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Abstract
Skeletal remains are the only biological material that remains after long periods;
however, environmental conditions such as temperature, humidity, andpHaffect
DNA preservation, turning skeletal remains into a challenging sample for DNA
laboratories. Sample selection is a key factor, and femur and tooth have been
traditionally recommended as the best substrate of genetic material. Recently,
petrous bone (cochlear area) has been suggested as a better option due to its
DNA yield. This research aims to evaluate the efficiency of petrous bone com-
pared to other cranium samples (tooth) and postcranial long bones (femur and
tibia). A total amount of 88 samples were selected from 38 different individuals.
The samples were extracted by using an organic extraction protocol, DNA quan-
tification byQuantifiler Trio kit and amplified with GlobalFiler kit. Results show
that petrous bone outperforms other bone remains in quantification data, yield-
ing 15–30 times more DNA than the others. DNA profile data presented likeness
between petrous bone and tooth regarding detected alleles; however, the amount
of DNA extracted in petrous bones allowed us to obtain more informative DNA
profiles with superior quality. In conclusion, petrous bone or teeth sampling is
recommended if DNA typing is going to be performed with environmentally
degraded skeletal remains.
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1 INTRODUCTION

DNA typing from skeletal remains is a valuable resource
in forensic, archaeological, and ancient DNA studies since

Abbreviations: AT, analytical threshold; CQV, coefficient of quartile
variation; RFU, relative fluorescence units; ST, stochastic threshold.
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bones and teeth are the only biological material that
remains after long periods of decaying and environmen-
tal exposure [1]. The environmental conditions such as
high temperature [2], humidity [3], salinity, and low pH
[4] are factors that affects DNA preservation [5], resulting
in molecular damage and degradation in small pieces hin-
dering its recovery in laboratory. In this context, the use of
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ancient DNA methods could be a valuable strategy for the
forensic DNA community [6].
In forensic genetics, DNA yield has been found to be dif-

ferent between skeletal remains, resulting in poor or high
DNA profile quality; thus, sample selection is a key fac-
tor to consider. It has been traditionally established that
cortical matter of long bones (femur, tibia, or fibula) and
intact teeth (molar and premolars) have a higher success
rate than humerus, radius, or ulna in DNA analyses [7].
A systematic review found that bone samples were more
reported (89%) than teeth (11%), having these two groups of
samples no differences in quantification values, however
having femur more success in DNA profile obtention [8].
Nevertheless, some studies have demonstrated that the

petrous portion of the temporal bone is a valuable sam-
ple source for DNA typing [9], yielding considerably more
short tandem repeat (STR) markers than femurs or teeth
[10], even in burned remains [11]. However, there is
scant research with a high number of samples and bones
from the same individual. Petrous bone success might be
explained by a bone protective cover around the otic cap-
sule and less vascularization [12] and the higher presence
of osteocytes, three times compared to femur cortical bone
[13]. Still, there are times when the sample cannot be cho-
sen due to the remains conservation state or even the
evidence that has been found: in anthropological contexts,
cranium may be missing approximately 15% of the times,
while femur and tibia are absent around 50% of the cases,
being these three groups of remains fragmented 15%−20%
of the times [14].
The Programof Identification of theVictims of the Span-

ish Civil War and Afterwar Period in Andalusia has the
mission to recover and identify the human remains found
in mass graves in all the Andalusian territory. In order to
achieve these objectives, this laboratory is elaborating a
DNA database made up by genetic profiles of the different
skeletal remains recovered from archaeological interven-
tions in mass graves, and a reference database formed by
the genetic profiles of the available victims’ relatives.
The research aim is to evaluate if it is possible to improve

the DNA analyses results by choosing a certain bone part.
To assess that, four skeletal elements were analyzed, both
cranial (petrous and teeth) and postcranial (femur and
tibia).

2 MATERIALS ANDMETHODS

Sample preparation, DNA extraction, quantification, and
amplification were performed in a low copy number
DNA laboratory facility according to the recommenda-
tions given to this kind of samples [15–17]. Contamination
prevention measures included room UV radiation, HEPA

(High Efficiency Particle Arresting)-filtered air positive
pressure, working surfaces cleaning by DNAZap (Ther-
moFisher), and sterilized laboratorymaterial. Degradation
index values, "ski-slope" profiles, and comparison between
samples and laboratory staff profileswere used for contam-
ination detection.

2.1 Sample preparation

After anthropological examination, a total amount of 88
bones or teeth were received and analyzed by this lab-
oratory, coming from mass graves of the same region in
Andalusia (Southern Spain): 11 tibia, 21 femur, 22 tooth,
and 34 petrous bones from 38 different individuals (see
Table 1). Individuals were mostly male adults (18−50 years
old). Samples degree of preservation ranged from light,
hollow, fragile remains to slightly granular ones [18]. Sam-
ple selection was based on the premise of having the four
different skeletal remains sample types; thus, this was not
possible in every individual due to the state of decay of
the remains, so at least two remains per individual were
sampled.
Samples were buried in mass graves of approximately

4 m depth during 70−80 years in the South-West region of
Andalusia, the southernmost territory in Spain, a region
with average temperatures of 28◦C and maximum temper-
atures of 45◦C during summer, more than 2800 h of annual
solar radiation (5 kW/h/m2), minimum temperatures of
12◦C in winter, and an average annual precipitation of
400–600 mm rain gauge [19], making the soil of this area
slightly acidic [20]. No field data are available.
Samples exterior surfacewas sanded and then cut in 0.5–

1 cm fragments with a Dremel rotatory tool [21]. After that,
fragments were exposed to UV light in a 6 W UV cabin,
each side during 10 min [22], and then grinded in a Tis-
sueLyser II (QIAGEN) under two cycles of 30 Hz for 30 s.
Note that 1.0 g of skeletal remain powder was transferred
to a 15-mL Falcon tube.

2.2 DNA extraction

DNA samples were extracted following an in-house pro-
tocol based on traditional phenol-chloroform-isoamyl pro-
tocol [23]. Note that 5 mL of extraction buffer containing
4125 µL EDTA 0.5 M, 300 µL SDS 10%, 375 µL pro-
teinase K 10 mg/mL, and 200 µL DTT 1 M was added
to 1.0 g of skeletal remain powder and then incubated
at 56◦C overnight. After that the lysate was centrifuged
at maximum revolutions for 5 min and transferred to a
clean 15-mL Falcon tube. A total of 4 mL of phenol–
chloroform–isoamyl (25:24:1) was added and then samples
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HAARKÖTTER et al. 3

TABLE 1 Skeletal remains samples by individual (I).

I1 I2 I3 I4 I5 I6 I7 I8 I9
Petrous Femur

Tibia
Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Femur
Tibia

I10 I11 I12 I13 I14 I15 I16 I17 I18
Femur
Tibia

Tooth
Femur
Tibia
Petrous

Femur
Tibia
Petrous

Femur
Tibia
Tooth
Petrous

Femur
Tibia
Tooth

Femur
Tibia
Petrous

Femur
Tibia
Tooth
Petrous

Femur
Tibia
Tooth
Petrous

Femur
Tibia
Tooth
Petrous

I19 I20 I21 I22 I23 I24 I25 I26 I27
Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

Tooth
Petrous

I28 I29 I30 I31 I32 I33 I34 I35 I36
Tooth
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

Femur
Petrous

I37 I38
Femur
Petrous

Femur
Petrous

were centrifuged at maximum revolutions for 5 min. The
supernatant phase was transferred to an Amicon Ultra-4
Centrifugal Filter Unit 30 kDa (Merck KGaA) and cen-
trifuged at 1500 g until most of supernatant is filtered.
Eluate was discarded and two washes with 750 µL DNase-
and RNase-freewater were performed, each one for 20min
1500 g centrifugation. Finally, DNA extracts were purified
with QIAquick columns in two steps of elution, each one
of 37.5 µL, obtaining a final volume of 75 µL [24].

2.3 DNA quantification

DNA extracts were quantified with the Quantifiler Trio
DNA Quantification Kit (ThermoFisher) following the
manufacturer’s recommendations [25]: two 2 µL replicates
of each sample, five standards, and a non template control
(NTC) were amplified in a QuantStudio 5 (ThermoFisher).
Four parameters were analyzed to assess DNA suc-

cess recovery from the different human skeletal remains:
quantity mean of the human small autosomal target
(80 bp), quantity mean of the human large autosomal tar-
get (214 bp), human male target (75 bp), and degradation
index (calculated as the ratio of small target and large
target).

2.4 DNA amplification and
visualization

DNA extracts were amplifiedwithGlobalFiler PCRAmpli-
fication Kit following the manufacturer’s procedure [26].
Maximum volume of DNA extract (15 µL) was added to

the reaction to a final volume of 25 µL and amplified in
a 29 cycles reaction. Fragments were visualized in a 3500
Applied Biosystems Genetic Analyzer following manufac-
turer’s parameters. Datawere analyzed usingGeneMapper
ID-X 1.6. In order to assess the number of detected alleles,
an analytical threshold of 50 RFU and stochastic thresh-
old of 365 RFU (both determined after internal validation)
were established.
Statistical analyses (mean, Shapiro–Wilk normality test,

coefficient of quartile variation [CQV], and nonparamet-
ric tests, one-way analysis of variance and Dwass-Steel-
Critchlow-Fligner [DSCF] pairwise comparison) were per-
formed with Jamovi Version 2.2.5 [27].
Four parameters were analyzed: number of alleles

detected above the analytical threshold (50 RFU), num-
ber of alleles detected above the stochastic threshold
(365 RFU), average RFU, and number of reportable mark-
ers (heterozygous markers with peak hight above the
analytical threshold and homozygous markers with peak
hight above the stochastic threshold). Yindel, DYS391,
and Amelogenin markers were excluded, so only STR
informative alleles were considered in statistical analyses.

3 RESULTS AND DISCUSSION

3.1 DNA quantification

DNAquantification results are shown inTable 2; both aver-
age and coefficient of quartile variation (CQV), a robust
dispersion parameter for nonparametric distributions .
Boxplots of each target by skeletal sample are shown in
Figure 1.
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4 HAARKÖTTER et al.

TABLE 2 DNA quantification results (both mean and
coefficient of quartile variation) by skeletal remain sample type.

Femur Tibia Tooth Petrous
Small target (ng/µL) 0.022 0.040 0.051 0.723
CQV 0.701 0.745 0.847 0.433
Large target (ng/µL) 0.004 0.010 0.009 0.031
CQV 0.831 0.634 0.879 0.858
Male target (ng/µL) 0.023 0.028 0.047 0.560
CQV 0.651 0.464 0.896 0.562
Degradation index 7 10 12 81
CQV 0.326 0.594 0.380 0.735

Abbreviation: CQV, coefficient of quartile variation.

Petrous bone yielded the highest mean of human
small autosomal target with 0.723 ng/µL, followed by
tooth (0.051 ng/µL), tibia (0.040 ng/µL), and femur
(0.022 ng/µL). Petrous bone reached quite high values,
ranging from 0.009 to 1.824 ng/µL. Statistically significant
differences were found between femur, tibia, tooth, and
petrous (p-value < 0.001) in a DSCF pairwise comparison
at a 95% confidence level.
Grouping samples by small DNAquantity, only 6% of the

analyzed petrous bone yielded less than 50 pg DNA, while
90% of femur yielded less than that amount of DNA (82% in
the case of tibia and 59% in the case of tooth), being petrous
bone the only kind of sample which yielded 0.5–1 ng/µL
(41% of analyzed samples) and more than 1 ng/µL (24%).
Large human autosomal target was missed by only one

bone (petrous), which also achieved the highest average

value (0.031 ng/µL), followed by tibia (0.010 ng/µL), tooth
(0.009 ng/µL), and femur (0.004 ng/µL). The maximum
was reached by petrous bone, ranging from 0.0006 to
0.176 ng/µL. There were statistically significant differences
between femur and petrous (p-value = 0.003), and tibia
and petrous (p-value = 0.016).
The highest degradation index values were yielded by

petrous bone (81), followed by tooth (12), tibia (10) and
femur (7). It must be noted that petrous bone gives much
higher values of degradation index, ranging from 10 to even
100−200. However, this does not mean that DNA obtained
from petrous bone is more degraded than the other skele-
tal remains, because if more small fragments are recovered
and they are naturally degraded, the largest degradation
index they will have. There was statistically significative
difference between petrous and the other bone samples
(p-value < 0.001).
In summary, petrous bone outperforms tooth and long

bones in DNA quantification, obtaining more both small
and large target, as it has been previously indicated by sim-
ilar research studies in ancientDNA [6, 28, 29]. Thatmeans
obtaining 15−30 times more DNA than with other samples
with the same DNA extraction protocol.
In Figure 2, small human target is shown by skeletal

remain type and individual, so it can be observed how
petrous bone outperforms other sample types in terms of
DNA quantification, yielding around 30 times more small
DNA fragments than femur, and approximately 18 times
moreDNA than toothwithin the same individual, whereas
tooth yielded 10 times more DNA than femur or tibia.

F IGURE 1 Boxplots of quantification data: Small, large, and male target, and degradation index by skeletal remain sample.
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F IGURE 2 Small human autosomal target (ng/µL) detected by individual. In all cases when a petrous bone sample was available, it
outperformed every other kind of sample.

Femur and tibia yielded roughly the same amount of DNA
within the same individual; however, there were individ-
uals in which tibia yielded about three times more small
DNA fragments than femur.
Revisiting scientific literature, a systematic review found

that tibia obtained higher DNA yield in literature, fol-
lowed by teeth, both with better performance in terms
of DNA quantification than femur [8]. Petrous bone has
been pointed out in ancient DNA research as the remain
with the largest amount of endogenous DNA quantity,
with higher C→T damage rate and smaller mitochon-
drial DNA/nuclear DNA ratio, and high sample to sample
variation [28]. In forensic literature, larger DNA quan-
tities have been obtained from long bones [30], such
as tibia [8, 31, 32], while other studies obtained bet-
ter yields from petrous bone rather than from femur
or teeth [10, 29, 33–36]. Petrous bone generally yields
high DNA quantities and low degradation index [35,
37]. Comparing femur, tibia, and teeth, femur has been
found better than teeth in terms of STR typing suc-
cess, while teeth achieved better genetic profiles than
tibia [7]; however, there are times when femur, tibia,
and teeth are reported to have better yields than the
others.
Our study supports the idea that higher DNA yields

are obtained from petrous bone, whereas this kind of
remain shows high variability in terms of degradation
index (as stated before [38]). Nevertheless, there is a cer-
tain variability among the different studies that can be
found in literature that may be explained by the sampling
technique, as it has been stated that DNA is not evenly
distributed around the skeletal remain [39, 40].

3.2 Genetic profiles

Genetic profiles data (bothmean and coefficient of quartile
variation) are presented in Table 3, and boxplots of each
parameter by sample type are shown in Figure 3.

TABLE 3 Mean and coefficient of quartile variation (CQV) of
the number of detected alleles higher than analytical threshold
(>AT), number of detected alleles above stochastic threshold (>ST),
relative fluorescence units (RFU), and reportable loci by sample
type.

Femur Tibia Tooth Petrous
Alleles > AT 24 23 30 29
CQV 0.278 0.321 0.197 0.156
Alleles > ST 12 12 19 20
CQV 0.628 0.714 0.590 0.136
RFU 744 1252 2278 5278
CQV 0.620 0.714 0.839 0.250
Reportable loci 10 10 13 15
CQV 0.632 0.565 0.505 0.172

The maximum average value of detected alleles above
50 RFU was observed in tooth (30), followed by petrous
bone (29), femur (24), and tibia (23). Filtering by stochas-
tic threshold, petrous bone was the best with an average
of 20 alleles, followed by tooth (19) and femur and tibia
(12). Petrous bone had the highest RFU data with an aver-
age of 5278, followed by tooth (2278), tibia (1252), and
femur (744). The type of skeletal remain with the high-
est average number of reportable markers was petrous
bone with 15, being tooth the second (13) and tibia and
femur the thirds (10). Finally, a success ratio percent-
age, based on the number of reportable profiles obtained
divided by the total amount of profiles obtained with that
bone, makes petrous bone as the most successful (82%),
tooth the second one (59%), and femur the third (52%),
being tibia (36%) the remains with the least success rate.
Statistically significative differences were obtained with
petrous bone and femur alleles detected above stochastic
threshold (p-value = 0.003) and reportable markers (p-
value = 0.021), and between petrous and the other bone
samples in average RFU (p-value < 0.001).
Comparing data among skeletal remains of the same

individual in Figure 4, a certain variability can be observed
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6 HAARKÖTTER et al.

F IGURE 3 Boxplots of the number of detected alleles above analytical threshold (>AT), above stochastic threshold (>ST), average
relative fluorescence units (RFU), and reportable loci by sample type.
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Reportable loci (Σ)

Petrous Femur Tibia Tooth

F IGURE 4 Number of reportable loci yielded by skeletal remain sample type.

since the bone that outperforms the others may be the one
with less yield in other case. Both petrous and tooth outper-
form femur and tibia. Petrous bone is not always the bone
sample that recovers the largest number of alleles, how-
ever having 15−30 times more DNA quantity than tooth,
nevertheless many more alleles are recovered in some
cases with dental elements, which may be explained as a
better preservation of DNA in tooth than in petrous bone.
Still, the main goal of obtaining an informative genetic
profile from human remains cannot be overlooked, and
here is where petrous bone surpasses all the other kinds

of sample because if much more DNA is obtained, more
amplification product is produced, leading to high RFU
alleles, which in the end translates into the most informa-
tive DNA profiles. Individual 18 is a paradigmatic example
of this situation: no profile was obtained from femur nor
with tibia but reportable profile was achieved from tooth
and petrous bone.
Discrepancies between the quantification results by

commercial qPCR kits and the obtained genetic profile
have already been discussed [41] when it comes to this
kind of challenging samples, not only in autosomal STRs
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HAARKÖTTER et al. 7

F IGURE 5 Two profiles from the same individual generated from two different skeletal remains: femur (left) and petrous bone (right).

analyses but also in mitochondrial DNA approaches [42].
As seen in quantification data discussion, long bones sam-
ples in general [30], and femur samples in particular [7,
8, 43], have been reported as the sample type thar yields
the best DNAprofiles. Teeth samples achieved good results
taking into account the low (compared to petrous bone)
DNA yields previously assessed by qPCR, as it has been
stated [37]. Both teeth and petrous bone has been estab-
lished by ancient DNA studies as good substrates [28].
Nevertheless, there are research examples in which teeth
produced better DNA profiles [44, 45], even from sam-
ples that were buried in similar time–space conditions
[31], and there are other examples in scientific literature in
which petrous bone yields better DNA profiles than other
skeletal sample types [10, 12, 35, 36]. Still, long bones and

teeth sampling is the main recommendation from interna-
tionally renowned laboratories such as the International
Commission on Missing Persons (ICMP) [46].
Regarding the DNA extraction technique, cited litera-

ture use different approaches (silica in suspension, silica
columns, automated extraction, or organic extraction). In
this research, organic extraction protocol was used since
after a comparison of the different techniques, organic
extraction showed the highest DNA yield with our human
remains samples [24].
Our results back the thesis that better results are

obtained from petrous bone and teeth, sample types
that achieved the highest number of alleles with peak
height higher than both analytical and stochastic thresh-
old, achieving petrous bone twice the RFU obtained by
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8 HAARKÖTTER et al.

teeth (and these, in turn, twice the obtained RFU by long
bones). Petrous bone outperforms teeth by the number of
reportable markers; in fact, 91% of the analyzed petrous
bone yielded more than 10 reportable loci, whereas only
68% of the analyzed teeth yielded reportable profiles based
on that threshold (52% in the case of femur and 45% in
the case of tibia), suggesting more reliability when petrous
bone is analyzed.
In summary, both teeth and petrous bone produced

the STR profiles with the highest number of successfully
amplified alleles over lower long bones, giving petrous
bone more reportable profiles than the other skeletal
elements, as it has noted by previous literature [47]. Fur-
thermore, petrous bone offers more stability since little
variation in the number of detectable alleles or successfully
typed remains is observed among samples. In addition,
the fact that with petrous bone much more DNA can be
obtained turns this sample to be highly valuable for next-
generation sequencing because the small amplicon size
is generated in these platforms [48]. Another advantage
of petrous bone over tooth was observed during sam-
ple preparation, obtaining 2−5 g of bone powder from it,
whereas only 0.5−1.5 g teeth powder is generally obtained.
In addition, it is easily sampled in young individuals if
skull joints are open. Nevertheless, cranium is not always
available or well preserved, depending on the burial con-
ditions, and there are scenarios such as coup de grace
in which anthropologists have reported that petrous bone
integrity is severely affected. Moreover, ethical issues arise
when sampling petrous about the destruction of archaeo-
logicalmaterial or the fact that skulls are treated differently
in some mortuary contexts [49].
As an example, a comparison of two genetic profiles is

shown in Figure 5 in which the improvement in genetic
profiles is observed between two different skeletal remains
of the same individual. Not only more reportable alle-
les were achieved, but also even spectral pull-ups were
detected because of the high amount of DNA recovered.
In this way, DNA analysis from petrous bonemakes neces-
sary to adjust the input DNA volume in order to follow the
commercial kit optimal input range so this kind of artifacts
does not unfold, and as a matter of fact, profiles gener-
ated with petrous bone required less interpretation work,
reducing analysis time per sample.
The aim of this workwas to evaluate the efficiency of the

four main type of human remains pointed out by scientific
literature as the most successful for DNA typing by both
qPCRand genetic profiles (regarding alleles quality control
criteria) data. Furthermore, this research relies on the per-
formance evaluation of these kinds of samples, observed
as specially challenging due to the extreme conditions they
have been.

4 CONCLUDING REMARKS

Femur, tibia, teeth, and, more recently, petrous bone have
been found by scientific literature as the most success-
ful samples for DNA analysis; however, research differs
in which one yields more DNA due to nonuniform DNA
distribution across the sample, individual differences,
environmental factors, and sampling technique.
In accordance with previous research, our study found

that petrous bone yields much more DNA than tooth,
femur, or tibia; however, approximately the same num-
ber of alleles are obtained with petrous bone and teeth.
The former achieves more reportable markers than the
latter, leading to the obtention of more valuable genetic
information.
In conclusion, both petrous bone and teeth sampling

is strongly recommended when DNA analysis from criti-
cally degraded human remains is practiced. This insight
has allowed us to improve the success ratio in remains that
are currently being analyzed.
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