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REVIEW ARTICLE                         

Deep learning methods applied to digital elevation 
models: state of the art

Juan J. Ruiz-Lend�ıneza, Francisco J. Ariza-L�opeza, Juan F. Reinoso-Gordob, 
Manuel A. Ure~na-C�amaraa and Francisco J. Quesada-Realc

aDepartment of Cartographic, Geodetic Engineering and Photogrammetry, University of Ja�en, Ja�en, 
Spain; bArchitectural and Engineering Graphical Expression Department, University of Granada, 
Granada, Spain; cDepartment of Computer Science, University of Ja�en, Ja�en, Spain 

ABSTRACT 
Deep Learning (DL) has a wide variety of applications in various 
thematic domains, including spatial information. Although with 
limitations, it is also starting to be considered in operations 
related to Digital Elevation Models (DEMs). This study aims to 
review the methods of DL applied in the field of altimetric spatial 
information in general, and DEMs in particular. Void Filling (VF), 
Super-Resolution (SR), landform classification and hydrography 
extraction are just some of the operations where traditional meth
ods are being replaced by DL methods. Our review concludes 
that although these methods have great potential, there are 
aspects that need to be improved. More appropriate terrain infor
mation or algorithm parameterisation are some of the challenges 
that this methodology still needs to face.

Acronyms: ABFP: Attention Balanced Feature Pyramid; AI: 
Artificial Intelligence; CGAN: Convolutional Generative Adversarial 
Network; CNN: Convolutional Neural Network; CRF: Conditional 
Random Fields; DEM: Digital Elevation Model; DGCNN: Dynamic 
Graph CNN; DL: Deep Learning; FCNN: Fully connected CNN; 
GSCNN: Gated Shape CNN; HiRISE: High Resolution Imaging 
Science Experiment; HRSC: High Resolution Stereo Camera; LROC: 
Lunar Reconnaissance Orbital Camera; ML: Machine Learning; 
NLP: Natural Language Processing; PMA: Pattern Matching 
Algorithm; RCNN: Region-based CNN; RS: Remote Sensing; SAR: 
Synthetic Aperture Radar; SLIC: Simple Linear Iterative Cluster; SR: 
Super-Resolution; SRTM: Shuttle Radar Topography Mission; SVM: 
Support Vector Machine; UAV: Unmanned Aerial Vehicle; VF: Void 
Filling; ZSSR: zero-shot SR
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1. Introduction

From a geomatic point of view, DEMs represent altimetric spatial information using raster 
and vector models. Raster DEMs are based on grids, composed of a regular array of cells, 
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including heights as attribute values (this model is commonly referred to as 2.5D data 
because it only supports a single z-value for each planimetric location in a specific column 
and row) (Ure~na-C�amara and Mozas-Calvache 2023). On the other hand, vector DEMs 
are based on 3D surfaces composed of meshes derived from a set of 3D points. In any 
case, both raster and vector DEMs have the same characteristic: the discretisation in the 
representation of spatial elevation (Lin et al. 2022; Zhang et al. 2022). This discretisation 
necessarily implies a loss of information that affects, as will be addressed below, the qual
ity of the representation (Mesa-Mingorance and Ariza-L�opez et al. 2020).

A wide range of sciences and disciplines use DEMs as essential tools for the develop
ment of applications such as modelling for the prevention of natural disasters (flood risk 
and fire risk studies), soil erosion mapping, weather forecasting, climate change, etc. 
Therefore, DEMs must possess quality levels that satisfy the needs of the different applica
tions in which they are involved. These quality levels are directly related to the complete
ness of the model and its resolution. Two of the main operations traditionally performed 
on DEMs to ensure and improve these parameters are VF and SR. The first one aims to 
ensure the completeness of the DEM, as during the acquisition phase problems may arise 
that result in void areas where topographical information is lacking (Hall et al. 2005) VF. 
As for the second operation, its goal is to improve the resolution of the DEMs without 
increasing the cost associated with the acquisition processes (Han et al. 2023) SR. There 
are also other important operations in which DEMs play a key role in the development of 
applications, without directly affecting or altering the DEM itself. These operations are 
related to landform classification and information extraction processes. Some of the disci
plines that make extensive use of these types of operations are Geology, Hydrology, and 
Cartography, and the main applications they involve include terrain feature classification 
(Li et al. 2020), extraction of basins and hydrographic networks (Shin and Paik 2017) and 
relief shading (Li et al. 2022a). Finally, another group of operations in which DEMs are 
involved are those aimed at segmenting and extracting features from the DEM itself. 
These operations, without altering the model, fragment it and are involved in applications 
such as the semantic segmentation of point clouds and extraction of elements from 
images.

Since its beginning, Artificial Intelligence (AI) has played a valuable role in some of 
the sciences and disciplines mentioned above. With an increasing amount of ‘big data’ 
from earth observation and rapid advances in AI, increasing opportunities for novel 
methods have emerged to aid in earth monitoring. Most current approaches to developing 
AI are based primarily on Machine Learning (ML). The most widely used and successful 
form of ML to date is DL (Goodfellow et al. 2020). DL has a wide range of applications 
in different thematic areas including Natural Language Processing (NLP), pattern recogni
tion and image processing. Although still relatively recent due to their specificity, DL 
techniques are also starting to be considered in applications related to DEMs, emerging as 
alternative methods to those traditionally used in operations that are performed on DEMs 
for various purposes. Examples of this include interpolation methods in VF and SR opera
tions, expert knowledge-based methods in terrain feature classification, extraction of 
hydrographic basins and relief shading, and manual semantic segmentation methods in 
3D point cloud operations. In any case DEMs have their own characteristics inherent to 
the spatial nature of the information they contain, which introduces even greater com
plexity to the DL processes involved in all of the aforementioned operations. Therefore, 
DL operations on DEMs usually require a larger amount of resources for processing due 
to this richness of content.
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In general it could be said that, although the number of documents reviewed for the 
development of this work is high, the application of DL methods and techniques to 
DEM-related applications is still in its early stages. Nonetheless, conducting a thorough 
analysis of the existing literature is essential. In recent years, various analyses have been 
conducted on the progress in the field of geomorphometry and earth sciences (Min�ar 
et al. 2020; Sofia 2020; Xiong et al. 2022; Maxwell and Shobe 2022). However, none of 
these studies specifically focus on the application of DL. For this reason, and considering 
the impact that DL technology is having across all scientific domains, in this paper, we 
conduct a detailed analysis of the existing literature related to the application of DL to 
DEMs.

The rest of the paper is organised as follows: Section 2 presents the criteria followed 
for the selection of the reviewed documents and their organisation for analysis. In 
Section 3 the main operations involving DEM and DL methods are addressed. Section 4
conducts a discussion highlighting the insights and a critical analysis. The paper finishes 
with a series of concluding remarks drawn in Section 5.

2. Method

Before describing the methodology followed it is important to clarify some aspects that 
help to understand the structure and content of this document, as well as to understand 
the criteria followed for the selection of the documents reviewed. First, as previously men
tioned, the use of DL methods in both raster and vector DEMs related applications is 
relatively recent. However, their use in procedures involving other types of spatial data, 
such as remote sensing images, is widely extended and has a longer history. In this sense, 
it must be noted that any type of raster model can be managed using images. In the spe
cific case of raster DEMs, they can be managed using images that represent height as 
digital levels of pixels determined by a given bit-depth capacity (e.g. ArcGIS Pro uses 32- 
bit depth in grids (Ure~na-C�amara and Mozas-Calvache 2023). This is why although 
DEMs do not directly take part in some of the processes and operations analysed here, it 
is important to make reference to the DL techniques initially applied to remote sensing 
images since there are significant analogies between them and raster DEMs. A second 
issue that needs to be clarified is that a review of the different DL methods used in the 
operations addressed will not be conducted, as it goes beyond of the scope of this study. 
After addressing these two aspects, we must note that the methodology followed for 
developing our review is based on the guidelines proposed by Kitchenham and Charters 
(2007). This technical report provides comprehensive guidelines for systematic literature 
reviews appropriate for software engineering researchers. Derived from other existing 
guidelines used by researchers from different areas of study, they have been adapted to 
our topic providing information about the effects of certain phenomena across a wide 
range of settings and empirical methods. After identifying the need for a review and 
developing a review protocol, the key stage of the procedure is the study selection criteria. 
According to these authors, ‘study selection criteria are intended to identify those primary 
studies that provide direct evidence about the research question’.

Based on this, the following criteria have been taken into account for selecting the 
documents analysed in this study:

� All types of available materials will be considered. However, as previously mentioned, 
the relative novelty of DL techniques in their application to DEMs influences the types 
of materials available and their temporal distribution.
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� A set of keywords has been established for conducting the search and selection, such as 
‘Deep Learning’, ‘Digital Elevation Models’, ‘Void Filling’, ‘Super-resolution’, ‘Landform 
Classification’ ‘Shaded Relief’, ‘Hydrography Extraction’, ‘Semantic Segmentation’, ‘Element 
Extraction’.

� These keywords were used to perform searches on the most relevant search engines: 
Scopus1, ScienceDirect2, and Web of Science3

� All papers that were not written in English were discarded.
� In order to ensure scientific rigour in the content, efforts have been made to include a 

majority of papers that are indexed in the JCR (Journal Citation Reports) and commu
nications of internationally renowned conferences.

Taking into account these premises, the selected documents have been organised as 
follows:

� Studies on DL methods for direct operations on DEMs. These are operations that 
modify the model, aiming to improve its quality in terms of completion and 
resolution:
� Studies related to VF in DEMs.
� Studies related to SR of DEMs.

� Studies on DL methods for the classification and extraction of elements from the 
model:
� Studies related to landform classification, including studies related to crater detec

tion and classification.
� Studies related to hydrography extraction.
� Studies related to relief shading.

� Studies on DL methods for generating new products:
� Studies related to the semantic segmentation of 3D point clouds.
� Studies related to image-based element extraction.

With all of this, the total number of papers selected has been 98, covering the time
frame from 2014 to 2023. Figure 1 depicts the distribution of papers published annually. 
Additionally, it also shows the number of papers published within each category. Table 1
displays the references of the selected papers, classified into the following categories: 
VF, SR, hydrography extraction, shaded relief, semantic segmentation, and element 
extraction.

Based on the selected articles focusing on the application of DL to DEMs, different 
types of analyses were conducted to explore:

1. co-occurring keywords in these papers,
2. the countries of the institutions where the authors belong to,
3. the journals with the most publications on this topic, and
4. the interrelationships between the journals that publish papers related to this subject.

Regarding (i), Figure 2 depicts a network with the keywords that appear in the selected 
papers. The coloured classification of keywords groups related terms together in this fig
ure, making it easy to identify the most common trends in DL applied to DEMs. For 
example, ‘semantic segmentation’ is a major area of research in DL applied to DEMs and 
is linked to other keywords like ‘performance’.
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Concerning (ii), Figure 3 depicts a word cloud representing the countries with pub
lications on DL applied to DEMs. The size of each country’s name is proportional to 
the number of papers published. Notably, China, the United States, Canada, Japan, 

Figure 1. Distribution by year of the selected papers.

Table 1. Selected papers organised by categories.

Void Filling (11) (Dong et al. 2018, 2019, 2020; Gavriil et al. 2019; Iizuka et al. 2017; Li 
et al. 2022a; Qiu et al. 2019; Yuan et al. 2020; Zhang et al. 2020; Zhou 
et al. 2022; Zhu et al. 2020)

Super-resolution (14) (Chen et al. 2016; Demiray et al. 2021; Dong et al. 2016; Han et al. 2023; 
He et al. 2022; Ledig et al. 2017; Lin et al. 2022; Ma et al. 2023; 
Vaswani et al. 2017; Zhang et al. 2021; Zhang and Yu 2022; Zhang 
et al. 2022; Zhou et al. 2021; Zhu et al. 2020)

Landform Classification (27) (Ali-Dib et al. 2020; Cheng et al. 2017; Chen et al. 2020; Cohen and Ding 
2014; Cohen et al. 2016; Di et al. 2014; Emami et al. 2015; Ganerød 
et al. 2023; Hashimoto and Mori 2019; Heung et al. 2016; Hu and Yuan 
2016; Huang et al. 2017; Jia et al. 2021; Li et al. 2017; Li and Hsu 2020; 
Li et al. 2020; Lin et al. 2017, 2022; Marmanis et al. 2015; Palafox et al. 
2017; Ren et al. 2015; Silburt et al. 2019; Torres et al. 2020; Vaz et al. 
2015; Wang et al. 2018a, 2020b; Wu et al. 2021)

Hydrography Extraction (16) (Chen et al. 2018; Cheng et al. 2020; Duan and Hu 2019; Feng et al. 2018; 
Gebrehiwot et al. 2019; Lin et al. 2021; Miao et al. 2018; Shaker et al. 
2019; Stanislawski et al. 2018, 2019, 2021; Wang et al. 2020a; Xu et al. 
2018; Yamazaki et al. 2017, 2019; Wu et al. 2023)

Shaded Relief (2) (Jenny et al. 2021; Li et al. 2022b)
Semantic Segmentation (21) (Adam et al. 2023; Bachhofner et al. 2020; Grilli et al. 2019; Jhaldiyal and 

Chaudhary 2023; Kemker et al. 2018; L�opez et al. 2020; Ma et al. 2019; 
Macher et al. 2017; Mi and Chen 2020; Mullissa et al. 2019; Pierdicca 
et al. 2020; Qi et al. 2017a,b; Song and Xiao 2014, 2016; Tamke et al. 
2016; Thomson and Boehm 2015; Wang et al. 2018a; Yan et al. 2020; 
Yang et al. 2023; Yao et al. 2016)

Element Extraction (7) (Braga et al. 2020; Chen et al. 2016; Hui et al. 2019; Li et al. 2019; Liu 
et al. 2018; Miyoshi et al. 2020; Sun et al. 2023)
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and the United Kingdom stand out as the countries with the most publications on 
this topic.

As for (iii), Figure 4 presents a pie chart illustrating the distribution of articles on DL 
applied to DEMs among the top 15 journals with the highest number of publications on 
this subject. The journal ‘Remote Sensing’ stands out, accounting for more than a quarter 
of the publications, followed by ‘ISPRS Journal of Photogrammetry and Remote Sensing’ 
and ‘IEEE Geoscience and Remote Sensing Letters.’ These three journals collectively rep
resent almost half of all papers published on this topic.

Finally, regarding (iv), Figure 5 represents the network of scientific journals in which 
articles related to DEM and DL have been published. For the sake of clarity, the network 
considers the source of each work and the links are the citations between papers. Indeed, 
the thicker a link is the more citations between papers there are. In this case, the majority 
of the citations come from the journals ‘Remote Sensing’, ‘ISPRS Journal of 

Figure 2. Keywords related to ‘DL’ and ‘DEMs’.

Figure 3. Word cloud with the countries of the institutions participating in the authorship of the selected papers.
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Photogrammetry and Remote Sensing’, ‘Remote Sensing of Environment’, and the 
‘Proceedings of the IEEE conference on Computer Vision and Pattern Recognition’.

3. Deep learning operations over DEM

Below we have carried out an analysis of the diverse DL methods that take part in the 
different operations that are typically performed over altimetric spatial information 

Figure 4. Distribution of the top 15 journals that publish papers on DL-based DEM research.

Figure 5. Network of scientific journals in which articles related to DEM and DL have been published.
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(mainly DEMs). As it has been previously stated, these methods are presented as a solid 
alternative to traditional ones due to the fact that they address some issues of the latter.

3.1. DEM reconstruction

3.1.1. Void filling in DEM
The main factor responsible for the presence of data voids in DEMs is the influence 
exerted by rough terrain surfaces on signals emitted by remote sensors (Hall et al. 2005; 
Dong et al. 2020). For instance, in mountainous areas the large differences in elevation 
and slope interfere with the signals, resulting in a high number of voids in crest and val
ley areas (Hall et al. 2005; Boulton and Stokes 2018; Dong et al. 2020). These data voids 
lead to a significant loss of topographic information and, consequently, reduce the quality 
of the DEMs derived in terms of completeness.

There are various methods for addressing issues related to data voids in DEMs. These 
methods include manual model reconstruction (Dong et al. 2020; Li et al. 2020), integra
tion, fusion or conflation with auxiliary DEMs from other data sources (Ling et al. 2007; 
Karkee et al. 2008; Milan et al. 2011), interpolation methods (Reuter et al. 2007; Gavriil 
et al. 2019; Dong et al. 2018, 2020). However, the time and labour costs associated with 
manual reconstruction, inconsistent quality in overlapping areas when integrating DEMs 
from different sources and difficulties in interpolating in areas with complex topography 
in the case of the last method mentioned have led DL techniques to dominate in solving 
data void-related problems in DEMs due to their powerful learning capabilities (LeCun 
et al. 2015; Dong et al. 2020; Li and Hsu 2020). Thus, DL methods are capable of learning 
not only local features but also global information and contextual characteristics (Li et al. 
2020; Li and Hsu 2020; Yuan et al. 2020), which aid in the extraction of latent topo
graphic information and subsequent reconstruction of DEMs from consistent topographic 
features (Dong et al. 2020; Zhu et al. 2020). An example of such methods is the develop
ment and application of Convolutional Generative Adversarial Networks (sCGANs) 
(Mirza and Osindero 2014; Iizuka et al. 2017; Goodfellow et al. 2020), which are a specific 
type of Convolutional Neural Network (CNN) and are employed in the vast majority of 
the studies reviewed (Gavriil et al. 2019; Qiu et al. 2019; Dong et al. 2018, 2020; Li and 
Hsu 2020; Zhang et al. 2020; Zhou et al. 2022; Li et al. 2022a).

As mentioned above, data voids in a given DEM often occur in areas with complex 
terrain features that interfere with signals from remote sensors (Dong et al. 2019; Farr 
et al. 2007). Therefore, most of the papers reviewed attempt to integrate topographic 
information into DL algorithms for void filling, aiding in the reconstruction of DEMs 
with additional terrain information (Qiu et al. 2019; Zhu et al. 2020). Generally, this topo
graphic information includes elements such as valley lines (Ling et al. 2007), hill shading 
(Dong et al. 2019) and textures (Qiu et al. 2019).

With the common feature of using CNNs and their variants to predict complete DEMs 
from incomplete ones, the main differences among the various methods proposed in the 
existing literature are established based on the type of constraints and information pro
vided to the DL algorithm during the training process. In the previously-mentioned case 
of Dong et al. (2019), automatically extracted projected shadow maps and known sun 
directions are used to calculate shadow-based supervision signals, in addition to direct 
supervision from the DEM. On the other hand, in the case of Qiu et al. (2019), the algo
rithm is trained with patches of 1 arc-second Shuttle Radar Topography Mission (SRTM) 
data from mountainous regions worldwide. Elevation data, terrain slope, and relief degree 
are part of the training samples. In both cases, the networks successfully predict restored 
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DEMs from incomplete ones through the inference of information from neighbouring 
areas of data voids. Furthermore, building upon CGANs, (Zhu et al. 2020) design a novel 
DL architecture combining encoder-decoder structure with adversarial learning in order 
to capture representations of sampled spatial data and their interactions with local struc
tural patterns.

Although in most of the previously-cited studies terrain-related characteristics have 
been taken into account in one way or another, there are aspects that have not been 
addressed in detail, such as what type of terrain information can optimise the improve
ment of the quality of the reconstructed DEM or how to efficiently integrate this informa
tion into advanced models to generate DEMs that are consistent with the surrounding 
terrain of the original data voids. In order to address these issues Zhou et al. (2022) and 
Li et al. (2022a) propose new methods which, although also based on the use of CGAN, 
represent an evolution of previous approaches. Li et al. (2022a) propose a method based 
on restricted topographic knowledge CGAN, called TKCGAN, to improve the quality of 
reconstructed DEMs and recover key terrain features. The knowledge of topographic char
acteristics is summarised and practically transferred in order to restrict the training proc
esses of the DL models. On the other hand, Zhou et al. (2022) propose a multi-scale 
feature fusion CGAN that performs an initial VF followed by a multi-attention inpainting 
network that recovers detailed terrain features surrounding the void area. Similar to the 
previous authors, Zhou et al. (2022) propose a channel-spatial cropping mechanism as an 
enhancement of the network.

3.1.2. DEM super-resolution
The cost, time, and computing capabilities required to produce a DEM increase exponen
tially with its resolution, making it difficult to meet the practical production needs of 
DEMs (Chen et al. 2016; Zhu et al. 2020). Therefore, it is necessary to implement meth
ods that help complement high-resolution DEM data. One of the existing methods for 
complementing DEM data is the SR method. Initially developed for implementation on 
digital images (Tsai and Huang 1984), the application of SR methods to a given DEM 
aims to improve its resolution without increasing the cost associated with the acquisition 
or capture processes (Han et al. 2023).

Traditionally, these resolution enhancement methods have been performed using inter
polation techniques (Li and Heap 2011; Han et al. 2023; Ma et al. 2023; Xu et al. 2015). 
Interpolation-based methods rely on the degree of concordance between the interpolation 
kernel and the global distribution of the DEM in the surrounding region, achieving good 
results only when this degree of concordance is high (Li and Heap 2011; Zhang et al. 
2022). However, due to the complex nature of real-world terrains it is difficult for inter
polation-based methods to provide interpolation values that adapt to local distributions of 
the DEM, resulting in limitations in the results obtained.

To address this issue, DL-based methods utilise a large number of parameters that help 
capture local trends (high-level features) of terrain distribution during the training pro
cess, and therefore have higher potential in DEM SR tasks (LeCun et al. 2015; Chen et al. 
2016; Zhou et al. 2021; Zhang and Yu 2022). In terms of performance achieved in this 
task by DL methods, (Zhang and Yu 2022) investigate the efficiency and suitability of 
DL-based SR methods for DEMs compared to interpolation methods. Specifically, they 
compare bicubic interpolation with three SR methods based on CGANs: SRGAN (Ledig 
et al. 2017), ESRGAN (Wang et al. 2018b), and CEDGAN (Zhu et al. 2020); comparing 
indices related to terrain characteristics, including elevations and terrain derivatives.
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However, excessive focus on local (high-level) features may lead to ignoring the global 
information contained in the terrain (low-level features), paying little attention to spatial 
correlation (a very common source of global information in the terrain) in the DEM 
(Chen et al. 2016; Zhu et al. 2020), limiting the performance of DL-based SR methods. 
This is demonstrated by Han et al. (2023), who compare spatial autocorrelation values 
obtained from distribution patterns among elevation points with global information 
obtained from feature extraction modules (CNN module (Kattenborn et al. 2021), ResNet 
module (Targ et al. 2016), Pixel Shuffle module (Shi et al. 2016), and deformable convolu
tion module (Dai et al. 2017)). These authors conclude that due to the limitation of con
volution kernel size the probability of capturing and aggregating low-level features (global 
information) into high-level information is very low (Vaswani et al. 2017; Han et al. 
2021), which explains the loss of global information in traditional networks such as 
CNNs. To address this, (Zhou et al. 2021) proposed an improved method of deep residual 
CNN with double filtering (EDEM-SR) that captures more DEM features by introducing 
residual structures to deepen the network; (Zhang et al. 2021) also employ a deep CNN 
with a ResNet structure that improves the performance of the SR process, and finally 
(Zhang et al. 2022) take into account the morphological characteristics of the DEM and 
introduce a deformable convolution module, which represents a significant advancement 
over the limitation imposed by the morphology of the convolution kernel and improves 
the ability to capture irregular features of DEMs. Ma et al. (2023) proposed a novel fea
tured-enhanced DL network (FEN) considering both global and local feature SR.

Finally, in recent years some novel DL methods for SR of DEM have emerged. For 
example, (Demiray et al. 2021) created a DEM with 16 times higher spatial resolution by 
improving MobileNetV3; (Lin et al. 2022) introduced the internally learned zero-shot SR 
(ZSSR) method to solve the SR task of DEMs; (Zhang et al. 2021) proposed the recursive 
sub-pixel convolutional neural networks (RSPCN), which showed significant improve
ments in both accuracy and robustness; and (He et al. 2022) introduced a Fourier trans
form as an encoder and achieved good performance, enriching the existing SR encoder. 
Finally, (Han et al. 2023) proposed a DL network with global information constraints that 
can optimise the SR process to generate global terrain features (low-level) and achieve 
advanced results. Specifically, compared to traditional bicubic interpolation and some 
existing CNN-based methods (TfaSR0 (Zhang et al. 2022), SRResNet (Ledig et al. 2017) y 
SRCNN (Dong et al. 2016), the Mean Squared Error obtained by these authors improved 
by 20% to 200%, whereas the Mean Absolute Error improved by 20% to 300%.

3.2. Fundamental analysis about DEM

3.2.1. Landform classification
The classification of landforms is one of the most important procedures in 
Geomorphology for understanding processes on the Earth’s surface (Wang et al. 2010; Li 
et al. 2020), playing a significant role in analysing the evolution of landforms (Dr�aguţ and 
Blaschke 2006; Hiller and Smith 2008; Wang et al. 2010). Apart from the use of classical 
techniques such as the visual interpretation of topographic maps and aerial photographs, 
landform classification has traditionally been carried out using two types of automated 
techniques: pixel-based and object-based (Xiong et al. 2014). Specifically, the Object-Based 
Image Analysis (OBIA) (Na et al. 2021) method for landform has traditionally been used 
to identify and classify forms and features of the terrain using satellite images (Benz et al. 
2004; Blaschke 2010), aerial images (Hay et al. 2005), or LiDAR data (Li et al. 2015). All 
these authors introduce the OBIA-based approach for terrain shape classification and 
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address related topics such as image segmentation, feature extraction, and the use of clas
sification algorithms. However, in transition zones (where geographical features change 
gradually from one type to another and their characteristics change continuously), it is 
difficult for these methods to define appropriate criteria for distinguishing different land
forms (Dr�aguţ and Blaschke 2006). Therefore, it is necessary to develop methods that pos
sess high learning capacity and are effective in classification tasks (Verhagen and Dr�aguţ 
2012).

In this regard, DL algorithms have become powerful tools for identifying terrain fea
tures, i.e. recognising landforms, due to their powerful capability of recognition and infor
mation extraction (Li and Hsu 2020). These processes of shape recognition are used for 
classifying landforms into different types (Heung et al. 2016). Currently, most applications 
of DL methods in landform classification research employ models based on CNNs and 
focus on the analysis of macro-landforms at a wide range of scales (Ehsani and Quiel 
2008; Li et al. 2017; Palafox et al. 2017; Wu et al. 2023).

As in other types of applications, such as those already addressed in Remote Sensing 
(RS), DL techniques for terrain recognition and classification were initially applied to 
images (Deng et al. 2009), with deep CNNs being the most commonly used DL models 
(Krizhevsky et al. 2017). Since the initial models, the evolution of these types of networks 
has occurred through the addition of layers (Zeiler and Fergus 2014; Simonyan and 
Zisserman 2014) and the improvement of connectivity between them (Huang et al. 2017), 
which has improved the average accuracy in tasks related to element classification in 
images (Cheng et al. 2017; Chen et al. 2020). In this context, the work of Li et al. (2017) 
stands out. Namely, it combines a Region-based CNN (RCNN) architecture (Girshick 
2015) with a classic CNN architecture (Zeiler and Fergus 2014) to automatically detect 
terrain features from aerial and RS images. Similarly, the work of Li and Hsu (2020) 
extends the RCNN architecture with deep CNNs and adopts ensemble learning for the 
detection of nine different types of terrain features from RS images. Recently, Ganerød 
et al. (2023) propose an automatic approach that uses Fully connected CNN (FCNN) and 
U-Net to optimise the regional bedrock identification and mapping processes, obtaining 
promising results with an F1 score around 80% for DEM terrain derivatives compared to 
a manually-mapped ground truth.

However, image-based models face challenges in recognising certain cases where mul
tiple geographical features are mixed. This issue is partly addressed by combining images 
with data from DEMs. For example, (Li et al. 2020) employ a deep CNN with a U-Net 
structure to improve the classification accuracy of terrain forms by more than 87% with a 
combination of DEM and image data, compared to using only images. Furthermore, the 
method proposed by these authors achieves higher accuracy in classifying landforms with 
better-defined boundaries compared to other methods.

Among other classification applications involving DEMs, ML methods for elevation 
data analysis are prominent. For instance, in Marmanis et al. (2015), the authors tackle 
object classification on the ground in urban environments using a Multilayer Perceptron 
model. In (Hu and Yuan 2016), the authors proposed a DL method for extracting DEMs 
from airborne laser scanning point cloud data. Their approach maps the relative height 
difference of each point with respect to its neighbours in a square window to an image. 
Thus, the classification of a point is treated as image classification, resulting in low error 
rates in the detection of ground and non-ground points, even in mountainous areas. 
Finally, (Torres et al. 2020) present preliminary results of using a Simple -LeNet (LeCun 
et al. 2015)- for mountain peak detection from DEM data in their study.
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A field that should be addressed separately in the context of terrain feature detection 
and classification using ML techniques (Di et al. 2014; Vaz et al. 2015) is Planetary 
Astronomy. From the use of Genetic Algorithms for automatic crater detection (Cohen 
et al. 2011; Cohen and Ding 2014), the approach has evolved towards a model based on 
the application of CNNs on remotely sensed images. In the initial studies in this field 
(Emami et al. 2015; Cohen et al. 2016; Palafox et al. 2017), CNNs are applied as binary 
classifiers for crater classification in images such as those obtained from High Resolution 
Imaging Science Experiment (HiRISE) for Mars or Lunar Reconnaissance Orbital Camera 
(LROC) and High Resolution Stereo Camera (HRSC) for the Moon. These studies con
firm the high accuracy of CNNs in identification compared to other ML methods, such as 
Support Vector Machine (SVM). Additionally, (Wang et al. 2018a) developed a novel fully 
convolutional CNN for crater classification and positional regression at the cell level using 
HRSC images. (Hashimoto and Mori 2019) adopted the U-Net structure (Ronneberger 
et al. 2015) and CGANs for crater classification based on grids in LROC images.

Recently, some studies have combined the identification and classification capabilities 
of CNNs with the robustness of DEMs (Silburt et al. 2019). They propose a classical crater 
classifier algorithm based on DEMs using DL, which is supported by a U-Net structure. 
Ali-Dib et al. (2020) apply the Mask R-CNN model (He et al. 2017) to detect and classify 
craters. This model generates bounding boxes and segmentation masks for each instance 
of an object (crater) in the image. Jia et al. (2021) combined an improved CNN and 
transfer learning method for crater detection using multiple data sources. Recently, other 
studies (Wang et al. 2020b; Jia et al. 2021; Wu et al. 2021) have attempted to improve the 
method of Silburt et al. (2019) by designing a new CNN with a similar U-Net-like struc
ture. Most of these studies involve a two-phase processing approach: first, an image patch 
is input into a CNN model for edge segmentation, and then crater regions are extracted 
using a Pattern Matching Algorithm (PMA). However, the latter is computationally 
expensive as it needs to calculate the matching probability for each segmentation object 
by iteratively sliding a group of patterns with a discrete size distribution over an image 
patch. On the other hand, many other studies (Ren et al. 2015; Liu et al. 2016; Lin et al. 
2017; Tian et al. 2019) propose object detection and classification by directly predicting 
the position and size of a visual target. Lin et al. (2022) propose a solution that aims to 
bridge the gap between existing DEM-based crater classification algorithms and advanced 
CNN methods for object detection, and they propose an end-to-end DL model for lunar 
crater detection. Through their proposal they evaluate nine representative CNN models 
including the three most common architectures for detection. Their proposal improves 
performance in terms of accuracy (82.97%) and recall (79.39%). Furthermore, they 
develop a crater verification tool to manually validate the detection results, and the visual
isation results show that the detected craters are reasonable and can be used as a comple
ment to existing manually-labelled datasets.

3.2.2. Hydrography extraction
Currently, the widespread availability of accurate terrain information in the form of 
DEMs has improved hydrological modelling and methods for extracting basins and 
hydrographic networks (Clubb et al. 2014; Woodrow et al. 2016; Shin and Paik 2017), 
mainly water bodies. This last type of hydrological structure refers to water lying on the 
surface or flowing over the earth, including but not limited to streams, rivers, lakes, 
ponds, potholes, wetlands, etc. Hydrographic information extraction using high-resolution 
DEMs involves procedures that require expert knowledge and techniques such as parame
terising extraction thresholds, identifying headwater locations, etc. (Stanislawski et al. 
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2021). Performing these tasks using traditional methods is costly and involves human 
intervention, which inevitably leads to inaccuracies.

The application of DL techniques has become a powerful alternative to traditional 
methods as it provides more accurate and reliable results through consistently applied 
workflows in time and space (Xu et al. 2018). This consistency is supported by training 
processes that allow for identifying patterns of more complex features. Similar to other 
applications, DL techniques for hydrography extraction have typically been applied to 
images, with CNNs being the most commonly used models. For example, (Chen et al. 
2018) employed the adaptive clustering CNN model for extracting surface water bodies 
through superpixel segmentation, and Feng et al. (2018) exploited a combined application 
of U-Net and Conditional Random Fields (CRF) for extracting surface water bodies 
through superpixels obtained by the Simple Linear Iterative Cluster (SLIC) method. 
However, the aforementioned CNN models have certain drawbacks, including: (i) their 
performance is heavily dependent on the accuracy of the superpixel segmentation process, 
(ii) due to the inherent convolutional operations CNNs are directly applied to water body 
extraction, causing the boundaries to be blurred (Cheng et al. 2020), (iii) they fail to sim
ultaneously extract the spatial-spectral correlation feature, which is critical for water body 
extraction (Miao et al. 2018; Gebrehiwot et al. 2019), and (iv) they use multiscale features 
point-wise, which is not suitable for the segmentation of water bodies as they tend to 
ignore narrow rivers and small ponds (Duan and Hu 2019).

Therefore, in order to achieve good results in water body extraction 2D CNN models 
based on limited spectral information should consider other types of information such as 
multiscale semantic information provided by DEMs, among other sources. Recent studies 
have shown promising results in hydrographic information extraction using mainly 3D 
CNN models, whether they are water bodies (Chen et al. 2020), watersheds (Xu et al. 
2018; Lin et al. 2021; Wang et al. 2020b), or other associated features (Shaker et al. 2019; 
Stanislawski et al. 2018, 2019), from LiDAR point clouds and other RS data. For instance, 
Chen et al. (2020) propose a refined water body extraction CNN (WBE-CNN) that does 
not rely on superpixel-based segmentation accuracy. The proposed method is based on 
three modules: (i) a global spatial-spectral convolution module, that extracts spatial and 
spectral features simultaneously; (ii) a multiscale learning module; (iii) and a boundary 
refinement module. Using a 3D CNN, Xu et al. (2018) develop an effective data fusion 
model that utilises 3D features from LiDAR and multitemporal images for high-precision 
classification and extraction processes. Lin et al. (2021) develop a global hydrography 
database using the most recent DEMs and CNN-based methods to estimate the spatial 
variability of drainage density at a global level. Specifically, they use a high-resolution and 
high-accuracy DEM called MERIT (Multi-Error-Removed Improved Terrain) DEM 
(Yamazaki et al. 2017), along with raster information on flow direction and accumulation 
in MERIT Hydro (Yamazaki et al. 2019) as underlying data layers for global river network 
extraction. The CNN is trained with basin-scale climatic and worldwide physiographical 
data. Stanislawski et al. (2021) test the capability of a U-net CNN model to extract water 
bodies and drainage basins in Alaska using elevation data such as curvature or topo
graphic position index, which have been shown to reflect geomorphic conditions 
(Passalacqua et al. 2010; Newman et al. 2018), derived from IfSAR. After testing different 
parameters to estimate the suitability of each layer in identifying water bodies and streams 
(Stanislawski et al. 2018, 2019; Xu et al. 2021), the layers considered suitable are used as 
input data for U-net CNN models. The U-net structure is optimised by testing sample 
size, window size, and sample augmentation. The probability values predicted by the 
U-net model are then used as weights to inform the flow accumulation models for 
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extracting a complete vector drainage network. Recently, Wu et al. (2023) presented the 
development of various DL models, utilising CNNs to classify images containing flow bar
rier locations. Their results demonstrate accuracy over 90%. Additionally, Sun et al. 
(2023) introduced a check dam detection framework using DL and geospatial analysis for 
broad areas from high-resolution remote sensing images. As a result, they improved check 
dam identification accuracy from 78.6% to 87.6% by eliminating false detection boxes.

3.2.3. Shaded relief
The technique of relief shading is based on the use of light and shadow distribution to 
represent the terrain, providing a strong sense of three-dimensionality (Jenny 2001). 
Currently, this technique can be applied using various software packages such as ArcGIS4, 
QGIS5, or GlobalMapper6, and the shading it provides is referred to as analytical shading 
(Li et al. 2022a). Despite the computational efficiency, analytical relief shading has signifi
cant limitations, especially when compared to manually created shading, as the grayscale 
levels provided by the software are strictly calculated based on the amount of light each 
pixel receives within the corresponding DEM. This results in a lack of expressiveness that 
leads to issues with the perception of relief. However, manual production of high-quality 
relief shading requires expert drawing skills and a significant amount of time, making it 
impractical nowadays.

As an alternative to analytical and manual techniques, DL methods provide a viable 
alternative to relief shading procedures. These methods can be used to learn the local 
lighting adjustments from manual relief shading, combining the advantages of analytical 
and manual shading. Building on CGAN (Mirza and Osindero 2014), relief shading using 
DEMs can be interpreted as the conversion from an input image to an output image, and 
as demonstrated throughout this paper CGAN is well-suited to solving this type of prob
lem (Creswell et al. 2018).

Examples of this can be found in various studies. Li et al. (2022a) introduced the idea 
of transferring DL to terrain shading, which would improve the expressiveness and artistic 
sense of it. Jenny et al. (2021) applied a U-Net-based conditional CGAN to generate ter
rain shading, achieving positive results (Jenny et al. 2021). The U-Net structure 
(Ronneberger et al. 2015) was improved and trained using information from manual ter
rain shading techniques. By following the design principles of manual terrain shading, the 
expressiveness of the shaded relief was significantly improved. However, these authors 
also pointed out some negative effects of the process, such as: (i) blurred flat areas and 
sharp ridges generated in the shaded relief, and (ii) the CGAN does not perform well 
when the cell size of the DEM differs significantly from the one used for training the 
network.

These issues are partly addressed by Li et al. (2022a). These authors propose a new 
method for generating shaded relief. Based on CGANs and manual shading of DEMs, the 
method preprocesses the information and generates a series of cuttings in the DEM with 
their corresponding manual shading. This information is then used to train the CGAN. 
The trained network is finally used to convert the DEM of any area into shaded relief. 
The results of the tests indicate that the proposed method retains the advantages of man
ual terrain shading and can quickly generate shaded relief with a similar quality and artis
tic style as manual shading. Furthermore, the shaded relief generated by the proposed 
method not only clearly represents the terrain, but also achieves good generalisation 
effects. Moreover, by using a CGAN the network demonstrates a greater generation cap
acity at different scales.
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3.3. Other applications of DEM

3.3.1. Semantic segmentation of point clouds
A points cloud is essentially a discrete data set that contains no semantic information. In 
contrast to classification processes, which aim to categorise an entire set or cloud of 
points, semantic segmentation seeks to classify each point into a specific part within the 
cloud based on a semantic understanding (Zhang et al. 2019). Traditionally, point cloud 
segmentation has been carried out manually by experts in diverse fields such as 3D archi
tectural modelling (Llamas et al. 2017), object detection in robotics (Maturana and 
Scherer 2015), autonomous navigation (Zhou and Tuzel 2018; Shi et al. 2019), and urban 
analysis (Zhang et al. 2018; Li et al. 2019; Che et al. 2019). However, this manual 
approach has two major drawbacks (Pierdicca et al. 2020): (i) it is time-consuming, and 
(ii) it wastes a significant amount of data, as a 3D scan (either from terrestrial laser scan
ning or close-range photogrammetry) contains much more information than strictly 
necessary to describe an object. Despite these limitations, most studies (Murtiyoso and 
Grussenmeyer 2019a,2019b; Grilli et al. 2019; Spina et al. 2011) show that traditional seg
mentation methods still rely on manual operations to capture objects from point clouds.

Over the past decade, in order to address the aforementioned limitations new 
approaches to semantic segmentation of point clouds have been developed within the 
framework of DL, such as Point-Net/Pointnetþþ (Qi et al. 2017a, 2017b), which have 
achieved much more efficient models (with less information waste) for handling 3D data 
(Wang et al. 2018a). Although the existing literature for 3D object segmentation is lim
ited, especially compared to 2D segmentation (mainly due to the high computational and 
memory costs required by CNNs for handling large point clouds (Song and Xiao 2014, 
2016; Ma et al. 2019)), this new DL framework facilitates both object recognition and seg
mentation tasks with an appropriate level of detail, as well as the process of geometry 
reconstruction in the BIM environment or object-oriented software (Adam et al. 2023; 
Jhaldiyal and Chaudhary 2023; Macher et al. 2017; Tamke et al. 2016; Tang et al. 2010; 
Thomson and Boehm 2015).

A clear example of the above can be found in the recent paper by Pierdicca et al. 
(2020). These authors used data corresponding to 3D point clouds to carry out tasks of 
segmentation on places of interest for cultural heritage. However, although these tasks 
proved to be very useful for the 3D documentation of monuments of historical interest, 
they were not efficient due to their excessively complex geometry and the high level of 
detail required for their proper representation. In this regard, Grilli et al. (2019) studied 
the potential offered by DL-based approaches for the supervised classification of 3D heri
tage and concluded that although promising results were obtained, there is a lot of uncer
tainty regarding the inefficiency caused by the irregular nature of the data. Other 
approaches for the semantic segmentation of point clouds based on DL have demon
strated the viability of transfer learning using synthetic data (Kemker et al. 2018) or 
manually-labelled secondary data; as well as the effectiveness of reducing the dimensional
ity of 3D point clouds in order to reduce computational load without compromising 
accuracy (L�opez et al. 2020). Yan et al. (2020) focused on data preprocessing and the 
development of an auxiliary network to simplify and improve the segmentation of 3D 
point clouds corresponding to mining areas.

Regarding the most frequently used DL architectures for the development of 3D point 
cloud segmentation tasks, these were: (i) the CNN for regular grids, and (ii) the point- 
based CNN for 3D point clouds (Mullissa et al. 2019). Most of the segmentations of regu
lar grids employ architectures based on FCNNs, such as SegNets, ResNets, UNets, and 
DeepLabV3þ. For example, Yang et al. (2023) employed a semantic segmentation model 
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from computer vision to classify elementary landform types in DEMs. For this purpose, 
they developed a semantic segmentation model that combines a ResNet to extract features 
and achieves pixel-level segmentation of the DEM through a FCNN.

On the other hand, segmentation operations on point clouds are performed directly on 
3D points, rather than on projected surfaces or voxels. Bachhofner et al. (2020) used 
Gated Shape CNNs (sGSCNNs) based on the U-Net structure and constructed with sparse 
convolution blocks to segment 3D points generated from satellite images. The segmenta
tion of archaeological sites and cultural heritage developed by Pierdicca et al. (2020) was 
performed with a Dynamic Graph CNN (DGCNN) constructed with multiple blocks of 
edge convolutional layers. Finally, as mentioned before, Yan et al. (2020) developed an 
auxiliary network called the Rotation Density Network that efficiently extracts structural 
features based on the density of the point cloud, and used it along with point-based net
works such as PointNet or PointCNN to improve the segmentation of the point cloud in 
the mining area.

The problem of insufficient training samples for the data was addressed through data 
augmentation techniques such as flipping, rotation, Gaussian transformation, Gaussian 
blur, random scaling, random translation, and transfer learning (Mi and Chen 2020; 
Bachhofner et al. 2020). Some authors used CRF as a post-processing technique to refine 
the segmentation results (Yao et al. 2016; Miyoshi et al. 2020).

3.3.2. Extraction of elements (buildings) from satellite images
Another common example of the use of DL methods for DEM is the extraction of specific 
types of elements from satellite images. In this case, the majority of the studies and works 
analysed focus on very specific applications, including tree detection for forest manage
ment (Miyoshi et al. 2020; Braga et al. 2020), building detection (Hui et al. 2019), and 
urban area detection for urban planning tasks.

Based on the data source, the majority of the studies reviewed use satellite images as 
the primary data source, while images obtained from Unmanned Aerial Vehicles (sUAVs) 
and Synthetic Aperture Radar (SAR) are used to a lesser extent. In any case, the data 
sources are very diverse in terms of spectral, spatial, and temporal resolution. 
Additionally, most of the papers reviewed use a variation of CNNs for element extraction. 
Specifically, Mask R-CNN for tree detection and extraction, and U-Net CNN for building 
extraction. In this regard, it should be noted that each modified version of the CNN con
sists of several layers: (i) the convolutional layer, (ii) the pooling layer, and (iii) the fully 
connected layer. In the case of Mask R-CNN (Braga et al. 2020) the first layers extract the 
feature map, which is then used in subsequent layers for object detection. The U-Net 
architecture is employed by Chen et al. (2016) using an encoder-decoder block, where the 
encoder block has three convolutional layers and a max pooling layer, while the decoder 
block has a normalisation and activation convolutional layer followed by another set of 
layers.

In Hui et al. (2019), the U-Net structure is modified with the Xception module in 
order to extract effective features from RS images. In addition, multitasking is imple
mented to incorporate building structure information. The convolutional block of the 
U-Net encoder is replaced by the Xception module. The U-Net structure consists of a 
preceding convolutional layer followed by five successive Xception modules on the 
encoder side, while the convolutional block of the decoder is similar to that of the original 
U-Net.

Liu et al. (2018) used a region proposal network based on CNN (called BRPN) to gen
erate candidate building areas, instead of the sliding windows used in the Faster R-CNN 
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model. Unlike the latter network, BRPN constructs the network by combining multi-level 
spatial hierarchies of the image. However, few studies explore other possibilities for fea
ture extraction beyond the scope of CNNs. Chen et al. (2016) implemented an Attention 
Balanced Feature Pyramid (ABFP) network to generate feature maps using the concepts 
of balanced feature pyramid and attention mechanism. Since the ABFP network can better 
aggregate low-level and high-level features, while the attention mechanism passes useful 
information to the next level and ignores useless information, the integration of these two 
techniques improves the overall accuracy of object recognition in SAR images. Similarly, a 
fully convolutional CNN was proposed for pixel-wise image segmentation with a symmet
ric encoder-decoder module in order to extract multi-scale features and residual connec
tions, and effectively train the network (Li et al. 2019).

4. Discussion

This section includes an overview of the conducted research and a critical analysis.

4.1. Overview

In this study, a series of papers that utilise DL methods in the field of altimetric spatial 
information, specifically DEMs, have been reviewed. These methods are applied in opera
tions such as VF, SR, landform classification, hydrography extraction, relief shading, 
semantic point cloud segmentation, and building extraction.

In the past decade, AI and DL methods have had a transformative impact on various 
fields of geospatial information science, such as segmentation, image fusion, and object 
detection, among others. These DL methods have already demonstrated their great poten
tial in Geomatics. However, there are areas where further advancement is needed. This is 
the case for their application to altimetric spatial information, particularly DEMs. Thus, 
for some of the aforementioned operations it is necessary to continue improving the 
applied DL methods, as they have not yet achieved the performance levels attained by 
traditional methods. Additionally, their application requires a high level of expertise, mak
ing access difficult for end-users.

In general, this is due to the characteristics of the model used, which are CNNs with 
their various structures and architectures. CNNs are very popular due to their ability to 
extract features from large datasets without the need for manual intervention (supervi
sion) nor intensive learning, and their efficiency in utilising multiple data sources to solve 
a problem. However, it is difficult to evaluate these characteristics as visualisation in DL 
rarely goes beyond the second layer, where only very basic features can be represented. In 
this sense, there are few attempts that have been made to visualise automatically extracted 
features in different applications. All of this negatively affects some of the operations that 
are directly performed on DEMs. For example, in the case of VF there are aspects that 
have not been treated rigorously, such as what type of terrain information can optimise 
the quality improvement of the reconstructed DEM, or how to efficiently integrate that 
information into advanced models to generate DEMs with similarity consistent with the 
surrounding terrain of the original void. Regarding DEM SR, limitations related to the 
morphology of the convolutional kernel still pose a significant constraint, especially in 
terms of size, as it affects the probability of capturing and aggregating low-level features 
(global information). Finally, the high computational and implementation cost are com
mon drawbacks in most of these operations. However, the performance achieved in other 
operations, primarily associated with the main applications of DL in DEMs, is 
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considerably higher. These applications include landform classification and extraction of 
basins and hydrographic networks, among others. Even so, there are neither functional 
quality metrics for the results nor criteria for comparability between solutions.

This good performance necessitates continued work in search of a DL model that gen
erates confidence for the rest of the applications. A model that helps us to understand 
how the input data is processed and explains the prediction, as well as access the entire 
process instead of just the result. In many sectors, there is already intensive work being 
done on ‘clear box’ DL models, but no studies have been found in the field of altimetric 
spatial information regarding this matter.

4.2. Critical analysis

The critical analysis of the application of DL to DEMs entails evaluating both the advan
tages and limitations of this approach. On the one hand, the main advantages are:

� Improved classification accuracy. DL has demonstrated its ability to enhance the accur
acy of terrain shape classification in DEMs. By utilising DL algorithms, more complex 
and detailed terrain features can be identified and classified, enabling a higher preci
sion in environmental characterisation.

� Automation and efficiency. The application of DL to DEMs can automate the classifica
tion process, saving time and effort compared to manual or traditional methods. By 
training DL models with large volumes of data, efficient and rapid classification of ter
rain shapes can be achieved across a broad geographic range.

� Capability to handle heterogeneous data. DL can effectively handle DEM data from 
various sources such as satellite imagery, aerial images, and LiDAR data. This allows 
for more effective integration of multiple data sources to obtain a comprehensive and 
accurate representation of the terrain.

On the other hand, we have identify the following limitations:

� Data and resource requirements. The application of DL to DEMs requires large 
amounts of labelled training data and adequate computing power. Acquiring and label
ling high-quality datasets can be costly and time-consuming. Additionally, training 
and executing DL models may require specialised hardware and considerable process
ing time.

� Interpretability. One of the challenges of DL is its lack of interpretability. While DL 
models can achieve high levels of accuracy, understanding and explaining how they 
make decisions is often difficult. This can be problematic when a clear justification or 
explanation of results is required.

� Dependence on representative training data. The performance of DL models in terrain 
shape classification is strongly influenced by the quality and representativeness of the 
training data. If the training data is not representative of the variability in landscapes 
or is biassed towards certain types of terrain, the models may struggle to generalise 
and obtain accurate results in new locations.

In conclusion, the application of DL to DEMs has the potential to improve accuracy 
and efficiency in terrain shape classification. However, it also presents challenges related 
to data requirements, computational resources, interpretability, and representativeness of 

18 J. J. RUIZ-LENDÍNEZ ET AL.



training data. Addressing these limitations is crucial to fully leverage the potential of DL 
in the characterisation and analysis of DEMs.’

5. Conclusions

In this review, the methods and application areas of DL approaches using altimetric spa
tial information datasets have been analysed. Obviously, DL methods represent both an 
opportunity and a significant challenge in the field of geospatial information in general, 
and DEMs in particular. Despite their promising results, there is a need to continue 
exploring new approaches of DL. The source of information, the method, and the poten
tial applications are the three aspects used to outline the implications of DL in different 
operations related to altimetric information. Therefore, research in these three areas 
should provide us with significant advancements. Firstly, the possibility of using multi- 
model datasets should be explored, considering semi-supervised or unsupervised 
approaches to reduce dependence on dataset manipulation. Additionally, sufficient atten
tion should be given to the transparency of models by developing white-box models. 
Finally, new applications where DL can reach its full potential should be sought. It should 
be noted that the true potential of DL in Geomatics has not yet been fully exploited, and 
it has a great deal of possibilities to dominate research for decades to come.

Notes

1. https://www.scopus.com/.
2. https://www.sciencedirect.com.
3. https://www.webofscience.com.
4. https://www.arcgis.com.
5. https://www.qgis.org.
6. https://www.bluemarblegeo.com/global-mapper/.
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