Weak precompactness in projective tensor products ${ }^{\star}$

José Rodríguez ${ }^{\text {a,* }}$, Abraham Rueda Zoca ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain
${ }^{\text {b }}$ Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received 11 May 2023; received in revised form 9 August 2023; accepted 22 August 2023
Communicated by S. Grivaux

Abstract

We give a sufficient condition for a pair of Banach spaces (X, Y) to have the following property: whenever $W_{1} \subseteq X$ and $W_{2} \subseteq Y$ are sets such that $\left\{x \otimes y: x \in W_{1}, y \in W_{2}\right\}$ is weakly precompact in the projective tensor product $X \widehat{\otimes}_{\pi} Y$, then either W_{1} or W_{2} is relatively norm compact. For instance, such a property holds for the pair $\left(\ell_{p}, \ell_{q}\right)$ if $1<p, q<\infty$ satisfy $1 / p+1 / q \geq 1$. Other examples are given that allow us to provide alternative proofs to some results on multiplication operators due to Saksman and Tylli. We also revisit, with more direct proofs, some known results about the embeddability of ℓ_{1} into $X \widehat{\otimes}_{\pi} Y$ for arbitrary Banach spaces X and Y, in connection with the compactness of all operators from X to Y^{*}. © 2023 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). MSC: 46B28; 46B50 Keywords: Projective tensor product; ℓ_{1}-sequence; Weakly compact set; Weakly precompact set; Coarse p-limited set

[^0]
1. Introduction

Let $\mathcal{L}(X)$ denote the Banach space of all (bounded linear) operators on a Banach space X. Given $R, S \in \mathcal{L}(X)$ one can consider the multiplication operator

$$
\Phi_{R, S}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)
$$

defined by
$\Phi_{R, S}(T):=R \circ T \circ S$ for all $T \in \mathcal{L}(X)$.
Operator ideal properties of such multiplication operators have been widely studied in the literature. As to weak compactness, it is known that $\Phi_{R, S}$ is weakly compact whenever R is compact and S is weakly compact, or vice versa (see [23, Theorem 2.9]). In the other direction, it is not difficult to check that both R and S are weakly compact whenever they are non-zero and $\Phi_{R, S}$ is weakly compact, but in some cases one can say more. Akemann and Wright (see [1, Proposition 2.3]) proved that for $X=\ell_{2}$ the weak compactness of $\Phi_{R, S}$ implies that either R or S is compact. Later, Saksman and Tylli (see [23, Propositions 3.2 and 3.8]) showed that this property holds when X is a subspace of ℓ_{p} for $1<p<\infty$ or X is the James space. In general, this is not true for arbitrary Banach spaces. See [14,18,19,23-25] for more information on this topic.

The previous circle of ideas is intimately related to weak compactness in projective tensor products. Let X and Y be Banach spaces, let $X \widehat{\otimes}_{\pi} Y$ be its projective tensor product and let $W_{1} \subseteq X$ and $W_{2} \subseteq Y$. Then the set

$$
W_{1} \otimes W_{2}:=\left\{x \otimes y: x \in W_{1}, y \in W_{2}\right\} \subseteq X \widehat{\otimes}_{\pi} Y
$$

is relatively weakly compact whenever W_{1} is relatively norm compact and W_{2} is relatively weakly compact, or vice versa. In general, relative weak compactness of both W_{1} and W_{2} is not sufficient for $W_{1} \otimes W_{2}$ to be relatively weakly compact, neither weakly precompact. Recall that a subset of a Banach space is said to be weakly precompact (or conditionally weakly compact) if every sequence in it admits a weakly Cauchy subsequence or, equivalently (thanks to Rosenthal's ℓ_{1}-theorem; see, e.g., [2, Theorem 10.2.1]), if the set is bounded and contains no ℓ_{1}-sequence (that is, a basic sequence which is equivalent to the usual basis of ℓ_{1}). For instance, if $1<p, q<\infty$ satisfy $1 / p+1 / q \geq 1$, then the sequence $\left(e_{n} \otimes e_{n}^{\prime}\right)_{n \in \mathbb{N}}$ in $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ is an ℓ_{1}-sequence, where we denote by $\left(e_{n}\right)_{n \in \mathbb{N}}$ and $\left(e_{n}^{\prime}\right)_{n \in \mathbb{N}}$ the usual bases of ℓ_{p} and ℓ_{q}, respectively (see, e.g., the proof of [5, Proposition 3.6]). The following definition arises naturally:

Definition 1.1. Let X and Y be Banach spaces. We say that the pair (X, Y) has property (AW) if whenever $W_{1} \subseteq X$ and $W_{2} \subseteq Y$ are sets such that $W_{1} \otimes W_{2}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$, then either W_{1} or W_{2} is relatively norm compact.

Clearly, if X and Y are infinite-dimensional Banach spaces such that $X \widehat{\otimes}_{\pi} Y$ contains no subspace isomorphic to ℓ_{1}, then the pair (X, Y) fails property (AW) (the unit balls B_{X} and B_{Y} fail to be norm compact, while $B_{X} \otimes B_{Y}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$). Such an example is given by $\left(\ell_{p}, \ell_{q}\right)$ for $1<p, q<\infty$ with $1 / p+1 / q<1$, because in this case $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ is reflexive (see, e.g., [22, Corollary 4.24]). In [20, Proposition 3.17] it is shown that the pair (X, Y) has property (AW) whenever X and Y are Banach spaces with unconditional finitedimensional Schauder decompositions having a disjoint lower p-estimate and a disjoint lower q-estimate, respectively, where $1<p, q<\infty$ satisfy $1 / p+1 / q \geq 1$. In particular, for $1<p, q<\infty$, the pair $\left(\ell_{p}, \ell_{q}\right)$ has property (AW) if and only if $1 / p+1 / q \geq 1$.

The aim of this paper is to go a bit further in the analysis of ℓ_{1}-sequences in projective tensor products of Banach spaces, property (AW) and its applications to multiplication operators. The paper is organized as follows.

In Section 2 we discuss the relationship between multiplication operators and projective tensor products, specially in connection with weak compactness. Some known results are included for the sake of completeness.

In Section 3 we focus on property (AW). The following property plays an important role in our discussion:

Definition 1.2. Let X be a Banach space and $1<p<\infty$. We say that X has property (R_{p}) if for every relatively weakly compact set $A \subseteq X$ which is not relatively norm compact there is an operator $u: X \rightarrow \ell_{p}$ such that $u(A)$ is not relatively norm compact.

Obviously, ℓ_{p} has property $\left(R_{p}\right)$ for every $1<p<\infty$. This property is closely related to the class of coarse p-limited sets introduced in [12] and, in particular, it agrees with the so-called coarse p-Gelfand-Phillips property when $2 \leq p<\infty$ (see Remark 3.3). We prove that the pair (X, Y) has property (AW) whenever X and Y are Banach spaces having properties (R_{p}) and (R_{q}), respectively, where $1<p, q<\infty$ satisfy $1 / p+1 / q \geq 1$ (see Theorem 3.4). One of the possible approaches to the previous result sheds some more light on ℓ_{1}-sequences in this setting: under the same assumptions on X and Y, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are weakly Cauchy sequences in X and Y, respectively, without norm convergent subsequences, then $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ admits an ℓ_{1}-subsequence in $X \widehat{\otimes}_{\pi} Y$ (see Theorem 3.8). As an application of Theorem 3.4 and some results of Knaust and Odell [17], we provide new proofs of the aforementioned results on multiplication operators of Saksman and Tylli (see Corollaries 3.16 and 3.17).

In Section 4 we include some complements about ℓ_{1}-sequences in projective tensor products and we provide more direct proofs of some known results about the embeddability of ℓ_{1} into $X \widehat{\otimes}_{\pi} Y$ for arbitrary Banach spaces X and Y, due to Emmanuele [10] and Xue, Li and Bu [26]. Namely:
(i) If X and Y contain no subspace isomorphic to ℓ_{1} and all operators from X to Y^{*} are compact, then $X \widehat{\otimes}_{\pi} Y$ contains no subspace isomorphic to ℓ_{1}, [10, Theorem 3] (see Theorem 4.4).
(ii) If $X \widehat{\otimes}_{\pi} Y$ contains no subspace isomorphic to ℓ_{1} and either X or Y has an unconditional basis, then all operators from X to Y^{*} are compact, [10, Corollary 6] and [26, Theorem 4] (see Theorem 4.6).

Terminology

We work with real Banach spaces. Let X be a Banach space. The norm of X is denoted by $\|\cdot\|_{X}$ or simply $\|\cdot\|$. The topological dual of X is denoted by X^{*}. The evaluation of $x^{*} \in X^{*}$ at $x \in X$ is denoted by either $x^{*}(x)$ or $\left\langle x^{*}, x\right\rangle$. By a subspace of X we mean a norm closed linear subspace. Given a set $C \subseteq X$, its closed convex hull and its closed linear span (i.e., the subspace of X generated by C) are denoted by $\overline{\operatorname{conv}}(C)$ and $\overline{\operatorname{span}}(C)$, respectively. The closed unit ball of X is $B_{X}=\{x \in X:\|x\| \leq 1\}$. Given two sets $C_{1}, C_{2} \subseteq X$, its Minkowski sum is $C_{1}+C_{2}:=\left\{x_{1}+x_{2}: x_{1} \in C_{1}, x_{2} \in C_{2}\right\}$. By an operator we mean a continuous linear map between Banach spaces. Given another Banach space Y, we denote by $\mathcal{L}(X, Y)$ the Banach space of all operators from X to Y, equipped with the operator norm (when $X=Y$ we just write $\mathcal{L}(X)$ instead $)$. As usual, we denote by $T^{*} \in \mathcal{L}\left(Y^{*}, X^{*}\right)$ the adjoint of $T \in \mathcal{L}(X, Y)$.

We denote by $\mathcal{B}(X, Y)$ the Banach space of all continuous bilinear functionals on $X \times Y$, with the norm $\|S\|_{\mathcal{B}(X, Y)}=\sup \left\{|S(x, y)|: x \in B_{X}, y \in B_{Y}\right\}$. Observe that the spaces $\mathcal{B}(X, Y)$, $\mathcal{L}\left(X, Y^{*}\right)$ and $\mathcal{L}\left(Y, X^{*}\right)$ are isometric in the natural way. Each $S \in \mathcal{B}(X, Y)$ induces a linear functional \tilde{S} in the algebraic tensor product $X \otimes Y$. The projective tensor product of X and Y, denoted by $X \widehat{\otimes}_{\pi} Y$, is the completion of $X \otimes Y$ when equipped with the norm

$$
\|z\|=\sup \{|\tilde{S}(z)|: S \in \mathcal{B}(X, Y),\|S\| \leq 1\}, \quad z \in X \otimes Y
$$

Hence, each $S \in \mathcal{B}(X, Y)$ induces an element of $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ (namely, the continuous linear extension of \tilde{S} to $X \widehat{\otimes}_{\pi} Y$). In fact, this gives an onto isometry between $\mathcal{B}(X, Y)$ and $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ (see, e.g., [22, Section 2.2]). In the sequel we will identify the spaces $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}, \mathcal{B}(X, Y)$, $\mathcal{L}\left(X, Y^{*}\right)$ and $\mathcal{L}\left(Y, X^{*}\right)$ via that isometry.

2. Multiplication operators and tensor products

In this preliminary section we discuss the relationship between multiplication operators and tensor products of operators, in connection with weak compactness. While most of the results are already known, we include their proofs, which can help readers to focus on the subject.

Lemma 2.1. Let X_{1} and X_{2} be Banach spaces and let $C_{1} \subseteq X_{1}$ and $C_{2} \subseteq X_{2}$. The following statements hold:
(i) If $C_{1} \otimes C_{2}$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$, then both C_{1} and C_{2} are relatively weakly compact provided that they are not equal to $\{0\}$. The same holds if relative weak compactness is replaced by weak precompactness.
(ii) If C_{1} is relatively norm compact and C_{2} is relatively weakly compact (resp., weakly precompact), then $C_{1} \otimes C_{2}$ is relatively weakly compact (resp., weakly precompact) in $X_{1} \widehat{\otimes}_{\pi} X_{2}$.

Proof. (i) Fix $x_{i} \in C_{i} \backslash\{0\}$ for $i \in\{1,2\}$ and consider the isomorphic embeddings

$$
\iota_{1}: X_{1} \rightarrow X_{1} \widehat{\otimes}_{\pi} X_{2} \quad \text { and } \quad \iota_{2}: X_{2} \rightarrow X_{1} \widehat{\otimes}_{\pi} X_{2}
$$

given by $\iota_{1}(x):=x \otimes x_{2}$ for all $x \in X_{1}$ and $\iota_{2}(y):=x_{1} \otimes y$ for all $y \in X_{2}$. Since both $\iota_{1}\left(C_{1}\right)$ and $\iota_{2}\left(C_{2}\right)$ are contained in $C_{1} \otimes C_{2}$, the conclusion follows at once.
(ii) Suppose that C_{2} is relatively weakly compact. We can assume without loss of generality that $C_{1} \subseteq B_{X_{1}}$ and $C_{2} \subseteq B_{X_{2}}$. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences in C_{1} and C_{2}, respectively. By passing to subsequences, we can assume that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is norm convergent to some $x \in X_{1}$ and that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is weakly convergent to some $y \in X_{2}$. Given any $T \in \mathcal{L}\left(X, Y^{*}\right)$, for each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left|\left\langle T, x_{n} \otimes y_{n}\right\rangle-\langle T, x \otimes y\rangle\right| & \leq\left|\left\langle T\left(x_{n}\right)-T(x), y_{n}\right\rangle\right|+\left|\left\langle T(x), y_{n}-y\right\rangle\right| \\
& \leq\|T\|\left\|x_{n}-x\right\|+\left|\left\langle T(x), y_{n}-y\right\rangle\right|
\end{aligned}
$$

and so $\left\langle T, x_{n} \otimes y_{n}\right\rangle \rightarrow\langle T, x \otimes y\rangle$ as $n \rightarrow \infty$. This shows that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly convergent to $x \otimes y$ in $X_{1} \widehat{\otimes}_{\pi} X_{2}$. The proof that $C_{1} \otimes C_{2}$ is weakly precompact when C_{2} is weakly precompact is similar.

Remark 2.2. In the setting of Lemma 2.1, a similar argument shows that, if either X_{1} or X_{2} has the Dunford-Pettis and both C_{1} and C_{2} are relatively weakly compact, then $C_{1} \otimes C_{2}$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$ (which reproves a result of J. Diestel, see [8, Theorem 16]).

Given two operators $T_{1}: Y_{1} \rightarrow X_{1}$ and $T_{2}: Y_{2} \rightarrow X_{2}$, where Y_{1}, Y_{2}, X_{1} and X_{2} are Banach spaces, the projective tensor product of T_{1} and T_{2} is the unique operator

$$
T_{1} \otimes T_{2}: Y_{1} \widehat{\otimes}_{\pi} Y_{2} \rightarrow X_{1} \widehat{\otimes}_{\pi} X_{2}
$$

satisfying

$$
\left(T_{1} \otimes T_{2}\right)\left(y_{1} \otimes y_{2}\right)=T_{1}\left(y_{1}\right) \otimes T_{2}\left(y_{2}\right)
$$

for every $y_{1} \in Y_{1}$ and for every $y_{2} \in Y_{2}$ (see [22, Proposition 2.3] for details).
Lemma 2.3. Let Y_{1}, Y_{2}, X_{1} and X_{2} be Banach spaces and let $T_{1}: Y_{1} \rightarrow X_{1}$ and $T_{2}: Y_{2} \rightarrow X_{2}$ be operators. Then $T_{1} \otimes T_{2}$ is weakly compact if and only if $T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right)$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$.

Proof. We have $B_{Y_{1}} \widehat{\otimes}_{\pi} Y_{2}=\overline{\operatorname{conv}}\left(B_{Y_{1}} \otimes B_{Y_{2}}\right)$ (see, e.g., [22, Proposition 2.2]) and therefore the set $W:=T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right)=\left(T_{1} \otimes T_{2}\right)\left(B_{Y_{1}} \otimes B_{Y_{2}}\right)$ satisfies

$$
\overline{\operatorname{conv}}(W)=\overline{\left(T_{1} \otimes T_{2}\right)\left(B_{Y_{1} \widehat{\otimes}_{\pi} Y_{2}}\right)}
$$

The conclusion now follows from the Krein-Šmulyan theorem asserting that the convex hull of a relatively weakly compact subset of an arbitrary Banach space is relatively weakly compact as well (see, e.g., [9, p. 51, Theorem 11]).

Proposition 2.4. Let X, X_{1}, Y and Y_{1} be Banach spaces and let $S: X_{1} \rightarrow X$ and $R: Y \rightarrow Y_{1}$ be operators. Let us consider the operator

$$
\Phi_{R^{* *}, S}: \mathcal{L}\left(X, Y^{* *}\right) \rightarrow \mathcal{L}\left(X_{1}, Y_{1}^{* *}\right)
$$

defined by

$$
\Phi_{R^{* *}, S}(T):=R^{* *} \circ T \circ S \quad \text { for all } T \in \mathcal{L}\left(X, Y^{* *}\right) .
$$

Then:
(i) $\Phi_{R^{* *}, S}=\left(S \otimes R^{*}\right)^{*}$, where as usual we identify $\mathcal{L}\left(X, Y^{* *}\right)=\left(X \widehat{\otimes}_{\pi} Y^{*}\right)^{*}$ and $\mathcal{L}\left(X_{1}, Y_{1}^{* *}\right)=\left(X_{1} \widehat{\otimes}_{\pi} Y_{1}^{*}\right)^{*}$.
(ii) $\Phi_{R^{* *}, S}$ is weakly compact if and only if $S \otimes R^{*}$ is weakly compact. In this case, the operator

$$
\Phi_{R, S}: \mathcal{L}(X, Y) \rightarrow \mathcal{L}\left(X_{1}, Y_{1}\right)
$$

defined by

$$
\Phi_{R, S}(T):=R \circ T \circ S \quad \text { for all } T \in \mathcal{L}(X, Y)
$$

is weakly compact and if, in addition, both S and R are non-zero, then they are weakly compact as well.

Proof. (i) Fix $T \in \mathcal{L}\left(X, Y^{* *}\right)$. Then $\left(S \otimes R^{*}\right)^{*}(T)=T \circ\left(S \otimes R^{*}\right)$. Given arbitrary $x \in X_{1}$ and $y^{*} \in Y_{1}^{*}$, we have

$$
\begin{aligned}
& \left\langle\left(S \otimes R^{*}\right)^{*}(T), x \otimes y^{*}\right\rangle=\left(T \circ\left(S \otimes R^{*}\right)\right)\left(x \otimes y^{*}\right)=T\left(S(x) \otimes R^{*}\left(y^{*}\right)\right) \\
= & \left\langle T(S(x)), R^{*}\left(y^{*}\right)\right\rangle=\left\langle R^{* *}(T(S(x))), y^{*}\right\rangle=\left\langle\Phi_{R^{* *}, S}(T), x \otimes y^{*}\right\rangle .
\end{aligned}
$$

Hence, $\left(S \otimes R^{*}\right)^{*}(T)=\Phi_{R^{* *}, S}(T)$.
(ii) The first statement follows from Gantmacher's theorem and (i). Note that the weak compactness of $S \otimes R^{*}$ is equivalent to the relative weak compactness of the set $S\left(B_{X_{1}}\right) \otimes$ $R^{*}\left(B_{Y_{1}^{*}}\right)$ in $X_{1} \widehat{\otimes}_{\pi} Y_{1}^{*}$ (see Lemma 2.3). Therefore, the second statement is a consequence of Lemma 2.1(i) and the fact that $\Phi_{R, S}$ is the restriction of $\Phi_{R^{* *}, S}$ to $\mathcal{L}(X, Y)$ as a subspace of $\mathcal{L}\left(X, Y^{* *}\right)$.

The following result (in slightly less generality) was first proved in [23, Theorem 2.9]. See [18,19,24,25] for other proofs. Our approach is close to that of [19, Proposition 1] and [25, Proposition 2.3(ii)].

Corollary 2.5. Let S and R be as in Proposition 2.4. Suppose that either (i) S is compact and R is weakly compact or (ii) S is weakly compact and R is compact. Then $\Phi_{R^{* *}, S}$ is weakly compact.

Proof. We just prove case (ii) as the other one is similar. Since R is compact, Schauder's theorem ensures that R^{*} is compact too. Hence, $S\left(B_{X_{1}}\right)$ is relatively weakly compact in X and $R^{*}\left(B_{Y_{1}^{*}}\right)$ is relatively norm compact in Y^{*}. Then $S\left(B_{X_{1}}\right) \otimes R^{*}\left(B_{Y_{1}^{*}}\right)$ is relatively weakly compact in $X \widehat{\otimes}_{\pi} Y^{*}$ (see Lemma 2.1(ii)) and so Lemma 2.3 applies to deduce that $S \otimes R^{*}$ is a weakly compact operator. The conclusion now follows from Proposition 2.4(ii).

Observe that the previous arguments and Remark 2.2 also lead to the next result going back to [19, Proposition 2]:

Remark 2.6. Let S and R be as in Proposition 2.4. Suppose that X or Y^{*} has the Dunford-Pettis property. If both S and R are weakly compact, then $\Phi_{R^{* *}, S}$ is weakly compact.

2.1. An observation on the Davis-Figiel-Johnson-Petczyński factorization

Let us recall the remarkable procedure that Davis, Figiel, Johnson and Pełczyński invented in [7]. Let X be a Banach space and let $W \subseteq X$ be an absolutely convex bounded set. For each $n \in \mathbb{N}$, denote by $|\cdot|_{n}$ the Minkowski functional of the absolutely convex bounded set $W_{n}:=2^{n} W+2^{-n} B_{X} \subseteq X$, that is,

$$
|x|_{n}:=\inf \left\{t>0: x \in t W_{n}\right\} \quad \text { for all } x \in X .
$$

Then $X_{W}:=\left\{x \in X: \sum_{n=1}^{\infty}|x|_{n}^{2}<\infty\right\}$ is a linear subspace of X which becomes a Banach space when equipped with the norm

$$
\|x\|_{X_{W}}:=\left(\sum_{n=1}^{\infty}|x|_{n}^{2}\right)^{1 / 2}
$$

The identity map $J_{W}: X_{W} \rightarrow X$ is an operator and $W \subseteq J_{W}\left(B_{X_{W}}\right)$. Moreover, the space X_{W} is reflexive if and only if W is relatively weakly compact. The operator J_{W} will be called the DFJP operator associated to W. The reader can find in [3, Section 5.2] the basics on this topic.

The absolutely convex hull (resp., closed absolutely convex hull) of a subset C of a Banach space will be denoted by aconv (C) (resp., $\overline{\operatorname{aconv}}(C)$).

Proposition 2.7. Let X_{1} and X_{2} be Banach spaces. For each $i \in\{1,2\}$, let $C_{i} \subseteq X_{i}$ be a bounded set and let $T_{i}: Y_{i} \rightarrow X_{i}$ be the DFJP operator associated to $W_{i}:=\operatorname{aconv}\left(C_{i}\right) \subseteq X_{i}$. Then $T_{1} \otimes T_{2}$ is weakly compact if and only if $C_{1} \otimes C_{2}$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$.

Proof. Since

$$
\left(T_{1} \otimes T_{2}\right)\left(B_{Y_{1}} \otimes B_{Y_{2}}\right)=T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right) \supseteq W_{1} \otimes W_{2} \supseteq C_{1} \otimes C_{2},
$$

the set $C_{1} \otimes C_{2}$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$ whenever $T_{1} \otimes T_{2}$ is weakly compact.
To prove the converse, let us assume that $C_{1} \otimes C_{2}$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$. By the Krein-Šmulyan theorem (see, e.g., [9, p. 51, Theorem 11]), its absolutely convex hull $\operatorname{aconv}\left(C_{1} \otimes C_{2}\right)$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$ and, hence, the same holds for $W_{1} \otimes W_{2} \subseteq \operatorname{aconv}\left(C_{1} \otimes C_{2}\right)$. The statement is obvious if either W_{1} or W_{2} equals to $\{0\}$, so we assume that this is not the case. Then W_{1} and W_{2} are relatively weakly compact (see Lemma 2.1(i)).

Fix $\varepsilon>0$. Choose $m \in \mathbb{N}$ large enough such that $2^{-m} \leq \varepsilon$ and define $n:=2^{m}$. Then

$$
\begin{equation*}
T_{i}\left(B_{Y_{i}}\right) \subseteq n \overline{W_{i}}+\varepsilon B_{X_{i}} \quad \text { for } i \in\{1,2\} \tag{2.1}
\end{equation*}
$$

Indeed, fix $y \in B_{Y_{i}}$ and take $t>1 \geq\|y\|_{Y_{i}}$. By the very definition of the norm of Y_{i}, we have

$$
T_{i}(y) \in t\left(2^{m} W_{i}+2^{-m} B_{X_{i}}\right) \subseteq t\left(n \overline{W_{i}}+\varepsilon B_{X_{i}}\right) \subseteq t\left(n \overline{W_{i}}+\varepsilon B_{X_{i}^{* *}}\right) \subseteq X_{i}^{* *}
$$

Since $\overline{W_{i}}$ is weakly compact in X_{i}, the set $n \overline{W_{i}}+\varepsilon B_{X_{i}^{* *}}$ is w^{*}-closed in $X_{i}^{* *}$ and so, since $t>1$ is arbitrary, we conclude that

$$
T_{i}(y) \in\left(n \overline{W_{i}}+\varepsilon B_{X_{i}^{* *}}\right) \cap X_{i}=n \overline{W_{i}}+\varepsilon B_{X_{i}}
$$

as required. This finishes the proof of inclusion (2.1).
Writing $\rho_{i}:=\left\|T_{i}\right\|^{-1}$, we have

$$
H_{i}:=\rho_{i} T_{i}\left(B_{Y_{i}}\right) \subseteq \rho_{i} n \overline{W_{i}}+\rho_{i} \varepsilon B_{X_{i}} \quad \text { for } i \in\{1,2\} .
$$

Since $H_{i} \subseteq B_{X_{i}}$, we can apply [6, Lemma 3.10] to deduce that the set

$$
U_{i}:=\frac{\rho_{i} n}{1+\rho_{i} \varepsilon} \overline{W_{i}} \cap B_{X_{i}}
$$

satisfies

$$
H_{i} \subseteq U_{i}+\frac{2 \rho_{i} \varepsilon}{1+\rho_{i} \varepsilon} B_{X_{i}} \quad \text { for } i \in\{1,2\}
$$

It follows that

$$
\begin{equation*}
T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right) \subseteq V+f(\varepsilon) B_{X_{1} \widehat{\otimes}_{\pi} X_{2}} \tag{2.2}
\end{equation*}
$$

where

$$
V:=\rho_{1}^{-1} U_{1} \otimes \rho_{2}^{-1} U_{2} \subseteq X_{1} \widehat{\otimes}_{\pi} X_{2}
$$

and

$$
f(\varepsilon):=2 \varepsilon\left(\frac{1}{1+\rho_{1} \varepsilon}+\frac{1}{1+\rho_{2} \varepsilon}+\left(\frac{1}{1+\rho_{1} \varepsilon}\right)\left(\frac{2 \varepsilon}{1+\rho_{2} \varepsilon}\right)\right)
$$

Writing $\theta_{i}:=n\left(1+\rho_{i} \varepsilon\right)^{-1}$ for $i \in\{1,2\}$, we have

$$
V \subseteq \theta_{1} \overline{W_{1}} \otimes \theta_{2} \overline{W_{2}}=\theta_{1} \theta_{2}\left(\overline{W_{1}} \otimes \overline{W_{2}}\right) \subseteq \theta_{1} \theta_{2} \overline{W_{1} \otimes W_{2}} \subseteq \theta_{1} \theta_{2} \overline{\operatorname{aconv}}\left(C_{1} \otimes C_{2}\right)
$$

and so (2.2) yields

$$
T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right) \subseteq \theta_{1} \theta_{2} \overline{\operatorname{aconv}}\left(C_{1} \otimes C_{2}\right)+f(\varepsilon) B_{X_{1}} \widehat{\otimes}_{\pi} X_{2}
$$

Notice that $\theta_{1} \theta_{2} \overline{\operatorname{aconv}}\left(C_{1} \otimes C_{2}\right)$ is weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$ and that $f(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. It follows that $T_{1}\left(B_{Y_{1}}\right) \otimes T_{2}\left(B_{Y_{2}}\right)$ is relatively weakly compact in $X_{1} \widehat{\otimes}_{\pi} X_{2}$ (see, e.g., [11, Lemma 13.32]). Finally, an appeal to Lemma 2.3 ensures that the operator $T_{1} \otimes T_{2}$ is weakly compact.

3. Property (AW)

The following notion was introduced in [12]:
Definition 3.1. Let X be a Banach space and $1<p<\infty$. A set $A \subseteq X$ is said to be coarse p-limited if $T(A)$ is relatively norm compact for every $T \in \mathcal{L}\left(X, \ell_{p}\right)$.

Remark 3.2. Let X be a Banach space and $1<p<\infty$. The following statements are equivalent:
(i) X has property $\left(R_{p}\right)$ (see Definition 1.2), i.e., every coarse p-limited relatively weakly compact subset of X is relatively norm compact.
(ii) Every coarse p-limited weakly null sequence in X is norm null.
(iii) Every coarse p-limited weakly precompact subset of X is relatively norm compact.

Proof. The implications (iii) \Rightarrow (i) \Rightarrow (ii) are obvious. For (ii) \Rightarrow (iii), let $A \subseteq X$ be a coarse p-limited weakly precompact subset of X. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in A. By passing to a subsequence, we can assume that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy. We claim that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is norm Cauchy, which is enough to conclude (iii). Indeed, if this is not the case, then we can find $\varepsilon>0$ and two subsequences $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ and $\left(x_{m_{k}}\right)_{k \in \mathbb{N}}$ such that $\left\|x_{n_{k}}-x_{m_{k}}\right\|>\varepsilon$ for all $k \in \mathbb{N}$. Note that for every $T \in \mathcal{L}\left(X, \ell_{p}\right)$ the set $T(A)$ is relatively norm compact in ℓ_{p} and so the same holds for

$$
\left\{T\left(x_{n_{k}}-x_{m_{k}}\right): k \in \mathbb{N}\right\} \subseteq T(A)-T(A) .
$$

Hence, $\left(x_{n_{k}}-x_{m_{k}}\right)_{k \in \mathbb{N}}$ is a coarse p-limited, weakly null but not norm null sequence, a contradiction.

Remark 3.3. Let X be a Banach space and $2 \leq p<\infty$. Then every coarse p-limited subset of X is weakly precompact (see [12, Proposition 3]). Consequently, X has property $\left(R_{p}\right)$ if and only if it has the coarse p-Gelfand-Phillips property of [12], i.e., every coarse p-limited subset of X is relatively norm compact.

The following result provides a sufficient condition on a pair of Banach spaces to have property (AW) (see Definition 1.1):

Theorem 3.4. Let X and Y be Banach spaces such that X has property $\left(R_{p}\right)$ and Y has property $\left(R_{q}\right)$ for some $1<p, q<\infty$ satisfying $1 / p+1 / q \geq 1$. Then the pair (X, Y) has property (AW).

First proof of Theorem 3.4. By contradiction, suppose that there exist non relatively norm compact sets $W_{1} \subseteq X$ and $W_{2} \subseteq Y$ such that $W_{1} \otimes W_{2}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$. Then W_{1} and W_{2} are weakly precompact (see Lemma 2.1(i)). The assumptions on X and Y together with Remark 3.2 ensure the existence of operators $u: X \rightarrow \ell_{p}$ and $v: Y \rightarrow \ell_{q}$ such that $u\left(W_{1}\right)$ and $v\left(W_{2}\right)$ are not relatively norm compact. As we already mentioned in the
introduction, the condition $1 / p+1 / q \geq 1$ implies that the pair $\left(\ell_{p}, \ell_{q}\right)$ has property (AW) and so $u\left(W_{1}\right) \otimes u\left(W_{2}\right)$ is not weakly precompact in $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$. This is a contradiction, because $u \otimes v: X \widehat{\otimes}_{\pi} Y \rightarrow \ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ is an operator, $W_{1} \otimes W_{2}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$ and $u\left(W_{1}\right) \otimes u\left(W_{2}\right)=(u \otimes v)\left(W_{1} \otimes W_{2}\right)$.

Theorem 3.8 will provide a different approach to Theorem 3.4. It is convenient to introduce first some terminology. Recall that a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Banach space is said to be seminormalized if it is bounded and $\inf _{n \in \mathbb{N}}\left\|x_{n}\right\|>0$.

Definition 3.5. Let X be a Banach space and $1<p<\infty$. We say that X has property $\left(P_{p}\right)$ if every seminormalized weakly null sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X admits a basic subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ which is equivalent to the usual basis of ℓ_{p} and such that $\operatorname{span}\left(\left\{x_{n_{k}}: k \in \mathbb{N}\right\}\right)$ is complemented in X.

The following fact is well-known (see, e.g., [2, Proposition 2.1.3]):
Proposition 3.6. For every $1<p<\infty$ the space ℓ_{p} has property $\left(P_{p}\right)$.
Remark 3.7. Let X be a Banach space and $1<p<\infty$. If X has property (P_{p}), then it also has property $\left(R_{p}\right)$.

Proof. It suffices to prove that any coarse p-limited weakly null sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X is norm null (see Remark 3.2). By contradiction, suppose this is not the case. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ admits a seminormalized subsequence and so there is a further subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ which is a basic sequence equivalent to the usual basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ of ℓ_{p} and such that $X_{0}:=\overline{\operatorname{span}}\left(\left\{x_{n_{k}}: k \in \mathbb{N}\right\}\right)$ is complemented in X. Let $T_{0}: X_{0} \rightarrow \ell_{p}$ be the isomorphism satisfying $T\left(x_{n_{k}}\right)=e_{k}$ for all $k \in \mathbb{N}$. Since X_{0} is complemented in X, we can extend T_{0} to some operator $T: X \rightarrow \ell_{p}$. But $\left\{T\left(x_{n_{k}}\right): k \in \mathbb{N}\right\}=\left\{e_{k}: k \in \mathbb{N}\right\}$ is not relatively norm compact in ℓ_{p}, which contradicts the fact that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is coarse p-limited.

Theorem 3.8. Let X and Y be Banach spaces such that X has property $\left(R_{p}\right)$ and Y has property $\left(R_{q}\right)$ for some $1<p, q<\infty$ satisfying $1 / p+1 / q \geq 1$. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be weakly Cauchy sequences in X and Y, respectively, without norm convergent subsequences. Then $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ admits an ℓ_{1}-subsequence in $X \widehat{\otimes}_{\pi} Y$.

Proof. The set $\left\{x_{n}: n \in \mathbb{N}\right\}$ is weakly precompact but fails to be norm relatively compact. Since X has property $\left(R_{p}\right)$, there is an operator $u: X \rightarrow \ell_{p}$ such that $\left\{u\left(x_{n}\right): n \in \mathbb{N}\right\}$ is not relatively norm compact in ℓ_{p}. By passing to a subsequence, we can assume that $\left(u\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ does not admit norm convergent subsequences. Note that $\left(u\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is weakly Cauchy and so weakly convergent to some $z \in \ell_{p}$ (the space ℓ_{p} is weakly sequentially complete). Define $z_{n}:=u\left(x_{n}\right)-z$ for all $n \in \mathbb{N}$. Since the weakly null sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ does not admit norm null subsequences, by passing to a further subsequence we can assume that $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a basic sequence equivalent to the usual basis of ℓ_{p} and that $\overline{\operatorname{span}}\left(\left\{z_{n}: n \in \mathbb{N}\right\}\right)$ is complemented in ℓ_{p} (see Proposition 3.6). In the same way, since the set $\left\{y_{n}: n \in \mathbb{N}\right\}$ is weakly precompact but fails to be norm relatively compact, property $\left(R_{q}\right)$ of Y ensures the existence of an operator $v: Y \rightarrow \ell_{q}$, a subsequence $\left(y_{n_{k}}\right)_{k \in \mathbb{N}}$ and $w \in \ell_{q}$ such that the sequence $\left(w_{k}\right)_{k \in \mathbb{N}}$ defined by $w_{k}:=v\left(y_{n_{k}}\right)-w$ for all $k \in \mathbb{N}$ is a basic sequence equivalent to the usual basis of ℓ_{q} and that $W:=\overline{\operatorname{span}}\left(\left\{w_{k}: k \in \mathbb{N}\right\}\right)$ is complemented in ℓ_{q}.

Define $Z:=\overline{\operatorname{span}}\left(\left\{z_{n_{k}}: k \in \mathbb{N}\right\}\right)$. Then $\left(z_{n_{k}} \otimes w_{k}\right)_{k \in \mathbb{N}}$ is an ℓ_{1}-sequence in $Z \widehat{\otimes}_{\pi} W$ (see, e.g., the proof of [5, Proposition 3.6]). Let $\iota_{Z}: Z \rightarrow \ell_{p}$ and $\iota_{W}: W \rightarrow \ell_{q}$ be the inclusion operators. Since Z and W are complemented in ℓ_{p} and ℓ_{q}, respectively, the operator $\iota_{Z} \otimes \iota_{W}: Z \widehat{\otimes}_{\pi} W \rightarrow \ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ is an isomorphism onto a (complemented) subspace of $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ (see, e.g., [22, Proposition 2.4]). Hence, $\left(z_{n_{k}} \otimes w_{k}\right)_{k \in \mathbb{N}}$ is also an ℓ_{1}-sequence in $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$. Since

$$
h_{k}:=(u \otimes v)\left(x_{n_{k}} \otimes y_{n_{k}}\right)=u\left(x_{n_{k}}\right) \otimes v\left(y_{n_{k}}\right)=z_{n_{k}} \otimes w_{k}+\underbrace{z \otimes w_{k}+z_{n_{k}} \otimes w+z \otimes w}_{=: h_{k}^{\prime}}
$$

for all $k \in \mathbb{N}$ and the sequence $\left(h_{k}^{\prime}\right)_{k \in \mathbb{N}}$ is weakly convergent (to $z \otimes w$) in $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ (bear in mind that both $\left(z_{n_{k}}\right)_{k \in \mathbb{N}}$ and $\left(w_{k}\right)_{k \in \mathbb{N}}$ are weakly null), we can apply Rosenthal's ℓ_{1}-theorem (see, e.g., [2, Theorem 10.2.1]) to infer that $\left(h_{k}\right)_{k \in \mathbb{N}}$ admits an ℓ_{1}-subsequence, say $\left(h_{k_{j}}\right)_{j \in \mathbb{N}}$. Since $u \otimes v$ is an operator, it is not difficult to prove that $\left(x_{n_{k_{j}}} \otimes y_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ is an ℓ_{1}-sequence in $X \widehat{\otimes}_{\pi} Y$. This finishes the proof.

Theorem 3.8 provides an alternative proof of Theorem 3.4, as follows.
Second proof of Theorem 3.4. Let $W_{1} \subseteq X$ and $W_{2} \subseteq Y$ be sets such that $W_{1} \otimes W_{2}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$. By contradiction, suppose that W_{1} and W_{2} are not relatively norm compact. Since both W_{1} and W_{2} are weakly precompact (see Lemma 2.1(i)), there exist weakly Cauchy sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ in W_{1} and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in W_{2} without norm convergent subsequences. By Theorem 3.8, $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ admits an ℓ_{1}-subsequence in $X \widehat{\otimes}_{\pi} Y$, which contradicts the weak precompactness of $W_{1} \otimes W_{2}$.

Let us obtain another consequence of Theorem 3.8 in the context of weakly null sequences in projective tensor products. Observe that the usual basis of ℓ_{2} shows that, in general, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are weakly null sequences in X and Y, respectively, the sequence $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ may fail to be weakly null in $X \widehat{\otimes}_{\pi} Y$. To the best of our knowledge, the following question is open in complete generality.

Question 3.9. Let X and Y be Banach spaces. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be weakly null sequences in X and Y, respectively, such that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly convergent in $X \widehat{\otimes}_{\pi} Y$. Is $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ weakly null in $X \widehat{\otimes}_{\pi} Y$?

Theorem 3.8 allows us to provide the following partial affirmative answer.
Corollary 3.10. Let X and Y be Banach spaces such that X has property $\left(R_{p}\right)$ and Y has property $\left(R_{q}\right)$ for some $1<p, q<\infty$ satisfying $1 / p+1 / q \geq 1$. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be weakly null sequences in X and Y, respectively. Then $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly null if (and only if) it is weakly Cauchy in $X \widehat{\otimes}_{\pi} Y$.

Proof. Suppose that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy. By Theorem 3.8, either $\left(x_{n}\right)_{n \in \mathbb{N}}$ or $\left(y_{n}\right)_{n \in \mathbb{N}}$ admits a norm null subsequence. Hence, $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ admits a weakly null subsequence (by the proof of Lemma 2.1(ii)). It follows that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly null.

3.1. Some applications

In this subsection we combine Theorem 3.4 with a deep result of Knaust and Odell [17] (see Theorem 3.13) to get some results on multiplication operators due to Saksman and Tylli [23] (see Corollaries 3.16 and 3.17). We need to introduce some additional terminology.

Definition 3.11. Let X be a Banach space and $1<p<\infty$. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X is said to have an upper p-estimate if there is a constant $c>0$ such that

$$
\left(\sum_{n=1}^{m}\left|a_{n}\right|^{p}\right)^{1 / p} \geq c\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\|
$$

for every $m \in \mathbb{N}$ and for all $a_{1}, \ldots, a_{m} \in \mathbb{R}$.
Definition 3.12. Let X be a Banach space and $1<p<\infty$. We say that X has property $\left(S_{p}\right)$ if every seminormalized weakly null sequence in X admits a subsequence having an upper p-estimate.

The following result can be found in [17, Corollary 2]:
Theorem 3.13 (Knaust-Odell). Let X be a Banach space such that X has property $\left(S_{p}\right)$ and X^{*} has property $\left(S_{p^{\prime}}\right)$, where $1<p, p^{\prime}<\infty$ satisfy $1 / p+1 / p^{\prime}=1$. The following statements hold:
(i) If X^{*} contains no subspace isomorphic to ℓ_{1}, then X has property $\left(P_{p}\right)$.
(ii) If X contains no subspace isomorphic to ℓ_{1}, then X^{*} has property $\left(P_{p^{\prime}}\right)$.

Corollary 3.14. Let X be a subspace of ℓ_{p}, where $1<p<\infty$. Then:
(i) X has property $\left(P_{p}\right)$.
(ii) X^{*} has property $\left(P_{p^{\prime}}\right)$, where $1<p^{\prime}<\infty$ satisfies $1 / p+1 / p^{\prime}=1$.
(iii) The pair $\left(X, X^{*}\right)$ has property (AW).

Proof. Note that ℓ_{p} (resp., $\ell_{p^{\prime}}$) has property $\left(P_{p}\right)$ (resp., $\left(P_{p^{\prime}}\right)$), see Proposition 3.6, which in turn implies property $\left(S_{p}\right)$ (resp., $\left(S_{p^{\prime}}\right)$). Clearly, property $\left(S_{p}\right)$ is inherited by subspaces, so X has property $\left(S_{p}\right)$. Since quotients of reflexive Banach spaces having property ($S_{p^{\prime}}$) also have property ($S_{p^{\prime}}$), it follows that X^{*} has property ($S_{p^{\prime}}$). Statements (i) and (ii) now follow at once from Theorem 3.13. Statement (iii) is a consequence of Theorem 3.4 and Remark 3.7.

Corollary 3.15. Let J be the James space. Then:
(i) J and J^{*} have property $\left(P_{2}\right)$.
(ii) The pair $\left(J, J^{*}\right)$ has property (AW).

Proof. It is known that both J and J^{*} have property $\left(S_{2}\right)$, see [4] and [13, Proposition 3.3], respectively. Now, we can argue as in the proof of Corollary 3.14.

As an application we get the next result (see [23, Proposition 3.2]):
Corollary 3.16 (Saksman-Tylli). Let X be a subspace of ℓ_{p}, where $1<p<\infty$, and let $R, S \in \mathcal{L}(X)$. If the operator $\Phi_{R, S}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ is weakly compact, then either R or S is compact.

Proof. The weak compactness of $\Phi_{R, S}$ is equivalent to the weak compactness of $S \otimes R^{*} \in$ $\mathcal{L}\left(X \widehat{\otimes}_{\pi} X^{*}\right)$ (see Proposition 2.4), which in turn is equivalent to the relative weak compactness of $S\left(B_{X}\right) \otimes R^{*}\left(B_{X^{*}}\right)$ in $X \widehat{\otimes}_{\pi} X^{*}$ (see Lemma 2.3). Since the pair (X, X^{*}) has property (AW)
(see Corollary 3.14(iii)), either $S\left(B_{X}\right)$ or $R^{*}\left(B_{X^{*}}\right)$ is relatively norm compact, that is, either S or R^{*} is a compact operator. In the second case, Schauder's theorem applies to conclude that R is compact as well.

Finally, the same argument applies to the following (see [23, Proposition 3.8]):
Corollary 3.17 (Saksman-Tylli). Let J be the James space and let $R, S \in \mathcal{L}(J)$. If the operator $\Phi_{R, S}: \mathcal{L}(J) \rightarrow \mathcal{L}(J)$ is weakly compact, then either R or S is compact.

4. More on $\boldsymbol{\ell}_{1}$-sequences in projective tensor products

4.1. Basic tensors and unconditional bases

If a sequence in a Banach space fails to be weakly null, then it admits a subsequence which is an ℓ_{1}^{+}-sequence, in the following sense:

Definition 4.1. Let X be a Banach space. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X is called an ℓ_{1}^{+}-sequence if the following equivalent statements hold:
(i) $0 \notin \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$.
(ii) There is $x^{*} \in X^{*}$ such that $x^{*}\left(x_{n}\right) \geq 1$ for every $n \in \mathbb{N}$.
(iii) There is a constant $C>0$ such that

$$
\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\| \geq C \sum_{n=1}^{N} a_{n}
$$

for all $N \in \mathbb{N}$ and for all non-negative real numbers a_{1}, \ldots, a_{N}.
It is not difficult to check that a bounded unconditional basic sequence is an ℓ_{1}-sequence if and only if it is an ℓ_{1}^{+}-sequence. In the same spirit, we have:

Lemma 4.2. Let X and Y be Banach spaces such that X has an unconditional basis. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a bounded unconditional basis of X and let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in Y. Then the sequence $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ in $X \widehat{\otimes}_{\pi} Y$ is an ℓ_{1}-sequence if and only if it is an ℓ_{1}^{+}-sequence.

Proof. Suppose that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is an ℓ_{1}^{+}-sequence and fix an operator $T: X \rightarrow Y^{*}$ such that $T\left(x_{n}\right)\left(y_{n}\right) \geq 1$ for all $n \in \mathbb{N}$ (we identify $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ and $\mathcal{L}\left(X, Y^{*}\right)$ as usual). Fix $N \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}$. Define an operator $G: X \rightarrow Y^{*}$ by

$$
G(x):=\sum_{n=1}^{N} \operatorname{sign}\left(\lambda_{n}\right) x_{n}^{*}(x) T\left(x_{n}\right) \quad \text { for all } x \in X,
$$

where $\left(x_{n}^{*}\right)_{n \in \mathbb{N}}$ is the sequence in X^{*} of biorthogonal functionals associated to the basis $\left(x_{n}\right)_{n \in \mathbb{N}}$. Observe that for every $x \in X$ we have

$$
\begin{aligned}
\|G(x)\|=\left\|\sum_{n=1}^{N} \operatorname{sign}\left(\lambda_{n}\right) x_{n}^{*}(x) T\left(x_{n}\right)\right\| & =\left\|T\left(\sum_{n=1}^{N} \operatorname{sign}\left(\lambda_{n}\right) x_{n}^{*}(x) x_{n}\right)\right\| \\
& \leq\|T\|\left\|\sum_{n=1}^{N} \operatorname{sign}\left(\lambda_{n}\right) x_{n}^{*}(x) x_{n}\right\| \\
& \leq\|T\| K_{u}\|x\|
\end{aligned}
$$

where K_{u} stands for the unconditional basis constant of $\left(x_{n}\right)_{n \in \mathbb{N}}$. Hence, we have $\|G\| \leq\|T\| K_{u}$ and therefore

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} \lambda_{n} x_{n} \otimes y_{n}\right\| & \geq \frac{1}{\|T\| K_{u}} \sum_{n=1}^{N} \lambda_{n} G\left(x_{n}\right)\left(y_{n}\right) \\
& =\frac{1}{\|T\| K_{u}} \sum_{n=1}^{N} \lambda_{n} \operatorname{sign}\left(\lambda_{n}\right) T\left(x_{n}\right)\left(y_{n}\right) \\
& \geq \frac{1}{\|T\| K_{u}} \sum_{n=1}^{\infty}\left|\lambda_{n}\right| .
\end{aligned}
$$

This shows that the (bounded) sequence $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is an ℓ_{1}-sequence.
The following result provides another partial affirmative answer to Question 3.9. The additional assumption on one of the Banach spaces is weaker than property $\left(P_{p}\right)$ (see Definition 3.5) and holds for c_{0}, all ℓ_{p} spaces with $1 \leq p<\infty$ (see, e.g., [2, Proposition 2.1.3]) and all $L_{p}[0,1]$ spaces with $2<p<\infty$, by a classical result of Kadec and Pełczyński (see [15], Theorem 2 and Corollaries 1 and 4).

Theorem 4.3. Let X and Y be Banach spaces. Suppose that every seminormalized weakly null sequence in X admits an unconditional basic subsequence whose closed linear span is complemented in X. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a weakly null sequence in X and let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in Y. If the sequence $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is not weakly null in $X \widehat{\otimes}_{\pi} Y$, then it admits an ℓ_{1}-subsequence.

Proof. Since any non weakly null sequence in a Banach space admits a subsequence which is an ℓ_{1}^{+}-sequence, we can assume that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is an ℓ_{1}^{+}-sequence. Observe that $\left(x_{n}\right)_{n \in \mathbb{N}}$ cannot be norm null and so it admits a seminormalized subsequence, say $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$. By the assumption on X, we can assume further that $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ is an unconditional basic sequence and that $X_{0}:=\overline{\operatorname{span}}\left(\left\{x_{n_{k}}: k \in \mathbb{N}\right\}\right)$ is complemented in X. Hence, the operator $\iota_{X_{0}} \otimes \operatorname{id}_{Y}$: $X_{0} \widehat{\otimes}_{\pi} Y \rightarrow X \widehat{\otimes}_{\pi} Y$ is an isomorphism onto a (complemented) subspace of $X \widehat{\otimes}_{\pi} Y$, where $\iota_{X_{0}}: X_{0} \rightarrow X$ is the inclusion operator and id_{Y} is the identity operator on Y (see, e.g., [22, Proposition 2.4]). Now, since $\left(x_{n_{k}} \otimes y_{n_{k}}\right)_{k \in \mathbb{N}}$ is also an ℓ_{1}^{+}-sequence in $X_{0} \widehat{\otimes}_{\pi} Y$, we can apply Lemma 4.2 to conclude that $\left(x_{n_{k}} \otimes y_{n_{k}}\right)_{k \in \mathbb{N}}$ is an ℓ_{1}-sequence in $X_{0} \widehat{\otimes}_{\pi} Y$, and so in $X \widehat{\otimes}_{\pi} Y$.

4.2. Embedding ℓ_{1} into projective tensor products

Let X and Y be Banach spaces. The subspace of $\mathcal{L}\left(X, Y^{*}\right)$ (resp., $\left.\mathcal{L}\left(Y, X^{*}\right)\right)$ consisting of all compact operators from X to Y^{*} (resp., from Y to X^{*}) will be denoted by $\mathcal{K}\left(X, Y^{*}\right)$ (resp., $\mathcal{K}\left(Y, X^{*}\right)$). It is well-known (and not difficult to check) that $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$ if and only if $\mathcal{L}\left(Y, X^{*}\right)=\mathcal{K}\left(Y, X^{*}\right)$. The reflexivity of $X \widehat{\otimes}_{\pi} Y$ is closely related to those equalities. Indeed, if both X and Y are reflexive and $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$, then $X \widehat{\otimes}_{\pi} Y$ is reflexive; conversely, if $X \widehat{\otimes}_{\pi} Y$ is reflexive and, in addition, either X or Y has the approximation property, then $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$ (see, e.g., [22, Section 4.2]). It is an open problem whether the last statement holds without the approximation property assumption.

As we already mentioned in the introduction, in $[10,26]$ one can find similar results where reflexivity is weakened to "not containing isomorphic copies of ℓ_{1} ". The purpose of this subsection is to provide more direct proofs of those results.

Theorem 4.4. Let X and Y be Banach spaces such that one of the following conditions holds:
(i) either X or Y has the Dunford-Pettis property;
(ii) $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$.

Then:
(a) If $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are weakly Cauchy sequences in X and Y, respectively, then $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy in $X \widehat{\otimes}_{\pi} Y$.
(b) If $W_{1} \subseteq X$ and $W_{2} \subseteq Y$ are weakly precompact sets, then $W_{1} \otimes W_{2}$ is weakly precompact in $X \widehat{\otimes}_{\pi} Y$.
(c) If X and Y contain no subspace isomorphic to ℓ_{1}, then $X \widehat{\otimes}_{\pi} Y$ contains no subspace isomorphic to ℓ_{1}.

Proof (a). Fix $T \in \mathcal{L}\left(X, Y^{*}\right)$. Note that for every $n, m \in \mathbb{N}$ we have

$$
\begin{align*}
& \left|\left\langle T, x_{n} \otimes y_{n}\right\rangle-\left\langle T, x_{m} \otimes y_{m}\right\rangle\right| \tag{4.1}\\
= & \left|\left\langle T\left(x_{n}\right), y_{n}\right\rangle-\left\langle T\left(x_{m}\right), y_{m}\right\rangle\right| \leq\left|\left\langle T\left(x_{n}-x_{m}\right), y_{n}\right\rangle\right|+\left|\left\langle T\left(x_{m}\right), y_{m}-y_{n}\right\rangle\right| .
\end{align*}
$$

Suppose that T is compact. Then T is completely continuous, hence we have $\| T\left(x_{n}-\right.$ $\left.x_{m}\right) \| \rightarrow 0$ and so $\left|\left\langle T\left(x_{n}-x_{m}\right), y_{n}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$. In addition, since the set $\left\{T\left(x_{m}\right): m \in \mathbb{N}\right\} \subseteq Y^{*}$ is relatively norm compact and $y_{m}-y_{n} \rightarrow 0$ weakly in Y as $n, m \rightarrow \infty$, we have $\left|\left\langle T\left(x_{m}\right), y_{m}-y_{n}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$. From (4.1) it follows that $\left|\left\langle T, x_{n} \otimes y_{n}\right\rangle-\left\langle T, x_{m} \otimes y_{m}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$. This proves that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy in $X \widehat{\otimes}_{\pi} Y$ when $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$.

If Y has the Dunford-Pettis property, then we have $\left|\left\langle T\left(x_{n}-x_{m}\right), y_{n}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$ (because $T\left(x_{n}-x_{m}\right) \rightarrow 0$ weakly in Y^{*} as $n, m \rightarrow \infty$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy) and $\left|\left\langle T\left(x_{m}\right), y_{m}-y_{n}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$ (because $\left(T\left(x_{m}\right)\right)_{m \in \mathbb{N}}$ is weakly Cauchy and $y_{m}-y_{n} \rightarrow 0$ weakly in Y as $n, m \rightarrow \infty$). Therefore, from (4.1) we get $\left|\left\langle T, x_{n} \otimes y_{n}\right\rangle-\left\langle T, x_{m} \otimes y_{m}\right\rangle\right| \rightarrow 0$ as $n, m \rightarrow \infty$. This proves that $\left(x_{n} \otimes y_{n}\right)_{n \in \mathbb{N}}$ is weakly Cauchy in $X \widehat{\otimes}_{\pi} Y$ when Y has the Dunford-Pettis property. By symmetry, the same holds whenever X has the Dunford-Pettis property.
(b) is immediate from (a).
(c) Note that $B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)$ (see, e.g., [22, Proposition 2.2]) and that the closed convex hull of a weakly precompact set in a Banach space is weakly precompact as well, according to a result of Stegall (see [21, Addendum]). The conclusion now follows from (b) and the fact that a Banach space contains no subspace isomorphic to ℓ_{1} if and only if its closed unit ball is weakly precompact.

The following result is implicit in the proof of [16, Theorem 6]. Recall that an unconditional expansion of the identity of a Banach space X is a sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{L}(X)$ such that for each $x \in X$ we have $x=\sum_{n \in \mathbb{N}} P_{n}(x)$, the series being unconditionally convergent in X.

Proposition 4.5. Let X and Y be Banach spaces and let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be an unconditional expansion of the identity of X (resp., Y^{*}). If $X \widehat{\otimes}_{\pi} Y$ contains no complemented subspace isomorphic to ℓ_{1}, then for each $T \in \mathcal{L}\left(X, Y^{*}\right)$ we have $T=\sum_{n \in \mathbb{N}} T \circ P_{n}$ (resp., $T=$ $\left.\sum_{n \in \mathbb{N}} P_{n} \circ T\right)$, the series being unconditionally convergent in $\mathcal{L}\left(X, Y^{*}\right)$.

Proof. Bearing in mind the identification of $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ and $\mathcal{L}\left(X, Y^{*}\right)$, together with the fact that a Banach space contains no complemented subspace isomorphic to ℓ_{1} if and only if its
dual contains no subspace isomorphic to c_{0} (see, e.g., [3, Theorem 4.68]), the assumption turns out to be equivalent to the fact that $\mathcal{L}\left(X, Y^{*}\right)$ contains no subspace isomorphic to c_{0}.

Suppose that $\left(P_{n}\right)_{n \in \mathbb{N}}$ is an unconditional expansion of the identity of X (the other case is analogous) and fix $T \in \mathcal{L}\left(X, Y^{*}\right)$. Define $T_{J}:=\sum_{n \in J} T \circ P_{n}$ for every finite set $J \subseteq \mathbb{N}$. For each $x \in X$ we have $\sup \left\{\left\|T_{J}(x)\right\|_{Y^{*}}: J \subseteq \mathbb{N}\right.$ finite $\}<\infty$, because the series $\sum_{n \in \mathbb{N}} T\left(P_{n}(x)\right)$ is unconditionally convergent in Y^{*} (with sum $T(x)$). By the uniform boundedness principle,

$$
\sup \left\{\left\|T_{J}\right\|_{\mathcal{L}\left(X, Y^{*}\right)}: J \subseteq \mathbb{N} \text { finite }\right\}<\infty
$$

This implies that $\sum_{n \in \mathbb{N}} T \circ P_{n}$ is a weakly unconditionally Cauchy series in $\mathcal{L}\left(X, Y^{*}\right)$, that is, for every $\varphi \in \mathcal{L}\left(X, Y^{*}\right)^{*}$ we have $\sum_{n \in \mathbb{N}}\left|\left\langle\varphi, T \circ P_{n}\right\rangle\right|<\infty$. Since $\mathcal{L}\left(X, Y^{*}\right)$ contains no subspace isomorphic to c_{0}, we conclude that the series $\sum_{n \in \mathbb{N}} T \circ P_{n}$ is unconditionally convergent in $\mathcal{L}\left(X, Y^{*}\right)$ (see, e.g., [3, Theorem 4.49]). Clearly, its sum equals T.

Clearly, if a Banach space X admits an unconditional basis or just an unconditional FDD (i.e., unconditional finite-dimensional decomposition), then there is an unconditional finitedimensional expansion of the identity of X, that is, an unconditional expansion of the identity consisting of finite rank operators. Of course, this implies that X has the approximation property. As an immediate consequence of Proposition 4.5, we have:

Theorem 4.6. Let X and Y be Banach spaces such that either X or Y^{*} admits an unconditional finite-dimensional expansion of the identity. If $X \widehat{\otimes}_{\pi} Y$ contains no complemented subspace isomorphic to ℓ_{1}, then $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$.

The same argument yields the following:
Remark 4.7. Let X and Y be Banach spaces such that either X or Y^{*} admits an unconditional expansion of the identity consisting of elements of some norm closed operator ideal \mathcal{A}. If $X \widehat{\otimes}_{\pi} Y$ contains no complemented subspace isomorphic to ℓ_{1}, then all elements of $\mathcal{L}\left(X, Y^{*}\right)$ belong to \mathcal{A}.

We finish the paper with a question which is open to the best of our knowledge.
Question 4.8. Let X and Y be Banach spaces such that $X \widehat{\otimes}_{\pi} Y$ contains no complemented subspace isomorphic to ℓ_{1}. Does the equality $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{K}\left(X, Y^{*}\right)$ hold? What if, in addition, either X or Y^{*} has the approximation property?

Acknowledgments

The authors thank A. Avilés and G. Martínez-Cervantes for fruitful conversations on the topic of the paper.

The research was supported by grants PID2021-122126NB-C32 (J. Rodríguez) and PID2021 -122126NB-C31 (A. Rueda Zoca), funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", and also by grant 21955/PI/22 (funded by Fundación Séneca ACyT Región de Murcia, Spain). The research of A. Rueda Zoca was also supported by grants FQM-0185 and PY20_00255 (funded by Junta de Andalucía, Spain).

References

[1] C.A. Akemann, S. Wright, Compact actions on C^{*}-algebras, Glasg. Math. J. 21 (2) (1980) 143-149.
[2] F. Albiac, N.J. Kalton, Topics in Banach space theory, in: Graduate Texts in Mathematics, 233, Springer, New York, 2006.
[3] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Reprint of the 1985 Original, Springer, Dordrecht, 2006.
[4] I. Amemiya, T. Itô, Weakly null sequences in James spaces on trees, Kodai Math. J. 4 (3) (1981) 418-425.
[5] A. Avilés, G. Martínez-Cervantes, J. Rodríguez, A. Rueda Zoca, Topological properties in tensor products of Banach spaces, J. Funct. Anal. 283 (12) (2022) 35, Paper No. 109688.
[6] A. Avilés, G. Plebanek, J. Rodríguez, Tukey classification of some ideals on ω and the lattices of weakly compact sets in Banach spaces, Adv. Math. 310 (2017) 696-758.
[7] W.J. Davis, T. Figiel, W.B. Johnson, A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974) 311-327.
[8] J. Diestel, A survey of results related to the Dunford-Pettis property, in: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979), in: Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I, 1980, pp. 15-60.
[9] J. Diestel, J.J. Uhl Jr., Vector measures, in: Mathematical Surveys, Vol. 15, American Mathematical Society, Providence, R.I, 1977.
[10] G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (5) (1992) 477-485.
[11] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, in: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.
[12] P. Galindo, V.C.C. Miranda, A class of sets in a Banach space coarser than limited sets, Bull. Braz. Math. Soc. (N.S.) 53 (3) (2022) 941-955.
[13] R. Gonzalo, Upper and lower estimates in Banach sequence spaces, Comment. Math. Univ. Carolin. 36 (4) (1995) 641-653.
[14] W.B. Johnson, G. Schechtman, Multiplication operators on $L\left(L_{p}\right)$ and l_{p}-strictly singular operators, J. Eur. Math. Soc. 10 (4) (2008) 1105-1119.
[15] M.I. Kadec, A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the L_{p}, Studia Math. 21 (1962) 161-176.
[16] N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974) 267-278.
[17] H. Knaust, E. Odell, Weakly null sequences with upper l_{p}-estimates, in: Functional Analysis (Austin, TX, 1987/1989), in: Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 85-107.
[18] M. Lindström, G. Schlüchtermann, Composition of operator ideals, Math. Scand. 84 (2) (1999) 284-296.
[19] G. Racher, On the tensor product of weakly compact operators, Math. Ann. 294 (2) (1992) 267-275.
[20] J. Rodríguez, On weak compactness in projective tensor products, Q. J. Math. 74 (2) (2023) 593-605.
[21] H.P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (2) (1977) 362-378.
[22] R.A. Ryan, Introduction to Tensor Products of Banach Spaces, in: Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002.
[23] E. Saksman, H.-O. Tylli, Weak compactness of multiplication operators on spaces of bounded linear operators, Math. Scand. 70 (1) (1992) 91-111.
[24] E. Saksman, H.-O. Tylli, Weak essential spectra of multiplication operators on spaces of bounded linear operators, Math. Ann. 299 (2) (1994) 299-309.
[25] E. Saksman, H.-O. Tylli, Multiplications and elementary operators in the Banach space setting, in: Methods in Banach Space Theory, in: London Math. Soc. Lecture Note Ser., vol. 337, Cambridge Univ. Press, Cambridge, 2006, pp. 253-292.
[26] X. Xue, Y. Li, Q. Bu, Embedding l_{1} into the projective tensor product of Banach spaces, Taiwanese J. Math. 11 (4) (2007) 1119-1125.

[^0]: $\hat{*}$ The research was supported by grants PID2021-122126NB-C32 (J. Rodríguez) and PID2021-122126NB-C31 (A. Rueda Zoca), funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", and also by grant 21955/PI/22 (funded by Fundación Séneca - ACyT Región de Murcia, Spain). The research of A. Rueda Zoca was also supported by grants FQM-0185 and PY20_00255 (funded by Junta de Andalucía, Spain).

 * Corresponding author.

 E-mail addresses: joserr@um.es (J. Rodríguez), abrahamrueda@ugres (A. Rueda Zoca).
 URLs: https://webs.um.es/joserr (J. Rodríguez), https://arzenglish.wordpress.com (A. Rueda Zoca).
 https://doi.org/10.1016/j.indag.2023.08.003
 0019-3577/© 2023 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

