
Information Fusion 100 (2023) 101957

A
1
n

F

F
p
D
D
a

b

c

d

A

K
A
O
F
D
M
P

1

t
r
t
f
t
t
o
d
c
l
a
t
r
d
d

S

h

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

using anomaly detection with false positive mitigation methodology for
redictive maintenance under multivariate time series
avid López a,c, Ignacio Aguilera-Martos a,c, Marta García-Barzana d, Francisco Herrera a,c,
iego García-Gil b,c, Julián Luengo a,c,∗

Department of Computer Science and Artificial Intelligence, University of Granada, Spain
Department of Software Engineering, University of Granada, Spain
Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071, Granada, Spain
ArcelorMittal Global R&D, New Frontier, Digital Portfolio, Spain

R T I C L E I N F O

eywords:
nomaly detection
utlier detection
alse positive mitigation
eep learning
ultivariate time series

redictive maintenance

A B S T R A C T

Anomaly detection aims to identify observations that differ significantly from the majority of the data. Time
series, which are data with a temporal component, is often used for anomaly detection. Identifying anomalies
is not perfect and may produce many false positives, which labels standard data as anomalous. In this context,
false positive mitigation is the task of reducing the number of false positives tagged by the anomaly detector,
and thus both problems are closely linked. Moreover, current techniques for false positive mitigation are ad-
hoc solutions for specific data sets. In this paper, we propose a novel two-stage methodology for Multivariate
Anomaly Detection for Time Series and False Positive Mitigation, namely 𝐹𝐴𝐷𝐹𝑃𝑀 methodology, which
creates the fusion of two learning models. The first stage is a multivariate anomaly detection stage. The second
stage consists of training a new classifier on the false and true positives from the anomaly detector, which
refines the observations labeled as anomalous by the anomaly detector to obtain more accurate and higher-
quality results. Experiments using two benchmark data sets, as well as a real-world case study have shown
the performance and validity of the proposal.
. Introduction

To keep track of a system, a set of data is generated that reproduces
he behavior of such a system. When the system begins to fail for some
eason, anomalies begin to appear in the data. Therefore, detecting
hese anomalies in the data allows knowing if the system is facing a
ailure [1–3]. The task of finding observations that differ greatly from
he rest of the data is known as anomaly detection [1]. Observations
hat share this unusual behavior are typically referred to as outliers
r anomalies. There is a wide variety of domains in which anomaly
etection is useful, such as intrusion detection [4], sensor networks [5],
redit-card fraud detection [6], health care [7] or industrial anoma-
ies [8]. For example, in a predictive maintenance scenario, detecting
nomalous behavior in a motor may indicate that it is close to failure,
herefore, detecting anomalies before it breaks down can greatly reduce
epair costs. Anomaly detection is becoming increasingly important
ue to the relevance of the benefits it brings and the huge variety of
omains in which it can be applied. Since anomaly detection tasks are
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typically tracking a system’s behavior over time, data is rarely static.
The most common scenario is to face a time component in the data.

Time series are data that have a temporal component, i.e., each
observation is not independent, but related in time. Time series can be
classified into univariate, which has only one feature, and multivariate,
which has more than one feature. Most proposals for time series focus
on univariate time series so there are not many alternatives for mul-
tivariate problems. Time series will show different values in different
time periods without necessarily indicating an anomaly. For example,
an engine may have a higher temperature than normal at one instant in
time, but such overheating may simply be due to a higher workload and
not to a failure. Learning the behavior of a time series can be used to
analyze future data and thus anticipate a failure and prevent potential
damage [9,10]. Within a time series, an anomaly is usually determined
by several consecutive anomalous values in time [11], which is a major
drawback for traditional anomaly detection problems since they deal
with anomalies without taking into account the time component [12].
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Fig. 1. Illustration of anomalies in a two-dimensional data set.
Considering the characteristics of the anomaly detection problems
described above, it is appropriate to make use of an algorithm that
takes into account the time component in the time series anomaly
detection problems. When facing multivariate time series, current state-
of-the-art is populated by recurrent neural networks such as Long
Short-Term Memory networks (LSTMs) and Gated Recurrent Unit net-
works (GRUs) [13–15]. A recent and good performance algorithm is
the temporal convolutional networks (TCN) [16,17]. However, although
these approaches are models capable of obtaining quality results, they
are not exempt from the presence of false positives. Therefore, in data
sets that are difficult to analyze, a subsequent false positive mitigation
stage may be applied to improve the quality of the results as stated
in [18–20]. Nevertheless, current false positive mitigation techniques
are ad-hoc solutions and are limited to the data sets they analyze.

In this paper, we tackle the false positive problem in anomaly
detection scenarios by proposing a Fusing Anomaly Detection with
Positive Mitigation methodology, namely 𝐹𝐴𝐷𝐹𝑃𝑀 methodology, for
multivariate time series anomaly detection problems. It can effectively
detect and reduce false positives in supervised data sets. Below, we
provide an overview of how the 𝐹𝐴𝐷𝐹𝑃𝑀 methodology works in two
stages:

1. The first stage is to train a multivariate anomaly detection
model.

2. The second stage aims to reduce false positives. A classification
model for tabular data is built from the predictions made.

We study the performance of 𝐹𝐴𝐷𝐹𝑃𝑀 methodology in two data
sets commonly used in the literature (a constructed data set from
SKAB [21] and a data set extracted from 𝑘𝑎𝑔𝑔𝑙𝑒 [22]), as well as in
a real-world case of study using sensor data provided by the com-
pany 𝐴𝑟𝑐𝑒𝑙𝑜𝑟𝑀𝑖𝑡𝑡𝑎𝑙. The results achieved show that the methodology
proposed in this paper is capable of achieving better results than the
current state-of-the-art by reducing the number of false positives of the
time series anomaly detection method tested.

The remainder of this paper is organized as follows: Section 2
presents the concept and the current state of anomaly detection prob-
lem and false positive mitigation problem. Section 3 explains in detail
the proposed 𝐹𝐴𝐷𝐹𝑃𝑀 methodology followed by the study performed
for this paper. Section 4 details the data sets analyzed and the frame-
work setup. Section 5 shows the experiments carried out to assess the
performance of the methodology in the benchmark data sets. Section 6
shows the performance of the methodology in a real-world case of
study. Finally, Section 7 concludes the paper.

2. Predictive maintenance based on the anomaly detection
problem

Predictive Maintenance accounts on machine learning models to
determine when maintenance actions are necessary. It is based on
continuous monitoring of a machine or process, feeding the anomaly
detection model, and allowing maintenance to be performed only when
it is needed. As such, the accuracy of the anomaly prediction model is
2

key to ensuring precise maintenance scheduling and will be covered in
the rest of this section.

In this Section, we describe the anomaly detection and false positive
mitigation problems as well as the different evaluation metrics avail-
able for them. Section 2.1 details the problem of anomaly detection and
its characteristics. Section 2.2 briefly summarizes the state-of-the-art
techniques devised to deal with this problem. Examples of applications
of interest are also included. Section 2.3 explains the evaluation met-
rics for anomaly detection problems and their characteristics. Finally,
Section 2.4 describes the false positive mitigation problem in anomaly
detection scenarios.

2.1. Anomaly detection fundamentals

An anomaly is an observation that does not follow the same pattern
as the rest of the data. Fig. 1 depicts a graphical representation of
anomalies in a two-dimensional data set. Clusters C1 and C2 are com-
posed of normal observations since practically all of the points belong
to these two regions. Cluster C3 contains very few observations since
it is an anomalous cluster. Observations O1, and O2 are completely
isolated and therefore are anomalous instances [1].

In the literature, we may find three different categorizations of
anomalous instances [23]:

• Point anomaly: This is the most frequent scenario in anomaly
detection. The anomalous instances are completely isolated from
the rest. In Fig. 1, O1 and O2 are point anomalies.

• Collective anomaly: The anomaly is a mixture of several anoma-
lous instances. For example, detecting a credit card theft may
involve detecting multiple bank account extracts.

• Contextual anomaly: An instance that is not anomalous could be
anomalous within a given context. For example, if we measure
the temperature of an engine in a range from 50 to 120 degrees.
A temperature of 80 degrees seems to be completely normal, but
if that value is given when the engine has no working load, the
estimated temperature should be lower.

Anomalies are related to noise, but the two concepts should not be
confused. Noise has the same behavior described in Fig. 1, but, noise is
of no interest to the data analyst while anomalies are. Noise is produced
by an alteration in the data, therefore, it does not reflect the original
distribution of the data. Moreover, noise damages the quality of the
data and those observations should be either fixed or removed [24–26].
Anomalies are valuable information that has to be detected, extracted,
and analyzed.

Anomaly detection is used in a wide variety of domains such as
sensor networks [5], intrusion detection [4], industrial anomalies [8],
credit-card fraud detection [6], health care [7], and much more [23].
The great number of domains that involve the anomaly detection
problem, and the increasing number of sensors in all fields are making
anomaly detection gain in popularity.

Regarding the output of an anomaly detection algorithm, it can be
of two different types [1]:
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• Labels: The return value is a binary label for each instance
indicating which instances are normal and which are anomalies.

• Scores: The return value is an anomaly score for each instance.
The score indicates the probability of the instance being anoma-
lous, or it can also serve as a quantitative measure of the degree
of anomaly in the instance. Which scores are anomalous should
be studied as well.

As mentioned above, we focus on anomaly detection for time se-
ies. A time series is a collection of data that follows a chronological
rder. Some of its characteristics are huge size, high dimensionality,
nd continuous updating. Time series have become very important
s they are used in many areas, such as the examples that follow.
raud detection consists in finding unusual movements in commercial
pplications such as banks, phone companies, credit cards, etc [6].
ntrusion detection refers to the detection of anomalous activities in
computer network [4]. A high number of false alarms rate may arise
ue to a large amount of information flow. Those unusual movements
re related to a thief’s identity or theft attempts by a person. Moreover,
nomaly detection can be applied in the world of the industry, detecting
ome damage in structures, engine sensor instrumentation errors, or
nexpected behavior in the engines of an assembly line [8]. Other
pplications of interest are anomaly detection in text data, anomaly
etection in sensor network [5], or image processing [27].

.2. Deep learning for time series anomaly detection

Before the advent of Deep Learning, the types of algorithms used to
olve anomaly detection problems typically include classical machine
earning algorithms (KNN, k-Means, or HBOS), outlier detection algo-
ithms (Isolation Forest or LOF), or Data Mining algorithms (STOMP or
ST) among others [28].

Nowadays, state-of-the-art in time series anomaly detection focuses
n the use of recurrent neural networks (LSTM and GRU) and temporal
eural networks (TCN) [13–15]. Here, we briefly describe the func-
ioning of some of the most recent and best-performing methods to be
onsidered later on:

• TCN [17]: The TCN model focuses on the use of an encoding-
decoding framework that uses a single set of computational
mechanisms (1D convolutions, pooling, and channel normaliza-
tion) to hierarchically capture low-, medium- and high-level
temporal information. The 1D convolutions are applied to view
the changes of the features at lower levels over time, pool-
ing is used to compute long-range temporal patterns efficiently,
and normalization achieves better robustness towards various
environmental conditions.

• WeiXiaoyan [29]: To create a spatiotemporal deep learning model
LSTM and a CNN are combined. CNN is used to extract relevant
features. The features are decomposed into sequential compo-
nents and provided to repetitive LSTM units for analysis. The
output of the last step of the LSTM is provided to the fully
connected layer for the prediction.

• YiboGao [30]: The use of a convolutional neural network works
quite well on certain problems, however, it does not take into
account the temporal characteristics of the problem. To solve this,
a residual-based temporal attention block (RTA-block) is added to
the architecture. The RTA-block uses residual learning to generate
temporal attention weight, which allows the extraction of more
information from the features.

Please note that TCN is devised for univariate time series. Therefore,
or the sake of its use in more general scenarios, a modified multivariate
odel will be considered. This multivariate version of TCN works in a

imilar fashion to TCN by only adapting the network input to accept
ultiple input features. For the sake of simplicity, we will refer to this
3

ultivariate modification as TCN during the rest of this paper.
Table 1
Confusion matrix.

Prediction

Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Finally, since the current state-of-the-art is focused on neural net-
works, the above-described algorithms will be considered the main
anomaly detectors in this work. Their implementation can be found in
the ‘‘Time Series Feature Extraction using Deep Learning library’’ [31].

2.3. Evaluation of anomaly detection problems

To analyze the performance of an anomaly detection algorithm, four
metrics are commonly used, which are represented in the confusion
matrix shown in Table 1. Both true negatives and true positives are
the most important and regarded values, they represent that the model
is getting the prediction right.

High numbers of FPs or FNs are regarded as problematic. There are
two main measures computed from the confusion matrix, sensitivity
( 𝑇𝑃
𝑇𝑃+𝐹𝑁 ) which indicates the ability to label as positive the TPs, and
pecificity ( 𝑇𝑁

𝑇𝑁+𝐹𝑃 ) which indicates the ability to label as negative the
TNs. However, there is a trade-off between both measures, increasing
one means decreasing the other, so finding the best possible adjustment
is a challenging task and it will depend on the problem to be treated
which measure will take precedence. There is another trade-off between
𝑇𝑃𝑠 and the false positive rate (𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑃 ). Increasing 𝑇𝑃𝑠 usually
esults in a higher 𝐹𝑃𝑅 because more importance is given to positive
bservations and therefore although more positive observations are
abeled correctly, negative observations will also be labeled as positive.

distinguishing feature of anomaly detection problems is that the
umber of normal observations is much larger than the number of
nomalous observations so trying to adjust the model to focus on
nomalous observations results in an increment of the number of FPs,
hus generating unnecessary alarms. Moreover, it is possible for an
bservation to be labeled as positive when it is not depending on
ts context (leading to an FP), which is common when dealing with

problem involving time series [18,32]. Due to the complications
escribed above, it will be difficult for the model to find a good fit
n which the number of FPs is low, therefore, to correct models that
enerate a high number of FPs or to improve the quality of such a
odel, an FP reduction method should be applied.

.4. False positive mitigation

As mentioned above, an FP occurs when the model predicts an
nstance as positive when it is actually negative, which is a scenario
o be avoided. For example, in relation to the current coronavirus
isease 2019 (COVID-19), it is common to find PCR tests that resulted
n FPs. This means that these people must be quarantined, in many
ases preventing them from going to work, which entails economic
osses [33]. Another example focuses on the scope of cyber attacks in
ndustrial Control Systems (ICS), a high number of FPs results in a high
ate of false alarms, consequently, the system has to be checked more
han necessary resulting in lower performance. Therefore, the reduction
f FPs is of great importance [32].

It is very frequent to encounter the problem of a high number
f FPs when dealing with an anomaly detection problem. Typically,
n anomaly detection problems the data sets have a large number of
ormal observations while the number of anomalous observations is
mall due to a lack of data since anomalies are unusual events and occur
n exceptional occasions. This results in the detection model not being
ccurate enough, and therefore not being able to detect the anomalies
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Fig. 2. Flowchart of 𝐹𝐴𝐷𝐹𝑃𝑀 methodology.
as there are few observations. One way to fix this is to give more
importance to anomalous observations or to generate more synthetic
anomalous instances. However, this solution brings with it a higher
number of FPs [34].

Regarding the aforementioned issues, FP mitigation has an impor-
tant application in anomaly detection problems. However, most of the
information in the literature that focuses on dealing with FP mitigation
does not propose a general procedure but rather focuses on an ad-hoc
solution for the problem that cannot be generalized to other areas.

In [35] the authors argue that a CNN has a limited learning capacity,
so it may not learn all the fundamental features to distinguish the
structure of a nodule from other non-nodules. However, working with
several CNNs allows for dealing with more nodules. The proposal
consists of an ensemble of CNNs (E-CNNs) to allow different types of
nodules to be learned and thus reduce the number of FPs.

In [36] the authors reduce the FPs in the detection of pulmonary
nodules in chest radiographs using morphological features, the edge of
the rib, and nodule edge coverage feature. On the other hand, also in
the area of pulmonary nodule detection, the author in [37] reduces the
FP using the removal of the rib structure based on the left and right
lung area symmetry.

As a final example, in [38] the authors describe a technique for
anomaly detection that ensures that FPs are mitigated by pruning
unrelated anomalies while maintaining an updated threshold to be used
in the anomaly scoring system.

The examples provided above have good performance and quality,
however, although their techniques achieve a low FP rate, they cannot
be extrapolated to other problems. It is interesting and necessary to
have mechanisms that enhance the results of current anomaly detection
methods. That is, to have a proposal on FP mitigation that complements
and is capable of improving the results of an already trained anomaly
detection model, which would give great versatility to the study of
anomalies.
4

One approach to address the problem is the one proposed in [18],
which consists of pruning anomalies. In the problem addressed in the
mentioned article, there are a number of error sequences calculated
from an LSTM, whilst the idea is to prune these sequences to maintain a
current data context and to reduce the cost of memory and computation
time. The process consists of relabeling as normal those anomalous
sequences whose values do not exceed a threshold consecutively.

Another approach described in [19] is the use of an initial compo-
nent called ‘‘Process Action Monitoring Component’’, which is available
in anti-malware systems. A new data set is then generated with new
attributes generated by the component. This new data set is trained
using an artificial neural network model (ANN). The training of the
artificial neural network corresponds to the FP mitigation stage.

In [20], the authors follow the last idea described, this publication
proposes the use of a convolutional neural network (CNN) model for
the detection of pulmonary nodules. From the CNN model, a series of
attributes are extracted that will be the input of a new support vector
machine (SVM) classifier. This SVM model achieves a lower FP rate.

Approaching the problem of mitigating FPs in the same way as in
the three last-mentioned articles, applying a mitigation stage after the
anomaly detection model, allows extrapolation of these mitigation tools
to a wide variety of areas. In addition, there are a large number of tools
to be employed at the mitigation stage that has not yet been studied.

The proposals in the three last-mentioned articles are limited to
a specific domain and data sets, moreover, in [19,20] the proposed
data sets do not have a time component. 𝐹𝐴𝐷𝐹𝑃𝑀 methodology is
designed in such a way that it can be applied to time series. In addition,
the proposed FP mitigation stage of the 𝐹𝐴𝐷𝐹𝑃𝑀 methodology can be
applied to any data set. Given the novelty of this idea, there has not yet
been an experiment in which an algorithm can achieve good mitigation
of FPs. In [39], authors state that deep learning models are not always
better in tabular data, which encourages the use of different methods
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Fig. 3. Diagram of how data is partitioned during the steps of 𝐹𝐴𝐷𝐹𝑃𝑀 methodology.
(SVMs, Random Forest, ANNs, and ensembles) to analyze their behavior
for different types of problems.

3. FADFPM: Fusing anomaly detection with false positive mitiga-
tion methodology for predictive maintenance under multivariate
time series

In this section, we describe in depth the 𝐹𝐴𝐷𝐹𝑃𝑀 methodology
for solving anomaly detection problems in multivariate time series.
Fig. 2 depicts the flowchart of the proposal. Our proposal consists of
two stages: In the first stage, a portion of the training partition is fed
to an anomaly detection algorithm. In the second stage, the FPs are
mitigated using a trained classifier on the TPs and FPs generated by
the anomaly detection model. Thus, for a given test series, the final
output will comprise the decision from the anomaly detector and the
FP mitigation classifier.

Since two models are created in 𝐹𝐴𝐷𝐹𝑃𝑀 , namely the anomaly de-
tector and the FP classifier, two splitting steps are also performed: one
for the proper anomaly detection model and one for the classifier (FP
mitigation stage). The full partitioning generated by the two 𝐹𝐴𝐷𝐹𝑃𝑀
stages is represented in Fig. 3, also naming each split with its own
nomenclature that will be introduced in the subsequent sections.

The two stages involved in 𝐹𝐴𝐷𝐹𝑃𝑀 are detailed in their corre-
sponding sections: Section 3.1 describes the application of the anomaly
detection algorithm in the first stage, whereas Section 3.2 focuses on
the FP mitigation stage. Finally, Section 3.3 describes how to create
the validation set to apply a time series classifier if maintaining the
temporality in the mitigation stage is advisable.

3.1. Anomaly detection stage

As mentioned earlier, the anomaly detection stage consists in train-
ing a base model to classify the data, which will also provide FPs
that will be used to train the model for the FP mitigation stage. For
this purpose, the data set is divided into three portions, train from
0 to 𝑚, validation from 𝑚 to 𝑢 and test from 𝑢 to 𝑛, where 𝑛 is the
size of the complete data set. The anomaly detection model is trained
with the train portion and the labels of the instances from 𝑚 to 𝑛,
i.e. validation and test, are computed. The computed labels from the
validation portion are compared with the real labels to obtain the FPs
along with the TPs, which will be used to build the new data set to
be used by the FPs mitigation stage. The labels computed as positive
for the test portion will be replaced based on the output of the false
positive mitigation model.

It is interesting to mention that since the methodology is focused on
dealing with time series, the concept drift problem can have a negative
5

impact on the performance. Therefore, it would be convenient to re-
train the anomaly detection model from time to time to try to avoid it.
However, it will depend on the data set being dealt with.

The rest of this section describes the anomaly detection stage, which
is represented in Fig. 2 by the term Stage 1.

Given a time series  ⊆ R (representing the features of the time
series to be analyzed) with its corresponding labels 𝑌 where 𝑦 ∈ 𝑌 is
contained in {0, 1} (representing the labels of the data set to be ana-
lyzed), two subsets called 𝑇 𝑟 (features of the training subset) and 𝑇 𝑠
(features of the test subset) are constructed with their corresponding
subsets of labels 𝑌𝑇 𝑟 (labels of the training subset) and 𝑌𝑇 𝑠 (labels of
the test subset). 𝑇 𝑟 corresponds to the first 𝑚 instances of the data set,
where 𝑚 is defined by the analyst. 𝑇 𝑠 correspond to the instances from
𝑚 to 𝑛 where 𝑛 is the size of the complete data set:

 , 𝑌 →

{

 𝑖
𝑇 𝑟, 𝑌

𝑖
𝑇 𝑟 ∶ 𝑖 = 0,… , 𝑚

 𝑖
𝑇 𝑠, 𝑌

𝑖
𝑇 𝑠 ∶ 𝑖 = 𝑚 + 1,… , 𝑛.

(1)

A function 𝑓 is trained by 𝑇 𝑟 and applied to the subset 𝑇 𝑠, from
which scores are obtained and subsequently transformed into labels.
Let 𝑆𝑇𝑠 be the result of applying the scoring function to the test subset.
We define 𝐿 as a labeling transformer from scores to labels, therefore
a function from real numbers to the set conformed by 0 and 1. The
process is as follows:

𝑓 (𝑇 𝑠) = 𝑆𝑇 𝑠
⏟⏟⏟

⊆R

→ 𝐿(𝑆𝑇 𝑠) = 𝐿(𝑓 (𝑇 𝑠)) = 𝐴𝑇 𝑠 ∶ ∀𝑎 ∈ 𝐴𝑇𝑠 𝑎 ∈ {0, 1}. (2)

After these steps, a first classification of the data set is obtained
(in some cases this may be sufficient because the number of false
positives obtained is very low or nonexistent.), however, the 𝐹𝐴𝐷𝐹𝑃𝑀
methodology involves applying a FP mitigation stage to improve the
quality of these initial results. Such a stage requires a portion of the
original training set in order to train the mitigation model, namely the
validation split, in which the anomaly detection technique is evaluated
and the TPs and FPs noted and extracted into a new training set.
The details of the mitigation stage are described in the following
Section 3.2.

3.2. False positive mitigation stage

As already discussed in Section 2.4, it is common in anomaly detec-
tion problems to reach a high number of FPs due to the large imbalance
in the data. Therefore, applying techniques that reduce the number
of FPs obtained by the anomaly detection model helps to achieve
improved performance in the solution of the problem. A mechanism
that gives good results is the one used in [19] and in [20], which
consists of applying classification techniques with the results of the
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nomaly detection model. In this way, the anomaly model learns the
ost important features and the classification model (mitigation stage)

efines the results.
However, the procedure used in [19,20] are limited to the char-

cteristics of the analyzed data sets and to the algorithm used before
he mitigation stage since this algorithm extracts specific characteristics
f interest for the data set being treated. Therefore, it is interesting to
onsider an FP mitigation mechanism that is not dependent on the data
et and the algorithm employed. The mitigation stage analyzes the FPs
omputed by the anomaly detection stage, using a classification model
or tabular data. The model is trained with the original instances of
he validation portion, but only those corresponding to FPs and TPs.
he classification model computes the labels of the test portion and the

abels computed by the anomaly detection model are compared. The
inal labels correspond to the labels of the anomaly detection model
ut those that were labeled as positive are replaced by the labels of the
lassification model (FPs mitigation model). The FP mitigation stage
see Stage 2 in Fig. 2) is detailed below as a continuation of the anomaly
etection stage.

The first 𝑢 instances of 𝑌𝑇 𝑠 (labels of the test subset) and 𝐴𝑇 𝑠
computed labels of the test subset) are compared with each other to
btain which instances correspond to the FPs and real anomalies. Let
𝐶𝑙 be the set of indices of FPs and real anomalies,

𝐶𝑙 = {𝑖 ∶ 𝑖 ∈ [0, 𝑢) ∶

{

𝑦𝑖𝑇 𝑠 = 0 and 𝑎𝑖𝑇 𝑠 = 1
𝑦𝑖𝑇 𝑠 = 1

}. (3)

From the indices 𝐶𝑙, a new set of data 𝑇 𝑟
𝐶𝑙 (representing the

eatures of the new data set used to train the classifier) with its cor-
esponding labels 𝑌 𝑇 𝑟

𝐶𝑙 (representing the labels of the new data set used
o train the classifier) is constructed. The test subset for the classifier
omposed by 𝑇 𝑠

𝐶𝑙 (representing the features of the test subset for the
lassifier) and 𝑌 𝑇 𝑠

𝐶𝑙 (representing the labels of the test subset for the
lassifier) are the remaining instances from 𝑢 to 𝑛. The definition of the
ets will therefore be:

𝑇 𝑟
𝐶𝑙 = {𝑥𝑖𝑇 𝑠 𝑖 ∈ 𝐶𝑙}, (4)

𝑌 𝑇 𝑟
𝐶𝑙 = {𝑦𝑖𝑇 𝑠 𝑖 ∈ 𝐶𝑙}, (5)
𝑇 𝑠
𝐶𝑙 = {𝑥𝑖𝑇 𝑠 𝑖 ∈ 𝑢,… , 𝑛} 𝑎𝑛𝑑 (6)

𝑌 𝑇 𝑠
𝐶𝑙 = {𝑦𝑖𝑇 𝑠 𝑖 ∈ 𝑢,… , 𝑛}. (7)

The last step will be to train a function 𝑔 with the new set 𝑇 𝑟
𝐶𝑙

nd apply it to the new set 𝑇 𝑠
𝐶𝑙 . The result of the former will be a

et of labels that are compared with the labels obtained by the previous
unction 𝑓 . The labels labeled as positive by 𝑓 are replaced by the labels
btained from the 𝑔 function:

𝑇 𝑠
6

(𝐶𝑙 ) = 𝑌𝑅𝑓 ∶ ∀𝑦 ∈ 𝑌𝑅𝑓 𝑦 ∈ {0, 1}. (8)
The new set 𝑌𝐹 represents the output of the methodology, i.e. the
abels that correspond to the last portion of the time series. These labels
re the ones computed by the anomaly detection model but the ones
hat were labeled as positive are relabeled by the output of the FP
itigation model.

𝐹 =

{

𝑦𝑖𝑅𝑓 if 𝑎𝑖 = 1

𝑎𝑖 if 𝑎𝑖 = 0
𝑖 = 𝑢,… , 𝑛

𝑦𝑖𝑅𝑓 ∈ 𝑌𝑅𝑓 , 𝑎
𝑖 ∈ 𝐴𝑇 𝑠.

(9)

In this way, the potentially most problematic instances are labeled
by a model that has been specialized in that type of observation.
Therefore, the number of FPs is reduced since those observations are
reclassified by a model that has only trained with those observations
in addition to the truly anomalous ones, which must be different from
the observations labeled as FPs since they are actually normal.

3.3. Maintaining temporality in the false positive mitigation stage

Since we are focusing on a time series anomaly detection problem,
applying the FP mitigation technique described in the previous section
will result in the loss of the temporality of the data as the FPs obtained
in the first model (anomaly detection stage) are most probably not
consecutive.

This should not be a problem, however, two different approaches
are proposed in view of this characteristic. The first only takes the FPs
and TPs to build 𝐶𝑙 as explained in Fig. 3. The second approach aims
to maintain the temporality in the data, enabling a time series classifier
to be used as an FP classifier, instead of a tabular classifier as described
in the previous section. In order to do so, we consider the 𝑠 instances
prior to an FP or TP, thus building a data set of time sequences (Fig. 4)
aiming to better exploit the original time dimension of the data. Both
versions are analyzed in Section 5.

Please note that the 𝐹𝐴𝐷𝐹𝑃𝑀 methodology is focused on time
series, the mitigation stage can be applied to both time series and
non-time series problems due to the loss of temporality.

4. Experimental framework

This Section describes the data sets used for the analysis of the
proposal, the algorithms used in the experimentation, and a description
of the setup in which the experimentation has been performed. In Sec-
tion 4.1, we describe the data sets that have been utilized in previous
research studies and the real case of study data set. Section 4.2 de-
tails the algorithms and their parameters used in the experimentation.

Finally, Section 4.3 describes the experimental setup.
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4.1. Data sets description

Two different types of data sets have been selected for assessing the
performance of the 𝐹𝐴𝐷𝐹𝑃𝑀 methodology.

Benchmark data sets. Two data sets previously analyzed in the litera-
ture have been used for comparison with other techniques. The first
one is a data set constructed from the Skoltech Anomaly Benchmark
(SKAB) data sets designed for evaluating the anomaly detection al-
gorithms [21]. SKAB contains up to 35 data sets in 𝑐𝑠𝑣 format, the
data sets from the valve1 section which contains a large number of
measurements for a single day have been merged. The final data set is
therefore obtained with 18,163 observations and 10 features.

The second data set has been extracted from 𝑘𝑎𝑔𝑔𝑙𝑒 [22]. There
is no information as to what the data set represents, however, it is a
multivariate data set in which there are a large number of observations,
which are quite unbalanced since only 0.09% of observations are
anomalous. Therefore, it is an ideal data set with which to test the
efficacy of 𝐹𝐴𝐷𝐹𝑃𝑀 methodology as well as having the possibility to
compare with studies already carried out with this data set. The data set
contains 509,633 observations and 11 features. Both data sets have
been preprocessed, scaling it to the zero–one range. No features have
been removed.

ArcelorMittal real case of study. Data from one of ArcelorMittal’s ma-
chinery predictive maintenance1 has been provided directly by the
company. They suffer breakdowns frequently, because of the hostile
environment where these assets are deployed. The main problem is
that some failures involve machinery being down for several days.
That period when the machinery is idle results in big losses for the
company. The data provided is composed of the sensor information of
one of their production machines, as well as related information such
as contextual information, failures, etc. The features of the data set are
built from the information of the individual sensors. These variables,
model different properties of the machinery, most of them being of
a real nature. The data set has 40 million instances corresponding to
almost 2 years of measurements, and each instance has more than
100 variables. The objective is to detect these failures early enough to
minimize the repair periods for these machines. We are going to work
with subsets of one month as this is sufficient to represent the behavior
of the complete data set. Furthermore, training the model every month
avoids problems such as concept drift, since depending on the period
of the year the range of values of the variables is different, for example,
in summer values such as temperature or vibration will be higher than
in winter. The data set has been preprocessed, scaling it to the zero–
one range. Also, six features have been removed from the total of 112,
because they have a constant value. Thus the data set used has 168,956
observations and 106 features.

4.2. Algorithms used in the experimentation

This section contains the algorithms used in the experimentation as
well as the parameters that have been optimized for each algorithm.

In addition to the TCN model, we have selected two novel recurrent
neural network models for the anomaly detection stage: 𝑌 𝑖𝑏𝑜𝐺𝑎𝑜 [30]
and 𝑊 𝑒𝑖𝑋𝑖𝑎𝑜𝑦𝑎𝑛 [29]. However, as mentioned earlier, any anomaly
detection method can be applied to FADFPM methodology. The same
is applicable to the FP mitigation stage, so several classical algorithms
have been selected in addition to more recent algorithms to test
different approaches.

In Table 2 we can observe the complete list of the parameters
optimized for all algorithms employed. The parameters for 𝐹𝐴𝐷𝐹𝑃𝑀
methodology are the necessary parameters for one anomaly detection

1 The complete, anonymized dataset with a brief explanation of its structure
s available at https://github.com/ari-dasci/OD-TINA
7

Table 2
Complete list of all parameters optimized for all algorithms used in the experimentation

Algorithm Parameters

Anomaly Detection

TCN batch_size, dropout, epochs, kernel_size, levels, learning_rate,
optimizer, number_of_hidden_units

YiboGao batch_size, epochs
WeiXiaoyan batch_size, epochs

Classification

KNN n_neighbors, weights, algorithm, leaf_size, p (power
parameter for the Minkowski metric)

SVM C (regularization parameter), kernel, tol (tolerance for
stopping criterion), gamma

RANDOM FOREST min_samples_split, criterion, min_samples_leaf,
min_weight_fraction_leaf, max_depth, n_estimators

XGBOD learning_rate, min_child_weights, max_delta_step, subsample,
subsample_bytree, gamma, max_depth, n_estimators

XGBOOST booster, eta (learning_rate), min_child_weight, max_delta_step,
sampling_method, reg_lambda, alpha, num_round, threshold,
gamma, depth

TABNET n_d (dimension of the prediction layer), n_a (dimension of
the attention layer), n_steps, learning_rate, gamma

NODE num_layers, num_trees, dropout, threshold_init_beta,
learning_rate, gamma, depth

1D-CNN batch_size, epochs

model and for one classification algorithm, these parameters will be
different according to the mitigation algorithm to be used. Anomaly
detection problems are data-dependent. Due to this fact, the parameters
can hardly be generalized to another problem. Therefore, to find the
optimal performance, the correct combination of parameters must be
computed. For this task, we have chosen a hyper-parameter opti-
mization framework called Optuna [40] to perform a hyper-parameter
optimization. This framework aims to build the parameter search space
for the hyper-parameters dynamically. We have employed the F1-score
measure as an objective value to optimize.

4.3. Experimental setup

This section will detail the evaluation measure used, the validation
scheme when splitting the data set for each 𝐹𝐴𝐷𝐹𝑃𝑀 methodology
stage, and the hardware specifications used. Performance is evaluated
using the F1-score metric. This metric has been widely employed in
outlier research [1,2,23,41]. The F1-score is the harmonic mean of
the precision (the number of TP results divided by the number of all
positive results) and recall (the number of TP results divided by the
number of all samples that should have been identified as positive).

𝐹1 =
2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙−1
= 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(10)

In the experimentation, we divide the complete data set into two
subsets, train, and test, which contain 80% and 20% of the data
respectively. The training subset (𝑋𝑇 𝑟) is divided into two subsets
again, the size of the subsets will be 60%–40% for the training set
and the validation set respectively for the anomaly detection model
partitioning. With the FP and TPs of the validation subset, the data set
for the classification stage is built. Finally, we measure the quality of
the methodology with the test subset. Percentages have been chosen to
train the anomaly and FP detection models correctly. However, this is
a problem-dependent parameter.

The experiments have been carried out in a server with the fol-
lowing hardware specs: 2 𝑥 Intel Xeon CPU E5-2698, 16 cores per
processor (32 threads), 2.30 GHz (3.60 GHz in turbo mode), 512 GB
RAM DDR4, and 8x Nvidia Tesla V100 32Gb GPUs. Regarding software,
we have used the following configuration: Python 3.8, Pytorch 1.9.0,
cuda toolkit 10.2 and scikit-learn 0.24.2.

https://github.com/ari-dasci/OD-TINA
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Table 3
F1-score for the SKAB and Kaggle data sets. Cells in gray indicate a worse result with respect to the base without
mitigation anomaly detection model while bold numbers indicate the best result for that data set.

F1-Score
Data set SKAB Kaggle

Original paper
results 0.79 0.985

No mitigation Anomaly detection
algorithms

TCN Yibogao WeiXiaoyan TCN Yibogao WeiXiaoyan
0.9982 0.9515 0.9298 0.9921 0.9914 0.9896

Mitigation

KNN 0.9982 0.9496 0.9333 0.9997 0.9988 0.9987
SVM 0.9989 0.9518 0.9296 0.9999 0.9999 0.9997

RANDOM FOREST 0.9982 0.9515 0.9390 0.9987 0.9985 0.9987
XGBOD 0.9982 0.9503 0.9409 0.9999 0.9999 0.9999

XGBOOST 0.9982 0.9416 0.9260 0.9999 0.9999 0.9999
TABNET 0.9989 0.9525 0.9296 0.9999 0.9988 0.9994
NODE 0.9982 0.9515 0.9387 0.9987 0.9999 0.9994

1D-CNN 0.9982 0.9508 0.9278 0.9987 0.9988 0.9987
Table 4
Amount of FPs obtained for the SKAB and Kaggle data sets. Cells in gray indicate a worse result with respect to the
base without mitigation anomaly detection model while numbers in bold indicate the best result for that data set.

Amount of false positives
Data set SKAB Kaggle

No mitigation Anomaly detection
algorithms

TCN Yibogao WeiXiaoyan TCN Yibogao WeiXiaoyan
3 16 158 15,164 15,276 15,452

Mitigation

KNN 3 14 58 1 5 5
SVM 1 14 38 0 0 3

RANDOM FOREST 3 16 101 6 8 6
XGBOD 3 13 71 0 0 0

XGBOOST 3 7 4 0 0 0
TABNET 1 11 15 0 6 2
NODE 3 16 119 8 0 5

1D-CNN 3 15 47 7 6 7
5. FADFPM : anomaly detection analysis in benchmark data sets

This section analyzes the results achieved by the 𝐹𝐴𝐷𝐹𝑃𝑀
ethodology in terms of the detection of anomalies as well as the
itigation of FPs.

• Section 5.1 shows an analysis of the evaluation metric of the
public benchmark data sets.

• Section 5.2 shows the results of the FP mitigation.
• Section 5.3 compares the performance of the evaluation measure

against FP mitigation.
• Section 5.4 shows the additional study regarding the temporality

of the time series when constructing the data set for the FP
mitigation stage.

.1. Analysis of the evaluation metric

In this section, we show 𝐹𝐴𝐷𝐹𝑃𝑀 methodology performance for
the two benchmark data sets in terms of F1-score.

Table 3 shows the F1-score for the anomaly detection models, the
previous literature research, and the different classification models that
have been evaluated for the FP mitigation stage. The first two rows
equate to the previous literature research and the anomaly detection
models, both of which do not contain an FP mitigation stage. The other
rows refer to the classification models for FP mitigation. The results
obtained, which can be seen in Table 3, are explained in the following
itemize:

• For the SKAB data set and the TCN results, the mitigation stage
maintains the same results with the exception of the SVM and
TABNET models, which improves the results of the TCN.

• This behavior is due to the fact that the TCN results contain
only 3 FPs (see Table 4), therefore, the improvement that can be
obtained is very low.

• WeiXiaoyan’s results do contain a notable number of FPs, so more
models manage to improve the F1-score obtained and in greater
8

quantity.
• For the Kaggle data set where all models achieve near-perfect
F1, but the number of FPs is high (15,164), the mitigation stage
always manages to improve the results.

The anomaly detection algorithms alone are already able to improve
the results of previous studies. Moreover, the mitigation stage manages
to further improve the F1-score. It is important to emphasize the fact
that if the number of FPs obtained by the anomaly detection model
is very low, it will be more difficult for the mitigation stage to achieve
better results. However, depending on the algorithm used, it is possible
to improve the previous results. As the authors state in [39], deep learn-
ing models do not necessarily obtain the best results in classification
problems.

5.2. False positive mitigation

Table 4 shows the number of FPs obtained for the anomaly detection
models and for the different classification models. The first row equates
to the anomaly detection models without a FP mitigation stage. The
other rows refer to the classification models for FP mitigation.

As the results demonstrate, the FP mitigation stage reduces the
number of FPs obtained by the anomaly detection model in most cases.
As commented in the previous section, the number of FPs obtained
by the anomaly detection model influences the performance of the
classifier. The number of FPs mitigated in the Kaggle data set is bigger
because of this reason.

In Fig. 5, we show a graphical representation of how the FP miti-
gation stage is reducing FPs in the SKAB data set. Fig. 5(a) shows how
the XGBOOST algorithm is able to completely reduce the observations
outside the anomalous period, i.e. to mitigate FPs. However, it is also
reclassifying truly anomalous points as normal, therefore, the final
F1-score obtained is lower than before the mitigation stage. On the
other hand, in Fig. 5(b) the XGBOD algorithm, which does manage to
improve the F1-score, is not mitigating all the FPs after the last two
anomalous periods, but it is not failing to reclassify the TP observations.
Fig. 5(c) shows how the TABNET algorithm, which starts from a more
robust prior model, reduces the few FPs without encountering problems
in reclassifying truly anomalous points.
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Fig. 5. Plots to show the behavior of the mitigation stage algorithms. The red
dots represent the observations detected as anomalous, the blue dots represent the
observations represented as normal, and the green ones the observations that have
been relabeled. The red bands represent the real anomalous area of the data set.

Therefore, the mitigation stage is capable of improving the per-
formance of the anomaly detection algorithms. The quality of the
improvement will be determined by the performance of the previous
anomaly detection algorithm as it depends on the number of FPs
it generates. In addition, it is interesting to apply one algorithm or
another depending on the degree of mitigation to be applied.

5.3. Behavior of the evaluation metric when mitigating false positives

The results in Tables 3, 4, 6 and 7 depicts that depending on the
algorithm used, the number of FPs and the improvement in F1-score is
different. Moreover, in some cases, the number of FPs is reduced but
the F1-score obtained is of poorer quality.

The F1-score is related to precision and recall. Therefore, F1-score
can improve even if the number of FPs is lower because the number
of FNs is increasing. A good example of the trade-off between FPs and
9

Table 5
Results obtained by the TCN mitigation model applying different time periods before
each FP. The experimentation has been performed with the SKAB data set and for the
results of WeiXiaoyan. The sampling rate of SKAB dataset is 1 s.

Interval Length (s) 10 20 30 40

F1 score 0.9314 0.9346 0.9352 0.9387
FP 17 29 41 68

FNs can be seen in the behavior of the KNN model for the SKAB data
set and for the results of YiboGao. By applying this model to these
data set, FPs are reduced by almost a third, while the F1-score only
varies by one-tenth. As mentioned above, if the F1-score is maintained,
a decrease in FPs implies an increase in FNs. However, some algorithms
such as TABNET for the Arcelor data set and for the TCN results
manage to mitigate FPs completely without increasing FNs. The slight
improvement in F1 is because the number of mitigated FPs is low.

In addition, depending on the type of problem to be treated, it may
be interesting to reduce the number of FPs despite a small reduction
in the accuracy measure. The reason for this is that when dealing with
time series, the anomalies are usually clustered in a time window so
that a small increase in the number of FNs may mean a slightly later
detection (if it occurs at the beginning of the anomalous period) or
even be unimportant if it occurs at the end of the anomalous period.
However, mitigating FPs can result in eliminating false alarms, thus
avoiding unnecessary system downtimes.

5.4. Considering temporality in the FP mitigation stage: SKAB case of study

As indicated in Section 3.2, the classifier in charge of learning how
to mitigate FPs can be better contextualized by providing the prior
examples to a FP in the time series. In this section, our goal is to
analyze whether this added instances, which increase training time
and complexity in the FP mitigation stage, result in a performance
improvement.

In order to do so, we tested the behavior of a new data set con-
structed from the instances preceding the FPs. We have selected the
results of the WeiXiaoyan model for the SKAB data set for the anomaly
detection stage.

To better exploit the temporality of the window of instances pre-
ceding a FP, a TCN model has been trained for the FP mitigation stage
instead of a tabular classifier, provided the latter would not take into
account data temporality. Fig. 4 shows how this construction works.
The SKAB data set has been chosen, varying the number of instances
preceding a FP included in the window.

Results from Table 5 indicate that as the interval increases,
i.e., there are more normal observations in the data set, the mitigation
of FPs is reduced. However, the F1-score increases. With a smaller
interval, the proportion of anomalous observations is higher, enabling
the model to better classify the former. By increasing the interval
and, therefore, the number of negative observations, the model focuses
more on these, achieving a higher F1-score as it improves the normal
instances accuracy at the cost of misclassifying more anomalous obser-
vations. This behavior can be useful depending on the data set and the
requirements of the problem to be solved.

Using temporality in the mitigation stage still improves the results
without mitigation, but it performs differently from the other tabular
classifiers for FP mitigation considered in this research. The F1-score
achieved using temporality is very similar to the F1-scores of the best
classification models but at the cost of a significantly higher number
of FPs. The explanation for this behavior may be due to two factors.
The first factor is that the new data set constructed from intervals
of observations does not fully maintain temporality as the intervals
may be separated. The other factor is that the anomalies detected by
both methods (with and without temporality) are different, in which
case both methods could be complemented to obtain a possible better
performance. The second factor will be analyzed as a future line of

research.
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Table 6
F1-score for the real-world data set (Arcelor). Cells in gray indicate a worse
result with respect to the base without mitigation anomaly detection model
while bold numbers indicate the best result for each anomaly detection
algorithm.

F1-Score
Data set Arcelor

No mitigation Anomaly detection
algorithms

TCN Yibogao WeiXiaoyan
0.5939 0.4348 0.3508

Mitigation

KNN 0.5899 0.6378 0.6103
SVM 0.5969 0.6320 0.7122

RANDOM FOREST 0.5975 0.5899 0.5830
XGBOD 0.5971 0.6522 0.7074

XGBOOST 0.5896 0.6410 0.5830
TABNET 0.5988 0.6771 0.6989
NODE 0.5988 0.5972 0.5922

1D-CNN 0.5945 0.5908 0.5912

6. ArcelorMittal real case of study

Similarly to the previous section, this section shows the results
achieved by 𝐹𝐴𝐷𝐹𝑃𝑀 methodology in terms of the detection of
anomalies as well as the mitigation of FPs for the real-world case of
study. Section 6.1 shows an analysis of the evaluation metric of the
Arcelor dataset. Finally, the results of the FP mitigation are shown in
Section 6.2.

6.1. Analysis of the evaluation metric

Table 6 shows the F1-score for the anomaly detection models and
the different classification models that have been evaluated for the FP
mitigation stage. The first row equates to the anomaly detection models
which do not contain a FP mitigation stage. The other rows refer to the
classification models for FP mitigation.

As can be seen in Table 6, similar to the behavior in the benchmark
data sets, the TCN is the model that performs best before applying the
FP mitigation step. However, for this data set, the F1-score value for all
3 algorithms shows that the anomaly detectors are not achieving good
performance. As with the other data sets, the number of FPs obtained by
TCN is low (52), so even if some algorithms manage to eliminate them
completely, the F1-score improvement is very poor. On the other hand,
when using YiboGao and WeiXiaoyan as anomaly detection models,
which have a much lower F1-score and a higher number of FPs, the
mitigation stage is able to greatly improve the results obtained. In
fact, better results are obtained than those obtained using the TCN
as an anomaly detection model despite obtaining significantly better
initial results. Therefore, it is proved that for the mitigation stage, it is
desirable that the anomaly detection stage model obtains a significant
number of FPs so that the mitigation stage model is able to train
correctly.

6.2. False positive mitigation

Table 7 shows the number of FPs obtained for the anomaly detection
models and for the different classification models that have been eval-
uated for the FP mitigation stage. The first row equates to the anomaly
detection models, without a FP mitigation stage. The other rows refer
to the classification models for FP mitigation.

The results are very similar to those obtained for the benchmark
data sets, in fact, for this data set, all algorithms reduce the number
of FPs obtained by the anomaly detection algorithm. Regardless of
the anomaly detection algorithm used, the number of FPs is reduced
to 0 depending on the classification algorithm used. Similarly to the
benchmark data sets, a lower number of FPs does not imply a better
measure of accuracy. The best F1-score obtained belongs to the Yibogao
anomaly detection algorithm after applying the TABNET algorithm in
the mitigation stage. However, the number of FPs obtained is 208,
which is far from the 0 value reached by other classification algorithms.
Likewise, the reduction in the number of FPs obtained compared to the
anomaly detection algorithm is quite remarkable (208 vs. 2,479).
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Table 7
Amount of FPs obtained for the real-world data set (Arcelor). Numbers in bold indicate
the best result for each anomaly detection algorithm.

Amount of false positives

Data set Arcelor

No mitigation Anomaly detection
algorithms

TCN Yibogao WeiXiaoyan
52 2,479 2,926

Mitigation

KNN 32 488 512
SVM 20 235 395
RANDOM FOREST 14 0 0
XGBOD 18 356 488
XGBOOST 16 142 0
TABNET 0 208 301
NODE 0 82 18
1D-CNN 23 142 165

7. Conclusions

This work presents a novel methodology for dealing with FPs in
multivariate time series anomaly detection problems, which refines and
improves the quality of the results, namely the 𝐹𝐴𝐷𝐹𝑃𝑀 methodol-
ogy. It is divided into two stages. First, an anomaly detection model
is trained on a fraction of the training partition of the time series
and classifies the remaining validation part. The second stage builds
a classification model (FP mitigator) from a portion of the FP and TPs
obtained by the previous model in the validation portion. In the advent
of new observations, the FP mitigator revises the positive predictions
from the anomaly detector model, correcting the FP when necessary.

The results achieved show that the anomaly detection models cho-
sen in 𝐹𝐴𝐷𝐹𝑃𝑀 methodology are able to obtain quality results for
time series data sets, moreover, the mitigation stage achieves an FP rate
reduction. Furthermore, the mitigation strategy for FPs by applying a
classifier has been shown to work for a wide variety of algorithms. In
fact, the algorithm of choice for the mitigation stage will be important
depending on the final result to be obtained (reducing the highest
number of FPs, improving the accuracy measure, or a balance between
the two). The number of FPs obtained by the anomaly detection model
has been found to be relevant since a low number of FPs limits the
performance of the mitigation step. The reliability of the 𝐹𝐴𝐷𝐹𝑃𝑀
methodology is therefore shown, as well as allowing the possibility to
continue the study of FP mitigation also on non-temporal data sets.
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