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Abstract
The aim of this work is to analyze some conditions for the existence of solution of a perturbed
mixed variational system and that of an associated inverse problem related to the collage-
based approach, both on perforated domains or domains with holes. In addition, we study
the influence of the size of the holes and state some convergence results. Finally, we conduct
a computational study for solving some of those inverse problems.

Keywords Perturbed mixed variational equations · Perforated domains · Parameter
estimation · Inverse problems

Mathematics Subject Classification 65L10, 49J40, 65L09

1 Introduction

The systematic study of mixed variational problems goes back more than 50 years (Babus̆ka,
1971; Brezzi 1974) and since then it has been revealed as a powerful technique for the
study of partial differential equations. Moreover, its associated finite element methods, the
mixed ones, constitute a fundamental tool for the numerical study of these problems (Boffi
2008; Garralda-Guillem and Ruiz Galán 2019). In this article we consider a variant of a
system of mixed variational equations, when we introduce a certain perturbation of one of
the equations and also allow the domain to contain holes, that is, the domain of the problem
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is perforated, the latter situation motivated by its enormous applications. The problem posed
admits both a direct and an inverse approach, and we deal with both here. For the first
of them, we design a Galerkin scheme, and for the second we establish a generalization
of the classical collage theorem (Barnsley 1989) that, in this context, allows numerically
approximating some considered inverse problems. Thus, for estimating some parameters in
the model problem from known data (in practice, observations) we use a target element in a
Banach space associated with the perturbed mixed problem and use the stability in a sense of
the direct problem. In particular, we generalize previous works along these lines for ordinary
and partial differential equations over solid and perforated domains (Berenguer et al. 2016;
Kunze et al. 2004; Kunze and La Torre 2018, 2017, 2016, 2015; Kunze et al. 2015, 2010,
2009; Kunze and Vrscay 1999).

The paper is structured around 5 sections. In Sect. 2 we describe the Mixed Variational
Equation considered and the stability conditions that will allow us to deal with a suitable
inverse problem. In Sect. 3 we introduce the perforated domains considered and in Sects. 4
and 5 we analyze the relationship between the solutions of the direct and inverse problems
on solid domains and on perforated domains, when the holes are small enough in a certain
sense. We also illustrate the results with a numerical example. Finally, in Sect. 6 we include
some conclusions.

2 Collage-type inverse problems for mixed variational equations

We discuss here a more general version of the classical system of mixed variational equations
corresponding to the mixed variational formulation of a differential problem which includes
a kind of perturbation. The perturbation term is modelled by means of a new bilinear form,
that has to be interpreted to be small in some sense.

Suppose that E and F are real Hilbert spaces, a : E × E −→ R, b : E × F −→ R and
c : F × F −→ R are bounded and bilinear and x∗ : E → R and y∗ : F → R are bounded
and linear. Our problem reads as follows: Find (x0, y0) ∈ E × F such that{

a(x0, ·) + b(·, y0) = x∗(·)
b(x0, ·) + c(y0, ·) = y∗(·) . (P)

We use the following general result for a family of such problems that include a stability
property, (2.1), which will be essential for our purposes, since it will allow us to deal with
a suitable inverse problem. Furthermore, such a stability condition (2.1) is a Generalized
Collage Theorem that extends those in Berenguer et al. (2016) and Kunze et al. (2009) in the
Hilbertian framework.

Theorem 2.1 Let E and F be real Hilbert spaces, � be a nonempty set and for each λ ∈ �,
let aλ : E × E −→ R, bλ : E × F −→ R and cλ : F × F −→ R be bounded and bilinear
and let Kλ := {x ∈ E : bλ(x, ·) = 0} in such a way that

(i) x ∈ Kλ ∧ aλ(x, ·)|Kλ = 0 ⇒ x = 0

and for some αλ, βλ > 0 there hold

(ii) x ∈ Kλ ⇒ αλ‖x‖ ≤ ‖aλ(·, x)|Kλ‖ and
(iii) y ∈ F ⇒ βλ‖y‖ ≤ ‖bλ(·, y)‖.
If

ρλ := max

{
1

αλ

,
1

βλ

(
1 + ‖aλ‖

αλ

)
,
1

β2
λ

‖aλ‖
(
1 + ‖aλ‖

αλ

)}
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and in addition

(iv) ‖cλ‖ <
1

ρλ

,

then for each λ ∈ � and (x∗
λ, y∗

λ) ∈ E∗ × F∗ there exists a unique (xλ, yλ) ∈ E × F such
that {

aλ(xλ, ·) + bλ(·, yλ) = x∗
λ

bλ(xλ, ·) + cλ(yλ, ·) = y∗
λ

. (Pλ)

Furthermore, if (x, y) ∈ E × F, then

max{‖xλ − x‖, ‖yλ − y‖} ≤ ρλ

1 − ρλ‖cλ‖
(‖x∗

λ − aλ(x, ·) − bλ(·, y)‖ + ‖y∗
λ − bλ(x, ·) − cλ(y, ·)‖) .

(2.1)

Proof Let λ ∈ �. The existence and uniqueness of solution for problem (Pλ) is a well-known
fact (see, for instance Boffi 2008, Proposition 4.3.2), but we give a sketch of the proof in
order to derive also the control of the norms in (2.1) in a precise way. So, let us endow the
product space E × F with the norm

‖(x, y)‖ := max{‖x‖, ‖y‖}, (x ∈ E, y ∈ F)

and its dual space E∗ × F∗ with the corresponding dual norm, that is,

‖(x∗, y∗)‖ := ‖x∗‖ + ‖y∗‖, (x∗ ∈ E∗, y∗ ∈ F∗).

According to conditions (i), (ii) and (iii) and to Gatica (2014, Theorem 2.1), the bounded and
linear operator Sλ : E × F −→ E∗ × F∗ defined at each (x, y) ∈ E × F as

Sλ(x, y) := (aλ(x, ·) + bλ(·, y), bλ(x, ·))
is an isomorphism. But, in view of Atkinson and Han (2009, Theorem 2.3.5), in order to state
the existence of a unique solution for the perturbed mixed system (Pλ) it is enough to show
that

‖S−1
λ ‖ <

1

‖cλ‖ , (2.2)

inequality which is valid, since in view of Garralda-Guillem and Ruiz Galán (2014, Theorem
3.6) and (iv), we have that

‖S−1
λ ‖ = sup

‖x∗‖+‖y∗‖≤1
‖S−1

λ (x∗, y∗)‖

≤ sup
‖x∗‖+‖y∗‖≤1

max

{ ‖x∗‖
αλ

+ 1

βλ

(
1 + ‖aλ‖

αλ

)
‖y∗‖, 1

βλ

(
1 + ‖aλ‖

αλ

)(
‖x∗‖ + ‖aλ‖

βλ
‖y∗‖

)}

≤ sup
‖x∗‖+‖y∗‖≤1

max

{
1

αλ
,
1

βλ

(
1 + ‖aλ‖

αλ

)
,
1

βλ

(
1 + ‖aλ‖

αλ

)
,
‖aλ‖
β2
λ

(
1 + ‖aλ‖

αλ

)}

(‖x∗‖ + ‖y∗‖)
≤ ρλ

<
1

‖cλ‖ .

Furthermore, according to (2.2) andAtkinson andHan (2009, Theorem 2.3.5) or Garralda-
Guillem and Ruiz Galán (2014, Theorem 3.6) once again, we arrive at

max{‖xλ‖, ‖yλ‖} ≤ ρλ

1 − ρλ‖cλ‖
(‖x∗‖ + ‖y∗‖) , (2.3)
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where (xλ, yλ) ∈ E× F is the unique solution of (Pλ). To conclude, given (x̂λ, ŷλ) ∈ E× F ,
since (xλ − x̂λ, yλ − ŷλ) is the unique solution of the perturbed mixed problem{

aλ(xλ − x̂λ, ·) + bλ(·, yλ − ŷλ) = x∗
λ − aλ(x̂λ, ·) − bλ(·, ŷλ)

bλ(xλ − x̂λ, ·) + cλ(yλ − ŷλ, ·) = y∗
λ − bλ(x̂λ, ·) − cλ(ŷλ, ·) ,

then, according to inequality (2.3),

max{‖xλ − x̂λ‖, ‖yλ − ŷλ‖} ≤ ρλ

1 − ρλ‖cλ‖
(
‖x∗

λ − aλ(x̂λ, ·)

−bλ(·, ŷλ)‖ + ‖y∗
λ − bλ(x̂λ, ·) − cλ(ŷλ, ·)‖

)
.

Finally, the arbitrariness of λ ∈ � yields (2.1). 	

It is worth mentioning that if

α := inf
λ∈�

αλ > 0, β := inf
λ∈�

βλ > 0, δ := sup
λ∈�

‖aλ‖, γ := inf
λ∈�

‖cλ‖ > 0

and

ρ := max

{
1

α
,
1

β

(
1 + δ

α

)
,

δ

β2

(
1 + δ

α

)}
,

then

inf
λ∈�

max{‖xλ − x‖, ‖yλ − y‖} ≤ ρ

1 − ργ
(‖x∗

λ − aλ(x, ·)
−bλ(·, y)‖ + ‖y∗

λ − bλ(x, ·) − cλ(y, ·)‖).
Therefore, in order to approximate the solution of the corresponding inverse problem we
solve the optimization problem

min
λ∈�

(‖x∗
λ − aλ(x, ·) − bλ(·, y)‖ + ‖y∗

λ − bλ(y, ·) − cλ(y, ·)‖). (2.4)

3 Perforated domains

We address next a modification of the problem (P) that tries to model situations from different
engineering or material sciences in which perforated domains appear. We will understand by
perforated domains, those in which holes appear. We illustrate this type of problem with the
following example.

Example 3.1 Let 	 = (0, 1)2, 
 = ∂	, δ ∈ R and f ∈ H1
0 (	), and let us consider the

boundary value problem: Find ψ ∈ H2(	) such that⎧⎨
⎩


2ψ + δψ = f in 	

ψ |
 = 0

ψ |
 = 0

. (3.1)

Now, we study the same type of problem in a perforated domain described as follows. Let us
denote by 	B a collection of circular holes ∪m

j=1B(x j , ρ j ) where x j ∈ 	, ρ j > 0 and the
holes B(x j , ρ j ) are nonoverlapping and lie strictly inside 	. We will consider ε = max j ρ j

and denote by 	ε the closure of the set 	\	B .
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Let 	ε , 
ε = ∂	ε, δ ∈ R and f ∈ H1
0 (	ε), and let us consider the boundary value

problem: Find ψ ∈ H2(	ε) such that
⎧⎨
⎩


2ψ + δψ = f in 	ε

ψ |
ε = 0

ψ |
ε = 0

. (3.2)

Following classical passages, this problem can be written as follows: Find (x0ε, y0ε) ∈
Eε × Fε such that {

aε(x0ε, ·) + bε(·, y0ε) = x∗
ε (·)

bε(x0ε, ·) + cε(y0ε, ·) = y∗
ε (·) . (Pε)

This system adopts the form of (Pλ) with card(�) = 1, the real Hilbert spaces Eε = Fε :=
H1
0 (	ε), the continuous bilinear forms aε : Eε × Eε −→ R, bε : Eε × Fε −→ R and

cε : Fε × Fε −→ R defined for each x1, x2 ∈ Eε, and y1, y2 ∈ Fε, as

aε(x1, x2) :=
∫

	ε

x1x2,

bε(x1, y1) := −
∫

	ε

∇x1∇ y1,

and

cε(y1, y2) := −δ

∫
	ε

y1y2,

and the continuous linear functionals x∗
ε := 0 ∈ E∗

ε and y∗
ε ∈ F∗

ε given by

y∗
ε (y) := −

∫
	ε

f y, (y ∈ Fε).

The next two sections are devoted to study the relations between the solutions of problems
(P) and (Pε) and the corresponding inverse problems when such problems are close in a
certain sense.

4 Mixed variational problems on perforated domains: the direct
problem

We introduce an abstract formulation of the problem above, considering two sequences of
spaces {Eεn }n∈N, {Fεn }n∈N which we note {En}n∈N and {Fn}n∈N respectively.

Let E, F , {En}n∈N, {Fn}n∈N be real Hilbert spaces, a : E × E −→ R, b : E × F −→ R

and c : F × F −→ R be bounded bilinear forms, and for n ∈ N, let an : En × En −→ R,
bn : En × Fn −→ R and cn : Fn × Fn −→ R be bounded bilinear forms. Let x∗ : E −→ R

and y∗ : F −→ R be bounded linear functionals and for n ∈ N, let x∗
n : En −→ R and

y∗
n : Fn −→ R be bounded linear functionals.
We consider the problem (P) and for n ∈ N, the following problems: find (x0n, y0n) ∈

En × Fn such that {
an(x0n, ·) + bn(·, y0n) = x∗

n
bn(x0n, ·) + cn(y0n, ·) = y∗

n
. (Pn)

123
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We write

K := {x ∈ E : b(x, ·) = 0},
and for n ∈ N

Kn := {x ∈ En : bn(x, ·) = 0}.
Then, we suppose now that the bounded bilinear forms in problems (P) and (Pn) verify
assumption (i) of Theorem 2.1 for cardinal of � equal to 1, and assumptions (ii), (iii) and
(iv) of the same result in the following way: For some α, β > 0 and αn, βn > 0, (n ∈ N),
there hold

(ii) • x ∈ K ⇒ α‖x‖ ≤ ‖a(·, x)|K ‖,
• x ∈ Kn ⇒ αn‖x‖ ≤ ‖an(·, x)|Kn‖,

(iii) • y ∈ F ⇒ β‖y‖ ≤ ‖b(·, y)‖,
• y ∈ Fn ⇒ βn‖y‖ ≤ ‖bn(·, y)‖.

and noting

ρ := max

{
1

α
,
1

β

(
1 + ‖a‖

α

)
,
1

β2 ‖a‖
(
1 + ‖a‖

α

)}

and for n ∈ N

ρn := max

{
1

αn
,
1

βn

(
1 + ‖an‖

αn

)
,
1

β2
n
‖an‖

(
1 + ‖an‖

αn

)}
,

(iv) • ‖c‖ <
1

ρ
,

• for n ∈ N, ‖cn‖ <
1

ρn
.

In view of Theorem 2.1 these assumptions ensures the existence and uniqueness of solution
for problems (P) and (Pn), noted (x0, y0) ∈ E × F and (x0n, y0n) ∈ En × Fn respectively.
Moreover, we have the following control of the norms:

max{‖x0‖E , ‖y0‖F } ≤ ρ

1 − ρ‖c‖
(‖x∗‖ + ‖y∗‖) , (4.1)

and for n ∈ N

max{‖x0n‖En , ‖y0n‖Fn } ≤ ρn

1 − ρn‖cn‖
(‖x∗

n‖ + ‖y∗
n‖

)
. (4.2)

The next result establishes the relation between the solutions of problems (P) and (Pn)
when such problems are close in a certain sense:

Theorem 4.1 With the previous notations and assumptions, let us suppose that

(a) The Hilbert spaces E, F, {En}n∈N, {Fn}n∈N verify:

• The sequences {En}n∈N and {Fn}n∈N are increasing i.e., if n,m ∈ N, n < m, then
En ⊂ Em ⊂ E and Fn ⊂ Fm ⊂ F.

• ⋃
n∈N En = E and

⋃
n∈N Fn = F.

• There exist γE , γF > 0 such that for each n ∈ N, x ∈ En, y ∈ Fn,

‖x‖E ≤ γE‖x‖En , and ‖y‖F ≤ γF‖y‖Fn .

123
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(b) There exist three sequences {μn}, {ηn}, {δn}, with
lim
n→∞ μn = lim

n→∞ ηn = lim
n→∞ δn = 0,

such that for n ∈ N, x1, x2 ∈ En and y1, y2 ∈ Fn we have:

• |a(x1, x2) − an(x1, x2)| ≤ μn‖x1‖En‖x2‖En ,
• |b(x1, y1) − bn(x1, y1)| ≤ ηn‖x1‖En‖y1‖Fn ,
• |c(y1, y2) − cn(y1, y2)| ≤ δn‖y1‖Fn‖y2‖Fn .

(c) The sequences of funcionals {x∗
n }n∈N and {y∗

n }n∈N, converge to x∗ and y∗, respectively,
in the w∗–topology.

Then, the sequences of solutions ({x0n, y0n)}n∈N of problems (Pn) converge in thew–topology
on E × F, except partials, to (x0, y0), solution of problem (P).

Proof From assumption c) we have that there exist ME , MF ≥ 0 such that

‖x∗
n‖ ≤ ME , ‖y∗

n‖ ≤ MF , (n ∈ N). (4.3)

We can deduce from this fact and from (4.2) that the boundness of the sequences {x0n}n∈N,
{y0n}n∈N depends on the boundness of {ρn} or that of {‖an‖} and {‖cn‖}. But the sequence
{‖an‖} is bounded, since

‖an‖ = sup
x1,x2∈En

|an(x1, x2)|
‖x1‖En‖x2‖En

≤ sup
x1,x2∈En

|an(x1, x2) − a(x1, x2)|
‖x1‖En‖x2‖En

+ sup
x1,x2∈En

|a(x1, x2)|
‖x1‖En‖x2‖En

,

and taking into account assumption b) for the first term and assumption a) for the second, we
have that the last sum is less or equal that

sup
x1,x2∈En

μn‖x1‖En‖x2‖En

‖x1‖En‖x2‖En

+ sup
x1,x2∈En

γEγE
|a(x1, x2)|

‖x1‖E‖x2‖E ≤ μn + γ 2
E‖a‖.

Similar arguments show the boundness of {‖cn‖}.
We deduce that {x0n}n∈N, {y0n}n∈N are bounded an then they have partial subsequences

{x0nk }n∈N, {y0nk }n∈N which converge weakly. We note x1 and y1 the limits of such subse-
quences. We prove finally that (x1, y1) ∈ E× F is solution of problem (P) and then from the
uniqueness of the solution we have the result. For this purpose, for each x ∈ E , according
to a), the continuity of the bilinear forms and the density of ∪n∈NEn and ∪n∈NFn , we can
suppose that there exists nk such that x ∈ Enk . Then,

|a(x1, x) + b(x, y1) − x∗(x)| ≤ |a(x1, x) − a(x0nk , x)| + |b(x, y1) − b(x, y0nk )|
+|a(x0nk , x) + b(x, y0nk ) − x∗(x)|.

From the weak continuity of a and b in each variable we deduce that the first two terms in
the sum converge to 0. For the third one, we have that

|a(x0nk , x) + b(x, y0nk ) − x∗(x)| ≤ |a(x0nk , x) − ank (x0nk , x)|
+|ank (x0nk , x) + bnk (x, y0nk ) − x∗

nk (x)|
+|b(x, y0nk ) − bnk (x, y0nk )|
+|x∗

nk (x) − x∗(x)|.

123
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In view the assumption (b) we deduce that the first and third terms tend to 0. The second is
0 because (x0nk , y0nk ) is the solution of the problem (Pnk ), and the last term tends to 0 from
(c).

A similar reasoning proves that, given y ∈ F , b(x1, y) + c(y1, y) = y∗(y), which
concludes the proof. 	


5 Mixed variational problems on perforated domains: the inverse
problem

We deal now with inverse problems associated with problems in perforated domains and we
analyse the relationship between the minimizers of an inverse problem defined on a solid
domain and the minimizers of an inverse problem defined on a perforated domain when the
holes are small enough.

Let � a compact set of Rn . Let E, F , {En}n∈N, {Fn}n∈N be real Hilbert spaces, aλ :
E × E −→ R, bλ : E × F −→ R and cλ : F × F −→ R be bounded bilinear forms, and for
n ∈ N, let aλ

n : En × En −→ R, bλ
n : En × Fn −→ R and cλ

n : Fn × Fn −→ R be bounded
bilinear forms. Let x∗

λ : E −→ R and y∗
λ : F −→ R be bounded linear functionals, and for

n ∈ N, x∗
λn : En −→ R and y∗

λn : Fn −→ R be bounded linear functionals.
For λ ∈ � we consider the family of problems (Pλ) described on Theorem 2.1 and for

each n ∈ N the family of problems: Find (xλn, yλn) ∈ En × Fn such that
{
aλ
n (xλn, ·) + bλ

n(·, yλn) = x∗
λn

bλ
n(xλn, ·) + cλ

n(yλn, ·) = y∗
λn

. (Pλ
n )

If we suppose that all the bilinear forms verify assumptions (i), (ii), (iii) and (iv) of Theorem
2.1, it follows that for each λ ∈ � and for each n ∈ N, problems (Pλ) and (Pλ

n ) have a unique
solution (xλ, yλ) and (xλn, yλn) repectively.Moreover, given a target element (x, y) ∈ E×F ,
Theorem 2.1 states that

inf
λ∈�

max {‖xλ − x‖E , ‖yλ − y‖F }

≤ inf
λ∈�

ρλ

1 − ρλγ

(‖x∗
λ − aλ(x, ·) − bλ(·, y)‖ + ‖y∗

λ − bλ(x, ·) − cλ(y, ·)‖) (5.1)

with γ := infλ∈� ‖cλ‖ > 0. Then, in order to solve the inverse problem, we must solve the
optimization problem

min
λ∈�

(
Gλ(x, y) + Sλ(x, y)

)
,

where, Gλ(x, y) = ‖x∗
λ − aλ(x, ·) − bλ(·, y)‖ and Sλ(x, y) = ‖y∗

λ − bλ(x, ·) − cλ(y, ·)‖,
for a given (x, y) ∈ E × F . With the same arguments as above, given a target element
(xn, yn) ∈ En × Fn in order to approximate the solution of the inverse problem (Pλ

n ) we
must minimize the collage distance, that is, solve the optimization problem

min
λ∈�

(
Gλ

n(xn, yn) + Sλ
n (xn, yn)

)
,

whereGλ
n(xn, yn) = ‖x∗

λn−aλ
n (x, ·)−bλ

n(·, y)‖ and Sλ
n (xn, yn) = ‖y∗

λn−bλ
n(x, ·)−cλ

n(y, ·)‖.
Our goal is to show that solutions of inverse problems (Pλ) and (Pλ

n ) are arbitrary closed
when problems are closed enough in the sense established in the next result.

123
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Theorem 5.1 With the above notation, suppose that the Hilbert spaces E, F, {En}n∈N,
{Fn}n∈N verify:

(i) The sequences {En}n∈N and {Fn}n∈N are increasing sequences, i.e. if n,m ∈ N, n < m,
then En ⊂ Em ⊂ E and Fn ⊂ Fm ⊂ F.

(ii) There exist two sequences of projections πn : E −→ En, and Qn : F −→ Fn, such that
for x ∈ E and y ∈ F,

lim
n→∞ ‖x − πn(x)‖ = lim

n→∞ ‖y − Qn(y)‖ = 0.

(iii) The bilinear forms and functionals are given by aλ
n = aλ|En×En

, bλ
n = bλ|En×Fn

, cλ
n =

cλ|Fn×Fn
, x∗

λn = x∗
λ|En , y

∗
λn = y∗

λ|Fn .

(iv) For all n ∈ N, x ∈ E, y ∈ F, xn ∈ En and yn ∈ Fn, the functions Gλ(x, y), Gλ
n(xn, yn),

Sλ(x, y) and Sλ
n (xn, yn) : � → R

+ are continuous.

Let {λn} a sequence of minimizers of Gλ
n(πn(x), Qn(y)) + Sλ

n (πn(x), Qn(y)) over �. Then
there existsλ∗ ∈ � and a partial subsequence of {λn}, whichwewill note {λn} aswell, in order
to simplify the notation, such that {λn} → λ∗, with λ∗ a minimizer of Gλ(x, y) + Sλ(x, y)
over �.

Proof Let M, N , R, μ and ν given by

M = sup
λ∈�

{‖aλ‖} , N = sup
λ∈�

{‖bλ‖} , R = sup
λ∈�

{‖cλ‖} , μ = sup
λ∈�

{‖x∗
λ‖} ,

ν = sup
λ∈�

{‖y∗
λ‖} .

Then on the one hand, given (x, y) ∈ E × F ,

Gλ
n(πnx, Qn y) + Sλ

n (πnx, Qn y) ≤ Gλ(πnx, Qn y) + Sλ(πnx, Qn y))
= Gλ(πnx − x + x, Qn y − y + y)

+Sλ(πnx − x + x, Qn y − y + y)
≤ ‖φλ − aλ(πnx − x + x, ·) − bλ(·, Qn y − y + y)‖

+‖ψλ − bλ(πnx − x + x, ·) − cλ(Qn y − y + y, ·)‖
≤ ‖φλ − aλ(x, ·) − bλ(·, y)‖ + ‖ψλ − bλ(x, ·) − cλ(y, ·)‖

+‖aλ(πnx − x, ·) − bλ(·, Qn y − y)‖
+‖bλ(πnx − x, ·) − cλ(Qn y − y, ·)‖

≤ Gλ(x, y) + Sλ(x, y) + ‖aλ‖‖πnx − x‖ + ‖bλ‖‖Qn y − y‖
+‖bλ‖‖πnx − x‖ + ‖cλ‖‖Qn y − y‖

≤ Gλ(x, y) + Sλ(x, y)
+max {‖πnx − x‖E , ‖Qn y − y‖F } (M + 2N + R).

(5.2)

And, on the other hand,

Gλ(πnx, Qn y) = ‖φλ − aλ(πnx, ·) − bλ(·, Qn y)‖
≤ ‖φλ ◦ πn − aλ(πnx, πn(·)) − bλ(πn(·), Qn y)‖

+‖aλ(πnx, πn(·)) − aλ(πnx, ·)‖ + ‖bλ(πn(·), Qn y) − bλ(·, Qn y)‖
+‖φλ − φλ ◦ πn‖

≤ Gλ
n(πnx, Qn y)

+M‖πnx‖ sup
v∈E,‖v‖E=1

‖v − πnv‖E + N‖Qn y‖ sup
v∈E,‖v‖E=1

‖v − πnv‖E
+μ sup

v∈E,‖v‖E=1
‖v − πnv‖E

= Gλ
n(πnx, Qn y) + (M‖πnx‖ + N‖Qn y‖ + μ) sup

v∈E,‖v‖E=1
‖v − πnv‖E ,
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and

Sλ(πnx, Qn y) = ‖ψλ − bλ(πnx, ·) − cλ(Qn y, ·)‖
≤ ‖ψλ ◦ Qn − bλ(πnx, Qn(·)) − cλ(Qn y, Qn(·))‖ + ‖bλ(πnx, Qn(·)) − bλ(πnx, ·)‖

+‖cλ(Qn y, Qn(·)) − cλ(Qn y, ·)‖ + ‖ψλ − ψλ ◦ Qn‖
≤ Sλ

n (πnx, Qn y) + N‖πnx‖ sup
w∈F,‖w‖F=1

‖w − Qnw‖F
+R‖Qn y‖ sup

w∈F,‖w‖F=1
‖w − Qnw‖F + ν sup

w∈F,‖w‖F=1
‖w − Qnw‖F

= Sλ
n (πnx, Qn y) + (N‖πnx‖ + R‖Qn y‖ + ν) sup

w∈F,‖w‖F=1
‖w − Qnw‖F .

Then,

Gλ(πnx, Qn y) + Sλ(πnx, Qn y) ≤ Gλ
n(πnx, Qn y) + Sλ

n (πnx, Qn y)
+(M‖πnx‖ + N‖Qn y‖ + μ) sup

v∈E,‖v‖E=1
‖v − πnv‖E

+(N‖πnx‖ + R‖Qn y‖ + ν) sup
w∈F,‖w‖F=1

‖w − Qnw‖F .

(5.3)

Therefore, according to the compactness of �, given a sequence of minimizers {λn} of
Gλ

n(πnx, Qn y) + Sλ
n (πnx, Qn y) over �, there exists a convergent partial subsequence, also

noted {λn}, i.e., there exists λ∗ ∈ � such that {λn} → λ∗. To see that λ∗ is a minimizer of
Gλ(x, y) + Sλ(x, y) over �, we compute

Gλ∗
(x, y) + Sλ∗

(x, y) = lim
n→+∞

(
Gλn (πnx, Qn y) + Sλn (πnx, Qn y)

)
(by (5.12))

≤ lim
n→+∞(Gλn

n (πnx, Qn y)

+Sλn
n (πnx, Qn y) + (M‖πnx‖ + N‖Qn y‖ + μ) sup

v∈E,‖v‖E=1
‖v − πnv‖E

+(N‖πεn x‖ + R‖Qn y‖ + ν) sup
w∈F,‖w‖F=1

‖w − Qnw‖F ) (minimizers)

≤ lim
n→+∞(Gλ

n(πnx, Qn y) + Sλ
n (πnx, Qn y)

+(M‖πnx‖ + N‖Qn y‖ + μ) sup
v∈E,‖v‖E=1

‖v − πnv‖E
+(N‖πnx‖ + R‖Qn y‖ + ν) sup

w∈F,‖w‖F=1
‖w − Qnw‖F ) (by (5.11))

≤ lim
n→+∞(Gλ(x, y) + Sλ(x, y)

+(M + 2N + R)max {‖πnx − x‖E , ‖Qn y − y‖F }
+(M‖πnx‖ + N‖Qn y‖ + μ) sup

v∈E,‖v‖E=1
‖v − πnv‖E

+(N‖πnx‖ + R‖Qn y‖ + ν) sup
w∈F,‖w‖F=1

‖w − Qnw‖F )

= Gλ(x, y) + Sλ(x, y).

	

Remark 5.2 Condition (ii) is not too restrictive. In fact, if we suppose that the Hilbert spaces
E, F , {En}n∈N, {Fn}n∈N are separable and verify (i) and

⋃
n∈N En = E and

⋃
n∈N Fn = F ,

then condition (ii) is satisfied.

Finally we illustrate the above results considering the following example related to
Example 3.1.

Example 5.3 We consider the problem (3.1) with δ = −2 and f (x, y) the function for which
the solution ψ(x, y) to (3.1) is 103(x(1 − x)y(1 − y))4.

The same problem in a porous domain is (3.2) and if we take w = −
ψ the mentioned
problem is equivalent to
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Table 1 Results with n = 10

r = 0.005, l = 0.005 r = 0.0005, l = 0.0005 r = 0.00005, l = 0.00005
a = 0.005, b = 0.003 a = 0.0005, b = 0.0003 a = 0.00005, b = 0.00003

A 1.000192021 1.000157458 1.000156459

B 1.003093897 1.000297366 1.000268181

C −3.670642019 −2.104443730 −2.087745875

Collage distance 1.964405817 × 10−12 3.957312313 × 10−15 2.088385461 × 10−15

Table 2 Results with n = 20

r = 0.005, l = 0.005 r = 0.0005, l = 0.0005 r = 0.00005, l = 0.00005
a = 0.005, b = 0.003 a = 0.0005, b = 0.0003 a = 0.00005, b = 0.00003

A 1.000249733 1.000161039 1.000159465

B 1.003200522 1.000303959 1.000273715

C −3.841718970 −2.115096071 −2.096689098

Collage distance 6.683393914 × 10−13 1.533338673 × 10−15 8.256778945 × 10−16

⎧⎪⎪⎨
⎪⎪⎩


ψ + w = 0 in 	ε

−
ψ − 2ψ = f (x, y) in 	ε

ψ |
ε = 0

ψ |
ε = 0

, (5.4)

which could be written as (Pε).
Our purpose is to recover A, B and C in the perturbed mixed system

{
A
ψ + Bw = 0 in 	ε

−A
w + Cψ = f (x, y) in 	ε
.

Observe that the exact values are A = B = 1 and C = −2.
We consider four holes which are randomly taken with different shapes (squares, circles,

and ellipses). The Tables 1 and 2 show the results after running the collage codding approach
over the perforated domains for different sizes, considering n = 10 y n = 20 respectively. We
will denote r the circle radius, l the square side and a and b the ellipse major and minor axis
respectively.

6 Conclusion

Some conditions for the existence of solution of a perturbedmixed variational system and that
of an associated inverse problem have been given. Furthermore, some convergence results
related to the impact of the size of the holes have been derived. The numerical results show
that as hole diameter decreases, results improve.
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