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a b s t r a c t

The paper presents a novel solution to the issue of incomplete regions in 3D meshes obtained through
digitization. Traditional methods for estimating the surface of missing geometry and topology often
yield unrealistic outcomes for intricate surfaces. To overcome this limitation, the paper proposes
a neural network-based approach that generates points in areas where geometric information is
lacking. The method employs 2D inpainting techniques on color images obtained from the original
mesh parameterization and curvature values. The network used in this approach can reconstruct the
curvature image, which then serves as a reference for generating a polygonal surface that closely
resembles the predicted one. The paper’s experiments show that the proposed method effectively fills
complex holes in 3D surfaces with a high degree of naturalness and detail. This paper improves the
previous work in terms of a more in-depth explanation of the different stages of the approach as well
as an extended results section with exhaustive experiments.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

3D digitizers, either active (scanners) or passive (photogram-
etry), have become increasingly popular for professionals in
ultural heritage documentation, 3D printing, or the virtual reality
nd video game industries, as they allow for the creation of
odels that accurately depict reality.
However, even with the use of advanced technology, point

louds obtained from 3D digitizers are sometimes insufficient for
reating complete models. This can occur due to various factors,
uch as low data quality or the absence of points in specific areas.
hese issues can arise for several reasons, including incorrect
canning angles, low or high surface reflectance, occlusion of
arts of the surface, or even lost parts of the original model.
ll these defects result in visual inaccuracies and holes in the
btained surface model, which must be repaired to obtain a
losed model suitable for 3D printing or for calculating geometric
roperties.
To overcome these challenges, researchers have developed

arious methods to repair incomplete surface models, such as
anually filling the holes, applying surface reconstruction tech-
iques, or using neural network-based approaches like the one
roposed in this paper. These methods aim to generate missing
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geometry and topology by estimating the surface and filling in
the gaps, resulting in realistic and detailed models that accurately
represent the original object.

Classical work in the field of Computer Graphics addresses the
coverage of holes with volumetric data [1–3] or surface extension
models [4–6] to generate new points within the missing part.
These methods usually generate surfaces with a low level of detail
in complex models and are inadequate for surfaces with a high
number of polygons.

Advanced approaches include the use of deep learning to learn
strong priors [7–9] and have been shown to repair complex holes
in large surfaces. These methods require a huge amount of data
to train the models, and hence they need a lot of computational
time and resources. However, in approaches such as [10], a CNN
neural network automatically learns a prior from an input point
cloud without using a dataset or training time, but the results lack
the accuracy needed for complex shapes.

Therefore, we propose a solution that adapts our shape com-
pletion problem to any inpainting process done by neural net-
works that have already been trained, such as DALL·E 2 [11] or
Stable Diffusion [12].

Our work, graphically depicted in Fig. 1 consists of a coarse-to-
fine reconstruction using images representing our shape. Given
a normalized mesh, we apply a coarse repair method following
a classical approach [4]. After that, a heuristic segmentation of
the surface is performed to produce the parameterization [13]
of the model in patches that preserve the area of the hole to be

filled. Once parameterized, the generated image is colored with
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Fig. 1. Pipeline of the whole process of deep learning of curvature features for shape completion.
the values of the curvature [14]. These images are then proposed
to DALL·E 2 or Stable Diffusion, general-purpose neural networks
that complete the images using inpainting techniques, among
other tasks. Finally, the local meshes are submitted to a fairing
process. The geometry of the hole is progressively modified un-
til its curvature values match those predicted by the artificial
intelligence.

This shape completion neural network-based approach does
ot require any specific neural network design and implemen-
ation, training dataset, or training time. We demonstrate that
ALL·E 2 and Stable Diffusion are able to receive our curvature
mages and inpaint them so that we can properly infer new
eometries and repair holes in simple and complex surfaces.
In conclusion, this paper presents an extended and improved

ersion of the work in [15]. Our main contributions are:

• A novel surface completion technique based on neural net-
works that uses images and inpainting processes to com-
plete geometries without requiring a training dataset.

• A novel representation of a 3D surface geometry as a 2D
image based on its curvature value and color for use with
an inpainting neural network.

• The demonstration that a general-purpose artificial intelli-
gences such as DALL·E 2 or Stable Diffusion can be used to
inpaint images representing curvature values, thereby erad-
icating the process of designing an ad-hoc neural network
model and training it. This significantly decreases computa-
tional time and resources.

The structure of this paper is divided into three main sections.
irstly, in Section 2, we will review the existing literature re-
ated to the techniques proposed in this paper. Following this, in
ection 3, we will provide a detailed and comprehensive expla-
ation of our approach, focusing on its individual components.
inally, we will compare our approach with state-of-the-art clas-
ical and learning-based methods in Section 4 to demonstrate its
ffectiveness and potential advantages over existing techniques.

. Related work

Our approach is situated at the intersection of two major
esearch areas in Computer Graphics. The first area involves using
npainting techniques to fill in large missing parts of images.
he second area concerns using these images to generate new
eometries to produce a complete 3D shape.
Both of these research areas have received considerable at-

ention in recent years, and as such, we will provide a thorough
iterature review of shape completion and inpainting approaches
n the following subsections.
205
2.1. Shape completion

Extensive research has been conducted to address the issue of
filling holes or artifacts in simple and complex 3D objects. Classi-
cal approaches can be broadly classified into two categories. The
first category is concerned with volumetric information, where
the data is stored as a grid and often involves a complete remesh-
ing of the mesh. These methods work well for complex holes
and have been applied in several studies. For instance, [1] rep-
resented the surface using a grid of signed distance function
values and propagated these values through a diffusion process
with alternating steps of blurring and compositing to fill the
holes. Similarly, [3] used diffusion to propagate a voxel grid of
quadruplets, which represents distance, direction, weight, and
changeability. Another volumetric approach involves completing
incomplete point sets, as demonstrated by [2], who used octree
discretization to find the most similar surface patch using its digi-
tal curvature signature, and then merged it into the hole region by
solving a Poisson equation. This approach was further improved
by [16] through the application of positional constraints, resulting
in better outcomes.

The second group of methods focuses on using the surface
information of the mesh to repair holes. These methods typically
use the information from the vicinity of a hole to repair it without
altering the remaining mesh. However, these methods may not
be suitable for larger or more complex holes. For instance, the
approach proposed by [4] triangulates the hole and minimizes
the resulting area using a weighted function. Then, it refines
the surface of the reconstructed hole to match the density of
the surrounding triangles. Similarly, [5] inserts new vertices to
triangulate the hole and match the density, while minimizing
normal variation. Another framework by [17] combines the work
of [4] with [18] to achieve a fast and precise repair. To preserve
curvature, [6] unfolds the hole and minimizes the area of the
triangulated patch. In these works, the Delaunay triangulation
algorithm [19] is widely used, as in other works such as [20,21].

Another category of hole filling methods is context-based,
which uses existing information or patterns in the mesh to fill
gaps. One example is the work of [22], which goes beyond simply
filling the hole and also incorporates coherence, ensuring that the
completed model’s local neighborhoods are similar to those of
the original model. The method proposed by [23] first fills the
hole smoothly and then transfers the Laplace coordinates of the
surrounding region to the reconstructed area.

New hole-filling methods based on neural networks have
emerged with the advancement of artificial intelligence. These
methods are able to extract features from a mesh to infer new
geometries and close holes. Some use an encoder–decoder ar-
chitecture to learn different prior knowledge and create a latent
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pace of shapes that they map to their partial inputs [7]. The
se of a signed distance function to represent noisy input data
nd recover shapes and missing regions is prevalent in many
pproaches [8,9,24]. The approaches of [9,25] use variational
utoencoder (VAE) in their training and have demonstrated their
ccuracy on 3D shapes from the KITTI [26] and ShapeNet [27]
atasets. In addition, [28] uses a 2.5D sketch estimator, a 3D
hape completion network, and a naturalness network model to
epair models from a single depth image.

In both [7,29], a coarse-to-fine approximation is employed.
he former proposes the use of a 3D shape classification net-
ork to provide additional information, although this approach
equires training data and has limited applicability. The latter
bstracts a point cloud into a feature vector and achieves a
oarse-to-fine-grained result. GAN architectures have also been
sed for 3D shape completion, where a generator and a discrim-
nator work together to learn features of a 3D model, similar
o their use in image generation. These approaches have shown
romise in the field of 3D shape completion. For instance, in [30],
oxelized input is used to train two GANs that share the same
enerator. One GAN generates the repaired region locally, while
he other GAN assembles the repaired region with the original
odel globally. This enables both GANs to learn global and local

eatures. Another work, [31], uses an inverted process in GAN
here the output is degraded, resulting in a partial shape. This
llows the output to be generated even if the network has not
een trained for a new category of models. Another method for
urface reconstruction [32] uses a set of deep ReLU networks to
btain local charts or parametrizations. Reinforcement learning is
lso employed in 3D shape completion. For example, [33] uses a
L agent to adapt the seed of the generator of the GAN, so that
he GAN generates output that is optimal for an autoencoder to
ecover full shapes.

.2. Inpainting

In our research, we employ an image inpainting process to
ill in the missing parts of an image that represents the mean
urvature values of a 3D model. Image inpainting is a well-
stablished technique for restoring missing portions of an image.
onventional approaches, such as those described in [34,35], uti-
ize patch-based synthesis to reconstruct images and are effective
or large textures. In contrast, [36] is effective at filling in missing
egions by propagating isophote lines in the image, but is not
ell-suited for handling textures.
In addition to shape completion, recent studies have uti-

ized neural networks to obtain unsupervised and enhanced out-
omes [37–39]. The work of [37] shares a similar idea with our
pproach. The damaged regions in their work are isolated by
n offset and converted into a texture image that undergoes an
npainting process. The difference between their method and ours
s the use of an offset in the mesh segmentation.

In our work, we use DALL·E 2 [11] as an external neural net-
ork to perform the inpainting process on an image representing
he mean curvature values of a 3D model. DALL·E 2 is a recent
eural network architecture designed for generating high-quality
mages from textual descriptions. The architecture includes an
ncoder and a decoder, with the text label being passed through
CLIP transformer to generate a vector representation called a

ext embedding, which is a compressed representation of the text
abel information. This embedding is then used to produce an
mage embedding through an autoregressive or diffusive prior,
hich is then passed to a diffusion decoder to generate a final

mage. The architecture is capable of generating a variety of
mages that retain the semantic information of the input label.

In addition, we have made the decision to incorporate Sta-
le Diffusion [12], providing an open source alternative for the
206
inpainting process. This further illustrates the independence of
our approach from the specific neural network used, eliminating
the need for additional training time while still yielding accu-
rate results. Notably, the inpainting process demonstrates robust
generalization capabilities for our curvature images.

The Stable Diffusion architecture retains certain components
from the DALL·E 2 architecture but implements a distinct pro-
cedure. It employs an Autoencoder architecture to generate a
condensed representation of the images, referred to as the lower
latent representation. This representation is then utilized to train
various diffusion models for different tasks, including text-to-
image generation, inpainting, super-resolution, and more.

3. Shape completion by curvature inpainting

Our approach restores the surface of a complex object with
multiple holes by depicting the curvature of the object. The
curvature feature image is then processed using inpainting tech-
niques to fill in the missing parts. Iterative deformations are used
to infer the missing geometry over the mesh surface from the
resulting image, until the surface curvature map matches the
inpainted curvature image. This is how our method successfully
fixes intricate surfaces.

The process is divided into several stages, which will be ex-
plained in the following subsections. First, we introduce a coarse
repair method in Section 3.1. Next, we explain a segmentation
and parameterization technique for generating an image rep-
resentation in Sections 3.2–3.5. Then, we analyze the DALL·E
2 and Stable Diffusion inpainting methods and their results in
Sections 3.6–3.7. Finally, we perform a mesh deformation process
to create a fine-tuned repair in Section 3.8.

3.1. Coarse reparation process

We first preprocess the mesh and normalize it by scaling to a
unit bounding box in order to prevent distortions in the curvature
values, which depend on the length of the edges. By doing this,
we ensure that curvature values are consistently contained within
a predetermined range.

The first step, given a normalized mesh, is to fill the holes
using a traditional method. We repeatedly iterate through the
mesh’s half-edges and examine their incident faces in order to
find every hole. If a half-edge only has one incident face, it is
a boundary half-edge, and its vertex also qualifies as boundary
vertex.

After locating the half-edge loops that define the holes, we can
now fill such holes using the classical method formulated by [4].
The process, shown in Fig. 2, works as follows: the algorithm first
triangulates the holes, using a weighted function to minimize the
area of the resulting triangles. The resulting triangulation is then
refined to fit the surrounding density of triangles while main-
taining the Delaunay triangulation conditions. This refinement
process aims to maximize the minimum angle of all triangles in
the mesh. To further improve the mesh quality, the algorithm
computes the edge lengths and diffuses these values across the
surface mesh. This step subdivides the triangles to obtain an
approximate value of the edge length. This ensures that the mesh
has an even distribution of edges, which leads to better visual
quality and makes it more suitable for numerical simulations. The
algorithm repeats this process for every hole in the mesh, produc-
ing what we call a coarse reconstruction surface. The objective of
our approach consists of fine-tuning these coarse patches in the
last phase of the process to improve the overall mesh quality.
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Fig. 2. Model with holes (left). Coarse repair of the model (middle). Zoom of
he repair (right).

Fig. 3. (a) Model with holes, (b) Expansion process, each iteration in each hole is
painted in a different color. (c) Final local patches created in the segmentation
process. These meshes are then parameterized and an image representing its
surface curvature is generated.

3.2. Segmentation of the mesh

Our method processes 3D data using a 2D technique (picture
inpainting). For that reason, it is necessary to parametrize the
mesh and obtain a planar representation of the surface. However,
if we conduct a global parameterization and generate a single
image per mesh, the triangles will be severely deformed, and it
is highly likely that small holes will occupy only a few pixels in
the image, making it impossible to generate a reliable inpainting
of the image and thus a precise reconstruction of the mesh. To
reduce triangle deformation (and more specifically, hole defor-
mation), the mesh is segmented using a hole-centric method. Our
objective is to concentrate on our areas of interest, i.e., to generate
local meshes representing each hole and its surroundings, so that
the parameterization and the generated image have a reasonably
wide contextual information that the inpainting neural network is
able to use in order to reproduce symmetries, lines, or recognize
certain shapes, while the dimensions and contour of the hole
remain undeformed.

We perform such segmentation through an iterative expan-
sion process illustrated in Fig. 3. We initialize patches using
the hole-boundary vertices and the new vertices generated dur-
ing the coarse repair process. These patches are then expanded
by adding immediately neighboring vertices to create extended
patches. Iteratively, all vertices within the external boundary of
the patch are expanded. During patch expansion, we ensure that
each patch boundary stops just before crossing the boundaries of
other patches, or after a given number of iterations, or when the
patch is entirely surrounded by other patches. This way, we avoid
overlapping patches and ensure that each patch covers a distinct
region. After the patch expansion stage, we obtain a set of vertices
and faces labeled according to the patch to which they belong.

This information is used to create local meshes represent-
ing each hole and its surrounding contextual information. These
patches are parameterized in the next step of our method, en-
abling us to generate planar representations of each patch that
can be used for further processing.
 i

207
Fig. 4. Coarse-repaired model with curvature colors per vertex. The right Figure
shows the simple repaired surface of the hole, which is very smooth. It contrasts
with the curvature colors in the real original surface.

3.3. Curvature calculation and color

We want to create an image that defines the surface of our
mesh so that an AI is able to inpaint this feature with colors. We
chose the mean curvature property. Mean curvature is a measure
that characterizes the curvature of a surface and, by extension,
the geometrical shape of surfaces. The mean curvature at a point
on a surface is the average of its two principal curvatures. (i.e., the
maximum and minimum curvature in the two principal direc-
tions on the surface that pass through that point). The formula
for calculating the mean curvature is as follows:

H =
1
2
(k1 + k2)

where k1 and k2 are the principal curvatures at the point of
interest.

We calculate the mean curvature at each point of the repaired
mesh following the APSS approach of [14]. APSS is a method
for representing a surface as a set of algebraic points. For the
calculation of the mean curvature by means of APSS, a sphere
fitting method is suggested. This method consists of selecting
a small neighborhood and finding the best-fitting sphere. The
radius of this fitted sphere can then be used as an estimate of the
curvature at the point of interest. This approach is proposed to be
relatively easy to compute, rather than the expensive evaluation
of a shape matrix proposed in traditional methods.

Once we have the normalized mean curvature estimated for
each vertex, we map such values to RGB tuples according to a
color map. In this case, we use a rainbow map where blue rep-
resents low (convex) values, medium (flat) values are colored as
green, and high (concave) values are displayed as red, as depicted
in Fig. 4. Once the color is applied, we transfer it to the vertex of
each patch, so that we can produce a 2D image representing the
curvature features of each patch in the next stage.

3.4. Parameterization

The next step is to convert the 3D surface of each hole patch
into a 2D representation (i.e., a parameterization) so that the
neural network can identify them and inpaint the content.

A parametric surface is a 2D plane where a function g , called
he parameterization function, is defined in the domain [0, 1]2.
his function allows the transformation of a point p(x, y, z) to

a point on the parametric surface p′(s, t), called the parametric
oordinates of point p.

p = g(s, t)
Thanks to this function, we can unfold 3D surfaces into a 2D

omain and thus create an image representing the surface.
To perform the parameterization of the patches, we follow the

ork of [13] because its main advantages are the shape preserv-

ng feature and the high speed of computation. In this approach,
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e need to compute the mean value coordinates for every vertex.
hese coordinates are defined as the weighted sum of the angles
ubtended by the edges of the neighboring triangles at the vertex.
his means that neighboring vertices with a larger angle are more
nfluential in determining the position of the target vertex in
D space. The coordinates of each vertex are then calculated by
aking an average of the coordinates of its neighboring vertices
eighted by the calculation of its barycentric coordinates. The

inal coordinates may not exactly match the original mesh, but
hey should preserve its overall shape as much as possible.

.5. Curvature image and holes masking

We use an image-based representation of the surface to create
smooth curvature map that is essential for the neural network
o better understand the image content and produce a smoother
econstruction of the missing part. To create the curvature map,
e map each vertex color to its corresponding pixel using its
arametric coordinates. To interpolate the colors of the interme-
iate pixels, we use a bilinear interpolation algorithm that takes
he weighted average of the colors of the four nearest texels to the
ixel being rendered. This produces a smoother image that helps
he neural network better understand the shape of the surface.
n addition to the curvature map, we create a binary mask that
epresents the hole to be reconstructed using black and white
olors. The black color represents the missing part of the surface,
nd the white color represents the rest of the surface. The binary
ask helps the neural network to focus on the hole and generate
n accurate reconstruction.
Finally, we combine the curvature map and the binary mask

o produce the final image that will be used by the neural net-
ork. This image has transparent pixels in the areas belonging
o the hole, indicating to the neural network that these are the
reas that need to be reconstructed. The resulting image provides
he neural network with the information it needs to generate a
igh-quality reconstruction of the missing part of the surface.

.6. Inpainting with DALL·E 2

In contrast to other deep learning-based approaches, we dele-
ate the inpainting procedure to the well-known neural network
ALL·E 2 [11]. This approach has a computational advantage
ecause we do not need to train a model. We demonstrate that
ALL·E 2 is already capable of inpainting the generated curvature
alue images. Therefore, we do not need a dataset, nor do we
eed to invest time in training and refining a model in order to
btain accurate reconstructions.
The architecture of DALL·E 2 is simple, as illustrated in Fig. 5.

hey introduce an encoder–decoder architecture that is divided
nto two main parts. The first part consists of training a CLIP
odel [40]. The CLIP model contains two encoders, one for text

nput and the other for image input. The CLIP model itself is
transformer, and it is able to create a latent space of what

hey call image and text embeddings (i.e., encoded feature vector
epresentations of images and text), so the CLIP model is able to
ell when a text embedding or an image embedding match well
ogether. The second goal is to unCLIP the previously obtained
esult. For this purpose, there is a prior model and an image
mbedding decoder. First, a text embedding produced in CLIP
s fed into an autoregressive or diffusion prior to generating an
mage embedding. Then, a diffusion decoder takes the image and
ecodes it into the final reconstructed image.
To perform the curvature image inpainting process, DALL·E

2 is fed with our generated curvature images with the holes
marked as transparent pixels. We tried different prompts on

DALL·E 2 in order to find one that satisfies the requirement of

208
Fig. 5. DALL·E 2 unCLIP architecture [11].

Fig. 6. Stable Diffusion architecture [12].

ompleting the missing parts. The command chosen for DALL·E 2
is simply ‘‘fill in the blanks’’. Some other possible prompts have
been proposed, such as ‘‘fill with the same colors’’ or ‘‘remove
the transparent region out of the image’’, but the results do not
fulfill the objective of the inpainting process. The result is a
reconstructed image that is consistent with the surroundings of
the hole. Despite providing DALL·E 2 images that have nothing
in common with nature images (i.e. they have been synthetically
produced and are unintelligible to a human), Fig. 7 shows that
DALL·E 2 completes the gaps of the image with the same color
gamma provided and succeeds in completing lines and inferring
similar colors and shapes. Moreover, it is also able to detect and
reproduce symmetries.

3.7. Inpainting with stable diffusion

Stable Diffusion has emerged as the leading open-source alter-
native to DALL·E 2. We have successfully employed this method
for inpainting curvature images and achieved impressive gener-
alization results.

The underlying principle of this approach, depicted in Fig. 6, is
rooted in the understanding that a substantial portion of image
data consists of imperceptible and insignificant details. These
unnecessary details only serve to increase the training time and
computational requirements when using adversarial or diffusion
networks for inpainting tasks. The architecture of Stable Diffusion
effectively mitigates these challenges by training an autoencoder
network capable of both perceptual compression and semantic
compression. By doing so, this network creates a latent space
representation that possesses a lower dimension while preserving
the perceptual equivalence of the original images.

The autoencoding network is trained as a one-time process
and serves as the foundation for training various diffusion models.
Diffusion models are capable of modeling conditional distribu-
tions by utilizing different conditional encoders. This approach
enables us to leverage different input types to achieve favor-
able outcomes in tasks like text-to-image generation or image-
to-image generation. By utilizing the latent space representa-
tion learned by the autoencoder, we can effectively generate
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Fig. 7. Generated images representing holes (top). Inpainted DALL·E 2 images
center). Inpainted Stable Diffusion images (bottom).

iverse and high-quality results across a range of conditional
nput scenarios.

In the Stable Diffusion approach, two images are provided
s input: the curvature image and a separate black and white
mage serving as a mask to represent the hole. However, com-
ared to DALL·E 2, Stable Diffusion requires more careful prompt
ngineering. We have observed that Stable Diffusion encounters
ifficulties when prompts involve specific orders, such as ‘‘fill in
he blanks’’, resulting in suboptimal outcomes. Instead, a more
ffective approach involves describing to Stable Diffusion the
esired picture and the specific details it should recover from the
mage.

After several attempts, such as prompts like ‘‘Color map repre-
enting curvatures made by green, red, and blue zones’’ or ‘‘Smooth
color map representing curvatures made by green, red, and blue
gradient zones, matching the surroundings’’, it was determined
that the most successful self-explanatory prompt was ’’Color map
representing curvatures made by green, red, and blue gradient zones,
match the surroundings, diffuse colors’’. We chose this prompt
because it yielded the best qualitative results in our experiments.

In Fig. 7 we can observe a visual comparison of the inpainting
results produced by the two neural networks, DALL·E 2 and Stable
Diffusion. Despite not being specifically trained on this type of
image, both networks generate high-quality results. However,
there are notable differences between the outputs.

One significant difference is the color loss exhibited by Stable
Diffusion. This can be attributed to the resizing of images to a
lower resolution of 512 × 512, which is necessary to meet the
model requirements of Stable Diffusion. In contrast, DALL·E 2 is
capable of inpainting images with a resolution of 1024 × 1024,
allowing for higher-resolution and more consistent outputs.

In conclusion, DALL·E 2 excels in its ability to comprehend
text prompts effectively and deliver outputs with higher res-
olution and consistency, requiring minimal prompt engineer-
ing. Despite these advantages, after employing prompt engineer-
ing techniques, Stable Diffusion produces results with minimal
differences in terms of quality and consistency. Moreover, Sta-
ble Diffusion’s architecture requires less computational time and
resources compared to DALL·E 2.

3.8. Adapt surface to estimated curvature

The final step of our proposal is to unfold these new color
values, transform them into curvature values, and reconstruct the
missing surface. For that purpose, we use an iterative reconstruc-
tion algorithm that takes into account the difference between the
colors of the curvature of the coarse repair and the colors of the
pixels inpainted by DALL·E 2 or Stable Diffusion.
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To achieve this, we deform the vertices that present a certain
color difference. This similitude parameter is set as an average
value so that the reparation of the mesh is optimal in any case. For
this approach, we have set a similitude parameter to a difference
of 30 units in any color channel. For example, if a blue color
represented by RGB coordinates (0, 254, 228) is shown in the
image as a darker blue pixel with RGB coordinates (28, 77, 250), it
presents a color difference bigger than the similitude parameter
in the green channel, so the vertex needs to be repaired. Choosing
a lower or higher similitude parameter results in noise generation
or lower precision reconstructions. The color difference deter-
mines the direction that must be used to displace the vertices.
For example, in the coarse repair surface, the source vertex is
usually green, representing a smooth value. If the corresponding
inpainted pixel is red, it means that its curvature should be a
high (concave) value. Therefore, we have to displace the vertex in
the opposite direction of its normal vector so that it reaches the
optimal curvature value. If the pixel value is blue, the direction
is the opposite: we have to move the vertex a certain amount of
distance in the normal direction so that it reaches a lower (more
convex) value of curvature. Since we do not know the exact offset
we have to move the vertex to generate the predicted curvature,
this offset parameter (named the transformation constant) can be
modified for each mesh to achieve a more precise or smoother
result.

Such fine-grained displacement of vertices introduces noise
in the mesh surface when performed as described above. In-
stead, to reduce the noise introduced by the displacement of the
vertices, we use a mesh deformation approach similar to [41],
which provides a simple and intuitive way to simulate the elastic
deformation of an object based on the forces acting on its surface
(Fig. 8b). As illustrated in Fig. 8, by updating the vertex position
in response to these forces, the algorithm can generate realistic-
looking deformations. We define an area of interest (the patch),
and in that area, we select the vertices with the largest color dif-
ference as control vertices to perform the deformation according
to their new target positions.

4. Results

Shape completion poses a significant challenge in the domains
of computer vision and graphics, as it involves inferring the com-
plete shape of an object from partial and potentially noisy input
data. Over the past few years, researchers have put forth various
methods to tackle this problem, including data-driven approaches
that leverage the power of machine learning from example data,
as well as geometry-based methods that utilize prior knowledge
about object shapes.

In this paper, we aim to enhance the existing research on
shape completion by providing an extensive evaluation of state-
of-the-art approaches. In Section 4.1, we will meticulously review
these approaches and assess their respective strengths and weak-
nesses based on qualitative results. Our analysis will primarily
focus on the methods’ efficacy in reconstructing missing parts of
objects and their ability to generate plausible and visually appeal-
ing shapes. Moreover, we propose to evaluate different recon-
struction parameters outlined in the methodology section. This
evaluation aims to provide readers with a deeper understanding
of the shape completion process and the specific parameters’
impact on the experimental results.

Additionally, we will present quantitative results in Section 4.2
to enable a more rigorous evaluation of these approaches. More-
over, we will offer interpretations of these results and discuss
their implications for the broader field of shape completion.
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Fig. 8. (a) Coarse reconstruction vs predicted curvature map of the reconstruc-
tion. (b) Scheme of the deformation of the vertices depending on the color
difference. (c) the coarse repair; (d) first deformation step; (e) final reconstructed
mesh. Reconstruction made using DALL·E 2 inpainting.

4.1. Qualitative results

Curvature completion results comparison. In our study, we
ompared our proposed approach with two of the most widely
sed methods for surface completion, learning-based approaches,
nd classical approximations.
For the learning-based approaches, we selected a recent

ethod by [25], which uses a variational auto-encoder to learn
hapes from raw point input datasets. However, this method
equires a large amount of training data and time to achieve good
esults. While the reconstructed shapes produced by this method
re smooth, the authors themselves noted in their paper that it
truggles with repairing small and thin structures, as is evident
rom the bear example shown in Fig. 9. Therefore, there are
imitations to this approach in terms of accurately reconstructing
ighly detailed shapes.
Another method that we compared our proposed approach

ith is the Point2Mesh approach, as introduced by [10]. In con-
rast to the previously mentioned learning-based approach,
oint2Mesh reconstructs a mesh by optimizing the weights of
convolutional neural network (CNN) to learn a prior for de-

orming an initial mesh to wrap the given input point cloud. The
dvantage of this method is that it does not require a dataset
r training time to produce results. However, it can be compu-
ationally expensive in terms of time and memory if we aim to
 o
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obtain smoother reconstructions on surfaces with more complex
curvatures.

We also evaluated three classical approaches for surface com-
pletion. The first approach, MeshFix, as proposed by [5], can pro-
duce a triangulated surface with similar triangle density, but it is
not effective in dealing with larger surfaces that have significant
curvature variations. The second approach, called Ramesh [17],
works well for small pieces, but it fails to reconstruct larger holes
and often produces unappealing results due to the creation of
big triangles. The third approach we considered is the screened
Poisson surface reconstruction method proposed by [16]. This
approach produces smooth surfaces, but it is unable to accurately
represent the curvature complexities of the input surface. Overall,
each of these classical approaches has its own limitations and
may not be suitable for complex surface completion tasks.

The comparison chart in Fig. 9 illustrates the effectiveness of
our proposed approach. An important advantage of our approach
is that it does not require the design and training of a neural
network, nor does it rely on a dataset for training. This makes our
approach more accessible and applicable for surface completion
purposes. The chart illustrates that our approach has the ability
to reconstruct both small and larger holes while maintaining the
coherence of curvature values, regardless of the complexity or
size of the holes to be repaired.

For instance, in the first example featuring a face model, our
approach, both with DALL·E 2 or Stable Diffusion, can detect
symmetries and successfully inpaint the image with the missing
eye, resulting in a reconstructed surface that closely matches
the original. Moreover, our approach is capable of continuing
lines and shapes, as demonstrated in the Christmas bear example,
where the shape of the hat is maintained during the completion
process.

The last two examples further demonstrate the efficacy of
our method in completing holes by detecting surrounding pat-
terns and accurately completing the surface with very close to
ground truth results, resulting in an appealing and realistic re-
construction. Altogether, our proposed approach outperforms the
other compared methods, demonstrating its potential for surface
completion applications in different contexts.

Evaluation of the approach with a benchmark. In line with
he suggestions put forward by Williams et al. in their work [32],
e conducted an evaluation of our approach using a widely
ecognized surface reconstruction benchmark proposed by Berger
t al. [42]. This benchmark comprises five models that exhibit in-
ricate features, providing a robust evaluation platform for point
loud completion methods. To adapt these models for our eval-
ation, we employed the Screened Poisson algorithm [16] to
riangulate them, transforming them into surface meshes with
oles that require repair.
Our experimentation yielded promising qualitative results

hen compared to the approach presented in [32], effectively
ulfilling our objective of completing complex surface geometries.
s depicted in Fig. 10, it is evident that the compared approach
truggles to fill the designated holes, while our proposed ap-
roach succeeds in generating visually appealing completions.
owever, it is important to note that our approach does have
ertain limitations arising from the coarse nature of the repair
rocess. For instance, in the anchor model, although every hole
s successfully repaired, the resulting Figure may not appear
ealistic because some of the holes are naturally present in the
riginal model. This occurs due to the insufficiency of the partial
can provided as input, which does not provide enough context
o prevent our approach from filling unnecessary holes.

Nonetheless, our approach demonstrates excellent perform-
nce when applied to meshes with genus 0 or those with more

rganic forms such as faces or animals, as exemplified by the
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Fig. 9. Comparison between reconstructed models using deep learning based methods (SAL [25], Point2Mesh [10]), classical methods (MeshFix [5], Ramesh [17],
SPSR [16]) and our approach.
s

Fig. 10. Comparison between reconstructed benchmark models using our
approach with Stable Diffusion (top row), with DALL·E 2 (second row) and deep-
geometric-prior [32] approach (third row). Bottom row represents a zoom of a
hole reconstruction comparing our approach to deep geometric-prior-approach.

Gargoyle and Lord Quas models. These cases showcase the ef-
fectiveness of our approach in handling surfaces with intricate
geometries, yielding satisfactory completions.

In the quantitative evaluation of the benchmark results, we
have encountered negative outcomes for our approach, despite
successfully repairing every hole in the mesh. This discrepancy
arises from the complete deformation technique employed to
infer the new geometry on the surface. As a result, the traditional
quantitative distance measures used in the evaluation may not
accurately reflect the performance of our approach. We consider
that these quantitative distance measures are not relevant and
have not been added to the section. However, in Section 4.2
we provide extended distance measures and a discussion of the
results.

Estimating parameters qualitatively. Our proposed method
involves the utilization of several parameters that play a crucial
role in achieving varying levels of precision in the surface re-
construction process. These parameters include the ‘‘similitude
211
Fig. 11. Different reconstructions depending on the similitude parameter value.

parameter’’ and the ‘‘transformation constant’’, both of which
significantly impact the final quality of the reconstructed surface.

The similitude parameter serves as a threshold that deter-
mines when a vertex in the mesh needs to be modified to ensure
a fair reconstruction. In order to determine the optimal value
for this parameter, we conducted a qualitative assessment, as
depicted in Fig. 11. Through this evaluation, we aimed to identify
the similitude parameter value that produces the most com-
prehensive reconstruction. Our qualitative analysis indicates that
values of 10 and 30 exhibit optimal results, showcasing a natural-
looking outcome. It is important to note that higher values of
the similitude parameter result in smoother reconstructions, thus
reducing accuracy.

In addition to the similitude parameter, the transformation
constant is another crucial parameter in our method that sig-
nificantly impacts the quality of the reconstructed surface. This
parameter determines the displacement applied to each vertex
in a normalized mesh to achieve the desired surface curvature.

To determine the optimal value for the transformation con-
stant, we also performed a qualitative analysis, as depicted in
Fig. 12. The purpose of this evaluation was to identify the trans-
formation constant value that produces the best qualitative re-
sults in terms of the reconstructed surface. Through this analysis,
we observed that a value of 0.00005 yielded the most favorable
outcomes.

When the transformation constant has larger values, it results
in a more pronounced displacement of the vertices, which can
lead to a sharper and less smooth reconstructed surface. This loss
of smoothness can adversely affect the overall quality and visual
appeal of the reconstruction. Hence, it is crucial to choose an
appropriate transformation constant to strike a balance between
achieving the desired surface curvature and maintaining a smooth
and visually pleasing result.

Results with different DALL·E 2 variations. Our approach has
uccessfully reconstructed complex surfaces, producing natural
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Fig. 12. Different reconstructions depending on the transformation constant
value.

Fig. 13. Four different image variations produced by DALL·E 2 and its
econstructions.

Fig. 14. Four different image variations produced by Stable Diffusion and its
econstructions.

nd visually appealing results. The key to achieving such out-
omes lies in the careful selection of the main parameters, as well
s leveraging the capabilities of DALL·E 2. As discussed previously,
hese parameters include the prompt used for inpainting and the
hoice of a suitable variation of the inpainted image to infer new
eometries on the surface.
The selection of the variation of the inpainted image plays a

rucial role in the reconstruction process. An inpainting network
uch as DALL·E 2 or Stable Diffusion can generate variations of
the same image, each with its own advantages and disadvantages.
These variations may differ in color choices, forms that deviate
from the original image, or the presence of artifacts that can im-
pact the final reconstruction. Therefore, it is essential to carefully
choose an image that appears coherent with the input image. This
selection process is not random and requires the identification of
the optimal choice among the infinite possible variations.

The importance of choosing the right variation of the inpainted
mage is exemplified in Figs. 13 and 14, where the difference
n reconstruction outcomes is depicted. By selecting a suitable
mage variation, we can enhance the quality and fidelity of the
econstructed surface.

In our future research, we have an ambitious plan to advance
he shape completion process by making it unsupervised and
212
Fig. 15. Measure distances depending on random variations for DALL·E 2 and
Stable Diffusion. Mean values represented as dashed lines of their corresponding
color.

eliminating the dependency on image variations. Our goal is to
train a dedicated inpainting network using curvature images,
which will enable us to generate inpainted reconstructions that
fulfill the necessary requirements for inferring proper new ge-
ometry over the mesh. By developing a specialized inpainting
network tailored to our shape completion task, we anticipate
achieving improved final reconstruction results.

By adopting an unsupervised approach, we aim to reduce
the reliance on manual supervision and intervention, making the
shape completion process more efficient and autonomous. This
will allow our method to generalize better to different datasets
and scenarios, eliminating the need for manually selecting spe-
cific image variations.

However, to assess the robustness of the inpainted image
and reconstruction results, we conducted an experiment to mea-
sure the root mean square (RMS) error. In Fig. 15 we present
the results of this experiment, which involved comparing the
original mesh with the reconstructed versions generated from
15 randomly obtained inpainting results using DALL·E 2 and
table Diffusion on the face mesh. The measurements revealed
hat the RMS error exhibited minimal variation across the differ-
nt inpainting results, and it consistently approached the mean
alue. The standard deviation for DALL·E 2 was calculated as
.0006536202261, while for Stable Diffusion it was found to be
.0005571187956. These values further support the notion that
oth neural networks introduce negligible errors in the recon-
truction process, as they are very close to zero.

.2. Quantitative results

Distance measures on curvature completion results. To pro-
ide a comprehensive evaluation of our approach, we compared
he Hausdorff distance and the Root Mean Square (RMS) error
etween the original mesh and the repaired mesh using the ap-
roaches that exhibited the best qualitative results. The results of
his comparison are presented in Table 1. Our distance measures
re evaluated in the models only using Stable Diffusion to ensure
eproducibility.

In terms of the Hausdorff distance, our method demonstrates
significantly smaller maximum distance compared to the other
pproaches. This indicates that our approach has fewer large
rrors or discrepancies when compared to the original mesh.
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Table 1
Distance measures on different meshes and approaches. Our measures use Stable Diffusion inpainting.

Face mesh

max mean RMS

SAL 2.23e−01 3.43e−02 4.57e−02
Ramesh 2.07e−01 4.23e−03 2.17e−02
SPSR 2.33e−01 6.49e−04 6.89e−03
MeshFix 2.07e−01 5.42e−03 2.50e−02
Ours SD 1.41e−02 1.57e−03 2.47e−03

Christmas Bear mesh

max mean RMS

SAL 8.96e−02 1.20e−02 1.61e−02
Ramesh 9.32e−02 1.44e−03 7.89e−03
SPSR 7.01e−02 4.79e−04 2.71e−03
MeshFix 9.31e−02 1.83e−03 8.16e−03
Ours SD 2.22e−02 1.60e−03 2.42e−03

Armadillo mesh

max mean RMS

SAL 2.10e−02 1.53e−03 1.96e−03
Ramesh 1.78e−02 6.32e−04 1.10e−03
SPSR 5.76e−02 6.21e−04 3.72e−03
MeshFix 2.11e−02 6.87e−04 1.20e−03
Ours SD 1.52e−02 1.63e−03 2.07e−03

Inmaculada mesh

max mean RMS

SAL 1.10e−01 5.15e−03 1.25e−02
Ramesh 1.05e−01 1.19e−03 7.45e−03
SPSR 9.91e−02 5.34e−04 2.88e−03
MeshFix 1.05e−01 1.76e−03 9.45e−03
Ours SD 1.45e−02 1.35e−03 2.00e−03
Although our method may not have the smallest mean Haus-
dorff distance, primarily due to the mesh deformation process
introduced to reduce noisy results, the difference between our
approach and the others is not substantial. This suggests that
most approaches exhibit similar overall errors or discrepancies.
However, it is worth noting that the SAL method [25], which
involves complete remeshing of the repaired mesh, introduces
higher discrepancies compared to other approaches.

Furthermore, when considering the RMS error after the ap-
lication of the Screened Poisson Surface Reconstruction (SPSR)
ethod [16], our approach ranks among the best. The SPSR
ethod introduces minimal vertex movement, indicating that
ur approach achieves smaller average distances between cor-
esponding points of the repaired meshes and their original
urfaces without holes. It is noteworthy that even in this case, our
pproach produces more natural and complex results, as evident
n the qualitative evaluation depicted in Fig. 9.

By considering both the Hausdorff distance and the RMS error,
ur approach demonstrates competitive performance compared
o other state-of-the-art methods. The smaller Hausdorff distance
uggests that our approach successfully addresses the larger er-
ors or discrepancies, while the smaller RMS error indicates that
ur approach maintains better overall correspondence between
he repaired meshes and their original surfaces. These results
urther validate the effectiveness of our method in achieving
ccurate and visually appealing shape completions.
Estimating parameters quantitatively. As we did in the pre-

ious section, a quantitative analysis of the different reconstruc-
ion parameters is provided. We examined the results of distance
easures to evaluate the impact of varying these parameters on

he quality of the reconstructions.
In the first plot (Fig. 16), we illustrate the relationship between

he similitude parameter values and the distance measures. We
bserve that smaller similitude values generally lead to better dis-
ance measures. This indicates that the reconstructions generated
ith smaller similitude parameters exhibit closer correspondence
o the original surfaces without holes.

Interestingly, we also notice some lower distance values when
he similitude parameter is very large. This can be attributed
o the behavior of the similitude parameter as a threshold dur-
ng surface reconstruction. When a large similitude parameter
s chosen, fewer vertices are selected for modification, result-
ng in minimal mesh deformation and minimal changes to the
ositions of the vertices. As a result, the reconstructed surface
emains coarse and less accurate. While this may yield lower
istance values in terms of quantity, the reconstruction quality
s compromised.

Based on the average distance measures and the qualita-
ive reconstructions provided, we made the final selection of a

imilitude parameter value of 30. This value strikes a balance
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between achieving favorable distance measures and producing
visually appealing and accurate reconstructions. It represents a
threshold that allows for sufficient modification of the vertices
to achieve improved surface completion while avoiding excessive
mesh deformation.

These measures demonstrate how the precision of the recon-
struction decreases as the transformation constant increases. This
behavior is attributed to the significant displacement introduced
to the vertices in the normalized mesh.

As the transformation constant grows (see Fig. 17), the vertices
experience larger displacements, resulting in more pronounced
deformations of the mesh. This leads to a smoother surface with-
out sharp features, as observed in the qualitative results pre-
sented in Fig. 12, where the face becomes more deformed in
various positions as the transformation constant increases.

While a larger transformation constant may produce smoother
reconstructions, it also leads to a loss of precision. The exces-
sive displacement of the vertices can result in inaccuracies and
distortions in the reconstructed surface.

Considering the balance between distance measures and qual-
ity reconstructions, we have selected a transformation constant
value of 0.00005. This value strikes a good compromise, as it
produces reconstructions with a reasonable level of smoothness
while still preserving important details and maintaining a high
level of precision. This optimal combination of distance measures
and reconstruction quality makes it the preferred choice for the
transformation constant in our approach.

5. Conclusions and future work

This paper introduces a novel approach for shape comple-
tion using deep learning techniques that address the limitations
associated with existing methods. Deep learning-based shape
completion techniques require the design of a neural network
and the collection of extensive datasets for training. However, our
approach employs DALL·E 2 or Stable Diffusion inpainting process
to recover missing parts of images that represent the curvature
features of a mesh. This enables us to infer new geometries based
on the inpainted curvature values, eliminating the need for a ded-
icated neural network and large amounts of data for training. We
highlight the numerous advantages of using an external neural
network, including improved accuracy and flexibility.

To evaluate the effectiveness of our method, we conducted
qualitative and quantitative assessments of complex holes in
various 3D models. Our approach was able to complete both
sharp and curving shapes, preserve symmetries, and fill patterns
accurately. We believe that our approach could pave the way
for further advancements in shape completion, particularly in
scenarios where limited data is available or where there is a need

for fast completion of complex shapes.
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Fig. 16. Measure distances depending on the similitude parameter value. These reconstruction distance measures use Stable Diffusion inpainting.
Fig. 17. Measure distances depending on the transformation constant value. These reconstruction distance measures use Stable Diffusion inpainting.
In the methodology section, we made significant improve-
ents to provide a more accurate explanation of each step of
ur approach. Additionally, we expanded the experimentation
ection to include new models for evaluation. By incorporat-
ng more complex and challenging 3D models, we were able
o assess the performance and effectiveness of our approach
cross a wider range of scenarios. Furthermore, we introduced
he estimation of different parameters in our approach, such as
he similitude parameter and the transformation constant. By
valuating the effects of these parameters on the reconstruction
esults, we provided quantitative assessments that shed light on
he optimal choices for achieving comprehensive and accurate
hape completions. This analysis allowed us to offer guidance
nd recommendations for selecting suitable parameter values for
uture applications.

One significant drawback of our current approach is the lim-
ted control over the output generated by models like DALL·E
2 or Stable Diffusion. Since these models are pretrained, we do
not have complete control over their design and training process.
While we can engage in prompt engineering and tweak prompts
to achieve more accurate inpainting results, we face a chal-
lenge in incorporating specific cultural, historical, or contextual
information into the final image.
214
In the near future, our plan is to develop an ad-hoc neural-
network architecture trained with a database of complex 3D
models, with the aim of transferring information from one 3D
model to others and inpaint the surfaces with a common-domain
source of data, so we acquire control over the possible results
of the inpainting. On the other hand, we plan to test the behav-
ior of the algorithm with images with coarser curvature values,
avoiding such fine-grained spots of curvature values.
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