X⊗̂εY ).
Therefore n(X⊗̂εY ) 6 n(X). The inequality n(X⊗̂εY ) 6 n(Y ) follows by symmetry. �

Let us observe that it is not possible to improve Theorem 3.2 to get the numerical index of the dual
of the factors in the right-hand side.

Example 3.4. Let X1 = C[0, 1], X2 = L1[0, 1] and let Y be a Banach space with n(Y ) = 1 and
n(Y ∗) < 1 (use [4, Examples 3.3] for instance). Then, X1⊗̂εY ≡ C([0, 1], Y ), so n(X1⊗̂εY ) = 1 by
[17, Theorem 5], while n(Y ∗) < 1. On the other hand, X2⊗̂πY ≡ L1([0, 1], Y ), so n(X1⊗̂πY ) = 1 by
[17, Theorem 8], while n(Y ∗) < 1.

Nevertheless, the next inequality for the numerical index of the dual of an injective tensor product
holds.

Corollary 3.5. Let X, Y be Banach spaces. If X∗ or Y ∗ has the approximation property and X or
Y has the Radon-Nikodým property, then

n
(
(X⊗̂εY )∗

)
6 min {n(X∗), n(Y ∗)} .
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Proof. The result is an immediate consequence of Theorem 3.2 as the identification (X⊗̂εY )∗ ≡
X∗⊗̂πY ∗ holds under the hypotheses (see [7, Theorem 16.6]). �

The next consequence is an inequality for the numerical index of spaces of approximable operators
similar to the one given in Theorem 2.3 for compact and weakly compact operators.

Corollary 3.6. Let X, Y be Banach spaces. Then,

n
(
A(X,Y )

)
6 min {n(X∗), n(Y )} .

Proof. It follows from Theorem 3.2.b as A(X,Y ) ≡ X∗⊗̂εY (see [7, Examples 4.2]). �
For the space of nuclear operators we may also give some interesting inequalities.

Corollary 3.7. Let X, Y be Banach spaces. If either X∗ or Y has the approximation property, then
the following hold:

(a) n
(
N (X,Y )

)
6 min{n(X∗), n(Y )}.

(b) n
(
N (X,Y )∗

)
6 min{n(X∗∗), n(Y ∗)}.

Proof. (a). Since X∗ or Y has the approximation property, we have that N (X,Y ) ≡ X∗⊗̂πY (see [7,
Corollary 5.7.1]) and the result follows from Theorem 3.2.a.

(b). Corollary 3.1 gives the result using the equality N (X,Y )∗ =
(
X∗⊗̂πY

)∗
. �

Finally, we may give a result analogous to Corollary 2.5 for the results of this section.

Corollary 3.8. Let X, Y be Banach spaces.

(1) If n
(
(X⊗̂πY )∗

)
= 1, then n(X∗) = n(Y ∗) = 1.

(2) If n(X⊗̂εY ) = 1, then n(X) = n(Y ) = 1.
(3) If n(X⊗̂πY ) = 1, then n(X) = n(Y ) = 1.
(4) If n

(
A(X,Y )

)
= 1, then n(X∗) = n(Y ) = 1.

(5) If n
(
(X⊗̂εY )∗

)
= 1, then n(X∗) = n(Y ∗) = 1.

(6) If n
(
N (X,Y )

)
= 1, then n(X∗) = n(Y ) = 1.

(7) If n
(
N (X,Y )∗

)
= 1, then n(X∗∗) = n(Y ∗) = 1.

4. Daugavet property and tensor products

In this section we study the relationship between the Daugavet property and tensor products. A
glance at Corollary 3.8 may lead to think that an analogous result can be true for the Daugavet
property, that is, if X⊗̂πY or X⊗̂εY has the Daugavet property, do X and Y inherit this property?
The answer is negative in general since, for instance, L1([0, 1], Y ) = L1[0, 1]⊗̂πY and C([0, 1], Y ) =
C[0, 1]⊗̂εY have the Daugavet property for every Banach space Y , regardless that Y has the Daugavet
property or not. Our goal here is to show some cases in which the Daugavet property of a tensor
product passes to one of the factors. To state our results, we need the definition and basic properties
of the concept of slicely countably determined sets introduced in [3], where we refer for background.
Let A be a bounded subset of a Banach space X. A countable family {Vn : n ∈ N} of subsets of A is
called determining for A if the inclusion A ⊆ conv(B) holds for every subset B ⊆ A intersecting all
the sets Vn. Recall that a slice of A is a nonempty intersection of A with an open half space, and for
x∗ ∈ X∗ and δ > 0, we write

Slice(A, x∗, δ) := {x ∈ A : Rex∗(x) > sup Rex∗(A)− δ}.
The set A is said to be slicely countably determined (SCD in short) if there exists a countable family
of slices which is determining for A. Examples of SCD sets are the Radon-Nikodým set and those sets
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not containing basic sequences equivalent to the basis of `1 [3]. A bounded linear operator T : X −→ Y
between two Banach spaces X and Y is an SCD-operator if T (BX) is an SCD set, so examples of
SCD-operators are the strong Radon-Nikodým ones and those not fixing copies of `1 [3]. Finally, let
us comment that a set A is SCD if and only if conv(A) is SCD [10, Proposition 7.17]. Consequently,
if A is SCD then so is every set C satisfying A ⊂ C ⊂ conv(A).

The main result of this section is the following one which deals with projective tensor products.

Theorem 4.1. Let X, Y be Banach spaces. Suppose that BY is an SCD set and X⊗̂πY has the
Daugavet property. Then, X has the Daugavet property.

We need the following preliminary result which shows that the projective tensor product of an
SCD-operator and a rank-one operator is again an SCD-operator on a projective tensor product.

Lemma 4.2. Let X, Y be Banach spaces, let S ∈ L(X) be a rank-one operator and let T ∈ L(Y ) be
an SCD-operator. Then S ⊗π T ∈ L(X⊗̂πY ) is an SCD-operator.

Proof. We may and do assume that ‖S‖ = ‖T‖ = 1. In order to prove that [S ⊗π T ](BX⊗̂πY ) is SCD

it is enough to prove that S(BX)⊗ T (BY ) is SCD as

S(BX)⊗ T (BY ) ⊂ [S ⊗π T ](BX⊗̂πY ) = [S ⊗π T ](conv(BX ⊗BY )) ⊂ conv (S(BX)⊗ T (BY )) .

Since S is a rank-one operator, there exist x0 ∈ SX and Γ ⊂ K such that S(BX) = Γ{x0} (Γ equals
either BK or its interior). So we can write S(BX)⊗ T (BY ) = {x0} ⊗ ΓT (BY ). Observe that ΓT (BY )
is SCD since T (BY ) is SCD and

T (BY ) ⊂ ΓT (BY ) ⊂ T (BY ).

Therefore, for each n ∈ N we can find Vn = Slice(ΓT (BY ), y∗n, εn) such that the sequence {Vn : n ∈ N}
is determining for ΓT (BY ). Now fix x∗0 ∈ SX∗ satisfying Rex∗0(x0) = 1 and, for each n ∈ N, define
ϕn ∈ (X⊗̂πY )∗ = L(X,Y ∗) by ϕn(x) = x∗0(x)y∗n for every x ∈ X. Let us prove that the slices

Sn = {x0} ⊗ Vn = Slice ({x0} ⊗ ΓT (BY ), ϕn, εn) (n ∈ N)

form a determining sequence for {x0}⊗ΓT (BY ). Indeed, if B ⊆ {x0}⊗ΓT (BY ) intersects all the Sn,
then B must be of the form {x0} ⊗ B2 with B2 ⊂ ΓT (BY ) satisfying B2 ∩ Vn 6= ∅ for every n ∈ N.
Since Vn is determining for ΓT (BY ), this implies that ΓT (BY ) ⊂ conv(B2) and thus

{x0} ⊗ ΓT (BY ) ⊂ {x0} ⊗ conv(B2) ⊂ conv(B)

which shows that the sequence {Sn} is determining for {x0} ⊗ ΓT (BY ) = S(BX)⊗ T (BY ). �
We are ready to show that the Daugavet property passes from the projective tensor product to one

of the factors if the other one is SCD.

Proof of Theorem 4.1. Fix a rank-one operator S ∈ L(X) and consider T = S ⊗π IdY ∈ L(X⊗̂πY )
which satisfies ‖T‖ = ‖S‖ and is an SCD-operator by Lemma 4.2. Since X⊗̂πY has the Daugavet
property, T satifisfies the Daugavet equation by [3, Corollary 5.9]:

∥∥IdX⊗̂πY + T
∥∥ = 1 + ‖T‖ = 1 + ‖S‖.

By the definition of T we have
∥∥IdX⊗̂πY + T

∥∥ = ‖(IdX + S)⊗π IdY ‖ = ‖IdX + S‖
and so ‖IdX + S‖ = 1 + ‖S‖, as desired. �

We do not know whether the corresponding result for the injective tensor product is true or not.
But we have the following positive result in the same line.
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Proposition 4.3. Let X, Y be Banach spaces such that X⊗̂εY has the Daugavet property. Suppose
that the norm of Y is Fréchet differentiable at a point y0 ∈ SY . Then, X has the Daugavet property.

We need the following characterization of the Daugavet property which appears in the seminal
paper [13].

Lemma 4.4 ([13, Lemma 2.2]). Let X be a Banach space. Then, the following assertions are equiv-
alent:

(i) X has the Daugavet property;
(ii) for every x ∈ SX , x∗ ∈ SX∗ and ε > 0, there is y ∈ Slice(SX , x

∗, ε) such that ‖x+ y‖ > 2− ε;
(iii) for every x ∈ SX , x∗ ∈ SX∗ and ε > 0, there is y∗ ∈ Slice(SX∗ , x, ε) such that ‖x∗+y∗‖ > 2−ε.

Proof of Proposition 4.3. Since the norm of Y is Fréchet differentiable at y0 ∈ SY , there is a unique
y∗0 ∈ SY ∗ which is strongly exposed in BY ∗ by y0, that is,

(4.1) ∀ε > 0 ∃δ > 0: y∗ ∈ BY ∗ , Re y∗(y0) > 1− δ =⇒ ‖y∗0 − y∗‖ < ε.

Given x∗0 ∈ SX∗ and x0 ∈ BX , we consider u0 = x0⊗ y0 ∈ BX⊗̂εY and ϕ0 = x∗0⊗ y∗0 ∈ S(X⊗̂εY )∗ . Since

X⊗̂εY has the Daugavet property, by Lemma 4.4, fixed ε > 0, we may find ϕ ∈ Slice
(
B(X⊗̂εY )∗ , u0, δ

)

such that ‖ϕ0 + ϕ‖ > 2 − ε. As B(X⊗̂εY )∗ = convw
∗
(BX∗ ⊗ BY ∗), we may suppose that ϕ = x∗ ⊗ y∗

with x∗ ∈ BX∗ and y∗ ∈ BY ∗ . On the one hand, from ϕ ∈ Slice
(
B(X⊗̂εY )∗ , u0, δ

)
it follows that

x∗ ∈ Slice(BX∗ , x0, δ) and y∗ ∈ Slice(BY ∗ , y0, δ). On the other hand, we can write

2− ε < ‖ϕ0 + ϕ‖ 6 ‖x∗0 ⊗ y∗0 + x∗ ⊗ y∗0‖+ ‖x∗ ⊗ y∗0 − x∗ ⊗ y∗‖ 6 ‖x∗0 + x∗‖+ ‖y∗0 − y∗‖.
But ‖y∗0 − y∗‖ < ε by (4.1), so we deduce that ‖x∗0 +x∗‖ > 2− 2ε. Now, X has the Daugavet property
by Lemma 4.4. �

We can obtain a result similar to the previous one for the projective tensor product which does not
follow from Theorem 4.1.

Proposition 4.5. Let X, Y be Banach spaces such that X⊗̂πY has the Daugavet property. Suppose
that the norm of Y ∗ is Fréchet differentiable at a point y∗0 ∈ SY ∗. Then, X has the Daugavet property.

Proof. Since y∗0 ∈ SY ∗ is a point of Fréchet differentiability, there is a unique y0 ∈ SY satisfying:

(4.2) ∀ε > 0 ∃δ > 0: y ∈ BY , Re y∗0(y) > 1− δ =⇒ ‖y0 − y‖ < ε.

Given x0 ∈ SX and x∗0 ∈ BX∗ , we consider u0 = x0 ⊗ y0 ∈ SX⊗̂πY and ϕ0 = x∗0 ⊗ y∗0 ∈ B(X⊗̂πY )∗ .

Since X⊗̂πY has the Daugavet property and BX⊗̂πY = conv(BX ⊗BY ), fixed ε > 0, we may find u ∈
Slice

(
BX⊗̂πY , ϕ0, δ

)
of the form u = x⊗y with x ∈ BX and y ∈ BY such that ‖u0 +u‖ > 2−ε. On the

one hand, from u ∈ Slice
(
BX⊗̂πY , ϕ0, δ

)
it follows that x ∈ Slice(BX , x

∗
0, δ) and y ∈ Slice(BY , y

∗
0, δ).

On the other hand, we have

2− ε < ‖u0 + u‖ 6 ‖x0 ⊗ y0 + x⊗ y0‖+ ‖x⊗ y − x⊗ y0‖ 6 ‖x0 + x‖+ ‖y − y0‖.
But ‖y−y0‖ < ε by (4.2), so ‖x0 +x‖ > 2−2ε. Now, X has the Daugavet property by Lemma 4.4. �
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Abstract. We give a lower bound for the numerical index of two-dimensional real spaces with absolute
and symmetric norm. This allows us to compute the numerical index of the two-dimensional real Lp-
space for 3/2 6 p 6 3.

1. Introduction

The numerical index of a Banach space is a constant relating the norm and the numerical range of
bounded linear operators on the space. Let us recall the relevant definitions. Given a Banach space
X, we will write X∗ for its topological dual and L(X) for the Banach algebra of all (bounded linear)
operators on X. For an operator T ∈ L(X), its numerical range is defined as

V (T ) := {x∗(Tx) : x∗ ∈ X∗, x ∈ X, ‖x∗‖ = ‖x‖ = x∗(x) = 1},
and its numerical radius is

v(T ) := sup{|λ| : λ ∈ V (T )}.
Clearly, v is a seminorm on L(X) satisfying v(T ) 6 ‖T‖ for every T ∈ L(X). The numerical index of
X is the constant given by

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
or, equivalently, n(X) is the greatest constant k > 0 satisfying k ‖T‖ 6 v(T ) for every T ∈ L(X).
Classical references on numerical index are the paper [3] and the monographs by F.F. Bonsall and
J. Duncan [1, 2] from the seventies. There has been a deep development of this field of study with the
contribution of several authors. The reader will find the state of the art on the subject in the survey
paper [7] and references therein.

In the following we recall some results concerning the numerical index which will be relevant to our
discussion. It is clear that 0 6 n(X) 6 1 for every Banach space X. In the real case, all values in
[0, 1] are possible for the numerical index. In the complex case, one has 1/ e 6 n(X) 6 1 and all of
these values are possible. Let us also mention that v(T ∗) = v(T ) for every T ∈ L(X), where T ∗ is the
adjoint operator of T (see [1, § 9]), so it clearly follows that n(X∗) 6 n(X). Although the equality
does not always hold, when X is a reflexive space, one clearly gets n(X) = n(X∗). There are some
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classical Banach spaces for which the numerical index has been calculated. If H is a Hilbert space
of dimension greater than one, then n(H) = 0 in the real case and n(H) = 1/2 in the complex case.
Besides, n(L1(µ)) = 1 and the same happens to all its isometric preduals. In particular, it follows
that n

(
C(K)

)
= 1 for every compact K.

The problem of computing the numerical index of the Lp-spaces has been latent since the beginning
of the theory [3]. In order to present the known results on this matter we need to fix some notation.
For 1 < p <∞, we write `mp for the m-dimensional Lp-space, q = p/(p−1) for the conjugate exponent
to p, and

Mp := max
t∈[0,1]

|tp−1 − t|
1 + tp

= max
t>1
|tp−1 − t|

1 + tp
,

which is the numerical radius of the operator represented by the matrix

(
0 1
−1 0

)
defined on the real

space `2p. This can be found in [9, Lemma 2], where it is also observed that Mq = Mp. Although it

is known that
{
n(`2p) : 1 < p <∞

}
= [0, 1[ in the real case (see [3, p. 488]), the exact computation of

n(`2p) has not been achieved for p 6= 2, all the more of n(`p). However, some results have been obtained
on the numerical index of the Lp-spaces [4, 5, 6, 9, 10], we summarize them in the following list.

(a) The sequence
(
n(`mp )

)
m∈N is decreasing.

(b) n
(
Lp(µ)

)
= inf{n(`mp ) : m ∈ N} for every measure µ such that dim

(
Lp(µ)

)
=∞.

(c) In the real case, n(Lp[0, 1]) > Mp

12 .

(d) In the real case, max

{
1

21/p
,

1

21/q

}
Mp 6 n(`2p) 6Mp.

The presence of the numerical radius of the operator represented by the matrix

(
0 1
−1 0

)
in the value

of the numerical index of Lp-spaces is not a coincidence. Although there are not too many examples of
Banach spaces for which the numerical index has been computed, for those two-dimensional real spaces
with absolute and symmetric norm whose numerical index is known, it coincides with the numerical
radius of the mentioned operator. This happens, for instance, to a family of octagonal norms and to
the spaces whose unit ball is a regular polygon, see [8, Theorem 2 and Theorem 5]. The aim of this
paper is to show that the same happens for many absolute and symmetric norms on R2, this is the
content of Theorem 2.2. We say that a norm ‖ · ‖ : R2 −→ R is absolute if ‖(1, 0)‖ = ‖(0, 1)‖ = 1 and

‖(a, b)‖ = ‖(|a|, |b|)‖

for every a, b ∈ R, and that the norm is symmetric if ‖(b, a)‖ = ‖(a, b)‖ for every a, b ∈ R. Some
of the most important examples of absolute and symmetric norms are `p-norms on R2. As a major
consequence of Theorem 2.2 we show that n(`2p) = Mp for 3/2 6 p 6 3, which improves partially [9,
Theorem 1] and throws some light to the long standing problem of computing the numerical index of
Lp-spaces.

To finish the introduction, we recall some facts about numerical radius and about optimization of
linear functions on convex sets that will be useful in our arguments. Let X be a Banach space, and
suppose that S ∈ L(X) is an onto isometry. Then, for every operator T ∈ L(X), it is easy to check
that

v(T ) = v(±S−1TS).
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This becomes particularly useful when X is R2 endowed with an absolute and symmetric norm, as we
can find a basis of the space of operators L(X) formed by onto isometries:

I1 =

(
1 0
0 1

)
, I2 =

(
1 0
0 −1

)
, I3 =

(
0 1
1 0

)
, I4 =

(
0 1
−1 0

)
.

For a convex set A, ext(A) stands for the set of its extreme points, that is, those points which
are not the mid point of any non-trivial segment contained in A. By Minkowski’s Theorem (see [11,
Corollary 1.13] for instance) a nonempty compact convex subset of Rn is equal to the convex hull of its
extreme points. Therefore, every linear function on a compact convex set attains its minimum (and
its maximum) at an extreme point of the set.

2. The results

We start with an easy lemma showing that, for two dimensional real spaces with absolute and
symmetric norm, the elements in the numerical range of I4 are smaller than those of Ij for j = 1, 2, 3.

Lemma 2.1. Let X be R2 endowed with an absolute and symmetric norm. Then

|x∗(Ijx)| > |x∗(I4x)| (j = 1, 2, 3)

for every x ∈ SX and x∗ ∈ SX∗ such that x∗(x) = 1.

Proof. Fixed x = (a, b) ∈ SX and x∗ = (α, β) ∈ SX∗ with x∗(x) = αa + βb = 1, it is obvious that
1 = |x∗(I1x)| > |x∗(I4x)|. To prove |x∗(I3x)| > |x∗(I4x)| observe that

1 = αa+ βb 6 |α| |a|+ |β| |b| 6 ‖(|α|, |β|)‖ ‖(|a|, |b|)‖ = ‖x∗‖ ‖x‖ = 1(1)

which clearly implies αa = |α| |a| and βb = |β| |b|. Moreover, we deduce that αb and βa have the same
sign as αaβb > 0 and, therefore,

|x∗(I3x)| = |αb+ βa| = |α| |b|+ |β| |a| > |αb− βa| = |x∗(I4x)|.
To prove |x∗(I2x)| > |x∗(I4x)| observe that

|x∗(I2x)| = |αa− βb| =
∣∣|α| |a| − |β| |b|

∣∣ and |x∗(I4x)| = |αb− βa| =
∣∣|α| |b| − |β| |a|

∣∣.
So, when |a| = |b|, it is evident that |x∗(I2x)| = |x∗(I4x)|. When |a| 6= |b| we need the following claim.

Claim: |a| > |b| implies |α| > |β| and |b| > |a| implies |β| > |α|.
We only show the first implication, as the second one is analogous. Using the symmetry of the

norm and (1) we can write

‖(|β|, |α|)‖ ‖(|a|, |b|)‖ = ‖(|α|, |β|)‖ ‖(|a|, |b|)‖ = |α| |a|+ |β| |b|.
On the other hand, writing y∗ = (|β|, |α|) and y = (|a|, |b|),it is clear that

‖(|β|, |α|)‖ ‖(|a|, |b|)‖ > y∗(y) = |β| |a|+ |α| |b|.
Therefore, we get |β| |a|+ |α| |b| 6 |α| |a|+ |β| |b|, and so |β|(|a| − |b|) 6 |α|(|a| − |b|). Since |a| > |b|,
it follows that |α| > |β| and the claim is proved.

Let us finish the proof of |x∗(I2x)| > |x∗(I4x)|. If |a| > |b|, we get |α| > |β| by the claim and,
moreover, |α| |a| > |α| |b| > |β| |b| and |α| |a| > |β| |a| > |β| |b| hold, which clearly imply

|x∗(I2x)| =
∣∣|α| |a| − |β| |b|

∣∣ >
∣∣|α| |b| − |β| |a|

∣∣ = |x∗(I4x)|.
The remaining case |b| > |a| is completely analogous. �

We are ready to state and prove the first main result of the paper.
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Theorem 2.2. Let X be R2 endowed with an absolute and symmetric norm. Let x0 ∈ SX and
x∗0 ∈ SX∗ be such that |x∗0(I4x0)| = v(I4) and write cj = |x∗0(Ijx0)| for every j = 1, . . . , 4. If c4 = 0,
then n(X) = 0. If otherwise c4 > 0, then

n(X) > min

{
c4,

2

1 + 1
c2

+ 1
c3

+ 1
c4

}
.

Moreover, if the inequality c4

(
1 + 1

c2
+ 1

c3

)
6 1 holds, then

n(X) = v(I4).

Proof. Observe first that n(X) 6 v(I4) since ‖I4‖ = 1. So n(X) = 0 holds when c4 = 0. Thus we
assume that c4 > 0 which, by Lemma 2.1, implies cj > 0 for j = 2, 3.

Fixed a non-zero operator T ∈ L(X) our aim is to estimate v(T )
‖T‖ . To do so, observe that there exist

Aj ∈ R for j = 1, . . . , 4 satisfying T =
∑4

k=1AkIk, as the onto isometries I1, . . . , I4 form a basis of
L(X). Observe next that

I−11 TI1 = A1I1 +A2I2 +A3I3 +A4I4

I−12 TI2 = A1I1 +A2I2 −A3I3 −A4I4

I−13 TI3 = A1I1 −A2I2 +A3I3 −A4I4

I−14 TI4 = A1I1 −A2I2 −A3I3 +A4I4

so, using that v(T ) = v(±I−1j TIj) for every j = 1, . . . , 4, we can write

v(T ) = max
{ ∣∣∣±v(I−1j TIj)

∣∣∣ : j = 1, . . . , 4
}

> max
{ ∣∣∣±x∗0(I−1j TIjx0)

∣∣∣ : j = 1, . . . , 4
}

= max
{
|±(A1x

∗
0(I1x0) +A2x

∗
0(I2x0) +A3x

∗
0(I3x0) +A4x

∗
0(I4x0))| ,

|±(A1x
∗
0(I1x0) +A2x

∗
0(I2x0)−A3x

∗
0(I3x0)−A4x

∗
0(I4x0))| ,

|±(A1x
∗
0(I1x0)−A2x

∗
0(I2x0) +A3x

∗
0(I3x0)−A4x

∗
0(I4x0))| ,

|±(A1x
∗
0(I1x0)−A2x

∗
0(I2x0)−A3x

∗
0(I3x0) +A4x

∗
0(I4x0))|

}
.

The combination of signs in the last expression allows us to deduce

v(T ) > max





4∑

k=1
k 6=j

|Ak|ck − |Aj |cj : j = 1, . . . , 4




.

Now, writing ‖T‖+ =
∑4

k=1 |Ak|, we get ‖T‖ =
∥∥∥
∑4

k=1AkIk

∥∥∥ 6 ‖T‖+. Besides, calling αj =
|Aj |
‖T‖+ for

j = 1, . . . , 4, we can estimate n(X) as follows:

n(X) = inf

{
v(T )

‖T‖ : T ∈ L(X), T 6= 0

}
> inf

{
v(T )

‖T‖+
: T ∈ L(X), T 6= 0

}

> min
α1+α2+α3+α4=1

αj>0
max





4∑

k=1
k 6=j

αkck − αjcj : j = 1, . . . , 4




.
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So, defining the function

f(α1, α2, α3, α4) = max





4∑

k=1
k 6=j

αkck − αjcj : j = 1, . . . , 4





(
(α1, α2, α3, α4) ∈ R4

)

and the compact set

K =

{
(α1, α2, α3, α4) ∈ R4 :

4∑

k=1

αk = 1, αj > 0, j = 1, . . . , 4

}
,

we have that

n(X) > min
K
f.

Our goal now is to compute this minimum. As f is the maximum of linear functions, following a
typical strategy of linear programming, we can transform this minimization problem into a linear
optimization one: we have to minimize the function

g(α1, α2, α3, α4, z) = z
(
(α1, α2, α3, α4, z) ∈ R5

)

on the compact convex set

K ′ =





(α1, α2, α3, α4, z) ∈ R5 :
4∑

k=1

αk = 1, z 6 2, αj > 0, z >
4∑

k=1
k 6=j

αkck − αjcj , j = 1, . . . , 4




.

In fact, it is easy to check that

min
K

f = min
K′

g.

Indeed, if (α1, α2, α3, α4) ∈ K is such that min
K

f = f(α1, α2, α3, α4), then we clearly have that

(
α1, α2, α3, α4, f(α1, α2, α3, α4)

)
∈ K ′ and

g
(
α1, α2, α3, α4, f(α1, α2, α3, α4)

)
= f(α1, α2, α3, α4).

Therefore, we have min
K

f > min
K′

g. To prove the reverse inequality take (α1, α2, α3, α4, z) ∈ K ′ satis-

fying min
K′

g = g(α1, α2, α3, α4, z) = z and observe that (α1, α2, α3, α4) ∈ K and f(α1, α2, α3, α4) 6 z.

So we get min
K

f 6 min
K′

g.

To finish the proof we just have to compute min
K′

g. Since K ′ is a compact convex set, the linear

function g attains its minimum on K ′ at an extreme point of K ′. Fixed (α1, α2, α3, α4, z) ∈ ext(K ′),
as K ′ ⊂ R5, it must happen that at least five of the ten restrictions that define K ′ become equalities.
We calculate g(α1, α2, α3, α4, z) depending on which equalities occur. If there exists j0 ∈ {1, . . . , 4}
such that αj0 = 0, then

g(α1, α2, α3, α4, z) = z >
∑

k=1
k 6=j0

αkck > c4
∑

k=1
k 6=j0

αk = c4,

where we have used that cj > c4 for every j ∈ {1, 2, 3} by Lemma 2.1.
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If otherwise αj > 0 for every j ∈ {1, . . . , 4}, we have that z =
∑4

k=1
k 6=j

αkck − αjcj for every j ∈

{1, . . . , 4}, as z < 2 whenever z =
∑4

k=1
k 6=j

αkck − αjcj for any j. Hence

4∑

k=2

αkck − α1c1 =

4∑

k=1
k 6=2

αkck − α2c2 =

4∑

k=1
k 6=3

αkck − α3c3 =

3∑

k=1

αkck − α4c4,

and so α1c1 = α2c2 = α3c3 = α4c4. Since c1 = 1, we get

α2 =
α1

c2
, α3 =

α1

c3
, α4 =

α1

c4
,

and it follows from α1 + α2 + α3 + α4 = 1 that

α1 =
1

1 + 1
c2

+ 1
c3

+ 1
c4

.

Therefore,

g(α1, α2, α3, α4, z) = z = 2α1 =
2

1 + 1
c2

+ 1
c3

+ 1
c4

.

So, for every (α1, α2, α3, α4, z) ∈ ext(K ′) we have shown that either

g(α1, α2, α3, α4, z) >
2

1 + 1
c2

+ 1
c3

+ 1
c4

or g(α1, α2, α3, α4, z) > c4. Thus, we can write

n(X) > min
K′

g > min

{
c4,

2

1 + 1
c2

+ 1
c3

+ 1
c4

}

which finishes the first part of the proof. Finally, to prove the moreover part, it suffices to observe

that if c4

(
1 + 1

c2
+ 1

c3

)
6 1, then

c4 6
2

1 + 1
c2

+ 1
c3

+ 1
c4

,

and hence, we get n(X) = c4 = v(I4). �

Using the preceding result we can obtain the numerical index of two-dimensional Lp-spaces for
some values of p. In order to use Theorem 2.2, we need to find one pair x ∈ S`2p , x∗ ∈ S`2q satisfying

x∗(x) = 1, at which I4 attains its numerical radius. However, this seems to be a rather tricky problem

for arbitrary p. We can avoid this by showing that condition c4

(
1 + 1

c2
+ 1

c3

)
6 1 in the statement of

Theorem 2.2 holds not only for a particular choice of x ∈ S`2p , x∗ ∈ S`∗q satisfying x∗(x) = 1 but for

all of them.

Theorem 2.3. Let p ∈
[
3
2 , 3
]
. Then,

n(`2p) = Mp = sup
t∈[0,1]

|tp−1 − t|
1 + tp

.

Proof. It is known that n(`22) = 0. Besides, for p ∈]2, 3] we get q ∈ [3/2, 2[ so, using the fact that
n(`2p) = n(`2q), the result will be proved if we compute n(`2p) for p ∈ [3/2, 2[. So we fix p ∈ [3/2, 2[ and
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use the parametrization of the duality mapping for absolute norms on R2 given in [3, Lemma 3.2].
Indeed, for t ∈ [0, 1] consider

xt =
1

(1 + tp)1/p
(1, t) and x∗t =

1

(1 + tp)
p−1
p

(1, tp−1)

which satisfy xt ∈ S`2p , x∗t ∈ S`2q , and x∗t (xt) = 1. We next define the functions

c1(t) = x∗t (I1xt) = 1, c2(t) = x∗t (I2xt) =
1− tp
1 + tp

,

c3(t) = x∗t (I3xt) =
tp−1 + t

1 + tp
, c4(t) = x∗t (I4xt) =

tp−1 − t
1 + tp

(
t ∈ [0, 1]

)
.

Since the maximum defining v(I4) = maxt∈[0,1]
tp−1−t
1+tp is obviously attained at some t0 ∈]0, 1[, if we

show that c4(t)
(

1 + 1
c2(t)

+ 1
c3(t)

)
6 1 for every t ∈]0, 1[, then we will have n(`2p) = v(I4) = Mp by

Theorem 2.2. So, for fixed t ∈]0, 1[, observe that

c4(t)

(
1 +

1

c2(t)
+

1

c3(t)

)
=
tp−1 − t
1 + tp

(
1 +

1 + tp

1− tp +
1 + tp

tp−1 + t

)
=

2tp−1 − 2t

1− t2p +
tp−1 − t
tp−1 + t

and, therefore,

c4(t)

(
1 +

1

c2(t)
+

1

c3(t)

)
6 1⇐⇒ 2tp−1 − 2t

1− t2p +
tp−1 − t
tp−1 + t

6 1

⇐⇒ 2(tp−1 − t)
1− t2p 6 2t

tp−1 + t

⇐⇒ 0 6 t− t2p−2 + t2 − t2p+1

⇐⇒ 0 6 t(1− t2p−3) + t2(1− t2p−1).
Since the last inequality holds for 3/2 6 p < 2 and t ∈]0, 1[, Theorem 2.2 applies and finishes the
proof. �
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Javier Meŕı and Alicia Quero 1

Departamento de Análisis Matemático
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Abstract. We compute the numerical index of the two-dimensional real Lp space for 6
5
6 p 6 1 +α0

and α1 6 p 6 6, where α0 is the root of f(x) = 1+x−2−(x−
1
x +x

1
x ) and 1

1+α0
+ 1
α1

= 1. This, together

with the previous results in [Meŕı and Quero, On the numerical index of absolute symmetric norms on
the plane, Linear Multilinear Algebra 69 (2021), no. 5, 971–979] and [Monika and Zheng, The numerical
index of `2p, Linear Multilinear Algebra (2021), published online, DOI: 10.1080/03081087.2022.2043818],

gives the numerical index of the two-dimensional real Lp space for 6
5
6 p 6 6.

1. Introduction

The numerical index of a Banach space is a constant relating the norm and the numerical radius of
bounded linear operators on the space. Let us recall the relevant definitions. Given a Banach space
X, we will write X∗ for its topological dual and L(X) for the Banach algebra of all bounded linear
operators on X. For an operator T ∈ L(X), its numerical radius is defined as

v(T ) := {|x∗(Tx)| : x∗ ∈ X∗, x ∈ X, ‖x∗‖ = ‖x‖ = x∗(x) = 1}
which is a seminorm on L(X) satisfying v(T ) 6 ‖T‖ for every T ∈ L(X). The numerical index of X
is the constant given by

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
or, equivalently, n(X) is the greatest constant k > 0 satisfying k ‖T‖ 6 v(T ) for every T ∈ L(X).
Classical references on numerical index are the paper [3] and the monographs by F.F. Bonsall and
J. Duncan [1, 2] from the seventies. In the last decades this field of study has grown in various
directions with the contribution of several authors. The reader will find the state of the art on the
subject in the survey paper [8] and a more recent account in the first chapter of the book [7].

In the following we recall some results concerning the numerical index which will be relevant to our
discussion. It is clear that 0 6 n(X) 6 1 for every Banach space X. In the real case, the numerical
index can take any value in [0, 1]. In the complex case, one has 1/ e 6 n(X) 6 1 and all of these
values are possible. Let us also mention that v(T ∗) = v(T ) for every T ∈ L(X), where T ∗ is the
adjoint operator of T (see [1, § 9]), so it clearly follows that n(X∗) 6 n(X). Although the equality
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2 NUMERICAL INDEX `2P

does not always hold, when X is a reflexive space, one clearly gets n(X) = n(X∗). There are some
classical Banach spaces for which the numerical index has been calculated. If H is a Hilbert space
of dimension greater than one, then n(H) = 0 in the real case and n(H) = 1/2 in the complex case.
Besides, n(L1(µ)) = 1 and the same happens to all its isometric preduals. In particular, it follows
that n

(
C(K)

)
= 1 for every compact K and the same is true for all finite-codimensional subspaces of

C[0, 1].
The exact computation of the numerical index of concrete spaces is usually a difficult task. However

it has been achieved for some polyhedral Banach spaces [9, 14]. The computation of the numerical
index of Lp-spaces when p 6= 1, 2,∞ remains as an important open problem in the theory of numerical
index since it started. Let us present the known results on the matter. For 1 < p < ∞, we write `mp
for the m-dimensional Lp-space, q = p/(p− 1) for the conjugate exponent of p, and

Mp := max
t∈[0,1]

|tp−1 − t|
1 + tp

= max
t>1
|tp−1 − t|

1 + tp
,

which is the numerical radius of the operator represented by the matrix

(
0 1
−1 0

)
defined on the

real space `2p. This is stated in [10, Lemma 2], where it is also observed that Mq = Mp. It is

known that the sequence
(
n(`mp )

)
m∈N is decreasing and that n

(
Lp(µ)

)
= inf{n(`mp ) : m ∈ N} for every

measure µ such that dim
(
Lp(µ)

)
= ∞, this can be found in [4, 5, 6]. Moreover, in the real case,

the inequality n(Lp[0, 1]) > Mp

12 holds for every 1 < p < ∞ [11]. Also in the real case, one has

max
{

1
21/p

, 1
21/q

}
Mp 6 n(`2p) 6Mp [10].

Very recently, it has been proved [12] that the numerical index is attained at the operator

(
0 1
−1 0

)

for many absolute and symmetric norms on R2 and, as a major consequence, it is shown that n(`2p) =

Mp for 3
2 6 p 6 3. In [13] the authors polished skilfully the arguments of [12] to provide a slight

improvement: the equality n(`2p) = Mp is proved for 1 + α0 6 p 6 α1 where α0 is the root of

f(x) = 1 + x−2 − (x−
1
x + x

1
x ) and 1

1+α0
+ 1

α1
= 1 (α0 ≈ 0.4547). The aim of this paper is to show

that n(`2p) = Mp holds for p ∈ [65 , 6]. The main difference with previous works is the use of Riesz–
Thorin interpolation theorem (see [15, Theorem 2.1 in chapter 2], for instance) to estimate the norm
of operators on `2p. More precisely, we will use that the inequality

‖T‖ 6 ‖T‖1/p1 ‖T‖1/q∞
holds for every operator T ∈ L(`2p).

To finish the introduction, we recall two facts about numerical radius that we will need in our
discussion. Let X be a Banach space, and suppose that S ∈ L(X) is an onto isometry. Then, for
every operator T ∈ L(X), it is easy to check that

v(T ) = v(±S−1TS).

The following result, which can be deduced from [3, Lemma 3.2], will be useful to compute the
numerical radius of operators in L(`2p).

Lemma 1.1. Let 1 < p <∞ and T =

(
a b
c d

)
be an operator in L(`2p). Then

v(T ) = max

{
max
t∈[0,1]

|a+ d tp|+ |b t+ c tp−1|
1 + tp

, max
t∈[0,1]

|d+ a tp|+ |c t+ b tp−1|
1 + tp

}
.
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In particular, Mp = v

(
0 1
−1 0

)
= max

t∈[0,1]

∣∣tp−1 − t
∣∣

1 + tp
.

2. The results

We start our discussion giving some information about the point t0 where the operator

(
0 1
−1 0

)
∈

L(`2p) attains its numerical radius which will be of help in the proof of the main theorem. The exact
computation of t0 for arbitrary p seems to be a rather tricky problem. However, obtaining estimations
of its value has allowed to get fruitful information on n(`2p) as it is done in [13]. The next result arises
with the same purpose.

Lemma 2.1. Let t0 ∈]0, 1[ be such that Mp = max
t∈[0,1]

|tp−1 − t|
1 + tp

=
|tp−10 − t0|

1 + tp0
. The inequalities

(
2p− 2

4− p

) 1
2−p
6 t0 6

(
p− 1

2p+ 1

) 1
p

and t2p−30 6 q

p

hold for every p ∈
[
6
5 ,

3
2

]
.

Proof. We start showing that
(
2p−2
4−p

) 1
2−p 6 t0 6

(
p−1
2p+1

) 1
p
. To do so, take ξ =

p− 1

3
, define the

functions

f(t) =
tξ

1 + tp
and g(t) = tp−1−ξ − t1−ξ (t ∈ [0, 1]),

and observe that tp−1−t
1+tp = f(t)g(t) for t ∈ [0, 1]. It is easy to see that f increases until t1 =

(
ξ
p−ξ

) 1
p

=
(
p−1
2p+1

) 1
p

and then decreases since

f ′(t) =
(ξ + (ξ − p)tp)
t1−ξ (1 + tp)2

(0 < t < 1).

Similarly, g increases until t2 =

(
p− 1− ξ

1− ξ

) 1
2−p

=

(
2p− 2

4− p

) 1
2−p

and then decreases as

g′(t) =
(p− 1− ξ)− (1− ξ)t2−p

t2−p+ξ
(0 < t < 1).

Therefore, the function tp−1−t
1+tp = f(t)g(t) increases in the interval ]0,min{t1, t2}[ and decreases in the

interval ] max{t1, t2}, 1[, so we deduce that min{t1, t2} 6 t0 6 max{t1, t2}. Let us show now that
t2 6 t1. To do so, observe that

(
2p− 2

4− p

) 1
2−p
6
(
p− 1

2p+ 1

) 1
p

⇐⇒ 1

2− p log

(
2p− 2

4− p

)
6 1

p
log

(
p− 1

2p+ 1

)

⇐⇒ p (log(2) + log(p− 1)− log (4− p)) 6 (2− p)
(

log(p− 1)− log(2p+ 1)
)

⇐⇒ p log(2) + (2p− 2) log(p− 1) + (2− p) log(2p+ 1) 6 p log (4− p)
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and define the functions h, k :
[
6
5 ,

3
2

]
−→ R by

h(p) = p log(2) + (2p− 2) log(p− 1) + (2− p) log(2p+ 1) and k(p) = p log (4− p) .
Since

k′(p) = log(4− p)− p

4− p,

k′′(p) = − 1

4− p −
4

(4− p)2 < 0,

we get that k′ is decreasing which, together with k′
(
3
2

)
> 0, tells us that k is increasing. Besides, we

have that

h′(p) = log(2) + 2 log(p− 1) + 2− log(2p+ 1) +
4− 2p

2p+ 1
,

h′′(p) =
2

p− 1
− 2

2p+ 1
− 10

(2p+ 1)2

=
4p2 + 14

(p− 1)(2p+ 1)2
> 0,

and so h′(p) is increasing. This, together with h′
(
6
5

)
< 0 and h′

(
3
2

)
> 0, tells us that

max
p∈[ 65 ,

3
2 ]
h(p) = max

{
h

(
6

5

)
, h

(
3

2

)}
= h

(
6

5

)
.

So maxp∈[ 65 ,
3
2 ] h(p) = h

(
6
5

)
< k

(
6
5

)
< minp∈[ 65 ,

3
2 ] k(p).

The inequality t2p−30 6 q
p = 1

p−1 is equivalent to 1 6 1
p−1 t

3−2p
0 . As we already know that

(
2p−2
4−p

) 1
2−p 6 t0, the required inequality will follow if we prove that

1 6 1

p− 1

(
2p− 2

4− p

) 3−2p
2−p

,

which is equivalent to show that
(

4− p
2

)3−2p
6 1

(p− 1)p−1
.

To see this, consider the functions φ, ψ :
[
6
5 ,

3
2

]
−→ R given by

φ(p) =

(
4− p

2

)3−2p
and ψ(p) =

1

(p− 1)p−1
,

and observe that φ is decreasing since

φ′(p) =

(
4− p

2

)3−2p(
−2 log

(
4− p

2

)
− 3− 2p

4− p

)
< 0

for 6
5 6 p <

3
2 . Besides, we have that

ψ′(p) = (p− 1)(1−p) (− log(p− 1)− 1)

so ψ increases in
]
6
5 , 1 + 1

e

[
and decreases in

]
1 + 1

e ,
3
2

[
. Therefore, we deduce that

min
p∈[ 65 ,

3
2 ]
ψ(p) = min

{
ψ

(
6

5

)
, ψ

(
3

2

)}
= ψ

(
6

5

)
> φ

(
6

5

)
= max

p∈[ 65 ,
3
2 ]
φ(p)
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which finishes the proof. �
We are ready to present and prove the main result of the paper.

Theorem 2.2. Let p ∈
[
6
5 , 6
]
. Then,

n(`2p) = Mp = max
t∈[0,1]

|tp−1 − t|
1 + tp

.

Proof. Using that n(`2p) = n(`2q) and that the result is already known for p ∈
[
3
2 , 2
]

we only need to

work for 1 < p 6 3
2 . We divide the proof into three claims, the first two are valid for all the values of

1 < p 6 3
2 . Observe that

n(`2p) = inf

{
v(T )

‖T‖ : 0 6= T ∈ L(`2p)

}

= min

{
inf

{
v(T )

‖T‖ : 0 6= T ∈ L(`2p), ‖T‖∞ 6 ‖T‖1
}
,

inf

{
v(T )

‖T‖ : 0 6= T ∈ L(`2p), ‖T‖1 6 ‖T‖∞
}}

.

By [10, Remark 3], if T ∈ L(`2p) is such that ‖T‖∞ 6 ‖T‖1, then Mp = max
t∈[0,1]

tp−1 − t
1 + tp

6 v(T )

‖T‖ .
Therefore, it is enough to prove that

(1) inf

{
v(T )

‖T‖ : 0 6= T ∈ L(`2p), ‖T‖1 6 ‖T‖∞
}
>Mp.

To give a lower estimation for v(T ), we make some observations. First, we may suppose that
‖T‖1 = max{|a|+ |c|, |b|+ |d|} = |a|+ |c|. Indeed, the operator

S =

(
0 1
1 0

)(
a b
c d

)(
0 1
1 0

)
=

(
d c
b a

)

satisfies that v(S) = v(T ) and ‖S‖ = ‖T‖ since

(
0 1
1 0

)
is an isometry and S−1 = S.

In addition, we may assume that T =

(
a b
−c −d

)
with a, b, c, d > 0. Indeed, if T =

(
a b
c d

)
with

a, b, c, d ∈ R, we may consider the operator S =

(
|a| |b|
−|c| −|d|

)
which clearly satisfies that ‖S‖ > ‖T‖

and v(S) 6 v(T ).

So, from now on we consider operators of the form T =

(
a b
−c −d

)
with a, b, c, d > 0 and satisfying

‖T‖1 = a+ c 6 ‖T‖∞. For this class of operators, using Lemma 1.1, we have that

(2)

v(T ) = max

{
max
t∈[0,1]

|a− d tp|+ |b t− c tp−1|
1 + tp

, max
t∈[0,1]

|d− a tp|+ |c t− b tp−1|
1 + tp

}

> max

{
|a− d tp0|+ |b t0 − c tp−10 |

1 + tp0
,
|d− a tp0|+ |c t0 − b tp−10 |

1 + tp0

}

where t0 is taken as in Lemma 2.1. Let us write

F (T ) =
|a− d tp0|+ |b t0 − c tp−10 |

1 + tp0
and G(T ) =

|d− a tp0|+ |c t0 − b tp−10 |
1 + tp0

,
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and recall that by Riesz–Thorin theorem we have that ‖T‖ 6 ‖T‖1/p1 ‖T‖
1/q
∞ . Hence, using (2), it is

clear that

inf

{
v(T )

‖T‖ : 0 6= T ∈ L(`2p), ‖T‖1 6 ‖T‖∞
}

> inf

{
max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

: 0 6= T ∈ L(`2p), T =

(
a b
−c −d

)
,

a, b, c, d > 0, ‖T‖1 = a+ c 6 ‖T‖∞
}

:= (α).

In view of (1), to prove the theorem it is enough to show that

(α) > tp−10 − t0
1 + tp0

.

To do so, we distinguish three cases:

• ‖T‖1 = a+ c 6 a+ b = ‖T‖∞.

• ‖T‖1 = a+ c 6 c+ d = ‖T‖∞ and c+ a− d 6 c t2−p0 .

• ‖T‖1 = a+ c 6 c+ d = ‖T‖∞ and c t2−p0 6 c+ a− d.

Claim 1. Let 1 < p 6 3
2 and let T =

(
a b
−c −d

)
be a non-zero operator in L(`2p) with a, b, c, d > 0

and ‖T‖1 = a+ c 6 a+ b = ‖T‖∞. Then,

(α) > tp−10 − t0
1 + tp0

.

Observe that it suffices to prove that (α)F > tp−1
0 −t0
1+tp0

where

(α)F := inf

{
F (T )

‖T‖1/p1 ‖T‖
1/q
∞

: 0 6= T ∈ L(`2p), T =

(
a b
−c −d

)
,

a, b, c, d > 0, ‖T‖1 = a+ c 6 a+ b = ‖T‖∞
}
.

Note that the restriction ‖T‖1 = a+ c 6 a+ b = ‖T‖∞ is equivalent to impose c 6 b and b+d 6 a+ c,
which clearly implies d 6 a and so

F (T ) =
a− d tp0 + |b t0 − c tp−10 |

1 + tp0
.

In order to estimate (α)F we may suppose that b t2−p0 6 c (equivalently, b t0 6 c tp−10 ). Indeed, if

otherwise b t2−p0 > c, we consider the operator S =

(
a b

−b t2−p0 −d

)
which satisfies the hypotheses of

Claim 1 since

‖S‖1 = a+ b t2−p0 > a+ c > b+ d and ‖S‖∞ = a+ b > d+ b t2−p0 .
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Moreover, ‖S‖1 > ‖T‖1, ‖S‖∞ = ‖T‖∞, and F (S) =
a− d tp0
1 + tp0

< F (T ), so

F (S)

‖S‖1/p1 ‖S‖
1/q
∞

<
F (T )

‖T‖1/p1 ‖T‖
1/q
∞

.

Thus, we can write

(α)F = inf

{
F (T )

‖T‖1/p1 ‖T‖
1/q
∞

: 0 6= T ∈ L(`2p), T =

(
a b
−c −d

)
, a, b, c, d > 0, c 6 b, b+ d 6 a+ c

}

> 1

1 + tp0
inf

(a,b,c,d)∈A1

a− d tp0 + c tp−10 − b t0
(a+ c)1/p(a+ b)1/q

where

A1 =
{

(a, b, c, d) ∈ R4\{0} : a, b, c, d > 0, b t2−p0 6 c 6 b, b+ d 6 a+ c
}
.

From the restriction d 6 a+ c− b, it follows that

a− d tp0 + c tp−10 − b t0 > a(1− tp0) + b(tp0 − t0) + c(tp−10 − tp0)
so

inf
(a,b,c,d)∈A1

a− d tp0 + c tp−10 − b t0
(a+ c)1/p(a+ b)1/q

> inf
(a,b,c)∈A2

a(1− tp0) + b(tp0 − t0) + c(tp−10 − tp0)
(a+ c)1/p(a+ b)1/q

,

where

A2 =
{

(a, b, c) ∈ R3\{0} : a, b, c > 0, b t2−p0 6 c 6 b 6 a+ c
}
.

We define the function

f(a, b, c) =
a(1− tp0) + b(tp0 − t0) + c(tp−10 − tp0)

(a+ c)1/p(a+ b)1/q
(
(a, b, c) ∈ R3

)

and our goal is to show that

inf
(a,b,c)∈A2

f(a, b, c) > tp−10 − t0.

Observe that f decreases in the variable b since tp0 − t0 < 0, so using that b 6 a + c, it is clear that
f(a, b, c) > f(a, a + c, c) for every (a, b, c) ∈ A2. Therefore, we have to minimize the two-variable
function given by

g(a, c) = f(a, a+ c, c) =
a(1− t0) + c(tp−10 − t0)

(a+ c)1/p(2a+ c)1/q
(
(a, c) ∈ R2

)

on the set A3 =
{

(a, b) ∈ R2\{0} : a, c > 0, a t2−p0 6 c(1− t2−p0 )
}

.

To get the inequality g(a, c) > tp−10 − t0 it suffices to show that g is decreasing in c, since in such

a case it follows that g(a, c) > limc→∞ g(a, c) = tp−10 − t0 for every (a, c) ∈ A3 as desired. So let us

prove that
∂g

∂c
(a, c) 6 0 for every (a, c) ∈ A3:

∂g

∂c
(a, c) (a+ c)1/p+1(2a+ c)1/q+1

= (tp−10 − t0)(a+ c)(2a+ c)−
(
a(1− t0) + c(tp−10 − t0)

)(1

p
(2a+ c) +

1

q
(a+ c)

)

=

(
2tp−10 − 1

q
t0 − 1− 1

p

)
a2 +

((
1 +

1

q

)
tp−10 − 1

q
t0 − 1

)
ac.
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Observe that

2tp−10 − 1

q
t0 − 1− 1

p
=

(
1 +

1

q

)
tp−10 − 1

q
t0 − 1− 1

p
(1− tp−10 ) 6

(
1 +

1

q

)
tp−10 − 1

q
t0 − 1,

so to finish the proof of the claim it is enough to show that
(

1 + 1
q

)
tp−10 − 1

q t0 − 1 6 0. To do so,

define the function

u(t) =

(
1 +

1

q

)
tp−1 − 1

q
t− 1 (t ∈ [0, 1])

and note that u(1) = 0. Thus, the inequality u(t) 6 0 will hold for every t ∈ [0, 1] if we prove that u
is an increasing function. This is easy to check as

u′(t) =

(
1 +

1

q

)
(p− 1)tp−2 − 1

q

and

u′′(t) =

(
1 +

1

q

)
(p− 1)(p− 2)tp−3 6 0

for every t ∈]0, 1[, hence u′ is decreasing. Since u′(1) =
(

1 + 1
q

)
(p− 1)− 1

q = 2
q (p− 1) > 0, it follows

that u′(t) > 0 for every t ∈]0, 1[ and u is an increasing function as desired. Therefore, Claim 1 is
proved.

Now we consider the operators satisfying ‖T‖1 = a+c 6 c+d = ‖T‖∞. Observe that this restriction
is equivalent to impose a 6 d and b+ d 6 a+ c (and also gives b 6 c), so from now on we have

F (T ) =
|a− d tp0|+ c tp−10 − b t0

1 + tp0
and G(T ) =

d− a tp0 + |c t0 − b tp−10 |
1 + tp0

.

Claim 2. Let 1 < p 6 3
2 and let T =

(
a b
−c −d

)
be a non-zero operator in L(`2p) with a, b, c, d > 0,

‖T‖1 = a+ c 6 c+ d = ‖T‖∞, and c+ a− d 6 c t2−p0 . Then,

(α) > tp−10 − t0
1 + tp0

.

In this case we will use only G(T ) to estimate (α). Define

B1 =
{

(a, b, c, d) ∈ R4\{0} : a, b, c, d > 0, a 6 d, b 6 c+ a− d 6 c t2−p0

}

and observe that

(α) > 1

1 + tp0
inf

(a,b,c,d)∈B1

d− a tp0 + c t0 − b tp−10

(a+ c)1/p(c+ d)1/q
.

Using that b 6 c+ a− d, we obtain

inf
(a,b,c,d)∈B1

d− a tp0 + c t0 − b tp−10

(a+ c)1/p(c+ d)1/q
> inf

(a,c,d)∈B2

−a(tp−10 + tp0)− c(tp−10 − t0) + d(1 + tp−10 )

(a+ c)1/p(c+ d)1/q
,

where B2 =
{

(a, c, d) ∈ R3\{0} : a, c, d > 0, a 6 d− c(1− t2−p0 )
}

. Therefore, defining

f(a, c, d) =
−a(tp−10 + tp0)− c(tp−10 − t0) + d(1 + tp−10 )

(a+ c)1/p(c+ d)1/q
(
(a, c, d) ∈ R3

)
,
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our problem is to show that

inf
(a,c,d)∈B2

f(a, c, d) > tp−10 − t0.

It is clear that f is decreasing in a, therefore f(a, c, d) > f(d− c(1− t2−p0 ), c, d) for every (a, c, d) ∈ B2,
so we have to minimize

g(c, d) = f(d− c(1− t2−p0 ), c, d) =
c(tp0 − t20) + d(1− tp0)

(d+ c t2−p0 )1/p(c+ d)1/q

(
(c, d) ∈ R2

)

on the set B3 =
{

(c, d) ∈ R2\{0} : c, d > 0, c(1− t2−p0 ) 6 d
}

. Observe that g is increasing in d since

∂g

∂d
(c, d) (d+ c t2−p0 )1/p+1(c+ d)1/q+1

= (1− tp0)(d+ c t2−p0 )(c+ d)−
(
c(tp0 − t20) + d(1− tp0)

)(1

p
(c+ d) +

1

q
(d+ c t2−p0 )

)

=
1

q
(1− tp0)(c+ d)d− 1

q
(d+ c t2−p0 )

(
c(tp0 − t20) + d(1− tp0)

)
+

(
t2−p0 − 1

q
t20 −

1

p
tp0

)
(c+ d)c

> 1

q
(1− tp0)(c+ d)d− 1

q
(c+ d)

(
c(tp0 − t20) + d(1− tp0)

)
+

(
t2−p0 − 1

q
t20 −

1

p
tp0

)
(c+ d)c

= (t2−p0 − tp0)(c+ d)c > 0.

Therefore, for every (c, d) ∈ B3, we have that

g(c, d) > g(c, c(1− t2−p0 )) =
1− t2−p0

(2− t2−p0 )1/q
=

tp−10 − t0
(2tp0 − t20)1/q

> tp−10 − t0,

where we have used that

tp0 6
p− 1

2p+ 1
6 p− 1

by Lemma 2.1 and so, 2tp0 − t20 6 2tp0 6 2p− 2 6 1.
We consider now the remaining case.

Claim 3. Let 6
5 6 p 6 3

2 and let T =

(
a b
−c −d

)
be a non-zero operator in L(`2p) with a, b, c, d > 0,

‖T‖1 = a+ c 6 c+ d = ‖T‖∞, and c t2−p0 6 c+ a− d. Then,

(α) > tp−10 − t0
1 + tp0

.

First, in order to estimate (α), observe that we may suppose that a > d tp0. Indeed, if otherwise

a < d tp0, we consider the operator S =

(
d tp0 b
−c −d

)
which satisfies the hypotheses of Claim 3 since

c t2−p0 6 c+ a− d < c+ d tp0 − d,

‖S‖1 = d tp0 + c > a+ c > b+ d, and ‖S‖∞ = c+ d > b+ d > b+ d tp0.

Moreover, ‖S‖1 > ‖T‖1, ‖S‖∞ = ‖T‖∞,

F (S) =
c tp−10 − b t0

1 + tp0
< F (T ), and G(S) =

d− d t2p0 + |b tp−10 − c t0|
1 + tp0

< G(T ),
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so
max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

> max{F (S), G(S)}
‖S‖1/p1 ‖S‖

1/q
∞

.

Additionally, we may assume that c t2−p0 6 b. Indeed, if otherwise c t2−p0 > b, we consider the operator

S =

(
a c t2−p0
−c −d

)
which satisfies the hypotheses of Claim 3 since c t2−p0 6 c+ a− d,

‖S‖1 = a+ c > c t2−p0 + d, and ‖S‖∞ = c+ d > c t2−p0 + a.

Furthermore, ‖S‖1 = ‖T‖1, ‖S‖∞ = ‖T‖∞, and, using that c t2−p0 > b, it is is clear that

F (S) =
a− d tp0 + c tp−10 − c t2−p0 t0

1 + tp0
< F (T ) and G(S) =

d− a tp0
1 + tp0

< G(T ),

so
max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

> max{F (S), G(S)}
‖S‖1/p1 ‖S‖

1/q
∞

.

Therefore, we assume from now on that a, b, c, d > 0, d tp0 6 a 6 d, and c t2−p0 6 b 6 c+ a− d. Under
such restrictions, we have

F (T ) =
a− d tp0 + c tp−10 − b t0

1 + tp0
and G(T ) =

d− a tp0 + b tp−10 − c t0
1 + tp0

and so our goal is to give a lower bound of

inf
(a,b,c,d)∈C1

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

where C1 =
{

(a, b, c, d) ∈ R4\{0} : a, b, c, d > 0, d tp0 6 a 6 d, c t
2−p
0 6 b 6 c+ a− d

}
. To do so, note

that

(3)

F (T ) 6 G(T )⇐⇒ a− d tp0 + c tp−10 − b t0 6 d− a tp0 + b tp−10 − c t0

⇐⇒ b > c− (d− a)
1 + tp0
tp−10 + t0

,

and the equality holds if and only if b = c − (d − a)
1 + tp0
tp−10 + t0

. Our next step is to observe that we

may compute the infimum using only operators satisfying b = c− (d− a)
1 + tp0
tp−10 + t0

, but first we need

to show that

ct2−p0 6 c− (d− a)
1 + tp0
tp−10 + t0

6 c+ a− d.

On the one hand, we claim that 1 + tp0 > t
p−1
0 + t0 and, consequently, c−(d−a)

1 + tp0
tp−10 + t0

6 c+a−d.

Consider the function u : [0, 1] −→ R given by

u(t) = 1 + tp − tp−1 − t (t ∈ [0, 1])

and observe that u(1) = 0. Hence, the inequality 1 + tp0 > t
p−1
0 + t0 will follow immediately if we prove

that u decreases in t. Indeed,
u′(t) = p tp−1 − (p− 1) tp−2 − 1
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and

u′′(t) = p(p− 1) tp−2 − (p− 1)(p− 2) tp−3 > 0

for every t ∈]0, 1[, thus u′ is increasing. Since u′(1) = 0, it follows that u′(t) 6 0 for every t ∈]0, 1[ as
desired.

On the other hand, we may and do assume that c t2−p0 6 c− (d− a)
1 + tp0
tp−10 + t0

. Indeed, suppose that

for an operator T given by (a, b, c, d) ∈ C1 we have c− (d− a)
1 + tp0
tp−10 + t0

< c t2−p0 . Then it follows that

F (T ) < G(T ) by (3) and c < (d− a)
1 + tp0

(tp−10 + t0)(1− t2−p0 )
. We consider the operator S =

(
a b′

−c′ −d

)

where

c′ = (d− a)
1 + tp0

(tp−10 + t0)(1− t2−p0 )
and b′ = c′t2−p0 = (d− a)

(1 + tp0) t
2−p
0

(tp−10 + t0)(1− t2−p0 )
.

As c′ − b′ = (d− a)
1 + tp0
tp−10 + t0

> d− a, the operator S satisfies the conditions in C1. Besides, we have

c′ > c so ‖S‖1 > ‖T‖1 and ‖S‖∞ > ‖T‖∞. Moreover, since b′ = c′t2−p0 = c′ − (d − a)
1 + tp0
tp−10 + t0

, it

follows from (3) that

F (S) = G(S) =
d− a tp0
1 + tp0

6 G(T ) =
d− a tp0 + b tp−10 − c t0

1 + tp0

as c t2−p0 6 b. Therefore, we get max{F (S), G(S)} 6 max{F (T ), G(T )} and, consequently,

inf
(a,b,c,d)∈C1

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

> inf
(a,b,c,d)∈C2

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

where

C2 =

{
(a, b, c, d) ∈ R4\{0} : a, b, c, d > 0, d tp0 6 a 6 d, c t

2−p
0 6 b 6 c+ a− d,

c t2−p0 6 c− (d− a)
1+tp0

tp−1
0 +t0

}

as (a, b′, c′, d) ∈ C2.
We are ready to observe that the infimum

inf
(a,b,c,d)∈C2

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

can be computed using only operators such that F (T ) = G(T ), that is, satisfying b = c−(d−a)
1 + tp0
tp−10 + t0

.

Indeed, if T is an operator satisfying the conditions in C2, consider the operator

S =


 a c− (d− a)

1 + tp0
tp−10 + t0

−c −d
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which clearly satisfies the conditions in C2, F (S) = G(S), and ‖S‖1/p1 ‖S‖
1/q
∞ = ‖T‖1/p1 ‖T‖

1/q
∞ .

Observe that if b 6 c − (d − a)
1 + tp0
tp−10 + t0

, then max{F (T ), G(T )} = F (T ) > F (S). If otherwise

b > c − (d − a)
1 + tp0
tp−10 + t0

, then max{F (T ), G(T )} = G(T ) > G(S). So in either case we have

F (S) = G(S) 6 max{F (T ), G(T )}.
For operators satisfying satisfying b = c− (d− a)

1 + tp0
tp−10 + t0

we have that

F (T ) = G(T ) =

a

(
1− t0

1 + tp0
tp−10 + t0

)
+ d

(
t0

1 + tp0
tp−10 + t0

− tp0

)
+ c(tp−10 − t0)

1 + tp0

=

a
tp−10 − tp+1

0

tp−10 + t0
+ d

t0 − t2p−10

tp−10 + t0
+ c(tp−10 − t0)

1 + tp0
.

Hence, defining the function

f(a, c, d) =

a
tp−10 − tp+1

0

tp−10 + t0
+ d

t0 − t2p−10

tp−10 + t0
+ c(tp−10 − t0)

(a+ c)1/p(c+ d)1/q
(
(a, c, d) ∈ R3

)

we have that

inf
(a,b,c,d)∈C2

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

> 1

1 + tp0
inf

(a,c,d)∈C3

f(a, c, d)

where

C3 =

{
(a, c, d) ∈ R3\{0} : a, c, d > 0, d tp0 6 a 6 d, c t

2−p
0 6 c− (d− a)

1+tp0
tp−1
0 +t0

}
.

Our aim is to prove that f decreases in c for 6
5 6 p 6

3
2 . In such a case, it is clear that

f(a, c, d) > lim
c→∞

f(a, c, d) = tp−10 − t0

for every (a, c, d) ∈ C3 and, as a consequence, (α) > tp−10 − t0
1 + tp0

as desired.

So, let us show that
∂f

∂c
(a, c, d) 6 0 for every (a, c, d) ∈ C3. Calling K = a

tp−10 − tp+1
0

tp−10 + t0
+d

t0 − t2p−10

tp−10 + t0
,

we can write

∂f

∂c
(a, c, d) (a+ c)1/p+1(c+ d)1/q+1

= (tp−10 − t0)(a+ c)(c+ d)−
(
c(tp−10 − t0) +K

)(1

p
(c+ d) +

1

q
(a+ c)

)

=

(
(tp−10 − t0)

(
a

p
+
d

q

)
−K

)
c+ (tp−10 − t0)ad−K

(
a

q
+
d

p

)

6
(

(tp−10 − t0)
(
a

p
+
d

q

)
−K

)(
c+

a

q
+
d

p

)
,
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where we have used that
(
a

p
+
d

q

)(
a

q
+
d

p

)
=
a2 + d2

pq
+

(
1

p2
+

1

q2

)
ad =

(a− d)2

pq
+ ad > ad.

Now, observe that

(tp−10 − t0)
(
a

p
+
d

q

)
−K 6 0⇐⇒ (t2p−20 − t20)

(
a

p
+
d

q

)
6 a(tp−10 − tp+1

0 ) + d(t0 − t2p−10 )

⇐⇒ a

(
tp−10 − tp+1

0 − 1

p
t2p−20 +

1

p
t20

)
> d

(
1

q
t2p−20 − 1

q
t20 − t0 + t2p−10

)
.

To prove the last inequality, using that a > d tp0, it is enough to prove that

t2p−10 − t2p+1
0 − 1

p
t3p−20 +

1

p
tp+2
0 > 1

q
t2p−20 − 1

q
t20 − t0 + t2p−10

which, decomposing t0 = 1
p t0 + 1

q t0 and t2p+1
0 = 1

p t
2p+1
0 + 1

q t
2p+1
0 , is equivalent to

1

p

(
t0 + tp+2

0 − t2p+1
0 − t3p−20

)
> 1

q

(
t2p−20 + t2p+1

0 − t20 − t0
)

=
1

q
t2p−30

(
t0 + t40 − t5−2p0 − t4−2p0

)
.

Note that t0 + tp+2
0 − t2p+1

0 − t3p−20 > t0 + t40 − t5−2p0 − t4−2p0 for 6
5 6 p 6

3
2 as

tp+2
0 − t40 + t5−2p0 − t2p+1

0 + t4−2p0 − t3p−20 = tp+2
0

(
1− t2−p0

)
+ t5−2p0

(
1− t4p−40

)
+ t4−2p0

(
1− t5p−60

)
> 0,

therefore, it suffices to show that t2p−30 6 q
p . But this inequality holds for p ∈

[
6
5 ,

3
2

]
thanks to

Lemma 2.1 and so Claim 3 is proved. �

Remark 2.3. The only use of the restriction 6
5 6 p in the above proof was to guarantee that the

inequality

tp+2
0 − t40 + t5−2p0 − t2p+1

0 + t4−2p0 − t3p−20 = tp+2
0

(
1− t2−p0

)
+ t5−2p0

(
1− t4p−40

)
+ t4−2p0

(
1− t5p−60

)
> 0

holds. This inequality remains true for some values of p smaller than 6
5 but close to it. The same

happens with Lemma 2.1, so our procedure can give the equality n(`2p) = Mp for a little wider range
of values of p. However it seems that it does not work for p close to 1. Indeed, for p = 1.16, numerical

computations give t0 ≈ 0.073924 and Mp ≈ 0.558064. Besides, the operator T =

(
a b
−c −d

)
with

a = 0.0487295, b = 13.639181, c = 15, and d = 1

satisfies

max{F (T ), G(T )}
‖T‖1/p1 ‖T‖

1/q
∞

=
1

1 + tp0

a− d tp0 + c tp−10 − b t0
(a+ c)1/p(c+ d)1/q

≈ 0.557895 < Mp.
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GENERATING OPERATORS BETWEEN BANACH SPACES

VLADIMIR KADETS, MIGUEL MARTÍN, JAVIER MERÍ, AND ALICIA QUERO

Abstract. We introduce and study the notion of generating operators as those norm-one operators
G : X −→ Y such that for every 0 < δ < 1, the set {x ∈ X : ‖x‖ 6 1, ‖Gx‖ > 1 − δ} generates the
unit ball of X by closed convex hull. This class of operators includes isometric embeddings, spear
operators (actually, operators with the alternative Daugavet property), and other examples like the
natural inclusions of `1 into c0 and of L∞[0, 1] into L1[0, 1]. We first present a characterization in
terms of the adjoint operator, make a discussion on the behaviour of diagonal generating operators on
c0-, `1-, and `∞-sums, and present examples in some classical Banach spaces. Even though rank-one
generating operators always attain their norm, there are generating operators, even of rank-two, which
do not attain their norm. We discuss when a Banach space can be the domain of a generating operator
which does not attain its norm in terms of the behaviour of some spear sets of the dual space. Finally,
we study when the set of all generating operators between two Banach spaces X and Y generates all
non-expansive operators by closed convex hull. We show that this is the case when X = L1(µ) and Y
has the Radon-Nikodým property with respect to µ. Therefore, when X = `1(Γ), this is the case for
every target space Y . Conversely, we also show that a real finite-dimensional space X satisfies that
generating operators from X to Y generate all non-expansive operators by closed convex hull only in
the case that X is an `1-space.

1. Introduction

Let X and Y be Banach spaces over the field K (K = R or K = C). We denote by L(X,Y ) the
space of all bounded linear operators from X to Y and write X∗ = L(X,K) to denote the dual space.
By BX and SX we denote the closed unit ball and the unit sphere of X, respectively, and we write
T for the set of modulus one scalars. Some more notation and definitions (which are standard) are
included in Subsection 1.1 at the end of this introduction.

The concept of spear operator was introduced in [1] and deeply studied in the book [7]. A norm-one
operator G ∈ L(X,Y ) is said to be an spear operator if the norm equality

max
θ∈T
‖G+ θT‖ = 1 + ‖T‖

holds for all T ∈ L(X,Y ). This concept extends the properties of the identity operator in those
Banach spaces having numerical index one and it is satisfied, for instance, by the Fourier transform
on L1. There are isometric and isomorphic consequences on the domain and range spaces of a spear
operator as, for instance, in the real case, the dual of the domain of a spear operator with infinite
rank has to contain a copy of `1. For more information and background, we refer the interested reader
to the already cited book [7]. Even though the definition of spear operator given above does not
need numerical ranges, it is well known that spear operators are exactly those operators such that
the numerical radius with respect to them coincides with the operator norm. Let us introduce the
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2020 Mathematics Subject Classification. Primary 46B04, Secondary 46B20, 46B22, 47A30.
Key words and phrases. Bounded linear operators on Banach spaces; norm attainment; spear sets, spear operators.
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2 KADETS, MARTÍN, MERÍ, AND QUERO

relevant definitions. Fixed a norm-one operator G ∈ L(X,Y ), the numerical radius with respect to G
is the seminorm defined as

vG(T ) := sup{|φ(T )| : φ ∈ L(X,Y )∗, φ(G) = 1}
= inf

δ>0
sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}

for every T ∈ L(X,Y ) (the equality above was proved in [14, Theorem 2.1]). Observe that vG(·) is a
seminorm in L(X,Y ) which clearly satisfies

(1) vG(T ) 6 ‖T‖ (T ∈ L(X,Y )).

Then, G is a spear operator if and only if vG(T ) = ‖T‖ for every T ∈ L(X,Y ) (see [7, Proposition 3.2]).

Our discussion here starts with the observation that it is possible to introduce a natural seminorm
between vG(T ) and ‖T‖ in Eq. (1): the (semi-)norm relative to G. Let us introduce the needed
notation and definitions. Let X, Y , Z be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator.
For δ > 0, we write att(G, δ) to denote the δ-attainment set of G, that is,

att(G, δ) := {x ∈ SX : ‖Gx‖ > 1− δ}.
If there exists x ∈ SX such that ‖Gx‖ = 1, we say that G attains its norm and we denote by att(G)
the attainment set of G:

att(G) := {x ∈ SX : ‖Gx‖ = 1}.
We consider the parametric family of norms on L(X,Z) defined by

‖T‖G,δ := sup {‖Tx‖ : x ∈ att(G, δ)} (T ∈ L(X,Z))

which are equivalent to the usual norm on L(X,Z) (this is so since att(G, δ) has nonempty interior).
We are interested in the (semi-)norm obtained taking infimum on this parametric family.

Definition 1.1. Let X, Y and Z be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator.
For T ∈ L(X,Z), we define the (semi-)norm of T relative to G by

‖T‖G := inf
δ>0
‖T‖G,δ.

When Z = Y , we clearly have that

vG(T ) 6 ‖T‖G 6 ‖T‖ (T ∈ L(X,Y ))

and so this ‖ · ‖G is the promised seminorm to extend Eq. (1). We may study the possible equality
between vG(·) and ‖ · ‖G and between ‖ · ‖G and the usual operator norm. We left the first relation
for a subsequent paper which is still in process [9]. The main aim in this manuscript is to study when
the norm equality

(2) ‖T‖G = ‖T‖
holds true.

Definition 1.2. Let X, Y be Banach spaces. We say that G ∈ L(X,Y ) with norm-one is generating
(or a generating operator) if equality (2) holds true for all T ∈ L(X,Y ). We denote by Gen(X,Y ) the
set of all generating operators from X to Y .

Observe that both ‖ · ‖G and the operator norm can be defined for operators with domain X and
arbitrary range, so one may wonder if there are different definitions of generating requiring that Eq. (2)
holds replacing Y for other range spaces. This is not the case, as we will show in Section 2 that a
generating operator G satisfies that ‖T‖G = ‖T‖ for every T ∈ L(X,Z) and every Banach space Z
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(see Corollary 2.3). This is so thanks to a characterization of generating operators in terms of the
sets att(G, δ): G is generating (if and) only if conv(att(G, δ)) = BX for every δ > 0, see Corollary 2.3
again. When the dimension of X is finite, this is clearly equivalent to the fact that conv(att(G)) = BX
(actually, the same happens for compact operators defined on reflexive spaces, see Proposition 2.5).
For some infinite-dimensional X, there are generating operators from X which do not attain their
norm, even of rank-two (see Example 3.2); but there are even generating operators attaining the norm
such that conv(att(G)) has empty interior (see Example 3.4).

There is another characterization which involves the geometry of the dual space. We need some
definitions. A subset F of the unit ball of a Banach space Z is said to be a spear set of Z [7,
Definition 2.3] if

max
θ∈T

sup
z∈F
‖z + θx‖ = 1 + ‖x‖ (x ∈ Z).

If z ∈ SZ satisfies that F = {z} is a spear set, we just say that z is a spear vector and we write
Spear(Z) for the set of spear vectors of Z. We refer the reader to [7, Chapter 2] for more information
and background. We will show that a norm-one operator G ∈ L(X,Y ) is generating if and only if
G∗(BY ∗) is a spear set of X∗, see Corollary 2.17. These characterizations appear in Section 2, together
with a discussion on the behaviour of diagonal generating operators on c0-, `1-, and `∞-sums, and
examples in some classical Banach spaces.

We next discuss in Section 3 the relationship between generating operators and norm attainment.
On the one hand, we show that rank-one generating operators attain their norm (see Corollary 3.1)
and, clearly, the same happens with isometric embeddings (which are generating), or with generating
operators whose domain has the RNP (see Corollary 2.12), as every generating operator attains its
norm on denting points (see Lemma 2.8). But, on the other hand, there are generating operators,
even of rank two, which do not attain their norm (see Example 3.2). We further discuss the possibility
for a Banach space X to be the domain of a generating operator which does not attain its norm in
terms of the behaviour of some spear sets of X∗ (see Theorem 3.5).

Finally, Section 4 is devoted to the study of the set Gen(X,Y ). We show that it is closed (see
Proposition 4.1), and show that for every Banach space Y , there is a Banach space X such that
Gen(X,Y ) = ∅ (see Proposition 4.2), but this result is not true for Y = C[0, 1] if we restrict the
space X to be separable (Example 4.5). We next study properties of Gen(X,Y ) when X is fixed.
We first show that Gen(X,Y ) 6= ∅ for every Y if and only if Spear(X∗) 6= ∅ (see Corollary 4.6) and
that the only case in which there is Y such that Gen(X,Y ) = SL(X,Y ) is when X is one-dimensional
(see Corollary 4.7). We then study the possibility that the set Gen(X,Y ) generates the unit ball of
L(X,Y ) by closed convex hull, showing first that this is the case when X = L1(µ) and Y has the RNP
(Theorem 4.10) and when X = `1(Γ) and Y is arbitrary (see Proposition 4.12) and that this is the
only possibility for real finite-dimensional spaces (see Proposition 4.14).

1.1. A bit of notation. Let X, Y be Banach spaces. We write JX : X −→ X∗∗ to denote the
natural inclusion of X into its bidual space. A subset A ⊆ BX∗ is r-norming for X (0 < r 6 1) if
rBX∗ ⊆ aconvw

∗
(A) or, equivalently, if r‖x‖ 6 supx∗∈A |x∗(x)| for every x ∈ X. The most interesting

case is r = 1: A is one-norming for X if BX∗ = aconvw
∗
(A) or, equivalently, if ‖x‖ = supx∗∈A |x∗(x)|

for every x ∈ X. A slice of a closed convex bounded set C ⊂ X is a nonempty intersection of C with
an open half-space. We write

Slice(C, f, α) :=

{
x ∈ C : Re f(x) > sup

C
Re f − α

}

where f ∈ X∗ and α > 0, and observe that every slice of C is of the above form.
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For A ⊂ X, conv(A) and aconv(A) are, respectively, the convex hull and the absolutely convex hull
of A; conv(A) and aconv(A) are, respectively, the closures of these sets. For B ⊂ X convex, ext(B)
denotes the set of extreme points of B.

2. Characterizations, first results, and some examples

Our first result gives different characterizations for the equivalence of ‖ · ‖ and ‖ · ‖G on L(X,Z).
As one may have expected, this does not depend on the range space Z.

Proposition 2.1. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator, and let
r ∈ (0, 1]. Then, the following are equivalent:

(i) ‖T‖G > r‖T‖ for every Banach space Z and every T ∈ L(X,Z).
(ii) There is a (non null) Banach space Z such that ‖T‖G > r‖T‖ for every T ∈ L(X,Z).

(iii) There is a (non null) Banach space Z such that ‖T‖G > r‖T‖ for every rank-one operator
T ∈ L(X,Z).

(iv) ‖x∗‖G > r‖x∗‖ for every x∗ ∈ X∗.
(v) ‖x∗‖G,δ > r‖x∗‖ for every x∗ ∈ X∗ and every δ > 0.

(vi) conv(att(G, δ)) ⊇ rBX for every δ > 0.

Proof. The implications (i)⇒ (ii)⇒ (iii), (iv)⇔ (v), and (vi)⇒ (i) are evident.
(iii) ⇒ (iv). Fix z ∈ SZ and, given x∗ ∈ X∗, consider T = x∗ ⊗ z ∈ L(X,Z) which obviously

satisfies ‖T‖ = ‖x∗‖ and ‖T‖G = ‖x∗‖G.
The remaining implication (v) ⇒ (vi) follows from the Bipolar theorem. Indeed, for δ > 0, take

x ∈ rBX , we have to prove that JX(x) belongs to att(G, δ)◦◦. For x∗ ∈ att(G, δ)◦,

|JX(x)(x∗)| = |x∗(x)| 6 r‖x∗‖ 6 ‖x∗‖G 6 sup {|x∗(x)| : x ∈ att(G, δ)} 6 1,

where the second inequality follows from (iv) and the last one from the fact that x∗ ∈ att(G, δ)◦.
Therefore JX(x) ∈ att(G, δ)◦◦ = convw

∗
(att(G, δ)). �

Observe that item (vi) in the previous result just means that, for every δ ∈ (0, 1), the set att(G, δ)
is r-norming for X∗. This leads to the following concept which extends the one of generating operator.

Definition 2.2. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator and let
r ∈ (0, 1]. We say that G is r-generating if conv(att(G, δ)) ⊇ rBX for every δ > 0.

Of course, the case r = 1 coincides with the generating operators introduced in the introduction.
For them, the following characterization deserves to be emphasized.

Corollary 2.3. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator. Then, the
following are equivalent:

(i) G is generating.
(ii) ‖T‖G = ‖T‖ for every T ∈ L(X,Z) and every Banach space Z.

(iii) There is a (non null) Banach space Z such that ‖T‖G = ‖T‖ for every rank-one operator
T ∈ L(X,Z).

(iv) BX = conv(att(G, δ)) for every δ > 0.

In particular, if there exists A ⊆ BX which satisfies aconv(A) = BX and A ⊆ att(G, δ) for every
δ > 0, then G is generating.

In the next list we give the first easy examples of generating operators.
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Examples 2.4.

(1) The identity operator on every Banach space is generating.
(2) Actually, all isometric embeddings are generating.
(3) Spear operators are generating since, in this case, vG(T ) = ‖T‖ for every T ∈ L(X,Y ).
(4) Actually, operators with the alternative Daugavet property (i.e. those G ∈ L(X,Y ) such that

vG(T ) = ‖T‖ for every T ∈ L(X,Y ) with rank-one, cf. [7, Section 3.2]) are also generating by
using Corollary 2.3 with Z = Y in item (iii).

(5) The natural embedding G of `1 into c0 is a generating operator.
Indeed, for every δ > 0, we have that

att(G, δ) = {x ∈ S`1 : ‖Gx‖∞ > 1− δ} ⊃ T{en : n ∈ N},
so conv(att(G, δ)) = B`1 .

(6) The natural embedding G of L∞[0, 1] into L1[0, 1] is a generating operator.
Indeed, for every δ > 0, notice thatBL∞[0,1] = conv ({f ∈ L∞[0, 1] : |f(t)| = 1 a.e.}) (this should

be well known, but in any case it follows from Lemma 4.11 which includes the vector-valued case).
Observe then that, for every f ∈ L∞[0, 1] satisfying |f(t)| = 1 a.e., it follows ‖f‖∞ = ‖G(f)‖1 = 1.
So ‖G(f)‖1 = 1 and f ∈ att(G, δ).

We will provide some more examples in classical Banach spaces in Subsection 2.2.

The next result deals with compact operators defined on a reflexive Banach space.

Proposition 2.5. Let X be a reflexive Banach space, let Y be a Banach space, and let G ∈ L(X,Y )
be a compact operator with ‖G‖ = 1. Then,

⋂

δ>0

conv(att(G, δ)) = conv(att(G)).

Consequently, G is r-generating if and only if rBX ⊆ conv(att(G)).

Proof. Let x0 ∈
⋂
δ>0 conv(att(G, δ)) and suppose that x0 /∈ conv(att(G)). Then there exist x∗0 ∈ X∗

and α > 0 such that

(3) sup
x∈conv(att(G))

Rex∗0(x) < α 6 Rex∗0(x0).

Fix ε > 0. Given n ∈ N, since x0 ∈ conv
(
att
(
G, 1

n

))
, we may find m ∈ N, y1, . . . , ym ∈ att

(
G, 1

n

)
,

and λ1, . . . , λm ∈ [0, 1] with
∑m

k=1 λk = 1 such that
∥∥∥∥∥x0 −

m∑

k=1

λkyk

∥∥∥∥∥ < ε,

hence

α− ε 6 Rex∗0(x0)− ε <
m∑

k=1

λk Rex∗0(yk).

By convexity, there is k0 ∈ {1, . . . ,m} such that Rex∗0(yk0) > α− ε. Repeating this argument for each
n ∈ N, we obtain a sequence {yn} in BX such that Rex∗0(yn) > α − ε and ‖Gyn‖ > 1 − 1

n for every
n ∈ N. Now, using that BX is weakly compact by Dieudonné’s theorem, we obtain a subsequence
{yσ(n)} of {yn} which is weakly convergent to some y0 ∈ BX . Then, by the arbitrariness of ε and the
compactness of G we have that

Rex∗0(y0) > α and ‖Gy0‖ = 1,
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which contradicts (3). �

Clearly, the previous result applies when X is finite-dimensional.

Corollary 2.6. Let X be a finite-dimensional space, let Y be a Banach space, and let G ∈ L(X,Y )
with ‖G‖ = 1. Then,

⋂

δ>0

conv(att(G, δ)) = conv(att(G)).

Consequently, G is r-generating if and only if rBX ⊆ conv(att(G)).

The next result characterizes those operators acting from a finite-dimensional space which are r-
generating for some 0 < r 6 1.

Proposition 2.7. Let X be a Banach space with dim(X) = n, let Y be a Banach space, and let
G ∈ L(X,Y ) with ‖G‖ = 1. The following are equivalent:

(i) G is r-generating for some r ∈ (0, 1].
(ii) The set att(G) contains n linearly independent elements.

Proof. (i) ⇒ (ii). By Corollary 2.6, we have that rBX ⊆ conv(att(G)). Therefore, att(G) contains n
linearly independent elements.

(ii) ⇒ (i). We start proving that the set conv(att(G)) is absorbing. Indeed, let {x1, . . . , xn} be a
linearly independent subset of att(G). Then, fixed 0 6= x ∈ X, there are λ1, . . . , λn ∈ K such that
x =

∑n
j=1 λjxj . Calling 0 < ρ =

∑n
j=1 |λj | we can write

x =

n∑

k=1

λjxj =
∑

λj 6=0

|λj |
λj
|λj |

xj = ρ
∑

λj 6=0

|λj |
ρ

λj
|λj |

xj ∈ ρ conv(att(G))

where we used that
λj
|λj |xj ∈ att(G) as this set is balanced. Hence, the set conv(att(G)) is absorbing.

Besides, conv(att(G)) is clearly balanced, convex, and compact. So its Minkowski functional defines
a norm on X which must be equivalent to the original one. Then, there is r > 0 such that rBX ⊆
conv(att(G)) and, therefore, G is r-generating by Corollary 2.6. �

We next would like to present the relationship of generating operators with denting points (and
so with the Radon-Nikodým property, RNP in short). We need some notation. Let A be a bounded
closed convex set. Recall that x0 ∈ A is a denting point if for every δ > 0 x0 /∈ conv(A \B(x0, δ)) or,
equivalently, if x0 belongs to slices of BX of arbitrarily small diameter. We write dent(A) to denote
the set of denting points of A. A closed convex subset C of X has the Radon-Nikodým property (RNP
in short), if all of its closed convex bounded subsets contain denting points or, equivalently, if all
of its closed convex bounded subsets are equal to the closed convex hull of their denting points. In
particular, the whole space X may also have this property.

The following result tells us that generating operators must attain their norms on every denting
point.

Lemma 2.8. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a (norm-one) generating operator.
If x0 ∈ dent(BX), then ‖Gx0‖ = 1.



GENERATING OPERATORS BETWEEN BANACH SPACE 7

Proof. Given δ > 0, observe that x0 ∈ att(G, δ). Otherwise, there would exist r > 0 such that
B(x0, r) ∩ att(G, δ) = ∅, so att(G, δ) ⊆ BX \B(x0, r) and

x0 ∈ BX = conv(att(G, δ)) ⊆ conv(BX \B(x0, r))

which contradicts x0 being a denting point of BX . Consequently, ‖Gx0‖ > 1− δ and the arbitrariness
of δ finishes the proof. �

The above result can be slightly improved by using the following definition.

Definition 2.9. Let x0 ∈ SX . We say that x0 is a point of sliced fragmentability if for every δ > 0
there is a slice Sδ of BX such that Sδ ⊂ x0 + δBX .

Observe that this notion is weaker than that of denting point (for instance, points in the closure of
the set of denting points are of sliced fragmentability but they do not need to be denting, even in the
finite-dimensional case).

Lemma 2.10. Let X, Y be Banach spaces, let G ∈ SL(X,Y ) be a generating operator, and let x0 ∈ SX
be a point of sliced fragmentability, then ‖Gx0‖ = 1.

Proof. Fixed δ > 0, by our assumption, conv(att(G, δ)) = BX for every δ > 0. This implies that, fixed
δ > 0, the set att(G, δ) intersects every slice of BX . Applying this to the slice Sδ from Definition 2.9, we
obtain that there is a point xδ ∈ Sδ ∩att(G, δ). For this xδ, we have ‖x0−xδ‖ < δ and ‖Gxδ‖ > 1− δ.
Consequently,

‖Gx0‖ > ‖Gxδ‖ − ‖G(x0 − xδ)‖ > 1− 2δ

and the arbitrariness of δ finishes the proof. �

We do not know if Lemma 2.10 is a characterization, but in Proposition 3.6 we will characterize
those points on which every generating operator attains its norm.

Proposition 2.11. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator. Suppose
that BX = conv(dent(BX)). Then, G is generating if and only if ‖Gx‖ = 1 for every x ∈ dent(BX).

Proof. If ‖Gx‖ = 1 for every x ∈ dent(BX), then dent(BX) ⊂ att(G, δ) for every δ > 0 and, therefore,
G is generating by Corollary 2.3.iv as BX = conv(dent(BX)). The converse result follows from
Lemma 2.8. �

Corollary 2.12. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator. Suppose
that X has the Radon-Nikodým property. Then, G is generating if and only if ‖Gx‖ = 1 for every
x ∈ dent(BX).

In the finite-dimensional case, the RNP is for free and denting points and extreme points coincide.
Therefore, the following particular case holds.

Corollary 2.13. Let X be a finite-dimensional space, let Y be a Banach space, and let G ∈ L(X,Y )
be a norm-one operator. Then, G is generating if and only if ‖Gx‖ = 1 for every x ∈ ext(BX).

The following particular case of Corollary 2.12 is especially interesting.

Example 2.14. Let Y be a Banach space and let G ∈ L(`1, Y ) be a norm-one operator. Then, G is
generating if and only if ‖Gen‖ = 1 for every n ∈ N.
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When every point of the unit sphere of the domain is a denting point, Proposition 2.11 tells us
that generating operators are isometric embeddings. Spaces with such property of the unit sphere are
average locally uniformly rotund (ALUR for short) spaces. They were introduced in [20] and it can
be deduced from [13, Theorem] that a Banach space is ALUR if and only if every point of the unit
sphere is a denting point.

Corollary 2.15. Let X, Y be Banach spaces and suppose that X is ALUR. Then, every generating
operator G ∈ L(X,Y ) is an isometric embedding.

The next result gives another useful characterization of r-generating operators.

Theorem 2.16. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator, let r ∈
(0, 1], and let A ⊂ BY ∗ such that aconvw

∗
(A) = BY ∗. Then, G is r-generating if and only if

max
θ∈T

sup
y∗∈A

‖G∗(y∗) + θx∗‖ > 1 + r‖x∗‖ for every x∗ ∈ X∗.

Proof. If G is r-generating, fixed x∗ ∈ X∗ and δ > 0, we can write

max
θ∈T

sup
y∗∈A

‖G∗(y∗) + θx∗‖ = max
θ∈T

sup
y∗∈A

sup
x∈BX

|(G∗y∗)(x) + θx∗(x)|

= sup
x∈BX

sup
y∗∈A

(|y∗(Gx)|+ |x∗(x)|)

= sup
x∈BX

(‖Gx‖+ |x∗(x)|) > sup
x∈att(G,δ)

(‖Gx‖+ |x∗(x)|)

> sup
x∈att(G,δ)

(1− δ + |x∗(x)|) > 1− δ + r‖x∗‖

where the last inequality holds by Proposition 2.1. The arbitrariness of δ gives the desired inequality.
To prove the converse, fixed x∗ ∈ SX∗ and δ > 0, it suffices to show that ‖x∗‖G,δ > r by Proposi-

tion 2.1. We use the hypothesis for δ
2x
∗ to get that

max
θ∈T

sup
y∗∈A

∥∥∥∥G∗(y∗) + θ
δ

2
x∗
∥∥∥∥ > 1 + r

δ

2
.

So, given 0 < ε < δ
2 , there are y∗ ∈ A, θ ∈ T, and x ∈ BX such that

‖Gx‖+
δ

2
|x∗(x)| >

∣∣∣∣y∗(Gx) + θ
δ

2
x∗(x)

∣∣∣∣ > 1 + r
δ

2
− ε

which implies that

δ

2
|x∗(x)| > r

δ

2
− ε and ‖Gx‖ > 1 + (r − 1)

δ

2
− ε > 1− δ.

The arbitrariness of ε gives ‖x∗‖G,δ > r as desired. �

Of course, one can always use A = BY ∗ in Theorem 2.16 if no other interesting choice for A is
available and still one obtains a useful characterization of r-generating operators.

In the case of generating operators, we emphasize the following result.

Corollary 2.17. Let X, Y be Banach spaces, let A ⊂ BY ∗ be one-norming for Y , and let G ∈ L(X,Y )
with ‖G‖ = 1. Then, the following are equivalent:

(i) G is generating.
(ii) G∗(BY ∗) is a spear set of X∗.

(iii) G∗(A) is a spear set of X∗.
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(iv) max
θ∈T

sup
y∗∈BY ∗

‖G∗(y∗) + θx∗‖ = 2 for every x∗ ∈ SX∗.

Only item (iv) is new, and follows immediately from the following remark.

Remark 2.18. Let Z be a Banach space and F ⊂ BZ . Then, F is a spear set if and only if
max
θ∈T

sup
z∈F
‖z + θz0‖ = 2 for every z0 ∈ SZ .

Indeed, to prove the sufficiency, fixed 0 6= z1 ∈ X, observe that

max
θ∈T

sup
z∈F

∥∥∥∥z + θ
z1

‖z1‖

∥∥∥∥ = 2

implies that max
θ∈T

sup
z∈F

∥∥‖z1‖z + θz1

∥∥ = 2‖z1‖. So, if ‖z1‖ > 1, the triangle inequality allows to write

max
θ∈T

sup
z∈F
‖z + θz1‖ > max

θ∈T
sup
z∈F

∥∥‖z1‖z + θz1

∥∥− (‖z1‖ − 1) = 1 + ‖z1‖.

If otherwise ‖z1‖ < 1, just observe that

max
θ∈T

sup
z∈F
‖z + θz1‖ > max

θ∈T
sup
z∈F

∥∥∥∥z + θ
z1

‖z1‖

∥∥∥∥− (1− ‖z1‖) = 1 + ‖z1‖. �

What we have shown is that it suffices to use elements x∗ ∈ SX∗ in Theorem 2.16 when r = 1.
However, the following example shows that this is not the case for any other value of 0 < r < 1.

Example 2.19. Let 0 < r < 1 be fixed, let X be the real two-dimensional Hilbert space, {e1, e2}
be its orthonormal basis with {e∗1, e∗2} being the corresponding coordinate functionals. The norm-one
operator G ∈ L(X) given by G = r Id +(1− r)e∗1 ⊗ e1 is not r-generating but satisfies

max
θ∈T

sup
x∗∈BX∗

‖G∗(x∗) + θx∗‖ > 1 + r‖x∗‖

for every x∗ ∈ SX∗ .
Indeed, it is clear that ‖G‖ = 1 and G∗ = r Id +(1− r)e1 ⊗ e∗1. So, given x∗ ∈ SX∗ , we have that

max
θ∈T

sup
x∗∈BX∗

‖G∗(x∗) + θx∗‖ > ‖G∗(x∗) + x∗‖ = ‖(1 + r)x∗ + (1− r)x∗(e1)e∗1‖

= ‖2x∗(e1)e∗1 + (1 + r)x∗(e2)e∗2‖ > 1 + r.

Observe that G attains its norm only at ±e1 so Proposition 2.7 tells us that G is not r-generating (in
fact, it is not s-generating for any 0 < s 6 1). �

If we are able to guarantee that G∗(BY ∗) is a spear set of X∗, Corollary 2.17 shows that G is
generating. The most naive way to do so is to require G∗(BY ∗) = BX∗ but observe that, as ‖G∗‖ = 1,
this implies that G∗ is surjective and G is an isometry.

The other extreme possibility is G∗(BY ∗) = {λx∗0 : λ ∈ K, |λ| 6 1} for some x∗0 ∈ SX∗ . This
obviously means that G is a rank one operator; in this case, G∗(BY ∗) is a spear set of X∗ if and only
if x∗0 is a spear vector of X∗. In this particular case, Corollary 2.17 reads as follows.

Corollary 2.20. Let X, Y be Banach spaces, x∗0 ∈ SX∗, and y0 ∈ SY . Then, the rank-one operator
G = x∗0 ⊗ y0 is generating if and only if x∗0 ∈ Spear(X∗).

Observe the similarity with [7, Corollary 5.9] which states that G = x∗0 ⊗ y0 is spear if and only if
x∗0 is a spear functional and y0 is a spear vector. Here the condition is easier to satisfy, of course.
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2.1. Some stability results. The following result shows that the property of being generating is
stable by c0-, `1-, and `∞-sums of Banach spaces.

Proposition 2.21. Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces and let Gλ ∈
L(Xλ, Yλ) be a norm-one operator for every λ ∈ Λ. Let E be one of the Banach spaces c0, `∞, or `1,
let X =

[⊕
λ∈ΛXλ

]
E

and Y =
[⊕

λ∈Λ Yλ
]
E

, and define the operator G : X −→ Y by

G [(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈
[⊕

λ∈ΛXλ

]
E

. Then, G is generating if and only if Gλ is generating for every
λ ∈ Λ.

Proof. Suppose first that G is generating and, fixed κ ∈ Λ, let us show that Gκ is generating. Observe

that calling W =
[⊕

λ 6=κXλ

]
E

and Z =
[⊕

λ 6=κ Yλ
]
E

, we can write X = Xκ⊕∞W and Y = Yκ⊕∞Z
when E is `∞ or c0 and X = Xκ ⊕1 W and Y = Yκ ⊕1 Z when E is `1. Given Tκ ∈ L(Xκ, Yκ), define
T ∈ L(X,Y ) by

T (xκ, w) = (Tκxκ, 0) (xκ ∈ Xκ, w ∈W )

which satisfies ‖T‖ = ‖Tκ‖ and ‖T‖G = ‖T‖ as G is generating. Moreover,

‖T‖G = inf
δ>0

sup{‖T (xκ, w)‖ : (xκ, w) ∈ att(G, δ)} = inf
δ>0

sup{‖Tκxκ‖ : xκ ∈ att(Gκ, δ)} = ‖Tκ‖Gκ ,

thus ‖Tκ‖ = ‖Tκ‖Gκ . The arbitrariness of Tκ gives that Gκ is generating.
To prove the sufficiency when E is c0 or `∞, given T ∈ L(X,Y ), it is enough to show that ‖T‖G >

‖T‖. Fixed ε > 0, we may find κ ∈ Λ such that ‖PκT‖ > ‖T‖ − ε, where Pκ denotes the projection

from Y onto Yκ. Now, writing X = Xκ ⊕∞ W where W =
[⊕

λ 6=κXλ

]
E

, we have that BX =

conv (SXκ × SW ) and so we may find x0 ∈ SXκ and w0 ∈ SW such that

‖PκT (x0, w0)‖ > ‖T‖ − ε.
Take x∗0 ∈ SXκ∗ with x∗0(x0) = 1 and define the operator S ∈ L(Xκ, Yκ) by

S(x) = PκT (x, x∗0(x)w0) (x ∈ Xκ)

which satisfies ‖S‖ > ‖Sx0‖ = ‖PκT (x0, w0) > ‖T‖ − ε and ‖S‖Gκ = ‖S‖ since Gκ is generating.
Moreover, fixed δ > 0,

‖T‖G,δ = sup{‖Tx‖ : x ∈ SX , ‖Gx‖ > 1− δ}
> sup{‖T (x, x∗0(x)w0)‖ : x ∈ Xκ, (x, x∗0(x)w0) ∈ SX , ‖G(x, x∗0(x)w0)‖ > 1− δ}
> sup{‖PκT (x, x∗0(x)w0)‖ : x ∈ SXκ , ‖Gκx‖ > 1− δ} = ‖S‖Gκ,δ.

Therefore, ‖T‖G > ‖S‖Gκ = ‖S‖ > ‖T‖ − ε and the arbitrariness of ε gives that ‖T‖G > ‖T‖ as
desired.

In the case when E = `1, fixed δ > 0, consider the set

Aδ :=
⋃

λ∈Λ

{x ∈ X : xλ ∈ att(Gλ, δ), xκ = 0 if κ 6= λ} ,

which satisfies that Aδ ⊆ att(G, δ) and

conv(Aδ) ⊇
⋃

λ∈Λ

conv ({x ∈ X : xλ ∈ att(Gλ, δ), xκ = 0 if κ 6= λ})

=
⋃

λ∈Λ

{x ∈ X : xλ ∈ BXλ , xκ = 0 if κ 6= λ} ,
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where in the last equality we have used Corollary 2.3.iv as Gλ is generating for every λ ∈ Λ. There-
fore, BX = conv

(⋃
λ∈Λ {x ∈ X : xλ ∈ BXλ , xκ = 0 if κ 6= λ}

)
⊆ conv(Aδ) ⊆ conv(att(G, δ)) and the

arbitrariness of δ gives that G is generating by Corollary 2.3.iv. �

We next discuss the relationship of being generating with the operation of taking the adjoint. We
show next that if the second adjoint is r-generating then the operator itself is r-generating.

Proposition 2.22. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator, and let
r ∈ (0, 1]. If G∗∗ is r-generating, then G is also r-generating.

Proof. Fixed x∗0 ∈ SX∗ ⊂ X∗∗∗, we have that ‖x∗0‖G∗∗,δ > r‖x∗‖ for every δ > 0 by Proposition 2.1. So,
fixed δ > 0 and ε > 0, there exists x∗∗ ∈ att(G∗∗, δ) with |x∗∗(x∗0)| > (1−ε)r. Now, as ‖G∗∗x∗∗‖ > 1−δ,
there is y∗ ∈ SX∗ satisfying |x∗∗(G∗y∗)| > 1− δ. By Goldstine’s theorem there is x ∈ BX such that

|x∗0(x)| = |JX(x)(x∗0)| > (1− ε)r and ‖Gx‖ > |y∗(Gx)| = |JX(x)(G∗y∗)| > 1− δ

which gives ‖x∗0‖G,δ > r since ε > 0 was arbitrary. So G is r-generating by Proposition 2.1. �

We do not know if the converse of the above result holds in general or even for r = 1. On the other
hand, the following example shows that there is no good behaviour of the property of being generating
with respect to taking one adjoint, as the property does not pass from an operator to its adjoint, nor
the other way around.

Example 2.23. Consider the norm-one operator G : c0 −→ c0 defined by

Gx =
∞∑

n=1

1

n
x(n)en (x ∈ c0).

For any x ∈ Sc0 with x(1) ∈ T we have that ‖G(x)‖ = 1 and, consequently, x ∈ att(G, δ) for every
δ > 0. Since such elements are enough to recover the whole unit ball of c0 by taking closed convex
hull, G is generating by Corollary 2.3.iv.

• The adjoint operator G∗ : `1 −→ `1

G∗(x∗) =

∞∑

n=1

1

n
x∗(n)e∗n (x∗ ∈ `1)

is not generating by Example 2.14 since ‖G∗(e∗n)‖ = 1
n < 1 for n > 1.

• The second adjoint G∗∗ : `∞ −→ `∞

G∗∗(x∗∗) =

∞∑

n=1

1

n
x∗∗(n)e∗∗n (x∗∗ ∈ `∞)

is again generating following an analogous argument to the one used for G, using this time
elements x ∈ S`∞ with x(1) ∈ T.

2.2. Some examples in classical Banach spaces. Our aim here is to provide some characteriza-
tions of generating operators when the domain space is L1(µ) or the range space is C0(L) by making
use of Corollary 2.17.
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2.2.1. Operators acting from L1(µ). Let Y be a Banach space and let (Ω,Σ, µ) be a finite measure
space. Recall that an operator T ∈ L(L1(µ), Y ) is representable if there exists g ∈ L∞(µ, Y ) such that

T (f) =

∫

Ω
f(t)g(t) dµ(t) (f ∈ L1(µ)).

In such case, ‖T‖ = ‖g‖∞. Moreover, its adjoint T ∗ : Y ∗ → L∞(µ) is given by

[T ∗(y∗)](f) = y∗(T (f)) =

∫

Ω
f(t)y∗(g(t)) dµ(t) (f ∈ L1(µ), y∗ ∈ Y ∗),

then T ∗(y) = y∗ ◦ g ∈ L∞(µ) for y∗ ∈ Y ∗.
Weakly compact operators are representable (see [5, p. 65, Theorem 12], for instance). If Y has the

RNP, then every operator in L(L1(µ), Y ) is representable (see [5, p. 63, Theorem 5], for instance) and
so L(L1(µ), Y ) identifies with L∞(µ, Y ) in this case.

The question of which operators acting from L1(µ) are generating leads to study the spear sets in
L∞(µ). We do so in the next result which is valid for arbitrary measures.

Proposition 2.24 (Spear sets in BL∞(µ)). Let (Ω,Σ, µ) be a positive measure space and let F ⊂
BL∞(µ). Then, the following are equivalent:

(i) F is a spear set.
(ii) For every measurable set A ∈ Σ with µ(A) 6= 0 and every ε > 0 there exists B ∈ Σ, B ⊂ A with

µ(B) 6= 0 and f ∈ F such that |f(t)| > 1− ε for every t ∈ B.

Proof. Suppose first that F is a spear set. Given A ∈ Σ with µ(A) 6= 0 and ε > 0, since

max
θ∈T

sup
f∈F
‖f + θ1A‖∞ = 2,

there exists f0 ∈ F and θ0 ∈ T such that ‖f0 + θ01A‖∞ > 2 − ε and thus, there exists B ⊂ A with
µ(B) 6= 0 such that |f(t)| > 1−ε for every t ∈ B. To prove the converse implication, given x ∈ L∞(µ)
and ε > 0, there is A ∈ Σ with µ(A) 6= 0 such that |x(t)| > ‖x‖∞ − ε for every t ∈ A. By the
hypothesis, there is a subset B of A with µ(B) 6= 0 and f ∈ F such that |f0(t)| > 1 − ε for every
t ∈ B. Now, thanks to the compactness of T we can fix an ε-net Tε of T, then we may find θ0 ∈ Tε
and C ⊂ B with µ(C) 6= 0 such that |f0(t)+θ0x(t)| > |f0(t)|+ |x(t)|(1−ε) for every t ∈ C. Therefore,

max
θ∈T

sup
f∈F
‖f + θx‖∞ > max

θ∈T
‖f0 + θx‖∞ > inf

t∈C
|f0(t) + θx(t)| > inf

t∈C
|f0(t)|+ |x(t)|(1− ε)

> 1− ε+ (‖x‖∞ − ε)(1− ε),
and the arbitrariness of ε gives maxθ∈T supf∈F ‖f + θx‖∞ > 1 + ‖x‖∞. �

As an immediate consequence we get the following characterization of generating representable
operators acting on L1(µ).

Corollary 2.25. Let Y be a Banach space, let (Ω,Σ, µ) be a finite measure space, and let G ∈
L(L1(µ), Y ) be a norm-one operator which is representable by g ∈ L∞(µ, Y ). Then, the following are
equivalent:

(i) G is generating.
(ii) {y∗ ◦ g : y∗ ∈ BY ∗} is a spear set of BL∞(µ).

(iii) For every measurable set A ⊂ Ω with µ(A) > 0 and every ε > 0 there exists B ⊂ A with µ(B) > 0
such that ‖g(t)‖ > 1− ε for all t ∈ B.

(iv) ‖g(t)‖ = 1 µ-almost everywhere.
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Remark 2.26. The restriction on the measure µ being finite in Corollary 2.25 can be relaxed to being
σ-finite.

Indeed, given a σ-finite measure µ, there is a suitable probability measure ν such that L1(µ) ≡ L1(ν)
and L∞(µ, Y ) ≡ L∞(ν, Y ), see [3, Proposition 1.6.1] for instance).

Compare Corollary 2.25 the above result with [7, Corollary 4.22] which says that G ∈ L(L1(µ), Y )
of norm-one which is representable by g ∈ L∞(µ, Y ) is a spear operator if and only if it has the
alternative Daugavet property if and only if g(t) ∈ Spear(Y ) for a.e. t ∈ Ω. It is then easy to
construct generating operators from L1(µ) which do not have the alternative Daugavet property: for

instance, G ∈ L(L1[0, 1], `22) given by G(f) =

∫ 1

0
f(t)(cos(2πt), sin(2πt)) dt for every f ∈ L1[0, 1].

2.2.2. Operators arriving to C0(L). Let L be a Hausdorff locally compact topological space. It is
immediate from the definition of the norm, that the set A = {δt : t ∈ L} ⊂ C0(L)∗ is one-norming for
C0(L). Hence, Corollary 2.17 reads in this case as follows.

Proposition 2.27. Let X be a Banach space, let L be a Hausdorff locally compact topological space,
and let G ∈ L(X,C0(L)) be a norm-one operator. Then, the following are equivalent:

(i) G is generating.
(ii) The set {G∗(δt) : t ∈ L} is a spear set of X∗.

We would like to compare the result above with [7, Proposition 4.2] where it is proved that G ∈
L(X,C0(L)) has the alternative Daugavet property if and only if {G∗(δt) : t ∈ U} is a spear set of
X∗ for every open subset U ⊂ L. It is then easy to construct examples of generating operators
arriving to C0(L) spaces which do not have the alternative Daugavet property. For instance, consider
G ∈ L(c0, c0) given by

[Gx](n) =

{
0 if n is odd,

x(n) if n is even.

3. Generating operators and norm-attainment

We discuss here when generating operators are norm-attaining. On the one hand, it is shown in [7,
Theorem 2.9] that every spear x∗ ∈ X∗ attains its norm. So rank-one generating operators also attain
their norm by Corollary 2.20.

Corollary 3.1. Let X, Y be Banach spaces and G ∈ Gen(X,Y ) of rank-one. Then, G attains its
norm.

Besides, if BX contains denting points, all generating operators with domain X are norm attaining
by Lemma 2.8.

On the other hand, operators with the alternative Daugavet property are generating (see Exam-
ple 2.4.(4)), and there are operators with the alternative Daugavet property which do not attain their
norm (see [7, Example 8.7]). The construction of the cited example in [7] is not easy at all, but we
may construct easier examples of generating operators which do not attain their norm, even with rank
two.
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Example 3.2. Consider g : [0, 1] −→ `22 given by g(t) = (cos t, sin t) and the norm-one operator
G ∈ L(L1[0, 1], `22) represented by g:

G(x) =

∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1]).

Then, G is generating but does not attain its norm.

Proof. Observe that G is generating by Corollary 2.25 as ‖g(t)‖ = 1 for every t ∈ [0, 1]. To prove
that G does not attain its norm, recall that for an integrable complex-valued function f the equality∣∣∣
∫ 1

0 f(t)dt
∣∣∣ =

∫ 1
0 |f(t)|dt holds if and only if there is λ ∈ T such that f = λ|f | except for a set of zero

measure. Suppose, to find a contradiction, that there is a non-zero x ∈ L1[0, 1] satisfying ‖Gx‖ = ‖x‖.
Then, as xg can be seen as a complex-valued function and we can identify the norm on `22 with the
modulus in C, we have that

∣∣∣∣
∫ 1

0
x(t)g(t)dt

∣∣∣∣ =

∥∥∥∥
∫ 1

0
x(t)g(t)dt

∥∥∥∥

= ‖Gx‖ = ‖x‖ =

∫ 1

0
|x(t)|dt =

∫ 1

0
|x(t)g(t)|dt.

Therefore, there is λ ∈ T such that xg = λ|xg| = λ|x| except for a set of zero measure. But this is
impossible since x takes real values and g covers a non-trivial arc of the unit circumference. �

Example 3.2 can be generalized for other two-dimensional spaces Y , but we need some assumptions
on the shape of SY . If SY can be expressed as a finite or countable union of segments, then every
generating operator G ∈ L(L1[0, 1], Y ) attains its norm, leading to a complete characterization.

Proposition 3.3. Let Y be a real two-dimensional space. Then, the following are equivalent:

(i) SY is a finite or countable union of segments.
(ii) Every generating operator G ∈ L(L1[0, 1], Y ) attains its norm.

Moreover, if the previous assertions hold, we have that BL1[0,1] = conv(att(G)) for every generating
operator G ∈ L(L1[0, 1], Y )).

Proof. (i)⇒ (ii) Let G ∈ L(L1[0, 1], Y ) be a generating operator. Since Y has dimension two, G can
be represented by

G(x) =

∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1])

for a suitable g ∈ L∞([0, 1], Y ) with ‖g‖∞ = 1 and ‖g(t)‖ = 1 almost everywhere by Corollary 2.25.
Since SY is a finite or countable union of segments, we may find a partition π of [0, 1] in measurable
subsets of positive measure such that g(A) is contained in a segment of SY almost everywhere for
every A ∈ π. Then, for every ∆ ∈ π and every measurable subset A ⊂ ∆ of positive measure, consider
xA = 1

|A|1A ∈ SL1[0,1], where |A| denotes the Lebesgue measure of A, and let us show that G attains

its norm at xA. Indeed, as g(A) is contained in a segment of SY a.e., there exists y∗ ∈ SY ∗ such that
y∗(g(t)) = 1 a.e. in A, thus

‖G(xA)‖ > y∗(GxA) = y∗
(∫ 1

0

1

|A|1A(t)g(t) dt

)
=

1

|A|

∫

A
y∗(g(t)) dt = 1,
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and so ‖G(xA)‖ = 1 as desired.
Moreover, for this π

BL1[0,1] ⊆ aconv

({
1

|A|1A : A ⊂ ∆,∆ ∈ π, |A| > 0

})
⊆ conv(att(G)),

hence BL1[0,1] = conv(att(G)).

To prove (ii)⇒ (i), suppose that SY cannot be written as a finite or countable union of segments
and let us construct a generating operator G ∈ L(L1[0, 1], Y ) not attaining its norm. Observe that the
number of open maximal segments in SY is finite or countable as SY is a curve on a two-dimensional
space with finite length. Let ∆n, n ∈ N, be the open maximal segments in SY and denote D =
SY \ (∪n∈N∆n). Clearly, D is an uncountable metric compact subset of SY , hence it contains a
homeomorphic copy of the Cantor set K [11, Chapter I] and so there exists an injective continuous
function ϕ : K −→ D. Now, let us construct an injection from [0, 1] to K. To do so, recall that the
Cantor set is the set of numbers of [0, 1] that have a triadic representation consisting purely of 0’s and
2’s, that is,

K =

{
y ∈ [0, 1] : y =

∞∑

k=1

βk
3k
, βk = 0, 2

}
.

Every t ∈ [0, 1] has a dyadic representation:

t =
∞∑

k=1

αk(t)

2k
,

where αk(t) ∈ {0, 1}. This representation is unique except for a countable subset of [0, 1] consisting
of those numbers with finite dyadic representation. Consider φ : [0, 1] −→ K given by

φ(t) =
∞∑

k=1

2αk(t)

3k
(t ∈ [0, 1]),

where αk(t) ∈ {0, 1} are the coefficients in the dyadic representation of t. The function φ is well-
defined almost everywhere on [0, 1], injective, measurable, and its image lies on K. Then, the function
g = ϕ ◦ φ : [0, 1] −→ D is well-defined almost everywhere on [0, 1], g ∈ L∞[0, 1], and it is injective.
Consider the operator G : L1[0, 1] −→ Y defined by

G(x) =

∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1]).

G is generating by Corollary 2.25 as ‖g(t)‖ = 1 almost everywhere but it does not attain its norm.
Indeed, suppose on the contrary that there is a non-zero x ∈ L1[0, 1] such that

‖G(x)‖ =

∥∥∥∥
∫ 1

0
x(t)g(t) dt

∥∥∥∥ =

∫ 1

0
|x(t)| dt = ‖x‖.

We may find y∗0 ∈ SY ∗ such that
∫ 1

0
|x(t)| dt =

∥∥∥∥
∫ 1

0
x(t)g(t) dt

∥∥∥∥ = y∗0

(∫ 1

0
x(t)g(t) dt

)
=

∫ 1

0
x(t)y∗0(g(t)) dt.

This equality implies the existence of a measurable subset A of [0, 1] with positive measure such
that |x(t)| = x(t)y∗0(g(t)) for every t ∈ A, thus y∗0(g(t)) ∈ {1,−1} for every t ∈ A. Note that
g(A) ⊆

{
y ∈ D : y∗0(y) ∈ {1,−1}

}
. However, this leads to a contradiction. On the one hand, the latter

set has at most four elements as D does not contain open segments of SY . On the other hand, since
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g is injective and A has positive measure, g(A) has infinitely many elements. Thus, G cannot attain
its norm. �

The next example shows that, even in the case of norm-attaining operators, the set att(G) cannot
be used to characterize when G is generating outside the case when X is reflexive and G is compact
covered by Proposition 2.5.

Example 3.4. Let G ∈ L(X,Y ) be a generating operator between two Banach spaces X and Y such

that it does not attain its norm. Then, the operator G̃ : X⊕1K −→ Y ⊕1K defined by G̃(x, λ) = (Gx, λ)

is generating by Proposition 2.21 and attains its norm, but conv(att(G̃)) = conv({(0, λ) : λ ∈ T}) =
{(0, λ) : λ ∈ BK} does not contain any ball of X ⊕1 K.

The following result characterizes the possibility to construct a generating operator not attaining
its norm acting from a given Banach space which somehow extend Example 3.2.

Theorem 3.5. Let X be a Banach space, the following are equivalent:

(i) There exists a Banach space Y and a norm-one operator G ∈ L(X,Y ) such that G is generating
but att(G) = ∅.

(ii) There exists a spear set B ⊆ BX∗ such that sup
x∗∈B

|x∗(x)| < 1 for every x ∈ SX .

Proof. (i) ⇒ (ii) Taking B = G∗(BY ∗), since G is generating, we can use Corollary 2.17 to deduce
that B is a spear set. Besides, as G does not attain its norm, we have that

1 > ‖G(x)‖ = sup
y∗∈BY ∗

|y∗(Gx)| = sup
y∗∈BY ∗

|(G∗y∗)(x)| = sup
x∗∈B

|x∗(x)|

for every x ∈ SX .
(ii)⇒ (i) Consider Y = `∞(B) and G : X −→ `∞(B) defined by

(Gx)(x∗) = x∗(x) (x∗ ∈ X∗, x ∈ X).

On the one hand, for x ∈ SX , we have that

‖G(x)‖ = sup
x∗∈B

|(Gx)(x∗)| = sup
x∗∈B

|x∗(x)| < 1.

On the other hand, using that B is a spear set, for every ε > 0 we may find x∗ ∈ B with ‖x∗‖ > 1− ε
and so

‖G‖ = sup
x∈BX

‖G(x)‖ > sup
x∈BX

|(Gx)(x∗)| = sup
x∈BX

|x∗(x)| = ‖x∗‖ > 1− ε.

Therefore, ‖G‖ = 1 but the norm is not attained.
To show that G is generating, we start claiming that, for every g ∈ `1(B) ⊂ `∞(B)∗, we have

G∗(g) =
∑

x∗∈B
g(x∗)x∗ ∈ X∗.

Indeed, given g ∈ `1(B), observe that

g(f) =
∑

x∗∈B
g(x∗)f(x∗) (f ∈ `∞(B))

and

[G∗(g)](x) = g(Gx) =
∑

x∗∈B
g(x∗)(Gx)(x∗) =

∑

x∗∈B
g(x∗)x∗(x) (x ∈ X),
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so G∗(g) =
∑

x∗∈B g(x∗)x∗. Now, fixed x∗0 ∈ B, define g0 ∈ `∞(B) by

g0(x∗) =

{
1 if x∗ = x∗0
0 if x∗ 6= x∗0

which clearly satisfies G∗(g0) = x∗0. Therefore, by the arbitrariness of x∗0 ∈ B, we get G∗(B`∞(B)∗) ⊃ B,
so G∗(B`∞(B)∗) is a spear set and G is generating by Corollary 2.17. �

The above proof, when read pointwise, allows to give a characterization of those points at which
every generating operator attains its norm.

Proposition 3.6. Let X be a Banach space and x0 ∈ SX . Then, the following are equivalent:

(i) For every Banach space Y and for every generating operator G ∈ SL(X,Y ) one has ‖Gx0‖ = 1.
(ii) The equality sup

x∗∈B
|x∗(x0)| = 1 holds for every spear set B ⊆ BX∗.

Proof. (ii)⇒ (i) Given a generating operator G, B = G∗(BY ∗) is a spear set by Corollary 2.17 so

‖Gx0‖ = sup
y∗∈BY ∗

|y∗(Gx0)| = sup
x∗∈B

|x∗(x0)| = 1.

(i) ⇒ (ii) Suppose that (ii) does not hold. Then, there is a spear set B ⊆ BX∗ such that
sup
x∗∈B

|x∗(x0)| < 1. Now, the operator G : X −→ `∞(B) defined by

(Gx)(x∗) = x∗(x) (x∗ ∈ X∗, x ∈ X)

is generating (as shown in the proof of Theorem 3.5) and satisfies

‖G(x0)‖ = sup
x∗∈B

|(Gx0)(x∗)| = sup
x∗∈B

|x∗(x0)| < 1.

Therefore, (i) does not hold. �

4. The set of all generating operators

Our aim here is to study the set Gen(X,Y ) of all generating operators between the Banach spaces X
and Y . Recall, on the one hand, that IdX ∈ Gen(X,X) for every Banach space X, so Gen(X,X) 6= ∅
for every Banach space X. On the other hand, recall that Corollary 2.20 shows that Gen(X,K) =
Spear(X∗), so Gen(X,K) is empty for many Banach spaces X: those for which Spear(X∗) = ∅ as
uniformly smooth spaces, strictly convex spaces, or real smooth spaces with dimension at least two
(see [7, Proposition 2.11]). We will be interested in finding conditions to ensure that Gen(X,Y ) is
non-empty and, in those cases, to study how big the set Gen(X,Y ) can be. We start with an easy
observation on Gen(X,Y ).

Proposition 4.1. Let X, Y be Banach spaces. Then, Gen(X,Y ) is norm-closed.

Proof. Fixed G0 ∈ Gen(X,Y ) and n ∈ N, there is Gn ∈ Gen(X,Y ) such that ‖G0 −Gn‖ < 1/n and,
therefore, ‖G∗0 −G∗n‖ < 1/n. Observe now that, for x∗ ∈ X∗, we have

max
θ∈T

sup
y∗∈BY ∗

‖G∗0(y∗) + θx∗‖ > max
θ∈T

sup
y∗∈BY ∗

‖G∗n(y∗) + θx∗‖ − sup
y∗∈BY ∗

‖(G∗0 −G∗n)(y∗)‖

= ‖G∗n(BY ∗) + Tx∗‖ − ‖G∗0 −G∗n‖ > 1 + ‖x∗‖ − 1/n,

where the last inequality holds by Corollary 2.17 since Gn is generating. Now, it follows again from
Corollary 2.17 that G0 ∈ Gen(X,Y ). �
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Next, we study the problem of finding out whether Gen(X,Y ) is empty or not for the Banach spaces
X and Y from two points of view: fixing the space Y and fixing the space X.

4.1. Gen(X,Y ) when Y is fixed. We will show that for every Banach space Y there is another
Banach space X such that Gen(X,Y ) = ∅.
Proposition 4.2. For every Banach space Y there is a Banach space X such that Gen(X,Y ) = ∅.

We need the following obstructive result for the existence of generating operators that will serve to
our purpose.

Lemma 4.3. Let X, Y be Banach spaces and let G ∈ Gen(X,Y ). If the norm of X∗ is Fréchet

differentiable at x∗0 ∈ SX∗ and x∗0 is strongly exposed, then x∗0 ∈ G∗(BY ∗).

Proof. Suppose that x∗0 /∈ G∗(BY ∗) and let α = dist(x∗0, G∗(BY ∗)) > 0. Since x∗0 is strongly exposed,
there are x ∈ SX and δ > 0 satisfying Rex∗0(x) = 1 and diam(Slice(BX∗ , x, δ)) < α. Therefore, we get

Rex∗(x) 6 1− δ for every x∗ ∈ G∗(BY ∗) and, as G∗(BY ∗) is a balanced set, we get in fact that

(4) |x∗(x)| 6 1− δ ∀ x∗ ∈ G∗(BY ∗).
By Corollary 2.17, G∗(BY ∗) is a spear set, so we can find a sequence {x∗n} in G∗(BY ∗) and a sequence
{θn} in T such that ‖θnx∗n + x∗0‖ → 2. Therefore, there is a sequence {xn} in SX satisfying

Rex∗0(xn)→ 1 and |x∗n(xn)| → 1.

Since the norm of X∗ is Fréchet differentiable at x∗0 ∈ SX∗ , by the Šmulyian’s test, we have that
‖xn − x‖ → 0. Thus, we get |x∗n(x)| → 1 which contradicts (4). �

We are now able to provide the pending proof. For a Banach space X let dens(X) denote its density
character.

Proof of Proposition 4.2. Take a set Λ with cardinality greater than dens(Y ∗) and set X = `2(Λ). If

G ∈ Gen(X,Y ), it follows from Lemma 4.3 that G∗(Y ∗) = X∗ = `2(Λ) since every point in SX∗ is

Fréchet differentiable and strongly exposed. Then, dens(X∗) = dens(G∗(Y ∗)) 6 dens(Y ∗), which is a
contradiction. �

The above argument is based on the possibility of considering Banach spaces in the domain with a
very big density character. It is then natural to raise the following question.

Question 4.4. Does there exist a Banach space Y with dens(Y ) = Γ such that Gen(X,Y ) 6= ∅ for
every Banach space X satisfying dens(X) 6 Γ?

This question is easily solvable for separable spaces. Indeed, the space Y = C[0, 1] contains isomet-
rically every separable Banach space. Since isometric embeddings are generating, we get the following
example.

Example 4.5. The separable Banach space Y = C[0, 1] satisfies Gen(X,Y ) 6= ∅ for every separable
Banach space X.

The question of whether the same trick works for all density characters is involved and depends on
the Axiomatic Set Theory. On the one hand, assuming CH, `∞/c0 is isometrically universal for all
Banach spaces of density character the continuum [17] but, on the other hand, it is consistent that no
such a universal space exists [19], even a isomorphically universal space, see [4].
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4.2. Gen(X,Y ) when X is fixed. We start our discussion recalling that, by Corollary 2.20, a rank-
one operator x∗ ⊗ y ∈ G(X,Y ) is generating if and only if x∗ ∈ Spear(X∗). This, together with the
fact that Gen(X,K) = Spear(X∗), gives the following result.

Corollary 4.6. Let X be a Banach space. Then,

Gen(X,Y ) 6= ∅ for every Banach space Y ⇐⇒ Spear(X∗) 6= ∅.

For instance, if X has the alternative Daugavet property and BX∗ has w∗-denting points, then
Spear(X∗) 6= ∅ by [7, Proposition 5.1].

Once we know about the existence of Banach spaces for which Gen(X,Y ) 6= ∅ for every Banach
space Y , it is natural to ask about the possible size of the set Gen(X,Y ). The maximal possibility is
Gen(X,Y ) = SL(X,Y ), but this forces X = K.

Corollary 4.7. Let X be a Banach space. Then, there exists a Banach space Y such that Gen(X,Y ) =
SL(X,Y ) if and only if X = K. In this case, Gen(X,Z) = SL(X,Z) for all Banach spaces Z.

Proof. If X = K then Gen(X,Y ) = SL(X,Y ) obviously holds for every Banach space Y . Conversely,
suppose that there is a Banach space Y such that Gen(X,Y ) = SL(X,Y ). So, in particular, every
rank-one operator in SL(X,Y ) is generating but this means that Spear(X∗) = SX∗ by Corollary 2.20.
Therefore, X = K by [7, Proposition 2.11.(e)] �

It is now natural to wonder if there can be enough generating operators to recover the unit ball of
L(X,Y ) by convex (or closed convex) hull. That is, we are looking for Banach spaces X such that
BL(X,Y ) = conv(Gen(X,Y )) or BL(X,Y ) = conv(Gen(X,Y )) for every Banach space Y .

We start our discussion with an observation on lush spaces. Recall that a Banach spaces X is lush
[2] if for every x, y ∈ SX and every ε > 0, there exists y∗ ∈ SY ∗ such that y ∈ Slice(BX , y

∗, ε) and
dist(x, aconv(Slice(BX , y

∗, ε))) < ε. Observe that BX∗ = convw
∗
(Gen(X,K)) = convw

∗
(Spear(X∗))

implies that X is lush by [7, Proposition 3.32]. Conversely, if X is lush and separable, then BX∗ =
convw

∗
(Gen(X,K)) by [7, Theorem 3.33]. If one replaces the weak-star closed convex hull by the norm

closed convex hull, one gets some interesting results on almost CL-spaces. A Banach space X is said
to be an almost CL-space [12] if BX is the absolutely closed convex hull of every maximal convex
subset of SX . By Hahn-Banach and Krein-Milman theorems, every maximal convex subset of SX has
the form Face(BX , x

∗) := {x ∈ SX : x∗(x) = 1} for suitable x∗ ∈ ext(BX∗). In this case, we say that
x∗ is a maximal extreme point, and write x∗ ∈ extm(BX∗).

Proposition 4.8. Let X be a Banach space satisfying that BX∗ = conv(Gen(X,K)). Then, X∗ is an
almost CL-space.

Proof. Indeed, let F = Face(SX∗ , x
∗∗) for some x∗∗ ∈ extm(BX∗∗) be a maximal convex subset of SX∗ .

Then, BX∗ = conv(TF ) since Spear(X∗) ≡ Gen(X,K) ⊆ TFace(SX∗ , x
∗∗) for all x∗∗ ∈ ext(BX∗∗) by

[7, Corollary 2.8.iv]. �

A partial converse of the above result is also true:

Proposition 4.9. Let X be an almost CL-space. Then, BX∗ = convw
∗
(Gen(X,K)). If, moreover, X

does not contain `1, then BX∗ = conv(Gen(X,K)).

Proof. Being extm(BX∗) norming for X, we always have that

BX∗ = convw
∗
(extm(BX∗)).



20 KADETS, MARTÍN, MERÍ, AND QUERO

But when X is an almost CL-space, we have that |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and
every x∗ ∈ extm(BX∗) by using [15, Lemma 3]. Then, extm(BX∗) ⊆ Spear(X∗) ≡ Gen(X,K) by [7,
Corollary 2.8.iv], and we are done.

For the moreover part, it is enough to see that extm(BX∗) is actually a James boundary for X and
so BX∗ = conv(extm(BX∗)) by [6, Theorem III.1]. �

Our next aim is to show that the set Gen(L1(µ), Y ) is quite big for every finite measure µ and many
Banach spaces Y , and that in some cases it allows to recover the unit ball of L(L1(µ), Y ) by taking
closed convex hull. Given a finite measure space (Ω,Σ, µ) and a Banach space Y we write

R(L1(µ), Y ) = {T ∈ L(L1(µ), Y ) : ‖T‖ 6 1, T is representable}.

Theorem 4.10. Let (Ω,Σ, µ) be a finite measure space and let Y be a Banach space. Then,

R(L1(µ), Y ) ⊆ conv
(

Gen(L1(µ), Y )
)
.

As a consequence, if Y has the RNP, then

BL(L1(µ),Y ) = conv
(

Gen(L1(µ), Y )
)
.

Observe that the restriction on the measure µ to be finite can be relaxed to be σ-finite as in
Remark 2.26.

The proof of the theorem follows immediately using Corollary 2.25 and the next lemma, which we
do not know whether it is already known.

Lemma 4.11. Let (Ω,Σ, µ) be a positive measure space and let Y be a Banach space. Then,

BL∞(µ,Y ) = conv
(
{g ∈ L∞(µ, Y ) : ‖g(t)‖ = 1 µ-almost everywhere}

)
.

Proof. Calling B = {g ∈ L∞(µ, Y ) : ‖g(t)‖ = 1 µ-almost everywhere}, it obviously suffices to show
that SL∞(µ,Y ) ⊂ conv(B). We divide the proof into two steps.

Step one. Let f ∈ SL∞(µ,Y ) and suppose that there are N ∈ N, numbers α1 < · · · < αN ∈ [0, 1],

and pairwise disjoint subsets Bk ⊂ Ω with µ(Bk) 6= 0 for k = 1, . . . , N such that
⋃N
k=1Bk = Ω and

‖f(t)‖ = αk for every t ∈ Bk and every k = 1, . . . , N (observe that αN = 1 as ‖f‖ = 1). Then, f can
be written as a convex combination of 2N−1 functions in B.

Indeed, we proceed by induction on N : for N = 1, the function f belongs to B. The case N = 2 gives
the flavour of the proof. In this case we have that ‖f(t)‖ = α1 for every t ∈ B1 and ‖f(t)‖ = 1 for every
t ∈ B2. So, call λ1 = 1+α1

2 , λ2 = 1−α1
2 ∈ [0, 1] and define g1, g2 ∈ L∞(µ, Y ) by g1(t) = g2(t) = f(t) for

every t ∈ B2. Besides, if α1 6= 0, define

g1(t) =
f(t)

‖f(t)‖ , and g2(t) = − f(t)

‖f(t)‖ ∀t ∈ B1.

If otherwise α1 = 0, fix y0 ∈ SY , and define g1(t) = y0 and g2(t) = −y0 for every t ∈ B1. It is clear
that in any case we have f = λ1g1 + λ2g2 and that g1, g2 ∈ B.

Suppose now that the result is true for N > 2 and let us prove it for N + 1. So, let f ∈ SL∞(µ,Y )

and suppose that there are numbers α1 < · · · < αN+1 ∈ [0, 1] with αN+1 = 1, and pairwise disjoint

subsets Bk ⊂ Ω with µ(Bk) 6= 0 for k = 1, . . . , N + 1 such that
⋃N+1
k=1 Bk = Ω and ‖f(t)‖ = αk for

every t ∈ Bk and every k = 1, . . . , N + 1. Observe that, as N > 2, we have that αN > 0. Then, we
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call λ1 = 1+αN
2 , λ2 = 1−αN

2 ∈ [0, 1] and we define f1, f2 ∈ L∞(µ, Y ) by

f1(t) =
f(t)

‖f(t)‖ if t ∈ BN and f1(t) = f(t) if t ∈ Ω \BN ,

f2(t) = − f(t)

‖f(t)‖ if t ∈ BN and f2(t) = f(t) if t ∈ Ω \BN

which clearly satisfy f = λ1f1 + λ2f2. Besides, it is also clear that ‖f1(t)‖ = ‖f2(t)‖ = 1 for every
t ∈ BN ∪BN+1. So, we can apply the induction step for f1 and f2 to write

f1 =
2N−1∑

k=1

µkgk and f2 =
2N−1∑

k=1

βkhk

where gk, hk ∈ B, µk, βk ∈ [0, 1] for k = 1, . . . , 2N−1,
∑2N−1

k=1 µk = 1, and
∑2N−1

k=1 βk = 1. Therefore,
the convex combination we are looking for is

f = λ1

2N−1∑

k=1

µkgk + λ2

2N−1∑

k=1

βkhk

which finishes the induction process.
Step two. Every function f ∈ SL∞(µ,Y ) can be approximated by functions of the class described in

the first step.
Indeed, fixed ε > 0, we may find a partition of [0, 1] =

⋃N
k=1Ak such that 0 < diam(Ak) < ε for

every k = 1, . . . , N , 0 ∈ A1, and 1 ∈ AN . Next, fix αk ∈ Ak for each k = 1, . . . , N with α1 = 0 and
αN = 1, and define Bk = {t ∈ Ω: ‖f(t)‖ ∈ Ak} for every k = 1, . . . , N . We assume without loss of
generality that B1, . . . , BN are non-empty. Now, consider the function h ∈ L∞(µ, Y ) given by

h(t) =





0 if t ∈ B1

αk
f(t)

‖f(t)‖ if t ∈ Bk with k > 2.

For t ∈ B1, we have
‖f(t)− h(t)‖ = ‖f(t)‖ 6 diam(A1) < ε.

Besides, for t ∈ Bk with k > 2, we have

‖f(t)− h(t)‖ =

∥∥∥∥f(t)− αk
f(t)

‖f(t)‖

∥∥∥∥ =
∣∣‖f(t)‖ − αk

∣∣ 6 diam(Ak) < ε.

Therefore, ‖f − h‖ 6 ε and the proof is finished. �

Let us now discuss the case of purely atomic measures. When µ is purely atomic and σ-finite
(so L1(µ) can be easily viewed as L1(ν) for a suitable purely atomic and finite measure ν, see [3,
Proposition 1.6.1] for instance), every operator in L(L1(µ), Y ) is representable for every Banach space
Y (see [5, p. 62], for instance). So, Theorem 4.10 gives that BL(`1(Γ),Y ) = conv(Gen(`1(Γ), Y )) for
every Banach space Y and every countable set Γ. Actually, the restriction of countability for the set
Γ can be remove and the proof in this case is much more direct.

Proposition 4.12. BL(`1(Γ),Y ) = conv(Gen(`1(Γ), Y )) for every Banach space Y and every set Γ.

Proof. The space L(`1(Γ), Y ) can be easily identified with
[⊕

γ∈Γ Y
]
`∞

using the isometric isomor-

phism Φ: L(`1(Γ), Y ) −→
[⊕

γ∈Γ Y
]
`∞

given by Φ(T ) = (Teγ)γ∈Γ (see the proof of [18, Lemma 2], for
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instance). With this identification and Example 2.14, generating operators in L(`1(Γ), Y ) are exactly

elements in
[⊕

γ∈Γ Y
]
`∞

with every coordinate having norm one. Therefore, Lemma 4.11 gives the

result. �

For finite-dimensional `1-spaces, we get a better result.

Corollary 4.13. BL(`n1 ,Y ) = conv(Gen(`n1 , Y )) for every Banach space Y and every n ∈ N.

Proof. For T ∈ BL(`n1 ,Y ) consider the finite-dimensional subspace of Y given by Y1 = T (`n1 ) and observe

that conv(Gen(`n1 , Y1)) = conv(Gen(`n1 , Y1)) as Gen(`n1 , Y1) is compact. So, Proposition 4.12 tells us
that

T ∈ conv(Gen(`n1 , Y1)).

Finally, denoting G1 the inclusion of Y1 in Y , it is obvious that G1 ◦ G ∈ Gen(`n1 , Y ) for every
G ∈ Gen(`n1 , Y1). So T ∈ conv(Gen(`n1 , Y )). �

The next result shows that the only finite-dimensional real spaces with this property are `n1 for
n ∈ N.

Proposition 4.14. Let X be a real Banach space with dim(X) = n and such that BL(X,Y ) =
conv(Gen(X,Y )) for every Banach space Y . Then, X = `n1 .

Proof. Proposition 4.8 tells us that X∗ is an almost CL-space so n(X∗) = n(X) = 1. Therefore, as
X is real, the set ext(BX) is finite by [16, Theorem 3.2]. Our goal is to show that ext(BX) contains
exactly 2n elements as this clearly implies that X is isometrically isomorphic to the real space `n1 .

We suppose that ext(BX) has more than 2n elements and we show that, in such a case, there is a
Banach space Y (= X with a new norm) such that BL(X,Y ) 6= conv(Gen(X,Y )). Since dim(X) = n
and ext(BX) has more than 2n elements, we may find {e1, . . . , en} ⊂ ext(BX) linearly independent
and en+1 ∈ ext(BX) satisfying

en+1 /∈ {±ej : j = 1, . . . , n}.
For each j = 1, . . . , n, as ext(BX) is finite, we can pick fj ∈ X∗ such that

1 = fj(ej) > cj = max {fj(x) : x ∈ ext(BX) \ {ej}} .
Besides, define c = max {cj : j = 1, . . . , n} < 1, take ε > 0 satisfying (1 + ε)c < 1, and consider the
Banach space Y whose unit ball is

BY = conv
(

ext(BX) ∪ {±(1 + ε)en+1}
)
.

Now, observe that e1, . . . , en are also extreme points of BY . Indeed, fixed j ∈ {1, . . . , n}, our choice
of c gives

fj(x) 6 (1 + ε)cj < 1 = fj(ej)

for every x ∈ ext(BX) ∪ {±(1 + ε)en+1} with x 6= ej . So ej cannot lie in a proper segment of BY .
Observe that conv(Gen(X,Y )) = conv(Gen(X,Y )), as L(X,Y ) is finite-dimensional and Gen(X,Y )

is norm-closed by Proposition 4.1.
Finally, consider the operator Id ∈ L(X,Y ) which is not generating by Corollary 2.13 because

en+1 ∈ ext(BX) and ‖ Id(en+1)‖Y = ‖en+1‖Y < 1. If Id ∈ conv(Gen(X,Y )), we may find M ∈ N,

λ1, . . . , λM > 0 with
∑M

i=1 λi = 1 and G1, . . . , GM ∈ Gen(X,Y ) such that

Id =
M∑

i=1

λiGi.
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Then, for each j = 1, . . . , n, we have that

ej = Id(ej) =

M∑

i=1

λiGi(ej) =⇒ Gi(ej) = ej ∀ i ∈ {1, . . . ,M}

as ej ∈ ext(BY ). Since {e1, . . . , en} is linearly independent and dim(X) = n, it follows that Gi = Id
for all i = 1, . . . ,M . Therefore, we have that Id /∈ conv(Gen(X,Y )) = conv(Gen(X,Y )) which finishes
the proof. �
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A NUMERICAL RANGE APPROACH TO BIRKHOFF-JAMES

ORTHOGONALITY WITH APPLICATIONS

MIGUEL MARTÍN, JAVIER MERÍ, ALICIA QUERO, SAIKAT ROY, AND DEBMALYA SAIN

Abstract. The main aim of this paper is to provide characterizations of Birkhoff-James orthogonal-
ity (BJ-orthogonality in short) in a number of families of Banach spaces in terms of the elements of
significant subsets of the unit ball of their dual spaces, which makes the characterizations more ap-
plicable. The tool to do so is a fine study of the abstract numerical range and its relation with the
BJ-orthogonality. Among other results, we provide a characterization of BJ-orthogonality for spaces
of vector-valued bounded functions in terms of the domain set and the dual of the target space, which
is applied to get results for spaces of vector-valued continuous functions, uniform algebras, Lipschitz
maps, injective tensor products, bounded linear operators with respect to the operator norm and
to the numerical radius, multilinear maps, and polynomials. Next, we study possible extensions of
the well-known Bhatia-Šemrl Theorem on BJ-orthogonality of matrices, showing results in spaces of
vector-valued continuous functions, compact linear operators on reflexive spaces, and finite Blaschke
products. Finally, we find applications of our results to the study of spear vectors and spear operators.
We show that no smooth point of a Banach space can be BJ-orthogonal to a spear vector of Z. As
a consequence, if X is a Banach space containing strongly exposed points and Y is a smooth Banach
space with dimension at least two, then there are no spear operators from X to Y . Particularizing
this result to the identity operator, we show that a smooth Banach space containing strongly exposed
points has numerical index strictly smaller than one. These latter results partially solve some open
problems.

1. Introduction

Let Z be a Banach space over the field K (which will always be considered as R or C). Given
x, y ∈ Z, we say that x is Birkhoff-James orthogonal to y (BJ-orthogonal in short), denoted by
x ⊥B y, if

‖x+ λy‖ > ‖x‖ ∀λ ∈ K.
This definition, proposed by Birkhoff [6] in the setting of metric linear spaces, has a natural geometric
interpretation: x ⊥B y if and only if the (real or complex) line {x+λy : λ ∈ K} is disjoint with the open
ball of radius ‖x‖ centered at the origin. Observe that BJ-orthogonality is homogeneous, i.e., x ⊥B y
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implies that αx ⊥B βy for every α, β ∈ K. Also, smoothness of the norm of Z at x is equivalent to the
right-additivity of ⊥B at x: x is smooth in Z if and only if for any y, z ∈ Z, x ⊥B y, x ⊥B z together
imply that x ⊥B (y + z). In case the norm is induced by an inner product 〈 , 〉, it is elementary to
notice that BJ-orthogonality is equivalent to the usual orthogonality: x ⊥ y if and only if 〈x, y〉 = 0 if
and only if x ⊥B y. This shows that BJ-orthogonality generalizes the concept of usual orthogonality
to the framework of norms. Although there exist several non-equivalent notions of orthogonality
in Banach spaces, it is commonly accepted that BJ-orthogonality is arguably the most useful one
amongst them by virtue of its rich connections with many important concepts in the geometric theory
of Banach spaces, including smoothness, operator norm attainment, characterizations of Euclidean
and Hilbert spaces among Banach spaces, and best approximations. We refer the interested readers
to [36, 37, 38, 40, 41, 42], and the references therein, for more information in this regard.

A general way to study BJ-orthogonality in any Banach space Z was given by R. C. James in terms
of the dual space Z∗ of Z.

Fact 1.1 ([13, Corollary 2.2]). Let Z be a Banach space and let x, y ∈ Z. Then,

x ⊥B y ⇐⇒ there exists φ ∈ Z∗ with ‖φ‖ = 1 such that φ(x) = ‖x‖ and φ(y) = 0.

This characterization of BJ-orthogonality immediately relates it with the norm attainment problem
for functionals in the dual space. As a matter of fact, one of the useful ways to reap the benefits out
of the concept of BJ-orthogonality for the purpose of understanding the geometric and analytic struc-
tures of a Banach space, is to apply James’ characterization of BJ-orthogonality in the corresponding
dual space. As we will see in this article, it is possible to obtain further refinements of the James
characterization in many important cases including the Banach space of bounded linear operators
between Banach spaces.

The above result by James also relates BJ-orthogonality with the concept of (abstract) numerical
range. Let us introduce the required notations and definitions. Given a Banach space Z, we write BZ
and SZ to denote, respectively, the closed unit ball and the unit sphere of Z, Re(·) will denote the real
part (which is nothing but the identity if we are dealing with real numbers), and we write T for the
set of modulus-one scalars. If u ∈ Z is a norm-one element, the (abstract) numerical range of z ∈ Z
with respect to (Z, u) is the non-empty compact convex subset of K given by

V (Z, u, z) := {φ(z) : φ ∈ F(BZ∗ , u)},
where F(BZ∗ , u) := {φ ∈ SZ∗ : φ(u) = 1} is the face of BZ∗ generated by u, also known as the set of
states of Z relative to u. The concept of abstract numerical range takes its roots in a 1955 paper by
Bohnenblust and Karlin [7] and it was introduced in the 1985 paper [23]. We refer the reader to the
classical books [8, 9] by Bonsall and Duncan, to Sections 2.1 and 2.9 of the book [10], and to Section
2 of [16] for more information and background.

Observe that, with the definition of numerical range in hands, Fact 1.1 can be easily written in the
following way.

Proposition 1.2. Let Z be a Banach space, let u ∈ SZ , and let z ∈ Z. Then,

u ⊥B z ⇐⇒ 0 ∈ V (Z, u, z).

Let us also comment that it is also possible to write the numerical range in terms of the BJ-
orthogonality, see Proposition 2.1. It is then clear that the study of BJ-orthogonality and the study
of abstract numerical ranges are somehow equivalent.
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The main disadvantage of Proposition 1.2 (and of Fact 1.1) is that we have to deal with the whole
dual of the Banach space Z, and this is difficult in many occasions. For instance, when Z is a space of
bounded linear operators, which is the most interesting case for us, the dual space is a wild object that
it is not easy to manage. For an easier writing of our discussion, let us introduce the following notation:
given Banach spaces X, Y , we write L(X,Y ) to denote the space of all bounded linear operators from
X to Y and K(X,Y ) for its subspace consisting of compact operators. When X = Y , we just write
L(X) and K(X). In the case when Z is the space of n×n matrices (identified with L(H) where H is an
n-dimensional Hilbert space), a celebrated result by Bhatia and Šemrl [5, Theorem 1.1] says that two
matrices A, B satisfy that A ⊥B B if and only if there is a norm-one vector x such that ‖Ax‖ = ‖A‖
and 〈Ax,Bx〉 = 0 (that is, there is a norm-one vector x at which A attains its norm and such that
Ax ⊥ Bx). Observe that it is equivalent to say that, in this case, when A ⊥B B, the functional φ
on the space of n × n matrices given by Fact 1.1 can be taken of the form φ(C) = 〈Cx, y〉 for some
norm-one vectors x and y (see the proof of Corollary 4.2). Clearly, this gives much more information
than the one provided by Fact 1.1 and avoids to deal with the wild dual of the space of matrices. This
result does not extend to general operators on infinite-dimensional Hilbert spaces (as they do not need
to attain the norm), but there is a similar result: given two bounded linear operators A and B on a
Hilbert space H, A ⊥B B if and only if there is a sequence {xn} in SH satisfying that lim ‖Axn‖ = ‖A‖
and lim〈Axn, Bxn〉 = 0 [21, Lemma 2.2], [5, Remark 3.1]. The significance of the result obtained by
Bhatia and Šemrl lies in the fact that it allows us to examine the orthogonality of bounded linear
operators on a Hilbert space in terms of the usual orthogonality of certain special elements in the
ground space. We would like to emphasize here that such a characterization of BJ-orthogonality is
certainly more handy than James’ characterization, since we do not need to deal with the dual of the
operator space. Moreover, as already mentioned in [5], it is natural to speculate about the validity of
the above results in case of bounded linear operators on a Banach space. In general, they do not extend
to operators between general Banach spaces, even in the finite-dimensional case, as it was shown by
Li and Schneider [20, Example 4.3]. However, a related weaker result was proved in the same paper
[20, Proposition 4.2]: if X and Y are finite-dimensional Banach spaces and T,A ∈ L(X,Y ), then

T ⊥B A ⇐⇒ 0 ∈ conv
({
y∗(Ax) : x ∈ ext(BX), y∗ ∈ ext(BY ∗), y

∗(Tx) = ‖T‖
})
,

where ext(C) denotes the set of extreme points of a convex set C and conv(·) is the convex hull.
Observe that this result is similar to Bhatia-Šemrl’s one up to taking convex hull in K. How did
Li and Schneider get this result? Just by characterizing the extreme points of the dual unit ball of
L(X,Y ) when X and Y are finite-dimensional and then using a classical result by Singer about best
approximation. Let Z be a Banach space, let M be a subspace of Z, and let x ∈ Z. An element
m0 ∈M is said to be a best approximation of x at M if

‖x−m0‖ 6 ‖x−m‖ ∀m ∈M.

Observe that m0 is a best approximation to x in M if and only if x − m0 is BJ-orthogonal to M ,
i.e., x −m0 ⊥B m for every m ∈ M . Equivalently, given x, y ∈ Z, x ⊥B y if and only if 0 is a best
approximation to x in span{y}. We refer the interested reader to the classical book [41] by I. Singer
for background. Using the relation between best approximation and BJ-orthogonality, the classical
result of I. Singer that Li and Schneider used reads as follows.

Fact 1.3 ([41, Theorem II.1.1]). Let Z be a Banach space and let u, z ∈ Z. Then,

x ⊥B y ⇐⇒ 0 ∈ conv
({
φ(z) : φ ∈ ext(BZ∗), φ(u) = ‖u‖

})
.

Observe that this result just says that the functional φ in Fact 1.1 can be taken in the convex hull
of the set of extreme points of BZ∗ . We will provide in Proposition 2.2 a version of Proposition 1.2
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using only extreme points with an independent proof. Of course, Fact 1.3 is very interesting in the
cases when the extreme points of the dual ball are known and easy to manage: for Z = C(K) or for
Z being an isometric predual of an L1(µ) space, or even when Z = L(X,Y ) and X and Y are finite-
dimensional (as it was done by Li and Schneider, see [20, Proposition 4.2]). Actually, for arbitrary
spaces X and Y , the extreme points of the dual ball of Z = K(X,Y ) have been described in [34] as
ext(BX∗∗) ⊗ ext(BY ∗). In the particular case when X is reflexive, this provides the following result
which covers Li and Schneider’s one: let X be a reflexive space, let Y be a Banach space, and let
T,A ∈ K(X,Y ); then

T ⊥B A ⇐⇒ 0 ∈ conv
({
y∗(Ax) : x ∈ ext(BX), y∗ ∈ ext(BY ∗), y

∗(Tx) = ‖T‖
})

(see Corollary 3.11). When we deal with non-compact operators, there is no description of the extreme
points of the unit ball of L(X,Y )∗ available, hence Fact 1.3 is not applicable in this case. However, a
somehow similar result was proved in [28, Theorem 2.2]: let X, Y be Banach spaces and let T,A ∈
L(X,Y ); then,

T ⊥B A⇐⇒ 0 ∈ conv
({

lim y∗n(Axn) : (xn, y
∗
n) ∈ SX × SY ∗ ∀n ∈ N, lim y∗n(Txn) = ‖T‖

})
.

This is, as far as we know, the most general result concerning a characterization of BJ-orthogonality
of operators in terms of the domain and range spaces and their duals.

Our main aim in this paper is to provide a very general result characterizing BJ-orthogonality in a
Banach space Z in terms of the actions of elements on an arbitrary one-norming subset. Recall that a
subset Λ ⊂ SZ∗ is said to be one-norming for Z if ‖z‖ = sup{|φ(z)| : φ ∈ Λ} for all z ∈ Z (equivalently,
if BZ∗ equals the absolutely weak-star closed convex hull of Λ). One of the assertions of this general
result (see Corollary 2.6) is the following: let Z be a Banach space, Λ ⊂ SZ∗ be one-norming for Z;
then for u ∈ SZ and z ∈ Z,

u ⊥B z ⇐⇒ 0 ∈ conv
({

limψn(z)ψn(u) : ψn ∈ Λ, lim |ψn(u)| = 1
})

.

The way to get the result is to combine Proposition 1.2 with a very general result on numerical
ranges, Theorem 2.4, which extends previous characterizations from [16]. This result also allows to
characterize smooth points, see Corollary 2.11. There are also nicer versions of these results in the
case when instead of a one-norming subset Λ, we have a subset C of SZ∗ such that its weak-star closed
convex hull is the whole BZ∗ , see Theorem 2.3 and Corollaries 2.5 and 2.10. All of this is the content
of Section 2 of this manuscript.

Section 3 contains a number of particular cases in which the results of Section 2 apply. It is divided
in several subsections, and covers results in a number of spaces. Even though some of the results of
this section were previously known, the previous approaches were different and use ad hoc techniques
for each of the particular cases, while our present approach generalizes all these techniques. On the
other hand, the general result for `∞(Γ, Y ) we give in Theorem 3.2 seems to be new, as they are its
applications for spaces of vector-valued continuous functions (Corollaries 3.4 and 3.5), uniform algebras
(Corollary 3.6), Lipschitz maps (Proposition 3.7), and injective tensor products (Proposition 3.8). For
bounded linear operators (Subsection 3.4), most of the results were already known, but there are some
improvements of previous results in Proposition 3.10 and Corollary 3.11. Besides, we include a result
on smoothness of bounded linear operators which will be used in Section 5. Subsection 3.5 deals with
multilinear maps and polynomials and the results seem to be new. Finally, Subsection 3.6 contains
results on BJ-orthogonality with respect to the numerical radius of operators which were previously
known.

Next, in Section 4 we provide several results related to the Bhatia-Šemrl’s theorem (in the sense of
removing the convex hull and the limits of the characterization of BJ-orthogonality). The main result
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(Theorem 4.3) is for vector-valued continuous functions on a compact Hausdorff space and seems to be
completely new. As consequences, we obtain Bhatia-Šemrl’s kind of results for compact operators on
reflexive Banach spaces, Proposition 4.5 for the real case, Theorem 4.6 in the complex case, and the
latter is new for infinite-dimensional spaces. We also obtain a nice characterization of BJ-orthogonality
for finite Blaschke products (Corollary 4.8).

Finally, Section 5 contains applications of the results in the paper to the study of spear vectors,
spear operators, and Banach spaces with numerical index one. They are consequences of Theorem 5.1
which says that if u is a vertex of a Banach space Z and z ∈ Z is smooth in (Z, vu), then z cannot
be BJ-orthogonal to u in (Z, vu). As a consequence, no smooth point of a Banach space Z can be
BJ-orthogonal to a spear vector of Z (Corollary 5.3). The particularization of the results to the case
Z = L(X,Y ) leads to obstructive results for the existence of spear operators. In particular, we show
that if X is a Banach space containing strongly exposed points and Y is a smooth Banach space
with dimension at least two, then there are no spear operators in L(X,Y ) (Corollary 5.5) and this
result is proved using a sufficient condition for an operator to be smooth (Proposition 3.14). This
result somehow extends [15, Proposition 6.5.a] and provides a partial answer to [15, Problem 9.12].
Particularizing this to the identity operator, we get an obstructive condition for a Banach space to have
numerical index one: the existence of a smooth point which is BJ-orthogonal to a strongly exposed
point (Corollary 5.9). In particular, smooth Banach spaces with dimension at least two containing
strongly exposed points do not have numerical index one (Corollary 5.11). This latter result is a
partial answer to the question of whether a smooth Banach space of dimension at least two may have
numerical index one [14]. Let us comment that the mix of ideas from numerical ranges and from BJ-
orthogonality is the key to obtaining these interesting applications which partially solve some open
questions. Moreover, the abstract numerical range approach to BJ-orthogonality considered in this
article generalizes all of the previously mentioned characterizations to a much broader framework. In
view of this, it is reasonable to expect that the methods developed here will cover more particular
cases, known and new.

2. The numerical range approach

The aim of this section is to connect BJ-orthogonality and smoothness with the theory of abstract
numerical ranges and present different expressions of the abstract numerical range which will be very
useful in order to characterize BJ-orthogonality and smoothness in several contexts.

Let us start with a result showing that the abstract numerical range can be expressed in terms of
BJ-orthogonality. This result, together with Proposition 1.2, shows that the study of BJ-orthogonality
and the study of abstract numerical ranges are somehow equivalent.

Proposition 2.1. Let Z be a Banach space and let u ∈ SZ . Then, for every z ∈ Z,

V (Z, u, z) = {α ∈ K : u ⊥B (z − αu)} .

Proof. Let α ∈ V (Z, u, z), then there exists φ ∈ SZ∗ such that φ(u) = 1 and φ(z) = α. Thus
φ(z − αu) = 0 and so u ⊥B (z − αu). Conversely, if α ∈ K is such that u ⊥B (z − αu), then there
exists φ ∈ SZ∗ such that φ(u) = 1 and φ(z−αu) = φ(z)−α = 0, therefore α = φ(z) ∈ V (Z, u, z). �

Let Z be a Banach space and let u ∈ SZ . Our aim here is to show how to describe the abstract
numerical range V (Z, u, ·) in terms of a fixed one-norming subset Λ ⊂ SZ∗ which will allow to get
characterizations of BJ-orthogonality and smoothness. In the particular case in which Λ is equal to
ext(BZ∗), the characterization of BJ-orthogonality actually follows from Fact 1.3. But we are also
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able to get a result on abstract numerical ranges as an easy consequence of Bauer Maximum Principle.
Observe that Fact 1.3 can be also deduced from the next proposition and Proposition 1.2.

Proposition 2.2. Let Z be a Banach space and let u ∈ SZ . Then, for every z ∈ Z,

V (Z, u, z) = conv {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} .

Proof. We apply Bauer Maximum Principle (see [1, 7.69], for instance) to the set F(BZ∗ , u), which
is convex and w∗-compact, and to the function φ 7−→ Reφ(z) from F(BZ∗ , u) to R, which is w∗-
continuous and convex. Then, this function attains its maximum at an extreme point of F(BZ∗ , u)
(which is also an extreme point of BZ∗ since F(BZ∗ , u) is an extremal subset). That is,

max ReV (Z, u, z) = max Re {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} .
Now, the result follows using that V (Z, u, θz) = θV (Z, u, z) and

{φ(θz) : φ ∈ ext (BZ∗) , φ(u) = 1} = θ {φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1}
for every θ ∈ T. �

There are Banach spaces Z for which the set of extreme points of the dual space is not known (for
instance, this is the case for Z = L(X,Y ) in general). In those cases, another way to characterize
the numerical range is needed. This was done in [16, Propostion 2.14] substituting the set of extreme
points of the dual ball by a subset C ⊆ BZ∗ such that BZ∗ = convw

∗
(C). We give next a reformulation

of that result which will be useful in applications.

Theorem 2.3. Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that BZ∗ = convw
∗
(C).

Then,

V (Z, u, z) = conv
⋂

δ>0

{
φ(z) : φ ∈ C, Reφ(u) > 1− δ

}

= conv
({

limφn(z) : φn ∈ C ∀n ∈ N, limφn(u) = 1
})

for every z ∈ Z.

Let us comment that comparing this theorem with Proposition 2.2, we lose information as we have
to deal with limits, but we obtain a lot of generality, as there are many situations in which BZ∗ =
convw

∗
(C) holds and C is completely different from ext(BZ∗) (even disjoint). In what follows, and in

the rest of the paper, when we write lim zn for a bounded scalar sequence {zn} we are understanding
that the sequence is convergent, but it is also fine if one understands that lim zn represents an adherent
point of the sequence, which always exists.

Proof of Theorem 2.3. The first equality was already proved in [16, Propostion 2.14], let us prove that

V (Z, u, z) = conv
({

limφn(z) : φn ∈ C ∀n ∈ N, limφn(u) = 1
})
.

For z ∈ Z, we write W (z) := {limφn(z) : φn ∈ C ∀n ∈ N, limφn(u) = 1
}

and we prove first the
inclusion V (Z, u, z) ⊇ convW (z). Given λ0 ∈W (z), for each n ∈ N there exists φn ∈ C such that

|φn(z)− λ0| < 1/n and |φn(u)− 1| < 1/n.

Since BZ∗ is w∗-compact, there is φ0 ∈ BZ∗ a w∗-limiting point of the sequence {φn}n∈N. Then, it
follows that φ0(z) = λ0 and φ0(u) = 1, so λ0 ∈ V (Z, u, z) and the desired inclusion holds by the
convexity of V (Z, u, z).

To prove the reverse inclusion, it is enough to show that the inequality

(2.1) sup ReV (Z, u, z) 6 sup ReW (z)
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holds for every z ∈ Z, as V (Z, u, θz) = θV (Z, u, z) and W (θz) = θW (z) for every θ ∈ T, and W (z)
is closed. So, fixed z ∈ Z and φ0 ∈ F(BZ∗ , u), we apply [16, Lemma 2.15] for δ = 1/n to obtain a
sequence {φn}n∈N in C such that

Reφn(u) > 1− 1/n and Reφn(z) > Reφ0(z)− 1/n.

We may and do suppose (up to taking a subsequence, if needed), that the sequences {φn(u)} and
{φn(z)} are convergent. Therefore, we get limφn(u) = 1 and Reφ0(z) 6 Re limφn(z) 6 sup ReW (z),
and so inequality (2.1) follows. �

We are now able to generalize the previous result to the case of one-norming subsets. We will
include more characterizations here as this is the most general result that we have.

Theorem 2.4. Let Z be a Banach space, let u ∈ SZ , and let Λ ⊂ BZ∗ be one-norming for Z. Then,

V (Z, u, z) = conv
({
θ0 limψn(z) : ψn ∈ Λ ∀n ∈ N, limψn(u) = θ0, θ0 ∈ T

})

= conv
({

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
})

= conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}

=
⋂

δ>0
conv

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}

for every z ∈ Z.

Proof. We start proving the first three equalities. To do so, we apply Theorem 2.3 for C = TΛ which
satisfies convw

∗
(C) = aconvw

∗
(Λ) = BZ∗ to obtain that

V (Z, u, z) = conv
({

limφn(z) : φn ∈ TΛ ∀n ∈ N, limφn(u) = 1
})
.

So it is enough to show the following chain of inclusions:
{

limφn(z) : φn ∈ TΛ ∀n ∈ N, limφn(u) = 1
}
⊆
{
θ0 limψn(z) : ψn ∈ Λ ∀n ∈ N, limψn(u) = θ0

}

⊆
{

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
}

⊆
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}

⊆
{

limφn(z) : φn ∈ TΛ ∀n ∈ N, limφn(u) = 1
}
.

For the first inclusion, take {φn}n∈N ⊆ TΛ with limφn(u) = 1, then φn = θnψn for θn ∈ T and ψn ∈ Λ.
Let θ0 ∈ T be a limiting point of {θn}n∈N, then

limψn(u) = lim θnφn(u) = θ0 and θ0 limψn(z) = θ0 lim θnφn(z) = limφn(z).

The second inclusion is evident. For the third one, let λ = limψn(z)ψn(u) for some sequence
{ψn}n∈N ⊆ Λ with lim |ψn(u)| = 1 and fix δ > 0. There exists n0 ∈ N such that

∣∣∣λ− ψn(z)ψn(u)
∣∣∣ < 1/n and |ψn(u)| > 1− 1/n > 1− δ

for every n > n0, therefore λ ∈
{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
and the arbitrariness of δ gives

the inclusion.
For the last inclusion, let λ ∈ ⋂δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
. For every n ∈ N there exists

ψn ∈ Λ such that ∣∣∣λ− ψn(z)ψn(u)
∣∣∣ < 1/n and |ψn(u)| > 1− 1/n.
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For each n ∈ N, take θn ∈ T such that θnψn(u) = |ψn(u)| and define φn = θnψn ∈ TΛ. Then, we have
that

limφn(u) = lim θnψn(u) = lim |ψn(u)| = 1

and
λ = limψn(z)ψn(u) = lim θnψn(z)θnψn(u) = limφn(z)|ψn(u)| = limφn(z),

which finishes the proof of the chain of inclusions.

Finally, in order to prove the last equality in the lemma, observe that

conv
⋂

δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
⊆
⋂

δ>0
conv

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}

and let us show that the latter set is contained in V (Z, u, z).

Fixed λ ∈ ⋂δ>0 conv
{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
, it is clear that

λ ∈ conv
{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− 1/n

}

for every n ∈ N, and we apply Carathéodory’s Theorem to obtain the existence of an, bn, cn ∈ [0, 1]
with an + bn + cn = 1 and φn, ψn, ξn ∈ Λ such that

|φn(u)| > 1− 1/n, |ψn(u)| > 1− 1/n, |ξn(u)| > 1− 1/n, and(2.2)
∣∣∣λ−

(
anφn(z)φn(u) + bnψn(z)ψn(u) + cnξn(z)ξn(u)

)∣∣∣ < 1/n(2.3)

for every n ∈ N. We may find a, b, c ∈ [0, 1] and {aσ(n)}n∈N, {bσ(n)}n∈N, {cσ(n)}n∈N subsequences of
{an}n∈N, {bn}n∈N, {cn}n∈N respectively such that {aσ(n)}n∈N → a, {bσ(n)}n∈N → b, {cσ(n)}n∈N → c
and a + b + c = 1. Additionally, by passing to a subsequence, we may assume that {φσ(n)(u)}n∈N,
{ψσ(n)(u)}n∈N, {ξσ(n)(u)}n∈N, {φσ(n)(z)}n∈N, {ψσ(n)(z)}n∈N, and {ξσ(n)(z)}n∈N are convergent. Since
BZ∗ is w∗-compact, let φ0, ψ0, ξ0 ∈ BZ∗ be w∗-limiting points of the sequences {φσ(n)}n∈N, {ψσ(n)}n∈N,
{ξσ(n)}n∈N respectively. Then,

limφσ(n)(u) = φ0(u), limψσ(n)(u) = ψ0(u), lim ξσ(n)(u) = ξ0(u),

limφσ(n)(z) = φ0(z), limψσ(n)(z) = ψ0(z), lim ξσ(n)(z) = ξ0(z).

It follows from (2.2) that |φ0(u)| = |ψ0(u)| = |ξ0(u)| = 1. Define

Φ = aφ0(u)φ0 + bψ0(u)ψ0 + cξ0(u)ξ0 ∈ BZ∗ ,
then Φ(u) = a |φ0(u)|2 + b |ψ0(u)|2 + c |ξ0(u)|2 = 1 and

λ = lim
(
aσ(n)φσ(n)(z)φσ(n)(u) + bσ(n)ψσ(n)(z)ψσ(n)(u) + cσ(n)ξσ(n)(z)ξσ(n)(u)

)
= Φ(z)

by (2.3), which imply that λ ∈ V (Z, u, z). �

Thanks to the different expressions of the numerical range provided in Theorems 2.3 and 2.4, we
are able to give new characterizations of BJ-orthogonality .

Corollary 2.5. Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that BZ∗ = convw
∗
(C).

Then, for z ∈ Z, the following are equivalent:

(i) u ⊥B z;

(ii) 0 ∈ conv
⋂
δ>0

{
φ(z) : φ ∈ C, Reφ(u) > 1− δ

}
;

(iii) 0 ∈ conv
({

limφn(z) : φn ∈ C ∀n ∈ N, limφn(u) = 1
})

.

Corollary 2.6. Let Z be a Banach space, let u ∈ SZ , and let Λ ⊂ BZ∗ be one-norming for Z. Then,
for z ∈ Z, the following are equivalent:
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(i) u ⊥B z;
(ii) 0 ∈ conv

({
θ0 limψn(z) : ψn ∈ Λ ∀n ∈ N, θ0 ∈ T, limψn(u) = θ0

})
;

(iii) 0 ∈ conv
({

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
})

;

(iv) 0 ∈ conv
⋂
δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
;

(v) 0 ∈ ⋂δ>0 conv
{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
.

The next easy result will allow to rephrase the characterizations given above without using the
language of convex hull.

Lemma 2.7. Let A be a non-empty subset of K. Then, 0 ∈ conv(A) if and only if given any µ ∈ T,
there exists aµ ∈ A such that Reµaµ > 0.

Moreover, if A is connected, then 0 ∈ conv(A) if and only if given any µ ∈ T, there exists aµ ∈ A
such that Reµaµ = 0.

The real case is obvious. In the complex case, the result follows straightforwardly from the Hahn-
Banach separation Theorem. An elementary proof of the sufficiency can be found in [29, Lemma 2.1].
Let us give an elementary argument for the necessity. By Carathéodory’s Theorem, there exists
λj > 0 and aj ∈ A (j = 1, 2, 3) such that

∑3
j=1 λj = 1 and

∑3
j=1 λjaj = 0. Consider any µ ∈ T. Since∑3

j=1 µλjaj = 0, there exists b1, b2 ∈ {a1, a2, a3} such that Reµb1 > 0 and Reµb2 6 0, and we are

done. Now, if A is connected, then Re{µa : a ∈ A} is an interval in R containing Reµb1 and Reµb2.
Thus, there exists ã ∈ A such that Reµã = 0. This completes the argument.

Let us now use the same spirit of Corollaries 2.5 and 2.6 to characterize the notion of smoothness
in terms of the numerical range. Recall that an smooth point z of a Banach space Z (we may also say
that Z is smooth at z) is just a point at which the norm of Z is Gateaux differentiable; equivalently,
z is a smooth point if {φ ∈ SZ∗ : φ(z) = ‖z‖} is a singleton. The following lemma will allow to use the
characterizations of BJ-orthogonality to describe smooth points. Although the proof of the lemma is
immediate, we record it for the sake of completeness.

Lemma 2.8. Let Z be a Banach space and let u ∈ SZ . Then, u is a smooth point if and only if
V (Z, u, z) is a singleton set for every z ∈ Z.

Proof. If u is smooth, then F(BZ∗ , u) is a singleton and then so are the sets V (Z, u, z) for all z ∈ Z.
Conversely, suppose that there exist φ1, φ2 ∈ SZ∗ such that φ1(u) = φ2(u) = 1 and φ1 6= φ2; then we
may find z ∈ SZ such that φ1(z) 6= φ2(z) and so V (Z, u, z) is not a singleton set. �

The above lemma allows to characterize smoothness using Proposition 2.2, Theorem 2.3, and The-
orem 2.4.

Corollary 2.9. Let Z be a Banach space and let u ∈ SZ . Then, u is a smooth point if and only if
{φ(z) : φ ∈ ext (BZ∗) , φ(u) = 1} is a singleton set for every z ∈ Z.

Corollary 2.10. Let Z be a Banach space, let u ∈ SZ , and let C ⊂ BZ∗ be such that BZ∗ = convw
∗
(C).

Then, the following are equivalent:

(i) u is a smooth point;
(ii)

{
limφn(z) : φn ∈ C ∀n ∈ N, limφn(u) = 1

}
is a singleton set for every z ∈ Z.

(iii)
⋂
δ>0

{
φ(z) : φ ∈ C, Reφ(u) > 1− δ

}
is a singleton set for every z ∈ Z;
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Corollary 2.11. Let Z be a Banach space, let u ∈ SZ , and Λ ⊂ BZ∗ be one-norming for Z. Then,
the following are equivalent:

(i) u is a smooth point;
(ii)

{
θ0 limψn(z) : ψn ∈ Λ ∀n ∈ N, θ0 ∈ T, limψn(u) = θ0

}
is a singleton set for every z ∈ Z;

(iii)
{

limψn(z)ψn(u) : ψn ∈ Λ ∀n ∈ N, lim |ψn(u)| = 1
}

is a singleton set for every z ∈ Z;

(iv)
⋂
δ>0

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
is a singleton set for every z ∈ Z;

(v)
⋂
δ>0 conv

{
ψ(z)ψ(u) : ψ ∈ Λ, |ψ(u)| > 1− δ

}
is a singleton set for every z ∈ Z.

3. Using the general results in some interesting particular cases

We devote this section to apply the abstract results of the previous section in several settings. We
begin with a characterization of BJ-orthogonality in a dual space that extends [39, Theorem 2.7] to
the complex case. The proof is immediate from Goldstine’s Theorem.

Proposition 3.1. Let Y be a Banach space, let C ⊂ BY such that conv(C) is dense in BY . For
u∗, z∗ ∈ Y ∗, we have that

u∗ ⊥B z∗ ⇐⇒ 0 ∈ conv
({

lim z∗(yn) : yn ∈ C ∀n ∈ N, limu∗(yn) = ‖u‖
})
.

Moreover, the norm of Y ∗ is smooth at u∗ if and only if the set
{

limu∗(yn) : yn ∈ C ∀n ∈ N, limu∗(yn) = ‖u‖
}

is a singleton for all y∗ ∈ Y ∗.

The results in the rest of the section are divided into subsections for clarity of the exposition.

3.1. Spaces of bounded functions. Given a non-empty set Γ and a Banach space X, we write
`∞(Γ, X) to denote the Banach space of all bounded functions from Γ to Y endowed with the supremum
norm. For γ ∈ Γ, δγ : `∞(Γ, Y ) −→ Y denotes the evaluation map. We characterize next BJ-
orthogonality in `∞(Γ, Y ). Fix a subset C ⊂ SY ∗ satisfying that the weak-star closed convex hull of
C is the whole BY ∗ . Consider the set

C := {y∗ ⊗ δγ : γ ∈ Γ, y∗ ∈ C} ⊆ `∞(Γ, Y )∗,

where [y∗⊗δγ ](f) := y∗(f(γ)) for every f ∈ `∞(Γ, Y ). Since, clearly, B`∞(Γ,X)∗ is the weak-star closed
convex hull of C, the following result is a consequence of Corollary 2.5.

Theorem 3.2. Let Γ be a non-empty set, let Y be a Banach space, let C ⊂ SY ∗ be such that BY ∗ =
convw

∗
(C), and let f, g ∈ `∞(Γ, Y ). Then,

f ⊥B g ⇐⇒ 0 ∈ conv {lim y∗n(g(γn)) : γn ∈ Γ, y∗n ∈ C ∀n ∈ N, lim y∗n(f(γn)) = ‖f‖} .

Of course, the same characterization is valid in every closed subspace of `∞(Γ, Y ), since the BJ-
orthogonality only depends on the two-dimensional subspace generated by the involved vectors. Then,
as a consequence, we get a characterization of smoothness in any closed subspace Z 6 `∞(Γ, Y ).

Corollary 3.3. Let Γ be a non-empty set, let Y be a Banach space, let C ⊂ SY ∗ such that BY ∗ =
convw

∗
(C), and let Z 6 `∞(Γ, Y ) be a closed subspace. Then, for f ∈ Z the following are equivalent:

(i) f is a smooth point;
(ii)

{
lim y∗n(g(γn)) : γn ∈ Γ, y∗n ∈ C ∀n ∈ N, lim y∗n(f(γn)) = ‖f‖

}
is a singleton set for every g ∈ Z.
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As far as we know, the above two results are new.

Let us consider some interesting particular cases. Given a Hausdorff topological space Ω and a
Banach space Y , we write Cb(Ω, Y ) to denote the Banach space of all bounded continuous functions
from Ω to Y , endowed with the supremum norm.

Corollary 3.4. Let Ω be a Hausdorff topological space, let Y be a Banach space, and let f, g ∈
Cb(Ω, Y ). Then,

f ⊥B g ⇐⇒ 0 ∈ conv {lim y∗n(g(tn)) : tn ∈ Ω, y∗n ∈ SY ∗ ∀n ∈ N, lim y∗n(f(tn)) = ‖f‖} .

This result extends [19, Corollary 3.1] to the vector-valued case. When Ω is compact, the result can
be improved using Fact 1.3 and the description of the dual ball of C(K,Y ) ≡ Kw∗(Y ∗, C(K)) given
in [34, Theorem 1.1].

Corollary 3.5. Let K be a compact Hausdorff topological space, let Y be a Banach space, and let
f, g ∈ C(K,Y ). Then,

f ⊥B g ⇐⇒ 0 ∈ conv {y∗(g(t)) : t ∈ K, y∗ ∈ ext(BY ∗), y
∗(f(t)) = ‖f‖} .

Moreover, f ∈ C(K,Y ) is smooth if and only if the set

{y∗(g(t)) : t ∈ K, y∗ ∈ ext(BY ∗), y
∗(f(t)) = ‖f‖}

is a singleton for every g ∈ C(K,Y ).

The first part of the above corollary improves [32, Theorem 2.1], where the result was given only in
the real case, and [29, Theorem 2.2], where it was proved in the case when Y is a finite-dimensional
Hilbert space.

Another case in which Theorem 3.2 applies is the one of unital uniform algebras: closed subalgebras
of a C(K) space separating the points of K and containing the constant functions. Actually, in this
case an improved result can be stated. For a unital uniform algebra A on C(K), the Choquet boundary
of A is the set

∂A := {s ∈ K : δs|A ∈ ext(BA∗)}
endowed with the topology induced by K. We refer to [27, Chap. 6] for background. It is immediate
that

ext(BA∗) = T{δs|A : s ∈ ∂A},
hence the next result follows from Fact 1.3 and Corollary 2.9.

Corollary 3.6. Let A be a unital uniform algebra on C(K) and let ∂A ⊂ K be its Choquet boundary.

(a) f, g ∈ A satisfy f ⊥B g if and only if

0 ∈ conv
{
θg(s) : θ ∈ T, s ∈ ∂A, f(s) = θ‖f‖

}

(b) f ∈ A is a smooth point of A if and only if the set
{
θg(s) : θ ∈ T, s ∈ ∂A, f(s) = θ‖f‖

}

is a singleton for every g ∈ A.

This result applies, in particular, to the disk algebra A(D) of those continuous functions on the unit
disk D = {w ∈ C : |w| 6 1} which are holomorphic in the interior, whose Choquet boundary is T. We
will improve this result in the case of finite Blaschke products in Corollary 4.8.
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3.2. Lipschitz maps. Next, we give a characterization of BJ-orthogonality in the space of Lipschitz
maps. To do so, we present the basic notions and notations. Given a pointed metric space (that
is, a metric space M with a distinguished element called 0) and a Banach space Y , we denote by
Lip0(M,Y ) the Banach space of all Lipschitz maps F : M −→ Y such that F (0) = 0 endowed with
the norm

‖F‖L = sup

{‖F (t)− F (s)‖
d(t, s)

: t, s ∈M, t 6= s

}
.

We refer the reader to the book [43] for more information and background. Given s, t ∈ M , s 6= t,
and y∗ ∈ Y ∗, we define [

δ̃s,t ⊗ y∗
]

(F ) :=
y∗(F (t)− F (s))

d(t, s)

for every F ∈ Lip0(M,Y ). It is immediate that this formula defines a bounded linear functional on
Lip0(M,Y ) and that, given a one-norming subset C ⊂ SY ∗ for Y , the subset

C :=
{
δ̃s,t ⊗ y∗ : s, t ∈M, s 6= t, y∗ ∈ C

}

is one-norming for Lip0(M,Y ). Therefore, Corollary 2.6 and Corollary 2.11 give the following result.

Proposition 3.7. Let M be a pointed metric space, let Y be a Banach space, and let C ⊆ SY ∗ be
one-norming for Y .

(a) F,G ∈ Lip0(M,Y ) satisfy F ⊥B G if and only if 0 belongs to

conv

{
lim θ0

y∗n
(
G(sn)−G(tn)

)
d(sn,tn) : sn, tn ∈M, sn 6= tn, y

∗
n ∈ C, θ0 ∈ T, lim

y∗n
(
F (sn)−F (tn)

)
d(sn,tn) = θ0‖F‖L

}
.

(b) F ∈ Lip0(M,Y ) is a smooth point if and only if the set
{

lim θ0
y∗n
(
G(sn)−G(tn)

)
d(sn,tn) : sn, tn ∈M, sn 6= tn, y

∗
n ∈ C, θ0 ∈ T, lim

y∗n
(
F (sn)−F (tn)

)
d(sn,tn) = θ0‖F‖L

}

is a singleton for every G ∈ Lip0(M,Y ).

Let us comment that there is a result on smoothness in spaces of Lipschitz functions showing that
smoothness and Fréchet smoothness are equivalent in Lip0(M,R), see [11, Corollary 5.8].

This result also follows from Theorem 3.2 by using a vector-valued version of De Leeuw’s map, see
[43, §2.4] for instance.

3.3. Injective tensor products. Let X, Y be Banach spaces. The injective tensor product of X
and Y , denoted by X⊗̂εY , is the completion of X ⊗ Y endowed with the norm given by

‖u‖ε = sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)y∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
,

where
∑n

i=1 xi ⊗ yi is any representation of u. Since B(X⊗̂εY )∗ = convw
∗
(BX∗ ⊗ BY ∗), we obtain the

following result as consequence of Corollaries 2.5 and 2.10.

Proposition 3.8. Let X, Y be Banach spaces. and let u, z ∈ X⊗̂εY .

(a) u, z ∈ X⊗̂εY satisfy u ⊥B z if and only if

0 ∈ conv
({

lim(x∗n ⊗ y∗n)(z) : x∗n ⊗ y∗n ∈ BX∗ ⊗BY ∗ ∀n ∈ N, lim(x∗n ⊗ y∗n)(u) = ‖u‖ε
})
.
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(b) u ∈ X⊗̂εY is smooth if and only if the set
{

lim(x∗n ⊗ y∗n)(z) : x∗n ⊗ y∗n ∈ BX∗ ⊗BY ∗ ∀n ∈ N, lim(x∗n ⊗ y∗n)(u) = ‖u‖ε
}

is a singleton for every z ∈ X⊗̂εY .

3.4. Spaces of operators endowed with the operator norm. Let X, Y be Banach spaces.
Consider C ⊂ SX such that conv(C) is dense in BX and D ⊂ SY ∗ which is one-norming for Y . Our
general characterization of BJ-orthogonality in L(X,Y ) endowed with the usual norm is obtained by
using Corollary 2.5 with

C := {y∗ ⊗ x : x ∈ C, y∗ ∈ D}
where y∗ ⊗ x ∈ L(X,Y )∗ is defined by

[y∗ ⊗ x](T ) := y∗(Tx) (T ∈ L(X,Y )).

For C = SX and D = SY ∗ , the result already appeared in [28, Theorem 2.2], with a different proof.

Proposition 3.9 (Extension of [28, Theorem 2.2]). Let X, Y be Banach spaces, C ⊂ SX such that
conv(C) is dense in BX and D ⊂ SY ∗ which is one-norming for Y , and let T,A ∈ L(X,Y ). Then,

T ⊥B A⇐⇒ 0 ∈ conv
({

lim y∗n(Axn) : (xn, y
∗
n) ∈ C ×D ∀n ∈ N, lim y∗n(Txn) = ‖T‖

})
.

Observe that the result also follows from Theorem 3.2 as L(X,Y ) can be viewed as a closed subspace
of `∞(C, Y ).

When the operators involved are compact we can remove the limits in Proposition 3.9 and also we
can use extreme points of BX∗∗ and of BY ∗ . For y∗ ∈ Y ∗ and x∗∗ ∈ X∗∗, we consider [x∗∗⊗ y∗](T ) :=
x∗∗(T ∗y∗) for every T ∈ K(X,Y ).

Proposition 3.10. Let X, Y be Banach spaces, and let T,A ∈ K(X,Y ). Then,

T ⊥B A⇐⇒ 0 ∈ conv
({
x∗∗(A∗(y∗)) : x∗∗ ∈ ext(BX∗∗), y

∗ ∈ ext(BY ∗), x
∗∗(T ∗(y∗)) = ‖T‖

})
.

The proof of this result follows from Fact 1.3 as the set

C = {x∗∗ ⊗ y∗ : x∗∗ ∈ ext(BX∗∗), y
∗ ∈ ext(BY ∗)}

coincides with the set of extreme points of the unit ball of K(X,Y )∗, see [34, Theorem 1.3]. In the
case when X is reflexive, the above result has a nicer form. Let us remark here that a special case of
the following result was obtained in Theorem 2.1 of [39], where X is assumed to be a real reflexive
Banach space.

Corollary 3.11. Let X be a reflexive Banach space, let Y be a Banach space, and let T,A ∈ K(X,Y ).
Then,

T ⊥B A⇐⇒ 0 ∈ conv
({
y∗(Ax) : x ∈ ext(BX), y∗ ∈ ext(BY ∗), y

∗(Tx) = ‖T‖
})
.

Of course, the previous result applies when X is finite-dimensional.

Corollary 3.12 ([20, Proposition 4.2]). Let X be a finite-dimensional space, let Y be a Banach space,
and let T,A ∈ L(X,Y ). Then

T ⊥B A⇐⇒ 0 ∈ conv
({
y∗(Ax) : x ∈ ext(BX), y∗ ∈ ext(BY ∗), y

∗(Tx) = ‖T‖
})
.

We finish this subsection on the operator norm by presenting a characterization of smooth operators
which follows directly from Corollary 2.10.
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Proposition 3.13. Let X, Y be Banach spaces, C ⊂ SX such that conv(C) is dense in BX and
D ⊂ SY ∗ which is one-norming for Y , and let 0 6= T ∈ L(X,Y ). Then, T is a smooth operator if and
only if {

lim y∗n(Axn) : (xn, y
∗
n) ∈ C ×D ∀n ∈ N, lim y∗n(Txn) = ‖T‖

}

is a singleton set for every A ∈ L(X,Y ).

As an easy consequence of this proposition and Corollary 2.10, we obtain a result that gives the
existence of smooth operators under reasonable restrictions. In fact, they are quite similar to those
used by Heinrich in [12, Theorem 3.1] to characterize Fréchet smooth operators in L(X,Y ) (but there
is no characterization of smoothness of operators outside K(X,Y ) in [12]). The result extends [40,
Theorem 3.4] to the complex case. It will be used in Subsection 5.2.

Proposition 3.14. Let X, Y be Banach spaces. Let 0 6= T ∈ L(X,Y ) be such that there is x0 ∈ SX
satisfying the following conditions:

(1) Tx0 is a smooth point in Y ;
(2) every sequence {xn} ⊂ BX satisfying lim ‖Txn‖ = ‖T‖ has a subsequence converging to αx0

for some α ∈ T.

Then, T is smooth.

Proof. Using Proposition 3.13 it suffices to show that, for every A ∈ L(X,Y ), the set
{

lim y∗n(Axn) : (xn, y
∗
n) ∈ SX × SY ∗ ∀n ∈ N, lim y∗n(Txn) = ‖T‖

}

is a singleton. To do so, fix an arbitrary λ = lim y∗n(Axn) and observe that lim y∗n(Txn) = ‖T‖ implies
lim ‖Txn‖ = ‖T‖. So, using (2), there are α ∈ T and a subsequence {xσ(n)} with limxσ(n) = αx0.
Now, it is clear that

lim(αy∗σ(n))(Tx0) = lim y∗σ(n)(Txσ(n)) = lim y∗n(Txn) = ‖T‖ = ‖Tx0‖
and

lim(αy∗σ(n))(Ax0) = lim y∗σ(n)(Axσ(n)) = λ.

Therefore, we get that

λ ∈
{

lim z∗n(Ax0) : z∗n ∈ SY ∗ ∀n ∈ N, lim z∗n(Tx0) = ‖Tx0‖
}

and the latter set is a singleton by Corollary 2.10 as Tx0 is a smooth point of Y by (1). �

3.5. Multilinear maps and polynomials. In an analogous way that we deal with bounded opera-
tors, it is possible to describe the BJ-orthogonality of multilinear maps and polynomials.

Let X1, . . . , Xk and Y be Banach spaces. The set of all bounded k-linear maps from X1 × · · · ×Xk

to Y will be denoted by L(X1, . . . , Xk;Y ). As usual, we define the norm of A ∈ L(X1, . . . , Xk;Y ) by

‖A‖ = sup
{
‖A(x1, . . . , xk)‖ : (x1, . . . , xk) ∈ SX1 × · · · × SXk

}
.

It is then immediate that

L(X1, . . . , Xk;Y ) ⊂ `∞(Γ, Y )

where Γ = SX1×· · ·×SXk
. Therefore, the following result follows immediately from Theorem 3.2 and

Corollary 3.3. It was proved in [28].

Proposition 3.15 ([28, Theorem 2.2 and Theorem 3.1]). Let X1, . . . , Xk and Y be Banach spaces
and let C ⊂ SY ∗ be such that BY ∗ = convw

∗
(C).
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(a) For T,A ∈ L(X1, . . . , Xk;Y ) we have that T ⊥B A if and only if 0 belongs to the convex hull of
{

lim
n
y∗n(A(xn1 , . . . , x

n
k)) : (xn1 , . . . , x

n
k) ∈ SX1 × · · · × SXk

, y∗n ∈ C, lim
n
y∗n(T (xn1 , . . . , x

n
k)) = ‖T‖

}
.

(b) T ∈ L(X1, . . . , Xk;Y ) is a smooth point if and only if the set
{

lim
n
y∗n(A(xn1 , . . . , x

n
k)) : (xn1 , . . . , x

n
k) ∈ SX1 × · · · × SXk

, y∗n ∈ C, lim
n
y∗n(T (xn1 , . . . , x

n
k)) = ‖T‖

}

is a singleton for every A ∈ L(X1, . . . , Xk;Y ).

We now deal with polynomials between Banach spaces. Let X and Y be Banach spaces. A
(continuous) N -homogeneous polynomial P from X to Y is a mapping P : X −→ Y for which

we can find a multilinear operator T ∈ L(X ×
N︷︸︸︷. . . ×X;Y ) (continuous) which is symmetric (i.e.,

T (x1, . . . , xN ) = T (xσ(1), . . . , xσ(N)) for every permutation σ of the set {1, . . . , N}) and satisfying
P (x) = T (x, . . . , x) for every x ∈ X. A (general) polynomial from X to Y is a mapping P : X −→ Y
which can be written as a finite sum of homogeneous polynomials. We write P(X,Y ) for the space of
all polynomials from X to Y . It is immediate that P(X,Y ) is a subspace of `∞(BX , Y ), so the next
result follows again from Theorem 3.2 and Corollary 3.3.

Proposition 3.16. Let X, Y be Banach spaces and let C ⊂ SY ∗ be such that BY ∗ = convw
∗
(C).

(a) Given P,Q ∈ P(X,Y ), we have that P ⊥B Q if and only if

0 ∈ conv {lim y∗n(P (xn)) : xn ∈ BX , y∗n ∈ C, lim y∗n(Q(xn)) = ‖Q‖} .
(b) P ∈ P(X,Y ) is a smooth point if and only if the set

{lim y∗n(P (xn)) : xn ∈ BX , y∗n ∈ C, lim y∗n(Q(xn)) = ‖Q‖}
is a singleton for every Q ∈ P(X,Y ).

3.6. Spaces of operators endowed with the numerical radius as norm. Let X be a Banach
space. We deal here with the space L(X) endowed with the numerical radius. Let us recall the
necessary definitions. Write Π(X) := {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}. The numerical radius of
T ∈ L(X) is

v(T ) := sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)}.
It is a well-known fact that

v(T ) = sup
{
|λ| : λ ∈ V (L(X), Id, T )

}

for every T ∈ L(X) (see [10, Proposition 2.1.31], for instance). We refer the interested reader to the
classical books [8, 9] and to Sections 2.1 and 2.9 of the book [10] for more information and background.
It is clear that the numerical radius is a seminorm on L(X) and v(T ) 6 ‖T‖ for every T ∈ L(X).
We would like to remark here that although BJ-orthogonality is defined in the framework of norms,
it may also be considered in exactly the same way in any seminormed space. Of course, when the
seminorm is a norm, we return to the original setting.

We particularize Corollary 2.6 to the space of operators with the numerical radius, taking

Λ := {x∗ ⊗ x : (x, x∗) ∈ Π(X)} ⊂ (L(X), v)∗

which is clearly one-norming for (L(X), v). The following result appeared in [22, Theorem 3.4].

Proposition 3.17 ([22, Theorem 3.4]). Let X be a Banach space and let T,A ∈ L(X). Then,

T ⊥vB A⇐⇒ 0 ∈ conv
({

limx∗n(Axn)x∗n(Txn) : (xn, x
∗
n) ∈ Π(X) ∀n ∈ N, lim |x∗n(Txn)| = v(T )

})
.
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In the case of compact operators defined on a reflexive space, it is straightforward to show that the
limits can be removed.

Corollary 3.18. Let X be a reflexive Banach space and let T,A ∈ K(X). Then,

T ⊥vB A⇐⇒ 0 ∈ conv
({
x∗(Ax)x∗(Tx) : (x, x∗) ∈ Π(X), |x∗(Tx)| = v(T )

})
.

A characterization in the particular case when X has finite dimension has been recently proved by
Roy and Sain [31, Theorem 2.3].

Corollary 3.19 ([31, Theorem 2.3]). Let X be a finite-dimensional space and let T,A ∈ L(X). Then

T ⊥vB A⇐⇒ 0 ∈ conv
({
x∗(Ax)x∗(Tx) : (x, x∗) ∈ Π(X), |x∗(Tx)| = v(T )

})
.

We may state the following characterization of smoothness in (L(X), v), as a consequence of the
previous observations and Corollary 2.11. We say that T ∈ L(X) is a smooth operator for the numerical
radius if T is a smooth point of (L(X), v).

Proposition 3.20. Let X be a Banach space and let T ∈ L(X). Then, T is a smooth operator for
the numerical radius if and only if

{
limx∗n(Axn)x∗n(Txn) : (xn, x

∗
n) ∈ Π(X) ∀n ∈ N, lim |x∗n(Txn)| = v(T )

}

is a singleton set for every A ∈ L(X).

As far as we could check, the above characterization of smoothness for the numerical radius has not
appeared previously in its most general form.

4. Bhatia-Šemrl’s kind of results

In the particular case of operators on Hilbert spaces, the results of the Subsection 3.4 can be
improved as there is no need of taking convex hull. The first characterization in this line was obtained
by Stampfli [42, Theorem 2] in the special case when one of the operators is the identity. Later,
Magajna [21, Lemma 2.2] observed that Stampfli’s result holds for any pair of operators, leading to
a complete characterization of BJ-orthogonality in L(H). The same characterization was obtained by
Bhatia and Šemrl [5, Remark 3.1], and also by Kečkić [18, Corollary 3.1] with different approaches.

Here we present an alternative proof which follows from our Proposition 3.9 and [24, Theorem 2].

Corollary 4.1 ([21, Lemma 2.2], [5, Remark 3.1], [18, Corollary 3.1]). Let H be a Hilbert space and
let T,A ∈ L(H). Then T ⊥B A if and only if there exists a sequence {xn}n∈N in SH such that
‖Txn‖ → ‖T‖ and 〈Txn, Axn〉 → 0.

Proof. It follows from Proposition 3.9 that

T ⊥B A⇐⇒ 0 ∈ conv
({

lim〈Axn, yn〉 : xn, yn ∈ SH ∀n ∈ N, lim〈Txn, yn〉 = ‖T‖
})
.

Observe that
{

lim〈Axn, yn〉 : xn, yn ∈ SH ∀n ∈ N, lim〈Txn, yn〉 = ‖T‖
}

= {lim〈Axn, Txn〉 : xn ∈ SH ∀n ∈ N, lim ‖Txn‖ = ‖T‖
}

and that the latter set is convex (this was first stated without proof in [21, Lemma 2.1], see [24,
Theorem 2] for a proof). �
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In the particular case when H is finite-dimensional, Bhatia and Šemrl were the first to write down
the characterization of BJ-orthogonality of two matrices in terms of the elements of H [5, Theorem 1.1].
An alternative proof of this characterization was given by Roy, Bagchi, and Sain in [30]. We obtain
this result as a consequence of Corollary 3.12.

Corollary 4.2 (Bhatia-Šemrl theorem, [5, Theorem 1.1]). Let H be a finite-dimensional Hilbert space
and let T,A ∈ L(H). Then T ⊥B A if and only if there exists x ∈ SH such that ‖Tx‖ = ‖T‖ and
Tx ⊥B Ax.

Proof. It follows from Corollary 3.12 that

T ⊥B A⇐⇒ 0 ∈ conv
({
〈Ax, y〉 : x, y ∈ SH , 〈Tx, y〉 = ‖T‖

})
.

Now, observe that
{
〈Ax, y〉 : x, y ∈ SH , 〈Tx, y〉 = ‖T‖

}
=
{
〈Ax, Tx〉 : x ∈ SH , 〈Tx, Tx〉 = ‖T‖

}
.

The result follows since the latter set is convex ([21, Lemma 2.1], [24, Theorem 2]). �

It has been shown by Li and Schneider that Bhatia-Šemrl theorem cannot be extended in general to
arbitrary finite-dimensional Banach spaces [20, Example 4.3]. Actually, the validity of Bhatia-Šemrl
theorem for all operators characterizes Hilbert spaces among finite-dimensional Banach spaces, see [4].
However, it is natural to study for which operators T it is possible to have a Bhatia-Šemrl theorem for
all operators A: conditions on T such that whenever T ⊥B A, one has that there is a norm-one x such
that ‖Tx‖ = ‖T‖ and Tx ⊥B Ax (that is, whether we may remove the convex hull in Corollary 3.11).
This has been done in [25, 35, 38] for the real case and in [26, 30] for the complex case. Our aim in
what follows is to give a unified approach that allows to recover some of these results and to obtain
an improvement in the complex setting. Actually, we will work in the more general framework of
vector-valued continuous functions on a compact Hausdorff space. To deal with both the real and
the complex case, we need to introduce the notion of directional orthogonality from [26]. Given x, y
elements of a Banach space Z, we say that x is orthogonal to y in the direction of γ ∈ T, which we
denote by x ⊥γ y, if ‖x + tγy‖ > ‖x‖ for every t ∈ R. Obviously, x ⊥B y if and only if x ⊥γ y for
every γ ∈ T. In the real case, it is obvious that x ⊥B y if and only if x ⊥1 y if and only if x ⊥−1 y.
In the complex case, there are easy examples showing that x 6⊥B y while x ⊥γ y for some γ ∈ T is
possible, see [30, Example 1]. It is shown in [30, Theorem 4] that

(4.1) x ⊥γ y ⇐⇒ ∃ x∗ ∈ SX∗ with x∗(x) = γ‖x‖ and Rex∗(y) = 0

(indeed, this result is immediate as x ⊥γ y if and only if x ⊥B γy in the real space XR underlying X
and (XR)∗ = {Rex∗ : x∗ ∈ X∗}).

For a Hausdorff compact topological space K and a Banach space Y , the norm attainment set of
f ∈ C(K,Y ) is the (non-empty) set

Mf = {t ∈ K : ‖f(t)‖ = ‖f‖}.
Our main result in C(K,Y ) is a Bhatia-Šemrl’s type result when Mf is connected.

Theorem 4.3. Let K be a compact Hausdorff topological space and let Y be a Banach space. Let
f, g ∈ C(K,Y ) be such that Mf is connected. Then,

f ⊥B g ⇐⇒ ∀µ ∈ T ∃t ∈Mf such that f(t) ⊥µ g(t).

In the real case, we actually have

f ⊥B g ⇐⇒ ∃t ∈Mf such that f(t) ⊥B g(t).
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The most technical part of the proof is contained in the next lemma, which is actually valid in
Cb(Ω, Y ). We still use the notation Mf for the (maybe empty) norm attainment set of a function
f ∈ Cb(Ω, Y ).

Lemma 4.4. Let Ω be a Hausdorff topological space, let Y be a Banach space, and let f ∈ Cb(Ω, Y ).
Suppose that there exists a closed connected subset D of Ω such that D ⊆ Mf . Then, for every
g ∈ Cb(Ω, Y ), the set

{y∗(g(t)) : t ∈ D, y∗ ∈ SY ∗ , y∗(f(t)) = ‖f‖}
is a connected subset of C.

Proof. We follow the lines of the proof of the spatial numerical range of operators being connected
given in [8, Section 11]. Consider the product Ω×BY ∗ , topologized by the product of the topology of
Ω and the w∗ topology of BY ∗ . For any fixed h ∈ Cb(Ω, Y ), define Θh : Ω×BY ∗ −→ C by

Θh(t, y∗) = y∗(h(t))
(
(t, y∗) ∈ Ω×BY ∗

)
.

Observe that

|Θh(t, y∗)−Θh(s, z∗)| = |y∗(h(t))− z∗(h(s))|
6 |y∗(h(t))− y∗(h(s))|+ |JY (h(s))(y∗)− JY (h(s))(z∗)|
6 ‖h(t)− h(s)‖+ |JY (h(s))(y∗)− JY (h(s))(z∗)|,

where JY : Y −→ Y ∗∗ denotes the canonical embedding. It follows from the continuity of h and the
w∗-continuity of JY (h(s)) that the map Θh is continuous.

Thus to prove our assertion, it is enough to show that

A = {(t, y∗) ∈ D × SY ∗ : y∗(f(t)) = ‖f‖}
is connected. Suppose by contradiction that A = F1∪F2, where F1, F2 are non-empty and closed in A
with F1∩F2 = ∅. The projections π1(F1) and π1(F2) are closed subsets of Ω. Indeed, consider any net
(tτ ) in π1(F1) such that tτ → t0 in Ω. Evidently, π1(F1) ⊆ D and D is closed. Thus, t0 ∈ D. For each
τ , consider y∗τ ∈ SY ∗ such that (tτ , y

∗
τ ) ∈ F1. The net (y∗τ ) has an adherent point y∗0 in BY ∗ , since BY ∗

is w∗-compact. Thus, (t0, y
∗
0) is an adherent point of the net ((tτ , y

∗
τ )). Moreover, it follows from the

continuity of Θf that y∗0(f(t0)) = ‖f‖. Thus, y∗0 ∈ SY ∗ and we have (t0, y
∗
0) ∈ A. Since F1 is closed in

A, we have (t0, y
∗
0) ∈ F1. Therefore, t0 ∈ π1(F1) and π1(F1) is a closed subset of Ω. Similarly, π1(F2)

is a closed subset of Ω. Note that D = π1(F1) ∪ π1(F2). It follows from the connectedness of D that
there exists t̃ ∈ π1(F1) ∩ π1(F2). Therefore, we may find y∗1 and y∗2 in SY ∗ such that (t̃, y∗1) ∈ F1 and

(t̃, y∗2) ∈ F2. Then,

B :=
{(
t̃, (λy∗1 + (1− λ)y∗2)

)
: λ ∈ [0, 1]

}

is a connected subset and it is contained in A. However, (B ∩ F1) and (B ∩ F2) are non-empty, closed
in B and form a separation of B. This contradicts the connectedness of B. �

We are now ready to give the pending proof of the theorem.

Proof of Theorem 4.3. We only prove the necessity as the sufficiency is straightforward. Suppose that
f ⊥B g and consider

A1 := {y∗(g(t)) : t ∈Mf , y
∗ ∈ ext(BY ∗), y

∗(f(t)) = ‖f‖},
A2 := {y∗(g(t)) : t ∈Mf , y

∗ ∈ SY ∗ , y∗(f(t)) = ‖f‖}.
Observe that A1 ⊆ A2 and that 0 ∈ conv(A1) by Corollary 3.5, hence 0 ∈ conv(A2). Now, by
Lemma 4.4, A2 is connected. Therefore, by Lemma 2.7, for every µ ∈ T there exists (t, y∗) ∈Mf×SY ∗
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such that y∗(f(t)) = ‖f(t)‖ = ‖f‖ and Reµy∗(g(t)) = 0. Hence, (4.1) shows that f(t) ⊥µ g(t), as
desired. �

Our next aim is to apply Theorem 4.3 to spaces of operators. Given Banach spaces X, Y and
T ∈ L(X,Y ), let MT denote the (maybe empty) norm attainment set of T , that is,

MT := {x ∈ SX : ‖Tx‖ = ‖T‖}.
In the real case, the result we get is the following one, which appeared in [25].

Proposition 4.5 ([25, Theorem 2.1]). Let X be a real reflexive Banach space, let Y be a real Banach
space, and let T,A ∈ K(X,Y ). Suppose that MT = D ∪ (−D) for a connected subset D of SX . Then,
T ⊥B A if and only if there exists x ∈ D such that Tx ⊥B Ax.

Proof. We only prove the necessity as sufficiency is obvious. Suppose that T ⊥B A and consider

A1 := {y∗(Ax) : x ∈ extBX , y
∗ ∈ extBY ∗ , y

∗(Tx) = ‖T‖};
A2 := {y∗(Ax) : x ∈ D, y∗ ∈ SY ∗ , y∗(Tx) = ‖T‖}.

Let us show that A1 ⊆ A2. Indeed,

A1 ⊆ {y∗(Ax) : x ∈ SX , y∗ ∈ SY ∗ , y∗(Tx) = ‖T‖}
= {y∗(Ax) : x ∈MT , y

∗ ∈ SY ∗ , y∗(Tx) = ‖T‖} = A2.

The first inclusion is obvious and the second equality is clear since y∗(Tx) = ‖T‖ implies x ∈ MT .
For the third one, given x ∈MT , there exist θ ∈ {−1, 1} and z ∈ D with x = θz. If y∗ ∈ SY ∗ satisfies
y∗(Tx) = ‖T‖, then we have that

(θy∗)(Tz) = y∗(Tx) = ‖T‖ and (θy∗)(Az) = y∗(Ax),

and we deduce the desired equality. Now, BX equipped with the weak topology is a compact Hausdorff

topological space. Consider the Banach space C
(
(BX , w), Y

)
. The identification T 7−→ T̃ where T̃ =

T |BX
, is an isometric embedding of K(X,Y ) into C

(
(BX , w), Y

)
. Thus, by virtue of this identification,

we have that the set

A3 := {y∗(Ãx) : x ∈ D, y∗ ∈ SY ∗ , y∗(T̃ x) = ‖T̃‖}
coincides with A2 and is connected by Lemma 4.4. It follows from Corollary 3.11 that 0 ∈ conv(A1)
and so 0 ∈ conv(A3). Hence, Lemma 2.7 gives that for every µ ∈ {−1, 1} there exists xµ ∈ D such

that T̃ xµ ⊥µ Ãxµ. Therefore, there exists x ∈ D such that Tx ⊥B Ax as desired. �

The complex case can be treated similarly using the notion of directional orthogonality. Our main
result extends [25, Theorem 2.1] to the complex case and [30, Theorem 7] and [26, Theorem 2.6] to the
infinite-dimensional case. Observe that the connectedness of MT in the complex case is equivalent to
requiring that MT =

⋃
θ∈T θD for a connected set D. In the real case, the second condition is weaker.

Theorem 4.6. Let X be a complex reflexive Banach space, let Y be a complex Banach space, and
let T,A ∈ K(X,Y ). Suppose that MT is connected. Then, T ⊥B A if and only if for each γ ∈ T there
exists x ∈MT such that Tx ⊥γ Ax.

This result can be proved following a completely analogous argument to the one for Proposition 4.5,
or alternatively, it can be established as a direct consequence of Theorem 4.3 since MT is connected
in this case.

When X is finite-dimensional, the previous two results clearly apply.
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Corollary 4.7 ([30, Theorem 7] and [26, Theorem 2.6]). Let X be a finite-dimensional space, let Y
be a Banach space, and let T,A ∈ L(X,Y ). In the real case, suppose that MT = D ∪ −D for a
connected set D; in the complex case, suppose that MT is connected. Then, T ⊥B A if and only if for
each γ ∈ T there exists x ∈MT such that Tx ⊥γ Ax.

We finally give another Bhatia-Šemrl’s type result which improves Corollary 3.6 for a class of inner
functions of the disk algebra A(D), known as finite Blaschke products. A Blaschke product of degree
n is defined by

Bn(z) := zk
n∏

j=1

|aj |
aj

z − aj
1− ajz

(z ∈ D)

where k is an integer, k > 0, and 0 < |aj | < 1, 1 6 j 6 n. Observe that |Bn(z)| = 1 for z ∈ T. We
refer the reader to [33, page 310] for more information and background.

Corollary 4.8. Let Bm and Bn be two Blaschke products of degree m and n, respectively, viewed as
elements of A(D). Then,

Bn ⊥B Bm ⇐⇒ ∀µ ∈ T ∃z0 ∈ T such that µBn(z0)Bm(z0) ∈ {i,−i}.

Proof. Observe that Corollary 3.6 gives that

Bn ⊥B Bm ⇐⇒ 0 ∈ conv{Bn(z)Bm(z) : z ∈ T}

since |Bn(z)| = |Bm(z)| = 1 for every z ∈ T. Using that the set {Bn(z)Bm(z) : z ∈ T} is connected
and Lemma 2.7, we have that

Bn ⊥B Bm ⇐⇒ ∀µ ∈ T ∃z0 ∈ T such that ReµBn(z0)Bm(z0) = 0

⇐⇒ ∀µ ∈ T ∃z0 ∈ T such that µBn(z0)Bm(z0) ∈ {i,−i}. �

Remark 4.9. The same proof also allows to characterize when f ⊥B g for holomorphic functions f
and g on the open unit disk either if Mf ⊂ T is a connected subset of T and g has radial limits with
modulus one at every z ∈Mf .

5. Applications: obstructive results for spear vectors, spear operators, and Banach
spaces with numerical index one

The aim of this section is to use the results in Section 2 together with the mix of ideas from
numerical ranges and BJ-orthogonality to obtain obstructive results for the existence of spear vectors,
spear operators and, in particular, for the possibility of having n(X) = 1 for a Banach space X. Let
us introduce here some notation which will be used along this section. Let Z be a Banach space.
We write Smooth(Z) to denote the set of smooth points of Z. For z ∈ Z, z⊥ = {x ∈ Z : z ⊥B x}
and ⊥z = {x ∈ Z : x ⊥B z}. Finally, StrExp(BZ) denotes the set of strongly exposed points of BZ :
z0 ∈ StrExp(BZ) if there is f0 ∈ SZ∗ such that whenever lim Re f0(zn) = 1 for {zn} ⊂ BZ , it follows
that lim zn = z0 in norm.

5.1. Spear vectors. Let us first give some notation. Let Z be a Banach space and let u ∈ SZ . The
numerical radius of z ∈ Z with respect to (Z, u) is

v(Z, u, z) := sup{|λ| : λ ∈ V (Z, u, z)} = sup{|φ(z)| : φ ∈ F(BZ∗ , u)},
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which is a seminorm on Z satisfying v(Z, u, z) 6 ‖z‖ for every z ∈ Z. When v(Z, u, ·) is a norm in Z,
we say that u is a vertex. When v(Z, u, z) = ‖z‖ for every z ∈ Z, u is said to be a spear vector. It is
known that u is a spear vector if and only if

max
θ∈T
‖u+ θz‖ = 1 + ‖z‖ ∀z ∈ Z.

We write Spear(Z) for the set of spear vectors of Z. A lot of information on spear vectors can be
found in Chapter 2 of the book [15].

Consider a Banach space Z and a vertex u ∈ SZ , and let us consider Z endowed with the norm vu
given by the numerical radius with respect to u:

vu(z) := v(Z, u, z) = sup{|φ(z)| : φ ∈ F(BZ∗ , u)} (z ∈ Z).

Then, we can consider its dual space (Z, vu)∗ consisting of the linear functionals ψ : Z −→ K satisfying

sup{|ψ(y)| : y ∈ Z, vu(y) 6 1} <∞,
endowed with the norm

v∗u(ψ) := sup{|ψ(y)| : y ∈ Z, vu(y) 6 1} (ψ ∈ (Z, vu)∗).

For x ∈ Z with vu(x) = 1, the numerical range of y ∈ Z with respect to the numerical range space(
(Z, vu), x

)
is

V
(
(Z, vu), x, y

)
= {ψ(y) : ψ ∈ (Z, vu)∗, v∗u(ψ) = ψ(x) = 1}.

Our obstructive result for spear vectors will follow from the next result.

Theorem 5.1. Let Z be a Banach space and let u ∈ SZ be a vertex of Z. If z is smooth in (Z, vu),
then z 6⊥vuB u.

A technical part of the proof is contained in the following lemma which could be of independent
interest.

Lemma 5.2. Let Z be a Banach space, let u ∈ SZ be a vertex, and let z ∈ Z with vu(z) = 1. Then,
V
(
(Z, vu), z, u

)
∩ T 6= ∅.

Proof. Since vu(z) = 1, there exists φ0 ∈ SZ∗ and θ0 ∈ T such that φ0(u) = θ0 and φ0(z) = 1. We
claim that φ0 ∈ (Z, vu)∗ and v∗u(φ0) = 1. Indeed, fix y ∈ Z with vu(y) 6 1. As θ0φ0(u) = 1, we have
that θ0φ0(y) ∈ V (Z, u, y), hence |φ0(y)| 6 v(Z, u, y) = vu(y) 6 1. This shows that φ0 ∈ (Z, vu)∗ and

v∗u(φ0) = sup{|φ0(y)| : y ∈ Z, vu(y) 6 1} 6 1.

On the other hand, since vu(u) = 1, we have that v∗u(φ0) > |φ0(u)| = 1.

This, together with φ0(z) = 1, gives that

θ0 = φ0(u) ∈ V
(
(Z, vu), z, u

)
= {ψ(u) : ψ ∈ (Z, vu)∗, v∗u(ψ) = ψ(z) = 1}. �

We are now ready to present the pending proof.

Proof of Theorem 5.1. As z is a smooth point, we have that z 6= 0 so, being u a vertex, this implies

that vu(z) 6= 0. Now, V

(
(Z, vu),

z

vu(z)
, u

)
is a singleton set by Lemma 2.8 as the norm of (Z, vu) is
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smooth at z, hence also at
z

vu(z)
. Moreover, since vu

(
z

vu(z)

)
= 1, it follows from Lemma 5.2 that

V

(
(Z, vu),

z

vu(z)
, u

)
= {θ0}

for some θ0 ∈ T. Hence, 0 /∈ V

(
(Z, vu),

z

vu(z)
, u

)
so Proposition 1.2 gives that

z

vu(z)
6⊥vuB u and

hence z 6⊥vuB u. �

We are ready to obtain the promised obstructive result for spear vectors.

Corollary 5.3. Let Z be a Banach space and u ∈ SZ . If there exists a smooth point z0 in Z such
that z0 ⊥B u, then (Z, vu) is not isometrically isomorphic to Z. In particular, u is not a spear vector
or, in other words,


 ⋃

z∈Smooth(Z)

z⊥


⋂ Spear(Z) = ∅ and Smooth(Z)

⋂

 ⋃

z∈Spear(Z)

⊥z


 = ∅.

Proof. Suppose on the contrary that (Z, vu) is isometrically isomorphic to Z. Since z0 is smooth in Z
and z0 ⊥B u, we have that z0 is smooth in (Z, vu) and z0 ⊥vuB u, which contradicts Theorem 5.1. If u
is a spear vector, then the identity map Id: (Z, ‖ · ‖) −→ (Z, vu) is an isometric isomorphism. �

5.2. Spear operators. In the case when Z = L(X,Y ) for some Banach spaces X and Y , spear
vectors are called spear operators, which were introduced in [2] and have been deeply studied in [15],
where we refer for more information and background.

Our aim here is to particularize Corollary 5.3 for the numerical radius with respect to an operator
and for spear operators. The results follow directly from the above ones, but we include some particular
notation for this case. Given Banach spaces X and Y , and G ∈ L(X,Y ) with ‖G‖ = 1, the numerical
radius of T ∈ L(X,Y ) with respect to G is

vG(T ) := v
(
L(X,Y ), G, T

)
= inf

δ>0
sup
{
|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ

}

= sup
{

lim |y∗n(Txn)| : {y∗n} ⊂ SY ∗ , {xn} ⊂ SX , lim y∗n(Gxn) = 1
}
,

where the second and third equalities hold by [16, Proposition 2.14] and our Theorem 2.3, respectively.
We refer to [16] for background on numerical radius with respect to an operator.

The main result of the previous subsection in this setting reads as follows.

Corollary 5.4. Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1. If there exists a
smooth operator T in L(X,Y ) such that T ⊥B G, then

(
L(X,Y ), vG

)
is not isometrically isomorphic

to L(X,Y ). In particular, G is not a spear operator or, in other words,

 ⋃

T∈Smooth(L(X,Y ))

T⊥


 ∩ Spear(L(X,Y )) = ∅ and Smooth(L(X,Y )) ∩


 ⋃

G∈Spear(L(X,Y ))

⊥G


 = ∅.

Our next aim is to provide an obstructive result for the existence of spear operators which uses the
geometry of the domain and range spaces instead of the geometry of the space of operators and so it
would be easier to apply. Other restrictions on the geometry of the domain and range spaces to the
existence of spear operators can be found in [15, Ch. 6].
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Corollary 5.5. Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1. Suppose that there
is x0 ∈ StrExp(BX) and u0 ∈ Smooth(Y ) satisfying that u0 ⊥B Gx0. Then,

(
L(X,Y ), vG

)
is not

isometrically isomorphic to L(X,Y ). In particular, G is not a spear operator. As a consequence, if
X is a Banach space with StrExp(BX) 6= ∅ and Y is a smooth Banach space with dimension at least
two, then there are no spear operators in L(X,Y ).

Observe that the last assertion of this result extends [15, Proposition 6.5.a] when X contains
strongly exposed points (in particular, when X has the RNP) and provides a partial answer to [15,
Problem 9.12].

To state the proof of this corollary from Corollary 5.4, we need to construct smooth operators
orthogonal to a given one under mild restrictions. This can be done easily as a consequence of our
Proposition 3.14.

Lemma 5.6. Let X, Y be Banach spaces and suppose that x0 ∈ BX is strongly exposed by x∗0 ∈ SX∗.
Given A ∈ L(X,Y ), suppose that there is a smooth point u0 ∈ Y satisfying u0 ⊥B Ax0. Then, the
operator T ∈ L(X,Y ) given by T (x) = x∗0(x)u0 is smooth and satisfies T ⊥B A.

Proof. Observe that T clearly satisfies the hypotheses of Proposition 3.14 so it is a smooth operator.
Besides, using that u0 ⊥B Ax0, we have that

‖T + λA‖ > ‖Tx0 + λAx0‖ = ‖u0 + λAx0‖ > ‖u0‖ = ‖T‖
for every λ ∈ K. Consequently, T ⊥B A. �

An immediate consequence of the previous result is the next remark which can be interesting by
itself.

Remark 5.7. Let X be a Banach space with StrExp(BX) 6= ∅ and let Y be a smooth Banach space
of dimension at least two. Then, for every A ∈ L(X,Y ) there is a smooth operator T ∈ L(X,Y )
satisfying T ⊥B A.

Proof of Corollary 5.5. The first part follows immediately from Corollary 5.4 by just using Lemma 5.6.
The second assertion follows from Corollary 5.4 and Remark 5.7. �

Let us write the first part of Corollary 5.5 in a more suggestive way.

Corollary 5.8. Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1 be a spear operator.
Then,

 ⋃

y∈Smooth(Y )

y⊥


 ∩G(StrExp(BX)) = ∅ and Smooth(Y ) ∩


 ⋃

x∈StrExp(BX)

⊥(Gx)


 = ∅.

5.3. Banach spaces with numerical index one. We finally particularize the results of the previous
subsection to the case when X = Y and G = IdX . In this case, we use the usual notation v(·) for
the numerical radius (instead of vId) which was introduced in Subsection 3.6. We need the following
notation. The numerical index of a Banach space X is defined by

n(X) := inf{v(T ) : T ∈ SL(X)}.
Equivalently, n(X) is the greatest constant k > 0 such that k‖T‖ 6 v(T ) for every T ∈ L(X).
Note that 0 6 n(X) 6 1 and n(X) > 0 if and only if v(·) and ‖ · ‖ are equivalent norms on L(X).
The case n(X) = 1 is equivalent to the fact that IdX is a spear operator and we say that X is a



24 M. MARTÍN, J. MERÍ, A. QUERO, S. ROY, AND D. SAIN

Banach space with numerical index one or that X has numerical index one. We refer the reader to
the expositive paper [17] and to Chapter 1 of the already cited book [15] for an overview of classical
and recent results on Banach spaces with numerical index one. Let us mention that some isomorphic
and isometric restrictions on a Banach space X to have numerical index one are known: X∗ cannot be
smooth nor strictly convex [14, Theorem 2.1] and, in the real infinite-dimensional case, X∗ contains
a copy of `1 [3, Corollary 4.9]. It is open, as far as we know, whether the latter result extends to the
complex case and whether a Banach space with numerical index one can be smooth or strictly convex
([14] or [15, Problem 9.12]). The particularization of the results of the previous subsection to the case
of the identity reads as follows.

Corollary 5.9. Let X be a Banach space. If there is x0 ∈ StrExp(BX) and u0 ∈ Smooth(X) such
that u0 ⊥B x0, then X does not have numerical index one.

This result can be written in the following more suggestive way:

Corollary 5.10. Let X be a Banach space with numerical index one. Then,

 ⋃

x∈Smooth(X)

x⊥


 ∩ StrExp(BX) = ∅ and Smooth(X) ∩


 ⋃

x∈StrExp(BX)

⊥x


 = ∅.

The above result provides a necessary condition to have numerical index one for a Banach space
in the way that was asked in [17, Problem 11]: Find necessary and sufficient conditions for a Banach
space to have numerical index one which do not involve operators.

The next is a consequence of Corollary 5.9 which gives a partial answer to the question of whether
there is a smooth Banach space with numerical index one.

Corollary 5.11. Let X be a smooth Banach space of dimension at least two such that StrExp(BX) 6= ∅.
Then, X does not have numerical index one.

This applies, in particular, when X has the RNP.

Corollary 5.12. Let X be a smooth Banach space of dimension at least two having the RNP. Then,
X does not have numerical index one.
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[16] V. Kadets, M. Mart́ın, J. Meŕı, A. Pérez, and A. Quero, On the numerical index with respect to an operator,

Diss. Math. 547 (2020), 1–58.
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[23] J. Mart́ınez, J. F. Mena, R. Payá, and A. Rodŕıguez-Palacios, An approach to numerical ranges without

Banach algebra theory, Illinois J. Math. 29 (1985), 609–626.
[24] K. Paul, S. M. Hossein, and K. C. Das, Orthogonality on B(H,H) and minimal-norm operator, J. Anal. Appl.,

6 (2008), 169–178.
[25] K. Paul, D. Sain, and P. Ghosh, Birkhoff-James orthogonality and smoothness of bounded linear operators,

Linear Algebra Appl. 506 (2016), 551–563.
[26] K. Paul, D. Sain, A. Mal, and K. Mandal, Orthogonality of bounded linear operators on complex Banach

spaces, Adv. Oper. Theory 3 (2018), 699–709.
[27] R. R. Phelps, Lectures on Choquet’s theorem, Second edition, Lecture Notes in Mathematics, 1757. Springer-

Verlag, Berlin, 2001. viii+124 pp.
[28] S. Roy, The weak differentiability of norm and a generalized Bhatia-Šemrl Theorem, Preprint (2022),
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Conclusions and open problems

The aim of Chapter I was to deeply study the numerical index with respect to an operator between
Banach spaces.

Section I.2 was devoted to presenting some known and new results on abstract numerical index.
Among the new results presented, we want to highlight Proposition I.2.11, which shows that the set
of points u ∈ SZ satisfying n(Z, u) > 0 is countable when Z is a finite-dimensional real space. It is
natural to wonder whether the same remains true in the complex case.

Problem 1. Let Z be a finite-dimensional complex Banach space. Is the set {u ∈ SZ : n(Z, u) > 0}
countable up to rotations?

Furthermore, since in the proof of Proposition I.2.11 we use the separability of the dual space Z∗,
we wonder if this is enough to obtain the result.

Problem 2. Let Z be a Banach space with a separable dual. Is the set {u ∈ SZ : n(Z, u) > 0}
countable up to rotations?

Additonally, we gave estimations on the sum of n(Z, u) over all elements u ∈ SZ and showed the
existence of a (real or complex) Banach space Z such that {n(Z, u) : u ∈ SZ} = A for every subset
A ⊆ [0, 1] containing 0. To finish this section, we presented a new expression of V (Z, u, z) which has
proved to be useful to compute numerical radii with respect to operators.

In Section I.3 we provided some tools for studying the numerical index with respect to an operator.
The first results were direct translations to the operator space setting of the abstract results in the
previous section. Then, we showed that the numerical index with respect to an operator dominates
the numerical index with respect to its adjoint, we provided a formula for the numerical index with
respect to a rank-one operator, and gave some estimations on the numerical index with respect to an
operator in terms of the numerical radii of operators on the domain or on the codomain.

Next, we dedicated Section I.4 to study the set N (L(X,Y )) of values of the numerical indices with
respect to all norm-one operators between two given Banach spaces X and Y . First, we obtained some
consequences of the results in the previous sections, namely 0 ∈ N (L(X,Y )) unless both X and Y
are one-dimensional and the set N (L(X,Y )) is countable when X and Y are finite-dimensional real
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spaces. Then, we provided several examples of spaces having trivial set of values of the numerical
indices with respect to operators. For instance, N (L(X,Y )) = {0} when X or Y is a real Hilbert
space of dimension at least two and also when X or Y is L(H), where H is an infinite-dimensional
real Hilbert space. Moreover, the last part of Theorem I.4.7 states that the set N (L(L(H), Y )) is also
trivial for every Banach space Y when H is a real Hilbert space with even dimension, so the following
question arises naturally.

Problem 3. Let H be a real Hilbert space with a finite odd dimension greater than 1. Is it true that
N (L(L(H), Y )) = {0} for every Banach space Y ?

Let us comment that the dependence on the parity of the dimension is due to the identification
H =

[
⊕λ∈Λ`

2
2

]
`2

for a suitable index set Λ used in the proof. We do not know if there is a general
argument that works for both cases.

We also gave some inclusions for the set of numerical indices with respect to operators whose
domain or codomain is a real `p-space. More precisely, Proposition I.4.11 shows that

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for 1 < p <∞ and for all real Banach spaces X and Y , where Mp = maxt∈[0,1]
|tp−1−t|

1+tp .

Problem 4. Let 1 < p <∞ and 1 < q <∞ with 1
p + 1

q = 1, is it true that

N (L(X, `p)) ⊆
[
0,

1

p1/pq1/q

]
and N (L(`p, Y )) ⊆

[
0,

1

p1/pq1/q

]

in the complex case for all Banach spaces X and Y ?

A similar argument to the one given in the proof of Proposition I.4.11 is not valid in the complex
case since the operator A ∈ L(`2p) given by A(x, y) = (0, x), which satisfies that v(A) = 1

p1/pq1/q
, is not

a surjective isometry.

For complex Hilbert spaces H1, H2 with dimension at least 2, N (L(H1, H2)) = {0, 1/2} if H1 and
H2 are isometrically isomorphic and N (L(H1, H2)) = {0} otherwise. Moreover, we proved in Proposi-
tion I.4.13 that for a complex Hilbert space H with dimension greater than 1, N (L(X,H)) ⊆ [0, 1/2]
and N (L(H,Y )) ⊆ [0, 1/2] for all complex Banach spaces X and Y . Notice that these inclusions are
proved using Proposition I.3.9 and the only values that we are certain that can belong to N (L(X,H))
and N (L(H,Y )) are 0 and 1/2. It seems natural to wonder if the rest of values of the interval [0, 1/2]
can also be contained in N (L(X,H)) and N (L(H,Y )).

Problem 5. Does there exist an operator G whose domain or codomain is a complex Hilbert space
with dimension greater than 1 such that the numerical index with respect to G is different from 0 and
1/2?

We also studied the set of values of the numerical indices with respect to operators whose domain
and codomain are C(K) spaces, and proved that N (L(C(K1), C(K2))) = {0, 1} for many families of
compact Hausdorff topological spaces K1 and K2, both in the real and complex case. As a consequence,
we obtained that N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} and N (L(L1(µ1), L1(µ2))) ⊆ {0, 1} for all σ-finite
measures µ1 and µ2.
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Using the tools presented in Section I.3, we proved in Section I.5 that the concept of Lipschitz
numerical range for Lipschitz self-maps of a Banach space is a particular case of numerical range with
respect to a linear operator between two different Banach spaces.

The last section of this chapter was dedicated to presenting several results which show the behaviour
of the value of the numerical index when we apply some Banach space operations. For instance, we
showed that the numerical index of a c0-, `1- or `∞-sum of Banach spaces with respect to a direct
sum of norm-one operators in the corresponding spaces coincides with the infimum of the numerical
indices of the corresponding summands. As an important consequence, we obtained in Theorem I.6.4
the existence of real and complex Banach spaces X for which N (L(X)) = [0, 1]. We also showed
that a composition operator between vector-valued function spaces C(K,X), L1(µ,X) and L∞(µ,X)
produces the same numerical index as the original operator. Next, we provided conditions ensuring
that the numerical index with respect to an operator coincides with the numerical index with respect
to its adjoint, namely when the codomain is L-embedded or when the operator has rank-one. Finally,
we discussed the numerical index with respect to the composition of two operators and showed how
to extend the domain and the codomain of an operator maintaining the value of the numerical index.
In particular, these results allowed to solve a part of Problem 9.14 posed in [20].

Chapter II was dedicated to analysing the behaviour of the numerical index of operator ideals
and tensor products, and to studying the Daugavet property in tensor products. We began Section II.2
showing that for every operator ideal Z(X,Y ) of L(X,Y ) endowed with the operator norm we have
that n(Z(X,Y )) 6 min{n(X), n(Y )}. Then, with the help of suitable representations, we were able
to give stronger inequalities for the numerical indices of the spaces of compact and weakly compact
operators, namely n(K(X,Y )) 6 min{n(X∗), n(Y )} and n(W(X,Y )) 6 min{n(X∗), n(Y )}. As a
consequence of this result, we presented some interesting examples such as the existence of a real
Banach space X with n(X) = 1 while n(K(X,Y )) = n(W(X,Y )) = 0 for every Banach space Y . In
particular, n(X) = 1 while n(K(X,X)) = n(W(X,X)) = 0. We also provided an example to show
that the previous inequalities can be strict and discuss some cases in which the equality holds.

For tensor products of Banach spaces, we proved in Section II.3 that the numerical indices of
X⊗̂πY and X⊗̂εY are less than or equal to the minimum of n(X) and n(Y ). Next, we obtained
some consequences for the spaces of approximable and nuclear operators using representation theo-
rems. More specifically, we proved that n(A(X,Y )) 6 min{n(X∗), n(Y )}, and, if X∗ or Y has the
approximation property, n(N (X,Y )) 6 min{n(X∗), n(Y )}.

To finish this chapter, we devoted a section to studying when the Daugavet property is transferred
from the tensor product to the factors. The main result in this line is Theorem II.4.1, which states
that the Daugavet property of a projective tensor product passes to one of the factors if the unit ball
of the other one is a slicely countably determined set. However, we do not know if the corresponding
result for the injective tensor product is true.

Problem 6. Let X, Y be Banach spaces. Suppose that BY is an slicely countably determined set
and X⊗̂εY has the Daugavet property. Does X have the Daugavet property?

The difficulty in this case is that we do not have a clear representation of the unit ball of X⊗̂εY
and we were not able to give an analogous result to Lemma II.4.2, which was the key to prove
Theorem II.4.1.

Finally, we provided other positive results: for projective tensor products, in the case where the
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space Y ∗ has a point of Fréchet differentiability of the norm, and for injective tensor products, when
the space Y has a point of Fréchet differentiability of the norm.

The next two chapters were related to the computation of the numerical index of Lp spaces when
p 6= 1, 2,∞, which remains as an important open problem since the beginning of the theory.

In Chapter III, we addressed the problem of calculating the numerical index of two-dimensional
real spaces endowed with an absolute and symmetric norm. More specifically, Theorem III.2.2 gives a
lower bound for the numerical index of such spaces and shows that, in many instances, the numerical

index is attained at the operator represented by the matrix

(
0 1
−1 0

)
. As a major consequence, we

proved that n(`2p) = Mp = maxt∈[0,1]
|tp−1−t|

1+tp for 3/2 6 p 6 3 in the real case (see Theorem III.2.3).

Since this abstract approach did not provide a complete solution for the problem of calculating the
numerical index of the real `2p spaces, we explored an alternative method in Chapter IV. The main
difference there was the use of Riesz–Thorin interpolation theorem to estimate the norm of operators
on `2p. This allowed us to show that n(`2p) = Mp for 6/5 6 p 6 3/2 and 2 6 p 6 6 in the real case (see
Theorem IV.2.2).

Let us comment that our procedures have been completely exploited. On the one hand, it was

proved in [37] that condition c4

(
1 + 1

c2
+ 1

c3

)
6 1 in Theorem III.2.2 holds for a wider range of values

of p, specifically for 1 + α0 6 p 6 α1, where α0 is the root of f(x) = 1 + x−2 − (x−
1
x + x

1
x ) and

1
1+α0

+ 1
α1

= 1 (α0 ≈ 0.4547). However, the range of values of p cannot be enlarged much more.

Indeed, let p = 1.454 and t0 ∈]0, 1[ be such that Mp = maxt∈[0,1]
|tp−1−t|

1+tp =
|tp−1
0 −t0|
1+tp0

, then numerical

computations give t0 ≈ 0.17646 and

c1 = 1, c2 =
1− tp0
1 + tp0

≈ 0.851367, c3 =
tp−1
0 + t0
1 + tp0

≈ 0.584498, c4 =
tp−1
0 − t0
1 + tp0

≈ 0.257807,

therefore c4

(
1 + 1

c2
+ 1

c3

)
≈ 1.0017 > 1. On the other hand, the techniques used in the proof of

Theorem IV.2.2 can give the equality n(`2p) = Mp for a slightly wider range of values of p, however it
does not work for p close to 1 (see Remark IV.2.3). It is for these reasons that we need to adopt a
different approach to the problem in order to get a solution for the remaining values of p.

Problem 7. Does the equality n(`2p) = Mp = maxt∈[0,1]
|tp−1−t|

1+tp hold for 1 < p < 6
5 and p > 6 in the

real case?

It is also worth noting that our arguments heavily rely on the assumption that the scalar field is
real, which limits their applicability in the complex case. It was conjectured in [23] that the numerical

index of the complex `2p space is attained at the operator S =

(
0 0
1 0

)
∈ L(`2p), which satisfies that

v(S) = 1
p1/pq1/q

.

Problem 8. Is it true that, in the complex case, n(`2p) = 1
p1/pq1/q

for every 1 < p <∞?

Let us highlight that we will obtain the numerical index of `p for p 6= 1, 2,∞ if we solve the
following problem.
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Problem 9. Compute the numerical index of `mp for every m > 2 and every 1 < p <∞.

In Chapter V we introduced a new seminorm on the space of bounded linear operators, the
relative norm, and studied its relation with the usual norm of operators. The special case when they
coincide motivated the definition of generating operator. We began Section V.2 with Proposition V.2.1,
which established the connection between the relative norm and the operator norm in several ways. As
a consequence, we obtained a characterization of generating operators in terms of the sets att(G, δ):
A norm-one operator G ∈ L(X,Y ) is generating if and only if conv(att(G, δ)) = BX for every δ > 0
(see Corollary V.2.3). Thanks to this result, it is clear that the property of being generating does not
depend on the codomain. When X is reflexive and G is compact, this is also equivalent to the fact
that BX = conv(att(G)). Additionally, we related the concept of generating operator with the one of
denting point, proving that any generating operator G ∈ L(X,Y ) attains its norm at every denting
point of BX . In fact, this necessary condition is also sufficient when BX is the closed convex hull of its
denting points and, in particular, when X has the Radon-Nikodým property. We gave another useful
characterization in Corollary V.2.17 which involves the geometry of the dual space of the domain: G
is generating if and only if G∗(BY ∗) is a spear set of X∗. We also analysed the behaviour of generating
operators when applying the operation of taking adjoint and showed that this property does not pass
in general from an operator to its adjoint, nor the other way around. Nevertheless, we showed in
Proposition V.2.22 that if G∗∗ is r-generating, then so is G. We do not know if the converse holds in
general or even for r = 1.

Problem 10. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator, and let r ∈ (0, 1].
If G is r-generating, does it imply that G∗∗ is r-generating?

We finished this section studying the stability of generating operators by taking c0-, `1-, and
`∞-sums, and providing some examples in classical Banach spaces.

We devoted Section V.3 to discussing the relationship between generating operators and norm-
attainment. We provided an example of a rank-two operator which is generating but does not attain
its norm. This differs from the case of rank-one operators, which are always norm-attaining. In
addition, we proved in Theorem V.3.5 that, given a Banach space X, we may find a Banach space Y
and an operator G ∈ L(X,Y ) which is generating but not norm-attaining if and only if there exists a
spear set B in X∗ such that sup

x∗∈B
|x∗(x)| < 1 for every x ∈ SX .

In Section V.4, we considered the set Gen(X,Y ) of all generating operators between two Banach
spaces X and Y . We showed that this set is closed and that for every Banach space Y , there exists a
Banach space X such that Gen(X,Y ) = ∅. However, this result is not longer true if we restrict the
space X to be separable. Then, we focused on some properties of Gen(X,Y ) when X is fixed. We
proved that Gen(X,Y ) 6= ∅ for every Y if and only if Spear(X∗) 6= ∅ and that only one-dimensional
spaces X can satisfy Gen(X,Y ) = SL(X,Y ) for some Banach space Y . Furthermore, we studied
when the set Gen(X,Y ) generates the unit ball of L(X,Y ) by closed convex hull. In this sense,
Theorem V.4.10 states that every representable operator in the unit ball of L(L1(µ), Y ) belongs to the
closed convex hull of Gen(L1(µ), Y ), where µ is a finite measure and Y is an arbitrary Banach space.
Consequently, BL(L1(µ),Y ) = conv (Gen(L1(µ), Y )) if Y has the Radon-Nikodým property. Moreover,
BL(`1(Γ),Y ) = conv (Gen(`1(Γ), Y )) for every Banach space Y and the only real finite-dimensional
spaces with this property are `n1 for n ∈ N. We do not know if the same it is true for complex
finite-dimensional spaces.
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Problem 11. Let X be a complex Banach space with dim(X) = n and such that BL(X,Y ) =
conv(Gen(X,Y )) for every Banach space Y . Can we deduce that X = `n1 ?

The main aim of Chapter VI was to provide a widely applicable approach to address Birkhoff-
James orthogonality using the following connection between this concept and numerical range: given
two elements x and y in a Banach space Z,

x ⊥B y ⇐⇒ 0 ∈ V (Z, u, z).

We began Section VI.2 showing that it is also possible to express the numerical range in terms
of Birkhoff-James orthogonality. Then, we provided in Theorem VI.2.4 different expressions of the
numerical range which extend a previous result from Chapter I. This was the key to prove Corol-
lary VI.2.6, the main result of this section, which characterizes Birkhoff-James orthogonality in a
Banach space in terms of the actions of functionals on an arbitrary one-norming subset. One of the
statements in this result is the following: let Z be a Banach space, and Λ ⊂ BZ∗ be one-norming for
Z; then, for u ∈ SZ and z ∈ Z,

u ⊥B z ⇐⇒ 0 ∈ conv
({

limψn(z)ψn(u) : ψn ∈ Λ, lim |ψn(u)| = 1
})

.

Additionally, we gave several characterizations of smooth points following the same spirit in Corol-
lary VI.2.11.

We considered in Section VI.3 a number of particular cases in which the results of Section VI.2
are applicable. Some of the results in this section were already known. Nevertheless, the techniques
previously used to prove them depended on the particular case, while our approach was unified for
all of them. The new results included general characterizations of Birkhoff-James orthogonality and
smoothness in `∞(Γ, Y ), where Γ is a non-empty set and Y is an arbitrary Banach space (see The-
orem VI.3.2 and Corollary VI.3.3). As consequences, we obtained new applications for spaces of
vector-valued continuous functions, uniform algebras, polynomials, Lipschitz maps, and injective ten-
sor products. We also presented several results for the space of bounded linear operators endowed
with the operator norm and with the numerical radius, most of them were previously known but there
are some improvements for compact operators. It is natural to wonder if it is possible to give similar
characterizations of Birkhoff-James orthogonality in the space of bounded linear operators endowed
with the numerical radius with respect to an operator or with the relative norm, however such char-
acterizations cannot be deduced immediately from Corollary VI.2.6 since we do not have one-norming
subsets for L(X,Y ) endowed with vG(·) or ‖ · ‖G.

Problem 12. Let X, Y be Banach spaces and let G ∈ L(X,Y ) with ‖G‖ = 1. Find characterizations
of Birkhoff-James orthogonality in (L(X,Y ), vG(·)) and (L(X,Y ), ‖ · ‖G) in terms of the elements in
the domain, codomain, and their duals.

In Section VI.4, we presented some cases in which it is possible to remove the convex hull and
the limits when characterizing Birkhoff-James orthogonality. The main result in this section, Theo-
rem VI.4.3, was a Bhatia-Šemrl’s type of result in the space of vector-valued continuous functions on
a compact Hausdorff topological space when the norm attaiment set of the function involved is con-
nected. As a consequence, we obtained analogous results for compact operators on reflexive Banach
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spaces, which was new in the context of complex infinite-dimensional spaces. We finished this section
with a nice characterization of Birkhoff-James orthogonality for finite Blaschke products.

Finally, we devoted the last section of Chapter VI to applications to the study of spear vectors,
spear operators, and Banach spaces with numerical index one. They all follow from Theorem VI.5.1
which connects the concepts of vertex, smoothness, and Birkhoff-James orthogonality with respect to
the abstract numerical radius. As a consequence, we proved in Corollary VI.5.3 that no smooth point
of a Banach space Z can be Birkhoff-James orthogonal to a spear vector of Z. Restricting to the
case Z = L(X,Y ), we obtained obstructive results for the existence of spear operators. In particular,
Corollary VI.5.5 states that if X is a Banach space with strongly exposed points and Y is a smooth
Banach space with dimension at least two, then there are no spear operators in L(X,Y ). This result
somehow extends [20, Proposition 6.5.a] and partially answers [20, Problem 9.12]. Particularizing
this result to the identity operator, we obtained an obstructive condition for a Banach space to have
numerical index one: the existence of a smooth point which is Birkhoff-James orthogonal to a strongly
exposed point. In particular, smooth Banach spaces with dimension at least two containing strongly
exposed points do not have numerical index one. This gives a partial answer to the question of whether
a smooth Banach space of dimension at least two may have numerical index one [19, page 166].
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