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Multiple ecological forces act together to shape the composition of microbial
communities. Phyloecology approaches—which combine phylogenetic relationships
between species with community ecology—have the potential to disentangle such
forces but are often hard to connect with quantitative predictions from theoretical
models. On the other hand, macroecology, which focuses on statistical patterns of
abundance and diversity, provides natural connections with theoretical models but
often neglects interspecific correlations and interactions. Here, we propose a unified
framework combining both such approaches to analyze microbial communities. In
particular, by using both cross-sectional and longitudinal metagenomic data for species
abundances, we reveal the existence of an empirical macroecological law establishing
that correlations in species-abundance fluctuations across communities decay from
positive to null values as a function of phylogenetic dissimilarity in a consistent
manner across ecologically distinct microbiomes. We formulate three variants of
a mechanistic model—each relying on alternative ecological forces—that lead to
radically different predictions. From these analyses, we conclude that the empirically
observed macroecological pattern can be quantitatively explained as a result of shared
population-independent fluctuating resources, i.e., environmental filtering and not as a
consequence of, e.g., species competition. Finally, we show that the macroecological law
is also valid for temporal data of a single community and that the properties of delayed
temporal correlations can be reproduced as well by the model with environmental
filtering.

macroecology | microbial communities | species coexistence | environmental filtering

Microbial communities are ubiquitous on Earth, from human microbiota to ocean, soil,
and glacial environments (1). Their widespread presence is paralleled by their complex
and highly variable composition, both across space and time (2). Understanding what
are the main drivers, or “ecological forces,” shaping the coexistence and stability of
microbial communities under changing environmental conditions and perturbations is a
fundamental challenge of utmost relevance for, e.g., environmental and health sciences.

Ecological forces can emerge from the interactions between species or between species
and the environment, including both biotic and abiotic factors. Experiments in simple
and controlled laboratory environments have made it possible to trace the effects of
various ecological forces on community composition, often reshaping classical ideas on
ecological interactions (3–9). For instance, cross-feeding has emerged as a central player
in determining community assembly, diversification, and species coexistence (10, 11).
However, the precise role of different ecological forces in determining composition
and variation in more complex natural communities remains mostly unknown. While
detailed information about environmental (12–14) and genetic (15–17) factors shaping
interactions and responses to environmental conditions is sometimes available, we still
lack frameworks to infer their quantitative strength and to disentangle the relative
relevance of each of the acting ecological forces from available data (18–20).

Macroecology—i.e., the study of ecological communities through the analysis of
global patterns of abundance, diversity, and distribution (21)—stands as a prominent
approach to link quantitative ecological models with empirical data of complex and
diverse communities (22, 23). In particular, in the context of microbial communities,
a growing body of evidence reveals that the relative abundances observed in microbial
communities are characterized by distinctive and reproducible statistical patterns, also
known as macroecological laws (23–27). Further evidence shows that despite the
complexity of the underlying “microscopic” dynamics, many of such patterns can be
reproduced by relatively simple dynamical models—such as, e.g., the stochastic logistic
model (SLM)—capturing salient features of the underlying ecological forces (24–28).
However, such simplified models often neglect interactions between species, treating
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their abundance fluctuations as independent from each other,
so that they cannot possibly account for species-correlation
patterns. Nevertheless, it is noteworthy that including species
interactions in models such as the SLM does not significantly
affect the shape of single-species macroecological patterns. For
instance, generalized Lotka–Volterra equations with environ-
mental stochasticity—which reduce to the SLM in the absence
of interactions—predict time-series statistics and patterns similar
to those of the SLM (25–27).

On the other hand, it seems clear that the ecological forces
shaping community composition and variability can only be
unveiled within a macroecological approach by explicitly study-
ing multispecies abundance patterns. For instance, empirically
determined pairwise correlations between species abundances can
be partially explained by consumer-resource models with resource
fluctuations (28).

One challenge in connecting empirical macroecological pat-
terns with simple yet biologically grounded models is that not
all statistical patterns are equally informative. For instance, it is
well known that in many ecological systems, the empirical shape
of the species abundance distribution (SAD)—i.e., one of the
most prominent macroecological patterns—can be reproduced
by models with very different underlying biological assumptions
such as, e.g., neutral and niche theories, respectively (29–31).
Similarly, multiple mechanisms are expected to contribute to the
observed correlations between species abundance fluctuations.
Pairwise correlations are in fact the result of multiple ecological
forces, such as competition, cooperation, and cross-feeding, but
also of indirect effects through a network of interactions (32).

Analyzing the phylogenetic structure of community com-
position (33, 34) is a standard approach to disentangling the
effects of these alternative assembly mechanisms. This type of
approach is generally applied to analyze species (co-)occurrence.
For example, shared environmental fluctuations (called “envi-
ronmental filtering” hereon) produce phylogenetic clustering,
i.e., similar species share a tendency to be simultaneously present
or absent (35), while exclusion by limiting similarity determines
phylogenetic overdispersion (i.e., similar species tend not to be
simultaneously present). This type of phylogenetic approach
has been widely applied in plant communities as well as in
other systems (36–38) including microbial communities (39).
More generally, phyloecology, which combines phylogenetic
relationships with community ecology, has the potential to reveal
the processes determining community composition (40, 41).
However, with few notable exceptions—focusing on testing
neutral models (42, 43)—a connection between empirical
observations of community ecology based on phylogeny and
quantitative predictions of theoretical models is still missing.

Here, our goal is to develop such a connection under the lens
of macroecology. In particular, by analyzing publicly available
datasets, we first elucidate the existence of an empirical macroeco-
logical law that describes the decay of species-abundance pairwise
correlations with their corresponding phylogenetic distance. To
rationalize such a finding, we formulate three alternative theoret-
ical models—each relying on different ecological forces—all of
which reproduce previously studied single-species macroecolog-
ical patterns (25–27) but lead to radically different predictions
for phylogenetic-dependent pairwise correlation patterns. These
analyses allow us to conclude that only environmental filtering
(and not, e.g., species competition) explains the empirically
observed pattern of decaying correlations with phylogenetic
distance. Last but not least, we analyze temporal data for a
fixed community, showing that the macroecological law also
holds quantitatively in this context and that delayed temporal

correlations are naturally reproduced by our simple model with
environmental filtering.

Results

The Averaged Correlation of Abundance Fluctuations Decays
with Phylogenetic Distance in a Consistent Fashion. We con-
sider the phylogenetic (or “cophenetic”) distance, dG,ij (where
the subindex G stands for “genetic”) for each pair of operational
taxonomic units (OTUs) (i, j), by using publicly available
results from 16S ribosomic RNA analyses for different microbial
communities (44, 45). This genetic distance exhibits a broad
variability across OTU pairs with most pairs sitting at large
distances (Materials and Methods and SI Appendix, Fig. S1). For
each pair of OTUs, we measure the correlation between the
corresponding abundance fluctuations �ij across samples (Fig. 1A
and Materials and Methods). Fig. 1B illustrates the value of the
pairwise correlation �, averaged over all the pairs of OTUs
at a given phylogenetic distance (where distances are grouped
into discrete intervals or bins) for diverse biomes. Remarkably,
the resulting averaged correlation is found to decay with the
phylogenetic distance, dG , in a robust way across environments
and datasets. In particular, phylogenetically close OTUs (small
values of dG ) display, on average, a significant positive pairwise
correlation while the average correlation decreases to zero for
distant OTUs.

We compare this observation with randomized data, obtained
by shuffling the position of OTUs on the phylogenetic tree.
Such a randomization preserves both the statistical properties
of the abundances and the architecture of the tree, while
removing the relation between the two. A comparison with the
randomizations allows us to show that the positive correlations
at low phylogenetic distances are significantly higher than what
expected by chance. Moreover, we also confirmed the robustness
of this empirical observation by changing the metric to quantify
abundance pairwise correlations, obtaining in all cases similar
decaying correlation patterns (SI Appendix, Figs. S2 and S3).

At a more quantitative level, the reported decay of the
correlation function is well captured on average by a stretched-
exponential function (46):

�(dG) = e−�d
�
G , [1]

where � ≈ 1/3, as shown in Fig. 1B, so that the decay of the
correlation function is slower than exponential. Both, the value
of � and the goodness of fit of the functional form of Eq. 1, have
a small degree of variation across biomes. In particular, the best
fits of the exponent � for each of the considered biomes—always
in the range 0.2 to 0.4—are reported in SI Appendix, section S3.B
and Table S2 (understanding the origin of this variability goes
beyond the goals of the present manuscript). We also explored
alternative functional forms (e.g., exponential and power-law)
for the decay curves (SI Appendix,Tables S3 and S4 in section
S3.B) and observed that, overall, the stretched exponential is the
one providing the best fit to the patterns. Nevertheless, note that
this is only a phenomenological fit, as we lack a mechanistic
understanding of the functional form of the decay. Let us finally
remark that the value of � in the fits (� ≈ 3.5) is related to the
typical distance for the decorrelation of abundance fluctuations,
and corresponds roughly to the taxonomic scale of family (SI
Appendix, Table S5 in section S3.D).

In order to scrutinize whether the observed pattern is consistent
across the phylogenetic tree, we repeated the same type of analyses
at the coarser level of taxa, comparing correlations within and
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A B

Fig. 1. (A) Pictorial illustration of the data organization and statistical analyses. Abundances of different species, i.e., OTU at 97% similarity (45), for different
communities of the same biome (e.g., gut of different hosts) are collected, respectively, in rows and columns of the Left table. The gray scale in the matrix
entries stands for the level of abundance with darker shades corresponding to more abundant species. The (symmetric) species-abundance correlation matrix
(color coded) is obtained by calculating for each pair of existing species the correlation of abundance fluctuations across communities. Finally, the phylogenetic
distance is computed for all possible pairs of species by reconstructing the phylogenetic tree and then associated with the corresponding pairwise correlation.
The abundances, correlations, and phylogenetic distance of a particular pair of species are emphasized in red color. (B) Macroecological law for pairwise
correlations as a function of the phylogenetic distance for different biomes. The correlation of abundance fluctuations averaged over all couples within a
given discretized distance bin (colored symbols) decays with the phylogenetic distance (in logarithmic scale) for all the considered microbiomes (see legend).
In particular, each bin in the x-axis includes all couples with a phylogenetic distance within it (each one including at least 103 couples for each of the eight
considered biomes; as shown in SI Appendix, sections S2 and S3.A, the pairs are not uniformly distributed across phylogenetic distances: The vast majority of
couples lie in the rightmost bins, with large distances and small pairwise correlation values). The black line represents a stretched-exponential decay, Eq. 1
with � = 3.5. The inset shows the same data but for the negative log of the correlations represented in double-logarithmic scale, i.e., a plot in which stretched
exponential functions become straight lines; in this case (black line) with slope 1/3.

between taxonomic orders. SI Appendix, Fig. S11, shows that
species from different taxa (i.e., at large phylogenetic distances)
tend to have, on average, vanishing correlations, while the
averaged correlations within the same taxa decay from positive
to zero with phylogenetic distance, recovering the pattern in
Fig. 1 in a consistent way in the vast majority of the observed
taxa (SI Appendix, Figs. S8–S10). Small deviations to the overall
decay pattern appear to be due to specific taxa. In particular, in
SI Appendix, we explore the case of the soil biome where a couple
of orders are the main drivers of the observed deviations from the
macroecological law (SI Appendix, Fig. S9) for reasons that still
need to be understood.

These results suggest that the observed correlation pattern
showing a stretched-exponential decay with phylogenetic dis-
tance is a universal one, not depending on the considered
ecological context nor on particular taxa. Whatever ecological
forces are at the origin of such species-abundance correlations,
they manifest themselves regularly and consistently across envi-
ronments and taxa.

Ecological Forces in Preference Space: Three Alternative Sce-
narios Produce ThreeAlternative Predictions. Which ecological
forces are responsible for the described pattern of abundance
correlations across communities? In microbial ecology, species
interactions are usually not direct, such as predation, but medi-
ated by the environment (e.g., competition for a shared resource).
Such ecological interactions in a network of species and resources
could a priori create both positive and negative species-abundance
pairwise correlations. Similarly, the effect of environmental
fluctuations (e.g., changes in pH) could in principle impact
species growth in correlated or anticorrelated ways.

To unravel these conflicting mechanisms, we consider a
general population-dynamic model where species may grow
and compete for resources in a fluctuating environment. The
fluctuating environment can be modeled as a time-dependent

multidimensional variable E(t) to which population abundances
are coupled via

dxi
dt

= xi(t) (gi (E(t))− �) . [2]

The growth rate of species/population i = 1, . . . , N is therefore
determined by the effect of the environment mediated by the
growth-rate function gi(·) and a baseline death rate �. One
of the greatest challenges in microbial ecology is to identify
what are the relevant environmental dimensions (i.e., what the
components of the vector E are) and to understand how the
environment changes over time, including, its possible coupling
with population growth.

In what follows, we consider two generic types of environ-
mental factors that differ from each other in the way they are
coupled to population dynamics. In particular, we will divide
the components of E(t) in two sets: M population-independent
factors M�(t) with � = 1, . . . ,M and R population-dependent
factors R�(t) with � = 1, . . . , R. The former are subject to
stochasticity but are independent of population abundances
(e.g., temperature), while the latter do instead also depend on
population growth (e.g., a consumable resource).

More specifically, we assume that the value of population-
independent factors is subject to stochastic fluctuations around
some baseline level M̄ , in some coarse-grained time scale

M�(t) = M̄
(
1 +
√
���(t)

)
, [3]

where ��(t) is a (zero-mean unit-variance) Gaussian white noise,
and the parameter � quantifies the strength of fluctuations.

On the other hand, the population-dependent factors R�(t)
depend on the balance between a fluctuating influx and their
consumption by the populations present in the system. Similarly
to Eq. 3, we assume
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R�(t) = R̄

1 +
√
!'�(t)− 


N∑
j=1

b j�xj

 , [4]

where R̄ is the factor mean baseline level, '(t) is a (zero-
mean unit-variance) Gaussian white noise, and ! quantifies the
amplitude of fluctuations. Finally, the third term in the r.h.s—
absent in Eq. 3)—describes in first (linear) approximation the
consumption (at rate 
) of the resource � from the set of existing
species ( j ∈ [1, N ]), weighted by their respective preferences for
(or ability to consume) such a resource: b j� .

Let us remark that in both cases, the choice of Gaussian
fluctuations should not be interpreted as an assumption on the
shape of empirical environmental fluctuation patterns, which are
most likely non-Gaussian and time correlated (e.g., in the gut
microbiome, nutrients arrive in batches). It should instead be
considered a coarse-grained description, emerging over longer
timescales (e.g., akin to the diffusion limit in physics (47); for a
derivation of Eq. 4 from a standard consumer-resource model,
see SI Appendix, section S4.G).

Summing up, we have made an explicit distinction between
population-independent resources (R) that are limited by species
abundances and other population-independent factors (M ) that
are not. However, both of them are expected to affect species
growth.

In what follows we assume (as a first approximation) that
species growth depends on linear combinations of population-
dependent resources and population-independent factors. In par-
ticular, each species is characterized by two vectors, bi and ai, that
capture its preferences for population-dependent and population-
independent factors, respectively (observe, in particular, that bi
appears in the dynamics of population-dependent factors Eq. 4;
see also Fig. 2, Top which illustrates the vector in preference-
space characterizing each species). In this setting, the growth of
species i depends on the linear combinations

∑M
�=1 a

i
�M�(t) and∑R

�=1 b
i
�R�(t).

For instance, one could consider the following specific form
for species growth rate

gi(E(t)) =

( M∑
�=1

ai�M�(t)

) R∑
�=1

bi�R�(t)

 . [5]

This equation is appropriate when the population-independent
factors are interpreted as abiotic factors (e.g., temperature or
salinity) which modulate (in a multiplicative way) the growth
rate associated with resource consumption (SI Appendix, section
S4.G.1). Another choice for the growth rate—that is appropriate
when population-independent factors are highly-variable but
scarce resources, affecting linear growth rates but not inducing
competition (see SI Appendix, section S4.G.3, for an in-depth
discussion)—is the following additive form:

gi(E(t)) =
M∑
�=1

ai�M�(t) +
R∑
�=1

bi�R�(t). [6]

While these two settings start from different biological
assumptions, they lead to very similar predictions (as extensively
shown in SI Appendix). The reason for this convergence is that
starting either from Eq. 5 or from Eq. 6, and approximating them
to describe their linear noise regime it turns out that both models
can be approximated by a generalized Lotka–Volterra equation
(SI Appendix, section S4.G):

dxi
dt

= xi

r̄i +
√
��i(t)−

N∑
j=1

Cijxj

 , [7]

whose parameters and noise functions can be expressed in terms
of those in the general model. In particular, ri(t) = r̄i +

√
��i(t)

is a fluctuating growth rate with mean value r̄i (that depends
on M̄ and R̄) and white-noise variability, �i(t) with covariances
〈�i(t)�j(t ′)〉 = �ij�(t−t ′) and competition matrix,Cij, specified
in what follows.

The crucial point of the simplified Lotka–Volterra model is
that both the noise-covariance matrix—i.e., how species growth
rates covary as a result of shared environmental factors—and the
competition matrix—how species compete for resources—can
be expressed as the overlap of the species preference vectors. In
particular, for species i and j (Materials and Methods):

�ij =
�ai · a j + !bi · b j

� + !
, [8]

and
Cij = 
 bi · b j. [9]

Note, in particular, that the first depends on both types of
environmental factors (b and a) while the second is mediated
only by shared population-dependent resources (b).

In this way, we have mapped the general dynamical model with
species and environmental factors into an effective one describing
just the dynamics of species, which interact among themselves
through their preference vectors. Moreover, depending on the
strengths of these two types of couplings between species pairs,
one can identify three different limiting cases, each one including
different dominating ecological forces (Fig. 2 A–C ):

(A) Shared population-dependent fluctuating resources.
If population-independent fluctuations are negligible (i.e.,
� = 0), species interactions are determined by a combina-
tion of the effect of competition (encoded in the entries Cij)
and resource-abundance fluctuations (encoded in the entries
�ij), which in this case are both proportional to the species
resource-preference overlap: bi · b j.

(B) Shared population-dependent resources and nonoverlap-
ping fluctuating population-independent factors.
If resource fluctuations are negligible (i.e., ! = 0) and
population-independent factors preferences are all orthog-
onal to each other, species experience independent growth
rate fluctuations (�ij = �ij), while competeting for the non-
fluctuating resources through the coupling matrix Cij.

(C) Shared population-independent fluctuating factors with
fixed nonoverlapping population-dependent resources.
If shared population-independent factors are fluctuating and
shared population-dependent resources are highly variable
but scarce, then species experience correlated growth rate
fluctuations but no interspecific competition Cij = 
 �ij.
We refer to this case as “environmental filtering.”

Let us remark that more general and complex models involving
correlated fluctuations of both types of factors, as well as
combinations of the previous limiting cases, could also be
constructed. Here, we focus on these three archetypical ones:
one with correlated fluctuations and competition (A), one with
interactions coming just out of competition (B), and one with
environmental filtering (C).

Using extensive numerical simulations (Materials and Meth-
ods), we investigate the relationship between pairwise abundance
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A

B

C

Fig. 2. (Top) Sketch of the elements of the model. Left: Bacterial species depend upon both population-dependent factors such as abundant resources
(polygons) and population-independent factors, that may represent abiotic variables like temperature, pH, light intensity, etc., but also scarce though highly
fluctuating resources (triangles). The arrows stand for species preferences; the blunt arrows symbolize the feedbacks from populations to population-
dependent factors. Right: Species preferences are represented as radial vectors in a (multidimensional) sphere. The preference distance between two species
is quantified by the angle between their vectors (multiplied by 2/�, see Materials and Methods); red and blue species are similar but different from the green
one. (Bottom) Schematic illustration for the three considered scenarios (models A, B, and C) of: (Left) sketch of species preferences for diverse factors; (Center)
illustration of model dynamics, and (Right) stationary correlations as a function of preference distance (with gray dots standing for simulation results and
red lines for averages/theory). (A) Shared population-dependent fluctuating resources. When species are subjected to the combination of both forces, their
effects cancel out leading to an “effective” neutral situation with no correlations. (B) Shared population-dependent resources and nonoverlapping fluctuating
population-independent factors. When two species sharing some resource preference experience an environmental fluctuation, one outcompetes the other,
causing negative correlations, that increase monotonically to zero as similarity decreases. (C) Shared population-independent fluctuating factors with fixed
nonoverlapping resources. If two species share the same preferences for population-independent factors, but not for resources, they follow in a similar way
environmental fluctuations, determining a positive correlations which decrease with preference distance.

correlations and preference similarities for these three models.
In particular, one can define a preference distance, dP (where
the subindex P stands for either “preference” or “phenotypic”)
proportional to the angle between preference vectors for each
pair of species (with dP = 0 for coinciding vectors and dP = 1
for orthogonal ones). In models (A) and (B), such a distance
is calculated over the resource preference b, while the vectors
of population-independent factors preferences a need to be
considered in model (C).

As illustrated in Fig. 2 A–C, the three models give raise to
three qualitatively distinct patterns of correlation as a function
of preference distance dP : A) Shared fluctuating population-
dependent resources induce an effective neutral behavior, with
nearly vanishing correlations across the spectrum of pairwise
preference distances. B) Shared resources and nonoverlapping
fluctuating population-independent factors produce negative
correlations at small distances that increase to near-zero values in
a monotonic way. C) Shared fluctuating population-independent
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factors with fixed nonoverlapping resources lead to correlations
that decay from positive to vanishing values with distance.
In SI Appendix, Figs. S29–S32, we show that under diverse
conditions, the patterns emerging in models B and C are robust
and appear also in the original model, e.g., Eq. 5.

Environmental Filtering Reproduces the Correlation Decay
with Distance. In order to make a more quantitative comparison
between the previous results and the empirically determined
universal pattern of decaying correlations, it is necessary to specify
the relation between the preference distances dP,ij—on which
the models rely—and the empirically determined phylogenetic
similarity of actual species, as quantified by their genetic distance
dG,ij. For this purpose, it seems natural to assume that dP and dG
are positively correlated, i.e., that phylogenetically close species
typically have more similar preferences than distant ones. Under
this assumption, the overall trend of the decay in Fig. 2 implies
that environmental filtering is the process responsible for the
empirically observed decay of correlations (Fig. 1). Competition
for constant and/or shared fluctuating resources can instead be
discarded as the leading mechanism on the basis of the empirically
observed pattern. This does not imply that competition is not
present, but rather that it does not generate a signal detectable at
a phylogenetic level within the present level of resolution.

To make further quantitative progress in the connection
between the previous mechanistic modeling approaches—in
particular, model C or “environmental filtering”—and available
phylogenetic data, one needs to define a more precise mapping
between preference similarity in the model and empirically deter-
mined phylogenetic distance, i.e., to characterize the functional
dependence between dP on dG , using information on pairwise
correlations. This task is not straightforward: species are coupled
to each other within a network of interactions so that pairs
of species cannot be simply analyzed one at the time, and, on
the other hand, the full set of coupled nonlinear equations is
intractable. Fortunately, however, as explicitly shown inMaterials
and Methods Section, one can make further progress by explicitly
mapping model C into a correlated stochastic logistic model
(CSLM):

dxi
dt

=
xi
�i

(
1−

xi
Ki

)
+
√
�i
�i
xi�i(t), [10]

where �−1
i is the growth rate, Ki an effective carrying capacity,

�i the amplitude of environmental fluctuations, and �i(t) is
a Gaussian white noise, with correlations proportional to the
preference distance,

〈�i(t)�j(t ′)〉 = �(t − t ′) cos
(�

2
dP,ij

)
. [11]

For the sake of simplicity, in the derivation (Materials and
Methods), we assumed that the preference space has a large
dimensionality, i.e., M � 1, but this can be shown not to
limit the generality of the forthcoming results (see SI Appendix,
section S4.F, for more details).

This mapping is particularly illuminating as the resulting
CSLM extends the standard stochastic logistic model (SLM)
(25), as it includes correlated growth-rate fluctuations that
stem from shared environmental fluctuating resources and that
induce nontrivial species correlations. Moreover, it is important
to stress that—if species-abundances trajectories are observed
individually—there are no statistical differences between the
CSLM and the standard SLM. This implies that the CSLM also

reproduces (as the SLM does) the three macroecological patterns
put forward in refs. 25–27 (Materials and Methods). Thus,
the CLSM constitutes an improvement of existing modeling
approaches to microbial macroecological laws.

A crucial advantage of Eq. 10 (together with Eq. 11) with
respect to the generalized Lotka–Volterra equation is that it can
be treated analytically to obtain a mathematical expression linking
pairwise species-abundance correlations with their preference
distance, dP,ij (Materials and Methods). The resulting analytical
relationship can be exploited to estimate the preference distance
matrix from empirical correlation data, thus allowing us to
establish the desired relation between preference distance dP and
phylogenetic distance dG for every pair of species (Materials and
Methods):

dP,ij ≈
2
�

arccos
(
e−�d

1/3
G,ij

)
, [12]

where � is a constant. Observe that Eq. 12 is highly nonlinear,
implying that, as the phylogenetic distance grows, preference
distances rapidly saturate to values close to 1. In other words, even
phylogenetically similar species tend to have a large preference
dissimilarity (i.e., their preference vectors tend to be orthogonal
to each other).

By implementing the relation given by Eq. 12 in the definition
of noise correlations Eq. 11, we obtain a version of the CSLM,
directly relating ecological processes and phylogeny, which allows
us to relate the species-abundance pairwise correlations to their
empirically measured genetic similarity, dG,ij. Actually, given
that the macroecological pattern we intend to reproduce is
for the averaged correlation at a given (binarized) phylogenetic
distance, we dropped the subindex ij in Eq. 12 and use it as a
relation between averages (Materials andMethods and Eq. 40). In
particular, by combining Eq. 40 with Eq. 38, one obtains exactly
Eq. 1, i.e., the empirically observed relation between correlation
and phylogenetic distance (Materials and Methods).

Fig. 3 shows that for the particular case of the human gut
microbiome, a computational simulation of the final version of
the model captures quite well the averaged decay of pairwise

Fig. 3. The model with environmental filtering reproduces the empirical law.
Correlation values are plotted as a function of the phylogenetic distance both
for the gut microbiome data (green triangles for each binarized value) and
the simulated computational model (green clouds of points). The analytical
expression, Eq. 1 with � = 3.5, is also plotted (black line). Simulations of
the model have been performed, using N = 300 species and considering as
an input the empirical phylogenetic distance matrix of the gut microbiome,
randomly sampling from it the N species. Inset: -log correlations as a function
of phylogenetic distance in double-logarithmic scale, empirically and from
the mode, same data as the main figure. For more simulation details, see
Materials and Methods.
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A B

Fig. 4. (A) Sketch of the time-dependent (longitudinal) correlation data analyses. Typical time series for two species (green and brown, respectively) along 10 d.
The dashed lines illustrate how equal-time (red) and 1, 2, and 10 d delayed correlations (green, yellow, and blue, respectively) are computed, see Materials and
Methods for more details. (B) Macroecological law for temporal data. Equal time (red), one-day delay (green), two-day delay (yellow), and ten-day delay (blue)
symbols represent correlations as a function of the discretized phylogenetic distance (logarithmic scale) for the gut microbiomes of two different hosts labeled
with circles (F4) and triangles (M3), respectively. Solid lines stand for the prediction from the CSLM, Eq. 39, averaged over hosts, with timescale parameter
�i = 1, for i = 1, .. , N and � = 4.5.

correlations with phylogenetic distance and that the analytical
predictions describe accurately such an averaged behavior.

The Macroecological Law Holds for Temporal (Longitudinal)
Data. One important prediction of Eq. 10 is that the decay
of abundance correlations with phylogenetic distance is caused
by shared temporal fluctuations. In order to further test the
predictions of Eq. 10, we consider longitudinal data from the
human microbiome. In particular, we analyzed three human
body sites (gut, oral cavity, and hand palms) of two hosts (44).
From these data, we calculate the correlation of species abundance
fluctuation �ij as above, but now averaging over time, rather than
across individuals (Fig. 4A). In particular, Fig. 4B illustrates—
for the specific case of the human gut—that the macroecological
law of decaying correlation holds also for such temporal data
and that delayed correlations rapidly decay to zero. In particular,
the correlations as a function of phylogenetic distance decay on
average as a stretched exponential with an exponent close to 1/3,
as observed in cross-sectional data.

To further test the CSLM model in its ability to reproduce
time-dependent features of species correlations, we also computed
delayed pairwise correlations, �ij(Δt) defined as the correlation
between the abundance fluctuations of species i at time t with the
abundance fluctuations of species j at time t +Δt (Materials and
Methods and Eq.39 and Fig. 4A for a graphical illustration). Let us
remark that, in principle, the value of such a delayed correlation
is, in general, not trivially linked to the correlation computed
at the same time, as it depends of the specific properties of the
dynamics giving rise to species interdependencies. Remarkably,
as shown in Fig. 4B, the CSLM with no additional modification
quantitatively reproduces also the temporal delayed correlations
for different values of the delay (see SI Appendix, section S4.F, for
additional details and analyses) only by setting the growth time
scale �i = 1 for all species.

Discussion

We have considered both cross-sectional (across communities)
and longitudinal (across time) empirical data for the species
abundances in microbial communities from many different
environments and studied their species-abundance pairwise
correlations as a function of pairwise phylogenetic distance,
revealing the emergence of an universal macroecological law.
This empirical law states in quantitative terms that the average
correlation function decays from positive to null values as the
phylogenetic distance (or dissimilarity) increases, approximately
following a stretched-exponential decay function.

We explored the possible ecological forces shaping species
correlations from a theoretical standpoint. In particular, by
scrutinizing different ecological models, each one implementing a
diverse set of ecological forces between species, we found that the
universal correlation pattern cannot possibly be reproduced by
competition or exclusion principles. Instead, temporal environ-
mental filtering—i.e., the presence of correlated noise stemming
from shared fluctuating factors—as modeled by a correlated
stochastic-logistic model (CSLM), explains quantitatively em-
pirical data. Furthermore, time-dependent (delayed) correlations
in longitudinal data are also well reproduced by the model.

The ecological pattern identified in this paper gives a quan-
tification at the level of phylogenetic signals detectable in taxa–
taxa abundance correlation. The pattern, as also shown in SI
Appendix, Figs. S5–S7, does not recapitulate the full range of
correlations observed in natural communities. In this context,
our work complements the research aiming at inferring ecological
interactions from correlations, by showing how phylogenetic
similarity can be used to disentangle the effects of environmental
fluctuations and interactions (such as, e.g., competition).

These results are based on multiple assumptions and their
limitations give opportunities for extensions of the current work.
First, at a theoretical level, the CSLM reproduces the average
correlation at each discrete phylogenetic distance, but not the full
distribution around such a mean value (SI Appendix, Fig. S33).
This is because, to be able to connect genetic and preference
similarities, we enforced a “mean-field” type of relationship, Eq.
12, neglecting variability across pairs of species in the phenotypic-
distance-to-preference-distance mapping. On the other hand, in
SI Appendix, Fig. S5, we show that the variance of the distribution
of the empirically measured pairwise correlations within each
distance bin seems to follow a weak decaying power-law pattern
with phylogenetic distance, with a diverse decaying exponent
characteristic for each analyzed biome. Possibly, these patterns
could be used to generate the preference vectors of the model in
a more general way, allowing for more variability. Empirical data
are not informative enough at the moment to proceed in this
direction, and further analyses are required.

It is however important to stress that both the empirical analy-
sis and the model assume a certain degree of niche conservatism.
One important assumption of our modeling framework is that
ecological similarities are fixed in time and environmentally
dependent (48, 49). In the extreme scenario, in which the
ecological strategy is strongly conserved on the phylogenetic tree
there would be a 1 : 1 mapping between ecological similarity
and phylogenetic distance. This strong assumption is however
not needed for our analysis, which requires of a much weaker
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condition: namely, that ecological similarity correlates with
phylogenetic similarity. The variability of correlations around the
expected one from phylogenetic distance (shown in SI Appendix,
Fig. S33) should be interpreted in this way. Note that two
interpretations of our results are possible. On the most pessimistic
side, one could argue that the pattern we identify and the
model we propose serve only to describe the phylogenetic signal
observed in the correlations, leaving the variation unexplained.
Instead, on the most optimistic side, one could argue that the
variability observed in the correlations is not a signal of other
ecological mechanisms not included in the model but rather the
consequence of the lack of a perfect match between preference
similarity and phylogenetic similarity.

Recent theoretical works, e.g., in the context of consumer-
resource models (50) explored the case of dynamic ecological
preferences, where species’ preferences are dynamically optimized
given an environment. One could envision extensions of our
model including dynamical preferences. In fact, these changes
in ecological strategies might contribute to the large variation
observed around the phylogenetic trend by they should be con-
strained by the robust pattern of mean correlations reported here.

It is also important to stress that the origin of the stretched
exponential behavior and, in particular, its exponent value close
to a value 1/3 in the universal pattern of correlations (i.e., Eq.
1) remains unexplained. This type of scaling could be influenced
by the scale-invariant, i.e., fractal, structure of phylogenetic trees
(51–54). Further investigations, beyond the scope of the present
work, are needed to shed light onto this empirical finding.
Furthermore, it is known that a vast class of competitive models
can lead to species clustering in trait space (55, 56). Even if
such models produce an “oscillating” pattern of positive and
negative correlation, and hence are not sufficient to explain the
behavior here reported, their possible extension could be relevant
for explaining the phylogenetic distance distribution observed in
data (SI Appendix, Fig. S1).

Although environmental filtering has been found to dom-
inate the pattern of species-abundance correlations, the above-
mentioned variability could be the result of the complex interplay
of other ecological forces. To identify which further forces are
relevant and to discriminate their effects, it will be important
to analyze time-dependent data in a more detailed way as well
as to analyze differences in carrying capacities and correlations
between different hosts (27). Furthermore, an exhaustive analysis
of the variations of the correlation pattern across environments
and phyla is also needed. Interestingly, SI Appendix, Figs. S8–
S10 show that some phyla (e.g., Bacteroidetes) follow robustly
the pattern, while some others, such as Actinobacteria, exhibit
wild fluctuations. Indeed, the non-monotonic deviation in the
soil biome around distance 0.1 seems to be caused by the
actinobacteria phylum and, in particular, by the Actinomycetales
and Gaiellales orders (SI Appendix, Fig. S9). The fact that the
trend of correlation and phylogeny holds across very different
environments strongly suggests that the pattern captures an
underlying general ecological process, linking phylogeny with
ecological similarity and ecological similarity with correlations.
Specific environments and specific taxa might have different
behaviors, which is reflected in the deviations from the average
patterns and in the variability of the fitted parameters of the
stretched-exponential. We leave for future work the promising
study of deviations across taxa, that could reveal more infor-
mation on additional interactions responsible for the observed
residual correlations.

The general decay pattern of correlations with phylogenetic
distance implies a quite universal value of the typical distance

above which taxa are on average decorrelated. This scale (de-
termined by the parameter �) corresponds roughly to the one
of different families, and it is conserved across environments,
suggesting that its origin is a consequence of a general biological
mechanism. The value of � could descend from the scale of
ecological dissimilarity at which species fluctuations become on
average not correlated. Alternatively, the scale� could derive from
the phylogenetic scale at which the signal of ecological similarity
disappears. Supporting one of these alternatives would require
identifying the proper variables to infer ecological similarity.

Another relevant caveat is that our analyses here are limited to
the taxonomic resolution of OTUs, clustering together individ-
uals with more than 97% similarity. Recent results suggest that
ecological dynamics starts to decouple at much finer phylogenetic
resolutions (57). Moreover, strains seem to still obey the three
macroecological laws of variation and diversity valid at species
level (58). These results leave open the question of how ecological
forces shape the variation of community composition at finer
phylogenetic scales.

On the other hand, from a complementary viewpoint, we
analyzed the behavior of correlations at the coarse-grained
resolution of phyla. In particular, SI Appendix, Fig. S11 illustrates
that by considering just interphyla correlations, one cannot
observe the stretched exponential decay, that is determined by
intraphyla OTU pairs. Analogously, by extending our analyses
to finer phylogenetic resolutions, it could be possible to reveal
the nature of intraspecific interactions, eventually elucidating the
emergence of competition as a key player in determining corre-
lations. Actually, in our view, one should not fix a characteristic
taxonomic resolution to have a complete description of complex
communities, but, instead, start from individuals (or functional
units) and progressively cluster them together at larger and larger
coarse-grained scales, i.e., moving across observational scales as
customarily done in physics using “renormalization group” tools
in statistical physics (59, 60) as different ecological forces may
shape communities at diverse resolution levels (61).

Materials and Methods

Correlation Analysis. In each community a, with a = 1, .., M, the count of the
i-th species, with i = 1, ..., N, is called na

i , and only sufficiently abundant

communities are considered, i.e., Na =
∑N

i=1 na
i ≥ 104. The relative

abundance of species i in community a is calculated as

xa
i =

na
i

Na . [13]

Community averages are defined as

〈..〉 =
1
M

M∑
a=1

(..), [14]

such that the mean and variance of a species relative abundance are

〈xi〉 =
M∑

a=1

xa
i

M
, Vari = 〈x2

i 〉 − 〈xi〉
2. [15]

Another important quantity is the rank of species i in community a, ra
i , where the

most abundant species has rank r a
i = 1, the second most abundant r a

j = 2, and
so on. Using these ingredients, one can construct the following (five) different
quantities, that gauge fluctuations in species abundance, or simply “fluctuation
quantifiers”:
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qa
1 i =

xa
i − 〈xi〉

〈xi〉
, [16]

qa
2 i =

(na
i − Na

〈xi〉)

Na〈xi〉
, [17]

qa
3 i =

xa
i − 〈xi〉√

Vari
, [18]

qa
4 i =

log xa
i − 〈log xi〉√

Var(log xi)
, [19]

qa
5 i = 2ra

i − 1. [20]

Similarly, one can estimate the correlation between species abundance
fluctuations by using any of these quantifiers:

�kij = 〈qa
kiq

a
kj〉a =

M∑
a=1

qa
kiq

a
kj

M
, [21]

for k = 1, 2, ...5. Finally, one can average over all pairs of species with a distance
falling within a certain “bin” of phylogenetic distance.

In the main text, we report the result for�3, which corresponds to the Pearson
correlation coefficient. This choice is natural as it allows to remove both the effect
of mean and variance. In particular, as opposed to �4 and �5, the value of �3
is expected to decay to zero for large distances and for independent species
abundances. Nevertheless, the general trend we find is metric-independent.
Temporal analyses. The analysis of temporal (longitudinal) data is analogous
to that for cross-sectional data in the preceding section, but instead of studying
fluctuations and correlations between different communities, one considers a
single community a data along a time series (e.g., samples from different days
of the time series, t = 1, .. , T ). All the quantities are defined as above but
replacing the community average by a time average 〈..〉t = 1

T
∑T

t=1(..). In
particular, the equal-time pairwise correlations are defined by

�kij = 〈q(t)kiq(t)kj〉t =

T∑
t=1

q(t)kiq(t)kj

T
; [22]

for species i an j. Similarly, the Δt delayed correlation is

�kij(Δt) = 〈q(t + Δt)kiq(t)kj〉t =

T−Δt∑
t=1

q(t + Δt)kiq(t)kj

T
. [23]

Models in Preference Space. In the preference space model, each single
species is represented by a R-dimensional (population-dependent resources)
preference vector b and a M-dimensional (population-independent factors)
preference vector a. Without loss of generality, environmental factors are
assumed to be equivalent and, to have the squared module r2

P > 0 so that
they can be characterized by a point in a R-dimensional sphere of radius rP ,
i.e.: |b|2 =

∑
�=1,...R b2

� = r2
P (respectively, on a M-dimensional sphere

with same radius in the R-dimensional space). Using the explicit expressions
for the dynamics of environmental factors, the general model Eq. 2, can be
approximated as the generalized Lotka–Volterra equation, Eq.7. Here, we report
on the relation between the two models in the multiplicative case, Eq.5, while the
additive is analogous and treated in SI Appendix, see SI Appendix, section S4.A.
Using the definition of species baseline factor R̄i = R̄

∑
� bi

� , the deterministic
growth rate and the interaction matrix read

r̄i =

R̄
∑
�

bi
�

(M̄
∑
�

ai
�

)
− � = R̄iM̄i − �, [24]

Cij = 
M̄R̄
R∑

�=1

bi
�b j
� = 
M̄R̄b i

· b j, [25]

respectively, while the effective zero-mean Gaussian noise is

√
��i(t) = M̄R̄

√!∑
�

bi
�'� +

√
�
∑
�

ai
���

 . [26]

Finally, the noise amplitude is � = R̄2M̄2 (� + !), and the covariance matrix
is given by Eq. 8 (see SI Appendix, section S4.A for a detailed discussion and
SI Appendix, section S4.G for a derivation from a consumer-resource model).

Evolutionary Algorithm. In all the variants of the model considered here (A,
B, and C), only one set of preference vector is needed. Thus, one can quantify
the preference similarity or “preference distance” between species i and j as the
cosine distance between their relevant preference vectors (for simplicity, in the
following, we restrict the notation to model C for which population-independent
factor preferences are relevant). The preference distance is defined as

dP,ij ≡
2
�
� =

2
�

arccos

(
ai · a j

|ai||a j|

)
=

2
�

arccos

(
ai · a j

rP

)
. [27]

One can generate the set of M preference vectors aby sampling their component
from a Gaussian with mean m/M (m small and positive) and SD 1/

√
M,

N (m/M, 1/
√

M) such that the radius is constant and close to unity for large
values of M:

r2
P =

∑
�

a2
� = 1 +

m2

M
≈ 1. [28]

However, as a consequence of the central limit theorem, for sufficiently large
numbers of environmental factors, M, the random vectors ai tend to be
orthogonal to each other, i.e., dP,ij ≈ 1 ∀i, j, hindering the possibility of
generating similar species by simple random sampling. In order to circumvent
this difficulty, we devised a simple evolutionary algorithm that, starting from
an initial random distribution of vectors ai and implementing and evolutionary
branching process, generates as an outcome a set of vectors ai which are
distributedacrossabroadrangeofpossiblecosine-distancevalues.Thealgorithm
includes the following steps:

1. Sample at random two species i, j, j dies and i reproduces, making a copy
(labeled j) of itself with some variation.

2. The preference vectors of the new species are obtained from the old one with
some variation:

ai = qai + (1− q)�i, [29]

a j = qai + (1− q)�j, [30]

where the parameter q ∈ [0, 1] is the fidelity of reproduction, and �i,j are
vectors sampled fromN (m/M, 1/

√
M) (note that the resulting vectors are

kept within the sphere).
3. Iterate Z times.

By considering a sufficiently large number of iterations Z and a value
q = 0.9, the population develops a pool of similar individuals, with small
pairwise distances, which was absent in the initial condition and covers, even
if in a heterogeneous way, all the spectrum of possible distances (SI Appendix,
Figs. S19 and S20). On the other hand, if the dimension M of population-
independent factors cannot be considered large, e.g., in the presence of just a few
factors such as temperature, pH, etc., we have devised an alternative algorithm
that can produce a long-tail distance distribution even when N ≫ M (see SI
Appendix, section S4.B.2. for more details). In any case, the previous evolutionary
algorithms are just efficient procedures used to generate communities with a
broad distribution of phylogenetic distances.

Correlated Stochastic Logistic Model.
Derivation. The CSLM is obtained from Eq. 7 in the case where each species
consumes only one resource with baseline R̄ at rate 
 , and this resource is not
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consumed by any other species (model C). In particular, by taking the limit
M� 1, one can easily find Eq. 10with the following definitions of the involved
parameters:

�−1 = mM̄R̄− �, K =
R̄M̄− �

M̄R̄

, [31]

�i =
�R̄2M̄2

mR̄M̄− �
, �i =

√
�i
�i

∑
�

ai
���(t). [32]

The environmental noise �i is Gaussian because it is a weighted sum of Gaussian
variables, with moments:

〈�i(t)〉 = 0, [33]

〈�i(t)�j(t)〉 =

√
�i�j

�i�j

R∑
�,�=1

ai
�a j
� 〈��(t)��(t′)〉

= ai · a j = cos
(�

2
dP,ij

)
, [34]

where we have used the parameter definition Eq. 31, the normalization
condition |ai|2 = 1, and the definition of preference distance. In the case
of N� M the derivation described above still applies, but, in order to keep the
equivalency of the CLSM to model C, the absolute value of preference vectors
need to be taken into consideration, see SI Appendix, section S4.F.
Macroecological laws andmarginal properties. The CSLM, in the Ito discretiza-
tion scheme, has a Gamma stationary marginal distribution (25, 62):

P∗(xi) =
1

Γ (�i)

(
�i
x̄i

)�i
x�i−1

i exp
(
−�i

x
x̄i

)
, [35]

where the average abundance x̄i and the squared inverse coefficient of variation
�i read

x̄i = Ki

(
1−

�i
2

)
, [36]

�i :=
x̄2

i
Vari

=
2
�i

(
1−

�i
2

)
, [37]

respectively, coinciding with the ones obtained for the standard SLM (25). Hence,
the CSLM is able to reproduce the three macroecological laws for diversity and
fluctuation, namely:

1. The stationary marginal distribution of species abundances is a Gamma
distribution.

2. By fixing �i = �, for all species, the Taylor law relating the mean and
variances across species is recovered.

3. The mean abundances are distributed as a log-normal just by imposing that
the Ki ’s are log-normally distributed too.

Correlations. The joint probability cannot be calculated analytically for the CSLM,
and hence, an expression for the pairwise correlation functions cannot be derived
in an exact way. Nevertheless, one can rely on a linear-noise approximation
around the fixed point (see SI Appendix, section S4.F.1 for details) and study the
dynamics of fluctuations , leading to the species abundances stationary Pearson
correlation coefficient

�ij =
〈xixj〉 − 〈xi〉〈xj〉√

VariVarj

=
exp

(
cos
(
�
2 dP,ij

) (
�

2−�

))
− 1

exp
((

�
2−�

))
− 1

≈ cos
(�

2
dP,ij

)
, [38]

which is the expression employed in the main text to relate correlations with
preference distances. In the linearized dynamics, one can also derive the delayed
correlations, that read

�ij(Δt) ≈ e−(1− �
2 )Δt

� cos
(�

2
dP,ij

)
; [39]

see SI Appendix, section S4.F.2, for more details.

Inferring preference distances from data. To tune the CSLM to reproduce
the observed empirical pattern, it is necessary to infer the relation between
preference and phylogenetic distances. Note that the empirical pattern we
aim at reproducing is between average correlation and averaged phylogenetic
distance within each bin, i.e., it suffices to find a relation between the (average)
distance dP and dG (in other words: we are not interested in the full probability
distribution of correlations in one bin, but just on its mean value).

Thepreferencedistanceofspeciescanbenowexplicitlycalculatedbyinverting
the formula for the correlation Eq. 38 separately for each species pair and by
taking averages over the couples within each bin of phylogenetic distance:

dP =
2
�
〈arccos

(
�ij

)
〉ij ≈

2
�

arccos(�(dG))

=
2
�

arccos
(

e−�d1/3
G

)
, [40]

where the variance of �ij within each bin of phylogenetic distance has been
neglected, i.e., a so-called “mean-field approximation.” A plot and a discussion
of Eq. 40 can be found in SI Appendix, section S4.H. From Eq. 40 it is possible
to generate a preference-distance matrix and hence the matrix of noise pairwise
correlations from phylogenetic data:

dP,ij =
2
�

arccos
(

e−�d1/3
G,ij

)
, [41]

〈�i(t)�j(t′)〉 = �(t − t′)e−�d1/3
G,ij . [42]

Clearly, this simple version of the CSLM cannot reproduce correlation variability
as a function of phylogenetic similarity (see Discussion for possible extensions).

Computational Simulations. The different models in preference space, Eq.
7 as well as the CSLM, have been simulated in the Itô discretization scheme
using the Milstein algorithm (63) In Fig. 2, gray points stand for the Pearson’s
correlation coefficients at the stationary state for 10 realizations with N = 200
species and M = R = 300; the averages are obtained over 103 samples
at stationarity, at time separated by �t = 10. Red lines are obtained by
averaging the correlation over pairs. In each simulation, the initial populations
are sampled from a Gaussian distribution N(0.5, 0.01); other parameters are
N = 200, R = M = 300, m = 0.1, R̄i = M̄ = 0.1, 
i = 1, �� = !� =

0.1, q = 0.9, Z = 50N, tfin = 104.
In Fig. 3, dark-green points stand for the Pearson’s correlation coefficient at

the stationary state of 10 realizations with N = 300 species, the averages are over
103 abundances sampled during the stationary time series every �t = 10� .
In each realization, we use the phylogenetic distances of N species sampled
at random from the phylogenetic distance matrix of a random community of
the considered biome to construct the species noises correlation, Eq. 41. The
model parameters are set to reproduce the species marginal properties and
delayed correlations, following the prescriptions from the previous section, in
Materials and Methods, and in ref. 25. Carrying capacities are generated log-
normally by taking the exponential of random variables sampled from a Gaussian
distribution N(K̄, �K), �i = � and �i = � for i = 1, .., N. Parameter values:
� = 1, K̄ = 16.1, �K = 3.8, � = 1.42, � = 3.5, tf = 104.

Data, Materials, and Software Availability. All the datasets analyzed in
this work have been previously published and were obtained from the
European Bioinformatics Database (EBI) Metagenomics database (44). Previous
publications of some of us have reported on the details of the experiments and
the corresponding statistical analyses (25). In order to test the robustness of the
macroecological laws and the modeling framework presented in this work, we
considered 7 datasets that differ not only on the considered biome but also on
the sequencing techniques and the pipelines used for data processing which
underscores the consistency of our results. Datasets were selected to represent
a wide set of biomes. We considered only datasets with at least 50 samples with
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more than 104 reads. No dataset was excluded a posteriori. The main code used
for analysis is available here.
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