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A B S T R A C T

In this paper, we provide a mathematical optimization-based framework to determine the location of leak
detection devices along a network. Assuming that the devices are endowed with a known coverage area, we
analyze two different models. The first model aims to minimize the number of devices to be located in order
to (fully or partially) cover the volume of the network. In the second model, the number of devices is given,
and the goal is to locate them to provide a coverage volume as broad as possible. Unlike other approaches in
the literature, in our models, it is not assumed that the devices are located on the network (nodes or edges)
but in the whole space and that the different segments in the networks may be partially covered, which allows
for more flexible coverage. We also derive a method to construct initial solutions as well as a math-heuristic
approach for solving the problem for larger instances. We report the results of a series of experiments on
real-world water supply pipeline networks, supporting the validity of our models.
1. Introduction

The design of leak detection systems on water supply networks has
attracted great interest due to the economic and environmental impact
associated with the systematic loss of this resource. Needless to say,
the important role water plays in our social and economic life system,
such as in agriculture, manufacturing, the production of electricity, and
sustaining human health.

In urban networks, where the supply pipeline network is buried, an
average of 20% to 30% of the supply water is periodically lost [1]. This
average exceeds 50% in places with less technological development
where poor maintenance makes the system more vulnerable. It is also
known [1] that ∼70% of the amount of wasted water is provoked by
losses caused by leaks in modern networks. Pipe internal roughness
or friction factors are the main causes of leakage of a water pipeline
network [2,3], and as the pipelines get older, they become more suscep-
tible to damage. In developed countries, it is expected that the annual
disbursements for water leaks in their supply networks would be close
to 10 billion USD, of which 2 billion would go to costs for damages
due to water loss and 8 billion to social effects costs. Additionally, the
International Institute of Water Management forecasts that 33% of the
world’s population will experience water scarcity by 2025 [4]. Thus,
the efficient management of water supplies is and will be one of the
main concerns of water authorities throughout the world.
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Most of the efforts related to the management of water supply
networks have focused on the detection of leaks once they occur.
Rapid detection of the leak location is then crucial to minimize the
impact of the leaks. Hamilton [5] suggests three different phases in
the leak detection problem: localization, location and pinpointing. In the
localization phase, the goal is to detect if a leak has occurred within
a certain network segment after a suspected leak. There are several
proposed Machine Learning based methodologies to estimate leak prob-
abilities or to classify the event leak/no leak based on historic leakage
datasets [6,7]. In the location phase, the uncertain area where the leak
is localized is narrowed to ∼ 30 cm. Finally, in the pinpointing phase,
the exact position of the leak is to be determined with a pre-specified
accuracy of ∼ 20 cm by using hydrophones and/or geophones [8,9].
Previously to the determination of the position of the leak, a vast
amount of literature have being devoted to modeling the determination
of false/true leak alarms by the different available devices [10,11].

Another line of research on this topic is the design of control devices
and methods for the accurate and quick detection of leakages. This
is the case of the design of devices that accurately detect the leak
within a restricted area [12]. Nevertheless, these devices are expensive
and the adequate placement of the limited units must be strategically
determined. One of the most popular approaches is by partitioning the
network in district-metered areas where the flow and the pressure are
monitored (leaks can be detected by a decrease of flow and pressure)
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by means of leak-detection devices at each of this areas [see e.g. 13].
However, one still has to decide the number of devices and their exact
locations in each of the district-metered areas.

There are different types of devices designed to help in the different
leak detection phases which are classified into static and dynamic
devices. Static devices, such as sensors or data loggers, are usually
located on the network, at utility holes, or directly on the ground,
attached to the network. They keep a data transmission flow with a
central server to detect and localize leaks. In contrast, dynamic devices
are portable and used in the location and pinpointing phases on more
specific areas where the leak was suspected to occur. Whereas static
devices can be automated, dynamic ones must be controlled on-site
by humans. Different technologies have been designed for the two
different types of devices (see e.g. [14], for further details).

Most of the research on static leak detection systems is focused on
the adequate estimation of the signals transmitted from the devices to
the central server to detect an actual leak [15,16]. A few works analyze
the optimal placement of a given number of static devices on a finite
number of potential placements based on the capability of each of the
potential places to detect a leak [17], or in the use of historic data to
place the devices at the more convenient places [18].

This paper provides a technological decision support tool to help in
the design of leak detection systems via the optimal placement of static
devices. Instead of assuming that the devices are to be placed in a finite
set of pre-specified potential places, they are allowed to be located in
the whole space where the network lives, i.e. in the whole town, city, or
district. We analyze, in this framework, two different strategies to place
the devices. On the one hand, we derive a method to find the smallest
number of devices (and their placements) required to detect any leak
n the whole network or in a given percent of it. Since the devices may
e costly, covering a large amount of the network might be expensive,
nd we also derive a method, that fixes the number of devices to be
ocated based on a budget, and finds their optimal placements to cover
s much volume of the network as possible.

The models that we propose belong to the family of Continuous
overing Location Problems. In this type of problem, the goal is to find
he position of one or more services (in this case, the leak detection de-
ices), each of them endowed with a coverage area, i.e., a limited region
here the service/signal can be provided. Covering Location Problems
re usually classified into (Partial) Set Covering Location Problems—
P)SCLP and Maximal Coverage Location Problems—MCLP. The goal
f the (P)SCLP is to determine the minimum number of services (or
quivalently the minimum set-up cost for them) to cover (part of) a
iven demand. In MCLP the number of services is known and the goal
s to place them to cover as much demand as possible. These problems
ave been widely studied in the literature in case the given demand
oints to cover are finite and planar, and the coverage areas are
uclidean disks (see [19–22] for further information on this problems).
everal extensions of these problems have been studied, by imposing
onnectivity between the services in higher dimensional spaces and
ifferent coverage areas [23], multiple types of services [24], under
ncertainty [25], regional demand [26], or with ellipsoidal coverage
reas [27].

We provide versions of the PSCLP and the MCLP, where instead of
overing demand points, the goal is to cover lengths/volumes of the
ater supply pipeline networks, and the services to be located are the
evices to detect leaks. The goal is either to find the number of devices
nd their optimal placement to fully or partially cover the whole length
f the network (in the case of the PSCLP) or to find the placements of a
iven number of devices to maximize the length of the network which
s covered by the devices. We assume that the coverage areas of the
evices are 𝓁𝜏 -norm based balls and that covering a part of the network
ith these shapes implies that the device is able to detect a leak there.
s far as we know, this problem has never been investigated before
espite its practical applications. Murray and Tong [20] analyze planar
2

overing problems with generalized types of demand, as line segments
r polygons, but where partial coverage is not allowed. In our approach,
part of the different elements taking part of the network is allowed

o be covered, being the overall coverage maximized or lower bounded
n our models.

We derive mathematical programming formulations for our model.
irst, we analyze the simple case when a single device is to be located.
ext, we extend the model to the case of the simultaneous location of
ore than one device. We propose Mixed Integer Non-Linear Program-
ing formulations for the problems, that are reformulated as Mixed

nteger Second-Order Cone Optimization problems. We analyze some
roperties of the model that allow us to develop a strategy to construct
nitial solutions by solving an Integer Linear Optimization problem. We
lso design a math-heuristic approach to approximately the problem
y solving, sequentially, the single-device versions of the problem. We
ave tested all our approaches in real-world urban water networks. In
ddition to analyzing the computational performance of our algorithms,
e provide managerial insights about the locations obtained with our
pproaches, compared to the application of the classical algorithms
n the literature, namely node and edge-restricted covering problems.
athematical Optimization, the cornerstone of the developments in this

aper, has been already recognized as a very powerful tool to analyze
eal-world pipeline networks (see e.g. [28,29]).

The rest of the paper is organized as follows. In Section 2 we
ntroduce the problem under analysis and illustrate some of the so-
utions that can be obtained. Section 3 is devoted to analyzing the
roblem of locating a single device, which will be helpful in the
evelopment of approximation algorithms for the multi-device case.
n Section 4 the general case is analyzed. We provide Mixed Integer
on-Linear Programming formulations for the maximal and partial set
overing location problems and a deep study of them. We also provide
method to construct initial solutions for the problem based on the

eometrical properties of the solutions and a math-heuristic approach
ased on solving, iteratively, single-device instances. The results of our
omputational experiments on real-world urban pipeline networks are
eported in Section 5. Finally, in Section 6 we draw some conclusions
nd future research lines on the topic.

. Length-coverage location of devices

In this section, we introduce the problem under study and fix the
otation for the rest of the sections.

Let 𝐺 = (𝑉 ,𝐸;𝛺) be an undirected network with a set of nodes 𝑉 , a
et of edges 𝐸, and non-negative edge weights 𝛺. The graph represents
n urban water pipeline network, where the weights are the diameter or
oughness of each of the pipelines in the network, which together with
ts length will allow us to compute the covered volume of the network.

e assume that the graph is embedded in R𝑑 , i.e., 𝑉 ⊆ R𝑑 and each
undirected) edge 𝑒 = {𝑜𝑒, 𝑓𝑒} ∈ 𝐸 is identified with a segment in R𝑑 ,
ith endnodes 𝑜𝑒 and 𝑓𝑒 in 𝑉 . Abusing notation, we identify edge 𝑒 ∈ 𝐸
ither with the segment induced by its end nodes, i.e., 𝑒 ≡ [𝑜𝑒, 𝑓𝑒] or
ith the vector of R𝑑 associated with them, i.e., 𝑒 ≡ 𝑓𝑒 − 𝑜𝑒.

A device located at 𝑋 ∈ R𝑑 is endowed with a ball-shaped coverage
rea in the form:

𝑅(𝑋) = {𝑧 ∈ R𝑑 ∶ ‖𝑋 − 𝑧‖ ≤ 𝑅}

here 𝑅 > 0 is the given coverage radius. We assume that ‖ ⋅ ‖ is an
𝓁𝜏 -based norm with 𝜏 ≥ 1 or a polyhedral norm. Note that each of the
devices can be endowed with a different radius and a different norm,
based on their technical specifications.

For each edge 𝑒 ∈ 𝐸, and a finite set of positions for the devices
 ⊂ R𝑑 , we denote by CovWLength𝐺(𝑒,) the weighted length of the
edge covered by the devices. Let us denote by TotWLengthG the total
weighted length of the network, i.e., TotWLengthG =

∑

𝑒∈𝐸
𝜔𝑒‖𝑜𝑒 − 𝑓𝑒‖

with 𝜔𝑒 ∈ 𝛺.
We analyze in this paper two covering location problems to de-
termine the position of the leak detection devices, namely the Partial
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Set Network Length Covering Location Problem (PSNLCLP) and the
Maximal Network Length Covering Location Problem (MNLCLP). In
both cases, the goal is to place the different types of devices in the
space to accurately detect a leak on the network.

Partial Set Network Length Covering Location Problem (PSNLCLP)
The goal of this problem is to determine the minimum number of
devices and their positions in R𝑑 in order to cover at least 100𝛾%
of the weighted length of the network, for a given 𝛾 ∈ (0, 1].

The PSNLCLP can be mathematically stated as:

min
⊆R𝑑 ∶

∑

𝑒∈𝐸 CovWLength𝐺 (𝑒,)≥𝛾TotWLengthG

||

The number of devices in the objective function can be replaced
by the overall set-up costs for them, in whose case, the model
read:

min
⊆R𝑑 ∶

∑

𝑒∈𝐸 CovWLength𝐺 (𝑒,)≥𝛾TotWLengthG

∑

𝑋∈
𝑓𝑋 .

being 𝑓𝑋 a given set-up cost for the device 𝑋 ∈  .

For the sake of simplicity, in this paper, we analyze the first
model, although all the results are also valid for the second one.

Maximal Network Length Covering Location Problem (MNLCLP)
In this problem the number of devices to locate is given, 𝑝 ≥ 1,
and the goal is to find their positions to maximize the weighted
covered length of the network. While the MNLCLP consists of
solving

max
⊆R𝑑 ∶
||=𝑝

∑

𝑒∈𝐸
CovWLength𝐺(𝑒,)

Both in the PSNLCLP and the MNLCLP, one can provide different
coverage for the different devices that want to be located. In the
PSNLCLP, it is assumed that the number of available devices is unlim-
ited (although minimized), but one can assume that different types of
devices with different specifications are available. In the MNLCLP, since
exactly 𝑝 of them are to be located, different radii can be specified for
each of them.

In the following example, we illustrate the two problems described
above analyzed in a real network (see Section 5).

Example 1. Let us consider the network drawn in Fig. 1. There, each
edge has a different weight indicating the diameter of the pipeline
(as larger the weight, the thicker the line in the plot). Devices with
identical Euclidean disk coverage areas of radius 0.5 are to be located
(the network has been scaled to fit in a disk of radius 5). In Fig. 2 we
show the solutions of the PSNLCLP for 𝛾 = 0.75 (right) and the solution
of MNLCLP for 𝑝 = 5 (left). There, the centers are highlighted as red
stars, the covered segments of the network are colored in blue, and the
coverage of the devices are the red disks.

Note that the flexible approach that we propose does not force the
devices to be located at the nodes or edges of the network, being able
to cover a larger amount of the volume of the network with a smaller
number of devices.

Example 2. The two problems that we introduce here are defined
in a very general framework (𝑑-dimensional spaces, networks with no
further assumptions, and general coverage shapes). In Fig. 3 we show
solutions for the MNLCLP for the same instance that in Example 1, with
𝑝 = 5 but in case the coverage areas are induced by 𝓁1-norm (left) and
𝓁∞-norm (right) balls.
3

Fig. 1. Pipeline urban network of Example 1.

Remark 3. As already mentioned, most covering location problems on
networks assume that the centers must be located either on the edges
or the nodes of the network [30,31, see e.g.]. Here, this condition is
no longer assumed, allowing the centers to be located at any place
in the space where the network lives. This flexibility allows positions
for the devices providing a larger coverage of the network. In Fig. 4
we show the solutions of the edge-restricted (left) and node-restricted
(right) versions of the MNLCLP, where one can observe that the optimal
positions of the devices are different from those obtained for the
MNLCLP.

We have compared the covered lengths of the three problems (MNL-
CLP, edge-restricted MNLCLP, and node-restricted MNLCLP) for differ-
ent values of 𝑝 (2, 5, and 8), and different radii 𝑅 (0.1, 0.25, and 0.5). In
Fig. 5 we show a bar diagram with the average deviations (for each 𝑝)
of the two restricted versions with respect to the covered length of the
general approach that we propose. As can be observed, the solutions
of the unrestricted MNLCLP are able to cover more than 6% than the
edge-restricted problem and more than 20% than the node-restricted
problem. Since undetected leaks may produce fatal consequences in
an urban area and leak detection devices are expensive, the use of the
solutions of our models is advisable in this situation.

3. The single-device maximal network length covering location
problem

In this section, we first analyze the MNLCLP in case 𝑝 = 1 (a
single device). We provide a mathematical programming model for
the problem that will be useful for the general construction of the
multi-device instances of MNLCLP and PSNLCLP derived in this paper.

Let 𝑒 ∈ 𝐸 be an edge in the network and 𝑋 ∈ R𝑑 a given location
for a device. In case the coverage area of the device in 𝑋, B𝑅(𝑋), does
not touch the edge, then the covered length is clearly zero. Otherwise,
since B𝑅(𝑋) is a compact and convex body in R𝑑 , 𝜕B𝑅(𝑋), the border
of the ball, will touch the segment in two points (that may coincide
in case the segment belong to a tangent hyperplane of the ball). These
points belong to the segment [𝑜𝑒, 𝑓𝑒], that can be parameterized as:

𝑌 0
𝑒 = 𝜆0𝑒𝑜𝑒 + (1 − 𝜆0𝑒 )𝑓𝑒 and 𝑌 1

𝑒 = 𝜆1𝑒𝑜𝑒 + (1 − 𝜆1𝑒 )𝑓𝑒

for some 𝜆0𝑒 , 𝜆
1
𝑒 ∈ [0, 1]. We can assume without loss of generality that

𝑌 0
𝑒 is closer to 𝑜𝑒 than 𝑌 1

𝑒 , so we restrict the 𝜆-values to 𝜆0𝑒 ≤ 𝜆1𝑒 .
With the above parameterization, the length of the edge covered by

𝑋 is (𝜆1𝑒 − 𝜆0𝑒 )𝐿𝑒 (here, 𝐿𝑒 denotes the length of the edge 𝑒).
To derive our mathematical programming formulation for the prob-

lem, we use the following sets of decision variables:

𝑧𝑒 =

{

1 if edge 𝑒 intersects the device’s coverage area,

0 otherwise.
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Fig. 2. Solutions of MNLCLP (𝑝 = 5) and PSNLCLP (𝛾 = 0.75) of the network of Example 1.
Fig. 3. Solutions of MNLCLP with 𝑝 = 5 for coverage areas defined by 𝓁1-norm (left) and 𝓁∞-norm (right) balls.
Fig. 4. Solutions of the edge-restricted and node-restricted versions of MNLCLP for 𝑝 = 5 for the network of Example 1.
Fig. 5. Average length coverage deviations between the solutions of MNLCLP and the
edges/nodes-restricted versions of the problem.
4

𝑋 ∶ Coordinates of the placement of the device.

𝑌 0
𝑒 , 𝑌

1
𝑒 ∶ Intersections points of 𝜕B𝑅(𝑋) with the edge 𝑒.

𝜆0𝑒 , 𝜆
1
𝑒 ∶ Parameterization values in the segment of intersection

points 𝑌 0
𝑒 and 𝑌 1

𝑒 , respectively.

The single-device MNLCLP can be formulated as the following
Mathematical Programming Model, that we denote as (1-MNLCLP):

max
∑

𝑒∈𝐸
𝜔𝑒𝐿𝑒(𝜆1𝑒 − 𝜆0𝑒 ) (1)

s.t. ‖𝑋 − 𝑌 𝑠
𝑒 ‖𝑧𝑒 ≤ 𝑅,∀𝑒 ∈ 𝐸, 𝑠 ∈ {0, 1}, (2)

𝑌 𝑠
𝑒 = 𝜆𝑠𝑒𝑜𝑒 + (1 − 𝜆𝑠𝑒)𝑓𝑒,∀𝑒 ∈ 𝐸, 𝑠 ∈ {0, 1}, (3)

𝜆0𝑒 ≤ 𝜆1𝑒 ,∀𝑒 ∈ 𝐸, (4)

𝜆1𝑒 ≤ 𝑧𝑒,∀𝑒 ∈ 𝐸, 𝑠 ∈ {0, 1}, (5)

𝜆0𝑒 , 𝜆
1
𝑒 ≥ 0,∀𝑒 ∈ 𝐸, 𝑠 ∈ {0, 1}, (6)

𝑧 ∈ {0, 1},∀𝑒 ∈ 𝐸, (7)
𝑒
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Fig. 6. Shape of extended edges (left) and the intersection of three of these compatible shapes (right).
𝑋 ∈ R𝑑 . (8)

Constraints (2) enforce that in case the device coverage area inter-
sects the edge, the intersection points must be in the coverage area of
𝑋. This constraint can be equivalently rewritten as:

‖𝑋 − 𝑌 𝑠
𝑒 ‖ ≤ 𝑅 + 𝛥(1 − 𝑧𝑒),∀𝑒 ∈ 𝐸, 𝑠 ∈ {0, 1}

where 𝛥 a big enough constant with 𝛥 > max
{

‖𝑧1 − 𝑧2‖ ∶ 𝑧1, 𝑧2 ∈

{𝑜𝑒, 𝑓𝑒 ∶ 𝑒 ∈ 𝐸}
}

. Constraints (3) are the parameterizations of the
intersection points. Constraints (4) force that 𝑌 0

𝑒 is closer to 𝑜𝑒 than
𝑌 1
𝑒 . In case the device does not intersect an edge, by Constraints (5)

fix to zero the coefficients of the parameterization, adding a value of
zero to the covered lengths in the objective function. (6)–(7) are the
domains of the variables.

(1-MNLCLP) is a Mixed Integer Non-Linear Programming problem
because of the discrete variables 𝑧 and the nonlinear Constraints (2).
For 𝓁𝜏 or polyhedral norms, these constraints are known to be ef-
ficiently rewritten as a set of second-order cone constraints (and in
the case of polyhedral norms, as linear constraints) becoming a Mixed
Integer Second-Order Cone Optimization (MISOCO) problem that can
be solved using the off-the-shelf software (see [32], for further details).

3.1. Generating feasible solutions of MNLCLP

The single-device version of the MNLCLP is already a challenging
combinatorial problem since it requires computing a feasible group of
edges which is able to be covered by the device (in addition to the
computation of the covered volume). In what follows, we analyze some
geometrical properties and algorithmic strategies for this problem, that
will result in an Integer Linear Programming formulation to gener-
ate good quality initial feasible solutions to this problem. The same
ideas will be extended to generate solutions also for the multi-device
problem.

The following result, whose proof is straightforward from Con-
straints (2) provides a geometrical characterization of the potential
position for the device to be located given that the touched set of edges
is known.

Lemma 4. Let �̄� ∈ {0, 1}|𝐸| be a feasible solution for 1-MNLCLP Denote
by 𝐶 = {𝑒 ∈ 𝐸 ∶ �̄� = 1}, the edges (total or partially) covered by the
5

𝑒

device. Then, we get that

𝑋 ∈
⋂

𝑒∈𝐶
(𝑒 ⊕ B𝑅(0)), (Cov)

where ⊕ stands for the Minkowski sum in R𝑑 .

The above result states that the position of the device, 𝑋, must
belong to the intersection of the extended segments induced by the
edges in the cluster 𝐶. In Fig. 6 (left picture) we illustrate the shape
of 𝑒 ⊕ B𝑅(0) for a given edge 𝑒 ∈ 𝐸. In Fig. 6 (right picture) we show
the intersection of three of these types of sets, where a device covering
the three segments is allowed to be located.

As already mentioned, the main combinatorial decision of our mod-
els is to determine the sets of edges that are allowed to be touched by
the same device, i.e., 𝑆 ⊂ 𝐸, such that

⋂

𝑒∈𝑆
(𝑒 ⊕B𝑅(0)) ≠ ∅. Defining the

set  as

 =

{

𝑆 ⊂ 𝐸 ∶
⋂

𝑒∈𝑆
(𝑒 ⊕ B𝑅(0)) ≠ ∅

}

each element 𝑆 ∈  will be called a compatible subset for the device. In
general, unless the radius is big enough, not all the subsets of 𝐸 belong
to .

In the following result, we describe a polynomial set (in |𝐸|) of valid
inequalities for our model that avoid those non-compatible sets in our
models.

Lemma 5. The following inequalities are valid for the 1-MNLCLP:
∑

𝑒∈𝑆
𝑧𝑒 ≤ 𝑑,∀𝑆 ⊂ 𝐸 with |𝑆| = 𝑑 + 1 and

⋂

𝑒∈𝑆
(𝑒 ⊕ B𝑅(0)) = ∅. (9)

Proof. It is straightforward to see, by Constraints (2), that the following
condition is verified by any solution of (1)–(8):
∑

𝑒∈𝑆
𝑧𝑒 ≤ |𝑆| − 1,∀𝑆 ⊂ 𝐸 ∶

⋂

𝑒∈𝑆
(𝑒 ⊕ B𝑅(0)) = ∅,

Thus, by Helly’s theorem [33], since the sets taking part of the inter-
sections above, (𝑒⊕B𝑅(0)), are compact and convex for any 𝑒 ∈ 𝐸, the
result follows. □

Corollary 6. Let �̄� ∈ {0, 1}|𝐸| be a solution of the system of Diophantine
in Eqs. (9). Then, �̄� is a feasible solution for the 1-MNLCLP.
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In the classical Maximal Coverage Location Problems, the above
observation allows us to replace the non-linear covering constraints
– in the shape of (2) – with inequalities in the shape of (9), and
the continuous variables which are involved in these constraints can
be forgotten (see [23,24, e.g.]). In our model, the latter is no longer
possible as in classic MCLP since the 𝜆-values are also needed to
ompute the covered volume of the network.

Thus, we propose the following Integer Linear Programming formu-
ation to obtain valid compatible subsets for the models.

ax
∑

𝑒∈𝐸
𝜔𝑒𝐿𝑒𝑧𝑒 (10)

s.t.
∑

𝑒∈𝑆
𝑧𝑒 ≤ 𝑑,∀𝑆 ⊂ 𝐸(|𝑆| = 𝑑 + 1) ∶

⋂

𝑒∈𝑆
(𝑒 ⊕ B𝑅(0)) = ∅, (11)

𝑧𝑒 ∈ {0, 1},∀𝑒 ∈ 𝐸. (12)

The above mathematical programming model is an edge-based ver-
ion of the classical 1-Maximal Coverage Location Problem, which is
nown to be NP-hard. The main advantage of this representation is that
ne can use techniques from Integer Linear Programming to strengthen
r solve it, using the available off-the-shelf solvers.

The main bottleneck of this formulation is the computation of the in-
ersections of 𝑑+1 sets in the form 𝑒⊕B𝑅(0) which are empty, in whose
ase the corresponding inequality is added to the pool of constraints.
he general methodology that can be applied for any dimension and
ny 𝓁𝜏 -based norm, is by applying a relax-and-cut approach based
n solving the problems above by removing Constraints (11), separat-
ng the violated constraints and incorporating them on-the-fly in an
mbedded branch-and-cut algorithm.

In what follows we focus on the planar Euclidean case, which is
he most useful case in practice, and for which the formulations can be
urther simplified.

Observe that for 𝑑 = 2, Constraints (9) are equivalent to:

𝑧𝑒 + 𝑧𝑒′ ≤ 1,∀𝑒, 𝑒′ ∈ 𝐸 ∶ (𝑒 ⊕ B𝑅(0)) ∩ (𝑒′ ⊕ B𝑅(0)) = ∅,

𝑒 + 𝑧𝑒′ + 𝑧𝑒′′ ≤ 2,∀𝑒, 𝑒′, 𝑒′′ ∈ 𝐸 ∶ (𝑒 ⊕ B𝑅(0)) ∩ (𝑒′ ⊕ B𝑅(0)) ∩ (𝑒′′ ⊕ B𝑅(0)) = ∅,

𝑧𝑒 ∈ {0, 1},∀𝑒 ∈ 𝐸.

Thus, in order to incorporate these types of constraints one needs to
check two and three-wise intersections of objects in the form 𝑒⊕B𝑅(0).
Although these shapes can be difficult to handle in general, the planar
Euclidean case can be efficiently handled by analyzing the geometry of
these objects as Minkowski sums of segments and disks.

The following results are instrumental for the development of the
algorithm that we propose to generate the above sets of constraints.
From now on, ‖ ⋅ ‖ denotes the Euclidean norm in R2.

Lemma 7. Let 𝑒, 𝑒′ be two segments in R2 and 𝛿(𝑒, 𝑒′) = min{‖𝑋 −𝑋′
‖ ∶

𝑋 ∈ 𝑒,𝑋′ ∈ 𝑒′}. Then, if 𝛿(𝑒, 𝑒′) > 0, there exist 𝑋 ∈ 𝑒 and 𝑋′ ∈ 𝑒′ with
𝛿(𝑒, 𝑒′) = ‖𝑋 −𝑋′

‖ such that either 𝑋 ∈ {𝑜𝑒, 𝑓𝑒} or 𝑋′ ∈ {𝑜𝑒′ , 𝑓𝑒′}.

Proof. The result follows by observing that the minimum distance
between two segments is always achieved by choosing one of the
extremes of the segments. □

Lemma 8. Let 𝑒 be a segment in R2 and 𝑄 ∈ R2. Let 𝑆 be the intersection
point between the line induced by 𝑒, 𝑟, and its orthogonal line passing
through the point 𝑄. Then, 𝛿(𝑒,𝑄) ∶= min{‖𝑄 − 𝑋‖ ∶ 𝑋 ∈ 𝑒} can be
computed as:

𝛿(𝑒,𝑄) = ‖𝑄 − (min{max{0, 𝜇}, 1}(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒)‖,

where 𝜇 denote the parameterization value of 𝑆 in 𝑟 pointed at 𝑜𝑒.

Proof. The constructive proof is detailed in Appendix. □

Given a set of edges, 𝐸, and a radius 𝑅, using the above results, we
6

develop algorithms to compute the two and three-wise intersections of 𝑒
Fig. 7. Example of interaction between the coverages of different devices.

sets in the form 𝑒 ⊕ B𝑅(0), for 𝑒 ∈ 𝐸. The pseudocodes are shown in
Algorithms 1 and 2. The set 𝑀 , which is initialized to the empty set,
will contain, the pairs (𝑒, 𝑒′) of 𝐸×𝐸 with (𝑒⊕B𝑅(0))∩(𝑒′⊕B𝑅(0)) = ∅ by
hecking the distance between the segments, 𝛿(𝑒, 𝑒′). On the one hand,
n case, 𝛿(𝑒, 𝑒′) = 0, both segments intersect so also their Minkowski
ums. On the other hand, if 𝛿(𝑒, 𝑒′) ≠ 0, we denote by 𝑟𝑒 and 𝑟𝑒′ the
ines containing the segments 𝑒 and 𝑒′, respectively, and by 𝑄0 their
ntersection point. By Lemma 7 there exist 𝑋,𝑋′ ∈ R2 with 𝛿(𝑒, 𝑒′) =
𝑋 − 𝑋′

‖, being 𝑋 ∈ {𝑜𝑒, 𝑓𝑒} or 𝑋′ ∈ {𝑜𝑒′ , 𝑓𝑒′}. Thus, four distances
re enough to compute 𝛿(𝑒, 𝑒′), namely 𝛿1 = 𝛿(𝑜𝑒′ , 𝑒), 𝛿2 = 𝛿(𝑓𝑒′ , 𝑒),
3 = 𝛿(𝑜𝑒, 𝑒′) and 𝛿4 = 𝛿(𝑓𝑒, 𝑒′), being 𝛿(𝑒, 𝑒′) = min{𝛿1, 𝛿2, 𝛿3, 𝛿4}. In
ase 𝛿(𝑒, 𝑒′) > 2𝑅, then (𝑒⊕B𝑅(0))∩(𝑒′⊕B𝑅(0)) = ∅, and the tuple (𝑒, 𝑒′)
s added to 𝑀 .

For the three-wise intersections, the set 𝑀 is again initialized to the
mpty set. Then, for each triplet (𝑒1, 𝑒2, 𝑒3) whose pairwise intersection
s non-empty (by Algorithm 1), we solve the following mathematical
ptimization problem:
∗(𝑒1, 𝑒2, 𝑒3) ∶= min 𝜀 (13)

s.t. 𝑌𝑖 = (1 − 𝜆𝑖)𝑜𝑒𝑖 + 𝜆𝑖𝑓𝑒𝑖 , 𝑖 = 1, 2, 3, (14)

‖𝑋 − 𝑌𝑖‖ ≤ 𝑅 + 𝜀, 𝑖 = 1, 2, 3, (15)

𝑋 ∈ R2, (16)

𝜆1, 𝜆2, 𝜆3 ∈ [0, 1], (17)

𝜀 ∈ R. (18)

The above problem is polynomial-time solvable since it can be
ewritten as a continuous Second-Order Cone Optimization problem.
urthermore, its objective value provides a way to check for the empti-
ess of the three-wise intersection problem.

emma 9. Let 𝑒1, 𝑒2, 𝑒3 ∈ 𝐸 with (𝑒𝑖 ⊕ B𝑅(0)) ∩ (𝑒𝑗 ⊕ B𝑅(0)) ≠ ∅ for all
, 𝑗 ∈ {1, 2, 3}. Then, (𝑒1 ⊕ B𝑅(0)) ∩ (𝑒2 ⊕ B𝑅(0)) ∩ (𝑒3 ⊕ B𝑅(0)) ≠ ∅ if and
nly if 𝜀∗(𝑒1, 𝑒2, 𝑒3) = 0.

. A general model for (PSNLCLP) and (MNLCLP)

In this section, we provide a general methodology to deal with the
ptimal location of devices in both the PSNLCLP and the MNLCLP.
n the single-device problem analyzed in the previous section, the
overage of an edge can be directly computed by parameterizing the
ntersection of the boundary of the ball with the edge. Nevertheless, in
he multi-device problem, the covered length does not coincide with
he sum of the coverages of every single device separately, since the
ame part of a segment may be covered by two or more devices, but the
overed length must be accounted for only once (otherwise the optimal
lacement for a set of devices is the collocation of all of them in the
ore weighted edge).

We illustrate the situation in the following toy example.

xample 10. Let us consider a planar network with a single edge
and four devices with Euclidean ball coverage areas as drawn in
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Algorithm 1: A complete set of 2-wise incompatible edges.
Data: Set of edges, 𝐸, and radius 𝑅.

= ∅
or (𝑒, 𝑒′) ∈ 𝐸 × 𝐸 do

Set: 𝑒 = 𝑓𝑒 − 𝑜𝑒.
Set: 𝑒′ = 𝑓𝑒′ − 𝑜𝑒′ .
Compute the intersection point of the lines 𝑜𝑒 + ⟨𝑒⟩ and 𝑜𝑒′ + ⟨𝑒′⟩: 𝑄0.
Calculate 𝜇0, 𝜇′

0 such that 𝑄0 = 𝜇0𝑒 + 𝑜𝑒 and 𝑄0 = 𝜇′
0𝑒

′ + 𝑜𝑒′ .
if 𝜇0 or 𝜇′

0 ∉ [0, 1] then
1. Compute the intersection point of the lines 𝑜𝑒 + ⟨𝑒⟩ and 𝑜𝑒′ + ⟨𝑒⊥⟩: 𝑄1.

Calculate 𝜇1 such that 𝑄1 = 𝜇1𝑒 + 𝑜𝑒.
Set: 𝛿1 = ‖𝑜𝑒′ − (min{max{0, 𝜇1}, 1}𝑒 + 𝑜𝑒)‖.

2. Compute the intersection point of the lines 𝑜𝑒 + ⟨𝑒⟩ and 𝑓𝑒′ + ⟨𝑒⊥⟩: 𝑄2.
Calculate 𝜇2 such that 𝑄2 = 𝜇2𝑒 + 𝑜𝑒.
Set: 𝛿2 = ‖𝑓𝑒′ − (min{max{0, 𝜇2}, 1}𝑒 + 𝑜𝑒)‖.

3. Compute the intersection point of the lines 𝑜𝑒 + ⟨𝑒′⊥⟩ and 𝑜𝑒′ + ⟨𝑒′⟩: 𝑄3.
Calculate 𝜇3 such that 𝑄3 = 𝜇3𝑒′ + 𝑜𝑒′ .
Set: 𝛿3 = ‖𝑜𝑒 − (min{max{0, 𝜇3}, 1}𝑒′ + 𝑜𝑒′ )‖.

4. Compute the intersection point of the lines 𝑓𝑒 + ⟨𝑒′⊥⟩ and 𝑜𝑒′ + ⟨𝑒′⟩: 𝑄4.
Calculate 𝜇4 such that 𝑄4 = 𝜇4𝑒′ + 𝑜𝑒′ .
Set: 𝛿4 = ‖𝑓𝑒 − (min{max{0, 𝜇4}, 1}𝑒′ + 𝑜𝑒′ )‖.

if min{𝛿1, 𝛿2, 𝛿3, 𝛿4} > 2𝑅 then
Add (𝑒, 𝑒′) to 𝑀 .

Result: 𝑀 =
{

(𝑒, 𝑒′) ∈ 𝐸 × 𝐸 ∶ (𝑒 ⊕ B𝑅(0)) ∩ (𝑒′ ⊕ B𝑅(0)) = ∅
}

.

Algorithm 2: A complete set of 3-wise incompatible edges (which are pair-wise compatible).
Data: Set of edges, 𝐸, and radius 𝑅.
= {(𝑒1, 𝑒2, 𝑒3) ∈ 𝐸 × 𝐸 × 𝐸 ∶ (𝑒1 ⊕ B𝑅(0)) ∩ (𝑒2 ⊕ B𝑅(0)) ≠ ∅, (𝑒 ⊕ B𝑅(0)) ∩ (𝑒3 ⊕ B𝑅(0)) ≠ ∅, (𝑒2 ⊕ B𝑅(0)) ∩ (𝑒3 ⊕ B𝑅(0)) ≠ ∅}.
3 = ∅.
or (𝑒1, 𝑒2, 𝑒3) ∈ 𝐿 do

Compute 𝜀∗(𝑒1, 𝑒2, 𝑒3).
if 𝜀∗(𝑒1, 𝑒2, 𝑒3) > 0 then

Add (𝑒1, 𝑒2, 𝑒3) to 𝑀3.

Result: 𝑀 =
{

(𝑒1, 𝑒2, 𝑒3) ∈ 𝐸 × 𝐸 × 𝐸 ∶ (𝑒1 ⊕ B𝑅(0)) ∩ (𝑒2 ⊕ B𝑅(0)) ∩ (𝑒3 ⊕ B𝑅(0)) = ∅
}

.
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Fig. 7. The four devices touch the edge. The covered length of the
dge is highlighted with thicker segments in the picture. Clearly, this
ength cannot be computed by adding up separately each of the covered
engths of the devices.

In what follows we derive a mathematical programming model that
vercomes this situation.

Observe that the positions of the intersection points of the coverage
reas of 𝑝 devices with an edge (segment) 𝑒 provide a partition of the
dge in at most 2𝑝+1 subsegments of 𝑒. Each of those subsegments is ei-
her fully covered or non-covered by the device. Let 𝜆01𝑒, 𝜆

1
1𝑒,… , 𝜆0𝑝𝑒, 𝜆

1
𝑝𝑒

he parameterizations of the intersection points of the 𝑝 devices with
espect to 𝑒 (here 𝜆0𝑗𝑒 and 𝜆1𝑗𝑒 stands for the parameterizations of the
ntersection of the coverage area of 𝑗th device with segment induced
y the edge 𝑒).

We assume that the devices not intersecting the edge have both
ambda values equal to zero. Sorting the 𝜆0 and 𝜆1 values one gets two
orted sequences in the form:
0
𝑒 ∶= 𝜆0(1)𝑒 ≤ ⋯ ≤ 𝜆0(𝑝)𝑒

1
𝑒 ∶= 𝜆1(1)𝑒 ≤ ⋯ ≤ 𝜆1(𝑝)𝑒
erging both lists one gets all the partitions of the segment 𝑒 by the

ifferent intersection points:

𝑒 ∶= 𝜆𝑖1(1)𝑒 ≤ ⋯ ≤ 𝜆
𝑖2𝑝
(2𝑝)𝑒

here 𝑖 ,… , 𝑖 ∈ {0, 1}.
7

1 2𝑝
For each 𝑙 ∈ {1,… , 2𝑝 − 1}, the intervals [𝜆𝑖𝑙(𝑙)𝑒, 𝜆
𝑖𝑙+1
(𝑙+1)𝑒] along with

𝑜𝑒, 𝜆
𝑖1
(1)𝑒] and [𝜆

𝑖2𝑝
(2𝑝)𝑒, 𝑓𝑒] induce a subdivision of the segment 𝑒 into 2𝑝+1

ieces (some of them probably singletons). Furthermore, in case any of
he extreme points, 𝑜𝑒 and 𝑓𝑒, are covered by a device, the correspond-
ng subsegment will be a singleton ([𝑜𝑒, 𝑜𝑒] = {𝑜𝑒} or [𝑓𝑒, 𝑓𝑒] = {𝑓𝑒}),
hose length is zero. Otherwise, in case any extreme subsegment is not

overed, still its contribution to the objective function is zero. Thus,
n our formulation, it is enough considering the 2𝑝 − 1 intermediate
ubsegments in the subdivision.

Given the sequence 𝛬𝑒 for the 𝑝 given devices located at 𝑋1,… , 𝑋𝑝,
ne can easily determine which of the subsegments in the partitions
re covered by the facilities as stated by the following straightforward
bservation.

emma 11. A subsegment in the form 𝑠 = [𝜆𝑖𝑙(𝑙)𝑒, 𝜆
𝑖𝑙+1
(𝑙+1)𝑒] is covered by a set

f devices if and only if 𝑠 ⊆ [𝜆0𝑗𝑒, 𝜆
1
𝑗𝑒] for some 𝑗 = 1,… , 𝑝 with 𝜆0𝑗𝑒 < 𝜆1𝑗𝑒.

With the above observations, we derive mathematical programming
ormulations for the multi-device versions of PSNLCLP and MNLCLP.

We denote by 𝑃 = {1,… , 𝑝} the index set for the devices to
ocate and by 𝑄 = {1,… , 2𝑝 − 1} the index sets for the intermediate
ubsegments in the partition induced by the 𝛬 sequences. We assume
hat the 𝑗th device is endowed with a ‖ ⋅ ‖-based coverage area with

radius 𝑅𝑗 .

We use the following decision variables in our models:
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Fig. 8. Networks used in our computational experiments.
𝑧𝑗𝑒 =

⎧

⎪

⎨

⎪

⎩

1 if edge 𝑒 intersect the 𝑗th device’s coverage area,

0 otherwise
∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸.

𝑋𝑗1,… , 𝑋𝑗𝑑 ∶ Coordinates of the 𝑗th device, ∀𝑗 ∈ 𝑃 .

𝜆0𝑗𝑒, 𝜆
1
𝑗𝑒 ∶ Parameterization in the segment of the two intersection

points of 𝜕B𝑅𝑗
(𝑋𝑗 ) with segment 𝑒, ∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸.

𝑤𝑒𝓁 =

⎧

⎪

⎨

⎪

⎩

1 if the 𝓁-th subsegment of edge 𝑒 is
covered by some device,

0 otherwise,
∀𝓁 ∈ 𝑄,∀𝑒 ∈ 𝐸.

𝜉𝑠𝑗𝑒𝓁 =

⎧

⎪

⎨

⎪

⎩

1 if 𝜆𝑠𝑗𝑒 is sorted in 𝓁-th
position in the list of 𝛬𝑒,

0 otherwise
∀𝑗 ∈ 𝑃 ,∀𝓁 ∈ 𝑄∪{2𝑝},∀𝑒 ∈ 𝐸.

With the above set of variables, the amount:

𝐿𝑒

[

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒(𝓁+1) −

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒𝓁

]

determines the length of the 𝓁-th subsegment in case it is covered
by any of the devices in 𝑃 . Note that in case such a subsegment is
[𝜆𝑠𝑗𝑒, 𝜆

𝑠′
𝑗′𝑒], the above expression becomes 𝐿𝑒(𝜆𝑠

′

𝑗′𝑒 − 𝜆𝑠𝑗𝑒) which is the
desired amount.

Thus, the overall volume coverage of the network can be computed
as:
∑

𝑒∈𝐸

∑

𝓁∈𝑄
𝜔𝑒𝑤𝑒𝓁𝐿𝑒

[

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒(𝓁+1) −

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒𝓁

]

In order to adequately represent the decision variables in our model,
the following constraints are considered:

1. Coverage Constraints:

‖(𝜆𝑠𝑗𝑒𝑒 + 𝑜𝑒) −𝑋𝑗‖𝑧𝑗𝑒 ≤ 𝑅𝑗 ,∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸, 𝑠 = 0, 1 (19)

These constraints enforce that in case an edge is accounted as
touched by the 𝑗th device (𝑧𝑗𝑒 = 1), the two intersection points
(𝜆0𝑗𝑒𝑒 + 𝑜𝑒) and (𝜆1𝑗𝑒𝑒 + 𝑜𝑒) belong to B𝑅𝑗

(𝑋𝑗 ) ∩ 𝑒. This constraint
can be reformulated as:

𝑠

8

‖(𝜆𝑗𝑒𝑒 + 𝑜𝑒) −𝑋𝑗‖𝑧𝑗𝑒 ≤ 𝑅𝑗 + 𝛥(1 − 𝑧𝑗𝑒),∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸, 𝑠 = 0, 1
where 𝛥 a big enough constant with 𝛥 > max
{

‖𝑧1−𝑧2‖ ∶ 𝑧1, 𝑧2 ∈

{𝑜𝑒, 𝑓𝑒 ∶ 𝑒 ∈ 𝐸}
}

.

2. Directed Parameterization:

𝜆0𝑗𝑒 ≤ 𝜆1𝑗𝑒,∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸. (20)

In case the coverage area of a device 𝑗 touches the segment 𝑒,
the segment is oriented in the parameterization.

3. Zero parameterizations for untouched edges

𝜆1𝑗𝑒 ≤ 𝑧𝑗𝑒,∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸. (21)

In case the 𝑗th device does not touch the segment induced by an
edge 𝑒, the covered length of such an edge by the device will be
zero. By (19), in that case, the device is not restricted to touching
the segment, but to assure that no length is accounted for, we fix
both 𝜆-values in the fictitious intersection to zero.

4. 𝛬-Sorting Constraints:
∑

𝑗∈𝑃
(𝜉0𝑗𝑒𝓁 + 𝜉1𝑗𝑒𝓁 ) = 1,∀𝑒 ∈ 𝐸, ∀𝓁 ∈ 𝑄 ∪ {2𝑝}, (22)

∑

𝓁∈𝑄∪{2𝑝}
𝜉𝑠𝑗𝑒𝓁 = 1,∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸, 𝑠 = 0, 1 (23)

∑

𝑗∈𝑃
(𝜆0𝑗𝑒𝜉

0
𝑗𝑒𝓁 + 𝜆1𝑗𝑒𝜉

1
𝑗𝑒𝓁 ) ≤

∑

𝑗∈𝑃
(𝜆0𝑗𝑒𝜉

0
𝑗𝑒(𝓁+1) + 𝜆1𝑗𝑒𝜉

1
𝑗𝑒(𝓁+1)),∀𝑒 ∈ 𝐸, ∀𝓁 ∈ 𝑄. (24)

These constraints allow us to adequately define the variables 𝜉.
Constraints (22) and (23) assure that for each 𝑒 each 𝜆𝑒-value is
sorted in exactly a single position in 𝑄 and that each position is
assigned to exactly one 𝜆𝑒 value. Constraint (24) enforces that
the 𝜉-variables sort the 𝜆-values in non-decreasing order.

5. Coverage of subsegments:

𝑤𝑒𝓁 ≤
∑

𝑗∈𝑃

(

∑

𝑖≤𝓁
𝜉0𝑗𝑒𝑖 +

∑

𝑖>𝓁
𝜉1𝑗𝑒𝑖 − 1

)

,∀𝑒 ∈ 𝐸, ∀𝓁 ∈ 𝑄, (25)

The coverage of a subsegment 𝓁 ∈ 𝑄 is assured by the existence
of a device 𝑗 for which its 𝜆0𝑗𝑒 is sorted in a position anterior to 𝓁
(∑𝑖≤𝓁 𝜉

0
𝑗𝑒𝑖 = 1) and 𝜆1𝑗𝑒 in a posterior position to 𝓁 (∑𝑖>𝓁 𝜉

1
𝑗𝑒𝑖 = 1).

Thus, in case both values are 1, the conditions of Lemma 11 are
verified, and the subsegment is covered. Otherwise, one of the
above sums is zero, and the constraint is redundant. Indeed, if
∑

𝑖≤𝓁 𝜉
0
𝑗𝑒𝑖 = 0, then, by (23), ∑

𝑖>𝓁 𝜉
0
𝑗𝑒𝑖 = 1. Thus, by (20) and

(24), one has that ∑

𝑖>𝓁 𝜉
1
𝑗𝑒𝑖 = 1. Similarly, if ∑

𝑖>𝓁 𝜉
1
𝑗𝑒𝑖 = 0, one

∑ 0 ∑ 0 ∑ 1
has that 𝑖≤𝓁 𝜉𝑗𝑒𝑖 = 1. In both cases, 𝑖≤𝓁 𝜉𝑗𝑒𝑖 + 𝑖>𝓁 𝜉𝑗𝑒𝑖 − 1
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takes value zero, implying that the 𝑗th device does not cover
the subsegment.

Apart from the constraints above, we incorporate into our model
the following valid inequalities that allow us to strengthen it:

1. Touched segments and covered subsegments:
∑

𝓁∈𝑄
𝑤𝑒𝓁 ≤ 2

∑

𝑗∈𝑃
𝑧𝑗𝑒, ∀𝑒 ∈ 𝐸.

In case the whole segment is not touched by any device, non of
the subsegments are covered.

2. Symmetry breaking:
𝑑
∑

𝑘=1
𝑋𝑗𝑘 ≤

𝑑
∑

𝑘=1
𝑋(𝑗+1)𝑘, ∀𝑗 ∈ 𝑃 , 𝑗 < 𝑝.

Since the devices to be located are indistinguishable, any per-
mutation of the 𝑗-index will result in an alternative optimal
solution, hindering the solution procedure based on a branch-
and-bound tree. The above inequality prevents such an amount
of alternative optima.

3. Incompatible edges:

𝑧𝑒𝑗+𝑧𝑒′𝑗 ≤ 1, ∀𝑗 ∈ 𝑃 ,∀𝑒, 𝑒′ ∈ 𝐸 with min{‖𝑥−𝑥′‖ ∶ 𝑥 ∈ 𝑒, 𝑥′ ∈ 𝑒′} > 2𝑅𝑗 .

Edges that are far enough are not able to be simultaneously
touched by the same device.

Mathematical Programming Model for (MNLCLP):

Using the variables and constraints previously described, the follow-
ng mathematical programming formulation is valid for the MNLCLP:

ax
∑

𝑒∈𝐸

∑

𝓁∈𝑄
𝜔𝑒𝑤𝑒𝓁𝐿𝑒

[

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒(𝓁+1) −

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒𝓁

]

.t. (19)–(25),
𝜆𝑠𝑗𝑒 ∈ [0, 1], ∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸, 𝑠 = 0, 1,

𝑋𝑗 ∈ R𝑑 , ∀𝑗 ∈ 𝑃 ,

𝑧𝑗𝑒 ∈ {0, 1}, ∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸,

𝜉𝑠𝑗𝑒𝓁 ∈ {0, 1}, ∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸,∀𝓁 ∈ 𝑄 ∪ {2𝑝}, 𝑠 = 0, 1,

𝑤𝑒𝓁 ∈ {0, 1}, ∀𝑒 ∈ 𝐸,∀𝓁 ∈ 𝑄.

Mathematical Programming Model for (PSNLCLP):

(PSNLCLP) seeks to minimize the number of devices to cover at least
portion 𝛾 ∈ (0, 1] of the length of the network. Although the above

ariables and constraints can be used to derive similarly a model for
his problem, the number of devices, 𝑝, to locate is unknown in this
ase. We estimate an upper bound for this parameter and consider the
ollowing binary variables to activate/desactivate them.

𝑗 =

{

1 if device 𝑗 is activated,
0 otherwise.

∀𝑗 ∈ 𝑃 .

Then, the (PSNLCLP) can be formulated as follows:

min
∑

𝑗∈𝑃
𝑦𝑗

.t. (19)–(25), (26)
∑

𝑒∈𝐸

∑

𝓁∈𝑄
𝜔𝑒𝑤𝑒𝓁𝐿𝑒

[

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒(𝓁+1) −

∑

𝑗∈𝑃

1
∑

𝑠=0
𝜆𝑠𝑗𝑒𝜉

𝑠
𝑗𝑒𝓁

]

≥ 𝛾
∑

𝑒∈𝐸
𝜔𝑒𝐿𝑒,

(27)
9

𝑧𝑗𝑒 ≤ 𝑦𝑗 , ∀𝑗 ∈ 𝑃 , ∀𝑒 ∈ 𝐸; (28)
𝜆𝑠𝑗𝑒 ∈ [0, 1],∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸, 𝑠 = 0, 1,

𝑋𝑗 ∈ R𝑑 ,∀𝑗 ∈ 𝑃 ,

𝑧𝑗𝑒 ∈ {0, 1},∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸,

𝜉𝑠𝑗𝑒𝓁 ∈ {0, 1},∀𝑗 ∈ 𝑃 ,∀𝑒 ∈ 𝐸,∀𝓁 ∈ 𝑄 ∪ {2𝑝}, 𝑠 = 0, 1,

𝑤𝑒𝓁 ∈ {0, 1},∀𝑒 ∈ 𝐸,∀𝓁 ∈ 𝑄,

𝑦𝑗 ∈ {0, 1},∀𝑗 ∈ 𝑃 .

In this case, the objective function accounts for the number of
activated devices, Constraint (27) assures that at least a portion of 𝛾
of the coverage volume is attained, and (28) prevents covering edges
by devices that are not activated.

Instead of minimizing the number of devices one may also minimize
the set-up costs by incorporating individual set-up costs for each of
the available devices (𝑓𝑗 for 𝑗 ∈ 𝑃 ) and replace the above objective
function by ∑

𝑗∈𝑃 𝑓𝑗𝑦𝑗 .
To avoid multiple optimal solutions due to symmetry, we also incor-

porate into the model the following constraints that avoid activating the
𝑗th device in case the (𝑗 − 1)-th device is not activated in the solution.

𝑦𝑗−1 ≥ 𝑦𝑗 ,∀𝑗 ∈ 𝑃 , 𝑗 > 1.

Remark 12. The complexity of the PSNLCLP highly depends on
the number of potential devices to locate (𝑝), since the number of
constraints and variables are affected by this parameter. We derive a
method to compute a reasonable upper bound for that parameter which
is based on computing the minimum number of devices necessary to
cover each edge in 𝑈𝛾 ⊆ 𝐸 where 𝑈𝛾 is defined as a minimal set
verifying that

∑

𝑒∈𝑈𝛾

𝜔𝑒𝐿𝑒 ≥ 𝛾
∑

𝑒∈𝐸
𝜔𝑒𝐿𝑒.

We initialize 𝑈𝛾 = ∅, and sort the sequence
{

𝜔𝑒𝐿𝑒
}

𝑒∈𝐸 such that
𝜔𝑒1𝐿𝑒1 ≥ 𝜔𝑒2𝐿𝑒2 ≥ ⋯ ≥ 𝜔𝑒𝑖𝐿𝑒𝑖 ≥ 𝜔𝑒𝑖+1𝐿𝑒𝑖+1 ≥ ⋯. Then, we define
𝑈𝛾 = {𝑒1,… , 𝑒𝑘} such that:
𝑘
∑

𝑖=1
𝜔𝑒𝑖𝐿𝑒𝑖 ≥ 𝛾

∑

𝑒∈𝐸
𝜔𝑒𝐿𝑒 >

𝑘−1
∑

𝑖=1
𝜔𝑒𝑖𝐿𝑒𝑖 .

Since the minimum number of devices necessary to cover a single edge
𝑒 is

⌈

𝐿𝑒
2𝑅

⌉

, we can fix 𝑝 =
∑

𝑒∈𝑈𝛾

⌈

𝐿𝑒
2𝑅

⌉

.

The Mixed Integer Non-Linear Programming models that we de-
elop for (MNLCLP) and (PSNLCLP) have 𝑂(𝑝2|𝐸|) variables, 𝑂(𝑝|𝐸|)
inear constraints, and 𝑂(𝑝|𝐸|𝑓

‖⋅‖) nonlinear constraints (here, 𝑓
‖⋅‖

tand for the number of constraints that allow rewriting Constraints
19) as second-order cone constraints (see [32] for upper bounds on this
umber for 𝓁𝜏 -norms). Thus, it is advisable in these models to design
lternative solution strategies for solving them or to provide initial
olutions that alleviate the search for optimal solutions by providing
ower bounds for our problem. In the following sections, we propose
ifferent alternatives taking advantage of the geometric properties of
hese problems.

.1. Constructing initial feasible solutions

The geometric properties that we derive in Section 3.1 for the single
evice problem can be also extended to the 𝑝-device case. Specifically,
ne can construct solutions of MNLCLP by avoiding the computation
f covered lengths in the models and assuming that once an edge
f the network is touched by the coverage area of a device, the
hole is accounted as covered. With these assumptions, we construct

nitial solutions to our problem by solving the following integer linear
rograms:

ax
∑

𝑒∈𝐸

∑

𝑗∈𝑃
𝜔𝑒𝐿𝑒𝑧𝑗𝑒 (29)

s.t.
∑

𝑧𝑗𝑒 ≤ 1,∀𝑒 ∈ 𝐸, (30)

𝑗∈𝑃
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Table 1
Computational results for the MNLCLP approaches.

Instance |𝑉 | |𝐸| 𝑝 𝑅 CPU time (s) Unsolved GAP (%)

MNLCLP MNLCLP_1 MNLCLP_2 MNLCLP MNCLP_1 MNLCLP MNLCLP_1

gessler 12 14

2
0.1 151.53 13.69 0.89 0% 0% 0% 0%
0.25 48.97 11.87 1.34 0% 0% 0% 0%
0.5 26.28 10.59 0.62 0% 0% 0% 0%

5
0.1 TL TL 2.26 100% 100% 86% 84%
0.25 TL TL 2.92 100% 100% 69% 62%
0.5 TL TL 1.61 100% 100% 24% 31%

8
0.1 TL TL 3.54 100% 100% 90% 87%
0.25 TL TL 5.59 100% 100% 74% 69%
0.5 TL TL 2.92 100% 100% 41% 35%

jilin 28 34

2
0.1 167.25 39.10 1.99 0% 0% 0% 0%
0.25 196.56 144.30 3.37 0% 0% 0% 0%
0.5 164.83 152.10 2.45 0% 0% 0% 0%

5
0.1 TL TL 2.95 100% 100% 86% 85%
0.25 TL TL 6.64 100% 100% 72% 64%
0.5 TL TL 3.17 100% 100% 40% 42%

8
0.1 TL TL 6.07 100% 100% 88% 84%
0.25 TL TL 10.34 100% 100% 72% 73%
0.5 TL TL 4.67 100% 100% 70% 37%

richmond 48 44

2
0.1 1180.62 133.99 8.75 0% 0% 0% 0%
0.25 717.09 121.90 7.47 0% 0% 0% 0%
0.5 184.63 244.25 2.32 0% 0% 0% 0%

5
0.1 TL TL 23.22 100% 100% 78% 77%
0.25 TL TL 13.79 100% 100% 62% 59%
0.5 TL TL 3.70 100% 100% 42% 41%

8
0.1 TL TL 33.64 100% 100% 88% 85%
0.25 TL TL 23.89 100% 100% 86% 71%
0.5 TL TL 5.82 100% 100% 71% 56%

foss 37 58

2
0.1 561.98 39.61 2.77 0% 0% 0% 0%
0.25 380.54 38.42 1.99 0% 0% 0% 0%
0.5 196.92 86.40 1.83 0% 0% 0% 0%

5
0.1 TL TL 6.49 100% 100% 82% 80%
0.25 TL TL 5.46 100% 100% 64% 62%
0.5 TL TL 4.31 100% 100% 61% 56%

8
0.1 TL TL 9.33 100% 100% 88% 86%
0.25 TL TL 7.99 100% 100% 87% 71%
0.5 TL TL 9.11 100% 100% 78% 64%

rural 48 60

2
0.1 12263.72 1169.41 16.94 0% 0% 0% 0%
0.25 TL 559.93 15.69 100% 0% 23% 0%
0.5 5054.64 1612.73 13.98 0% 0% 0% 0%

5
0.1 TL TL 26.46 100% 100% 92% 91%
0.25 TL TL 32.19 100% 100% 83% 82%
0.5 TL TL 21.99 100% 100% 79% 77%

8
0.1 TL TL 40.89 100% 100% 97% 94%
0.25 TL TL 49.51 100% 100% 91% 86%
0.5 TL TL 40.66 100% 100% 94% 84%

zj 60 85

2
0.1 TL TL 13.12 100% 100% 49% 65%
0.25 TL 5235.81 7.29 100% 0% 51% 0%
0.5 TL 9603.61 9.33 100% 0% 5% 0%

5
0.1 TL TL 25.56 100% 100% 96% 95%
0.25 TL TL 27.48 100% 100% 90% 89%
0.5 TL TL 18.32 100% 100% 87% 86%

8
0.1 TL TL 37.85 100% 100% 98% 96%
0.25 TL TL 31.05 100% 100% 94% 90%
0.5 TL TL 20.45 100% 100% 91% 85%
∑

𝑒∈𝑆
𝑧𝑗𝑒 ≤ 𝑑,∀𝑆 ⊂ 𝐸(|𝑆| = 𝑑 + 1) ∶

⋂

𝑒∈𝑆
(𝑒 ⊕ B𝑅𝑗

(0)) = ∅,∀𝑗 ∈ 𝑃 , (31)

𝑧𝑗𝑒 ∈ {0, 1},∀𝑒 ∈ 𝐸,∀𝑗 ∈ 𝑃 . (32)

In the problem above, the overall weighted length of the covered edges
is to be maximized by restricting edges to be covered by the same
device to those which are feasible for the MNLCLP. The edges are also
enforced to be accounted for at most once in the solution.
10
The strategies for generating and separating the constraints of the
above problem are identical to those detailed in Section 3.1.

As can be observed in our computational experience (Section 5), the
incorporation of these initial solutions to the original formulation of
MNLCLP is advisable to derive exact optimal solutions to the problem
in less CPU time.

4.2. Math-heuristic approach

In addition to the exact approaches provided by formulations MNL-
CLP or PSNLCLP and the generation of initial solutions in the previous
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Table 2
Computational results for the PSNLCLP approaches.

Instance |𝑉 | |𝐸| 𝛾 𝑅 CPU time (s) Unsolved GAP (%)

PSNLCLP PSNLCLP_1 PSNLCLP PSNLCLP

gessler 12 14

0.5
0.1 TL 19.15 100% 96%
0.25 TL 6.28 100% 89%
0.5 TL 1.90 100% 75%

0.75
0.1 TL 30.27 100% 98%
0.25 TL 10.94 100% 93%
0.5 TL 3.39 100% 86%

1
0.1 TL 39.76 100% 97%
0.25 TL 13.67 100% 93%
0.5 TL 4.74 100% 89%

jilin 28 34

0.5
0.1 TL 26.40 100% 96%
0.25 TL 13.29 100% 87%
0.5 TL 3.44 100% 67%

0.75
0.1 OoM 54.77 100% –
0.25 TL 20.00 100% 95%
0.5 TL 4.60 100% 88%

1
0.1 OoM 78.69 100% –
0.25 TL 24.36 100% 97%
0.5 TL 7.05 100% 95%

richmond 48 44

0.5
0.1 TL 57.79 100% 94%
0.25 TL 14.49 100% 92%
0.5 TL 3.90 100% 71%

0.75
0.1 OoM 91.99 100% –
0.25 TL 21.33 100% 93%
0.5 TL 5.62 100% 91%

1
0.1 OoM 116.10 100% –
0.25 TL 25.68 100% 94%
0.5 TL 7.67 100% 96%

foss 37 58

0.5
0.1 TL 41.95 100% 96%
0.25 TL 14.21 100% 92%
0.5 TL 6.83 100% 75%

0.75
0.1 OoM 111.96 100% –
0.25 TL 26.74 100% 97%
0.5 TL 11.54 100% 94%

1
0.1 OoM 230.93 100% –
0.25 OoM 61.73 100% –
0.5 OoM 19.59 100% –
section, we propose a math-heuristic procedure to obtain good qual-
ity approximated solutions for the problems for larger size instances,
in less CPU time. The math-heuristic is based on solving, sequen-
tially, the single-device location problem (2)–(8) that was described in
Section 3.1.

We show in Algorithm 3 a pseudocode for this procedure. As already
mentioned, the approach is based on solving, sequentially, a single-
device location device problem until a certain termination criterion
(which depends on the problem to solve, MNLCLP or PSNLCLP) is
verified. In case the problem is the MNLCLP the algorithm ends when
the number of devices in the pool reaches the value of 𝑝. Otherwise,
for the PSNLCLP the algorithm ends when the covered weighted length
reaches the desired value.

At each iteration, a device is located, and the network to be covered
in the next iteration is updated from the previous iteration by removing
the segments that have been covered.

5. Computational experiments

In this section, we report on the results of a series of computational
experiments performed to empirically assess our methodological con-
tribution to the MNLCLP and the PSNLCLP presented in the previous
sections. We use six real networks obtained from two different sources:
one based on the networks developed by the University of Exeter’s
(UOE) Centre for Water Systems available in https://emps.exeter.ac.
uk/engineering/research/cws/resources/benchmarks/ and other pri-
vately provided by Prof. Ormsbee from the University of Kentucky
11
Algorithm 3: Math-heuristic.
Data: Network 𝐺 = (𝑉 ,𝐸;𝛺), number of devices 𝑝 and radius 𝑅.
𝑉 ′ = 𝑉 ,𝐸′ = 𝐸,𝛺′ = 𝛺
𝑋 = ∅
while Termination_Criterion do

Solve 𝑋′, 𝜆0𝑒 , 𝜆
1
𝑒 , 𝑧𝑒 = arg (1)–(8) for 𝑒 ∈ 𝐸′, 𝜔𝑒 ∈ 𝛺′ and 𝑅.

Update Termination_Criterion Add 𝑋′ to 𝑋.
for 𝑒 ∈ 𝐸′ do

if 𝑧𝑒 = 1 then
if 𝜆0𝑒 ∈ (0, 1) then

Add 𝑌 0
𝑒 to 𝑉 ′.

Add {𝑜𝑒, 𝑌 0
𝑒 } to 𝐸′.

Add 𝜔𝑒 to 𝛺′.
if 𝜆1𝑒 ∈ (0, 1) then

Add 𝑌 1
𝑒 to 𝑉 ′.

Add {𝑌 1
𝑒 , 𝑓𝑒} to 𝐸′.

Add 𝜔𝑒 to 𝛺′.
Remove 𝑒 from 𝐸′

Result: 𝑋 ∈ R𝑑×𝑝: Location of the devices.

(UKY). These networks, which are called gessler, jilin, rich-
mond, foss, rural and zj, have 14, 34, 44, 58, 60 and 85 edges,
respectively. The networks have been scaled to fit in a disk of radius 5.
The networks are drawn in Fig. 8.

https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/
https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/
https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/
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We have run the different approaches for the MNLCLP and the
PSNLCLP for disk-shaped coverage areas with radii ranging in
{0.1, 0.25, 0.5}. For the MNLCLP the number of devices to locate, 𝑝,
ranges in {2, 5, 8}, whereas for the PSNLCLP the values of 𝛾 range in
{0.5, 0.75, 1}.

All the experiments have been run on a virtual machine in a physical
erver equipped with 12 threads from a processor AMD EPYC 7402P 24-
ore Processor, 64 Gb of RAM, and running a 64-bit Linux operating
ystem. The models were coded in Python 3.7 and we used Gurobi
.1 as optimization solver. A time limit of 5 hours was set for all the

experiments.
In Tables 1 and 2 we show the average results obtained in our

experiments. We report average values of the consumed CPU time (in
seconds), and percent of unsolved instances, and the MIP Gap within
the time limit. Both tables are similarly organized. In the first block
(first three columns), the name of the instance together with its number
of nodes and edges is provided. In the second block (next two columns)
we write the values of 𝑝 (for the MNLCLP) or 𝛾 (for the PSNLCLP) and
the radius. The next three blocks are the results obtained with each
of the approaches. For the MNLCLP we run the MISOCO formulation,
and also the exact and math-heuristic solution approaches detailed in
Section 4.1 (MNLCLP_1, for short) and 4.2 (MNLCLP_2), respectively.
We do not report results on the Unsolved instances and MIPGap for
the MNLCLP_2 since all the instances were solved within the time limit
with that approach. In Table 2 the results are organized similarly for the
PSNLCLP, but we do not generate initial solutions since that strategy
only applies to the MNLCLP, and only the strategy PSNLCLP_2. The
flag TL indicates that all the instances averaged in the row reach the
time limit without certifying optimality. The flag OoM indicates that the
solver outputs Out of Memory at some point when solving the instance.

The first observation from the results that we obtain is that both
problems are computationally challenging since they require large CPU
times to solve even the small instances. Actually, the exact MNLCLP was
only able to solve up to optimality, small instances with small values
of 𝑝, and the exact PSNLCLP only solved a few instances, and in many
of them, the solver outputs Out of Memory when solving them.

The first alternative (and exact) strategy, MNLCLP_1, based on
constructing initial solutions to the problem, had a slightly better
performance with respect to those instances that were solved with
the initial formulation, both in CPU time and MIPGap. Some of the
instances were not able to be solved with MNLCLP but were able to
be solved with the initial solutions that we construct.

With respect to the heuristic approach, the consumed CPU times
are tiny compared to the times required by the exact approaches and
was able to construct feasible solutions for all the instances, even for
those that the exact approaches flagged Out of Memory. In terms of
the quality of the obtained solutions, in Figs. 9 and 10 we show the
average deviations (for each instance) of the alternative approaches
with respect to the original one. This measure provides the percent
improvement of the alternative method with respect to the best solution
obtained by the original formulation of the problem. We observed that
the solutions that we obtained with the two strategies are significantly
better than those obtained with the original formulation for the MNL-
CLP within the time limit. Providing initial solutions to the problem
allows us to obtain solutions with 20% more coverage than the initial
formulation, whereas the heuristic approach gets solutions with more
than 25% more coverage. In the case of the PSNLCLP, in most of the
instances, the heuristic solutions are even better than those obtained
with the exact approach. Nevertheless, in the instance jilin, the
solutions are almost 50% worse than those obtained with the exact
approach.

In Fig. 11 we plot boxplots for the average of the best weighted
coverages obtained by each of the approaches within the time limit for
each of the six instances. Regarding the distribution of the results, one
12

cannot infer that the results are significantly different. Nevertheless, in
Fig. 9. Average coverage deviations of the MNLCLP_1 and MNLCLP_2 approach with
respect to MNLCLP.

Fig. 10. Average coverage deviations of the PSNLCLP_1 approach with respect to
PSNLCLP.

terms of the central tendencies, there is a clear improvement in the
results obtained with the two alternative methods with respect to the
original formulation, especially for the larger instances (see Figs. 9 and
10).

Node and edge-restricted models

Finally, we run some experiments to validate our proposal regarding
the coverages obtained with our approaches and those obtained by the
node and edge-constrained versions of our model. In those models, the
devices are allowed to be located only at the nodes or edges of the
network instead of the whole space as in our model. We have run
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Fig. 11. Weighted coverage comparison between the solutions of the three approaches MNLCLP, MNLCLP_1, and MNLCLP_2.
Fig. 12. Average deviations of the coverages obtained with the node and
edge-restricted versions of MNLCLP with respect to MNLCLP.

these restricted versions of the Maximal Coverage model, for the same
instances and parameters as in the previous section.

First, in Fig. 12 we plot the average deviations of the weighted vol-
ume coverages of these approaches with respect to those obtained with
our model (the best solution obtained with our solution approaches).
One can observe that, in some of the instances, the deviations are
close to 40%, that is, our model obtained solutions covering 40% more
volume of the network than the restricted versions. As expected, the
edge-restricted version covers more network length than the node-
restricted model, although, in most instances, the differences are less
than 5%.

The detailed average results for the different values of 𝑝 and 𝑅 are
shown in Table 3. As can be observed, the larger the number of devices
13
to be located, the larger the deviations with respect to the two restricted
models. Nevertheless, the deviations do not seem to follow a clear
pattern with respect to the radii. For some instances, the deviations
are larger for smaller values of 𝑅 whereas for others the deviations are
larger for the larger values.

In Figs. 13 and 14 we show the best solutions obtained with the
three models for two of the instances (foss with 𝑝 = 5 and rural
with 𝑝 = 8 both of them with 𝑅 = 0.5). In the left plot of both figures,
we show the optimal solution of our model. The center and right plots
are the solutions obtained with the edge-restricted and node-restricted
versions of the MNLCLP, respectively. As can be observed, the optimal
location of the devices differs for the different models. Specifically, the
MNLCLP takes advantage of locating devices outside the edges of the
network to cover edges with a high volume, whereas the restricted
versions do not have such flexibility. In Fig. 13, one can observe that,
for the foss network, there is a high concentration of weighted volume
at the edges in the bottom right corner of the network. Thus, the three
models try to locate the devices to cover that demand. In the MNLCLP, a
single device (outside the edges and nodes) suffices to cover most of the
demand, whereas the restricted models require two or three devices to
cover a similar amount of volume. This flexibility directly affects global
coverage. For this network, our model was able to cover 10% and 20%
more volume than the edge and node-restricted models, respectively.
The situation for the rural network (Fig. 14) is even more impressive
since our model obtained a solution with more than 30% coverage than
the restricted models.

One can conclude that our model is adequate to locate devices that
maximize the volume coverage of a network in case they can be located
at any place of the space where the network lives, as in the case of leak
detection devices, since the obtained solutions significantly outperform
(in coverage) the classical node and edge-restricted versions of the
problem.

6. Conclusions and future research

In this paper, we study a covering location problem with direct
application to the determination of optimal positions of leak detection



Omega 122 (2024) 102956V. Blanco and M. Martínez-Antón
Table 3
Average deviations of node and edge-restricted MNLCLP with respect to MNLCLP for the different values of 𝑝 and 𝑅.
Network 𝑝 𝑅 Dev_Nodes Dev_Edges

gessler

2
0.1 9.94% 1.20%
0.25 9.84% 1.11%
0.5 9.82% 1.10%

5
0.1 11.99% 2.78%
0.25 13.92% 6.22%
0.5 11.66% 4.51%

8
0.1 23.46% 22.10%
0.25 20.47% 19.13%
0.5 21.42% 14.82%

jilin

2
0.1 22.72% 0.97%
0.25 19.88% 1.53%
0.5 20.38% 10.49%

5
0.1 24.89% 16.42%
0.25 18.26% 17.48%
0.5 21.50% 9.88%

8
0.1 49.72% 45.95%
0.25 24.79% 38.00%
0.5 29.79% 11.23%

richmond

2
0.1 12.62% 2.32%
0.25 9.53% 3.53%
0.5 16.67% 9.03%

5
0.1 13.98% 6.72%
0.25 19.83% 9.30%
0.5 14.48% 17.60%

8
0.1 27.39% 32.84%
0.25 23.76% 38.96%
0.5 33.90% 29.89%

Network 𝑝 𝑅 Dev_Nodes Dev_Edges

foss

2
0.1 32.77% 2.14%
0.25 32.82% 2.08%
0.5 26.36% 4.32%

5
0.1 32.80% 22.35%
0.25 36.47% 9.38%
0.5 19.12% 9.55%

8
0.1 60.73% 40.86%
0.25 61.87% 17.85%
0.5 57.66% 32.72%

rural

2
0.1 19.94% 0.67%
0.25 19.42% 0.43%
0.5 6.03% 1.14%

5
0.1 23.77% 22.78%
0.25 20.44% 45.94%
0.5 16.37% 39.60%

8
0.1 40.18% 58.42%
0.25 80.81% 31.23%
0.5 31.41% 30.54%

zj

2
0.1 1.32% 0.97%
0.25 1.31% 0.08%
0.5 5.86% 2.59%

5
0.1 14.70% 9.53%
0.25 5.67% 8.58%
0.5 12.35% 8.18%

8
0.1 69.01% 26.19%
0.25 33.11% 27.69%
0.5 32.38% 27.59%
Fig. 13. Solutions of the MNLCLP (left), MNLCLP-edge restricted (center), and MNLCLP-node restricted (right) for instance foss (𝑝 = 5).
Fig. 14. Solutions of the MNLCLP (left), MNLCLP-edge restricted (center), and MNLCLP-node restricted (right) for instance rural (𝑝 = 8).
devices in urban pipeline networks. We propose a general framework
for two different versions of the problem. On the one hand, in case the
number of devices is known, we derive the Maximal Network Length
Covering Location Problem whose goal is to maximize the length of the
network for which the device can detect the leak. On the other hand, in
case the number of devices is unknown, the Partial Set Network Length
Covering Location Problem aims to minimize the number of devices to
locate to be able to detect the leaks in a given percent of the length of
the network. We derive a method to construct initial solutions as well as
a math-heuristic algorithm. We run our models on different real-world
urban water supply pipeline networks and compare the performance of
the different proposals.

Future research lines on the topic include incorporating more so-
phisticated coverage shapes for the devices, as non-convex shapes
14
obtained by the union of different polyhedral and 𝓁𝜏 -norm balls. It
would require a further study of 𝜏-order cone constraints, as well as
the representation of the union by means of disjunctive constraints,
being then a challenge to provide solutions for real-world networks. In
this case, it would be advisable to design efficient heuristic approaches
capable to scale to large networks adequately.
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Appendix. Proof of Lemma 8

Proof. Let 𝑆 be the intersection point between the line induced by 𝑒,
𝑟, and its orthogonal line passing through the point 𝑄. We denote by 𝜇
the parameterization of 𝑆 in the ray induced by the segment pointed
at 𝑜𝑒. Thus, ‖𝑄 − 𝑆‖ = min{‖𝑄 − 𝑇 ‖ ∶ 𝑇 ∈ 𝑟}. Since 𝑆 ∈ 𝑟, one can
parameterize 𝑆 as 𝑆 = (1 − 𝜇)𝑜𝑒 + 𝜇𝑓𝑒 for some 𝜇 ∈ R. Let us analyze
he different possible values for 𝜇:

• If 𝜇 ∈ [0, 1], one gets that:

‖𝑄 − (𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒)‖ = ‖𝑄 − 𝑆‖ = min{‖𝑄 − 𝑇 ‖ ∶ 𝑇 ∈ 𝑟}

≤ min{‖𝑄 − 𝑇 ‖ ∶ 𝑇 ∈ 𝑒} = 𝛿(𝑒,𝑄).

• If 𝜇 < 0, will show that 𝛿(𝑒,𝑄) = ‖𝑄 − 𝑜𝑒‖. Let 𝜆 ∈ [0, 1] and
𝑋 = (1 − 𝜆)𝑜𝑒 + 𝜆𝑓𝑒 ∈ 𝑒. Then:

‖𝑄 − 𝑜𝑒‖
2 = ‖𝑄 − 𝑆‖2 + ‖𝑆 − 𝑜𝑒‖

2 = ‖𝑄 − 𝑆‖2 + ‖𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 − 𝑜𝑒‖
2

= ‖𝑄 − 𝑆‖2 + |𝜇|2‖(𝑓𝑒 − 𝑜𝑒)‖2 ≤ ‖𝑄 − 𝑆‖2 + |(𝜇 − 𝜆)|2‖(𝑓𝑒 − 𝑜𝑒)‖2

= ‖𝑄 − 𝑆‖2 + ‖𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 − (𝜆(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒)‖2

= ‖𝑄 − 𝑆‖2 + ‖𝑆 −𝑋‖

2

= ‖𝑄 −𝑋‖

2.

• In case 𝜇 > 1, let us see that 𝛿(𝑒,𝑄) = ‖𝑄 − 𝑓𝑒‖. Let 𝜆 ∈ [0, 1] and
𝑋 = 𝜆(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 be in 𝑒:

‖𝑄 − 𝑓𝑒‖
2 = ‖𝑄 − 𝑆‖2 + ‖𝑆 − 𝑓𝑒‖

2 = ‖𝑄 − 𝑆‖2 + ‖𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 − 𝑓𝑒‖
2

= ‖𝑄 − 𝑆‖2 + ‖𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 − 𝑓𝑒 + 𝑜𝑒 − 𝑜𝑒‖
2

= ‖𝑄 − 𝑆‖2 + |𝜇 − 1|2‖(𝑓𝑒 − 𝑜𝑒)‖2

≤ ‖𝑄 − 𝑆‖2 + |(𝜇 − 𝜆)|2‖(𝑓𝑒 − 𝑜𝑒)‖2

= ‖𝑄 − 𝑆‖2 + ‖𝜇(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒 − (𝜆(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒)‖2

= ‖𝑄 − 𝑆‖2 + ‖𝑆 −𝑋‖

2

2

15

= ‖𝑄 −𝑋‖ .
Summarizing, we get that the point in 𝑒 closest to 𝑄 is in the form
(1 − 𝜆)𝑜𝑒 + 𝜆𝑓𝑒 with

𝜆 =

⎧

⎪

⎨

⎪

⎩

0 if 𝜇 < 0,
𝜇 if 0 ≤ 𝜇 ≤ 1,
1 if 𝜇 > 1.

that is, 𝜆 = min{max{0, 𝜇}, 1}, being then 𝛿(𝑒,𝑄) =
‖𝑄 − (min{max{0, 𝜇}, 1}(𝑓𝑒 − 𝑜𝑒) + 𝑜𝑒)‖. □
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