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A B S T R A C T   

At present, and motivated by a substantial growth of the population, a considerable expansion of urban areas is 
taking place through the modification of land uses. These changes, together with global warming and extreme 
weather events, produce increases in the temperature of the earth’s surface and a deterioration of the envi
ronment that affects people’s quality of life. The green areas of cities are upheld as one of the best for adapting to 
such phenomena, since they help lower outdoor temperatures. In this research, using high-resolution Sentinel 3 
satellite images and the TsHARP algorithm, the Land Surface Temperature (LST) and the Park Cool Island (PCI) 
were obtained at a resolution of 10 m over green areas in the city of Granada. The objective was to analyze the 
relationship between surface, PCI effect and cooling distance. In turn, for each of the eight green areas studied, 
the following variables were taken into account and included in a statistical analysis known as data panel: 
normalized difference vegetation index, vegetal proportion, sky view factor, landscape shape index, model 
digital elevation, wind and solar radiation. Our results report diurnal LST decreases of 1 K and night LST of 0.6 K 
in green areas as compared to urban areas. There is moreover a correlation between the size of the green areas, 
the decrease in temperature they generate, and distance of the minimizer effect.   

1. Introduction 

Currently, extreme weather events such as droughts, heat waves and 
floods linked to global climate change stand as an utmost challenge 
faced by humanity (An et al., 2020; Kovats et al., 2005; Song et al., 
2020). The high growth of the population is a process that contributes to 
climate change through the transformation and modification of land, i.e. 
the expansion of urbanized areas (Li et al., 2011; Song et al., 2020). 
Recent estimates by the United Nations predict that by 2050 the urban 
population will increase by 20% (UN, 2018). The projection of a pop
ulation increase of 2.5 billion people will possibly modify the global 
urban coverage by 1,600,000 km2 (Mukherjee and Debnath, 2020; 
Schneider et al., 2010). Although the expansion of industrial and urban 
areas and spaces for transport is the main driver of the economy, it alters 
the local urban climate through increases in the Land Surface Temper
ature (LST) (Hidalgo and Arco, 2021; Ray et al., 2020; Song et al., 2020). 
Numerous recent studies report higher LST values for urban areas as 
opposed to rural areas (Guo et al., 2020; Hidalgo and Arco, 2022; Hua 

et al., 2020; Karakuş, 2019). Not only do cities suffer the greatest in
creases in LST —they increase even more due to the Urban Heat Island 
(UHI) phenomenon and environmental pollution from the transport and 
industry sectors (Santamouris, 2020). Thus, a city with a population of 
approximately one million inhabitants may present an average tem
perature 1–3 K higher than rural areas (Khamchiangta and Dhakal, 
2019). It is evident that the UHI, together with the increases in LST, can 
generate a series of economic, social, climatic and environmental 
problems that minimize the quality of life of people living in cities (Das 
and Das, 2020; Dwivedi and Mohan, 2018; Santamouris, 2020). Changes 
underway include the reduction of biodiversity, shifts in the energy 
balance, degradation of water and air quality, greater energy con
sumption, and even increased mortality (Arbuthnott and Hajat, 2017; 
Čeplová et al., 2017; Sarrat et al., 2006). 

In recent years, the planning of green areas within new urban de
velopments has acquired a fundamental role in territorial and political 
planning, since it allows the well-being of the population. In addition, it 
can be used as a tool to protect and promote the integrity and 
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sustainability of these areas. Therefore, any process of urban expansion 
requires planning the different spaces for all compatible uses: residen
tial, green, industrial, etc. Usually, these works fall on the public ad
ministrations that have an adequate capacity to promote urban centers 
green, sustainable and healthy. The use of Urban Green Infrastructures 
(UGI) and the homogeneous distribution of trees in streets and open 
spaces in cities are considered effective strategies to mitigate urban heat 
and enhancing human comfort (Saaroni et al., 2018). They are included 
within the “microclimate transformation techniques” involving modifi
cations of the physical environment through the use of vegetation (Gago 
et al., 2013; Norton et al., 2015; Saaroni et al., 2018; Solecki et al., 
2005). New green spaces make it possible to reduce the LST and mini
mize the effects of the UHI, thus improving the quality of life of local 
inhabitants. The shade generated by the trees prevents solar radiation 
from heating up the impermeable walls, which therefore emit less heat 
into the atmosphere (Hidalgo and Arco, 2021). Meanwhile, the evapo
transpiration of plant elements, allowing them to release part of their 
moisture into the atmosphere, has an environmental cooling effect and 
leads to a decrease in LST (Gago et al., 2013; Solecki et al., 2005). 

The effect of temperature (in this research, LST) differences between 
urban areas and green areas is known as Park Cool Island (PCI) (Oliveira 

et al., 2011) and has been regularly studied. For example, a study on the 
city of Mumbai (India) in 2018 reported that the green areas of the city 
present differences with urban areas amounting to 2 or 3 K (Dwivedi and 
Mohan, 2018); the city of Singapore between the years 2005 and 2015 
denoted a cooling effect of the green areas of 1–3 K (Masoudi et al., 
2021); and the city of Shenzhen (China) reported a drop in temperature 
of 0.9–1.6 K between 2011 and 2013 (Qiu et al., 2017). Therefore, it is 
evident that green spaces have lower LST values than urban areas and 
should be studied for the purpose of mitigating high temperatures. It is 
vitally important, however, to know if this effect is related to the size or 
extension, morphology or coverage of green areas. Along these lines, a 
study on the city of Chongqing (China) reported that green areas with a 
minimum size of 35 m represented a reduction of the LST of between 1 
and 1.5 K with respect to urban areas (Lu et al., 2012). A study of the city 
of Beijing (China) revealed that the cooling effects in large green areas 
extend up to 840 m in length from the edge of the area, but the effect in 
small green areas extends only up to 35 m (Lin et al., 2015). On the other 
hand, the study on 4 green spaces in the city of Wroclaw (Poland) re
ported a PCI of between 1 and 2 K and a cooling distance of between 110 
and 925 m (Blachowski and Hajnrych, 2021). The study on the Retiro 
park in the city of Madrid (Spain) reported a cooling distance of between 
130 and 280 m (Aram et al., 2020). Further research reports that large 
areas covered with trees are the ones that most reduce the LST during 
the day (Yoshida et al., 2015), while at night green lawn areas afford the 
greatest reduction in LST (Spronken-Smith, 2010). 

Since the 1980 s, remote sensing has become commonly used to 
determine urban climate change phenomena. Satellite images obtained 
with thermal infrared sensors (TIRS) allow researchers to carry out 
urban studies of LST, Surface Urban Heat Island (SUHI) and PCI (Song 
et al., 2018). Satellites that have smaller pixel sizes such as Landsat 
(100–120 m) or ECOSTRESS (60 m) only orbit each point on the planet 
once a day, and always at the same time. Therefore, the results of these 
studies ultimately reflect the day or days chosen and the time of passage 
of the satellite, which is always the same. Notwithstanding, they 
extrapolate the results obtained in a timely manner to longer periods 
with the aim of deriving global results. Recent research (Anjos et al., 
2020; Emmanuel and Krüger, 2012; Hidalgo and Arco, 2021) has re
ported that this is an erroneous operation, since there is a high vari
ability of the LST, SUHI and PCI throughout the day. This circumstance 
highlights the need to work with satellites that orbit the same point on 
the earth’s surface several times a day, such as Sentinel or Modis. In turn, 
these have a major drawback in that the pixel size of the thermal images 
is 1000 m, inadequate for the study of medium and small green areas. As 
a solution, it is possible to apply a Sharpening process to transform low 
resolution images (pixel size 1000 m) into new high resolution images 
(pixel size 10 m). Although there are numerous processes, the TsHARP 
algorithm stands out for its high precision and quality, used and verified 
in numerous studies (Belgiu and Stein, 2019; Huryna et al., 2019; Zhou 
et al., 2020). They have reported high values of precision and validity of 
this methodology. Accordingly, high-resolution Sentinel 3 images prove 
more accurate, giving correct results for the space-time variability of PCI 
in green areas. 

The objective of this research is to analyze the space-time variability 
of the PCI on 8 green spaces of different sizes in the city of Granada 
(Spain) and determine what factors might influence the cooling dis
tance. This is done through Sentinel 3 satellite images transformed to 
high resolution using the TsHARP algorithm. In addition to arriving at 
accurate figures for the LST and the PCI of the green areas, based on 
Sentinel 2 images, we determined the Normalized Difference Vegetation 
Index (NDVI), Vegetal Proportion (PV) and the Landscape Shape Index 
(LSI). Then, for each space, the Digital Elevation Model (DEM) obtained 
from the LIDAR data was taken into account and the variables of wind, 
solar radiation and Sky View Factor (SVF) could be modelled. The sta
tistical techniques of Data Panel and ANOVA served to determine cor
relations between the variables. 

In short, the questions we intend to answer through this study are: 1. 

Fig. 1. Study Area: Granada, Andalusia, Spain.  
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How does the space-time variability of LST and PCI develop in the green 
spaces studied in the city using high-resolution Sentinel 3 images? 2. 
What is the PCI attenuation distance, and what factors influence it? 3. Is 
there any relationship among the indices taken into account? 4. Can the 
results obtained be useful for future urban planning of green spaces? 

The advances produced by this research help to glimpse the spatio
temporal variability of the PCI of the green areas of a medium-sized city 
(Granada) and the factors that modify it. There are numerous studies 
carried out on large cities, but few on small and medium-sized cities. 
These usually use LST images obtained from the Landsat satellite, which 
have a resolution of 120 m. Our research opens the door to the use of 
Sentinel by improving the resolution of the LST at 10 m and being able to 
improve the precision of the results. On the other hand, our study breaks 
with the tradition of using a single satellite image per year to analyze the 
evolution of the LST and other indices by using 10 daytime images and 
another 10 nighttime images. The ultimate aim is to promote more 
appropriate decision-making by urban planners and public administra
tions when developing new areas or green spaces. Decisions and actions 
should be directed at mitigating the effects of increases in LST and SUHI 
in cities, turning urban areas into environments that are resilient to 
climate change, so as to improve people’s quality of life. The method
ology applied here involved an open source QGIS work environment in 
order to be able to extrapolate the results obtained to other areas. 

2. Materials and methods 

2.1. Study area 

The area under study (Fig. 1) consists of eight green spaces located in 
the city of Granada, within the region of Andalusia, southern Spain. 

The UTM geographic coordinates of the city are: latitude 
37.111741 N and longitude 03.362401 W; its altitude is 680 m above 

Fig. 2. Spaces selected for the study.  

Table 1 
Characteristics of city zones.  

Area Name Area 
(m2) 

Maximum 
length (m) 

DEM 
(m.a. 
s.l.) 

LSI Surface 

1 Almanjayar  19363  218  708  1.2 Trees and 
albero 

2 Triunfo  16234  128  685  1.1 Trees and 
pavement 

3 Carrera de la 
Virgen  

62836  561  670  2.5 Trees and 
albero 

4 Almunia  32248  218  661  1.3 Trees and 
albero 

5 Trinidad  3223  150  678  1.2 Trees and 
pavement 

6 Alquerias  68594  388  643  1.7 Trees and 
grass 

7 Fuentenueva  19216  135  675  1.1 Trees and 
grass 

8 Federico 
García Lorca  

76844  350  659  1.3 Trees and 
albero 

Note: DEM: Digital Elevation Model; LSI: Landscape Shape Index 
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sea level. This city has a population of 232,462 and occupies an area of 
88 km2. Its climate, according to the Köppen-Geiger classification, is of 
the Mediterranean type (Csa), which implies hot and dry summers and 
wet and cold winters (de Castro et al., 2007). The local climate is 
strongly conditioned by the proximity of the Sierra Nevada mountain 
range. It has an average altitude of 2045 m, reaching a maximum alti
tude of 3482 m at the Mulhacen peak. The average temperature fluc
tuates between 279.65 K in January and 298.45 K in July, with a winter 
minimum of 270.15 K and extremes in summer reaching 316.15 K. The 
approximate number of hours of sunshine per year is 2917, giving an 
average of 7.99 h of sunshine per day. 

2.2. Data resources 

The eight selected spaces are the largest green areas that are within 
the city limits and whose distribution is represented in Fig. 2. The sur
face, dimensions, coverage and morphology can be consulted in Table 1. 

2.3. Methods 

The methodology carried out is outlined in Fig. 3. 
The NDVI and PV index of the areas under study were determined 

using Sentinel 2 images at a resolution of 10 m. Thermal images from 
Sea and Land Surface Temperature Radiometers (SLSTR) at a resolution 
of 1000 m, plus NDVI and PV images from the Ocean and Land Cover 

Instrument (OLCI) multispectral sensor at a resolution of 500 m, were 
downloaded. All images were obtained by means of the Copernicus 
Open Access Hub application and underwent band reclassification and 
atmospheric correction using the European Space Agency’s (ESA) 
Sentinel Application Platform (SNAP) open source software. Then, tak
ing the NDVI and PV images from Sentinel 2 and the TsHARP algorithm 
as a reference, the NDVI, PV and LST images from Sentinel 3 were 
resampled to a new resolution of 10 m. This procedure for obtaining 
high-resolution images is documented by the scientific community 
(Belgiu and Stein, 2019; Huryna et al., 2019) and presents excellent 
results. Afterwards, the PCI of the investigated green areas was deter
mined using the raster calculator tool of QGIS 3.22.10 software. DEM 
and coverage data were obtained from the National Geographic Institute 
(IGN) of the Government of Spain at a resolution of 2.5 m. The SVF, 
wind and radiation variables were modelled for the same dates as the 
Sentinel 2 and 3 satellite images using SAGA 8.3.0 software, likewise 
supported by the scientific community as presenting good results 
(Conrad et al., 2015; Hidalgo and Arco, 2021; Olaya and Conrad, 2009). 
Finally, the statistical study of our research findings relied on specialized 
software for data science, STATA version 16. 

2.4. Sentinel 2 images 

The Sentinel 2 satellites make it possible to obtain high-resolution 
images of the earth’s surface (10 m) thanks to the 12 bands having a 

Fig. 3. Methodology.  
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resolution that ranges between 10 and 60 m. The earth’s surface and its 
changes can thus be monitored accurately through high-resolution im
ages. In this case, 10 daytime images and another 10 nighttime images, 
distributed evenly between the months of July and August of the year 
2022, were selected (Table 2). All of them have a cloudiness index of less 
than 5%. The images were obtained through the ESA Copernicus Open 
Access Hub with a level of detail type 2. After downloading the images, 
they were atmospherically corrected and georeferenced using the 
ETRS89/UTM Zone 30 N projection system. To carry out both processes, 
it was necessary to use the Toolbox (S3TBX) under the open source 
software environment SNAP, version 9.0.0. 

2.4.1. NDVI THM and PV 
NDVI with Sentinel 2 imagery is determined by the red band (4) and 

the near-infrared spectral band (8). This index allows us to determine if 
there is vegetation upon a certain zone or area. The range of this index is 
between − 1 (clear soils and devoid of vegetation) and 1 (dense and 
thick vegetation). It is calculated by means of Eq. (1) (Shafiza
deh-Moghadam et al., 2020): 

NDVI =
NIR − Red
NIR+ Red

(1) 

Next, the PV was calculated using Eq. 2 (Yu et al., 2014): 

PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(2)  

where NDVI is the normalized vegetation index obtained by formula (1) 
and the NDVI max and NDVI min are the maximum and minimum values 
of the NDVI interval. 

2.5. Sentinel 3 images 

Tier 2 Sentinel 3 satellites allow for LST imaging at 1000-meter 
resolution using the high resolution scanning radiometer. NDVI and 
PV images can also be obtained —along with other associated parame
ters— directly and automatically at a resolution of 500 m. Granada lies 
beneath the path of satellites Sentinel 3 A and 3B. The first has a daily 
timetable that oscillates between 10:00 and 11:00 a.m.; the second 
passes between 9:00 p.m. and 10:00 p.m. The images chosen for the 
study correspond to the same ten days of the Sentinel 2 images. In this 
way, throughout the months of July and August of the year 2022, a total 
of 20 images could be used, 10 corresponding to Sentinel 3 A and 
another 10 to Sentinel 3B (Table 3). 

The selected images correspond to periods of meteorological condi
tions considered normal. All of them have a cloudiness index of less than 
5% in order to increase the accuracy in obtaining the LST and the sub
sequent calculation of the PCI and SUHI. After downloading the Sentinel 
3 images, they were atmospherically corrected and georeferenced using 
the ETRS89/UTM Zone 30 N projection system. Both processes were 
carried out using the Toolbox (S3TBX) under the open source software 
environment SNAP, version 9.0.0. 

2.6. Image reclassification using TsHARP algorithm 

Along with the rise in observations of the Earth’s surface made by 
remote sensing yet the low quality of the thermal images of Sentinel 3, 
there arose a need to generate processes to enhance their resolution. The 
sharpening methods developed include STARRFM, TsHARP and Distrad. 
They increase the resolution of Sentinel 3 and MODIS images with the 
help of Sentinel 2 images. Affording high precision despite its simplicity 
is the TsHARP method (Agam et al., 2007; Huryna et al., 2019; Zhou 
et al., 2020), based on the establishment of a linear regression model 
between the NDVI, PV and LST images of Sentinel 2 and Sentinel 3 
through Eq. (3): 

LSTcoarse = a+ b× PVcoarse (3)  

where a and b are the linear regression coefficients, while PVcoarse and 
LSTcoarse are the PV and LST obtained by Sentinel 3 at a resolution of 
1000 m. Next, we use Eq. (4): 

LSTfine = a+ b× PVfine, (4)  

where a and b are the previously determined linear regression co
efficients, PVfine is the plant proportion obtained by Sentinel 2 at 10 m, 
and LSTfine is the new LST obtained at a resolution of 10 m. Finally, 
because it is a linear regression, it is essential to include the residual 
error obtained in the LST image to ensure the accuracy of the prediction. 
All this according to Eq. (5): 

LSTdownscale = LSTfine +Residual (5)  

2.7. Park cool island estimate 

PCI can be defined as the temperature difference between urban 
areas and green areas taken at the same time (Oliveira et al., 2011) 

Table 2 
Sentinel 2 A-B images used, acquired from the Copernicus Open Access Hub 
service.  

Number Date (yyyymmdd) UTC time (hhmmss) Cloudiness (%) 

1  20220701  100512  5 
2  20220704  103421  6 
3  20220708  101304  2 
4  20220712  100512  1 
5  20220715  100921  5 
6  20220721  101212  2 
7  20220726  102305  0 
8  20220809  105132  0 
9  20220815  101201  4 
10  20220828  103427  3 
11  20220701  211612  2 
12  20220704  221216  4 
13  20220708  222354  2 
14  20220712  221504  0 
15  20220715  221832  5 
16  20220721  215939  2 
17  20220726  213912  2 
18  20220709  215448  0 
19  20220815  220508  4 
20  20220828  221031  4  

Table 3 
Sentinel 3 A-B images used, acquired from the Copernicus Open Access Hub 
service.  

Number Date (yyyymmdd) UTC time (hhmmss) Cloudiness (%) 

1  20220701  102921  5 
2  20220704  105112  6 
3  20220708  104805  2 
4  20220712  104421  1 
5  20220715  100429  5 
6  20220721  104129  2 
7  20220726  101955  0 
8  20220809  105728  0 
9  20220815  100815  4 
10  20220828  102540  3 
11  20220701  214616  2 
12  20220704  220843  4 
13  20220708  220512  2 
14  20220712  220116  0 
15  20220715  222343  5 
16  20220721  212737  2 
17  20220726  213650  2 
18  20220709  213504  0 
19  20220815  221958  4 
20  20220828  220845  4  

D. Hidalgo García                                                                                                                                                                                                                              



Urban Forestry & Urban Greening 87 (2023) 128061

6

according to Eq. (6): 

PCI = LSTparkland − LSTurban (6) 

The LST values of the green areas were obtained using the statistics of 
QGIS software; they correspond to the mean values of the pixels 
included within the limit of each green area. The urban LST values 
correspond to the average values of the pixels located outside the 
boundary of the green areas in an environment of 500 m. This distance is 
sufficient to include the temperatures of buildings, streets and transport 
attached to green areas and has been used in previous studies (Lu et al., 
2012; Saaroni et al., 2018). To determine the PCI, the raster calculator 
option of the open source software QGIS 3.22.10 was used. 

2.8. Solar radiation 

The solar radiation of each of the green areas investigated was ob
tained by means of simulations with the System for Automated Geo
scientific Analysis (SAGA) software (Conrad et al., 2015). It allows for 
the incorporation of digital surface models thanks to the Light Detection 
and Ranging (LIDAR) program, which was downloaded from the official 
website of the National Geographic Institute of the Government of 
Spain. The use of these simulations within the scientific community is 
common and has been validated (Bremer et al., 2016; Zakšek et al., 
2005). After the simulation, the findings were compared with the solar 
radiation data from the meteorological station of the State Meteoro
logical Agency (AEMET) in Granada in order to determine the average 
precision error with respect to the station. It was 1%, well in line with 
those obtained in other simulation studies of solar radiation involving 

SAGA software (Bremer et al., 2016; Zakšek et al., 2005). 

2.9. Wind and wind factor 

Wind is considered an important factor in the study of the variability 
of SUHI and PCI in cities (Gaur et al., 2018; van Hove et al., 2015). This 
was simulated with the SAGA software and later compared with the data 
from the AEMET weather stations (Airport and Cartuja). These have a 
precision of ± (0.1 m/s + 1.5% of the V.M.) being able to report values 
that oscillate between 0.3 and 20 m/s. The graphic documentation ob
tained with SAGA (Conrad et al., 2015) presents a spatial resolution of 
5 m, very suitable for studies on cities. The results obtained from the 
simulation were compared with those reported by the meteorological 
stations reporting coincident values in both speed and direction of the 
wind (Airport: R2 =0.97 and Cartuja: R2 =0.94). Next, the wind factor 
was obtained. which is a dimensionless value that depends on the speed 
and direction of the wind and that allows determining the effect of the 
average wind on urban areas from all directions. It was obtained by 
simulation with the SAGA software by introducing the speed and di
rection of the wind and the digital model of surfaces obtained by LIDAR 
(Olaya et al., 2009; Conrad et al., 2015). Values between 0 and 1 indi
cate areas with little or no wind, while values above 1 indicate areas 
highly exposed to wind. 

2.10. Altitude 

It is known by the scientific community that altitude affects urban 
climates and must be taken into account when evaluating SUHI and PCI 

Fig. 4. NDVI index of the investigated areas.  
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(Gaur et al., 2018; Saaroni et al., 2018; Solecki et al., 2005). The mean 
altitude data for each area studied were obtained with QGIS from DEM 
data at 2 m (from the IGN). 

2.11. SVF 

The SVF is a parameter commonly used to determine the impact of 
urban forms on the LST, SUHI and PCI (Chun and Guldmann, 2014; 
Hidalgo and Arco, 2021; Hu et al., 2020). The SVF affects the possible 
heating and cooling of areas due to the vegetal and architectural ele
ments that act as obstacles, such as: existing buildings, trees and vege
tation. This variable is defined as the ratio between the visible area and 
the portion of the sky that is obstructed in a given area. Its value is 
dimensionless and varies between 1 and 0, the former indicating that 
solar radiation cannot expand into the atmosphere because the sky is 

completely blocked by obstacles, while the latter means that all radia
tion can expand freely into the atmosphere due to an absence of ob
stacles. To simulate the SVF of the areas under study, SAGA simulation 
software was used. The details of this process have been described by 
other authors (Dirksen et al., 2019; Hu et al., 2020; Zakšek et al., 2005). 
It was necessary to have the DEM and the digital surface map from IGN. 
Subsequently, the simulation was carried out in SAGA, and the mean 
values were exported to QGIS. 

2.12. LSI 

This variable is defined as the ratio between the real length of the 
perimeter of the green zone and its area. The value of a circle is 1, while 
the value of other shapes usually has a value greater than 1. It is 
commonly used in studies related to urban green infrastructure in urban 

Fig. 5. PV index of the investigated areas.  

Table 4 
Statistics of the NDVI and PV by area.   

NDVI PV 

Area Max Min Mean SD Max Min Mean SD 
1 0.504 -0.112 0.251 0.093 0.527 0.006 0.062 0.074 
2 0.500 0.038 0.195 0.090 0.197 0.003 0.058 0.041 
3 0.594 0.051 0.334 0.133 0.614 0.001 0.155 0.132 
4 0.481 0.082 0.302 0.081 0.306 0.007 0.078 0.057 
5 0.585 0.133 0.473 0.105 0.581 0.047 0.341 0.158 
6 0.576 0.071 0.291 0.105 0.553 0.003 0.089 0.110 
7 0.511 0.042 0.278 0.107 0.376 0.005 0.084 0.066 
8 0.542 0.044 0.302 0.100 0.453 0.003 0.091 0.086 

Max: Maximum; Min: Minimum SD: Standard deviation. 
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areas (Saaroni et al., 2018; Wu et al., 2019). It is calculated by the Eq. 
(7): 

LSI =
L

2 ×
̅̅̅̅̅̅̅̅̅̅̅̅
π × A

√ (7)  

where L is the length of the entire perimeter of the investigated area and 
A is the area. 

2.13. Strategy of analysis 

Having data from various indices and variables on different green 
areas of the city of Granada as well as time series (July and August 
2022), it was necessary to apply two methodologies: Analysis of vari
ance (ANOVA) and Data Panel. The first statistical method allowed us to 
determine if there were statistically significant differences between the 
different green areas by comparing the variances. To this end, the 
ANOVA used a dependent variable (variables LST, SVF, DEM, NDVI and 
PV) and another independent variable (green areas). This methodology, 
well described in the literature on this type of study (Safarrad et al., 
2021; Sharma et al., 2022), makes it possible to eliminate the possible 
sampling errors that plague studies of these characteristics. The Panel 
Data statistical analysis allows one to combine a dimension of data or 
values with a time dimension. It is frequently used in similar studies and 
involves the use of multiple regression models (Alcock et al., 2015; Chen 
et al., 2011; Fang and Tian, 2020), which means that a greater amount of 
data can be included than under traditional methods. The system es
tablishes three calculation options: ordinary squares method (OSM), 
generalized least squares (GLS) and intragroup estimation method (IEM) 

(Labra, 2014). To calculate which methodology to follow, it is necessary 
to carry out the following steps (Chen et al., 2011): 1) Determine the 
effects of the analysis (random or fixed) using the Hausman test, to 
determine different hypotheses about the behavior of the residuals of the 
statistical analysis. 2) Using the Wooldridge and Wald tests, evaluate the 
model. These two phases will establish the most appropriate method to 
carry out (Seto and Kaufmann, 2003). Statistical analysis was performed 
with STATA software, version 16. For our research and after performing 
the indicated tests, the IEM method with random effects was used ac
cording to Eq. (8).: 

Yit = β Xit +αi + μit (8)  

where μit is the error of the model, αi represents the individual effects, Xit 
are explanatory variables, and β is an independent variable. 

3. Results 

3.1. Space-time evaluation of the NDVI and PV indices 

The space-time analysis of the NDVI and PV indices in the areas 
under study can be seen in Figs. 4 and 5. Table 4 gives the basic statistics 
of each of the areas investigated. The NDVI index makes it possible to 
differentiate areas of vegetation from artificial terrestrial areas without 
vegetation. In addition, it allows to know the vigor and state of the 
vegetation on the earth’s surface. PV is defined as the percentage or 
fraction of occupation of vegetation canopy in a given ground area in 
vertical projection. 

It is seen that the NDVI index presents an average value ranging from 

Fig. 6. SVF index of the investigated areas.  
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the highest value (0.473) located in area 5 to the lowest (0.195) in area 
2. The average value of the NDVI index of the green areas investigated 
was 0.303, while for urban areas it was 0.143. The green areas have a 
higher NDVI value than the urban areas of the city of Granada. The PV 
index presents an average value between the highest value (0.341), 
pertaining to area 5, and the lowest (0.058) in area 2. The spaces with 
greater and lesser PV index coincide with NDVI spaces. The average 
value of the PV index of the green areas investigated was 0.120, while 
for urban areas it was 0.102. The green areas were found to have a 
higher PV value than the urban areas of Granada. Taking into account 
that the selected satellite images correspond to July and August, the 
NDVI and PV values indicate that the vegetation of the studied area can 
be considered disperse and suitable for summertime. 

3.2. LSI and DEM 

The results of the LSI and DEM variables of the areas under study can 
be seen in Table 1. The value of LSI ranges between 2.5 in area number 3 
and 1.1 in areas 2 and 7; the mean value of the LSI index was 1.43. The 
DEM value oscillates between area 1, which is located at the highest 
altitude (708 m), and area 6, located at the lowest altitude (643 m). The 
average altitude of the areas under study is 672 m. 

3.3. SVF, wind factor and radiation 

The space-time analysis of the variables SVF, wind factor and radi
ation of the areas under study are found in Figs. 6, 7 and 8. Table 5 shows 
the basic statistics of each of area investigated. 

The SVF index is seen to present an interval that oscillates between 
the highest value (0.93) in area 6, and the lowest (0.62) located in area 
5. The average value of the SVF index of the green areas investigated was 
0.70, while for urban areas it was 0.75. The interval of the wind factor 
variable ranges from the highest value (1.00) located in area 1 to the 
lowest value (0.88) in area 5. The average value of the wind variable in 
the green zones investigated is 0.955, while that of urban areas is 0.899. 

The interval of the solar radiation variable oscillates between the 
highest value (1893) pertaining to area 6, and the lowest (1507) in area 
5. The average value of the radiation variable in the green areas studied 
is 1662, whereas that of the urban areas is 1579. A relationship between 
the variables SVF and radiation is seen, in that the higher the radiation, 
the lower the SVF, and vice versa. 

3.4. LST 

The space-time analysis of the day and night LST of the areas under 
study is presented in Figs. 9 and 10. Table 6 gives the basic statistics of 
the LST obtained. 

The daytime LST is seen to oscillate a high (312.6 K) located in area 1 
and a low (310.3 K) located in area 5. The average value of the daytime 
LST of all green areas investigated was 311.7 K; for urban areas it was 
312.7 K. These values report a difference of 1.0 K between the two 
zones, the average daytime LST of the urban zones being higher. The 
mean daytime LST of the green areas with trees was lower (311.6 K) 
than the LST of the green areas with grass (312.5 K). The average 
nocturnal LST gives its highest value (296.4 K) for area 4 and the lowest 
(294.9 K) for area 5. The average value of the nocturnal LST of all the 

Fig. 7. Wind factor of the investigated areas.  
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green areas was 295.7 K, while for urban areas it was 296.3 K. These 
values mean a difference of 0.6 K between the two areas, the average 
nocturnal LST again being higher in urban areas than in green areas. The 
average nocturnal LST of the green areas with trees was greater (296 K) 
than the LST of the green areas with grass (295.5 K). In order to validate 
and determine the accuracy of the algorithm, the LST values obtained 
have been compared with the ambient temperature values of the two 
meteorological stations that the State Meteorological Agency has in the 
city of Granada. This methodology is gaining strength in recent years as 
a validation and verification system (Avdan et al., 2016; Rongali et al., 
2018). The new LST presents a difference of 2.26 K with respect to the 
ambient temperature and a correlation coefficient of R2 = 0.9470. These 
values are consistent and are within the limits reported by studies that 
compare both temperatures. 

Fig. 11 shows the day and night LST of green areas classified into four 

types based on their surface area: type 1: < 5000 m2; type 2: between 
5,000 and 20,000 m2; type 3: between 20,000 m2 and 70,000 m2; and 
type 4: > 70,000 m2. In general terms, it is observed how both in the 
morning and at night, the LST of the green zones decreases as the surface 
of the green zone increases. That is, the larger the area of the green zone, 
the lower the LST value. However, during the mornings the green areas 
present lower LST in areas with more than 12,500 m2, while at night the 
lowest LST values are reported in green areas of less than 12,500 m2. 
The trend fits a 2nd degree polynomial graph with a linear fitting co
efficients R2. 

3.5. PCI 

The spatio-temporal analysis of the day and night PCI of the areas 
under study can be seen in Figs. 12 and 13. Table 7 shows the basic 

Fig. 8. Radiation of the investigated areas.  

Table 5 
Statistics of the SVF, wind factor and radiation by area.   

SVF Wind factor Radiation 

Area Max Min Mean SD Max Min Mean SD Max Min Mean SD 
1 0.99 0.24 0.87 0.13 1.14 0.94 1.00 0.04 2177 1093 1837 159 
2 0.98 0.10 0.69 0.19 1.11 0.86 0.94 0.05 2187 512 1710 334 
3 0.99 0.11 0.57 0.20 1.21 0.80 0.93 0.11 2185 275 1343 275 
4 0.99 0.18 0.81 0.14 1.17 0.88 0.99 0.06 2182 802 1746 255 
5 0.99 0.14 0.62 0.19 1.11 0.83 0.88 0.05 2078 594 1507 308 
6 0.99 0.27 0.93 0.11 1.17 0.91 0.98 0.02 2173 747 1893 089 
7 0.99 0.08 0.65 0.19 1.17 0.85 0.96 0.07 2191 413 1596 375 
8 0.99 0.02 0.70 0.20 1.21 0.85 0.96 0.08 2194 436 1664 332 

Max: Maximum; Min: Minimum SD: Standard deviation. 
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statistics of the day and night LST. 
As can be seen, the daytime PCI with average values ranges from the 

highest value |4.5 K| of area 5 to the lowest value |2.2 K| of area 1. The 
average value of the daytime PCI of all green areas investigated was | 
3.2 K|. 

Regarding the nocturnal PCI, it oscillates between the highest value | 
2.2 K| in zone 4 and the lowest value |0.8 K| in zone 5. The average 
value of the nocturnal PCI of all the green areas investigated was |1.5 K|. 

Fig. 14 shows the day and night PCI (temperature differences) of the 
green areas according to the typologies indicated above: type 1: 
< 5000 m2; type 2: between 5000 and 20,000 m2; type 3: between 
20,000 m2 and 70,000 m2; and type 4: > 70,000 m2. In general terms, 
both in the morning and at night, the PCI of the green areas decreases as 
the area of the green area increases. Thus, the larger the area of green 
areas, the lower the PCI values, due to a smaller difference between the 
LST of green areas and the LST of urban areas. The trend lines fit a 2nd 
degree polynomial graph with a linear fitting coefficients R2. 

3.6. Effect extension 

It is of great importance to analyze the distance to which the mini
mizing effect of green areas extends over day and night LST. To do this, 
two LST profiles (longitudinal 1–1′ and transverse 2–2′) were obtained 
for each of the investigated areas. Figs. 15 and 16 show the daytime and 
nighttime PCI profiles with a red line and the space occupied by the 
investigated areas with green shading. Fig. 15 shows the distance from 
the green area where the daytime LST is equal to the LST of the urban 
area, and therefore, the PCI obtains a value of 0. This distance is 
approximately between 30 and 150 m. Therefore, the minimization 

distance of the PCI is related to the surface of the green zone, so that the 
larger the surface, the greater the distance and vice versa. Fig. 16 il
lustrates how the distance at which the nighttime LST in the green zone 
equals the LST in the urban zone, ranging approximately between 60 
and 120 m. A relationship between the distance and the area of the 
green zone is also observed. Accordingly, the greater the surface, the 
greater the distance; and vice versa. The distance is lesser at night than 
during the morning. 

Fig. 17 shows the distance at which the day and night LST of the 
green areas equals the day and night LST of the adjoining urban areas. 
For this analysis, the classification of green areas made in the previous 
point was recovered (type 1: < 5000 m2; type 2: between 5000 and 
20000 m2; type 3: between 20000 m2 and 70000 m2 and type 4: >
70000 m2). In general, both in the morning and at night, the distances 
increase as the surface of the green area increases. The trend lines fit a 
2nd degree polynomial graph with a linear fitting coefficients R2. The 
distances are seen to be greater during the nights than during the 
mornings up to a green area surface of approximately 25000 m2. From 
that point onward the distance is greater during the mornings. 

3.7. Statistical analysis 

3.7.1. ANOVA of the variables 
The results of the ANOVA test carried out on the investigated vari

ables reflected, through the Shapiro Wilk test, that they do not present 
normal distributions within the different green areas investigated, since 
P value < 0.05. Therefore, to continue with the ANOVA analysis for non- 
normal distributions, it is necessary to perform the Kruskal Wallis test. 
Therefore, and according to the reported results, the values of the 

Fig. 9. Mean daytime LST of the investigated areas.  
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variables NDVI, PV, LSI, DEM, wind, radiation and SVF present statis
tically significant relationships above 99% among the different green 
areas investigated. To the contrary, the LST and PCI variables do not 
present any statistically significant relationship between the different 
areas investigated. 

3.7.2. PCI and investigated variables 
In order to determine the relationships between day and night PCI 

and the rest of the variables studied, statistical analysis was carried out 
using the Data Panel method. To do this, first the Pearson correlation 
coefficient was determined. To apply the Data Panel, the Generalized 
Least Squares (GLS) method was used through Eq. (8). The results of the 
analysis are indicated in Tables 8, 9 and 10. Table 8 indicates that the 
daytime PCI presents a strong positive correlation with LST (0.903) and 

LSI (0.246) and an inverse correlation with the NDVI (− 0.564) and DEM 
(− 0.180) indices. Note the strong negative correlation between the SVF 
variable and the radiation received (− 0.923). 

As seen in Table 9, the nocturnal PCI presents a strong positive 
correlation with LST (0.929) and LSI (0.195), and an inverse correlation 
with the NDVI indices (− 0.418). Note the strong negative correlation 
between the SVF variable and the radiation received (− 0.923). 

The results of statistical analysis using the Data Panel technique 
(Table 10) report that during the mornings there is a statistically sig
nificant and positive relationship above 99% between the PCI and LST 
and DEM variables, negative above 99% with the NDVI and PV variables 
and positive of 95% with the solar radiation variable. During the nights, 
there is a statistically significant and positive relationship between the 
PCI and LST variables, negative above 99% with the LSI and radiation 
variables, positive of 99% with the SVF variable, and negative of 95% 
with the NDVI and PV variables. During the mornings, the NDVI, PV and 
DEM variables have a strong relationship with the PCI, lowering it 
significantly during the nights. Contrariwise, at night the LSI, SVF and 
radiation variables are the ones that present a greater relationship. In 
both cases, a good concordance is observed between the dependent 
variable and the independent ones, given the values of R2, F and 
Prob>Chi2. The adjustment level is greater than 99% significance since 
Prob>Chi2 = 0.000. These results are in line with the analytical values 
obtained above. 

3.7.3. Minimizing effect distance and variables 
In order to determine the relationships between the attenuation 

distance and the rest of the variables studied, statistical analysis was 
carried out using the Data Panel method (as described in the previous 

Fig. 10. Mean nighttime LST of the investigated areas.  

Table 6 
Statistics of the LST by area.   

LST daytime LST nighttime 

Area Max Min Mean SD Max Min Mean SD 

1  314.9  311.0  312.6  0.57  296.6  293.9  295.0  0.41 
2  313.0  310.2  312.1  0.50  296.7  294.8  296.0  0.36 
3  312.9  309.6  311.2  0.56  297.1  294.3  295.7  0.63 
4  312.9  311.2  311.9  0.34  297.1  295.7  296.4  0.27 
5  312.2  309.5  310.3  0.59  295.8  294.3  294.9  0.42 
6  313.3  310.7  312.1  0.47  296.5  294.5  295.7  0.38 
7  312.9  310.3  311.5  0.58  297.0  295.0  296.0  0.44 
8  312.6  309.9  311.3  0.51  296.8  294.8  295.8  0.39 

Max: Maximum; Min: Minimum; SD: Standard deviation. 
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point). The results are indicated in Tables 11, 12 and 13. 
As seen in Table 11, the attenuation distance presents a strong pos

itive correlation with LSI (0.5952) and Wind (0.3182) but an inverse 
correlation with the NDVI index (− 0.112). Table 12 shows, in turn, that 
the night distance presents a strong positive correlation with PV 
(0.2598) and LSI (0.3698) and an inverse correlation with the DEM 
index (− 0.1016). 

The results of the statistical analysis using the Data Panel technique 

(Table 13) report that during the mornings there is a statistically sig
nificant and positive relationship above 99% among the distance vari
able and the NDVI, PV, LSI and wind variables, and negative above 99% 
with the variable DEM. During the nights, there is a statistically signif
icant and positive relationship over 99% between the distance variable 
and NDVI, LSI and wind, negative over 99% with the DEM variables, 
positive over 99% with the radiation variable, negative and 99% with 
the SVF variable, and 95% positive with the PV variable. During the 

Fig. 11. Daytime and nighttime average LST by type of green areas.  

Fig. 12. Mean daytime PCI of the investigated areas.  
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mornings, the variables NDVI, PV, LSI, DEM and wind show a strong 
relationship with distance. On the contrary, at night the NDVI, LSI, DEM 
and wind variables are the ones that present a greater relationship. In 
both cases, it is observed that there is a good agreement between the 
dependent variable and the independent ones, reflected in the values of 
R2, F and Prob>Chi2. 

4. Discussion 

This study analyzed the space-time variability of the LST and PCI 
during the months of July and August of the year 2022 in the city of 
Granada and its relationship with the NDVI, PV, LSI, DEM, SVF, wind 
and radiation indices. The objective of this research is to analyze the 
space-time variability of the PCI on 8 green spaces of different sizes in 

the city of Granada (Spain) and determine what factors might influence 
the cooling distance. All this in order to improve decision-making in the 
construction of future green areas in urban areas. 

In the green areas studied, the NDVI and PV indices related to the 
vegetation present higher values than in the urban areas. On the other 
hand, the daytime and nighttime LST values of green areas are lower 
than those obtained in urban areas. However, PCI values during the day 
are higher in green areas, while at night they are lower. These values 
suggest that green areas produce a minimizing effect on the LST, and 
should therefore be considered as fundamental infrastructures for 
mitigating temperatures. Numerous studies using satellite images have 
shown a negative correlation between vegetation and temperatures, in 
that vegetation produces a cooling effect in urban areas (Du et al., 2020; 
Masoudi et al., 2021; Qiu et al., 2017) ranging roughly between 1.5 and 
3.5 K (Lin et al., 2015; Saaroni et al., 2018). These effects are attributed 
to the shade produced by trees, as well as the evapotranspiration process 
and the rates of cooling and heating by convection and transpiration that 
modify the LST of the areas and would explain the day and night 
behavior of the PCI (Feizizadeh and Blaschke, 2013; Hidalgo and Arco, 
2021; Zakšek et al., 2005). Our findings come to corroborate those of 
previous studies, showing that an increase in urbanized and impervious 
areas causes an increase in LST, while increases in green areas lead to a 
decrease (Saaroni et al., 2018; Wu et al., 2019). 

A relationship appeared between the surface area of the green areas 
and the cooling distance around the area, but not with the decrease in 
temperatures they generate. It is logical to think that the greater the 
surface of a green area, the greater its cooling effect and the greater the 
cooling distance with respect to the green area, as previous authors point 
out (Chen and Wong, 2006; Lee et al., 2009; Lin et al., 2015; Saaroni 

Fig. 13. Mean nighttime PCI of the investigated areas.  

Table 7 
Statistics of the PCI by area.   

PCI daytime PCI nighttime 

Area |Max| |Min| |Mean| SD |Max| |Min| |Mean| SD 

1  0.1  3.8  2.2  0.57  2.5  0.3  0.9  0.41 
2  1.8  4.6  2.7  0.51  2.6  0.7  1.9  0.37 
3  1.9  5.2  3.6  0.75  2.9  0.2  1.5  0.63 
4  1.9  3.6  2.9  0.34  2.9  1.6  2.2  0.27 
5  2.7  5.3  4.5  0.59  1.6  0.2  0.8  0.42 
6  1.6  4.1  2.7  0.46  2.3  0.3  1.5  0.38 
7  1.9  4.5  3.3  0.58  2.8  0.8  1.7  0.44 
8  2.3  4.9  3.6  0.51  2.6  0.6  1.6  0.38 

|Max|: Absolute maximum values; |Min|: Absolute minimum values; SD: Stan
dard deviation. 
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et al., 2018; Upmanis et al., 1998; Yoshida et al., 2015). Our results 
report that the larger the surface area of the green area, the smaller the 
cooling effect it produces. This circumstance is controversial since it 
differs from the studies indicated above but could be motivated by the 
heat transferred from the vegetation to the atmosphere, which produces 
an increase in environmental temperature (Berendse, 2005; Shaver 
et al., 2000). The vegetation has a rough surface and a high albedo, 
which means that it receives significant solar radiation. In this way, at 
times of high temperatures, the vegetation increases the exchange of 
energy between the vegetation and the atmosphere, which implies an 
increase in evapotranspiration and a decrease in soil moisture, which 
produces an increase in the flow of heat. sensitive to the atmosphere 
(Shaver et al., 2000). Therefore, the greater the extension of green 
spaces and in conditions of high temperatures, the less minimization of 

the ambient temperature. Our statistical analysis shows that the vari
ables NDVI, PV, LSI, DEM and wind have a strong relationship with 
distance both in the morning and at night. Indeed, at night, radiation 
and SVF are included as important variables. However, our LST mini
mization results for green areas lie below the average values obtained in 
other investigations carried out. For example, the city of Shenzhen 
(China) reported reductions of between 0.9 and 1.57 K (Qiu et al., 
2017), the city of Mumbai (India) had reductions of between 2 and 3 K 
(Dwivedi and Mohan, 2018), and Singapore obtained reductions of be
tween 1 and 3 K (Masoudi et al., 2021). In turn, our cooling distances are 
also well below those reported elsewhere: Seoul (Lee et al., 2009) gave a 
distance of 240 m, Singapore (Chen and Wong, 2006) a distance of 
500 m, and for some green spaces in Gothenburg (Upmanis et al., 1998) 
a distance of 1000 m was detected. It is evident that the reduction of LST 

Fig. 14. Daytime and nighttime average PCI (temperature differences) by type of green areas.  

Fig. 15. Average diurnal PCI profiles of the areas under study.  
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Fig. 16. Average nocturnal PCI profiles of the areas under study.  

Fig. 17. Average diurnal LST profiles of the areas under study.  

Table 8 
Pearson’s correlation coefficient and ρ value between daytime PCI and variables.   

PCI LST NDVI PV LSI DEM SVF Wind Radiation 

PCI 1             
LST 0.903 * **  1           
NDVI -0.564 *  -0.458 1          
PV -0.054  -0.072 0.601 * * 1         
LSI 0.246 * *  0.040 -0.407 * 0.000  1       
DEM -0.180 * *  -0.016 0.290 0.550 * *  0.103 1      
SVF 0.148  0.096 -0.446 -0.574 * *  -0.047 -0.388 1     
Wind 0.154  0.033 0.069 -0.033  -0.125 0.427 * 0.368  1   
Radiation 0.068  0.084 -0.431 * -0.578 * *  -0.303 -0.484 -0.923 * *  0.255  1 

Robust standard errors: *p < 0.05, * *p < 0.01 and * **p < 0.001. 
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and cooling distance in the mentioned cities would be greater than those 
we reported; It is evident that the cities reviewed are large in size and 
population that have large green areas, not comparable to the small city 
of Granada. However, and seeing our results, this circumstance by itself 
would not justify this circumstance. It would be necessary to take into 
account both the latitude of the green spaces analyzed and the maximum 
environmental temperatures that they can reach in warm periods. If 
these are very high, the minimization of temperatures stagnates even 
though the size of the green zone increases as has been reported. This 
discrepancy has been verified in other investigations (Lin et al., 2015; Lu 
et al., 2012) reaching the hypothesis reviewed here. Thus, for example, 

the study on 4 green areas in the city of Wroclaw (Poland) reported a LST 
minimization distance of between 110 and 295 m (Blachowski and 
Hajnrych, 2021), while the study on 29 green areas cities in China, re
ported that in small cities, the cooling distance did not exceed 300 m. 
Finally and close to the city under study, Madrid (Spain), reported a 
distance of between 130 and 280 m (Aram et al., 2020). These studies 
are in line with the results reported in our research and could transfer a 
possible relationship between the size of cities and that of green areas. 

The fact that a lower daytime LST was observed in green areas 
having trees as opposed to green areas with large expanses of grass, and 
vice versa at night, has been previously reported (Brown et al., 2015; 

Table 9 
Pearson’s correlation coefficient and ρ value between nocturnal PCI and variables.   

PCI LST NDVI PV LSI DEM SVF Wind Radiation 

PCI 1            
LST 0.929 * ** 1           
NDVI -0.418 * -0.443 * 1          
PV -0.062 -0.062 0.601 * * 1         
LSI 0.195 * * 0.044 -0.407 * 0.000  1       
DEM 0.074 -0.073 0.289 0.549  0.103 1      
SVF -0.117 0.034 -0.446 * -0.574 *  -0.047 -0.388 1     
Wind -0.064 -0.038 0.069 -0.032  -0.125 0.427 0.368  1   
Radiation -0.146 0.036 -0.430 * -0.578 * *  -0.303 -0.488 * -0.923 * **  0.254  1 

Robust standard errors: *p < 0.05, * *p < 0.01 and * **p < 0.001. 

Table 10 
Data Panel results for PCI and NDVI, PV and LULC indices.   

Daytime Nighttime 

Variables β ρ sd β ρ sd 
LST 0.1916 0.000 * ** 0.0058 0.3128 0.000 * ** 0.0055 
NDVI -3.8047 0.000 * ** 1.0189 -2.2781 0.021 * 0.9908 
PV -1.1096 0.000 * ** 0.0860 -1.4029 0.012 * 0.5592 
LSI 0.0425 0.661 0.0970 -0.1137 0.000 * ** 0.0096 
DEM 0.0147 0.000 * ** 0.0001 0.0045 0.262 0.0040 
SVF 3.5999 0.081 2.0663 -0.6238 0.009 * * 0.5019 
Wind 0.2503 0.494 0.3661 0.3234 0.747 1.0008 
Radiation -0.0015 0.019 * 0.0006 -0.0011 0.000 * ** 0.0009  

R2 = 0.82 F= 36454 Prob>chi2 = 0.000 R2 = 0.92 F= 45123 Prob>chi2 = 0.000 

β: Coefficient; sd: Standard deviation; Robust standard errors: *p < 0.05, * *p < 0.01 and * **p < 0.001. R2: Linear regression coefficient. F: F Statistic. 

Table 11 
Pearson’s correlation coefficient and р value between diurnal distance and variables.   

Distance NDVI PV LSI DEM SVF Wind Radiation 

Distance 1            
NDVI 0.1120 * 1           
PV 0.1606 0.6096 * * 1          
LSI 0.5952 * * -0.2699 * 0.0722  1        
DEM 0.0948 0.4010 0.5980 * *  0.0169 1       
SVF 0.1175 -0.4340 * -0.5771 * *  -0.1207 -0.4207  1     
Wind 0.3182 * 0.2112 0.0055  -0.3178 0.3979  0.3517  1   
Radiation -0.0706 -0.4656 * -0.5923 * *  -0.3505 -0.4942 * **  0.9288  0.2643  1 

Robust standard errors: *p < 0.05, * *p < 0.01 and * **p < 0.001. 

Table 12 
Pearson’s correlation coefficient between nocturnal distance and variables.   

Distance NDVI PV LSI DEM SVF Wind Radiation 

Distance 1         
NDVI 0.1013 1        
PV 0.2598 * * 0.6096 * * 1       
LSI 0.3698 * * -0.2699 * 0.0722  1     
DEM -0.1016 * 0.4010 0.5980  0.0169 1    
SVF -0.0164 -0.4380 * -0.5771 * *  -0.1207 -0.4207 1   
Wind 0.0761 0.2112 0.0055  -0.3108 0.3979 * 0.3517 1  
Radiation -0.0496 -0.4656 * -0.5923 * *  -0.3505 -0.4942 0.9288 * ** 0.2643 1 

Robust standard errors: *p < 0.05, * *p < 0.01 and * **p < 0.001. 
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Spronken-Smith, 2010; Yoshida et al., 2015). It is due to the shade 
produced by trees in the morning, which minimize the solar radiation 
received and therefore the LST. At night, heat from the ground tends to 
move into the atmosphere. If there is an area of trees with large vege
tation, it makes the SVF small, so the heat is retained for a longer time 
between the ground and the treetops and therefore, the temperature of 
that area is maintained for a longer time. and zone cooling is delayed. 
This circumstance has been studied by other authors (Chun and Guld
mann, 2014; Hidalgo and Arco, 2021; Zakšek et al., 2005), reaching 
conclusions similar to those reported here. 

5. Conclusions 

In recent years, the study of PCI and the cooling effect of green areas 
as mitigation measures for LST and SUHI in urban areas has become 
consolidated as a very important field of research. There is a dire need to 
know what elements alter urban climates in order to establish mitigation 
measures in the framework of future urban proposals, to improve the 
quality of life of citizens by increasing environmental comfort. 

Based on the results obtained in our research, it can be concluded 
that there exists a relationship between the surfaces of green areas in 
urban areas, the decrease in temperatures they generate, and the cooling 
distance around the area. Accordingly, the area around the green zone 
that benefits from the cooling effect is greater as the surface of the green 
zone increases. Furthermore, green areas with trees have lower LST in 
the morning than green areas without trees, while an inverse effect 
occurs at night. 

The method carried out in this investigation, which is based on high- 
resolution Sentinel 3 satellite images, is feasible to determine the extent 
of cooling. It does not require complicated on-site measurements and 
satellite images are free and easily accessible. To maximize the mitiga
tion effects on the LST of cities, we can conclude that it is recommended 
to have green areas and, in cases where possible, increase their surfaces, 
preferably with grass and tree floors that do not imply an SVF greater 
than 0.8. At the same time, and when this is not possible due to the 
already built urban configuration, it is necessary to naturalize the 
streets. For this, it is necessary to transform the spaces by reducing the 
areas for vehicles and increasing the circulation areas for pedestrians 
and bicycles with an important integration of green areas and trees. 

Such findings provide new evidence of the correlation between the 
LST, SUHI and PCI in urban areas and green areas. This knowledge is 
helpful for urban planning and management, and for the establishment 
of guidelines for public administrations. In short, new green areas in 
urban areas ultimately make them more resilient to increases in LST and 
climate change. 
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