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Abstract: The Betic Cordillera was formed by the collision between the Alboran Domain and the
South Iberian paleomargin in the frame of the NW–SE convergent Eurasia–Nubia plate boundary.
The central region is undergoing a heterogeneous extension that has not been adequately analysed.
This comprehensive study addressed it by collecting structural geologic, seismologic, and geodetic
data. The region west of the Sierra Nevada is deformed by the extensional system of the Granada
Basin, which facilitates E–W to NE–SW extension. Moreover, the southern boundary of Sierra Nevada
is affected by a remarkable N–S extension related to E–W normal to normal–dextral faults affecting
the shallow crust. However, geologic and geodetic data suggest that the western and southwestern
Granada Basin boundary constitutes a compressional front. These data lead to the proposal of an
active extensional collapse from the uplifted Sierra Nevada region to the W–SW–S, over an extensional
detachment. The collapse is determined by the uplift of the central Betics and the subsidence in
the Alboran Basin due to an active subduction with rollback. Our results indicate that the central
Betic Cordillera is a good example of ongoing extensional collapse in the general context of plate
convergence, where crustal thickening and thinning simultaneously occur.

Keywords: active tectonics; extensional collapse; stress tensors; GNSS; central Betic Cordillera;
Granada Basin

1. Introduction

Mountain ranges, such as the Betic Cordillera in the westernmost Mediterranean, are
characterized by lateral variations in crustal and lithospheric thickness due to convergence
and related mountain-building processes. Consequently, much of the extensional tectonics
occurring in regions with thickened crust aim to balance the excess or deficiency of gravita-
tional potential energy [1] and are commonly referred to as gravitational collapses [2] or
extensional collapses [3]. Such collapses can be synorogenic or postorogenic, depending
on whether extension occurs concurrently with ongoing thickening or after mountain
building, respectively [4]. Two distinct modes of flow are observed during extensional
collapse: “fixed-boundary collapse” and “free-boundary collapse” [1]. In the former, exten-
sional deformation affects the thickened regions simultaneously with the deformation of
the surrounding thinner regions. The Tibetan Plateau serves as a prominent example of
fixed-boundary collapse, where extensional detachment and ductile thinning of the lower
crust occur alongside thrusting at the thinner boundaries [5–9]. On the other hand, free-
boundary collapse is primarily associated with a change in plate motion, transitioning from
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a convergent plate boundary to a divergent plate one, as occurred in the Basin and Range
Province tectonics setting (western United States and northwestern Mexico) [3,10,11].

The alpine Betic Cordillera constitutes the northern branch of the Gibraltar Arc,
which formed in the frame of the N–S to NW–SE convergence along the E–W Eurasia–
Nubia plate boundary in the westernmost Mediterranean Sea. The development of the
arc since the Miocene is the result of the westward migration of the Alboran Domain
driven by subduction with rollback [12,13]. This phenomenon produced an E–W exten-
sion of the Alboran Domain in the Betic Cordillera while the collision with the South
Iberian Domain was taking place [14–18]. Extension facilitated the exhumation of the
Nevado-Filábride complex [19] below the Mecina extensional detachment with top-to-W
displacement [20–22]. From the Tortonian onwards, the NNW–SSE convergence generated
large E–W folds accentuating the domal structures and individualising the intramontane
basins in the synclines and in the grabens [23–27], including the Granada Basin.

Nowadays, the south–central region of the Betic Cordillera (Figure 1) is one of
the most seismically active regions in the entire Iberian Peninsula [12]. Despite the
NNW–SSE convergence [28,29] both seismicity and GNSS data indicate a heterogeneous
E–W to NE–SW extension affecting the shallow crust [16] west of the Sierra Nevada
Dome [29–32]. To the west of the Sierra Nevada, the Granada Basin extensional system
(Figures 1 and 2) accommodated the E–W to NE–SW extension by high-angle normal
faults over active extensional detachments [17,18]. However, the propagation of active
deformation towards the southwest and south of the Granada Basin and Sierra Nevada
areas has not been adequately analysed in detail.
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Figure 1. Geological and tectonic setting of the Betic and Rif Cordillera forming the Gibraltar Arc.
(a) Sketch of the western Mediterranean Alpine Mountain belts. Dark brown: onshore Alpine Belt.
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Light brown: offshore Alpine Belt. Blue: Cenozoic oceanic crust. BC: Betic Cordillera. RC: Rif
Cordillera. (b) Simplified geologic map of the Gibraltar Arc. Seismicity since 1980 and M > 2.5
taken from IGN [33] and GNSS data [31,34] are shown. Red arrows show the Eurasia–Nubia
convergence [28], and blue arrows represent the extension of the central Betic Cordillera [29].
GBB: Guadix–Baza Basin. AlC: Alpujarras Corridor. CdD: Campo de Dalías. TASZ: Trans-Alboran
Shear Zone. EBSZ: Eastern Betic Shear Zone. ESGB: Extensional system of the Granada Basin. ZF: Za-
farraya Fault. PF: Padul Fault. BlF: Balanegra Fault. BzFZ: Baza Fault Zone. ATFZ: Almería Tabernas
Fault Zone.
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Figure 2. Geological map of the central Betic Cordillera including the Granada Basin, modified
from [17,35–39]. ESGB: Extensional system of the Granada Basin; AD: Alboran Domain; SID: South
Iberian Domain; NQB: Neogene–Quaternary Basin. The main active faults and their hanging wall
block motion (top-right legend) are taken from the Quaternary Active Fault Database of Iberia
(QAFI) [40] and are indicated by circled numbers corresponding to Table 1. NF: Normal fault.
SS: Strike-slip fault. The minimum horizontal stress axes of the latest paleostresses obtained from
striated microfaults are shown (bottom left legend) [41–46]. Green axes indicate normal faulting (NF),
which is defined by a σ1 dipping more than 45◦. Blue axes indicate strike-slip faulting (SS), which is
defined by a σ2 dipping more than 45◦. Red axes indicate reverse faulting (RF), which is defined by a
σ3 dipping more than 45◦. The greater the intensity of the colour of the axis, the closer to 90◦ of σ1 in
NF, σ2 in SS, and σ3 in RF. The minimum horizontal stress axes correspond to a σ3 in normal (NF)
and strike-slip faulting (SS) and to a σ2 in reverse faulting (RF). In the case of normal faulting and
prolate stress ellipsoid, both σ2 and σ3 are considered as σhmin. In the cases of reverse faulting and
oblate ellipsoid, no axis is considered as σhmin.
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Table 1. Orientation and kinematics of the main active faults.

N Fault Name Strike
(N◦E) Dip (◦) Dip

Direction Rake (◦) Quaternary Activity Evidence

1 Balanegra 150 60 SW −135

(1) Rectilinear scarps with staircase morphology
that influence the drainage network and control
the coastline of Campo de Dalías. (2) Holocene
asymmetric clastic wedges and cut sediments.

(3) Seismites in Quaternary sediments.

2 Adra 121 80 SW −135 Surface expression, offset Quaternary horizons,
seismicity (1910 Adra earthquake).

3 Laujar de Andarax 95 60 S −90
The fault produces a sharp mountain front and

small topographic scarps that continue for
hundreds of meters.

4 Lanjarón 88 75 S −102 The general line of the fault with the scarp
visible in some places.

5 Albuñuelas 278 50 N −90 The line of the fault, and at some points,
the surface of the scarp.

6 Zafarraya 282 60 N −102
Straight mountain front, wind gap, conspicuous
fault scarp, paleoearthquake features, association

with 1884 Arenas del Rey event.
7 Játar 314 60 NE −90 The general scarp.

8 Padul–Nigüelas 130 55 SW −90

Very well-expressed triangular facets, fault
scarps, and recent peat layers tilted towards the

fault. Horizontal slip calculated by local
GNSS network.

9 Dílar 140 60 SW −90 Splendid scarp and other associated features.

10 Malahá 112 60 SW −110
Linear break in the landscape with associated

mountain front. Traceable fault surface. Related
archaeological evidence.

11 Santa Fe 326 60 NE −90 A linear change of relief

12 Granada 150 60 SW −90
The scarp is only well-conserved at some points.

Vertical slip calculated by high-precision
levelling lines.

13 Huenes 212 65 NW −35 The scarp with many indicators of sense
of displacement

14 El Fargue 138 60 SW −90 The scarp and the line of the fault.

15 Sierra Elvira 142 55 SW −90 Well expressed scarp, minor structures related,
geomorphic features.

16 Obeilar–Pinos Puente 80 75 S −100 A general and linear change of relief.
17 Tocón–Obeilar 79 45 S −90 It has scarce geomorphic evidence.

Data collected mainly from Quaternary Active Database of Iberia (QAFI) [40,47].

This contribution aimed to analyse in detail the heterogeneous extensional tectonics of
the Granada Basin and its propagation towards the surrounding areas of the central Betic
Cordillera. To this aim, a comprehensive compilation of existing and new geological, seis-
mological, and geodetic data was conducted. A new tectonic model is proposed to enhance
understanding of the ongoing tectonic evolution in this complex region of the western
Mediterranean. This model can serve as a valuable reference for future investigations in
similar tectonic settings worldwide.

2. Geological Setting

The Betic Cordillera (Figure 1) is one of the mountain ranges surrounding the west-
ernmost Mediterranean (Figure 1a) and, together with the Rif Cordillera, forms the Gibral-
tar Arc (Figure 1b). It is divided into two main domains separated by the Flysch Unit
(Figure 1) [48]. To the north, the South-Iberian Domain is formed by the External Thrust
and Fold Belt affected by thin-skinned tectonics, being composed of sediments from the
extended continental margin [49–51]. The Prebetic Zone, currently outcropping better
in the east, corresponds to the continental platform [18], while the Subbetic Zone, now
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outcropping better towards the west, was the hyperextended margin [49]. To the south and
southeast, the Alboran Domain is mainly formed by three metamorphic complexes distin-
guished by their stratigraphy, metamorphism, and structural position [52]. From top to bot-
tom, these complexes are the Maláguide Complex; the Alpujárride Complex, including the
Ronda Peridotites [53]; and the Nevado–Filábride Complex [18]. The Neogene–Quaternary
sediments are located above these domains (Figure 1b). The Western Alboran Basin [54]
and the Guadalquivir Foreland Basin [55] are the main basins. Finally, some intramontane
basins developed, such as the Granada and Guadix–Baza basins (Figure 1) [56].

Deformation in the Betic Cordillera began during the Paleocene–Eocene epoch [57],
involving shortening and significant dextral displacement between the Alboran and South
Iberian domains [23]. After that, during the early Miocene, the Betic Cordillera expe-
rienced the main shortening and back-arc extension [58,59]. The Alboran Domain was
subjected to intense extension, leading to crustal thinning, the exhumation of metamorphic
complexes, and the formation of low-angle normal faults. These low-angle faults sepa-
rated the main metamorphic complexes: the Maláguide-Alpujárride brittle extensional
contact during the Burdigalian–Langhian [60], and after that, westward-directed Mecina
extensional detachment caused the exhumation of the metamorphic Nevado–Filábride
Complex [22,25,26,61]. Following this event, stretching continued in an E–W to ENE–WSW
direction with a top-to-west sense of shear, resulting in the formation of a-type dome
metamorphic core complexes and leading to the initiation of intramontane basins [62,63].
Dextral strike-slip faults developed south of the Sierra Nevada dome, resulting in the
Alpujarras Corridor [64], and to the north along the contact between the Alboran and South
Iberian domains [65,66]. Meanwhile, thrusting affected the South Iberian domain [14],
forming a fold-and-thrust belt due to the thrusting of the Alboran Domain over the
Iberian margin [50,67]. In the central Betics, the main shortening happened between
the Aquitanian and Burdigalian, evidenced by thin-skinned style deformation [68,69]. The
Guadalquivir Basin started developing in the Langhian [70]. Later, the Betic Cordillera
mountain front was affected by N–S extension [23] related to gravitational dismantling
by WNW–ESE normal faults until the Serravallian [71]. Simultaneously, to the north of
the Granada Basin, N–S normal faults accommodated arc-parallel extension [72] related
to the westward displacement in the Alboran Domain [71,73]. To the west of the Granada
Basin, westward-verging thrust activity connected with the Mecina detachment was
reported [17].

The Eurasia–Nubia NW–SE convergence and orthogonal extension have affected the
Betic Cordillera since the Tortonian. In the Alboran Domain, the development of NE–SW
and E–W folds amplified the domal geometry of the Sierra Nevada [24,35]. Meanwhile,
NE–SW orthogonal extension continued producing NW–SE normal faults, conjugated E–W
oriented dextral and normal faults, and NE–SW sinistral to normal faults, individualizing
the Neogene–Quaternary basins [23,35]. In the South Iberian Domain, the NW-directed
shortening continued [73] with the progression of the deformation and north-westward
migration of the Guadalquivir Basin [72]. Meanwhile, NW–SE to N–S faults accommodated
the arc-parallel extension [74].

Many models have been proposed to understand the recent evolution of the Betic
Cordillera. They can be summarized into two main groups. (i) Delamination mod-
els [14,15,75–77] suggest an orogenic root that becomes detached through lithospheric
delamination [15,76] or mantle convection [14] during the Eurasia–Nubia convergence
in Late Oligocene or Early Miocene. This lithospheric removal caused a radial crustal
extension that ended in the Late Miocene due to the dominance of the Eurasia–Nubia
convergence [75]. (ii) Subduction models of lithosphere below the Alboran Domain present
many variations considering rollback and/or slab detachment [78–82]. The subduction
begins due to a northward dipping slab attached to the African margin, which later was
fragmented. The Alboran Domain moved westward associated with the rollback of one slab
fragment [78,79,82,83]. The westward tearing detached the northward dipping slab from
Africa, while in the Iberian margin, it is still partly attached. In the western Betic Cordillera,
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the slab is dipping eastward to south-eastward [84–86], while in the central and eastern
Betic Cordillera, it is detached due to slab tearing [81]. In this view, the Alboran Basin
was formed due to the back-arc extension [87]. Some hypotheses suggest that subduction
with rollback continues to be active today in the western Betic Cordillera [34,80,88,89]. In
addition, Duggen et al. [90,91] proposed that the delamination of the continental Alboran
lithosphere was driven by the subduction of the oceanic lithosphere. This model is consis-
tent with a slab rollback of an east-dipping slab beneath the Alboran Sea [92], resulting in
the delamination of the Alboran lithosphere during the Late Miocene and its replacement
by an asthenospheric plume.

The current evolution of the Betic Cordillera is driven by a 3–5.6 mm/year westward
migration [34,93] and clockwise rotation [30] of the northern branch of the Gibraltar Arc
with respect to Eurasia and a simultaneous NW–SE convergence of 4–6 mm/year along
the Eurasia–Nubia plate boundary, oblique to its E–W regional trend [28], affecting the
region heterogeneously (Figure 1b). In the western Betic Cordillera, the westward migra-
tion of the arc is accommodated by active folding [94] and faulting [95], as observed in
regional geodetic studies [30,34,93]. In the eastern Betic Cordillera, the convergence is
transferred through the Trans-Alboran Shear Zone [96,97], a transpressive tectonic cor-
ridor that continues onshore as the Eastern Betic Shear Zone (Figure 1b) [98]. This is a
consequence of the movement towards the NW of a tectonic indenter located in the Gulf
of Vera (Figure 1) [99,100]. In the central Alboran Sea, the NW–SE compression is due to
the north-westward movement of another tectonic indenter (Figure 1b) [36], generating
strike-slip faulting and affecting the coastal areas to the south of Sierra Nevada [101]. On
the contrary, the Alboran Domain in the central Betic Cordillera is affected by a NE–SW
to ENE–WSW extension of nearly 2 mm/year (Figure 1b) [29]. Finally, the South Iberian
Domain in the central Betics presents a 1 mm/year westward displacement with respect to
the stable Iberia [31], but no extension has been registered [30].

The ENE–WSW extension in the central Betic Cordillera (Figures 1 and 2) is mainly
accommodated by NW–SE extensional fault zones, primarily affecting the Alboran Do-
main [35]. The main ones include the Baza Fault zone in the northeast [102], the Almería–
Tabernas Fault zone in the east [103], the Balanegra Fault in the south [101], and the
extensional system of the Granada Basin in the west (Figure 1b) [104]. The extensional
system of the Granada Basin (Figures 1 and 2) accommodates the extension of the central
Betic Cordillera [30,105] and affects the upper crust of the Alboran Domain as well as
the South Iberian Domain, rooting into a detachment zone at a depth of approximately
10–15 km [104]. The active detachment has been considered the western continuation in the
depth of the Mecina detachment [20,106]. The western boundary of the Granada Basin is
subject to both compressional and strike-slip faulting (Figure 2) [37,107–109]. The Campo
de Dalías and the adjacent Alboran Sea are affected by NW–SE normal dextral faults, such
as the Balanegra Fault, and ENE–WSW folds (Figure 2) [38,101,110–112]. The connection
zone between the seismogenic areas of the Granada Basin and the Campo de Dalías is
hardly affected by seismicity (Figure 1b). There, the synformal area called the Alpujarras
Corridor has been interpreted as a dextral fault zone with related normal and reverse
faulting (Figure 2) [31,64,113].

3. Methodology

This study compiled knowledge of the tectonic structures from the Granada Basin
to the Campo the Dalías to frame this sector within the current evolution of the Betic
Cordillera (Figure 2). The former was addressed through the integration of existing and
new geological, seismological, and geodetical data.

The geological data included the geometry of structures, kinematic data, and pale-
ostress determinations from the latest faults. The main active fault data were taken from the
Quaternary Active Fault Database of Iberia (Figure 2 and Table 1) which considers the fault
described as active in indexed publications [40,47]. To determine the latest paleostresses, we
summarized all data on brittle structures with evidence of recent activity. Orientation data
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from striated microfaults (Figures 2 and 3 and Tables 2 and S1) provided information about
the stress ellipsoid that was active in the region [114]. These data were taken from López-
Chicano [41], Galindo-Zaldívar et al. [42,43], Ruano [44,45], and Reicherter and Peters [46]
and were calculated using the methods of Etchecopar et al. [115] and Galindo-Zaldívar and
González-Lodeiro [116].
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Table 2. Type of faulting for each study sector.

Normal Fault Strike-Slip Fault Reverse Fault All

N % N % N % N

All 97 55 52 30 26 15 175
Eastern Granada Basin 26 67 8 20 5 13 39

Northern Granada Basin 13 54 10 42 1 4 24
W and SW Granada Basin 48 51 29 31 17 18 94

South of Sierra Nevada 10 56 5 28 3 16 18

Data collected from [41–46].

The seismological data consisted of recent seismicity, earthquake focal mechanisms,
and stress tensors obtained from earthquake focal mechanism solutions (Figure 4). Seismic-
ity was obtained from the seismic catalogue of the Spanish Instituto Geográfico Nacional
(IGN), which provides information about the zones with the most active brittle deforma-
tion [33]. Focal mechanisms report on active structures at depth and are used to determine
present-day stresses [117,118]. The M > 4.5 earthquake focal mechanism solutions are
depicted in Figure 4. The reduced stress tensors (Table 3) calculated for the eastern Granada
Basin [104,119] using the Win-Tensor™ code developed by Delvaux and Sperner [120] and
Delvaux and Barth [121] were also considered. Moreover, the reduced stress tensors of
the intermediate seismicity [88] were calculated using FSA software [122,123]. We also
considered the results of the right dihedra diagrams [117] from the 1988 Agrón series
in the central Granada Basin [43], the westernmost Granada Basin [44], the Campo de
Dalías–Northern Alboran Sea [38], and intermediate seismicity [88].
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Figure 4. Seismological data of the central Betic Cordillera. The seismicity since 1980 was taken
from Spanish IGN. Reduced stress tensors [88,104,119], right dihedra diagrams [38,43,44,88], and
earthquake focal mechanism with M > 4.5 are shown [124–128]. R indicates the axial ratio defined by
R = (σ2 − σ3)/(σ1 − σ3).
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Table 3. Reduced stress tensors of the central Betic Cordillera.

S1 S2 S3 R Reference

Eastern Granada Basin 78/240 01/336 12/067 0.31 [104]
2021 Santa Fe seismic series 74/277 12/141 11/049 0.28 [119]

External Arc 37/147 27/035 41/278 0.58
[88]Internal arc 33/316 02/047 57/139 0.61

R indicates the axial ratio.

GNSS networks are highlighted as the best geodetic technique [129] to study regional
active surface deformations on a millimetre scale [130,131]. The geodetic data included
GNSS data taken from both continuous and survey mode networks (Figure 5). The con-
tinuous sites of the central Betic Cordillera (NEVA, LOJA, PALM, and MALA) are part of
the Iberian and North Morocco regional network deployed by the Topo Iberia project [31].
The survey-mode GNSS data are part of the Padul Fault network [132], Campo de Dalías
network [101], and central Betic Cordillera Extensional network [133]. Since the Padul net-
work is highly localized, the mean value for the sites located within the hanging wall block
of the Padul Fault was considered [132]. In this study, the Sierra Nevada was considered a
relatively stable block of the central Betic Cordillera due to its limited seismic activity and
minimal affection by major faults. Consequently, to assess recent surface deformation above
the Nevado–Filábride Complex, the velocity vectors with respect to the NEVA geodetic site
were computed.
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Figure 5. GNSS velocity field with respect to the fixed NEVA. The numbers show the velocity rate
in mm/year. Blue arrows belong to the Iberia–North Morocco continuous GNSS network [31]. The
orange arrow is the mean value of the sites located in the hanging wall block of the Padul Fault [132].
Red arrows belong to the Campo de Dalías survey-mode network [101]. Green arrows belong to
the central Betic Cordillera extensional survey-mode network [133]. Each GNSS site maintains its
original name as a reference.
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4. The Recent and Active Deformation and Stresses of the Granada Basin and
Surrounding Regions
4.1. Structural Data
4.1.1. Main Active Faults

The main active faults of the central Betic Cordillera (Figure 2 and Table 1) are situated
in the eastern Granada Basin. They strike N130◦–150◦ E and present normal kinematics,
showing an N40◦–60◦ E extension. Most of these faults dip to the southwest, but antithetic
faults are also present. Notable faults are the Granada Fault, with vertical slips of up to
1 mm/year [104]; the Padul Fault, with a horizontal extension of 0.5 mm/year [132]; and the
Sierra Elvira faults, which hosted the 2021 Granada seismic series [119]. In addition, there
are ENE–WSW active faults located on the northern edge of the Granada Basin, such as the
Tocón–Obeilar and the Obeilar–Pinos Puente Faults. Moreover, the Huenes Fault stands
out in the southeastern edge with a NE–SW direction and a main sinistral component,
compatible with the NE–SW to ENE–WSW extension. Moving westward, the Zafarraya
Fault is the primary active fault located in the southwestern Granada Basin. It strikes
E–W and dips to the north with normal to normal–dextral kinematics. It is considered to
be the source of the 1884 Andalusian earthquake [134], as its activity is associated with
an active folding [35,37]. To the south of the Sierra Nevada, the Lanjarón and Laujar de
Andarax Faults are located in the Alpujarras Corridor, striking E–W and dipping to the
south [135,136]. The N–S direction of extension is due to the activity of the ENE–WSW-
striking Tocon–Obeilar Fault north of the Granada Basin and the E–W Laujar de Andarax
Fault south of Sierra Nevada. The NNW–SSE direction of extension occurs in E–W faults
with normal–dextral kinematics, such as the Zafarraya, Albuñuelas, and Lanjarón Faults.
Finally, other active NW–SE trending faults are located to the west of Campo de Dalías,
showing a NE–SW extension. Both the Balanegra and Adra Faults present a main dextral
component in addition to a normal behaviour (Table 1).

4.1.2. Latest Paleostresses

The analysis of the latest paleostress field allows for an understanding of the
stress state in a certain region and, therefore, the behaviour of recent deformations
(Figures 2 and 3 and Tables 2 and S1). Most of the stress data in the central Betic Cordillera
are dominated by a subvertical σ1, leading to the most common normal faulting. We chose
to represent the main trends of extension σhmin for each station (Figure 3).

Extension varies in the different sectors of the study area (Figure 3). The eastern
Granada Basin is dominated by normal faulting, and all the types of striated microfaults
indicate a NE–SW to ENE–WSW extension. The northern part of the basin is affected by
normal faults inducing both NE–SW and NW–SE extension, while the strike-slip faults
indicate a NE–SW extension. The W and SW of the Granada Basin is also dominated by
normal faulting, although strike-slip and reverse faulting are also present. Both normal and
strike-slip faulting indicate radial extension with a lack of NW–SE extension. The reverse
faulting is concentrated around Zafarraya (Figure 2). It indicates a main E–W compression
and perpendicular extension. Finally, the sector located between the Sierra Nevada and the
coast is dominated by normal faulting and some strike-slip faulting occurring in Sierra de
Gádor. The horizontal minimum stresses indicate a NNE–SSW and ENE–WSW extension.

4.2. Seismological Data
4.2.1. Seismicity

The Betic Cordillera (Figure 1) is a major seismic zone in the Iberian Peninsula. The
central Betic Cordillera (Figure 4) experiences shallow seismicity primarily located in the
Granada Basin and the Campo de Dalías areas. The Granada Basin is characterized by
recurrent low and low-to-moderate seismicity, with the occurrence of seismic series such as
the 1988 Agrón series and the 2021 Santa Fe series [43,119,124]. Seismic activity is mainly
concentrated in the eastern and southern edges. To the west of the Granada Basin, northwest
of the Sierra Gorda, shallow seismicity is also recurrent, and seismic series usually occur
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here, such as the 1985 Loja series [137] and the 1998 Iznájar series [108]. In the southwestern
Granada Basin, some moderate historical earthquakes have happened, notably the 1884
Andalusian earthquake [134,138]. The Campo de Dalías and the adjacent Alboran Sea
is another sector where shallow low and low-to-moderate seismicity is recurrent. This
area is also affected by seismic series, such as the 1993–1994 Berja–Balanegra [125,137] and
the 2000–2001 Albuñol series [139]. The main moderate historical earthquake close to the
Campo de Dalías was the 1910 Adra earthquake (Figure 4) [126,140].

Intermediate seismicity is located southwest of the Granada Basin [141], mainly south
of Málaga (Figure 3). It is mainly located at a depth between 30 km and 70 km, and the
seismic zone strikes NE–SW on land and N–S on the coast and in the sea [142]. Deep
earthquakes also occur, located in the SW of Sierra Nevada at a depth of over 600 km [143].

4.2.2. Earthquake Focal Mechanism Data and Current Stress Tensors

Earthquake focal mechanisms are highly varied (Figure 4). For small earthquakes,
moment tensors with normal, reverse, and strike-slip kinematics can be
found [43,113,144–146]. This variety has been associated with a complex crustal struc-
ture and local permutation of stresses [43]. The Granada Basin is characterized by NW–SE
normal faulting earthquakes, as evidenced by the 1984 earthquake and the 2021 seis-
mic series (Figure 4) [43,124,127]. This sector is also characterized by focal mechanism
solutions with NW–SE to N–S low-angle nodal planes [104]. The Campo de Dalías
and the adjacent Alboran Sea, on the contrary, are characterized by strike-slip faulting
(Figure 4) [110,125,126].

The reduced stress tensor (Figure 4) of shallow seismicity reveals a vertical σ1 and a NE–
SW horizontal σ3 in the eastern Granada Basin. In the central sector of the Granada Basin,
the right dihedra diagrams of the 1988 Agrón series indicate two deformation phases [43].
One is related to a vertical P-axis and radial extension, while the other is related to a NW–SE
horizontal P-axis and a NE–SW horizontal T-axis. In the western Granada Basin, the right
dihedra diagrams show a P-axis that is almost vertical [44]. The diagram obtained from
Vidal [144] displays a high dipping NW–SE P-axis and a predominantly NE–SW horizontal
T-axis. The other diagram [146] shows an almost vertical P-axis, but it slightly dips to the
ENE and mainly shows radial extension. In the Campo de Dalías and northern Alboran
Sea, the P-axis is oriented horizontally NW–SE, while the T-axis is horizontal in the NE–SW
direction [38].

The intermediate seismicity is mainly related to strike-slip and reverse faulting [142].
Ruiz Constán et al. [88] calculated two reduced stress tensors and right dihedra diagrams
for earthquakes of the external arc of the slab and for earthquakes of the internal arc. The
first group is related to a NW-inclined σ1 and P-axis and SE-inclined σ3 and T-axes. In the
internal arc, both the reduced stress tensor and right dihedra diagram indicate the opposite.

4.3. GNSS Data

All the collected GNSS data show a W–SW-striking motion of the Betic Cordillera
with respect to stable Eurasia plate (Figure 1) [31,34,93,147]. However, this motion is not
uniform, as evidenced by the recently published local network data in the central Betic
Cordillera [101,132,133,148].

The velocity vectors with respect to the stable Sierra Nevada (NEVA geodetic site)
provide a clearer visualization of this motion (Figure 5). The 6200 and 6300 sites, located in
the northern part of the Granada Basin, recorded S–SE-strike rates of 1.6 and 0.5 mm/year,
respectively. The PAD and 6100 sites, located in the southern part of the Granada Basin,
indicated motion to the SW at rates of 0.8 and 1.3 mm/year, respectively. The LOJA and
6000 stations, situated to the west of the Granada Basin, exhibited a WSW motion at rates of
0.7 and 0.6 mm/year, respectively. The MALA and PALM sites recorded SSW motion, with
rates of 0.7 and 1.4 mm/year, respectively. Finally, the motion in Campo de Dalías is more
complex. The 960 and 940 sites located in the Alpujárride Complex recorded southward
motion at rates of 1.8 mm/year and 1.2 mm/year, respectively. The 990 and 970 sites
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recorded northward motion; the 990 site to the NW showed a rate of 0.6 mm/year, and the
970 site to the NE showed a rate of 1.6 mm/year.

5. Discussion
5.1. Main Active Structures of the Central Betic Cordillera

The deformations and stresses in the study area are heterogeneous, although an
extension striking NE–SW predominates, as indicated by structural, seismological, and
geodetic data. In the eastern Granada Basin (Figure 2), the main structures are well-known
NW–SE normal faults, such as the Granada Fault, the Padul Fault, and the Sierra Elvira
faults [47,104,135]. NE–SW active faults, such as the Huenes Fault and the NE–SW faults of
the Sierra Elvira, are also common [46]. These faults are mostly active strike-slip faults that
are sinistral if they dip to NW and dextral if they dip to the SE [27]. These main structures
accommodate the NE–SW extension of the sector, in agreement with the latest paleostresses
(Figures 2 and 3) and current stresses (Figure 4). These data are consistent with W and
SW motion obtained from the GNSS sites LOJA, 6100, PAD, and PALM (Figure 5). The
NE–SW faults also present an important normal behaviour that could accommodate the
NW–SE extension, and their activity is also in agreement with local radial extension in the
area [42,43,119], as it happens in the present-day stresses of the 1988 Agrón seismic series
(Figure 4). In fact, the activity of the ENE–WSW normal faults, such as the Tocón-Obeilár
and Obeilár–Pinos Puente Faults [27,135], can explain the local southward displacement of
site 6200, located in the hanging wall block of these faults.

GNSS data of the northern border of the Granada Basin indicate that this sector is
currently moving to the W–SW with respect to stable Eurasia plate (Figure 1) [133], the
most affected sector by strike-slip faulting (Figure 4). Similar observations have been made
in the northern part of Sierra Gorda, where the 1998 Iznájar series indicated the activity of
dextral strike-slip faults [108,109]. At the same time, the S–SE displacements with respect
to stable NEVA, shown by the 6200 and 6300 sites (Figure 5), together with stress ellipsoid
from striated pebbles [149], point locally to a recent NW–SE compression. Additionally,
the ENE–WSW normal faults limiting the Granada Basin to the north were active until
recent times [37] but may be locally inactive at present. This area could be suffering the
permutation of horizontal NW–SE shortening related to Eurasia–Nubia convergence and
the activity of normal dextral faults. The successive change of extension and compression
in the same trend is common in the region, as evidenced by the analysis of stresses in the
1988 Agrón series [35].

The W and SW boundaries of the Granada Basin seem to be under compression and
shortening, as evidenced by both recent faulting and GNSS data (Figures 2, 3 and 5). To
the west, the N–S thrusts of the Sierra Gorda were active at least until the Tortonian,
and the latest paleostress data suggest E–W compression perpendicular to main thrusts
(Figures 2 and 3) [17]. At present, the shortening between the 6100 GNSS site with respect
to the LOJA and 6000 sites suggests that contraction continues (Figure 5). To the southwest,
deformation between the 6100 and MALA sites likewise indicate shortening in NE–SW
direction (Figure 5), which could be related to an active development of the Sierra Tejeda
antiform, further indicated by very incised drainage systems [37]. The reverse paleostresses
align with the fold axis and suggest recent E–W and NE–SW compression. Both active
and recent normal faulting is very common in the area (Figures 2–4) [145]. The Zafarraya
Fault is the main active fault, presenting an E–W orientation associated with local N–S
extension [134]. Despite this, it has been linked to compressional structures [35,37]. Active
shortening may suggest that normal faulting is related to local structures resulting from the
collapse of previously uplifted areas.

In the south of Sierra Nevada area, the latest paleostress analyses indicate simul-
taneous NNW–SSE and ENE–WSW extensions, with both normal and strike-slip fault-
ing (Figures 2 and 3). The NNW–SSE extension aligns with the southward velocity rates
recorded at GNNS sites 940 and 960, located in the northern sector of Campo de Dalías with
respect to the Sierra Nevada (Figure 5). E–W folds forming the Sierra de Lújar and Sierra
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de Gádor are the main structures in the area. However, E–W normal to normal–dextral
faults are frequently observed in the Alpujarras Corridor [135,136,150,151], which must
be active and explain the southward displacements. However, in the Campo de Dalías
and the northern Alboran Sea, a new shortening front is occurring, where ENE–WSW
active folding accommodates northward velocity rates measured at GNNS sites 990 and
970 (Figure 5) [101], in agreement with the NW–SE horizontal P-axis of earthquake focal
mechanism solutions (Figure 4) [38]. Meanwhile, on the coast and offshore, dextral to
normal faults, e.g., the Adra Fault, the Balanegra Fault, and the Loma del Viento Fault,
accommodate both NW–SE compression and NE–SW extension, also indicated by the
T-axis of the known earthquake focal mechanisms (Figure 4) [38,110,112,140].

Most of the main active structures of the central Betic Cordillera do not affect the
Nevado–Filábride complex [106], and the former complex is hardly affected by seismic-
ity [33]. Therefore, these active structures are likely rooted at the Nevado Filábride–
Alpujárride crustal detachment [24,104,106], named the Mecina detachment [20].
Ruano et al. [37] suggested that compressional structures of the western Granada Basin are
also rooted in this detachment. The Mecina detachment was active during the Miocene [152],
producing the a-type dome of the Sierra Nevada [22,62], and is probably still active at
depth, as the Granada detachment is [104,106].

5.2. Extensional Collapse in the Central Betic Cordillera

Several models have been proposed to explain the extension in the central Betic
Cordillera. On the one hand, it is understood as arc-parallel extension resulting from
NW–SE convergence between Eurasia–Nubia [72,74,145], and uplift would derive from
the formation of large E–W folds [24,35,59]. If so, the extension would be homogeneous
NE–SW, orthogonal to the compression (Figure 5). In addition, a back-arc extension due
to rollback has been suggested [31,34]. Considering that the subduction is related to the
westward movement of the arc, the extension would be E–W. These two models alone do
not explain the heterogeneous character of the extension suggested by the data. On the
other hand, it has been proposed that it could be the result of the subducting slab-tearing
W of the Granada Basin [81,153,154]. In this case, slab tearing would be responsible for
the uplift of the Sierra Nevada with respect to a subsided area in the Alboran Sea, but not
directly for the extension.

Following this line, the data presented here support the displacement from high-
elevation zones surrounding the Sierra Nevada to more subsiding areas in the Western
Alboran Basin, with a trend ranging from WSW in the Granada Basin to SSW to the south
of the Sierra Nevada (Figure 6a). This trend and the structural data may indicate the
extensional collapse of the upper levels of the crust in a WSW to S direction over the Mecina
detachment in order to balance lateral contrasts in crustal thickness [136]. The uplift of the
Nevado–Filábride Complex due to the overthickened crust related to westward ongoing
slab tearing [81,88], denudation processes [155], and/or folding and thrusting [24,57,156]
may have activated the Miocene extensional detachments in the W and SW of Sierra
Nevada, which is also supported by geomorphological data [157]. Additionally, the active
subduction with rollback located in the western Betic Cordillera [34,80,88] has produced
subsidence and crustal thinning in the western and northern Alboran basins [54,158,159],
facilitating the west–southwest–southwards collapse. However, the influence of both
arc-parallel extension and back-arc extension due to rollback cannot be ruled out, as the
ENE–WSW extension is the predominant.

The role of inherited structures of the Miocene evolution is important in the active
gravitational collapse. In fact, the ENE–WSW to NE–SW extension is documented since the
middle Miocene in the Granada Basin (Figure 6b) [27], and it is driven over the extensional
detachment that exhumed the Nevado Filabride complex [20,104,106]. The activity of
dextral faults extends up to Late Miocene in the Alpujarras Corridor located in the south
of the Sierra Nevada [64]. The current activity of the western Alpujarras Corridor has
also been suggested [113,160] and related to a Subduction-Transform Edge Propagator



Appl. Sci. 2023, 13, 9138 14 of 24

fault [161]. However, the mainly southward displacement with respect to the Sierra Nevada
(NEVA) of the GNNS sites PALM, 960, and 940 (Figure 5) suggests that at present, the
Alpujarras Corridor is dominated by a N–S extension, in agreement with the activity of
E–W normal and normal–dextral faults, such as the Laujar de Andarax and Ugíjar Faults
(Figure 6c) [136,150,151].
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Figure 6. Simplified tectonic model of the central Betic Cordillera considering the Sierra Nevada
(GNNS NEVA site) stable, indicated by a pushpin. (a) Extensional collapse in the central Betic
Cordillera. Location of the (b,c) cross sections. (b) ENE–WSW profile from the Sierra Nevada,
crossing the Granada Basin to the coast line of the western Alboran Sea. Crustal heterogeneities
produce local shortening around the Sierra Tejeda. The upper crust model was modified from
Bessiere et al. [162]. The Moho was taken from Barranco et al. [163]. The upper limit of ultramafic
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rocks was taken from Barranco et al. [163] and Banda et al. [164]. (c) NNW–SSE profile from the South
Iberian Domain, crossing the Sierra Nevada to the eastern Alboran Sea coast. Interaction between
southward-directed extension over the Mecina detachment and indentation tectonics in the Alboran
Sea produce folding and strike-slip faulting in the Alboran Sea coast. Moho depth was taken from
Barranco et al. [163] and Galindo-Zaldívar et al. [156]. The geometry of the Mecina detachment was
taken from Jabaloy et al. [152] and Marín-Lechado et al. [24].

The latest paleostresses determined in the W and SW of the Granada Basin suggest
local E–W and NE–SW compression and align with the shortening observed by GNSS data.
Reverse faulting is parallel to the Miocene thrusting in Sierra Gorda and perpendicular
to the active shortening in the southern Sierra Gorda and the Sierra Tejeda [37]. This
compressional front does not represent a fixed boundary of the collapse and only dumps
locally the extensional collapse, as the GNNS MALA station continues to record an S–
SW motion relative to a stable NEVA one (Figure 6a). The crustal heterogeneities [165]
could be responsible for the development of this compressional front. Meanwhile, active
indentation tectonics have affected the Alboran Sea [36,166,167], reaching the Iberian
coast [101]. The compressions due to the active indentor form a fixed boundary and stop
the southward directed collapse, producing well-developed E–W to ENE–WSW folds
onshore and offshore in the Campo de Dalías (Figure 6b) [24]. Finally, the northern border
of the Sierra Nevada appears to be inactive [157], and GNSS data indicate that it may be
affected by shortening (Figure 5). Actually, the shallow extension is not as important to the
north, in the South Iberian domain. Although it has been an area affected by arc-parallel
extension [72–74,145,168], recent tectonic data do not suggest that this region is affected by
stretching [30]. Moreover, seismicity is only found locally at the basement of the mountain
front and the Guadalquivir Basin foreland [100,169,170] and in the southernmost part, in
the Granada Basin [30,135]. On the other hand, the collapse from the Sierra Nevada onto
the South Iberian domain is probably not as important as that in the south because the
crust is already thickened towards the north [57,153].

In short, our data support a terminal subduction model of Iberian lithosphere beneath
the Alboran Domain [79,80,82,84,85], producing rollback and subsidence in the Western
Alboran Basin and uplift in the central Betic Cordillera. The latter is also affected by a
NW–SE compression due to the Eurasia–Nubia convergence [28,171]. This framework
leads to the extensional collapse from the Sierra Nevada towards the western Alboran Sea.

In the Betic Cordillera and likely further Mediterranean arcs, such as the Calabrian
and the Hellenic Arcs, extensional collapse processes are ongoing, as recorded in relation to
different orogenies throughout geological history. Examples include the Appalachian [172]
and Western Gneiss Region, Norway [173] during the Paleozoic, and the Basin and Range
Province (western United States and northwestern Mexico) during the Cretaceous [3,10,11].
The Mediterranean arcuate orogens are characterized by simultaneous thickening and
thinning processes occurring in close proximity, leading to a synorogenic extensional
collapse unlike the most prominent example of active postorogenic gravitational col-
lapse occurring in the Tibetan Plateau [6,7,9]. All of these orogens have experienced
similar Neogene–Quaternary evolution comprising the following tectonic processes [162].
On one hand, the crustal thickening, through either fold and thrust formation related
to the Eurasia–Nubia convergence and/or slab tearing of previously subducting
slabs [57,62,81,174], generate thicker crust. On the other hand, recent and active sub-
duction with rollback [34,175–179] are derived in the formation of back-arc basins in the
inner part of the arcs [12,180], resulting in a thinner crust. In contrast to the Tibetan Plateau,
where the collapse affects the whole crust [8], the activity of normal detachment inherited
form the Miocene evolution is currently dismantling the upper crust in a general context of
active shortening, at least in the Betic Cordillera [28,171]. In summary, the active extension
in the central Betic Cordillera in a context of generalized thickening and plate convergence
represents a good example of extensional collapse for the Mediterranean region and world-
wide, because localized thinning processes due to terminal subduction and the arcuate
shape of the orogens enhance the collapse of the uplifted regions.
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6. Conclusions

The present-day development of the seismically active Granada Basin and the sur-
rounding areas is a consequence of the extensional collapse of the central Betic Cordillera in
the frame of the Eurasia–Nubia plate convergence. The combination of structural geologic,
seismologic, and geodetic data allow the constraining of the active deformation of the basin
and surrounding region that accommodated the heterogeneous extension.

The Sierra Nevada, the main antiformal structure affecting the metamorphic basement
of the Alboran Domain, has become a relative stable and aseismic and is the most elevated
metamorphic massif in the Cordillera. The E–W to NE–SW extension in the W–SW of
the Sierra Nevada accommodated by the extensional system of the Granada Basin, to-
gether with the southward displacement to the S of the Sierra Nevada, suggest an active
extensional collapse of the shallow crustal levels over the Mecina detachment.

Two boundaries constrain the collapse to the W–SW and S: (a) a near to fixed boundary
located to the W and SW of the Granada Basin, made up by active N–S to WNW–ESE thrust
and folds and formed due to crustal heterogeneities; (b) a fixed boundary located in the
Campo de Dalías that has undergone both NE–SW extension and NW–SE compression
related to the active indentation in the Alboran Basin and accommodated by ENE–WSW
folds and NW–SE normal and dextral faults.

The upper crustal extensional collapse is probably driven by typical processes affecting
the Mediterranean orogenic arcs: (a) overthickening that uplift the central sector of the Betic
Cordillera and (b) back-arc crustal thinning and ongoing supra-subduction subsidence in
the western and central Alboran Sea.
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